Merge branch 'ezchip-fixes'
[linux-block.git] / drivers / net / vrf.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
193125db
DA
2/*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
193125db
DA
10 */
11
cc69837f 12#include <linux/ethtool.h>
193125db
DA
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/ip.h>
18#include <linux/init.h>
19#include <linux/moduleparam.h>
20#include <linux/netfilter.h>
21#include <linux/rtnetlink.h>
22#include <net/rtnetlink.h>
23#include <linux/u64_stats_sync.h>
24#include <linux/hashtable.h>
c8baec38 25#include <linux/spinlock_types.h>
193125db
DA
26
27#include <linux/inetdevice.h>
8f58336d 28#include <net/arp.h>
193125db
DA
29#include <net/ip.h>
30#include <net/ip_fib.h>
35402e31 31#include <net/ip6_fib.h>
193125db 32#include <net/ip6_route.h>
193125db
DA
33#include <net/route.h>
34#include <net/addrconf.h>
ee15ee5d 35#include <net/l3mdev.h>
1aa6c4f6 36#include <net/fib_rules.h>
097d3c95 37#include <net/netns/generic.h>
193125db
DA
38
39#define DRV_NAME "vrf"
c8baec38 40#define DRV_VERSION "1.1"
193125db 41
1aa6c4f6 42#define FIB_RULE_PREF 1000 /* default preference for FIB rules */
097d3c95 43
c8baec38
AM
44#define HT_MAP_BITS 4
45#define HASH_INITVAL ((u32)0xcafef00d)
46
47struct vrf_map {
48 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
49 spinlock_t vmap_lock;
50
51 /* shared_tables:
52 * count how many distinct tables do not comply with the strict mode
53 * requirement.
54 * shared_tables value must be 0 in order to enable the strict mode.
55 *
56 * example of the evolution of shared_tables:
57 * | time
58 * add vrf0 --> table 100 shared_tables = 0 | t0
59 * add vrf1 --> table 101 shared_tables = 0 | t1
60 * add vrf2 --> table 100 shared_tables = 1 | t2
61 * add vrf3 --> table 100 shared_tables = 1 | t3
62 * add vrf4 --> table 101 shared_tables = 2 v t4
63 *
64 * shared_tables is a "step function" (or "staircase function")
65 * and it is increased by one when the second vrf is associated to a
66 * table.
67 *
68 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 *
70 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 * value of shared_tables is still 1.
72 * This means that no matter how many new vrfs will register on the
73 * table 100, the shared_tables will not increase (considering only
74 * table 100).
75 *
76 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 *
78 * Looking at the value of shared_tables we can immediately know if
79 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 * can be enforced iff shared_tables = 0.
81 *
82 * Conversely, shared_tables is decreased when a vrf is de-associated
83 * from a table with exactly two associated vrfs.
84 */
85 u32 shared_tables;
86
87 bool strict_mode;
88};
89
90struct vrf_map_elem {
91 struct hlist_node hnode;
92 struct list_head vrf_list; /* VRFs registered to this table */
93
94 u32 table_id;
95 int users;
96 int ifindex;
97};
98
097d3c95 99static unsigned int vrf_net_id;
1aa6c4f6 100
c8baec38
AM
101/* per netns vrf data */
102struct netns_vrf {
103 /* protected by rtnl lock */
104 bool add_fib_rules;
105
106 struct vrf_map vmap;
33306f1a 107 struct ctl_table_header *ctl_hdr;
c8baec38
AM
108};
109
ec539514 110struct net_vrf {
b0e95ccd
DA
111 struct rtable __rcu *rth;
112 struct rt6_info __rcu *rt6;
43b059a3
DA
113#if IS_ENABLED(CONFIG_IPV6)
114 struct fib6_table *fib6_table;
115#endif
ec539514 116 u32 tb_id;
c8baec38
AM
117
118 struct list_head me_list; /* entry in vrf_map_elem */
119 int ifindex;
ec539514
DA
120};
121
193125db
DA
122struct pcpu_dstats {
123 u64 tx_pkts;
124 u64 tx_bytes;
125 u64 tx_drps;
126 u64 rx_pkts;
127 u64 rx_bytes;
afe80a49 128 u64 rx_drps;
193125db
DA
129 struct u64_stats_sync syncp;
130};
131
afe80a49
DA
132static void vrf_rx_stats(struct net_device *dev, int len)
133{
134 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135
136 u64_stats_update_begin(&dstats->syncp);
137 dstats->rx_pkts++;
138 dstats->rx_bytes += len;
139 u64_stats_update_end(&dstats->syncp);
140}
141
57b8efa1
NA
142static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143{
144 vrf_dev->stats.tx_errors++;
145 kfree_skb(skb);
146}
147
bc1f4470 148static void vrf_get_stats64(struct net_device *dev,
149 struct rtnl_link_stats64 *stats)
193125db
DA
150{
151 int i;
152
153 for_each_possible_cpu(i) {
154 const struct pcpu_dstats *dstats;
155 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
156 unsigned int start;
157
158 dstats = per_cpu_ptr(dev->dstats, i);
159 do {
160 start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 tbytes = dstats->tx_bytes;
162 tpkts = dstats->tx_pkts;
163 tdrops = dstats->tx_drps;
164 rbytes = dstats->rx_bytes;
165 rpkts = dstats->rx_pkts;
166 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 stats->tx_bytes += tbytes;
168 stats->tx_packets += tpkts;
169 stats->tx_dropped += tdrops;
170 stats->rx_bytes += rbytes;
171 stats->rx_packets += rpkts;
172 }
193125db
DA
173}
174
c8baec38
AM
175static struct vrf_map *netns_vrf_map(struct net *net)
176{
177 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178
179 return &nn_vrf->vmap;
180}
181
182static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183{
184 return netns_vrf_map(dev_net(dev));
185}
186
a59a8ffd
AM
187static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188{
189 struct list_head *me_head = &me->vrf_list;
190 struct net_vrf *vrf;
191
192 if (list_empty(me_head))
193 return -ENODEV;
194
195 vrf = list_first_entry(me_head, struct net_vrf, me_list);
196
197 return vrf->ifindex;
198}
199
c8baec38
AM
200static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201{
202 struct vrf_map_elem *me;
203
204 me = kmalloc(sizeof(*me), flags);
205 if (!me)
206 return NULL;
207
208 return me;
209}
210
211static void vrf_map_elem_free(struct vrf_map_elem *me)
212{
213 kfree(me);
214}
215
216static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 int ifindex, int users)
218{
219 me->table_id = table_id;
220 me->ifindex = ifindex;
221 me->users = users;
222 INIT_LIST_HEAD(&me->vrf_list);
223}
224
225static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
226 u32 table_id)
227{
228 struct vrf_map_elem *me;
229 u32 key;
230
231 key = jhash_1word(table_id, HASH_INITVAL);
232 hash_for_each_possible(vmap->ht, me, hnode, key) {
233 if (me->table_id == table_id)
234 return me;
235 }
236
237 return NULL;
238}
239
240static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241{
242 u32 table_id = me->table_id;
243 u32 key;
244
245 key = jhash_1word(table_id, HASH_INITVAL);
246 hash_add(vmap->ht, &me->hnode, key);
247}
248
249static void vrf_map_del_elem(struct vrf_map_elem *me)
250{
251 hash_del(&me->hnode);
252}
253
254static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255{
256 spin_lock(&vmap->vmap_lock);
257}
258
259static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260{
261 spin_unlock(&vmap->vmap_lock);
262}
263
264/* called with rtnl lock held */
265static int
266vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267{
268 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 struct net_vrf *vrf = netdev_priv(dev);
270 struct vrf_map_elem *new_me, *me;
271 u32 table_id = vrf->tb_id;
272 bool free_new_me = false;
273 int users;
274 int res;
275
276 /* we pre-allocate elements used in the spin-locked section (so that we
277 * keep the spinlock as short as possibile).
278 */
279 new_me = vrf_map_elem_alloc(GFP_KERNEL);
280 if (!new_me)
281 return -ENOMEM;
282
283 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
284
285 vrf_map_lock(vmap);
286
287 me = vrf_map_lookup_elem(vmap, table_id);
288 if (!me) {
289 me = new_me;
290 vrf_map_add_elem(vmap, me);
291 goto link_vrf;
292 }
293
294 /* we already have an entry in the vrf_map, so it means there is (at
295 * least) a vrf registered on the specific table.
