[SUNGEM]: Consolidate powerpc and sparc MAC probing code.
[linux-2.6-block.git] / drivers / net / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
32#define DRV_NAME "via-rhine"
e84df485
RL
33#define DRV_VERSION "1.4.3"
34#define DRV_RELDATE "2007-03-06"
1da177e4
LT
35
36
37/* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41static int max_interrupt_work = 20;
42
43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45static int rx_copybreak;
46
b933b4d9
RL
47/* Work-around for broken BIOSes: they are unable to get the chip back out of
48 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
49static int avoid_D3;
50
1da177e4
LT
51/*
52 * In case you are looking for 'options[]' or 'full_duplex[]', they
53 * are gone. Use ethtool(8) instead.
54 */
55
56/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
57 The Rhine has a 64 element 8390-like hash table. */
58static const int multicast_filter_limit = 32;
59
60
61/* Operational parameters that are set at compile time. */
62
63/* Keep the ring sizes a power of two for compile efficiency.
64 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
65 Making the Tx ring too large decreases the effectiveness of channel
66 bonding and packet priority.
67 There are no ill effects from too-large receive rings. */
68#define TX_RING_SIZE 16
69#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1
RL
70#ifdef CONFIG_VIA_RHINE_NAPI
71#define RX_RING_SIZE 64
72#else
1da177e4 73#define RX_RING_SIZE 16
633949a1 74#endif
1da177e4
LT
75
76
77/* Operational parameters that usually are not changed. */
78
79/* Time in jiffies before concluding the transmitter is hung. */
80#define TX_TIMEOUT (2*HZ)
81
82#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
83
84#include <linux/module.h>
85#include <linux/moduleparam.h>
86#include <linux/kernel.h>
87#include <linux/string.h>
88#include <linux/timer.h>
89#include <linux/errno.h>
90#include <linux/ioport.h>
91#include <linux/slab.h>
92#include <linux/interrupt.h>
93#include <linux/pci.h>
1e7f0bd8 94#include <linux/dma-mapping.h>
1da177e4
LT
95#include <linux/netdevice.h>
96#include <linux/etherdevice.h>
97#include <linux/skbuff.h>
98#include <linux/init.h>
99#include <linux/delay.h>
100#include <linux/mii.h>
101#include <linux/ethtool.h>
102#include <linux/crc32.h>
103#include <linux/bitops.h>
104#include <asm/processor.h> /* Processor type for cache alignment. */
105#include <asm/io.h>
106#include <asm/irq.h>
107#include <asm/uaccess.h>
e84df485 108#include <linux/dmi.h>
1da177e4
LT
109
110/* These identify the driver base version and may not be removed. */
111static char version[] __devinitdata =
112KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
113
114/* This driver was written to use PCI memory space. Some early versions
115 of the Rhine may only work correctly with I/O space accesses. */
116#ifdef CONFIG_VIA_RHINE_MMIO
117#define USE_MMIO
118#else
119#endif
120
121MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
122MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
123MODULE_LICENSE("GPL");
124
125module_param(max_interrupt_work, int, 0);
126module_param(debug, int, 0);
127module_param(rx_copybreak, int, 0);
b933b4d9 128module_param(avoid_D3, bool, 0);
1da177e4
LT
129MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
130MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
131MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 132MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4
LT
133
134/*
135 Theory of Operation
136
137I. Board Compatibility
138
139This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
140controller.
141
142II. Board-specific settings
143
144Boards with this chip are functional only in a bus-master PCI slot.
145
146Many operational settings are loaded from the EEPROM to the Config word at
147offset 0x78. For most of these settings, this driver assumes that they are
148correct.
149If this driver is compiled to use PCI memory space operations the EEPROM
150must be configured to enable memory ops.
151
152III. Driver operation
153
154IIIa. Ring buffers
155
156This driver uses two statically allocated fixed-size descriptor lists
157formed into rings by a branch from the final descriptor to the beginning of
158the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
159
160IIIb/c. Transmit/Receive Structure
161
162This driver attempts to use a zero-copy receive and transmit scheme.
163
164Alas, all data buffers are required to start on a 32 bit boundary, so
165the driver must often copy transmit packets into bounce buffers.
166
167The driver allocates full frame size skbuffs for the Rx ring buffers at
168open() time and passes the skb->data field to the chip as receive data
169buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
170a fresh skbuff is allocated and the frame is copied to the new skbuff.
171When the incoming frame is larger, the skbuff is passed directly up the
172protocol stack. Buffers consumed this way are replaced by newly allocated
173skbuffs in the last phase of rhine_rx().
174
175The RX_COPYBREAK value is chosen to trade-off the memory wasted by
176using a full-sized skbuff for small frames vs. the copying costs of larger
177frames. New boards are typically used in generously configured machines
178and the underfilled buffers have negligible impact compared to the benefit of
179a single allocation size, so the default value of zero results in never
180copying packets. When copying is done, the cost is usually mitigated by using
181a combined copy/checksum routine. Copying also preloads the cache, which is
182most useful with small frames.
