ath5k: Use static const
[linux-2.6-block.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
CommitLineData
b5aec950
S
1/*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
c46917bb 17#include "hw.h"
8fe65368 18#include "ar9002_phy.h"
b5aec950
S
19
20static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
21{
22 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
23}
24
25static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
26{
27 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
28}
29
30static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
31{
32#define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
c46917bb 33 struct ath_common *common = ath9k_hw_common(ah);
b5aec950
S
34 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
35 int addr, eep_start_loc = 0;
36
37 eep_start_loc = 64;
38
39 if (!ath9k_hw_use_flash(ah)) {
c46917bb
LR
40 ath_print(common, ATH_DBG_EEPROM,
41 "Reading from EEPROM, not flash\n");
b5aec950
S
42 }
43
44 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
5bb12791 45 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
c46917bb 46 ath_print(common, ATH_DBG_EEPROM,
60ece404 47 "Unable to read eeprom region\n");
b5aec950
S
48 return false;
49 }
50 eep_data++;
51 }
52
53 return true;
54#undef SIZE_EEPROM_4K
55}
56
57static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
58{
59#define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
c46917bb 60 struct ath_common *common = ath9k_hw_common(ah);
b5aec950
S
61 struct ar5416_eeprom_4k *eep =
62 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
63 u16 *eepdata, temp, magic, magic2;
64 u32 sum = 0, el;
65 bool need_swap = false;
66 int i, addr;
67
68
69 if (!ath9k_hw_use_flash(ah)) {
5bb12791 70 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
b5aec950 71 &magic)) {
c46917bb
LR
72 ath_print(common, ATH_DBG_FATAL,
73 "Reading Magic # failed\n");
b5aec950
S
74 return false;
75 }
76
c46917bb
LR
77 ath_print(common, ATH_DBG_EEPROM,
78 "Read Magic = 0x%04X\n", magic);
b5aec950
S
79
80 if (magic != AR5416_EEPROM_MAGIC) {
81 magic2 = swab16(magic);
82
83 if (magic2 == AR5416_EEPROM_MAGIC) {
84 need_swap = true;
85 eepdata = (u16 *) (&ah->eeprom);
86
87 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
88 temp = swab16(*eepdata);
89 *eepdata = temp;
90 eepdata++;
91 }
92 } else {
c46917bb
LR
93 ath_print(common, ATH_DBG_FATAL,
94 "Invalid EEPROM Magic. "
95 "endianness mismatch.\n");
b5aec950
S
96 return -EINVAL;
97 }
98 }
99 }
100
c46917bb
LR
101 ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
102 need_swap ? "True" : "False");
b5aec950
S
103
104 if (need_swap)
105 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
106 else
107 el = ah->eeprom.map4k.baseEepHeader.length;
108
109 if (el > sizeof(struct ar5416_eeprom_4k))
110 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
111 else
112 el = el / sizeof(u16);
113
114 eepdata = (u16 *)(&ah->eeprom);
115
116 for (i = 0; i < el; i++)
117 sum ^= *eepdata++;
118
119 if (need_swap) {
120 u32 integer;
121 u16 word;
122
c46917bb
LR
123 ath_print(common, ATH_DBG_EEPROM,
124 "EEPROM Endianness is not native.. Changing\n");
b5aec950
S
125
126 word = swab16(eep->baseEepHeader.length);
127 eep->baseEepHeader.length = word;
128
129 word = swab16(eep->baseEepHeader.checksum);
130 eep->baseEepHeader.checksum = word;
131
132 word = swab16(eep->baseEepHeader.version);
133 eep->baseEepHeader.version = word;
134
135 word = swab16(eep->baseEepHeader.regDmn[0]);
136 eep->baseEepHeader.regDmn[0] = word;
137
138 word = swab16(eep->baseEepHeader.regDmn[1]);
139 eep->baseEepHeader.regDmn[1] = word;
140
141 word = swab16(eep->baseEepHeader.rfSilent);
142 eep->baseEepHeader.rfSilent = word;
143
144 word = swab16(eep->baseEepHeader.blueToothOptions);
145 eep->baseEepHeader.blueToothOptions = word;
146
147 word = swab16(eep->baseEepHeader.deviceCap);
148 eep->baseEepHeader.deviceCap = word;
149
150 integer = swab32(eep->modalHeader.antCtrlCommon);
151 eep->modalHeader.antCtrlCommon = integer;
152
153 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
154 integer = swab32(eep->modalHeader.antCtrlChain[i]);
155 eep->modalHeader.antCtrlChain[i] = integer;
156 }
157
158 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
159 word = swab16(eep->modalHeader.spurChans[i].spurChan);
160 eep->modalHeader.spurChans[i].spurChan = word;
161 }
162 }
163
164 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
165 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
c46917bb
LR
166 ath_print(common, ATH_DBG_FATAL,
167 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
168 sum, ah->eep_ops->get_eeprom_ver(ah));