296 */
297 free_new_me = true;
298 if (vmap->strict_mode) {
299 /* vrfs cannot share the same table */
300 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
301 res = -EBUSY;
302 goto unlock;
303 }
304
305link_vrf:
306 users = ++me->users;
307 if (users == 2)
308 ++vmap->shared_tables;
309
310 list_add(&vrf->me_list, &me->vrf_list);
311
312 res = 0;
313
314unlock:
315 vrf_map_unlock(vmap);
316
317 /* clean-up, if needed */
318 if (free_new_me)
319 vrf_map_elem_free(new_me);
320
321 return res;
322}
323
324/* called with rtnl lock held */
325static void vrf_map_unregister_dev(struct net_device *dev)
326{
327 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 struct net_vrf *vrf = netdev_priv(dev);
329 u32 table_id = vrf->tb_id;
330 struct vrf_map_elem *me;
331 int users;
332
333 vrf_map_lock(vmap);
334
335 me = vrf_map_lookup_elem(vmap, table_id);
336 if (!me)
337 goto unlock;
338
339 list_del(&vrf->me_list);
340
341 users = --me->users;
342 if (users == 1) {
343 --vmap->shared_tables;
344 } else if (users == 0) {
345 vrf_map_del_elem(me);
346
347 /* no one will refer to this element anymore */
348 vrf_map_elem_free(me);
349 }
350
351unlock:
352 vrf_map_unlock(vmap);
353}
354
a59a8ffd
AM
355/* return the vrf device index associated with the table_id */
356static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357{
358 struct vrf_map *vmap = netns_vrf_map(net);
359 struct vrf_map_elem *me;
360 int ifindex;
361
362 vrf_map_lock(vmap);
363
364 if (!vmap->strict_mode) {
365 ifindex = -EPERM;
366 goto unlock;
367 }
368
369 me = vrf_map_lookup_elem(vmap, table_id);
370 if (!me) {
371 ifindex = -ENODEV;
372 goto unlock;
373 }
374
375 ifindex = vrf_map_elem_get_vrf_ifindex(me);
376
377unlock:
378 vrf_map_unlock(vmap);
379
380 return ifindex;
381}
382
dcdd43c4
DA
383/* by default VRF devices do not have a qdisc and are expected
384 * to be created with only a single queue.
385 */
386static bool qdisc_tx_is_default(const struct net_device *dev)
387{
388 struct netdev_queue *txq;
389 struct Qdisc *qdisc;
390
391 if (dev->num_tx_queues > 1)
392 return false;
393
394 txq = netdev_get_tx_queue(dev, 0);
395 qdisc = rcu_access_pointer(txq->qdisc);
396
397 return !qdisc->enqueue;
398}
399
afe80a49
DA
400/* Local traffic destined to local address. Reinsert the packet to rx
401 * path, similar to loopback handling.
402 */
403static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 struct dst_entry *dst)
405{
406 int len = skb->len;
407
408 skb_orphan(skb);
409
410 skb_dst_set(skb, dst);
afe80a49
DA
411
412 /* set pkt_type to avoid skb hitting packet taps twice -
413 * once on Tx and again in Rx processing
414 */
415 skb->pkt_type = PACKET_LOOPBACK;
416
417 skb->protocol = eth_type_trans(skb, dev);
418
419 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 vrf_rx_stats(dev, len);
421 else
422 this_cpu_inc(dev->dstats->rx_drps);
423
424 return NETDEV_TX_OK;
425}
426
35402e31 427#if IS_ENABLED(CONFIG_IPV6)
4c1feac5
DA
428static int vrf_ip6_local_out(struct net *net, struct sock *sk,
429 struct sk_buff *skb)
430{
431 int err;
432
433 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
434 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
435
436 if (likely(err == 1))
437 err = dst_output(net, sk, skb);
438
439 return err;
440}
441
35402e31
DA
442static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
443 struct net_device *dev)
444{
107e47cc 445 const struct ipv6hdr *iph;
35402e31 446 struct net *net = dev_net(skb->dev);
107e47cc 447 struct flowi6 fl6;
35402e31
DA
448 int ret = NET_XMIT_DROP;
449 struct dst_entry *dst;
450 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
451
107e47cc
PK
452 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
453 goto err;
454
455 iph = ipv6_hdr(skb);
456
457 memset(&fl6, 0, sizeof(fl6));
458 /* needed to match OIF rule */
459 fl6.flowi6_oif = dev->ifindex;
460 fl6.flowi6_iif = LOOPBACK_IFINDEX;
461 fl6.daddr = iph->daddr;
462 fl6.saddr = iph->saddr;
463 fl6.flowlabel = ip6_flowinfo(iph);
464 fl6.flowi6_mark = skb->mark;
465 fl6.flowi6_proto = iph->nexthdr;
466 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
467
a53c1028
DA
468 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
469 if (IS_ERR(dst) || dst == dst_null)
35402e31
DA
470 goto err;
471
472 skb_dst_drop(skb);
b4869aa2 473
2e1534f3
ND
474 /* if dst.dev is the VRF device again this is locally originated traffic
475 * destined to a local address. Short circuit to Rx path.
b4869aa2 476 */
4f04256c
DA
477 if (dst->dev == dev)
478 return vrf_local_xmit(skb, dev, dst);
b4869aa2 479
35402e31
DA
480 skb_dst_set(skb, dst);
481
911a66fb
DA
482 /* strip the ethernet header added for pass through VRF device */
483 __skb_pull(skb, skb_network_offset(skb));
484
4c1feac5 485 ret = vrf_ip6_local_out(net, skb->sk, skb);
35402e31
DA
486 if (unlikely(net_xmit_eval(ret)))
487 dev->stats.tx_errors++;
488 else
489 ret = NET_XMIT_SUCCESS;
490
491 return ret;
492err:
493 vrf_tx_error(dev, skb);
494 return NET_XMIT_DROP;
495}
496#else
193125db
DA
497static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
498 struct net_device *dev)
499{
57b8efa1
NA
500 vrf_tx_error(dev, skb);
501 return NET_XMIT_DROP;
193125db 502}
35402e31 503#endif
193125db 504
ebfc102c
DA
505/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
506static int vrf_ip_local_out(struct net *net, struct sock *sk,
507 struct sk_buff *skb)
508{
509 int err;
510
511 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
512 skb, NULL, skb_dst(skb)->dev, dst_output);
513 if (likely(err == 1))
514 err = dst_output(net, sk, skb);
515
516 return err;
517}
518
193125db
DA
519static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
520 struct net_device *vrf_dev)
521{
107e47cc 522 struct iphdr *ip4h;
193125db 523 int ret = NET_XMIT_DROP;
107e47cc 524 struct flowi4 fl4;
911a66fb
DA
525 struct net *net = dev_net(vrf_dev);
526 struct rtable *rt;
527
107e47cc
PK
528 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
529 goto err;
530
531 ip4h = ip_hdr(skb);
532
533 memset(&fl4, 0, sizeof(fl4));
534 /* needed to match OIF rule */
535 fl4.flowi4_oif = vrf_dev->ifindex;
536 fl4.flowi4_iif = LOOPBACK_IFINDEX;
537 fl4.flowi4_tos = RT_TOS(ip4h->tos);
538 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
539 fl4.flowi4_proto = ip4h->protocol;
540 fl4.daddr = ip4h->daddr;
541 fl4.saddr = ip4h->saddr;
542
911a66fb
DA
543 rt = ip_route_output_flow(net, &fl4, NULL);
544 if (IS_ERR(rt))
545 goto err;
193125db 546
911a66fb 547 skb_dst_drop(skb);
afe80a49 548
2e1534f3
ND
549 /* if dst.dev is the VRF device again this is locally originated traffic
550 * destined to a local address. Short circuit to Rx path.
