[PATCH] irq-flags: drivers/net: Use the new IRQF_ constants
[linux-2.6-block.git] / drivers / net / via-velocity.c
CommitLineData
1da177e4
LT
1/*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * Big-endian support
12 * rx_copybreak/alignment
13 * Scatter gather
14 * More testing
15 *
16 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
17 * Additional fixes and clean up: Francois Romieu
18 *
19 * This source has not been verified for use in safety critical systems.
20 *
21 * Please direct queries about the revamped driver to the linux-kernel
22 * list not VIA.
23 *
24 * Original code:
25 *
26 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
27 * All rights reserved.
28 *
29 * This software may be redistributed and/or modified under
30 * the terms of the GNU General Public License as published by the Free
31 * Software Foundation; either version 2 of the License, or
32 * any later version.
33 *
34 * This program is distributed in the hope that it will be useful, but
35 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
36 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
37 * for more details.
38 *
39 * Author: Chuang Liang-Shing, AJ Jiang
40 *
41 * Date: Jan 24, 2003
42 *
43 * MODULE_LICENSE("GPL");
44 *
45 */
46
47
48#include <linux/module.h>
49#include <linux/types.h>
1da177e4
LT
50#include <linux/init.h>
51#include <linux/mm.h>
52#include <linux/errno.h>
53#include <linux/ioport.h>
54#include <linux/pci.h>
55#include <linux/kernel.h>
56#include <linux/netdevice.h>
57#include <linux/etherdevice.h>
58#include <linux/skbuff.h>
59#include <linux/delay.h>
60#include <linux/timer.h>
61#include <linux/slab.h>
62#include <linux/interrupt.h>
1da177e4
LT
63#include <linux/string.h>
64#include <linux/wait.h>
65#include <asm/io.h>
66#include <linux/if.h>
1da177e4
LT
67#include <asm/uaccess.h>
68#include <linux/proc_fs.h>
69#include <linux/inetdevice.h>
70#include <linux/reboot.h>
71#include <linux/ethtool.h>
72#include <linux/mii.h>
73#include <linux/in.h>
74#include <linux/if_arp.h>
75#include <linux/ip.h>
76#include <linux/tcp.h>
77#include <linux/udp.h>
78#include <linux/crc-ccitt.h>
79#include <linux/crc32.h>
80
81#include "via-velocity.h"
82
83
84static int velocity_nics = 0;
85static int msglevel = MSG_LEVEL_INFO;
86
87
88static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
89static struct ethtool_ops velocity_ethtool_ops;
90
91/*
92 Define module options
93*/
94
95MODULE_AUTHOR("VIA Networking Technologies, Inc.");
96MODULE_LICENSE("GPL");
97MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
98
99#define VELOCITY_PARAM(N,D) \
100 static int N[MAX_UNITS]=OPTION_DEFAULT;\
101 module_param_array(N, int, NULL, 0); \
102 MODULE_PARM_DESC(N, D);
103
104#define RX_DESC_MIN 64
105#define RX_DESC_MAX 255
106#define RX_DESC_DEF 64
107VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
108
109#define TX_DESC_MIN 16
110#define TX_DESC_MAX 256
111#define TX_DESC_DEF 64
112VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
113
114#define VLAN_ID_MIN 0
115#define VLAN_ID_MAX 4095
116#define VLAN_ID_DEF 0
117/* VID_setting[] is used for setting the VID of NIC.
118 0: default VID.
119 1-4094: other VIDs.
120*/
121VELOCITY_PARAM(VID_setting, "802.1Q VLAN ID");
122
123#define RX_THRESH_MIN 0
124#define RX_THRESH_MAX 3
125#define RX_THRESH_DEF 0
126/* rx_thresh[] is used for controlling the receive fifo threshold.
127 0: indicate the rxfifo threshold is 128 bytes.
128 1: indicate the rxfifo threshold is 512 bytes.
129 2: indicate the rxfifo threshold is 1024 bytes.
130 3: indicate the rxfifo threshold is store & forward.
131*/
132VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
133
134#define DMA_LENGTH_MIN 0
135#define DMA_LENGTH_MAX 7
136#define DMA_LENGTH_DEF 0
137
138/* DMA_length[] is used for controlling the DMA length
139 0: 8 DWORDs
140 1: 16 DWORDs
141 2: 32 DWORDs
142 3: 64 DWORDs
143 4: 128 DWORDs
144 5: 256 DWORDs
145 6: SF(flush till emply)
146 7: SF(flush till emply)
147*/
148VELOCITY_PARAM(DMA_length, "DMA length");
149
150#define TAGGING_DEF 0
151/* enable_tagging[] is used for enabling 802.1Q VID tagging.
152 0: disable VID seeting(default).
153 1: enable VID setting.
154*/
155VELOCITY_PARAM(enable_tagging, "Enable 802.1Q tagging");
156
157#define IP_ALIG_DEF 0
158/* IP_byte_align[] is used for IP header DWORD byte aligned
159 0: indicate the IP header won't be DWORD byte aligned.(Default) .
160 1: indicate the IP header will be DWORD byte aligned.
161 In some enviroment, the IP header should be DWORD byte aligned,
162 or the packet will be droped when we receive it. (eg: IPVS)
163*/
164VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
165
166#define TX_CSUM_DEF 1
167/* txcsum_offload[] is used for setting the checksum offload ability of NIC.
168 (We only support RX checksum offload now)
169 0: disable csum_offload[checksum offload
170 1: enable checksum offload. (Default)
171*/
172VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
173
174#define FLOW_CNTL_DEF 1
175#define FLOW_CNTL_MIN 1
176#define FLOW_CNTL_MAX 5
177
178/* flow_control[] is used for setting the flow control ability of NIC.
179 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
180 2: enable TX flow control.
181 3: enable RX flow control.
182 4: enable RX/TX flow control.
183 5: disable
184*/
185VELOCITY_PARAM(flow_control, "Enable flow control ability");
186
187#define MED_LNK_DEF 0
188#define MED_LNK_MIN 0
189#define MED_LNK_MAX 4
190/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
191 0: indicate autonegotiation for both speed and duplex mode
192 1: indicate 100Mbps half duplex mode
193 2: indicate 100Mbps full duplex mode
194 3: indicate 10Mbps half duplex mode
195 4: indicate 10Mbps full duplex mode
196
197 Note:
198 if EEPROM have been set to the force mode, this option is ignored
199 by driver.
200*/
201VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
202
203#define VAL_PKT_LEN_DEF 0
204/* ValPktLen[] is used for setting the checksum offload ability of NIC.
205 0: Receive frame with invalid layer 2 length (Default)
206 1: Drop frame with invalid layer 2 length
207*/
208VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
209
210#define WOL_OPT_DEF 0
211#define WOL_OPT_MIN 0
212#define WOL_OPT_MAX 7
213/* wol_opts[] is used for controlling wake on lan behavior.
214 0: Wake up if recevied a magic packet. (Default)
215 1: Wake up if link status is on/off.
216 2: Wake up if recevied an arp packet.
217 4: Wake up if recevied any unicast packet.
218 Those value can be sumed up to support more than one option.
219*/
220VELOCITY_PARAM(wol_opts, "Wake On Lan options");
221
222#define INT_WORKS_DEF 20
223#define INT_WORKS_MIN 10
224#define INT_WORKS_MAX 64
225
226VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
227
228static int rx_copybreak = 200;
229module_param(rx_copybreak, int, 0644);
230MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
231
232static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info);
233static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
234static void velocity_print_info(struct velocity_info *vptr);
235static int velocity_open(struct net_device *dev);
236static int velocity_change_mtu(struct net_device *dev, int mtu);
237static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
238static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs);
239static void velocity_set_multi(struct net_device *dev);
240static struct net_device_stats *velocity_get_stats(struct net_device *dev);
241static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
242static int velocity_close(struct net_device *dev);
243static int velocity_receive_frame(struct velocity_info *, int idx);
244static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
245static void velocity_free_rd_ring(struct velocity_info *vptr);
246static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
247static int velocity_soft_reset(struct velocity_info *vptr);
248static void mii_init(struct velocity_info *vptr, u32 mii_status);
8a22dddb 249static u32 velocity_get_link(struct net_device *dev);
1da177e4
LT
250static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
251static void velocity_print_link_status(struct velocity_info *vptr);
252static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
253static void velocity_shutdown(struct velocity_info *vptr);
254static void enable_flow_control_ability(struct velocity_info *vptr);
255static void enable_mii_autopoll(struct mac_regs __iomem * regs);
256static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
257static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
258static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
259static u32 check_connection_type(struct mac_regs __iomem * regs);
260static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
261
262#ifdef CONFIG_PM
263
264static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
265static int velocity_resume(struct pci_dev *pdev);
266
267static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
268
269static struct notifier_block velocity_inetaddr_notifier = {
270 .notifier_call = velocity_netdev_event,
271};
272
273static DEFINE_SPINLOCK(velocity_dev_list_lock);
274static LIST_HEAD(velocity_dev_list);
275
276static void velocity_register_notifier(void)
277{
278 register_inetaddr_notifier(&velocity_inetaddr_notifier);
279}
280
281static void velocity_unregister_notifier(void)
282{
283 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
284}
285
286#else /* CONFIG_PM */
287
288#define velocity_register_notifier() do {} while (0)
289#define velocity_unregister_notifier() do {} while (0)
290
291#endif /* !CONFIG_PM */
292
293/*
294 * Internal board variants. At the moment we have only one
295 */
296
297static struct velocity_info_tbl chip_info_table[] = {
298 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 256, 1, 0x00FFFFFFUL},
299 {0, NULL}
300};
301
302/*
303 * Describe the PCI device identifiers that we support in this
304 * device driver. Used for hotplug autoloading.
305 */
306
307static struct pci_device_id velocity_id_table[] __devinitdata = {
308 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X,
309 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) chip_info_table},
310 {0, }
311};
312
313MODULE_DEVICE_TABLE(pci, velocity_id_table);
314
315/**
316 * get_chip_name - identifier to name
317 * @id: chip identifier
318 *
319 * Given a chip identifier return a suitable description. Returns
320 * a pointer a static string valid while the driver is loaded.
321 */
322
323static char __devinit *get_chip_name(enum chip_type chip_id)
324{
325 int i;
326 for (i = 0; chip_info_table[i].name != NULL; i++)
327 if (chip_info_table[i].chip_id == chip_id)
328 break;
329 return chip_info_table[i].name;
330}
331
332/**
333 * velocity_remove1 - device unplug
334 * @pdev: PCI device being removed
335 *
336 * Device unload callback. Called on an unplug or on module
337 * unload for each active device that is present. Disconnects
338 * the device from the network layer and frees all the resources
339 */
340
341static void __devexit velocity_remove1(struct pci_dev *pdev)
342{
343 struct net_device *dev = pci_get_drvdata(pdev);
344 struct velocity_info *vptr = dev->priv;
345
346#ifdef CONFIG_PM
347 unsigned long flags;
348
349 spin_lock_irqsave(&velocity_dev_list_lock, flags);
350 if (!list_empty(&velocity_dev_list))
351 list_del(&vptr->list);
352 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
353#endif
354 unregister_netdev(dev);
355 iounmap(vptr->mac_regs);
356 pci_release_regions(pdev);
357 pci_disable_device(pdev);
358 pci_set_drvdata(pdev, NULL);
359 free_netdev(dev);
360
361 velocity_nics--;
362}
363
364/**
365 * velocity_set_int_opt - parser for integer options
366 * @opt: pointer to option value
367 * @val: value the user requested (or -1 for default)
368 * @min: lowest value allowed
369 * @max: highest value allowed
370 * @def: default value
371 * @name: property name
372 * @dev: device name
373 *
374 * Set an integer property in the module options. This function does
375 * all the verification and checking as well as reporting so that
376 * we don't duplicate code for each option.