b5aec950
S
169 return -EINVAL;
170 }
171
172 return 0;
173#undef EEPROM_4K_SIZE
174}
175
176static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
177 enum eeprom_param param)
178{
179 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
180 struct modal_eep_4k_header *pModal = &eep->modalHeader;
181 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
970bf9d4
GJ
182 u16 ver_minor;
183
184 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
b5aec950
S
185
186 switch (param) {
187 case EEP_NFTHRESH_2:
188 return pModal->noiseFloorThreshCh[0];
49101676 189 case EEP_MAC_LSW:
b5aec950 190 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
49101676 191 case EEP_MAC_MID:
b5aec950 192 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
49101676 193 case EEP_MAC_MSW:
b5aec950
S
194 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
195 case EEP_REG_0:
196 return pBase->regDmn[0];
197 case EEP_REG_1:
198 return pBase->regDmn[1];
199 case EEP_OP_CAP:
200 return pBase->deviceCap;
201 case EEP_OP_MODE:
202 return pBase->opCapFlags;
203 case EEP_RF_SILENT:
204 return pBase->rfSilent;
205 case EEP_OB_2:
7f63845f 206 return pModal->ob_0;
b5aec950 207 case EEP_DB_2:
7f63845f 208 return pModal->db1_1;
b5aec950 209 case EEP_MINOR_REV:
970bf9d4 210 return ver_minor;
b5aec950
S
211 case EEP_TX_MASK:
212 return pBase->txMask;
213 case EEP_RX_MASK:
214 return pBase->rxMask;
215 case EEP_FRAC_N_5G:
216 return 0;
e41f0bfc
SB
217 case EEP_PWR_TABLE_OFFSET:
218 return AR5416_PWR_TABLE_OFFSET_DB;
754dc536
VT
219 case EEP_MODAL_VER:
220 return pModal->version;
221 case EEP_ANT_DIV_CTL1:
222 return pModal->antdiv_ctl1;
970bf9d4
GJ
223 case EEP_TXGAIN_TYPE:
224 if (ver_minor >= AR5416_EEP_MINOR_VER_19)
225 return pBase->txGainType;
226 else
227 return AR5416_EEP_TXGAIN_ORIGINAL;
b5aec950
S
228 default:
229 return 0;
230 }
231}
232
233static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
234 struct ath9k_channel *chan,
235 struct cal_data_per_freq_4k *pRawDataSet,
236 u8 *bChans, u16 availPiers,
6eb90d46 237 u16 tPdGainOverlap,
b5aec950
S
238 u16 *pPdGainBoundaries, u8 *pPDADCValues,
239 u16 numXpdGains)
240{
241#define TMP_VAL_VPD_TABLE \
242 ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
243 int i, j, k;
244 int16_t ss;
245 u16 idxL = 0, idxR = 0, numPiers;
246 static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
247 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
248 static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
249 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
250 static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
251 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
252
253 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
254 u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
255 u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
256 int16_t vpdStep;
257 int16_t tmpVal;
258 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
259 bool match;
260 int16_t minDelta = 0;
261 struct chan_centers centers;
262#define PD_GAIN_BOUNDARY_DEFAULT 58;
263
a5fdbcad 264 memset(&minPwrT4, 0, AR9287_NUM_PD_GAINS);
b5aec950
S
265 ath9k_hw_get_channel_centers(ah, chan, &centers);
266
267 for (numPiers = 0; numPiers < availPiers; numPiers++) {
268 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
269 break;
270 }
271
272 match = ath9k_hw_get_lower_upper_index(
273 (u8)FREQ2FBIN(centers.synth_center,
274 IS_CHAN_2GHZ(chan)), bChans, numPiers,
275 &idxL, &idxR);
276
277 if (match) {
278 for (i = 0; i < numXpdGains; i++) {
279 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
280 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
281 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
282 pRawDataSet[idxL].pwrPdg[i],
283 pRawDataSet[idxL].vpdPdg[i],
284 AR5416_EEP4K_PD_GAIN_ICEPTS,
285 vpdTableI[i]);
286 }
287 } else {
288 for (i = 0; i < numXpdGains; i++) {
289 pVpdL = pRawDataSet[idxL].vpdPdg[i];
290 pPwrL = pRawDataSet[idxL].pwrPdg[i];
291 pVpdR = pRawDataSet[idxR].vpdPdg[i];
292 pPwrR = pRawDataSet[idxR].pwrPdg[i];
293
294 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
295
296 maxPwrT4[i] =
297 min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
298 pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
299
300
301 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
302 pPwrL, pVpdL,
303 AR5416_EEP4K_PD_GAIN_ICEPTS,
304 vpdTableL[i]);
305 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
306 pPwrR, pVpdR,
307 AR5416_EEP4K_PD_GAIN_ICEPTS,
308 vpdTableR[i]);
309
310 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
311 vpdTableI[i][j] =
312 (u8)(ath9k_hw_interpolate((u16)