afe80a49 551 */
4f04256c
DA
552 if (rt->dst.dev == vrf_dev)
553 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
afe80a49 554
911a66fb
DA
555 skb_dst_set(skb, &rt->dst);
556
557 /* strip the ethernet header added for pass through VRF device */
558 __skb_pull(skb, skb_network_offset(skb));
193125db
DA
559
560 if (!ip4h->saddr) {
561 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
562 RT_SCOPE_LINK);
563 }
564
ebfc102c 565 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
193125db
DA
566 if (unlikely(net_xmit_eval(ret)))
567 vrf_dev->stats.tx_errors++;
568 else
569 ret = NET_XMIT_SUCCESS;
570
571out:
572 return ret;
573err:
57b8efa1 574 vrf_tx_error(vrf_dev, skb);
193125db
DA
575 goto out;
576}
577
578static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
579{
580 switch (skb->protocol) {
581 case htons(ETH_P_IP):
582 return vrf_process_v4_outbound(skb, dev);
583 case htons(ETH_P_IPV6):
584 return vrf_process_v6_outbound(skb, dev);
585 default:
57b8efa1 586 vrf_tx_error(dev, skb);
193125db
DA
587 return NET_XMIT_DROP;
588 }
589}
590
591static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
592{
f7887d40 593 int len = skb->len;
193125db
DA
594 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
595
596 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
597 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
598
599 u64_stats_update_begin(&dstats->syncp);
600 dstats->tx_pkts++;
f7887d40 601 dstats->tx_bytes += len;
193125db
DA
602 u64_stats_update_end(&dstats->syncp);
603 } else {
604 this_cpu_inc(dev->dstats->tx_drps);
605 }
606
607 return ret;
608}
609
9e2b7fa2 610static void vrf_finish_direct(struct sk_buff *skb)
dcdd43c4
DA
611{
612 struct net_device *vrf_dev = skb->dev;
613
614 if (!list_empty(&vrf_dev->ptype_all) &&
615 likely(skb_headroom(skb) >= ETH_HLEN)) {
d58ff351 616 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
dcdd43c4
DA
617
618 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
619 eth_zero_addr(eth->h_dest);
620 eth->h_proto = skb->protocol;
621
622 rcu_read_lock_bh();
623 dev_queue_xmit_nit(skb, vrf_dev);
624 rcu_read_unlock_bh();
625
626 skb_pull(skb, ETH_HLEN);
627 }
628
9e2b7fa2
MW
629 /* reset skb device */
630 nf_reset_ct(skb);
dcdd43c4
DA
631}
632
35402e31 633#if IS_ENABLED(CONFIG_IPV6)
35402e31
DA
634/* modelled after ip6_finish_output2 */
635static int vrf_finish_output6(struct net *net, struct sock *sk,
636 struct sk_buff *skb)
637{
638 struct dst_entry *dst = skb_dst(skb);
639 struct net_device *dev = dst->dev;
9b1c1ef1 640 const struct in6_addr *nexthop;
35402e31 641 struct neighbour *neigh;
35402e31
DA
642 int ret;
643
895b5c9f 644 nf_reset_ct(skb);
eb63ecc1 645
35402e31
DA
646 skb->protocol = htons(ETH_P_IPV6);
647 skb->dev = dev;
648
649 rcu_read_lock_bh();
650 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
651 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
652 if (unlikely(!neigh))
653 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
654 if (!IS_ERR(neigh)) {
4ff06203 655 sock_confirm_neigh(skb, neigh);
0353f282 656 ret = neigh_output(neigh, skb, false);
35402e31
DA
657 rcu_read_unlock_bh();
658 return ret;
659 }
660 rcu_read_unlock_bh();
661
662 IP6_INC_STATS(dev_net(dst->dev),
663 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
664 kfree_skb(skb);
665 return -EINVAL;
666}
667
668/* modelled after ip6_output */
669static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
670{
671 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
672 net, sk, skb, NULL, skb_dst(skb)->dev,
673 vrf_finish_output6,
674 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
675}
676
4c1feac5
DA
677/* set dst on skb to send packet to us via dev_xmit path. Allows
678 * packet to go through device based features such as qdisc, netfilter
679 * hooks and packet sockets with skb->dev set to vrf device.
680 */
a9ec54d1
DA
681static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
682 struct sk_buff *skb)
4c1feac5
DA
683{
684 struct net_vrf *vrf = netdev_priv(vrf_dev);
685 struct dst_entry *dst = NULL;
686 struct rt6_info *rt6;
687
4c1feac5
DA
688 rcu_read_lock();
689
690 rt6 = rcu_dereference(vrf->rt6);
691 if (likely(rt6)) {
692 dst = &rt6->dst;
693 dst_hold(dst);
694 }
695
696 rcu_read_unlock();
697
698 if (unlikely(!dst)) {
699 vrf_tx_error(vrf_dev, skb);
700 return NULL;
701 }
702
703 skb_dst_drop(skb);
704 skb_dst_set(skb, dst);
705
706 return skb;
707}
708
9e2b7fa2
MW
709static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
710 struct sk_buff *skb)
711{
712 vrf_finish_direct(skb);
713
714 return vrf_ip6_local_out(net, sk, skb);
715}
716
a9ec54d1
DA
717static int vrf_output6_direct(struct net *net, struct sock *sk,
718 struct sk_buff *skb)
719{
9e2b7fa2
MW
720 int err = 1;
721
a9ec54d1
DA
722 skb->protocol = htons(ETH_P_IPV6);
723
9e2b7fa2
MW
724 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
725 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
726 NULL, skb->dev, vrf_output6_direct_finish);
727
728 if (likely(err == 1))
729 vrf_finish_direct(skb);
730
731 return err;
732}
733
734static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
735 struct sk_buff *skb)
736{
737 int err;
738
739 err = vrf_output6_direct(net, sk, skb);
740 if (likely(err == 1))
741 err = vrf_ip6_local_out(net, sk, skb);
742
743 return err;
a9ec54d1
DA
744}
745
746static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
747 struct sock *sk,
748 struct sk_buff *skb)
749{
750 struct net *net = dev_net(vrf_dev);
751 int err;
752
753 skb->dev = vrf_dev;
754
755 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
9e2b7fa2 756 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
a9ec54d1
DA
757
758 if (likely(err == 1))
759 err = vrf_output6_direct(net, sk, skb);
760
a9ec54d1 761 if (likely(err == 1))
9e2b7fa2 762 return skb;
a9ec54d1 763
9e2b7fa2 764 return NULL;
a9ec54d1
DA
765}
766
767static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
768 struct sock *sk,
769 struct sk_buff *skb)
770{
771 /* don't divert link scope packets */
772 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
773 return skb;
774
16b9db1c
DA
775 if (qdisc_tx_is_default(vrf_dev) ||
776 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
a9ec54d1
DA
777 return vrf_ip6_out_direct(vrf_dev, sk, skb);
778
779 return vrf_ip6_out_redirect(vrf_dev, skb);
780}
781
b0e95ccd 782/* holding rtnl */
810e530b 783static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
35402e31 784{
b0e95ccd 785 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
810e530b
DA
786 struct net *net = dev_net(dev);
787 struct dst_entry *dst;
b0e95ccd 788
b4869aa2 789 RCU_INIT_POINTER(vrf->rt6, NULL);
b4869aa2 790 synchronize_rcu();
b0e95ccd 791
810e530b
DA
792 /* move dev in dst's to loopback so this VRF device can be deleted
793 * - based on dst_ifdown
794 */
795 if (rt6) {
796 dst = &rt6->dst;
797 dev_put(dst->dev);
798 dst->dev = net->loopback_dev;
799 dev_hold(dst->dev);
800 dst_release(dst);
801 }
35402e31
DA
802}
803
804static int vrf_rt6_create(struct net_device *dev)
805{
af13b3c3 806 int flags = DST_NOPOLICY | DST_NOXFRM;
35402e31 807 struct net_vrf *vrf = netdev_priv(dev);
9ab179d8 808 struct net *net = dev_net(dev);
4f04256c 809 struct rt6_info *rt6;
35402e31
DA
810 int rc = -ENOMEM;
811
e4348637
DA
812 /* IPv6 can be CONFIG enabled and then disabled runtime */
813 if (!ipv6_mod_enabled())
814 return 0;
815
43b059a3
DA
816 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
817 if (!vrf->fib6_table)
b3b4663c
DA
818 goto out;
819
b4869aa2
DA
820 /* create a dst for routing packets out a VRF device */
821 rt6 = ip6_dst_alloc(net, dev, flags);
35402e31
DA
822 if (!rt6)
823 goto out;
824
b3b4663c 825 rt6->dst.output = vrf_output6;