377 */
378
379static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
380{
381 if (val == -1)
382 *opt = def;
383 else if (val < min || val > max) {
384 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
385 devname, name, min, max);
386 *opt = def;
387 } else {
388 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
389 devname, name, val);
390 *opt = val;
391 }
392}
393
394/**
395 * velocity_set_bool_opt - parser for boolean options
396 * @opt: pointer to option value
397 * @val: value the user requested (or -1 for default)
398 * @def: default value (yes/no)
399 * @flag: numeric value to set for true.
400 * @name: property name
401 * @dev: device name
402 *
403 * Set a boolean property in the module options. This function does
404 * all the verification and checking as well as reporting so that
405 * we don't duplicate code for each option.
406 */
407
408static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
409{
410 (*opt) &= (~flag);
411 if (val == -1)
412 *opt |= (def ? flag : 0);
413 else if (val < 0 || val > 1) {
414 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
415 devname, name);
416 *opt |= (def ? flag : 0);
417 } else {
418 printk(KERN_INFO "%s: set parameter %s to %s\n",
419 devname, name, val ? "TRUE" : "FALSE");
420 *opt |= (val ? flag : 0);
421 }
422}
423
424/**
425 * velocity_get_options - set options on device
426 * @opts: option structure for the device
427 * @index: index of option to use in module options array
428 * @devname: device name
429 *
430 * Turn the module and command options into a single structure
431 * for the current device
432 */
433
434static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
435{
436
437 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
438 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
439 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
440 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
441 velocity_set_int_opt(&opts->vid, VID_setting[index], VLAN_ID_MIN, VLAN_ID_MAX, VLAN_ID_DEF, "VID_setting", devname);
442 velocity_set_bool_opt(&opts->flags, enable_tagging[index], TAGGING_DEF, VELOCITY_FLAGS_TAGGING, "enable_tagging", devname);
443 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
444 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
445 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
446 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
447 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
448 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
449 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
450 opts->numrx = (opts->numrx & ~3);
451}
452
453/**
454 * velocity_init_cam_filter - initialise CAM
455 * @vptr: velocity to program
456 *
457 * Initialize the content addressable memory used for filters. Load
458 * appropriately according to the presence of VLAN
459 */
460
461static void velocity_init_cam_filter(struct velocity_info *vptr)
462{
463 struct mac_regs __iomem * regs = vptr->mac_regs;
464
465 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
466 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
467 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
468
469 /* Disable all CAMs */
470 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
471 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
472 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
473 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
474
475 /* Enable first VCAM */
476 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
477 /* If Tagging option is enabled and VLAN ID is not zero, then
478 turn on MCFG_RTGOPT also */
479 if (vptr->options.vid != 0)
480 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
481
482 mac_set_cam(regs, 0, (u8 *) & (vptr->options.vid), VELOCITY_VLAN_ID_CAM);
483 vptr->vCAMmask[0] |= 1;
484 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
485 } else {
486 u16 temp = 0;
487 mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
488 temp = 1;
489 mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
490 }
491}
492
493/**
494 * velocity_rx_reset - handle a receive reset
495 * @vptr: velocity we are resetting
496 *
497 * Reset the ownership and status for the receive ring side.
498 * Hand all the receive queue to the NIC.
499 */
500
501static void velocity_rx_reset(struct velocity_info *vptr)
502{
503
504 struct mac_regs __iomem * regs = vptr->mac_regs;
505 int i;
506
507 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
508
509 /*
510 * Init state, all RD entries belong to the NIC
511 */
512 for (i = 0; i < vptr->options.numrx; ++i)
513 vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
514
515 writew(vptr->options.numrx, &regs->RBRDU);
516 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
517 writew(0, &regs->RDIdx);
518 writew(vptr->options.numrx - 1, &regs->RDCSize);
519}
520
521/**
522 * velocity_init_registers - initialise MAC registers
523 * @vptr: velocity to init
524 * @type: type of initialisation (hot or cold)
525 *
526 * Initialise the MAC on a reset or on first set up on the
527 * hardware.
528 */
529
530static void velocity_init_registers(struct velocity_info *vptr,
531 enum velocity_init_type type)
532{
533 struct mac_regs __iomem * regs = vptr->mac_regs;
534 int i, mii_status;
535
536 mac_wol_reset(regs);
537
538 switch (type) {
539 case VELOCITY_INIT_RESET:
540 case VELOCITY_INIT_WOL:
541
542 netif_stop_queue(vptr->dev);
543
544 /*
545 * Reset RX to prevent RX pointer not on the 4X location
546 */
547 velocity_rx_reset(vptr);
548 mac_rx_queue_run(regs);
549 mac_rx_queue_wake(regs);
550
551 mii_status = velocity_get_opt_media_mode(vptr);
552 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
553 velocity_print_link_status(vptr);
554 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
555 netif_wake_queue(vptr->dev);
556 }
557
558 enable_flow_control_ability(vptr);
559
560 mac_clear_isr(regs);
561 writel(CR0_STOP, &regs->CR0Clr);
562 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
563 &regs->CR0Set);
564
565 break;
566
567 case VELOCITY_INIT_COLD:
568 default:
569 /*
570 * Do reset
571 */
572 velocity_soft_reset(vptr);
573 mdelay(5);
574
575 mac_eeprom_reload(regs);
576 for (i = 0; i < 6; i++) {
577 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
578 }
579 /*
580 * clear Pre_ACPI bit.
581 */
582 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
583 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
584 mac_set_dma_length(regs, vptr->options.DMA_length);
585
586 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
587 /*
588 * Back off algorithm use original IEEE standard
589 */
590 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
591
592 /*
593 * Init CAM filter
594 */
595 velocity_init_cam_filter(vptr);
596
597 /*
598 * Set packet filter: Receive directed and broadcast address
599 */
600 velocity_set_multi(vptr->dev);
601
602 /*
603 * Enable MII auto-polling
604 */
605 enable_mii_autopoll(regs);
606
607 vptr->int_mask = INT_MASK_DEF;
608
609 writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
610 writew(vptr->options.numrx - 1, &regs->RDCSize);
611 mac_rx_queue_run(regs);
612 mac_rx_queue_wake(regs);
613
614 writew(vptr->options.numtx - 1, &regs->TDCSize);
615
616 for (i = 0; i < vptr->num_txq; i++) {
617 writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
618 mac_tx_queue_run(regs, i);
619 }
620
621 init_flow_control_register(vptr);
622
623 writel(CR0_STOP, &regs->CR0Clr);
624 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
625
626 mii_status = velocity_get_opt_media_mode(vptr);
627 netif_stop_queue(vptr->dev);
628
629 mii_init(vptr, mii_status);
630
631 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
632 velocity_print_link_status(vptr);
633 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
634 netif_wake_queue(vptr->dev);
635 }
636
637 enable_flow_control_ability(vptr);
638 mac_hw_mibs_init(regs);
639 mac_write_int_mask(vptr->int_mask, regs);
640 mac_clear_isr(regs);
641
642 }
643}
644
645/**
646 * velocity_soft_reset - soft reset
647 * @vptr: velocity to reset
648 *
649 * Kick off a soft reset of the velocity adapter and then poll
650 * until the reset sequence has completed before returning.
651 */
652
653static int velocity_soft_reset(struct velocity_info *vptr)
654{
655 struct mac_regs __iomem * regs = vptr->mac_regs;
656 int i = 0;
657
658 writel(CR0_SFRST, &regs->CR0Set);
659
660 for (i = 0; i < W_MAX_TIMEOUT; i++) {
661 udelay(5);
662 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
663 break;
664 }
665
666 if (i == W_MAX_TIMEOUT) {
667 writel(CR0_FORSRST, &regs->CR0Set);
668 /* FIXME: PCI POSTING */
669 /* delay 2ms */
670 mdelay(2);
671 }
672 return 0;
673}
674
675/**
676 * velocity_found1 - set up discovered velocity card
677 * @pdev: PCI device
678 * @ent: PCI device table entry that matched
679 *
680 * Configure a discovered adapter from scratch. Return a negative
681 * errno error code on failure paths.
682 */
683
684static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
685{
686 static int first = 1;
687 struct net_device *dev;
688 int i;
689 struct velocity_info_tbl *info = (struct velocity_info_tbl *) ent->driver_data;
690 struct velocity_info *vptr;
691 struct mac_regs __iomem * regs;
692 int ret = -ENOMEM;
693
694 if (velocity_nics >= MAX_UNITS) {
695 printk(KERN_NOTICE VELOCITY_NAME ": already found %d NICs.\n",
696 velocity_nics);
697 return -ENODEV;
698 }
699
700 dev = alloc_etherdev(sizeof(struct velocity_info));
701
702 if (dev == NULL) {
703 printk(KERN_ERR VELOCITY_NAME ": allocate net device failed.\n");
704 goto out;
705 }
706
707 /* Chain it all together */
708
709 SET_MODULE_OWNER(dev);
710 SET_NETDEV_DEV(dev, &pdev->dev);
711 vptr = dev->priv;
712
713
714 if (first) {
715 printk(KERN_INFO "%s Ver. %s\n",
716 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
717 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
718 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
719 first = 0;
720 }
721
722 velocity_init_info(pdev, vptr, info);
723
724 vptr->dev = dev;
725
726 dev->irq = pdev->irq;
727
728 ret = pci_enable_device(pdev);
729 if (ret < 0)
730 goto err_free_dev;
731
732 ret = velocity_get_pci_info(vptr, pdev);
733 if (ret < 0) {
734 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
735 goto err_disable;
736 }
737
738 ret = pci_request_regions(pdev, VELOCITY_NAME);
739 if (ret < 0) {
740 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
741 goto err_disable;
742 }
743
744 regs = ioremap(vptr->memaddr, vptr->io_size);
745 if (regs == NULL) {
746 ret = -EIO;
747 goto err_release_res;
748 }
749
750 vptr->mac_regs = regs;
751
752 mac_wol_reset(regs);
753
754 dev->base_addr = vptr->ioaddr;
755
756 for (i = 0; i < 6; i++)
757 dev->dev_addr[i] = readb(&regs->PAR[i]);
758
759
760 velocity_get_options(&vptr->options, velocity_nics, dev->name);
761
762 /*
763 * Mask out the options cannot be set to the chip
764 */
765
766 vptr->options.flags &= info->flags;
767
768 /*
769 * Enable the chip specified capbilities
770 */
771
772 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
773
774 vptr->wol_opts = vptr->options.wol_opts;
775 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
776
777 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
778
779 dev->irq = pdev->irq;
780 dev->open = velocity_open;
781 dev->hard_start_xmit = velocity_xmit;
782 dev->stop = velocity_close;
783 dev->get_stats = velocity_get_stats;
784 dev->set_multicast_list = velocity_set_multi;
785 dev->do_ioctl = velocity_ioctl;
786 dev->ethtool_ops = &velocity_ethtool_ops;
787 dev->change_mtu = velocity_change_mtu;
788#ifdef VELOCITY_ZERO_COPY_SUPPORT
789 dev->features |= NETIF_F_SG;
790#endif
791
792 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM) {
9f3f46b5 793 dev->features |= NETIF_F_IP_CSUM;
1da177e4
LT
794 }
795
796 ret = register_netdev(dev);
797 if (ret < 0)
798 goto err_iounmap;
799
8a22dddb
FR
800 if (velocity_get_link(dev))
801 netif_carrier_off(dev);
802
1da177e4
LT
803 velocity_print_info(vptr);
804 pci_set_drvdata(pdev, dev);
805
806 /* and leave the chip powered down */
807
808 pci_set_power_state(pdev, PCI_D3hot);
809#ifdef CONFIG_PM
810 {
811 unsigned long flags;
812
813 spin_lock_irqsave(&velocity_dev_list_lock, flags);
814 list_add(&vptr->list, &velocity_dev_list);
815 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
816 }
817#endif
818 velocity_nics++;
819out:
820 return ret;
821
822err_iounmap:
823 iounmap(regs);
824err_release_res:
825 pci_release_regions(pdev);
826err_disable:
827 pci_disable_device(pdev);
828err_free_dev:
829 free_netdev(dev);
830 goto out;
831}
832
833/**
834 * velocity_print_info - per driver data
835 * @vptr: velocity
836 *
837 * Print per driver data as the kernel driver finds Velocity
838 * hardware
839 */
840
841static void __devinit velocity_print_info(struct velocity_info *vptr)
842{
843 struct net_device *dev = vptr->dev;
844
845 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
846 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
847 dev->name,
848 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
849 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
850}
851
852/**
853 * velocity_init_info - init private data
854 * @pdev: PCI device
855 * @vptr: Velocity info
856 * @info: Board type
857 *
858 * Set up the initial velocity_info struct for the device that has been
859 * discovered.