313 FREQ2FBIN(centers.
314 synth_center,
315 IS_CHAN_2GHZ
316 (chan)),
317 bChans[idxL], bChans[idxR],
318 vpdTableL[i][j], vpdTableR[i][j]));
319 }
320 }
321 }
322
b5aec950
S
323 k = 0;
324
325 for (i = 0; i < numXpdGains; i++) {
326 if (i == (numXpdGains - 1))
327 pPdGainBoundaries[i] =
328 (u16)(maxPwrT4[i] / 2);
329 else
330 pPdGainBoundaries[i] =
331 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
332
333 pPdGainBoundaries[i] =
334 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
335
336 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
337 minDelta = pPdGainBoundaries[0] - 23;
338 pPdGainBoundaries[0] = 23;
339 } else {
340 minDelta = 0;
341 }
342
343 if (i == 0) {
7a37081e 344 if (AR_SREV_9280_20_OR_LATER(ah))
b5aec950
S
345 ss = (int16_t)(0 - (minPwrT4[i] / 2));
346 else
347 ss = 0;
348 } else {
349 ss = (int16_t)((pPdGainBoundaries[i - 1] -
350 (minPwrT4[i] / 2)) -
351 tPdGainOverlap + 1 + minDelta);
352 }
353 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
354 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
355
356 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
357 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
358 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
359 ss++;
360 }
361
362 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
363 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
364 (minPwrT4[i] / 2));
365 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
366 tgtIndex : sizeCurrVpdTable;
367
368 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
369 pPDADCValues[k++] = vpdTableI[i][ss++];
370
371 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
372 vpdTableI[i][sizeCurrVpdTable - 2]);
373 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
374
375 if (tgtIndex >= maxIndex) {
376 while ((ss <= tgtIndex) &&
377 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
378 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
379 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
380 255 : tmpVal);
381 ss++;
382 }
383 }
384 }
385
386 while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
387 pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
388 i++;
389 }
390
391 while (k < AR5416_NUM_PDADC_VALUES) {
392 pPDADCValues[k] = pPDADCValues[k - 1];
393 k++;
394 }
395
396 return;
397#undef TMP_VAL_VPD_TABLE
398}
399
400static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
401 struct ath9k_channel *chan,
402 int16_t *pTxPowerIndexOffset)
403{
c46917bb 404 struct ath_common *common = ath9k_hw_common(ah);
b5aec950
S
405 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
406 struct cal_data_per_freq_4k *pRawDataset;
407 u8 *pCalBChans = NULL;
408 u16 pdGainOverlap_t2;
409 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
410 u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
411 u16 numPiers, i, j;
b5aec950
S
412 u16 numXpdGain, xpdMask;
413 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
414 u32 reg32, regOffset, regChainOffset;
415
416 xpdMask = pEepData->modalHeader.xpdGain;
417
418 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
419 AR5416_EEP_MINOR_VER_2) {
420 pdGainOverlap_t2 =
421 pEepData->modalHeader.pdGainOverlap;
422 } else {
423 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
424 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
425 }
426
427 pCalBChans = pEepData->calFreqPier2G;
428 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
429
430 numXpdGain = 0;
431
432 for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
433 if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
434 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
435 break;
436 xpdGainValues[numXpdGain] =
437 (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
438 numXpdGain++;
439 }
440 }
441
442 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
443 (numXpdGain - 1) & 0x3);
444 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
445 xpdGainValues[0]);
446 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
447 xpdGainValues[1]);
448 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
449
450 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
451 if (AR_SREV_5416_20_OR_LATER(ah) &&
452 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
453 (i != 0)) {
454 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
455 } else
456 regChainOffset = i * 0x1000;
457
458 if (pEepData->baseEepHeader.txMask & (1 << i)) {
459 pRawDataset = pEepData->calPierData2G[i];
460
461 ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
462 pRawDataset, pCalBChans,
463 numPiers, pdGainOverlap_t2,
6eb90d46 464 gainBoundaries,
b5aec950
S
465 pdadcValues, numXpdGain);
466
7d0d0df0
S
467 ENABLE_REGWRITE_BUFFER(ah);
468
b5aec950
S
469 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
470 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
471 SM(pdGainOverlap_t2,
472 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
473 | SM(gainBoundaries[0],
474 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
475 | SM(gainBoundaries[1],
476 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
477 | SM(gainBoundaries[2],
478 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
479 | SM(gainBoundaries[3],
480 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
481 }
482
483 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