b4869aa2 826
b0e95ccd
DA
827 rcu_assign_pointer(vrf->rt6, rt6);
828
35402e31
DA
829 rc = 0;
830out:
831 return rc;
832}
833#else
4c1feac5
DA
834static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
835 struct sock *sk,
836 struct sk_buff *skb)
837{
838 return skb;
839}
840
810e530b 841static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
35402e31
DA
842{
843}
844
845static int vrf_rt6_create(struct net_device *dev)
846{
847 return 0;
848}
849#endif
850
8f58336d 851/* modelled after ip_finish_output2 */
0c4b51f0 852static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
193125db 853{
8f58336d
DA
854 struct dst_entry *dst = skb_dst(skb);
855 struct rtable *rt = (struct rtable *)dst;
856 struct net_device *dev = dst->dev;
857 unsigned int hh_len = LL_RESERVED_SPACE(dev);
858 struct neighbour *neigh;
5c9f7c1d 859 bool is_v6gw = false;
8f58336d
DA
860 int ret = -EINVAL;
861
895b5c9f 862 nf_reset_ct(skb);
eb63ecc1 863
8f58336d
DA
864 /* Be paranoid, rather than too clever. */
865 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
866 struct sk_buff *skb2;
867
868 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
869 if (!skb2) {
870 ret = -ENOMEM;
871 goto err;
872 }
873 if (skb->sk)
874 skb_set_owner_w(skb2, skb->sk);
875
876 consume_skb(skb);
877 skb = skb2;
878 }
879
880 rcu_read_lock_bh();
881
5c9f7c1d 882 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
4ff06203
JA
883 if (!IS_ERR(neigh)) {
884 sock_confirm_neigh(skb, neigh);
5c9f7c1d
DA
885 /* if crossing protocols, can not use the cached header */
886 ret = neigh_output(neigh, skb, is_v6gw);
82dd0d2a
DA
887 rcu_read_unlock_bh();
888 return ret;
4ff06203 889 }
8f58336d
DA
890
891 rcu_read_unlock_bh();
892err:
82dd0d2a 893 vrf_tx_error(skb->dev, skb);
8f58336d 894 return ret;
193125db
DA
895}
896
ede2059d 897static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
193125db
DA
898{
899 struct net_device *dev = skb_dst(skb)->dev;
900
29a26a56 901 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
193125db
DA
902
903 skb->dev = dev;
904 skb->protocol = htons(ETH_P_IP);
905
29a26a56
EB
906 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
907 net, sk, skb, NULL, dev,
8f58336d 908 vrf_finish_output,
193125db
DA
909 !(IPCB(skb)->flags & IPSKB_REROUTED));
910}
911
ebfc102c
DA
912/* set dst on skb to send packet to us via dev_xmit path. Allows
913 * packet to go through device based features such as qdisc, netfilter
914 * hooks and packet sockets with skb->dev set to vrf device.
915 */
dcdd43c4
DA
916static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
917 struct sk_buff *skb)
ebfc102c
DA
918{
919 struct net_vrf *vrf = netdev_priv(vrf_dev);
920 struct dst_entry *dst = NULL;
921 struct rtable *rth;
922
923 rcu_read_lock();
924
925 rth = rcu_dereference(vrf->rth);
926 if (likely(rth)) {
927 dst = &rth->dst;
928 dst_hold(dst);
929 }
930
931 rcu_read_unlock();
932
933 if (unlikely(!dst)) {
934 vrf_tx_error(vrf_dev, skb);
935 return NULL;
936 }
937
938 skb_dst_drop(skb);
939 skb_dst_set(skb, dst);
940
941 return skb;
942}
943
9e2b7fa2
MW
944static int vrf_output_direct_finish(struct net *net, struct sock *sk,
945 struct sk_buff *skb)
946{
947 vrf_finish_direct(skb);
948
949 return vrf_ip_local_out(net, sk, skb);
950}
951
dcdd43c4
DA
952static int vrf_output_direct(struct net *net, struct sock *sk,
953 struct sk_buff *skb)
954{
9e2b7fa2
MW
955 int err = 1;
956
dcdd43c4
DA
957 skb->protocol = htons(ETH_P_IP);
958
9e2b7fa2
MW
959 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
960 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
961 NULL, skb->dev, vrf_output_direct_finish);
962
963 if (likely(err == 1))
964 vrf_finish_direct(skb);
965
966 return err;
967}
968
969static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
970 struct sk_buff *skb)
971{
972 int err;
973
974 err = vrf_output_direct(net, sk, skb);
975 if (likely(err == 1))
976 err = vrf_ip_local_out(net, sk, skb);
977
978 return err;
dcdd43c4
DA
979}
980
981static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
982 struct sock *sk,
983 struct sk_buff *skb)
984{
985 struct net *net = dev_net(vrf_dev);
986 int err;
987
988 skb->dev = vrf_dev;
989
990 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
9e2b7fa2 991 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
dcdd43c4
DA
992
993 if (likely(err == 1))
994 err = vrf_output_direct(net, sk, skb);
995
dcdd43c4 996 if (likely(err == 1))
9e2b7fa2 997 return skb;
dcdd43c4 998
9e2b7fa2 999 return NULL;
dcdd43c4
DA
1000}
1001
1002static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1003 struct sock *sk,
1004 struct sk_buff *skb)
1005{
1e19c4d6
DA
1006 /* don't divert multicast or local broadcast */
1007 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1008 ipv4_is_lbcast(ip_hdr(skb)->daddr))
dcdd43c4
DA
1009 return skb;
1010
16b9db1c
DA
1011 if (qdisc_tx_is_default(vrf_dev) ||
1012 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
dcdd43c4
DA
1013 return vrf_ip_out_direct(vrf_dev, sk, skb);
1014
1015 return vrf_ip_out_redirect(vrf_dev, skb);
1016}
1017
ebfc102c
DA
1018/* called with rcu lock held */
1019static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1020 struct sock *sk,
1021 struct sk_buff *skb,
1022 u16 proto)
1023{
1024 switch (proto) {
1025 case AF_INET:
1026 return vrf_ip_out(vrf_dev, sk, skb);
4c1feac5
DA
1027 case AF_INET6:
1028 return vrf_ip6_out(vrf_dev, sk, skb);
ebfc102c
DA
1029 }
1030
1031 return skb;
1032}
1033
b0e95ccd 1034/* holding rtnl */
810e530b 1035static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
193125db 1036{
b0e95ccd 1037 struct rtable *rth = rtnl_dereference(vrf->rth);
810e530b
DA
1038 struct net *net = dev_net(dev);
1039 struct dst_entry *dst;
b0e95ccd 1040
afe80a49 1041 RCU_INIT_POINTER(vrf->rth, NULL);
afe80a49 1042 synchronize_rcu();
193125db 1043
810e530b
DA
1044 /* move dev in dst's to loopback so this VRF device can be deleted
1045 * - based on dst_ifdown
1046 */
1047 if (rth) {
1048 dst = &rth->dst;
1049 dev_put(dst->dev);
1050 dst->dev = net->loopback_dev;
1051 dev_hold(dst->dev);
1052 dst_release(dst);
1053 }
193125db
DA
1054}
1055
b0e95ccd 1056static int vrf_rtable_create(struct net_device *dev)
193125db 1057{
b7503e0c 1058 struct net_vrf *vrf = netdev_priv(dev);
4f04256c 1059 struct rtable *rth;
193125db 1060
b3b4663c 1061 if (!fib_new_table(dev_net(dev), vrf->tb_id))
b0e95ccd 1062 return -ENOMEM;
b3b4663c 1063
afe80a49 1064 /* create a dst for routing packets out through a VRF device */
af13b3c3 1065 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
b0e95ccd
DA
1066 if (!rth)
1067 return -ENOMEM;
193125db 1068
b0e95ccd 1069 rth->dst.output = vrf_output;
b0e95ccd
DA
1070
1071 rcu_assign_pointer(vrf->rth, rth);
1072
1073 return 0;
193125db
DA
1074}
1075
1076/**************************** device handling ********************/
1077
1078/* cycle interface to flush neighbor cache and move routes across tables */
dc1aea1e
PM
1079static void cycle_netdev(struct net_device *dev,
1080 struct netlink_ext_ack *extack)
193125db
DA
1081{
1082 unsigned int flags = dev->flags;
1083 int ret;
1084
1085 if (!netif_running(dev))
1086 return;
1087
567c5e13 1088 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
193125db 1089 if (ret >= 0)
567c5e13 1090 ret = dev_change_flags(dev, flags, extack);
193125db
DA
1091
1092 if (ret < 0) {
1093 netdev_err(dev,
1094 "Failed to cycle device %s; route tables might be wrong!\n",
1095 dev->name);
1096 }
1097}
1098
42ab19ee
DA
1099static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1100 struct netlink_ext_ack *extack)
193125db 1101{
bad53162 1102 int ret;
193125db 1103
26d31ac1
DA
1104 /* do not allow loopback device to be enslaved to a VRF.