860 */
861
862static void __devinit velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info)
863{
864 memset(vptr, 0, sizeof(struct velocity_info));
865
866 vptr->pdev = pdev;
867 vptr->chip_id = info->chip_id;
868 vptr->io_size = info->io_size;
869 vptr->num_txq = info->txqueue;
870 vptr->multicast_limit = MCAM_SIZE;
871 spin_lock_init(&vptr->lock);
872 INIT_LIST_HEAD(&vptr->list);
873}
874
875/**
876 * velocity_get_pci_info - retrieve PCI info for device
877 * @vptr: velocity device
878 * @pdev: PCI device it matches
879 *
880 * Retrieve the PCI configuration space data that interests us from
881 * the kernel PCI layer
882 */
883
884static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
885{
886
887 if(pci_read_config_byte(pdev, PCI_REVISION_ID, &vptr->rev_id) < 0)
888 return -EIO;
889
890 pci_set_master(pdev);
891
892 vptr->ioaddr = pci_resource_start(pdev, 0);
893 vptr->memaddr = pci_resource_start(pdev, 1);
894
895 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_IO))
896 {
897 printk(KERN_ERR "%s: region #0 is not an I/O resource, aborting.\n",
898 pci_name(pdev));
899 return -EINVAL;
900 }
901
902 if((pci_resource_flags(pdev, 1) & IORESOURCE_IO))
903 {
904 printk(KERN_ERR "%s: region #1 is an I/O resource, aborting.\n",
905 pci_name(pdev));
906 return -EINVAL;
907 }
908
909 if(pci_resource_len(pdev, 1) < 256)
910 {
911 printk(KERN_ERR "%s: region #1 is too small.\n",
912 pci_name(pdev));
913 return -EINVAL;
914 }
915 vptr->pdev = pdev;
916
917 return 0;
918}
919
920/**
921 * velocity_init_rings - set up DMA rings
922 * @vptr: Velocity to set up
923 *
924 * Allocate PCI mapped DMA rings for the receive and transmit layer
925 * to use.
926 */
927
928static int velocity_init_rings(struct velocity_info *vptr)
929{
930 int i;
931 unsigned int psize;
932 unsigned int tsize;
933 dma_addr_t pool_dma;
934 u8 *pool;
935
936 /*
937 * Allocate all RD/TD rings a single pool
938 */
939
940 psize = vptr->options.numrx * sizeof(struct rx_desc) +
941 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
942
943 /*
944 * pci_alloc_consistent() fulfills the requirement for 64 bytes
945 * alignment
946 */
947 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
948
949 if (pool == NULL) {
950 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
951 vptr->dev->name);
952 return -ENOMEM;
953 }
954
955 memset(pool, 0, psize);
956
957 vptr->rd_ring = (struct rx_desc *) pool;
958
959 vptr->rd_pool_dma = pool_dma;
960
961 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
962 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
963 &vptr->tx_bufs_dma);
964
965 if (vptr->tx_bufs == NULL) {
966 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
967 vptr->dev->name);
968 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
969 return -ENOMEM;
970 }
971
972 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
973
974 i = vptr->options.numrx * sizeof(struct rx_desc);
975 pool += i;
976 pool_dma += i;
977 for (i = 0; i < vptr->num_txq; i++) {
978 int offset = vptr->options.numtx * sizeof(struct tx_desc);
979
980 vptr->td_pool_dma[i] = pool_dma;
981 vptr->td_rings[i] = (struct tx_desc *) pool;
982 pool += offset;
983 pool_dma += offset;
984 }
985 return 0;
986}
987
988/**
989 * velocity_free_rings - free PCI ring pointers
990 * @vptr: Velocity to free from
991 *
992 * Clean up the PCI ring buffers allocated to this velocity.
993 */
994
995static void velocity_free_rings(struct velocity_info *vptr)
996{
997 int size;
998
999 size = vptr->options.numrx * sizeof(struct rx_desc) +
1000 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
1001
1002 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1003
1004 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1005
1006 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1007}
1008
1009static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1010{
1011 struct mac_regs __iomem *regs = vptr->mac_regs;
1012 int avail, dirty, unusable;
1013
1014 /*
1015 * RD number must be equal to 4X per hardware spec
1016 * (programming guide rev 1.20, p.13)
1017 */
1018 if (vptr->rd_filled < 4)
1019 return;
1020
1021 wmb();
1022
1023 unusable = vptr->rd_filled & 0x0003;
1024 dirty = vptr->rd_dirty - unusable;
1025 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1026 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1027 vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
1028 }
1029
1030 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1031 vptr->rd_filled = unusable;
1032}
1033
1034static int velocity_rx_refill(struct velocity_info *vptr)
1035{
1036 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1037
1038 do {
1039 struct rx_desc *rd = vptr->rd_ring + dirty;
1040
1041 /* Fine for an all zero Rx desc at init time as well */
1042 if (rd->rdesc0.owner == OWNED_BY_NIC)
1043 break;
1044
1045 if (!vptr->rd_info[dirty].skb) {
1046 ret = velocity_alloc_rx_buf(vptr, dirty);
1047 if (ret < 0)
1048 break;
1049 }
1050 done++;
1051 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1052 } while (dirty != vptr->rd_curr);
1053
1054 if (done) {
1055 vptr->rd_dirty = dirty;
1056 vptr->rd_filled += done;
1057 velocity_give_many_rx_descs(vptr);
1058 }
1059
1060 return ret;
1061}
1062
1063/**
1064 * velocity_init_rd_ring - set up receive ring
1065 * @vptr: velocity to configure
1066 *
1067 * Allocate and set up the receive buffers for each ring slot and
1068 * assign them to the network adapter.
1069 */
1070
1071static int velocity_init_rd_ring(struct velocity_info *vptr)
1072{
1073 int ret = -ENOMEM;
1074 unsigned int rsize = sizeof(struct velocity_rd_info) *
1075 vptr->options.numrx;
1076
1077 vptr->rd_info = kmalloc(rsize, GFP_KERNEL);
1078 if(vptr->rd_info == NULL)
1079 goto out;
1080 memset(vptr->rd_info, 0, rsize);
1081
1082 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1083
1084 ret = velocity_rx_refill(vptr);
1085 if (ret < 0) {
1086 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1087 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1088 velocity_free_rd_ring(vptr);
1089 }
1090out:
1091 return ret;
1092}
1093
1094/**
1095 * velocity_free_rd_ring - free receive ring
1096 * @vptr: velocity to clean up
1097 *
1098 * Free the receive buffers for each ring slot and any
1099 * attached socket buffers that need to go away.
1100 */
1101
1102static void velocity_free_rd_ring(struct velocity_info *vptr)
1103{
1104 int i;
1105
1106 if (vptr->rd_info == NULL)
1107 return;
1108
1109 for (i = 0; i < vptr->options.numrx; i++) {
1110 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
b3c3e7d7
FR
1111 struct rx_desc *rd = vptr->rd_ring + i;
1112
1113 memset(rd, 0, sizeof(*rd));
1da177e4
LT
1114
1115 if (!rd_info->skb)
1116 continue;
1117 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1118 PCI_DMA_FROMDEVICE);
1119 rd_info->skb_dma = (dma_addr_t) NULL;
1120
1121 dev_kfree_skb(rd_info->skb);
1122 rd_info->skb = NULL;
1123 }
1124
1125 kfree(vptr->rd_info);
1126 vptr->rd_info = NULL;
1127}
1128
1129/**
1130 * velocity_init_td_ring - set up transmit ring
1131 * @vptr: velocity
1132 *
1133 * Set up the transmit ring and chain the ring pointers together.
1134 * Returns zero on success or a negative posix errno code for
1135 * failure.
1136 */
1137
1138static int velocity_init_td_ring(struct velocity_info *vptr)
1139{
1140 int i, j;
1141 dma_addr_t curr;
1142 struct tx_desc *td;
1143 struct velocity_td_info *td_info;
1144 unsigned int tsize = sizeof(struct velocity_td_info) *
1145 vptr->options.numtx;
1146
1147 /* Init the TD ring entries */
1148 for (j = 0; j < vptr->num_txq; j++) {
1149 curr = vptr->td_pool_dma[j];
1150
1151 vptr->td_infos[j] = kmalloc(tsize, GFP_KERNEL);
1152 if(vptr->td_infos[j] == NULL)
1153 {
1154 while(--j >= 0)
1155 kfree(vptr->td_infos[j]);
1156 return -ENOMEM;
1157 }
1158 memset(vptr->td_infos[j], 0, tsize);
1159
1160 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1161 td = &(vptr->td_rings[j][i]);
1162 td_info = &(vptr->td_infos[j][i]);
1163 td_info->buf = vptr->tx_bufs +
1164 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1165 td_info->buf_dma = vptr->tx_bufs_dma +
1166 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1167 }
1168 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1169 }
1170 return 0;
1171}
1172
1173/*
1174 * FIXME: could we merge this with velocity_free_tx_buf ?
1175 */
1176
1177static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1178 int q, int n)
1179{
1180 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1181 int i;
1182
1183 if (td_info == NULL)
1184 return;
1185
1186 if (td_info->skb) {
1187 for (i = 0; i < td_info->nskb_dma; i++)
1188 {
1189 if (td_info->skb_dma[i]) {
1190 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1191 td_info->skb->len, PCI_DMA_TODEVICE);
1192 td_info->skb_dma[i] = (dma_addr_t) NULL;
1193 }
1194 }
1195 dev_kfree_skb(td_info->skb);
1196 td_info->skb = NULL;
1197 }
1198}
1199
1200/**
1201 * velocity_free_td_ring - free td ring
1202 * @vptr: velocity
1203 *
1204 * Free up the transmit ring for this particular velocity adapter.
1205 * We free the ring contents but not the ring itself.
1206 */
1207
1208static void velocity_free_td_ring(struct velocity_info *vptr)
1209{
1210 int i, j;
1211
1212 for (j = 0; j < vptr->num_txq; j++) {
1213 if (vptr->td_infos[j] == NULL)
1214 continue;
1215 for (i = 0; i < vptr->options.numtx; i++) {
1216 velocity_free_td_ring_entry(vptr, j, i);
1217
1218 }
b4558ea9
JJ
1219 kfree(vptr->td_infos[j]);
1220 vptr->td_infos[j] = NULL;
1da177e4
LT
1221 }
1222}
1223
1224/**
1225 * velocity_rx_srv - service RX interrupt
1226 * @vptr: velocity
1227 * @status: adapter status (unused)
1228 *
1229 * Walk the receive ring of the velocity adapter and remove
1230 * any received packets from the receive queue. Hand the ring
1231 * slots back to the adapter for reuse.