484 for (j = 0; j < 32; j++) {
485 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
486 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
487 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
488 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
489 REG_WRITE(ah, regOffset, reg32);
490
c46917bb
LR
491 ath_print(common, ATH_DBG_EEPROM,
492 "PDADC (%d,%4x): %4.4x %8.8x\n",
493 i, regChainOffset, regOffset,
494 reg32);
495 ath_print(common, ATH_DBG_EEPROM,
496 "PDADC: Chain %d | "
497 "PDADC %3d Value %3d | "
498 "PDADC %3d Value %3d | "
499 "PDADC %3d Value %3d | "
500 "PDADC %3d Value %3d |\n",
501 i, 4 * j, pdadcValues[4 * j],
502 4 * j + 1, pdadcValues[4 * j + 1],
503 4 * j + 2, pdadcValues[4 * j + 2],
504 4 * j + 3,
505 pdadcValues[4 * j + 3]);
b5aec950
S
506
507 regOffset += 4;
508 }
7d0d0df0
S
509
510 REGWRITE_BUFFER_FLUSH(ah);
b5aec950
S
511 }
512 }
513
514 *pTxPowerIndexOffset = 0;
515}
516
517static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
518 struct ath9k_channel *chan,
519 int16_t *ratesArray,
520 u16 cfgCtl,
521 u16 AntennaReduction,
522 u16 twiceMaxRegulatoryPower,
523 u16 powerLimit)
524{
180d674b
S
525#define CMP_TEST_GRP \
526 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
527 pEepData->ctlIndex[i]) \
528 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
529 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
b5aec950 530
608b88cb 531 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
b5aec950
S
532 int i;
533 int16_t twiceLargestAntenna;
180d674b
S
534 u16 twiceMinEdgePower;
535 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
536 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
537 u16 numCtlModes, *pCtlMode, ctlMode, freq;
538 struct chan_centers centers;
b5aec950 539 struct cal_ctl_data_4k *rep;
180d674b
S
540 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
541 static const u16 tpScaleReductionTable[5] =
542 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
b5aec950
S
543 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
544 0, { 0, 0, 0, 0}
545 };
546 struct cal_target_power_leg targetPowerOfdmExt = {
547 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
548 0, { 0, 0, 0, 0 }
549 };
550 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
551 0, {0, 0, 0, 0}
552 };
b5aec950
S
553 u16 ctlModesFor11g[] =
554 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
555 CTL_2GHT40
556 };
b5aec950
S
557
558 ath9k_hw_get_channel_centers(ah, chan, &centers);
559
560 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
b5aec950
S
561 twiceLargestAntenna = (int16_t)min(AntennaReduction -
562 twiceLargestAntenna, 0);
563
564 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
608b88cb 565 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
b5aec950 566 maxRegAllowedPower -=
608b88cb 567 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
b5aec950
S
568 }
569
570 scaledPower = min(powerLimit, maxRegAllowedPower);
571 scaledPower = max((u16)0, scaledPower);
572
573 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
574 pCtlMode = ctlModesFor11g;
575
576 ath9k_hw_get_legacy_target_powers(ah, chan,
577 pEepData->calTargetPowerCck,
578 AR5416_NUM_2G_CCK_TARGET_POWERS,
579 &targetPowerCck, 4, false);
580 ath9k_hw_get_legacy_target_powers(ah, chan,
581 pEepData->calTargetPower2G,
582 AR5416_NUM_2G_20_TARGET_POWERS,
583 &targetPowerOfdm, 4, false);
584 ath9k_hw_get_target_powers(ah, chan,
585 pEepData->calTargetPower2GHT20,
586 AR5416_NUM_2G_20_TARGET_POWERS,
587 &targetPowerHt20, 8, false);
588
589 if (IS_CHAN_HT40(chan)) {
590 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
591 ath9k_hw_get_target_powers(ah, chan,
592 pEepData->calTargetPower2GHT40,
593 AR5416_NUM_2G_40_TARGET_POWERS,
594 &targetPowerHt40, 8, true);
595 ath9k_hw_get_legacy_target_powers(ah, chan,
596 pEepData->calTargetPowerCck,
597 AR5416_NUM_2G_CCK_TARGET_POWERS,
598 &targetPowerCckExt, 4, true);
599 ath9k_hw_get_legacy_target_powers(ah, chan,
600 pEepData->calTargetPower2G,
601 AR5416_NUM_2G_20_TARGET_POWERS,
602 &targetPowerOfdmExt, 4, true);
603 }
604
605 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
606 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
607 (pCtlMode[ctlMode] == CTL_2GHT40);
180d674b 608
b5aec950
S
609 if (isHt40CtlMode)
610 freq = centers.synth_center;
611 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
612 freq = centers.ext_center;
613 else
614 freq = centers.ctl_center;
615
616 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
617 ah->eep_ops->get_eeprom_rev(ah) <= 2)
618 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
619
620 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
180d674b
S
621 pEepData->ctlIndex[i]; i++) {
622
623 if (CMP_TEST_GRP) {
b5aec950
S
624 rep = &(pEepData->ctlData[i]);
625
180d674b
S
626 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
627 freq,
628 rep->ctlEdges[
629 ar5416_get_ntxchains(ah->txchainmask) - 1],
630 IS_CHAN_2GHZ(chan),
631 AR5416_EEP4K_NUM_BAND_EDGES);
b5aec950
S
632
633 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
634 twiceMaxEdgePower =
635 min(twiceMaxEdgePower,
636 twiceMinEdgePower);
637 } else {
638 twiceMaxEdgePower = twiceMinEdgePower;
639 break;
640 }
641 }
642 }
643
644 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