1105 * The vrf device acts as the loopback for the vrf.
1106 */
de3baa3e
DA
1107 if (port_dev == dev_net(dev)->loopback_dev) {
1108 NL_SET_ERR_MSG(extack,
1109 "Can not enslave loopback device to a VRF");
26d31ac1 1110 return -EOPNOTSUPP;
de3baa3e 1111 }
26d31ac1 1112
fdeea7be 1113 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
42ab19ee 1114 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
193125db 1115 if (ret < 0)
fdeea7be 1116 goto err;
193125db 1117
dc1aea1e 1118 cycle_netdev(port_dev, extack);
193125db
DA
1119
1120 return 0;
fdeea7be
IS
1121
1122err:
1123 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1124 return ret;
193125db
DA
1125}
1126
33eaf2a6
DA
1127static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1128 struct netlink_ext_ack *extack)
193125db 1129{
de3baa3e
DA
1130 if (netif_is_l3_master(port_dev)) {
1131 NL_SET_ERR_MSG(extack,
1132 "Can not enslave an L3 master device to a VRF");
1133 return -EINVAL;
1134 }
1135
1136 if (netif_is_l3_slave(port_dev))
193125db
DA
1137 return -EINVAL;
1138
42ab19ee 1139 return do_vrf_add_slave(dev, port_dev, extack);
193125db
DA
1140}
1141
1142/* inverse of do_vrf_add_slave */
1143static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1144{
193125db 1145 netdev_upper_dev_unlink(port_dev, dev);
fee6d4c7 1146 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
193125db 1147
dc1aea1e 1148 cycle_netdev(port_dev, NULL);
193125db 1149
193125db
DA
1150 return 0;
1151}
1152
1153static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1154{
193125db
DA
1155 return do_vrf_del_slave(dev, port_dev);
1156}
1157
1158static void vrf_dev_uninit(struct net_device *dev)
1159{
1160 struct net_vrf *vrf = netdev_priv(dev);
193125db 1161
810e530b
DA
1162 vrf_rtable_release(dev, vrf);
1163 vrf_rt6_release(dev, vrf);
193125db 1164
3a4a27d3 1165 free_percpu(dev->dstats);
193125db
DA
1166 dev->dstats = NULL;
1167}
1168
1169static int vrf_dev_init(struct net_device *dev)
1170{
1171 struct net_vrf *vrf = netdev_priv(dev);
1172
193125db
DA
1173 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1174 if (!dev->dstats)
1175 goto out_nomem;
1176
1177 /* create the default dst which points back to us */
b0e95ccd 1178 if (vrf_rtable_create(dev) != 0)
193125db
DA
1179 goto out_stats;
1180
35402e31
DA
1181 if (vrf_rt6_create(dev) != 0)
1182 goto out_rth;
1183
193125db
DA
1184 dev->flags = IFF_MASTER | IFF_NOARP;
1185
b87ab6b8
DA
1186 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1187 dev->operstate = IF_OPER_UP;
1a33e10e 1188 netdev_lockdep_set_classes(dev);
193125db
DA
1189 return 0;
1190
35402e31 1191out_rth:
810e530b 1192 vrf_rtable_release(dev, vrf);
193125db
DA
1193out_stats:
1194 free_percpu(dev->dstats);
1195 dev->dstats = NULL;
1196out_nomem:
1197 return -ENOMEM;
1198}
1199
1200static const struct net_device_ops vrf_netdev_ops = {
1201 .ndo_init = vrf_dev_init,
1202 .ndo_uninit = vrf_dev_uninit,
1203 .ndo_start_xmit = vrf_xmit,
6819e3f6 1204 .ndo_set_mac_address = eth_mac_addr,
193125db
DA
1205 .ndo_get_stats64 = vrf_get_stats64,
1206 .ndo_add_slave = vrf_add_slave,
1207 .ndo_del_slave = vrf_del_slave,
1208};
1209
ee15ee5d
DA
1210static u32 vrf_fib_table(const struct net_device *dev)
1211{
1212 struct net_vrf *vrf = netdev_priv(dev);
1213
1214 return vrf->tb_id;
1215}
1216
73e20b76
DA
1217static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1218{
1a4a5bf5 1219 kfree_skb(skb);
73e20b76
DA
1220 return 0;
1221}
1222
1223static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1224 struct sk_buff *skb,
1225 struct net_device *dev)
1226{
1227 struct net *net = dev_net(dev);
1228
1a4a5bf5 1229 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
73e20b76
DA
1230 skb = NULL; /* kfree_skb(skb) handled by nf code */
1231
1232 return skb;
1233}
1234
9125abe7
AM
1235static int vrf_prepare_mac_header(struct sk_buff *skb,
1236 struct net_device *vrf_dev, u16 proto)
1237{
1238 struct ethhdr *eth;
1239 int err;
1240
1241 /* in general, we do not know if there is enough space in the head of
1242 * the packet for hosting the mac header.
1243 */
1244 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1245 if (unlikely(err))
1246 /* no space in the skb head */
1247 return -ENOBUFS;
1248
1249 __skb_push(skb, ETH_HLEN);
1250 eth = (struct ethhdr *)skb->data;
1251
1252 skb_reset_mac_header(skb);
1253
1254 /* we set the ethernet destination and the source addresses to the
1255 * address of the VRF device.
1256 */
1257 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1258 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1259 eth->h_proto = htons(proto);
1260
1261 /* the destination address of the Ethernet frame corresponds to the
1262 * address set on the VRF interface; therefore, the packet is intended
1263 * to be processed locally.
1264 */
1265 skb->protocol = eth->h_proto;
1266 skb->pkt_type = PACKET_HOST;
1267
1268 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1269
1270 skb_pull_inline(skb, ETH_HLEN);
1271
1272 return 0;
1273}
1274
1275/* prepare and add the mac header to the packet if it was not set previously.
1276 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1277 * If the mac header was already set, the original mac header is left
1278 * untouched and the function returns immediately.
1279 */
1280static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1281 struct net_device *vrf_dev,
1282 u16 proto)
1283{
1284 if (skb_mac_header_was_set(skb))
1285 return 0;
1286
1287 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1288}
1289
74b20582
DA
1290#if IS_ENABLED(CONFIG_IPV6)
1291/* neighbor handling is done with actual device; do not want
1292 * to flip skb->dev for those ndisc packets. This really fails
1293 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1294 * a start.