1232 */
1233
1234static int velocity_rx_srv(struct velocity_info *vptr, int status)
1235{
1236 struct net_device_stats *stats = &vptr->stats;
1237 int rd_curr = vptr->rd_curr;
1238 int works = 0;
1239
1240 do {
1241 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1242
1243 if (!vptr->rd_info[rd_curr].skb)
1244 break;
1245
1246 if (rd->rdesc0.owner == OWNED_BY_NIC)
1247 break;
1248
1249 rmb();
1250
1251 /*
1252 * Don't drop CE or RL error frame although RXOK is off
1253 */
1254 if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
1255 if (velocity_receive_frame(vptr, rd_curr) < 0)
1256 stats->rx_dropped++;
1257 } else {
1258 if (rd->rdesc0.RSR & RSR_CRC)
1259 stats->rx_crc_errors++;
1260 if (rd->rdesc0.RSR & RSR_FAE)
1261 stats->rx_frame_errors++;
1262
1263 stats->rx_dropped++;
1264 }
1265
1266 rd->inten = 1;
1267
1268 vptr->dev->last_rx = jiffies;
1269
1270 rd_curr++;
1271 if (rd_curr >= vptr->options.numrx)
1272 rd_curr = 0;
1273 } while (++works <= 15);
1274
1275 vptr->rd_curr = rd_curr;
1276
1277 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1278 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1279 "%s: rx buf allocation failure\n", vptr->dev->name);
1280 }
1281
1282 VAR_USED(stats);
1283 return works;
1284}
1285
1286/**
1287 * velocity_rx_csum - checksum process
1288 * @rd: receive packet descriptor
1289 * @skb: network layer packet buffer
1290 *
1291 * Process the status bits for the received packet and determine
1292 * if the checksum was computed and verified by the hardware
1293 */
1294
1295static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1296{
1297 skb->ip_summed = CHECKSUM_NONE;
1298
1299 if (rd->rdesc1.CSM & CSM_IPKT) {
1300 if (rd->rdesc1.CSM & CSM_IPOK) {
1301 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1302 (rd->rdesc1.CSM & CSM_UDPKT)) {
1303 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1304 return;
1305 }
1306 }
1307 skb->ip_summed = CHECKSUM_UNNECESSARY;
1308 }
1309 }
1310}
1311
1312/**
1313 * velocity_rx_copy - in place Rx copy for small packets
1314 * @rx_skb: network layer packet buffer candidate
1315 * @pkt_size: received data size
1316 * @rd: receive packet descriptor
1317 * @dev: network device
1318 *
1319 * Replace the current skb that is scheduled for Rx processing by a
1320 * shorter, immediatly allocated skb, if the received packet is small
1321 * enough. This function returns a negative value if the received
1322 * packet is too big or if memory is exhausted.
1323 */
1324static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1325 struct velocity_info *vptr)
1326{
1327 int ret = -1;
1328
1329 if (pkt_size < rx_copybreak) {
1330 struct sk_buff *new_skb;
1331
1332 new_skb = dev_alloc_skb(pkt_size + 2);
1333 if (new_skb) {
1334 new_skb->dev = vptr->dev;
1335 new_skb->ip_summed = rx_skb[0]->ip_summed;
1336
1337 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1338 skb_reserve(new_skb, 2);
1339
689be439 1340 memcpy(new_skb->data, rx_skb[0]->data, pkt_size);
1da177e4
LT
1341 *rx_skb = new_skb;
1342 ret = 0;
1343 }
1344
1345 }
1346 return ret;
1347}
1348
1349/**
1350 * velocity_iph_realign - IP header alignment
1351 * @vptr: velocity we are handling
1352 * @skb: network layer packet buffer
1353 * @pkt_size: received data size
1354 *
1355 * Align IP header on a 2 bytes boundary. This behavior can be
1356 * configured by the user.
1357 */
1358static inline void velocity_iph_realign(struct velocity_info *vptr,
1359 struct sk_buff *skb, int pkt_size)
1360{
1361 /* FIXME - memmove ? */
1362 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1363 int i;
1364
1365 for (i = pkt_size; i >= 0; i--)
1366 *(skb->data + i + 2) = *(skb->data + i);
1367 skb_reserve(skb, 2);
1368 }
1369}
1370
1371/**
1372 * velocity_receive_frame - received packet processor
1373 * @vptr: velocity we are handling
1374 * @idx: ring index
1375 *
1376 * A packet has arrived. We process the packet and if appropriate
1377 * pass the frame up the network stack
1378 */
1379
1380static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1381{
1382 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1383 struct net_device_stats *stats = &vptr->stats;
1384 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1385 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1386 int pkt_len = rd->rdesc0.len;
1387 struct sk_buff *skb;
1388
1389 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1390 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1391 stats->rx_length_errors++;
1392 return -EINVAL;
1393 }
1394
1395 if (rd->rdesc0.RSR & RSR_MAR)
1396 vptr->stats.multicast++;
1397
1398 skb = rd_info->skb;
1399 skb->dev = vptr->dev;
1400
1401 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1402 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1403
1404 /*
1405 * Drop frame not meeting IEEE 802.3
1406 */
1407
1408 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1409 if (rd->rdesc0.RSR & RSR_RL) {
1410 stats->rx_length_errors++;
1411 return -EINVAL;
1412 }
1413 }
1414
1415 pci_action = pci_dma_sync_single_for_device;
1416
1417 velocity_rx_csum(rd, skb);
1418
1419 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1420 velocity_iph_realign(vptr, skb, pkt_len);
1421 pci_action = pci_unmap_single;
1422 rd_info->skb = NULL;
1423 }
1424
1425 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1426 PCI_DMA_FROMDEVICE);
1427
1428 skb_put(skb, pkt_len - 4);
1429 skb->protocol = eth_type_trans(skb, skb->dev);
1430
1431 stats->rx_bytes += pkt_len;
1432 netif_rx(skb);
1433
1434 return 0;
1435}
1436
1437/**
1438 * velocity_alloc_rx_buf - allocate aligned receive buffer
1439 * @vptr: velocity
1440 * @idx: ring index
1441 *
1442 * Allocate a new full sized buffer for the reception of a frame and
1443 * map it into PCI space for the hardware to use. The hardware
1444 * requires *64* byte alignment of the buffer which makes life
1445 * less fun than would be ideal.
1446 */
1447
1448static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1449{
1450 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1451 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1452
1453 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1454 if (rd_info->skb == NULL)
1455 return -ENOMEM;
1456
1457 /*
1458 * Do the gymnastics to get the buffer head for data at
1459 * 64byte alignment.
1460 */
689be439 1461 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1da177e4 1462 rd_info->skb->dev = vptr->dev;
689be439 1463 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1464
1465 /*
1466 * Fill in the descriptor to match
1467 */
1468
1469 *((u32 *) & (rd->rdesc0)) = 0;
1470 rd->len = cpu_to_le32(vptr->rx_buf_sz);
1471 rd->inten = 1;
1472 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1473 rd->pa_high = 0;
1474 return 0;
1475}
1476
1477/**
1478 * tx_srv - transmit interrupt service
1479 * @vptr; Velocity
1480 * @status:
1481 *
1482 * Scan the queues looking for transmitted packets that
1483 * we can complete and clean up. Update any statistics as
1484 * neccessary/
1485 */
1486
1487static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1488{
1489 struct tx_desc *td;
1490 int qnum;
1491 int full = 0;
1492 int idx;
1493 int works = 0;
1494 struct velocity_td_info *tdinfo;
1495 struct net_device_stats *stats = &vptr->stats;
1496
1497 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1498 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1499 idx = (idx + 1) % vptr->options.numtx) {
1500
1501 /*
1502 * Get Tx Descriptor
1503 */
1504 td = &(vptr->td_rings[qnum][idx]);
1505 tdinfo = &(vptr->td_infos[qnum][idx]);
1506
1507 if (td->tdesc0.owner == OWNED_BY_NIC)
1508 break;
1509
1510 if ((works++ > 15))
1511 break;
1512
1513 if (td->tdesc0.TSR & TSR0_TERR) {
1514 stats->tx_errors++;
1515 stats->tx_dropped++;
1516 if (td->tdesc0.TSR & TSR0_CDH)
1517 stats->tx_heartbeat_errors++;
1518 if (td->tdesc0.TSR & TSR0_CRS)
1519 stats->tx_carrier_errors++;
1520 if (td->tdesc0.TSR & TSR0_ABT)
1521 stats->tx_aborted_errors++;
1522 if (td->tdesc0.TSR & TSR0_OWC)
1523 stats->tx_window_errors++;
1524 } else {
1525 stats->tx_packets++;
1526 stats->tx_bytes += tdinfo->skb->len;
1527 }
1528 velocity_free_tx_buf(vptr, tdinfo);
1529 vptr->td_used[qnum]--;
1530 }
1531 vptr->td_tail[qnum] = idx;
1532
1533 if (AVAIL_TD(vptr, qnum) < 1) {
1534 full = 1;
1535 }
1536 }
1537 /*
1538 * Look to see if we should kick the transmit network
1539 * layer for more work.
1540 */
1541 if (netif_queue_stopped(vptr->dev) && (full == 0)
1542 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1543 netif_wake_queue(vptr->dev);
1544 }
1545 return works;
1546}
1547
1548/**
1549 * velocity_print_link_status - link status reporting
1550 * @vptr: velocity to report on
1551 *
1552 * Turn the link status of the velocity card into a kernel log
1553 * description of the new link state, detailing speed and duplex
1554 * status
1555 */
1556
1557static void velocity_print_link_status(struct velocity_info *vptr)
1558{
1559
1560 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1561 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1562 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1563 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link autonegation", vptr->dev->name);
1564
1565 if (vptr->mii_status & VELOCITY_SPEED_1000)
1566 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1567 else if (vptr->mii_status & VELOCITY_SPEED_100)
1568 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1569 else
1570 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1571
1572 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1573 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1574 else
1575 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1576 } else {
1577 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1578 switch (vptr->options.spd_dpx) {
1579 case SPD_DPX_100_HALF:
1580 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1581 break;
1582 case SPD_DPX_100_FULL:
1583 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1584 break;
1585 case SPD_DPX_10_HALF:
1586 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1587 break;
1588 case SPD_DPX_10_FULL:
1589 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1590 break;
1591 default:
1592 break;
1593 }
1594 }
1595}
1596
1597/**
1598 * velocity_error - handle error from controller
1599 * @vptr: velocity
1600 * @status: card status
1601 *
1602 * Process an error report from the hardware and attempt to recover
1603 * the card itself. At the moment we cannot recover from some
1604 * theoretically impossible errors but this could be fixed using
1605 * the pci_device_failed logic to bounce the hardware
1606 *
1607 */
1608
1609static void velocity_error(struct velocity_info *vptr, int status)
1610{
1611
1612 if (status & ISR_TXSTLI) {
1613 struct mac_regs __iomem * regs = vptr->mac_regs;
1614
1615 printk(KERN_ERR "TD structure errror TDindex=%hx\n", readw(&regs->TDIdx[0]));
1616 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1617 writew(TRDCSR_RUN, &regs->TDCSRClr);
1618 netif_stop_queue(vptr->dev);
1619
1620 /* FIXME: port over the pci_device_failed code and use it
1621 here */
1622 }
1623
1624 if (status & ISR_SRCI) {
1625 struct mac_regs __iomem * regs = vptr->mac_regs;
1626 int linked;
1627
1628 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1629 vptr->mii_status = check_connection_type(regs);
1630
1631 /*
1632 * If it is a 3119, disable frame bursting in
1633 * halfduplex mode and enable it in fullduplex
1634 * mode
1635 */
1636 if (vptr->rev_id < REV_ID_VT3216_A0) {
1637 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1638 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1639 else
1640 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1641 }
1642 /*
1643 * Only enable CD heart beat counter in 10HD mode
1644 */
1645 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1646 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1647 } else {
1648 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1649 }
1650 }
1651 /*
1652 * Get link status from PHYSR0
1653 */
1654 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1655
1656 if (linked) {
1657 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
8a22dddb 1658 netif_carrier_on(vptr->dev);
1da177e4
LT
1659 } else {
1660 vptr->mii_status |= VELOCITY_LINK_FAIL;
8a22dddb 1661 netif_carrier_off(vptr->dev);
1da177e4
LT
1662 }
1663
1664 velocity_print_link_status(vptr);
1665 enable_flow_control_ability(vptr);
1666
1667 /*
1668 * Re-enable auto-polling because SRCI will disable
1669 * auto-polling
1670 */
1671
1672 enable_mii_autopoll(regs);
1673
1674 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1675 netif_stop_queue(vptr->dev);
1676 else
1677 netif_wake_queue(vptr->dev);
1678
1679 };
1680 if (status & ISR_MIBFI)
1681 velocity_update_hw_mibs(vptr);
1682 if (status & ISR_LSTEI)
1683 mac_rx_queue_wake(vptr->mac_regs);
1684}
1685
1686/**
1687 * velocity_free_tx_buf - free transmit buffer
1688 * @vptr: velocity
1689 * @tdinfo: buffer
1690 *
1691 * Release an transmit buffer. If the buffer was preallocated then
1692 * recycle it, if not then unmap the buffer.