645
646 switch (pCtlMode[ctlMode]) {
647 case CTL_11B:
180d674b 648 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
b5aec950
S
649 targetPowerCck.tPow2x[i] =
650 min((u16)targetPowerCck.tPow2x[i],
651 minCtlPower);
652 }
653 break;
654 case CTL_11G:
180d674b 655 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
b5aec950
S
656 targetPowerOfdm.tPow2x[i] =
657 min((u16)targetPowerOfdm.tPow2x[i],
658 minCtlPower);
659 }
660 break;
661 case CTL_2GHT20:
180d674b 662 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
b5aec950
S
663 targetPowerHt20.tPow2x[i] =
664 min((u16)targetPowerHt20.tPow2x[i],
665 minCtlPower);
666 }
667 break;
668 case CTL_11B_EXT:
180d674b
S
669 targetPowerCckExt.tPow2x[0] =
670 min((u16)targetPowerCckExt.tPow2x[0],
671 minCtlPower);
b5aec950
S
672 break;
673 case CTL_11G_EXT:
180d674b
S
674 targetPowerOfdmExt.tPow2x[0] =
675 min((u16)targetPowerOfdmExt.tPow2x[0],
676 minCtlPower);
b5aec950
S
677 break;
678 case CTL_2GHT40:
180d674b 679 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
b5aec950
S
680 targetPowerHt40.tPow2x[i] =
681 min((u16)targetPowerHt40.tPow2x[i],
682 minCtlPower);
683 }
684 break;
685 default:
686 break;
687 }
688 }
689
180d674b
S
690 ratesArray[rate6mb] =
691 ratesArray[rate9mb] =
692 ratesArray[rate12mb] =
693 ratesArray[rate18mb] =
694 ratesArray[rate24mb] =
695 targetPowerOfdm.tPow2x[0];
696
b5aec950
S
697 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
698 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
699 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
700 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
701
702 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
703 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
704
705 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
706 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
707 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
708 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
709
710 if (IS_CHAN_HT40(chan)) {
711 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
712 ratesArray[rateHt40_0 + i] =
713 targetPowerHt40.tPow2x[i];
714 }
715 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
716 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
717 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
718 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
719 }
180d674b
S
720
721#undef CMP_TEST_GRP
b5aec950
S
722}
723
724static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
bf466fb6
S
725 struct ath9k_channel *chan,
726 u16 cfgCtl,
727 u8 twiceAntennaReduction,
728 u8 twiceMaxRegulatoryPower,
de40f316 729 u8 powerLimit, bool test)
b5aec950 730{
608b88cb 731 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
b5aec950
S
732 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
733 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
734 int16_t ratesArray[Ar5416RateSize];
735 int16_t txPowerIndexOffset = 0;
736 u8 ht40PowerIncForPdadc = 2;
737 int i;
738
739 memset(ratesArray, 0, sizeof(ratesArray));
740
741 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
742 AR5416_EEP_MINOR_VER_2) {
743 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
744 }
745
746 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
bf466fb6
S
747 &ratesArray[0], cfgCtl,
748 twiceAntennaReduction,
749 twiceMaxRegulatoryPower,
750 powerLimit);
b5aec950
S
751
752 ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
753
de40f316 754 regulatory->max_power_level = 0;
b5aec950
S
755 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
756 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
757 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
758 ratesArray[i] = AR5416_MAX_RATE_POWER;
de40f316
FF
759
760 if (ratesArray[i] > regulatory->max_power_level)
761 regulatory->max_power_level = ratesArray[i];
b5aec950
S
762 }
763
de40f316
FF
764 if (test)
765 return;
bf466fb6
S
766
767 /* Update regulatory */
bf466fb6
S
768 i = rate6mb;
769 if (IS_CHAN_HT40(chan))
770 i = rateHt40_0;
771 else if (IS_CHAN_HT20(chan))
772 i = rateHt20_0;
773
608b88cb 774 regulatory->max_power_level = ratesArray[i];
bf466fb6 775
7a37081e 776 if (AR_SREV_9280_20_OR_LATER(ah)) {
b5aec950 777 for (i = 0; i < Ar5416RateSize; i++)
e41f0bfc 778 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
b5aec950
S
779 }
780
7d0d0df0
S
781 ENABLE_REGWRITE_BUFFER(ah);
782
bf466fb6 783 /* OFDM power per rate */
b5aec950
S
784 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
785 ATH9K_POW_SM(ratesArray[rate18mb], 24)
786 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
787 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
788 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
789 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
790 ATH9K_POW_SM(ratesArray[rate54mb], 24)
791 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
792 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
793 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
794
bf466fb6
S
795 /* CCK power per rate */
796 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
797 ATH9K_POW_SM(ratesArray[rate2s], 24)
798 | ATH9K_POW_SM(ratesArray[rate2l], 16)
799 | ATH9K_POW_SM(ratesArray[rateXr], 8)
800 | ATH9K_POW_SM(ratesArray[rate1l], 0));
801 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