1295 */
1296static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1297{
1298 const struct ipv6hdr *iph = ipv6_hdr(skb);
1299 bool rc = false;
1300
1301 if (iph->nexthdr == NEXTHDR_ICMP) {
1302 const struct icmp6hdr *icmph;
1303 struct icmp6hdr _icmph;
1304
1305 icmph = skb_header_pointer(skb, sizeof(*iph),
1306 sizeof(_icmph), &_icmph);
1307 if (!icmph)
1308 goto out;
1309
1310 switch (icmph->icmp6_type) {
1311 case NDISC_ROUTER_SOLICITATION:
1312 case NDISC_ROUTER_ADVERTISEMENT:
1313 case NDISC_NEIGHBOUR_SOLICITATION:
1314 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1315 case NDISC_REDIRECT:
1316 rc = true;
1317 break;
1318 }
1319 }
1320
1321out:
1322 return rc;
1323}
1324
9ff74384
DA
1325static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1326 const struct net_device *dev,
1327 struct flowi6 *fl6,
1328 int ifindex,
b75cc8f9 1329 const struct sk_buff *skb,
9ff74384
DA
1330 int flags)
1331{
1332 struct net_vrf *vrf = netdev_priv(dev);
9ff74384 1333
43b059a3 1334 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
9ff74384
DA
1335}
1336
1337static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1338 int ifindex)
1339{
1340 const struct ipv6hdr *iph = ipv6_hdr(skb);
1341 struct flowi6 fl6 = {
ecf09117
AB
1342 .flowi6_iif = ifindex,
1343 .flowi6_mark = skb->mark,
1344 .flowi6_proto = iph->nexthdr,
9ff74384
DA
1345 .daddr = iph->daddr,
1346 .saddr = iph->saddr,
1347 .flowlabel = ip6_flowinfo(iph),
9ff74384
DA
1348 };
1349 struct net *net = dev_net(vrf_dev);
1350 struct rt6_info *rt6;
1351
b75cc8f9 1352 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
9ff74384
DA
1353 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1354 if (unlikely(!rt6))
1355 return;
1356
1357 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1358 return;
1359
1360 skb_dst_set(skb, &rt6->dst);
1361}
1362
74b20582
DA
1363static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1364 struct sk_buff *skb)
1365{
9ff74384 1366 int orig_iif = skb->skb_iif;
6f12fa77
MM
1367 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1368 bool is_ndisc = ipv6_ndisc_frame(skb);
205704c6 1369 bool is_ll_src;
9ff74384 1370
6f12fa77 1371 /* loopback, multicast & non-ND link-local traffic; do not push through
205704c6
SS
1372 * packet taps again. Reset pkt_type for upper layers to process skb.
1373 * for packets with lladdr src, however, skip so that the dst can be
1374 * determine at input using original ifindex in the case that daddr
1375 * needs strict
b4869aa2 1376 */
205704c6
SS
1377 is_ll_src = ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL;
1378 if (skb->pkt_type == PACKET_LOOPBACK ||
1379 (need_strict && !is_ndisc && !is_ll_src)) {
b4869aa2
DA
1380 skb->dev = vrf_dev;
1381 skb->skb_iif = vrf_dev->ifindex;
a04a480d 1382 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
6f12fa77
MM
1383 if (skb->pkt_type == PACKET_LOOPBACK)
1384 skb->pkt_type = PACKET_HOST;
b4869aa2
DA
1385 goto out;
1386 }
1387
6f12fa77
MM
1388 /* if packet is NDISC then keep the ingress interface */
1389 if (!is_ndisc) {
926d93a3 1390 vrf_rx_stats(vrf_dev, skb->len);
74b20582
DA
1391 skb->dev = vrf_dev;
1392 skb->skb_iif = vrf_dev->ifindex;
1393
a9ec54d1 1394 if (!list_empty(&vrf_dev->ptype_all)) {
04893908
AM
1395 int err;
1396
1397 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1398 ETH_P_IPV6);
1399 if (likely(!err)) {
1400 skb_push(skb, skb->mac_len);
1401 dev_queue_xmit_nit(skb, vrf_dev);
1402 skb_pull(skb, skb->mac_len);
1403 }
a9ec54d1 1404 }
74b20582
DA
1405
1406 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1407 }
1408
9ff74384
DA
1409 if (need_strict)
1410 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1411
73e20b76 1412 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
b4869aa2 1413out:
74b20582
DA
1414 return skb;
1415}
1416
1417#else
1418static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1419 struct sk_buff *skb)
1420{
1421 return skb;
1422}
1423#endif
1424
1425static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1426 struct sk_buff *skb)
1427{
1428 skb->dev = vrf_dev;
1429 skb->skb_iif = vrf_dev->ifindex;
a04a480d 1430 IPCB(skb)->flags |= IPSKB_L3SLAVE;
74b20582 1431
e58e4159
DA
1432 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1433 goto out;
1434
afe80a49
DA
1435 /* loopback traffic; do not push through packet taps again.
1436 * Reset pkt_type for upper layers to process skb
1437 */
1438 if (skb->pkt_type == PACKET_LOOPBACK) {
1439 skb->pkt_type = PACKET_HOST;
1440 goto out;
1441 }
1442
926d93a3
DA
1443 vrf_rx_stats(vrf_dev, skb->len);
1444
dcdd43c4 1445 if (!list_empty(&vrf_dev->ptype_all)) {
04893908
AM
1446 int err;
1447
1448 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1449 if (likely(!err)) {
1450 skb_push(skb, skb->mac_len);
1451 dev_queue_xmit_nit(skb, vrf_dev);
1452 skb_pull(skb, skb->mac_len);
1453 }
dcdd43c4 1454 }
74b20582 1455
73e20b76 1456 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
afe80a49 1457out:
74b20582
DA
1458 return skb;
1459}
1460
1461/* called with rcu lock held */
1462static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1463 struct sk_buff *skb,
1464 u16 proto)
1465{
1466 switch (proto) {
1467 case AF_INET:
1468 return vrf_ip_rcv(vrf_dev, skb);
1469 case AF_INET6:
1470 return vrf_ip6_rcv(vrf_dev, skb);
1471 }
1472
1473 return skb;
1474}
1475
35402e31 1476#if IS_ENABLED(CONFIG_IPV6)
4c1feac5
DA
1477/* send to link-local or multicast address via interface enslaved to
1478 * VRF device. Force lookup to VRF table without changing flow struct
7d9e5f42
WW
1479 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1480 * is taken on the dst by this function.
4c1feac5
DA
1481 */
1482static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1483 struct flowi6 *fl6)
35402e31 1484{
9ff74384 1485 struct net *net = dev_net(dev);
7d9e5f42 1486 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
b0e95ccd 1487 struct dst_entry *dst = NULL;
9ff74384 1488 struct rt6_info *rt;
35402e31 1489
4c1feac5
DA
1490 /* VRF device does not have a link-local address and
1491 * sending packets to link-local or mcast addresses over
1492 * a VRF device does not make sense
1493 */
1494 if (fl6->flowi6_oif == dev->ifindex) {
1495 dst = &net->ipv6.ip6_null_entry->dst;
4c1feac5 1496 return dst;
35402e31
DA
1497 }
1498
4c1feac5
DA
1499 if (!ipv6_addr_any(&fl6->saddr))
1500 flags |= RT6_LOOKUP_F_HAS_SADDR;
1501
b75cc8f9 1502 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
4c1feac5
DA
1503 if (rt)
1504 dst = &rt->dst;
9ff74384 1505
b0e95ccd 1506 return dst;
35402e31
DA
1507}
1508#endif
1509
ee15ee5d
DA
1510static const struct l3mdev_ops vrf_l3mdev_ops = {
1511 .l3mdev_fib_table = vrf_fib_table,
74b20582 1512 .l3mdev_l3_rcv = vrf_l3_rcv,
ebfc102c 1513 .l3mdev_l3_out = vrf_l3_out,
35402e31 1514#if IS_ENABLED(CONFIG_IPV6)
4c1feac5 1515 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
35402e31 1516#endif
ee15ee5d
DA
1517};
1518
193125db
DA
1519static void vrf_get_drvinfo(struct net_device *dev,