1693 */
1694
1695static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1696{
1697 struct sk_buff *skb = tdinfo->skb;
1698 int i;
1699
1700 /*
1701 * Don't unmap the pre-allocated tx_bufs
1702 */
1703 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1704
1705 for (i = 0; i < tdinfo->nskb_dma; i++) {
1706#ifdef VELOCITY_ZERO_COPY_SUPPORT
1707 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
1708#else
1709 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1710#endif
1711 tdinfo->skb_dma[i] = 0;
1712 }
1713 }
1714 dev_kfree_skb_irq(skb);
1715 tdinfo->skb = NULL;
1716}
1717
1718/**
1719 * velocity_open - interface activation callback
1720 * @dev: network layer device to open
1721 *
1722 * Called when the network layer brings the interface up. Returns
1723 * a negative posix error code on failure, or zero on success.
1724 *
1725 * All the ring allocation and set up is done on open for this
1726 * adapter to minimise memory usage when inactive
1727 */
1728
1729static int velocity_open(struct net_device *dev)
1730{
1731 struct velocity_info *vptr = dev->priv;
1732 int ret;
1733
1734 vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
1735
1736 ret = velocity_init_rings(vptr);
1737 if (ret < 0)
1738 goto out;
1739
1740 ret = velocity_init_rd_ring(vptr);
1741 if (ret < 0)
1742 goto err_free_desc_rings;
1743
1744 ret = velocity_init_td_ring(vptr);
1745 if (ret < 0)
1746 goto err_free_rd_ring;
1747
1748 /* Ensure chip is running */
1749 pci_set_power_state(vptr->pdev, PCI_D0);
1750
1751 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1752
1fb9df5d 1753 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1da177e4
LT
1754 dev->name, dev);
1755 if (ret < 0) {
1756 /* Power down the chip */
1757 pci_set_power_state(vptr->pdev, PCI_D3hot);
1758 goto err_free_td_ring;
1759 }
1760
1761 mac_enable_int(vptr->mac_regs);
1762 netif_start_queue(dev);
1763 vptr->flags |= VELOCITY_FLAGS_OPENED;
1764out:
1765 return ret;
1766
1767err_free_td_ring:
1768 velocity_free_td_ring(vptr);
1769err_free_rd_ring:
1770 velocity_free_rd_ring(vptr);
1771err_free_desc_rings:
1772 velocity_free_rings(vptr);
1773 goto out;
1774}
1775
1776/**
1777 * velocity_change_mtu - MTU change callback
1778 * @dev: network device
1779 * @new_mtu: desired MTU
1780 *
1781 * Handle requests from the networking layer for MTU change on
1782 * this interface. It gets called on a change by the network layer.
1783 * Return zero for success or negative posix error code.
1784 */
1785
1786static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1787{
1788 struct velocity_info *vptr = dev->priv;
1789 unsigned long flags;
1790 int oldmtu = dev->mtu;
1791 int ret = 0;
1792
1793 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1794 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1795 vptr->dev->name);
1796 return -EINVAL;
1797 }
1798
1799 if (new_mtu != oldmtu) {
1800 spin_lock_irqsave(&vptr->lock, flags);
1801
1802 netif_stop_queue(dev);
1803 velocity_shutdown(vptr);
1804
1805 velocity_free_td_ring(vptr);
1806 velocity_free_rd_ring(vptr);
1807
1808 dev->mtu = new_mtu;
1809 if (new_mtu > 8192)
1810 vptr->rx_buf_sz = 9 * 1024;
1811 else if (new_mtu > 4096)
1812 vptr->rx_buf_sz = 8192;
1813 else
1814 vptr->rx_buf_sz = 4 * 1024;
1815
1816 ret = velocity_init_rd_ring(vptr);
1817 if (ret < 0)
1818 goto out_unlock;
1819
1820 ret = velocity_init_td_ring(vptr);
1821 if (ret < 0)
1822 goto out_unlock;
1823
1824 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1825
1826 mac_enable_int(vptr->mac_regs);
1827 netif_start_queue(dev);
1828out_unlock:
1829 spin_unlock_irqrestore(&vptr->lock, flags);
1830 }
1831
1832 return ret;
1833}
1834
1835/**
1836 * velocity_shutdown - shut down the chip
1837 * @vptr: velocity to deactivate
1838 *
1839 * Shuts down the internal operations of the velocity and
1840 * disables interrupts, autopolling, transmit and receive
1841 */
1842
1843static void velocity_shutdown(struct velocity_info *vptr)
1844{
1845 struct mac_regs __iomem * regs = vptr->mac_regs;
1846 mac_disable_int(regs);
1847 writel(CR0_STOP, &regs->CR0Set);
1848 writew(0xFFFF, &regs->TDCSRClr);
1849 writeb(0xFF, &regs->RDCSRClr);
1850 safe_disable_mii_autopoll(regs);
1851 mac_clear_isr(regs);
1852}
1853
1854/**
1855 * velocity_close - close adapter callback
1856 * @dev: network device
1857 *
1858 * Callback from the network layer when the velocity is being
1859 * deactivated by the network layer
1860 */
1861
1862static int velocity_close(struct net_device *dev)
1863{
1864 struct velocity_info *vptr = dev->priv;
1865
1866 netif_stop_queue(dev);
1867 velocity_shutdown(vptr);
1868
1869 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
1870 velocity_get_ip(vptr);
1871 if (dev->irq != 0)
1872 free_irq(dev->irq, dev);
1873
1874 /* Power down the chip */
1875 pci_set_power_state(vptr->pdev, PCI_D3hot);
1876
1877 /* Free the resources */
1878 velocity_free_td_ring(vptr);
1879 velocity_free_rd_ring(vptr);
1880 velocity_free_rings(vptr);
1881
1882 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
1883 return 0;
1884}
1885
1886/**
1887 * velocity_xmit - transmit packet callback
1888 * @skb: buffer to transmit
1889 * @dev: network device
1890 *
1891 * Called by the networ layer to request a packet is queued to
1892 * the velocity. Returns zero on success.
1893 */
1894
1895static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
1896{
1897 struct velocity_info *vptr = dev->priv;
1898 int qnum = 0;
1899 struct tx_desc *td_ptr;
1900 struct velocity_td_info *tdinfo;
1901 unsigned long flags;
1902 int index;
1903
1904 int pktlen = skb->len;
1905
364c6bad
HX
1906#ifdef VELOCITY_ZERO_COPY_SUPPORT
1907 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
1908 kfree_skb(skb);
1909 return 0;
1910 }
1911#endif
1912
1da177e4
LT
1913 spin_lock_irqsave(&vptr->lock, flags);
1914
1915 index = vptr->td_curr[qnum];
1916 td_ptr = &(vptr->td_rings[qnum][index]);
1917 tdinfo = &(vptr->td_infos[qnum][index]);
1918
1919 td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
1920 td_ptr->tdesc1.TCR = TCR0_TIC;
1921 td_ptr->td_buf[0].queue = 0;
1922
1923 /*
1924 * Pad short frames.
1925 */
1926 if (pktlen < ETH_ZLEN) {
1927 /* Cannot occur until ZC support */
1da177e4
LT
1928 pktlen = ETH_ZLEN;
1929 memcpy(tdinfo->buf, skb->data, skb->len);
1930 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
1931 tdinfo->skb = skb;
1932 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1933 td_ptr->tdesc0.pktsize = pktlen;
1934 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1935 td_ptr->td_buf[0].pa_high = 0;
1936 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1937 tdinfo->nskb_dma = 1;
1938 td_ptr->tdesc1.CMDZ = 2;
1939 } else
1940#ifdef VELOCITY_ZERO_COPY_SUPPORT
1941 if (skb_shinfo(skb)->nr_frags > 0) {
1942 int nfrags = skb_shinfo(skb)->nr_frags;
1943 tdinfo->skb = skb;
1944 if (nfrags > 6) {
1da177e4
LT
1945 memcpy(tdinfo->buf, skb->data, skb->len);
1946 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1947 td_ptr->tdesc0.pktsize =
1948 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1949 td_ptr->td_buf[0].pa_high = 0;
1950 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1951 tdinfo->nskb_dma = 1;
1952 td_ptr->tdesc1.CMDZ = 2;
1953 } else {
1954 int i = 0;
1955 tdinfo->nskb_dma = 0;
1956 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
1957
1958 td_ptr->tdesc0.pktsize = pktlen;
1959
1960 /* FIXME: support 48bit DMA later */
1961 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
1962 td_ptr->td_buf[i].pa_high = 0;
1963 td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
1964
1965 for (i = 0; i < nfrags; i++) {
1966 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1967 void *addr = ((void *) page_address(frag->page + frag->page_offset));
1968
1969 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
1970
1971 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
1972 td_ptr->td_buf[i + 1].pa_high = 0;
1973 td_ptr->td_buf[i + 1].bufsize = frag->size;
1974 }
1975 tdinfo->nskb_dma = i - 1;
1976 td_ptr->tdesc1.CMDZ = i;
1977 }
1978
1979 } else
1980#endif
1981 {
1982 /*
1983 * Map the linear network buffer into PCI space and
1984 * add it to the transmit ring.