802 ATH9K_POW_SM(ratesArray[rate11s], 24)
803 | ATH9K_POW_SM(ratesArray[rate11l], 16)
804 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
805 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
806
807 /* HT20 power per rate */
b5aec950
S
808 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
809 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
810 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
811 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
812 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
813 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
814 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
815 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
816 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
817 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
818
bf466fb6 819 /* HT40 power per rate */
b5aec950
S
820 if (IS_CHAN_HT40(chan)) {
821 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
822 ATH9K_POW_SM(ratesArray[rateHt40_3] +
823 ht40PowerIncForPdadc, 24)
824 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
825 ht40PowerIncForPdadc, 16)
826 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
827 ht40PowerIncForPdadc, 8)
828 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
829 ht40PowerIncForPdadc, 0));
830 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
831 ATH9K_POW_SM(ratesArray[rateHt40_7] +
832 ht40PowerIncForPdadc, 24)
833 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
834 ht40PowerIncForPdadc, 16)
835 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
836 ht40PowerIncForPdadc, 8)
837 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
838 ht40PowerIncForPdadc, 0));
b5aec950
S
839 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
840 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
841 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
842 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
843 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
844 }
7d0d0df0
S
845
846 REGWRITE_BUFFER_FLUSH(ah);
b5aec950
S
847}
848
849static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
850 struct ath9k_channel *chan)
851{
852 struct modal_eep_4k_header *pModal;
853 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
854 u8 biaslevel;
855
856 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
857 return;
858
859 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
860 return;
861
862 pModal = &eep->modalHeader;
863
864 if (pModal->xpaBiasLvl != 0xff) {
865 biaslevel = pModal->xpaBiasLvl;
866 INI_RA(&ah->iniAddac, 7, 1) =
867 (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
868 }
869}
870
871static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
872 struct modal_eep_4k_header *pModal,
873 struct ar5416_eeprom_4k *eep,
a37414a2 874 u8 txRxAttenLocal)
b5aec950 875{
a37414a2 876 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
b5aec950
S
877 pModal->antCtrlChain[0]);
878
a37414a2
S
879 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
880 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
b5aec950
S
881 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
882 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
883 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
884 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
885
886 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
887 AR5416_EEP_MINOR_VER_3) {
888 txRxAttenLocal = pModal->txRxAttenCh[0];
889
a37414a2 890 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
b5aec950 891 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
a37414a2 892 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
b5aec950 893 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
a37414a2 894 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
b5aec950
S
895 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
896 pModal->xatten2Margin[0]);
a37414a2 897 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
b5aec950
S
898 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
899
900 /* Set the block 1 value to block 0 value */
901 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
902 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
903 pModal->bswMargin[0]);
904 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
905 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
906 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
907 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
908 pModal->xatten2Margin[0]);
909 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
910 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
911 pModal->xatten2Db[0]);
912 }
913
a37414a2 914 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
b5aec950 915 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
a37414a2 916 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
b5aec950
S
917 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
918
919 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
920 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
921 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
922 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
b5aec950
S
923}
924
925/*
926 * Read EEPROM header info and program the device for correct operation
927 * given the channel value.