1520 struct ethtool_drvinfo *info)
1521{
1522 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1523 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1524}
1525
1526static const struct ethtool_ops vrf_ethtool_ops = {
1527 .get_drvinfo = vrf_get_drvinfo,
1528};
1529
1aa6c4f6
DA
1530static inline size_t vrf_fib_rule_nl_size(void)
1531{
1532 size_t sz;
1533
1534 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1535 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1536 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1b71af60 1537 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1aa6c4f6
DA
1538
1539 return sz;
1540}
1541
1542static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1543{
1544 struct fib_rule_hdr *frh;
1545 struct nlmsghdr *nlh;
1546 struct sk_buff *skb;
1547 int err;
1548
dac91170
DA
1549 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1550 !ipv6_mod_enabled())
e4348637
DA
1551 return 0;
1552
1aa6c4f6
DA
1553 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1554 if (!skb)
1555 return -ENOMEM;
1556
1557 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1558 if (!nlh)
1559 goto nla_put_failure;
1560
1561 /* rule only needs to appear once */
426c87ca 1562 nlh->nlmsg_flags |= NLM_F_EXCL;
1aa6c4f6
DA
1563
1564 frh = nlmsg_data(nlh);
1565 memset(frh, 0, sizeof(*frh));
1566 frh->family = family;
1567 frh->action = FR_ACT_TO_TBL;
1b71af60
DS
1568
1569 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1570 goto nla_put_failure;
1aa6c4f6 1571
18129a24 1572 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1aa6c4f6
DA
1573 goto nla_put_failure;
1574
1575 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1576 goto nla_put_failure;
1577
1578 nlmsg_end(skb, nlh);
1579
1580 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1581 skb->sk = dev_net(dev)->rtnl;
1582 if (add_it) {
c21ef3e3 1583 err = fib_nl_newrule(skb, nlh, NULL);
1aa6c4f6
DA
1584 if (err == -EEXIST)
1585 err = 0;
1586 } else {
c21ef3e3 1587 err = fib_nl_delrule(skb, nlh, NULL);
1aa6c4f6
DA
1588 if (err == -ENOENT)
1589 err = 0;
1590 }
1591 nlmsg_free(skb);
1592
1593 return err;
1594
1595nla_put_failure:
1596 nlmsg_free(skb);
1597
1598 return -EMSGSIZE;
1599}
1600
1601static int vrf_add_fib_rules(const struct net_device *dev)
1602{
1603 int err;
1604
1605 err = vrf_fib_rule(dev, AF_INET, true);
1606 if (err < 0)
1607 goto out_err;
1608
1609 err = vrf_fib_rule(dev, AF_INET6, true);
1610 if (err < 0)
1611 goto ipv6_err;
1612
e58e4159
DA
1613#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1615 if (err < 0)
1616 goto ipmr_err;
1617#endif
1618
e4a38c0c
PR
1619#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1620 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1621 if (err < 0)
1622 goto ip6mr_err;
1623#endif
1624
1aa6c4f6
DA
1625 return 0;
1626
e4a38c0c
PR
1627#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1628ip6mr_err:
1629 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1630#endif
1631
e58e4159
DA
1632#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1633ipmr_err:
1634 vrf_fib_rule(dev, AF_INET6, false);
1635#endif
1636
1aa6c4f6
DA
1637ipv6_err:
1638 vrf_fib_rule(dev, AF_INET, false);
1639
1640out_err:
1641 netdev_err(dev, "Failed to add FIB rules.\n");
1642 return err;
1643}
1644
193125db
DA
1645static void vrf_setup(struct net_device *dev)
1646{
1647 ether_setup(dev);
1648
1649 /* Initialize the device structure. */
1650 dev->netdev_ops = &vrf_netdev_ops;
ee15ee5d 1651 dev->l3mdev_ops = &vrf_l3mdev_ops;
193125db 1652 dev->ethtool_ops = &vrf_ethtool_ops;
cf124db5 1653 dev->needs_free_netdev = true;
193125db
DA
1654
1655 /* Fill in device structure with ethernet-generic values. */
1656 eth_hw_addr_random(dev);
1657
1658 /* don't acquire vrf device's netif_tx_lock when transmitting */
1659 dev->features |= NETIF_F_LLTX;
1660
1661 /* don't allow vrf devices to change network namespaces. */
1662 dev->features |= NETIF_F_NETNS_LOCAL;
7889681f
DA
1663
1664 /* does not make sense for a VLAN to be added to a vrf device */
1665 dev->features |= NETIF_F_VLAN_CHALLENGED;
1666
1667 /* enable offload features */
1668 dev->features |= NETIF_F_GSO_SOFTWARE;
cb160394 1669 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
7889681f
DA
1670 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1671
1672 dev->hw_features = dev->features;
1673 dev->hw_enc_features = dev->features;
1674
1675 /* default to no qdisc; user can add if desired */
1676 dev->priv_flags |= IFF_NO_QUEUE;
1017e098 1677 dev->priv_flags |= IFF_NO_RX_HANDLER;
6819e3f6 1678 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
ad49bc63 1679
5055376a
ML
1680 /* VRF devices do not care about MTU, but if the MTU is set
1681 * too low then the ipv4 and ipv6 protocols are disabled
1682 * which breaks networking.
1683 */
1684 dev->min_mtu = IPV6_MIN_MTU;
9bb392f6
ND
1685 dev->max_mtu = IP6_MAX_MTU;
1686 dev->mtu = dev->max_mtu;
193125db
DA
1687}
1688
a8b8a889
MS
1689static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1690 struct netlink_ext_ack *extack)
193125db
DA
1691{
1692 if (tb[IFLA_ADDRESS]) {
53b94835
DA
1693 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1694 NL_SET_ERR_MSG(extack, "Invalid hardware address");
193125db 1695 return -EINVAL;
53b94835
DA
1696 }
1697 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1698 NL_SET_ERR_MSG(extack, "Invalid hardware address");
193125db 1699 return -EADDRNOTAVAIL;
53b94835 1700 }
193125db
DA
1701 }
1702 return 0;
1703}
1704
1705static void vrf_dellink(struct net_device *dev, struct list_head *head)
1706{
f630c38e
NA
1707 struct net_device *port_dev;
1708 struct list_head *iter;
1709
1710 netdev_for_each_lower_dev(dev, port_dev, iter)
1711 vrf_del_slave(dev, port_dev);
1712
c8baec38
AM
1713 vrf_map_unregister_dev(dev);
1714
193125db
DA
1715 unregister_netdevice_queue(dev, head);
1716}
1717
1718static int vrf_newlink(struct net *src_net, struct net_device *dev,
7a3f4a18
MS
1719 struct nlattr *tb[], struct nlattr *data[],
1720 struct netlink_ext_ack *extack)
193125db
DA
1721{
1722 struct net_vrf *vrf = netdev_priv(dev);
c8baec38 1723 struct netns_vrf *nn_vrf;
097d3c95
DA
1724 bool *add_fib_rules;
1725 struct net *net;
1aa6c4f6 1726 int err;
193125db 1727
53b94835
DA
1728 if (!data || !data[IFLA_VRF_TABLE]) {
1729 NL_SET_ERR_MSG(extack, "VRF table id is missing");
193125db 1730 return -EINVAL;
53b94835 1731 }
193125db
DA
1732
1733 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
53b94835
DA
1734 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1735 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1736 "Invalid VRF table id");
24c63bbc 1737 return -EINVAL;
53b94835 1738 }
193125db 1739
007979ea 1740 dev->priv_flags |= IFF_L3MDEV_MASTER;
193125db 1741
1aa6c4f6
DA
1742 err = register_netdevice(dev);
1743 if (err)
1744 goto out;
1745
c8baec38
AM
1746 /* mapping between table_id and vrf;
1747 * note: such binding could not be done in the dev init function
1748 * because dev->ifindex id is not available yet.