1985 */
1986 tdinfo->skb = skb;
1987 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
1988 td_ptr->tdesc0.pktsize = pktlen;
1989 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1990 td_ptr->td_buf[0].pa_high = 0;
1991 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1992 tdinfo->nskb_dma = 1;
1993 td_ptr->tdesc1.CMDZ = 2;
1994 }
1995
1996 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
1997 td_ptr->tdesc1.pqinf.VID = (vptr->options.vid & 0xfff);
1998 td_ptr->tdesc1.pqinf.priority = 0;
1999 td_ptr->tdesc1.pqinf.CFI = 0;
2000 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2001 }
2002
2003 /*
2004 * Handle hardware checksum
2005 */
2006 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2007 && (skb->ip_summed == CHECKSUM_HW)) {
2008 struct iphdr *ip = skb->nh.iph;
2009 if (ip->protocol == IPPROTO_TCP)
2010 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2011 else if (ip->protocol == IPPROTO_UDP)
2012 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2013 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2014 }
2015 {
2016
2017 int prev = index - 1;
2018
2019 if (prev < 0)
2020 prev = vptr->options.numtx - 1;
2021 td_ptr->tdesc0.owner = OWNED_BY_NIC;
2022 vptr->td_used[qnum]++;
2023 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2024
2025 if (AVAIL_TD(vptr, qnum) < 1)
2026 netif_stop_queue(dev);
2027
2028 td_ptr = &(vptr->td_rings[qnum][prev]);
2029 td_ptr->td_buf[0].queue = 1;
2030 mac_tx_queue_wake(vptr->mac_regs, qnum);
2031 }
2032 dev->trans_start = jiffies;
2033 spin_unlock_irqrestore(&vptr->lock, flags);
2034 return 0;
2035}
2036
2037/**
2038 * velocity_intr - interrupt callback
2039 * @irq: interrupt number
2040 * @dev_instance: interrupting device
2041 * @pt_regs: CPU register state at interrupt
2042 *
2043 * Called whenever an interrupt is generated by the velocity
2044 * adapter IRQ line. We may not be the source of the interrupt
2045 * and need to identify initially if we are, and if not exit as
2046 * efficiently as possible.
2047 */
2048
2049static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs)
2050{
2051 struct net_device *dev = dev_instance;
2052 struct velocity_info *vptr = dev->priv;
2053 u32 isr_status;
2054 int max_count = 0;
2055
2056
2057 spin_lock(&vptr->lock);
2058 isr_status = mac_read_isr(vptr->mac_regs);
2059
2060 /* Not us ? */
2061 if (isr_status == 0) {
2062 spin_unlock(&vptr->lock);
2063 return IRQ_NONE;
2064 }
2065
2066 mac_disable_int(vptr->mac_regs);
2067
2068 /*
2069 * Keep processing the ISR until we have completed
2070 * processing and the isr_status becomes zero
2071 */
2072
2073 while (isr_status != 0) {
2074 mac_write_isr(vptr->mac_regs, isr_status);
2075 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2076 velocity_error(vptr, isr_status);
2077 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2078 max_count += velocity_rx_srv(vptr, isr_status);
2079 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2080 max_count += velocity_tx_srv(vptr, isr_status);
2081 isr_status = mac_read_isr(vptr->mac_regs);
2082 if (max_count > vptr->options.int_works)
2083 {
2084 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2085 dev->name);
2086 max_count = 0;
2087 }
2088 }
2089 spin_unlock(&vptr->lock);
2090 mac_enable_int(vptr->mac_regs);
2091 return IRQ_HANDLED;
2092
2093}
2094
2095
2096/**
2097 * velocity_set_multi - filter list change callback
2098 * @dev: network device
2099 *
2100 * Called by the network layer when the filter lists need to change
2101 * for a velocity adapter. Reload the CAMs with the new address
2102 * filter ruleset.
2103 */
2104
2105static void velocity_set_multi(struct net_device *dev)
2106{
2107 struct velocity_info *vptr = dev->priv;
2108 struct mac_regs __iomem * regs = vptr->mac_regs;
2109 u8 rx_mode;
2110 int i;
2111 struct dev_mc_list *mclist;
2112
2113 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2114 /* Unconditionally log net taps. */
2115 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2116 writel(0xffffffff, &regs->MARCAM[0]);
2117 writel(0xffffffff, &regs->MARCAM[4]);
2118 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2119 } else if ((dev->mc_count > vptr->multicast_limit)
2120 || (dev->flags & IFF_ALLMULTI)) {
2121 writel(0xffffffff, &regs->MARCAM[0]);
2122 writel(0xffffffff, &regs->MARCAM[4]);
2123 rx_mode = (RCR_AM | RCR_AB);
2124 } else {
2125 int offset = MCAM_SIZE - vptr->multicast_limit;
2126 mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2127
2128 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2129 mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
2130 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2131 }
2132
2133 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2134 rx_mode = (RCR_AM | RCR_AB);
2135 }
2136 if (dev->mtu > 1500)
2137 rx_mode |= RCR_AL;
2138
2139 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2140
2141}
2142
2143/**
2144 * velocity_get_status - statistics callback
2145 * @dev: network device
2146 *
2147 * Callback from the network layer to allow driver statistics
2148 * to be resynchronized with hardware collected state. In the
2149 * case of the velocity we need to pull the MIB counters from
2150 * the hardware into the counters before letting the network
2151 * layer display them.
2152 */
2153
2154static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2155{
2156 struct velocity_info *vptr = dev->priv;
2157
2158 /* If the hardware is down, don't touch MII */
2159 if(!netif_running(dev))
2160 return &vptr->stats;
2161
2162 spin_lock_irq(&vptr->lock);
2163 velocity_update_hw_mibs(vptr);
2164 spin_unlock_irq(&vptr->lock);
2165
2166 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2167 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2168 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2169
2170// unsigned long rx_dropped; /* no space in linux buffers */
2171 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2172 /* detailed rx_errors: */
2173// unsigned long rx_length_errors;
2174// unsigned long rx_over_errors; /* receiver ring buff overflow */
2175 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2176// unsigned long rx_frame_errors; /* recv'd frame alignment error */
2177// unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2178// unsigned long rx_missed_errors; /* receiver missed packet */
2179
2180 /* detailed tx_errors */
2181// unsigned long tx_fifo_errors;
2182
2183 return &vptr->stats;
2184}
2185
2186
2187/**
2188 * velocity_ioctl - ioctl entry point
2189 * @dev: network device
2190 * @rq: interface request ioctl
2191 * @cmd: command code
2192 *
2193 * Called when the user issues an ioctl request to the network
2194 * device in question. The velocity interface supports MII.
2195 */
2196
2197static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2198{
2199 struct velocity_info *vptr = dev->priv;
2200 int ret;
2201
2202 /* If we are asked for information and the device is power
2203 saving then we need to bring the device back up to talk to it */
2204
2205 if (!netif_running(dev))
2206 pci_set_power_state(vptr->pdev, PCI_D0);
2207
2208 switch (cmd) {
2209 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2210 case SIOCGMIIREG: /* Read MII PHY register. */
2211 case SIOCSMIIREG: /* Write to MII PHY register. */
2212 ret = velocity_mii_ioctl(dev, rq, cmd);
2213 break;
2214
2215 default:
2216 ret = -EOPNOTSUPP;
2217 }
2218 if (!netif_running(dev))
2219 pci_set_power_state(vptr->pdev, PCI_D3hot);
2220
2221
2222 return ret;
2223}
2224
2225/*
2226 * Definition for our device driver. The PCI layer interface
2227 * uses this to handle all our card discover and plugging
2228 */
2229
2230static struct pci_driver velocity_driver = {
2231 .name = VELOCITY_NAME,
2232 .id_table = velocity_id_table,
2233 .probe = velocity_found1,
2234 .remove = __devexit_p(velocity_remove1),
2235#ifdef CONFIG_PM
2236 .suspend = velocity_suspend,
2237 .resume = velocity_resume,
2238#endif
2239};
2240
2241/**
2242 * velocity_init_module - load time function
2243 *
2244 * Called when the velocity module is loaded. The PCI driver
2245 * is registered with the PCI layer, and in turn will call
2246 * the probe functions for each velocity adapter installed
2247 * in the system.
2248 */
2249
2250static int __init velocity_init_module(void)
2251{
2252 int ret;
2253
2254 velocity_register_notifier();
2255 ret = pci_module_init(&velocity_driver);
2256 if (ret < 0)
2257 velocity_unregister_notifier();
2258 return ret;
2259}
2260
2261/**
2262 * velocity_cleanup - module unload
2263 *
2264 * When the velocity hardware is unloaded this function is called.
2265 * It will clean up the notifiers and the unregister the PCI
2266 * driver interface for this hardware. This in turn cleans up
2267 * all discovered interfaces before returning from the function
2268 */
2269
2270static void __exit velocity_cleanup_module(void)
2271{
2272 velocity_unregister_notifier();
2273 pci_unregister_driver(&velocity_driver);
2274}
2275
2276module_init(velocity_init_module);
2277module_exit(velocity_cleanup_module);
2278
2279
2280/*
2281 * MII access , media link mode setting functions
2282 */
2283
2284
2285/**
2286 * mii_init - set up MII
2287 * @vptr: velocity adapter
2288 * @mii_status: links tatus
2289 *
2290 * Set up the PHY for the current link state.
2291 */
2292
2293static void mii_init(struct velocity_info *vptr, u32 mii_status)
2294{
2295 u16 BMCR;
2296
2297 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2298 case PHYID_CICADA_CS8201:
2299 /*
2300 * Reset to hardware default
2301 */
2302 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2303 /*
2304 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2305 * off it in NWay-forced half mode for NWay-forced v.s.
2306 * legacy-forced issue.
2307 */
2308 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2309 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2310 else
2311 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2312 /*
2313 * Turn on Link/Activity LED enable bit for CIS8201
2314 */
2315 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2316 break;
2317 case PHYID_VT3216_32BIT:
2318 case PHYID_VT3216_64BIT:
2319 /*
2320 * Reset to hardware default
2321 */
2322 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2323 /*
2324 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2325 * off it in NWay-forced half mode for NWay-forced v.s.
2326 * legacy-forced issue
2327 */
2328 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2329 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2330 else
2331 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2332 break;
2333
2334 case PHYID_MARVELL_1000:
2335 case PHYID_MARVELL_1000S:
2336 /*
2337 * Assert CRS on Transmit
2338 */
2339 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2340 /*
2341 * Reset to hardware default
2342 */
2343 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2344 break;
2345 default:
2346 ;
2347 }
2348 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2349 if (BMCR & BMCR_ISO) {
2350 BMCR &= ~BMCR_ISO;
2351 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2352 }
2353}
2354
2355/**
2356 * safe_disable_mii_autopoll - autopoll off
2357 * @regs: velocity registers
2358 *
2359 * Turn off the autopoll and wait for it to disable on the chip
2360 */
2361
2362static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2363{
2364 u16 ww;
2365
2366 /* turn off MAUTO */
2367 writeb(0, &regs->MIICR);
2368 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2369 udelay(1);
2370 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2371 break;
2372 }
2373}
2374
2375/**
2376 * enable_mii_autopoll - turn on autopolling
2377 * @regs: velocity registers
2378 *
2379 * Enable the MII link status autopoll feature on the Velocity
2380 * hardware. Wait for it to enable.
2381 */
2382
2383static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2384{
2385 int ii;
2386
2387 writeb(0, &(regs->MIICR));
2388 writeb(MIIADR_SWMPL, &regs->MIIADR);
2389
2390 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2391 udelay(1);
2392 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2393 break;
2394 }
2395
2396 writeb(MIICR_MAUTO, &regs->MIICR);
2397
2398 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2399 udelay(1);
2400 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2401 break;
2402 }
2403
2404}
2405
2406/**
2407 * velocity_mii_read - read MII data
2408 * @regs: velocity registers
2409 * @index: MII register index
2410 * @data: buffer for received data
2411 *
2412 * Perform a single read of an MII 16bit register. Returns zero
2413 * on success or -ETIMEDOUT if the PHY did not respond.
2414 */
2415
2416static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2417{
2418 u16 ww;
2419
2420 /*
2421 * Disable MIICR_MAUTO, so that mii addr can be set normally
2422 */
2423 safe_disable_mii_autopoll(regs);
2424
2425 writeb(index, &regs->MIIADR);
2426
2427 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2428
2429 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2430 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2431 break;
2432 }
2433
2434 *data = readw(&regs->MIIDATA);
2435
2436 enable_mii_autopoll(regs);
2437 if (ww == W_MAX_TIMEOUT)
2438 return -ETIMEDOUT;
2439 return 0;
2440}
2441
2442/**
2443 * velocity_mii_write - write MII data
2444 * @regs: velocity registers
2445 * @index: MII register index
2446 * @data: 16bit data for the MII register
2447 *
2448 * Perform a single write to an MII 16bit register. Returns zero
2449 * on success or -ETIMEDOUT if the PHY did not respond.