928 */
929static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
930 struct ath9k_channel *chan)
931{
932 struct modal_eep_4k_header *pModal;
933 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
934 u8 txRxAttenLocal;
935 u8 ob[5], db1[5], db2[5];
936 u8 ant_div_control1, ant_div_control2;
937 u32 regVal;
938
939 pModal = &eep->modalHeader;
940 txRxAttenLocal = 23;
941
942 REG_WRITE(ah, AR_PHY_SWITCH_COM,
943 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
944
945 /* Single chain for 4K EEPROM*/
a37414a2 946 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
b5aec950
S
947
948 /* Initialize Ant Diversity settings from EEPROM */
949 if (pModal->version >= 3) {
7f63845f
S
950 ant_div_control1 = pModal->antdiv_ctl1;
951 ant_div_control2 = pModal->antdiv_ctl2;
952
953 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
954 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
955
956 regVal |= SM(ant_div_control1,
957 AR_PHY_9285_ANT_DIV_CTL);
958 regVal |= SM(ant_div_control2,
959 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
960 regVal |= SM((ant_div_control2 >> 2),
961 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
962 regVal |= SM((ant_div_control1 >> 1),
963 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
964 regVal |= SM((ant_div_control1 >> 2),
965 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
966
967
968 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
969 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
970 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
971 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
972 regVal |= SM((ant_div_control1 >> 3),
973 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
974
975 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
976 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
b5aec950
S
977 }
978
979 if (pModal->version >= 2) {
7f63845f
S
980 ob[0] = pModal->ob_0;
981 ob[1] = pModal->ob_1;
982 ob[2] = pModal->ob_2;
983 ob[3] = pModal->ob_3;
984 ob[4] = pModal->ob_4;
985
986 db1[0] = pModal->db1_0;
987 db1[1] = pModal->db1_1;
988 db1[2] = pModal->db1_2;
989 db1[3] = pModal->db1_3;
990 db1[4] = pModal->db1_4;
991
992 db2[0] = pModal->db2_0;
993 db2[1] = pModal->db2_1;
994 db2[2] = pModal->db2_2;
995 db2[3] = pModal->db2_3;
996 db2[4] = pModal->db2_4;
b5aec950 997 } else if (pModal->version == 1) {
7f63845f
S
998 ob[0] = pModal->ob_0;
999 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
1000 db1[0] = pModal->db1_0;
1001 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
1002 db2[0] = pModal->db2_0;
1003 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
b5aec950
S
1004 } else {
1005 int i;
7f63845f 1006
b5aec950 1007 for (i = 0; i < 5; i++) {
7f63845f
S
1008 ob[i] = pModal->ob_0;
1009 db1[i] = pModal->db1_0;
1010 db2[i] = pModal->db1_0;
b5aec950
S
1011 }
1012 }
1013
1014 if (AR_SREV_9271(ah)) {
1015 ath9k_hw_analog_shift_rmw(ah,
1016 AR9285_AN_RF2G3,
1017 AR9271_AN_RF2G3_OB_cck,
1018 AR9271_AN_RF2G3_OB_cck_S,
1019 ob[0]);
1020 ath9k_hw_analog_shift_rmw(ah,
1021 AR9285_AN_RF2G3,
1022 AR9271_AN_RF2G3_OB_psk,
1023 AR9271_AN_RF2G3_OB_psk_S,
1024 ob[1]);
1025 ath9k_hw_analog_shift_rmw(ah,
1026 AR9285_AN_RF2G3,
1027 AR9271_AN_RF2G3_OB_qam,
1028 AR9271_AN_RF2G3_OB_qam_S,
1029 ob[2]);
1030 ath9k_hw_analog_shift_rmw(ah,
1031 AR9285_AN_RF2G3,
1032 AR9271_AN_RF2G3_DB_1,
1033 AR9271_AN_RF2G3_DB_1_S,
1034 db1[0]);
1035 ath9k_hw_analog_shift_rmw(ah,
1036 AR9285_AN_RF2G4,
1037 AR9271_AN_RF2G4_DB_2,
1038 AR9271_AN_RF2G4_DB_2_S,
1039 db2[0]);
1040 } else {
1041 ath9k_hw_analog_shift_rmw(ah,
1042 AR9285_AN_RF2G3,
1043 AR9285_AN_RF2G3_OB_0,
1044 AR9285_AN_RF2G3_OB_0_S,
1045 ob[0]);
1046 ath9k_hw_analog_shift_rmw(ah,
1047 AR9285_AN_RF2G3,
1048 AR9285_AN_RF2G3_OB_1,
1049 AR9285_AN_RF2G3_OB_1_S,
1050 ob[1]);
1051 ath9k_hw_analog_shift_rmw(ah,
1052 AR9285_AN_RF2G3,
1053 AR9285_AN_RF2G3_OB_2,
1054 AR9285_AN_RF2G3_OB_2_S,
1055 ob[2]);
1056 ath9k_hw_analog_shift_rmw(ah,
1057 AR9285_AN_RF2G3,
1058 AR9285_AN_RF2G3_OB_3,
1059 AR9285_AN_RF2G3_OB_3_S,
1060 ob[3]);
1061 ath9k_hw_analog_shift_rmw(ah,
1062 AR9285_AN_RF2G3,
1063 AR9285_AN_RF2G3_OB_4,
1064 AR9285_AN_RF2G3_OB_4_S,
1065 ob[4]);
1066
1067 ath9k_hw_analog_shift_rmw(ah,
1068 AR9285_AN_RF2G3,
1069 AR9285_AN_RF2G3_DB1_0,
1070 AR9285_AN_RF2G3_DB1_0_S,
1071 db1[0]);
1072 ath9k_hw_analog_shift_rmw(ah,
1073 AR9285_AN_RF2G3,
1074 AR9285_AN_RF2G3_DB1_1,
1075 AR9285_AN_RF2G3_DB1_1_S,
1076 db1[1]);