1749 */
1750 vrf->ifindex = dev->ifindex;
1751
1752 err = vrf_map_register_dev(dev, extack);
1753 if (err) {
1754 unregister_netdevice(dev);
1755 goto out;
1756 }
1757
097d3c95 1758 net = dev_net(dev);
c8baec38
AM
1759 nn_vrf = net_generic(net, vrf_net_id);
1760
1761 add_fib_rules = &nn_vrf->add_fib_rules;
097d3c95 1762 if (*add_fib_rules) {
1aa6c4f6
DA
1763 err = vrf_add_fib_rules(dev);
1764 if (err) {
c8baec38 1765 vrf_map_unregister_dev(dev);
1aa6c4f6
DA
1766 unregister_netdevice(dev);
1767 goto out;
1768 }
097d3c95 1769 *add_fib_rules = false;
1aa6c4f6
DA
1770 }
1771
1772out:
1773 return err;
193125db
DA
1774}
1775
1776static size_t vrf_nl_getsize(const struct net_device *dev)
1777{
1778 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1779}
1780
1781static int vrf_fillinfo(struct sk_buff *skb,
1782 const struct net_device *dev)
1783{
1784 struct net_vrf *vrf = netdev_priv(dev);
1785
1786 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1787}
1788
67eb0331
DA
1789static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1790 const struct net_device *slave_dev)
1791{
1792 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1793}
1794
1795static int vrf_fill_slave_info(struct sk_buff *skb,
1796 const struct net_device *vrf_dev,
1797 const struct net_device *slave_dev)
1798{
1799 struct net_vrf *vrf = netdev_priv(vrf_dev);
1800
1801 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1802 return -EMSGSIZE;
1803
1804 return 0;
1805}
1806
193125db
DA
1807static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1808 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1809};
1810
1811static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1812 .kind = DRV_NAME,
1813 .priv_size = sizeof(struct net_vrf),
1814
1815 .get_size = vrf_nl_getsize,
1816 .policy = vrf_nl_policy,
1817 .validate = vrf_validate,
1818 .fill_info = vrf_fillinfo,
1819
67eb0331
DA
1820 .get_slave_size = vrf_get_slave_size,
1821 .fill_slave_info = vrf_fill_slave_info,
1822
193125db
DA
1823 .newlink = vrf_newlink,
1824 .dellink = vrf_dellink,
1825 .setup = vrf_setup,
1826 .maxtype = IFLA_VRF_MAX,
1827};
1828
1829static int vrf_device_event(struct notifier_block *unused,
1830 unsigned long event, void *ptr)
1831{
1832 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1833
1834 /* only care about unregister events to drop slave references */
1835 if (event == NETDEV_UNREGISTER) {
193125db
DA
1836 struct net_device *vrf_dev;
1837
fee6d4c7 1838 if (!netif_is_l3_slave(dev))
193125db
DA
1839 goto out;
1840
58aa9087
NA
1841 vrf_dev = netdev_master_upper_dev_get(dev);
1842 vrf_del_slave(vrf_dev, dev);
193125db
DA
1843 }
1844out:
1845 return NOTIFY_DONE;
1846}
1847
1848static struct notifier_block vrf_notifier_block __read_mostly = {
1849 .notifier_call = vrf_device_event,
1850};
1851
c8baec38
AM
1852static int vrf_map_init(struct vrf_map *vmap)
1853{
1854 spin_lock_init(&vmap->vmap_lock);
1855 hash_init(vmap->ht);
1856
1857 vmap->strict_mode = false;
1858
1859 return 0;
1860}
1861
1b6687e3
DA
1862#ifdef CONFIG_SYSCTL
1863static bool vrf_strict_mode(struct vrf_map *vmap)
1864{
1865 bool strict_mode;
1866
1867 vrf_map_lock(vmap);
1868 strict_mode = vmap->strict_mode;
1869 vrf_map_unlock(vmap);
1870
1871 return strict_mode;
1872}
1873
1874static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1875{
1876 bool *cur_mode;
1877 int res = 0;
1878
1879 vrf_map_lock(vmap);
1880
1881 cur_mode = &vmap->strict_mode;
1882 if (*cur_mode == new_mode)
1883 goto unlock;
1884
1885 if (*cur_mode) {
1886 /* disable strict mode */
1887 *cur_mode = false;
1888 } else {
1889 if (vmap->shared_tables) {
1890 /* we cannot allow strict_mode because there are some
1891 * vrfs that share one or more tables.
1892 */
1893 res = -EBUSY;
1894 goto unlock;
1895 }
1896
1897 /* no tables are shared among vrfs, so we can go back
1898 * to 1:1 association between a vrf with its table.
1899 */
1900 *cur_mode = true;
1901 }
1902
1903unlock:
1904 vrf_map_unlock(vmap);
1905
1906 return res;
1907}
1908
33306f1a
AM
1909static int vrf_shared_table_handler(struct ctl_table *table, int write,
1910 void *buffer, size_t *lenp, loff_t *ppos)
1911{
1912 struct net *net = (struct net *)table->extra1;
1913 struct vrf_map *vmap = netns_vrf_map(net);
1914 int proc_strict_mode = 0;
1915 struct ctl_table tmp = {
1916 .procname = table->procname,
1917 .data = &proc_strict_mode,
1918 .maxlen = sizeof(int),
1919 .mode = table->mode,
1920 .extra1 = SYSCTL_ZERO,
1921 .extra2 = SYSCTL_ONE,
1922 };
1923 int ret;
1924
1925 if (!write)
1926 proc_strict_mode = vrf_strict_mode(vmap);
1927
1928 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1929
1930 if (write && ret == 0)
1931 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1932
1933 return ret;
1934}
1935
1936static const struct ctl_table vrf_table[] = {
1937 {
1938 .procname = "strict_mode",
1939 .data = NULL,
1940 .maxlen = sizeof(int),
1941 .mode = 0644,
1942 .proc_handler = vrf_shared_table_handler,
1943 /* set by the vrf_netns_init */
1944 .extra1 = NULL,
1945 },
1946 { },
1947};
1948
1b6687e3 1949static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
097d3c95 1950{
33306f1a 1951 struct ctl_table *table;
097d3c95 1952
33306f1a
AM
1953 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1954 if (!table)
1955 return -ENOMEM;
1956
1957 /* init the extra1 parameter with the reference to current netns */
1958 table[0].extra1 = net;
1959
1960 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1961 if (!nn_vrf->ctl_hdr) {
1b6687e3
DA
1962 kfree(table);
1963 return -ENOMEM;
33306f1a
AM
1964 }
1965
097d3c95 1966 return 0;
33306f1a
AM
1967}
1968
1b6687e3 1969static void vrf_netns_exit_sysctl(struct net *net)
33306f1a
AM
1970{
1971 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1972 struct ctl_table *table;
1973
1974 table = nn_vrf->ctl_hdr->ctl_table_arg;
1975 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1976 kfree(table);
097d3c95 1977}
1b6687e3
DA
1978#else
1979static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1980{
1981 return 0;
1982}
1983
1984static void vrf_netns_exit_sysctl(struct net *net)
1985{
1986}
1987#endif
1988
1989/* Initialize per network namespace state */
1990static int __net_init vrf_netns_init(struct net *net)
1991{
1992 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1993
1994 nn_vrf->add_fib_rules = true;
1995 vrf_map_init(&nn_vrf->vmap);
1996
1997 return vrf_netns_init_sysctl(net, nn_vrf);
1998}
1999
2000static void __net_exit vrf_netns_exit(struct net *net)
2001{
2002 vrf_netns_exit_sysctl(net);
2003}
097d3c95
DA
2004
2005static struct pernet_operations vrf_net_ops __net_initdata = {
2006 .init = vrf_netns_init,
33306f1a 2007 .exit = vrf_netns_exit,
097d3c95 2008 .id = &vrf_net_id,
c8baec38 2009 .size = sizeof(struct netns_vrf),
097d3c95
DA
2010};
2011
193125db
DA
2012static int __init vrf_init_module(void)
2013{
2014 int rc;
2015
193125db
DA
2016 register_netdevice_notifier(&vrf_notifier_block);
2017
097d3c95 2018 rc = register_pernet_subsys(&vrf_net_ops);
193125db
DA
2019 if (rc < 0)
2020 goto error;
2021
a59a8ffd
AM
2022 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2023 vrf_ifindex_lookup_by_table_id);
2024 if (rc < 0)
2025 goto unreg_pernet;
2026
097d3c95 2027 rc = rtnl_link_register(&vrf_link_ops);
a59a8ffd
AM
2028 if (rc < 0)
2029 goto table_lookup_unreg;
097d3c95 2030
193125db
DA
2031 return 0;
2032
a59a8ffd
AM
2033table_lookup_unreg:
2034 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2035 vrf_ifindex_lookup_by_table_id);
2036
2037unreg_pernet:
2038 unregister_pernet_subsys(&vrf_net_ops);
2039
193125db
DA
2040error:
2041 unregister_netdevice_notifier(&vrf_notifier_block);
193125db
DA
2042 return rc;
2043}
2044
193125db 2045module_init(vrf_init_module);
193125db
DA
2046MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2047MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2048MODULE_LICENSE("GPL");
2049MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2050MODULE_VERSION(DRV_VERSION);