2450 */
2451
2452static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2453{
2454 u16 ww;
2455
2456 /*
2457 * Disable MIICR_MAUTO, so that mii addr can be set normally
2458 */
2459 safe_disable_mii_autopoll(regs);
2460
2461 /* MII reg offset */
2462 writeb(mii_addr, &regs->MIIADR);
2463 /* set MII data */
2464 writew(data, &regs->MIIDATA);
2465
2466 /* turn on MIICR_WCMD */
2467 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2468
2469 /* W_MAX_TIMEOUT is the timeout period */
2470 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2471 udelay(5);
2472 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2473 break;
2474 }
2475 enable_mii_autopoll(regs);
2476
2477 if (ww == W_MAX_TIMEOUT)
2478 return -ETIMEDOUT;
2479 return 0;
2480}
2481
2482/**
2483 * velocity_get_opt_media_mode - get media selection
2484 * @vptr: velocity adapter
2485 *
2486 * Get the media mode stored in EEPROM or module options and load
2487 * mii_status accordingly. The requested link state information
2488 * is also returned.
2489 */
2490
2491static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2492{
2493 u32 status = 0;
2494
2495 switch (vptr->options.spd_dpx) {
2496 case SPD_DPX_AUTO:
2497 status = VELOCITY_AUTONEG_ENABLE;
2498 break;
2499 case SPD_DPX_100_FULL:
2500 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2501 break;
2502 case SPD_DPX_10_FULL:
2503 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2504 break;
2505 case SPD_DPX_100_HALF:
2506 status = VELOCITY_SPEED_100;
2507 break;
2508 case SPD_DPX_10_HALF:
2509 status = VELOCITY_SPEED_10;
2510 break;
2511 }
2512 vptr->mii_status = status;
2513 return status;
2514}
2515
2516/**
2517 * mii_set_auto_on - autonegotiate on
2518 * @vptr: velocity
2519 *
2520 * Enable autonegotation on this interface
2521 */
2522
2523static void mii_set_auto_on(struct velocity_info *vptr)
2524{
2525 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2526 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2527 else
2528 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2529}
2530
2531
2532/*
2533static void mii_set_auto_off(struct velocity_info * vptr)
2534{
2535 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2536}
2537*/
2538
2539/**
2540 * set_mii_flow_control - flow control setup
2541 * @vptr: velocity interface
2542 *
2543 * Set up the flow control on this interface according to
2544 * the supplied user/eeprom options.
2545 */
2546
2547static void set_mii_flow_control(struct velocity_info *vptr)
2548{
2549 /*Enable or Disable PAUSE in ANAR */
2550 switch (vptr->options.flow_cntl) {
2551 case FLOW_CNTL_TX:
2552 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2553 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2554 break;
2555
2556 case FLOW_CNTL_RX:
2557 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2558 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2559 break;
2560
2561 case FLOW_CNTL_TX_RX:
2562 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2563 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2564 break;
2565
2566 case FLOW_CNTL_DISABLE:
2567 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2568 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2569 break;
2570 default:
2571 break;
2572 }
2573}
2574
2575/**
2576 * velocity_set_media_mode - set media mode
2577 * @mii_status: old MII link state
2578 *
2579 * Check the media link state and configure the flow control
2580 * PHY and also velocity hardware setup accordingly. In particular
2581 * we need to set up CD polling and frame bursting.
2582 */
2583
2584static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2585{
2586 u32 curr_status;
2587 struct mac_regs __iomem * regs = vptr->mac_regs;
2588
2589 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2590 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2591
2592 /* Set mii link status */
2593 set_mii_flow_control(vptr);
2594
2595 /*
2596 Check if new status is consisent with current status
2597 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2598 || (mii_status==curr_status)) {
2599 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2600 vptr->mii_status=check_connection_type(vptr->mac_regs);
2601 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2602 return 0;
2603 }
2604 */
2605
2606 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2607 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2608 }
2609
2610 /*
2611 * If connection type is AUTO
2612 */
2613 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2614 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2615 /* clear force MAC mode bit */
2616 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2617 /* set duplex mode of MAC according to duplex mode of MII */
2618 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2619 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2620 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2621
2622 /* enable AUTO-NEGO mode */
2623 mii_set_auto_on(vptr);
2624 } else {
2625 u16 ANAR;
2626 u8 CHIPGCR;
2627
2628 /*
2629 * 1. if it's 3119, disable frame bursting in halfduplex mode
2630 * and enable it in fullduplex mode
2631 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2632 * 3. only enable CD heart beat counter in 10HD mode
2633 */
2634
2635 /* set force MAC mode bit */
2636 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2637
2638 CHIPGCR = readb(&regs->CHIPGCR);
2639 CHIPGCR &= ~CHIPGCR_FCGMII;
2640
2641 if (mii_status & VELOCITY_DUPLEX_FULL) {
2642 CHIPGCR |= CHIPGCR_FCFDX;
2643 writeb(CHIPGCR, &regs->CHIPGCR);
2644 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2645 if (vptr->rev_id < REV_ID_VT3216_A0)
2646 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2647 } else {
2648 CHIPGCR &= ~CHIPGCR_FCFDX;
2649 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2650 writeb(CHIPGCR, &regs->CHIPGCR);
2651 if (vptr->rev_id < REV_ID_VT3216_A0)
2652 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2653 }
2654
2655 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2656
2657 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2658 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2659 } else {
2660 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2661 }
2662 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2663 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2664 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2665 if (mii_status & VELOCITY_SPEED_100) {
2666 if (mii_status & VELOCITY_DUPLEX_FULL)
2667 ANAR |= ANAR_TXFD;
2668 else
2669 ANAR |= ANAR_TX;
2670 } else {
2671 if (mii_status & VELOCITY_DUPLEX_FULL)
2672 ANAR |= ANAR_10FD;
2673 else
2674 ANAR |= ANAR_10;
2675 }
2676 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2677 /* enable AUTO-NEGO mode */
2678 mii_set_auto_on(vptr);
2679 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2680 }
2681 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2682 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2683 return VELOCITY_LINK_CHANGE;
2684}
2685
2686/**
2687 * mii_check_media_mode - check media state
2688 * @regs: velocity registers
2689 *
2690 * Check the current MII status and determine the link status
2691 * accordingly
2692 */
2693
2694static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2695{
2696 u32 status = 0;
2697 u16 ANAR;
2698
2699 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2700 status |= VELOCITY_LINK_FAIL;
2701
2702 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2703 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2704 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2705 status |= (VELOCITY_SPEED_1000);
2706 else {
2707 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2708 if (ANAR & ANAR_TXFD)
2709 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2710 else if (ANAR & ANAR_TX)
2711 status |= VELOCITY_SPEED_100;
2712 else if (ANAR & ANAR_10FD)
2713 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2714 else
2715 status |= (VELOCITY_SPEED_10);
2716 }
2717
2718 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2719 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2720 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2721 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2722 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2723 status |= VELOCITY_AUTONEG_ENABLE;
2724 }
2725 }
2726
2727 return status;
2728}
2729
2730static u32 check_connection_type(struct mac_regs __iomem * regs)
2731{
2732 u32 status = 0;
2733 u8 PHYSR0;
2734 u16 ANAR;
2735 PHYSR0 = readb(&regs->PHYSR0);
2736
2737 /*
2738 if (!(PHYSR0 & PHYSR0_LINKGD))
2739 status|=VELOCITY_LINK_FAIL;
2740 */
2741
2742 if (PHYSR0 & PHYSR0_FDPX)
2743 status |= VELOCITY_DUPLEX_FULL;
2744
2745 if (PHYSR0 & PHYSR0_SPDG)
2746 status |= VELOCITY_SPEED_1000;
2747 if (PHYSR0 & PHYSR0_SPD10)
2748 status |= VELOCITY_SPEED_10;
2749 else
2750 status |= VELOCITY_SPEED_100;
2751
2752 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2753 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2754 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2755 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2756 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2757 status |= VELOCITY_AUTONEG_ENABLE;
2758 }
2759 }
2760
2761 return status;
2762}
2763
2764/**
2765 * enable_flow_control_ability - flow control
2766 * @vptr: veloity to configure
2767 *
2768 * Set up flow control according to the flow control options
2769 * determined by the eeprom/configuration.
2770 */
2771
2772static void enable_flow_control_ability(struct velocity_info *vptr)
2773{
2774
2775 struct mac_regs __iomem * regs = vptr->mac_regs;
2776
2777 switch (vptr->options.flow_cntl) {
2778
2779 case FLOW_CNTL_DEFAULT:
2780 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2781 writel(CR0_FDXRFCEN, &regs->CR0Set);
2782 else
2783 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2784
2785 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2786 writel(CR0_FDXTFCEN, &regs->CR0Set);
2787 else
2788 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2789 break;
2790
2791 case FLOW_CNTL_TX:
2792 writel(CR0_FDXTFCEN, &regs->CR0Set);
2793 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2794 break;
2795
2796 case FLOW_CNTL_RX:
2797 writel(CR0_FDXRFCEN, &regs->CR0Set);
2798 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2799 break;
2800
2801 case FLOW_CNTL_TX_RX:
2802 writel(CR0_FDXTFCEN, &regs->CR0Set);
2803 writel(CR0_FDXRFCEN, &regs->CR0Set);
2804 break;
2805
2806 case FLOW_CNTL_DISABLE:
2807 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2808 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2809 break;
2810
2811 default:
2812 break;
2813 }
2814
2815}
2816
2817
2818/**
2819 * velocity_ethtool_up - pre hook for ethtool
2820 * @dev: network device
2821 *
2822 * Called before an ethtool operation. We need to make sure the
2823 * chip is out of D3 state before we poke at it.
2824 */
2825
2826static int velocity_ethtool_up(struct net_device *dev)
2827{
2828 struct velocity_info *vptr = dev->priv;
2829 if (!netif_running(dev))
2830 pci_set_power_state(vptr->pdev, PCI_D0);
2831 return 0;
2832}
2833
2834/**
2835 * velocity_ethtool_down - post hook for ethtool
2836 * @dev: network device
2837 *
2838 * Called after an ethtool operation. Restore the chip back to D3
2839 * state if it isn't running.