1077 ath9k_hw_analog_shift_rmw(ah,
1078 AR9285_AN_RF2G3,
1079 AR9285_AN_RF2G3_DB1_2,
1080 AR9285_AN_RF2G3_DB1_2_S,
1081 db1[2]);
1082 ath9k_hw_analog_shift_rmw(ah,
1083 AR9285_AN_RF2G4,
1084 AR9285_AN_RF2G4_DB1_3,
1085 AR9285_AN_RF2G4_DB1_3_S,
1086 db1[3]);
1087 ath9k_hw_analog_shift_rmw(ah,
1088 AR9285_AN_RF2G4,
1089 AR9285_AN_RF2G4_DB1_4,
1090 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1091
1092 ath9k_hw_analog_shift_rmw(ah,
1093 AR9285_AN_RF2G4,
1094 AR9285_AN_RF2G4_DB2_0,
1095 AR9285_AN_RF2G4_DB2_0_S,
1096 db2[0]);
1097 ath9k_hw_analog_shift_rmw(ah,
1098 AR9285_AN_RF2G4,
1099 AR9285_AN_RF2G4_DB2_1,
1100 AR9285_AN_RF2G4_DB2_1_S,
1101 db2[1]);
1102 ath9k_hw_analog_shift_rmw(ah,
1103 AR9285_AN_RF2G4,
1104 AR9285_AN_RF2G4_DB2_2,
1105 AR9285_AN_RF2G4_DB2_2_S,
1106 db2[2]);
1107 ath9k_hw_analog_shift_rmw(ah,
1108 AR9285_AN_RF2G4,
1109 AR9285_AN_RF2G4_DB2_3,
1110 AR9285_AN_RF2G4_DB2_3_S,
1111 db2[3]);
1112 ath9k_hw_analog_shift_rmw(ah,
1113 AR9285_AN_RF2G4,
1114 AR9285_AN_RF2G4_DB2_4,
1115 AR9285_AN_RF2G4_DB2_4_S,
1116 db2[4]);
1117 }
1118
1119
b5aec950
S
1120 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1121 pModal->switchSettling);
1122 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1123 pModal->adcDesiredSize);
1124
1125 REG_WRITE(ah, AR_PHY_RF_CTL4,
1126 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1127 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1128 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1129 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1130
1131 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1132 pModal->txEndToRxOn);
0cab6559
LR
1133
1134 if (AR_SREV_9271_10(ah))
1135 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1136 pModal->txEndToRxOn);
b5aec950
S
1137 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1138 pModal->thresh62);
1139 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1140 pModal->thresh62);
1141
1142 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1143 AR5416_EEP_MINOR_VER_2) {
1144 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1145 pModal->txFrameToDataStart);
1146 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1147 pModal->txFrameToPaOn);
1148 }
1149
1150 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1151 AR5416_EEP_MINOR_VER_3) {
1152 if (IS_CHAN_HT40(chan))
1153 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1154 AR_PHY_SETTLING_SWITCH,
1155 pModal->swSettleHt40);
1156 }
1157}
1158
601e0cb1 1159static u32 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
b5aec950
S
1160 struct ath9k_channel *chan)
1161{
1162 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1163 struct modal_eep_4k_header *pModal = &eep->modalHeader;
1164
601e0cb1 1165 return pModal->antCtrlCommon;
b5aec950
S
1166}
1167
1168static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
f799a301 1169 enum ath9k_hal_freq_band freq_band)
b5aec950
S
1170{
1171 return 1;
1172}
1173
1174static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1175{
1176#define EEP_MAP4K_SPURCHAN \
1177 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
c46917bb 1178 struct ath_common *common = ath9k_hw_common(ah);
b5aec950
S
1179
1180 u16 spur_val = AR_NO_SPUR;
1181
c46917bb
LR
1182 ath_print(common, ATH_DBG_ANI,
1183 "Getting spur idx %d is2Ghz. %d val %x\n",
1184 i, is2GHz, ah->config.spurchans[i][is2GHz]);
b5aec950
S
1185
1186 switch (ah->config.spurmode) {
1187 case SPUR_DISABLE:
1188 break;
1189 case SPUR_ENABLE_IOCTL:
1190 spur_val = ah->config.spurchans[i][is2GHz];
c46917bb
LR
1191 ath_print(common, ATH_DBG_ANI,
1192 "Getting spur val from new loc. %d\n", spur_val);
b5aec950
S
1193 break;
1194 case SPUR_ENABLE_EEPROM:
1195 spur_val = EEP_MAP4K_SPURCHAN;
1196 break;
1197 }
1198
1199 return spur_val;
1200
1201#undef EEP_MAP4K_SPURCHAN
1202}
1203
1204const struct eeprom_ops eep_4k_ops = {
1205 .check_eeprom = ath9k_hw_4k_check_eeprom,
1206 .get_eeprom = ath9k_hw_4k_get_eeprom,
1207 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1208 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1209 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1210 .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
1211 .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
1212 .set_board_values = ath9k_hw_4k_set_board_values,
1213 .set_addac = ath9k_hw_4k_set_addac,
1214 .set_txpower = ath9k_hw_4k_set_txpower,
1215 .get_spur_channel = ath9k_hw_4k_get_spur_channel
1216};