2840 */
2841
2842static void velocity_ethtool_down(struct net_device *dev)
2843{
2844 struct velocity_info *vptr = dev->priv;
2845 if (!netif_running(dev))
2846 pci_set_power_state(vptr->pdev, PCI_D3hot);
2847}
2848
2849static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2850{
2851 struct velocity_info *vptr = dev->priv;
2852 struct mac_regs __iomem * regs = vptr->mac_regs;
2853 u32 status;
2854 status = check_connection_type(vptr->mac_regs);
2855
2856 cmd->supported = SUPPORTED_TP | SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full;
2857 if (status & VELOCITY_SPEED_100)
2858 cmd->speed = SPEED_100;
2859 else
2860 cmd->speed = SPEED_10;
2861 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2862 cmd->port = PORT_TP;
2863 cmd->transceiver = XCVR_INTERNAL;
2864 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2865
2866 if (status & VELOCITY_DUPLEX_FULL)
2867 cmd->duplex = DUPLEX_FULL;
2868 else
2869 cmd->duplex = DUPLEX_HALF;
2870
2871 return 0;
2872}
2873
2874static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2875{
2876 struct velocity_info *vptr = dev->priv;
2877 u32 curr_status;
2878 u32 new_status = 0;
2879 int ret = 0;
2880
2881 curr_status = check_connection_type(vptr->mac_regs);
2882 curr_status &= (~VELOCITY_LINK_FAIL);
2883
2884 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
2885 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
2886 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
2887 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
2888
2889 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
2890 ret = -EINVAL;
2891 else
2892 velocity_set_media_mode(vptr, new_status);
2893
2894 return ret;
2895}
2896
2897static u32 velocity_get_link(struct net_device *dev)
2898{
2899 struct velocity_info *vptr = dev->priv;
2900 struct mac_regs __iomem * regs = vptr->mac_regs;
2901 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 0 : 1;
2902}
2903
2904static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2905{
2906 struct velocity_info *vptr = dev->priv;
2907 strcpy(info->driver, VELOCITY_NAME);
2908 strcpy(info->version, VELOCITY_VERSION);
2909 strcpy(info->bus_info, pci_name(vptr->pdev));
2910}
2911
2912static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2913{
2914 struct velocity_info *vptr = dev->priv;
2915 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
2916 wol->wolopts |= WAKE_MAGIC;
2917 /*
2918 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2919 wol.wolopts|=WAKE_PHY;
2920 */
2921 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2922 wol->wolopts |= WAKE_UCAST;
2923 if (vptr->wol_opts & VELOCITY_WOL_ARP)
2924 wol->wolopts |= WAKE_ARP;
2925 memcpy(&wol->sopass, vptr->wol_passwd, 6);
2926}
2927
2928static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2929{
2930 struct velocity_info *vptr = dev->priv;
2931
2932 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
2933 return -EFAULT;
2934 vptr->wol_opts = VELOCITY_WOL_MAGIC;
2935
2936 /*
2937 if (wol.wolopts & WAKE_PHY) {
2938 vptr->wol_opts|=VELOCITY_WOL_PHY;
2939 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
2940 }
2941 */
2942
2943 if (wol->wolopts & WAKE_MAGIC) {
2944 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
2945 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2946 }
2947 if (wol->wolopts & WAKE_UCAST) {
2948 vptr->wol_opts |= VELOCITY_WOL_UCAST;
2949 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2950 }
2951 if (wol->wolopts & WAKE_ARP) {
2952 vptr->wol_opts |= VELOCITY_WOL_ARP;
2953 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2954 }
2955 memcpy(vptr->wol_passwd, wol->sopass, 6);
2956 return 0;
2957}
2958
2959static u32 velocity_get_msglevel(struct net_device *dev)
2960{
2961 return msglevel;
2962}
2963
2964static void velocity_set_msglevel(struct net_device *dev, u32 value)
2965{
2966 msglevel = value;
2967}
2968
2969static struct ethtool_ops velocity_ethtool_ops = {
2970 .get_settings = velocity_get_settings,
2971 .set_settings = velocity_set_settings,
2972 .get_drvinfo = velocity_get_drvinfo,
2973 .get_wol = velocity_ethtool_get_wol,
2974 .set_wol = velocity_ethtool_set_wol,
2975 .get_msglevel = velocity_get_msglevel,
2976 .set_msglevel = velocity_set_msglevel,
2977 .get_link = velocity_get_link,
2978 .begin = velocity_ethtool_up,
2979 .complete = velocity_ethtool_down
2980};
2981
2982/**
2983 * velocity_mii_ioctl - MII ioctl handler
2984 * @dev: network device
2985 * @ifr: the ifreq block for the ioctl
2986 * @cmd: the command
2987 *
2988 * Process MII requests made via ioctl from the network layer. These
2989 * are used by tools like kudzu to interrogate the link state of the
2990 * hardware
2991 */
2992
2993static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2994{
2995 struct velocity_info *vptr = dev->priv;
2996 struct mac_regs __iomem * regs = vptr->mac_regs;
2997 unsigned long flags;
2998 struct mii_ioctl_data *miidata = if_mii(ifr);
2999 int err;
3000
3001 switch (cmd) {
3002 case SIOCGMIIPHY:
3003 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3004 break;
3005 case SIOCGMIIREG:
3006 if (!capable(CAP_NET_ADMIN))
3007 return -EPERM;
3008 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3009 return -ETIMEDOUT;
3010 break;
3011 case SIOCSMIIREG:
3012 if (!capable(CAP_NET_ADMIN))
3013 return -EPERM;
3014 spin_lock_irqsave(&vptr->lock, flags);
3015 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3016 spin_unlock_irqrestore(&vptr->lock, flags);
3017 check_connection_type(vptr->mac_regs);
3018 if(err)
3019 return err;
3020 break;
3021 default:
3022 return -EOPNOTSUPP;
3023 }
3024 return 0;
3025}
3026
3027#ifdef CONFIG_PM
3028
3029/**
3030 * velocity_save_context - save registers
3031 * @vptr: velocity
3032 * @context: buffer for stored context
3033 *
3034 * Retrieve the current configuration from the velocity hardware
3035 * and stash it in the context structure, for use by the context
3036 * restore functions. This allows us to save things we need across
3037 * power down states
3038 */
3039
3040static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3041{
3042 struct mac_regs __iomem * regs = vptr->mac_regs;
3043 u16 i;
3044 u8 __iomem *ptr = (u8 __iomem *)regs;
3045
3046 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3047 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3048
3049 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3050 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3051
3052 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3053 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3054
3055}
3056
3057/**
3058 * velocity_restore_context - restore registers
3059 * @vptr: velocity
3060 * @context: buffer for stored context
3061 *
3062 * Reload the register configuration from the velocity context
3063 * created by velocity_save_context.
3064 */
3065
3066static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3067{
3068 struct mac_regs __iomem * regs = vptr->mac_regs;
3069 int i;
3070 u8 __iomem *ptr = (u8 __iomem *)regs;
3071
3072 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3073 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3074 }
3075
3076 /* Just skip cr0 */
3077 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3078 /* Clear */
3079 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3080 /* Set */
3081 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3082 }
3083
3084 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3085 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3086 }
3087
3088 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3089 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3090 }
3091
3092 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3093 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3094 }
3095
3096}
3097
3098/**
3099 * wol_calc_crc - WOL CRC
3100 * @pattern: data pattern
3101 * @mask_pattern: mask
3102 *
3103 * Compute the wake on lan crc hashes for the packet header
3104 * we are interested in.
3105 */
3106
3107static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3108{
3109 u16 crc = 0xFFFF;
3110 u8 mask;
3111 int i, j;
3112
3113 for (i = 0; i < size; i++) {
3114 mask = mask_pattern[i];
3115
3116 /* Skip this loop if the mask equals to zero */
3117 if (mask == 0x00)
3118 continue;
3119
3120 for (j = 0; j < 8; j++) {
3121 if ((mask & 0x01) == 0) {
3122 mask >>= 1;
3123 continue;
3124 }
3125 mask >>= 1;
3126 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3127 }
3128 }
3129 /* Finally, invert the result once to get the correct data */
3130 crc = ~crc;
3131 return bitreverse(crc) >> 16;
3132}
3133
3134/**
3135 * velocity_set_wol - set up for wake on lan
3136 * @vptr: velocity to set WOL status on
3137 *
3138 * Set a card up for wake on lan either by unicast or by
3139 * ARP packet.
3140 *
3141 * FIXME: check static buffer is safe here
3142 */
3143
3144static int velocity_set_wol(struct velocity_info *vptr)
3145{
3146 struct mac_regs __iomem * regs = vptr->mac_regs;
3147 static u8 buf[256];
3148 int i;
3149
3150 static u32 mask_pattern[2][4] = {
3151 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3152 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3153 };
3154
3155 writew(0xFFFF, &regs->WOLCRClr);
3156 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3157 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3158
3159 /*
3160 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3161 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3162 */
3163
3164 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3165 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3166 }
3167
3168 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3169 struct arp_packet *arp = (struct arp_packet *) buf;
3170 u16 crc;
3171 memset(buf, 0, sizeof(struct arp_packet) + 7);
3172
3173 for (i = 0; i < 4; i++)
3174 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3175
3176 arp->type = htons(ETH_P_ARP);
3177 arp->ar_op = htons(1);
3178
3179 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3180
3181 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3182 (u8 *) & mask_pattern[0][0]);
3183
3184 writew(crc, &regs->PatternCRC[0]);
3185 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3186 }
3187
3188 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3189 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3190
3191 writew(0x0FFF, &regs->WOLSRClr);
3192
3193 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3194 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3195 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3196
3197 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3198 }
3199
3200 if (vptr->mii_status & VELOCITY_SPEED_1000)
3201 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3202
3203 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3204
3205 {
3206 u8 GCR;
3207 GCR = readb(&regs->CHIPGCR);
3208 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3209 writeb(GCR, &regs->CHIPGCR);
3210 }
3211
3212 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3213 /* Turn on SWPTAG just before entering power mode */
3214 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3215 /* Go to bed ..... */
3216 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3217
3218 return 0;
3219}
3220
3221static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3222{
3223 struct net_device *dev = pci_get_drvdata(pdev);
3224 struct velocity_info *vptr = netdev_priv(dev);
3225 unsigned long flags;
3226
3227 if(!netif_running(vptr->dev))
3228 return 0;
3229
3230 netif_device_detach(vptr->dev);
3231
3232 spin_lock_irqsave(&vptr->lock, flags);
3233 pci_save_state(pdev);
3234#ifdef ETHTOOL_GWOL
3235 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3236 velocity_get_ip(vptr);
3237 velocity_save_context(vptr, &vptr->context);
3238 velocity_shutdown(vptr);
3239 velocity_set_wol(vptr);
3240 pci_enable_wake(pdev, 3, 1);
3241 pci_set_power_state(pdev, PCI_D3hot);
3242 } else {
3243 velocity_save_context(vptr, &vptr->context);
3244 velocity_shutdown(vptr);
3245 pci_disable_device(pdev);
3246 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3247 }
3248#else
3249 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3250#endif
3251 spin_unlock_irqrestore(&vptr->lock, flags);
3252 return 0;
3253}
3254
3255static int velocity_resume(struct pci_dev *pdev)
3256{
3257 struct net_device *dev = pci_get_drvdata(pdev);
3258 struct velocity_info *vptr = netdev_priv(dev);
3259 unsigned long flags;
3260 int i;
3261
3262 if(!netif_running(vptr->dev))
3263 return 0;
3264
3265 pci_set_power_state(pdev, PCI_D0);
3266 pci_enable_wake(pdev, 0, 0);
3267 pci_restore_state(pdev);
3268
3269 mac_wol_reset(vptr->mac_regs);
3270
3271 spin_lock_irqsave(&vptr->lock, flags);
3272 velocity_restore_context(vptr, &vptr->context);
3273 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3274 mac_disable_int(vptr->mac_regs);
3275
3276 velocity_tx_srv(vptr, 0);
3277
3278 for (i = 0; i < vptr->num_txq; i++) {
3279 if (vptr->td_used[i]) {
3280 mac_tx_queue_wake(vptr->mac_regs, i);
3281 }
3282 }
3283
3284 mac_enable_int(vptr->mac_regs);
3285 spin_unlock_irqrestore(&vptr->lock, flags);
3286 netif_device_attach(vptr->dev);
3287
3288 return 0;
3289}
3290
3291static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3292{
3293 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3294
3295 if (ifa) {
3296 struct net_device *dev = ifa->ifa_dev->dev;
3297 struct velocity_info *vptr;
3298 unsigned long flags;
3299
3300 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3301 list_for_each_entry(vptr, &velocity_dev_list, list) {
3302 if (vptr->dev == dev) {
3303 velocity_get_ip(vptr);
3304 break;
3305 }
3306 }
3307 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3308 }
3309 return NOTIFY_DONE;
3310}
3311#endif