183
184Since the VIA chips are only able to transfer data to buffers on 32 bit
185boundaries, the IP header at offset 14 in an ethernet frame isn't
186longword aligned for further processing. Copying these unaligned buffers
187has the beneficial effect of 16-byte aligning the IP header.
188
189IIId. Synchronization
190
191The driver runs as two independent, single-threaded flows of control. One
192is the send-packet routine, which enforces single-threaded use by the
193dev->priv->lock spinlock. The other thread is the interrupt handler, which
194is single threaded by the hardware and interrupt handling software.
195
196The send packet thread has partial control over the Tx ring. It locks the
197dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
198is not available it stops the transmit queue by calling netif_stop_queue.
199
200The interrupt handler has exclusive control over the Rx ring and records stats
201from the Tx ring. After reaping the stats, it marks the Tx queue entry as
202empty by incrementing the dirty_tx mark. If at least half of the entries in
203the Rx ring are available the transmit queue is woken up if it was stopped.
204
205IV. Notes
206
207IVb. References
208
209Preliminary VT86C100A manual from http://www.via.com.tw/
210http://www.scyld.com/expert/100mbps.html
211http://www.scyld.com/expert/NWay.html
212ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
213ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
214
215
216IVc. Errata
217
218The VT86C100A manual is not reliable information.
219The 3043 chip does not handle unaligned transmit or receive buffers, resulting
220in significant performance degradation for bounce buffer copies on transmit
221and unaligned IP headers on receive.
222The chip does not pad to minimum transmit length.
223
224*/
225
226
227/* This table drives the PCI probe routines. It's mostly boilerplate in all
228 of the drivers, and will likely be provided by some future kernel.
229 Note the matching code -- the first table entry matchs all 56** cards but
230 second only the 1234 card.
231*/
232
233enum rhine_revs {
234 VT86C100A = 0x00,
235 VTunknown0 = 0x20,
236 VT6102 = 0x40,
237 VT8231 = 0x50, /* Integrated MAC */
238 VT8233 = 0x60, /* Integrated MAC */
239 VT8235 = 0x74, /* Integrated MAC */
240 VT8237 = 0x78, /* Integrated MAC */
241 VTunknown1 = 0x7C,
242 VT6105 = 0x80,
243 VT6105_B0 = 0x83,
244 VT6105L = 0x8A,
245 VT6107 = 0x8C,
246 VTunknown2 = 0x8E,
247 VT6105M = 0x90, /* Management adapter */
248};
249
250enum rhine_quirks {
251 rqWOL = 0x0001, /* Wake-On-LAN support */
252 rqForceReset = 0x0002,
253 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
254 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
255 rqRhineI = 0x0100, /* See comment below */
256};
257/*
258 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
259 * MMIO as well as for the collision counter and the Tx FIFO underflow
260 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
261 */
262
263/* Beware of PCI posted writes */
264#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
265
46009c8b
JG
266static const struct pci_device_id rhine_pci_tbl[] = {
267 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
268 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
269 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
270 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
271 { } /* terminate list */
272};
273MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
274
275
276/* Offsets to the device registers. */
277enum register_offsets {
278 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
279 ChipCmd1=0x09,
280 IntrStatus=0x0C, IntrEnable=0x0E,
281 MulticastFilter0=0x10, MulticastFilter1=0x14,
282 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
283 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
284 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
285 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
286 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
287 StickyHW=0x83, IntrStatus2=0x84,
288 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
289 WOLcrClr1=0xA6, WOLcgClr=0xA7,
290 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
291};
292
293/* Bits in ConfigD */
294enum backoff_bits {
295 BackOptional=0x01, BackModify=0x02,
296 BackCaptureEffect=0x04, BackRandom=0x08
297};
298
299#ifdef USE_MMIO
300/* Registers we check that mmio and reg are the same. */
301static const int mmio_verify_registers[] = {
302 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
303 0
304};
305#endif
306
307/* Bits in the interrupt status/mask registers. */
308enum intr_status_bits {
309 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
310 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
311 IntrPCIErr=0x0040,
312 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
313 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
314 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
315 IntrRxWakeUp=0x8000,
316 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
317 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
318 IntrTxErrSummary=0x082218,
319};
320
321/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
322enum wol_bits {
323 WOLucast = 0x10,
324 WOLmagic = 0x20,
325 WOLbmcast = 0x30,
326 WOLlnkon = 0x40,
327 WOLlnkoff = 0x80,
328};
329
330/* The Rx and Tx buffer descriptors. */
331struct rx_desc {
332 s32 rx_status;
333 u32 desc_length; /* Chain flag, Buffer/frame length */
334 u32 addr;
335 u32 next_desc;
336};
337struct tx_desc {
338 s32 tx_status;
339 u32 desc_length; /* Chain flag, Tx Config, Frame length */
340 u32 addr;
341 u32 next_desc;
342};
343
344/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
345#define TXDESC 0x00e08000
346
347enum rx_status_bits {
348 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
349};
350
351/* Bits in *_desc.*_status */
352enum desc_status_bits {
353 DescOwn=0x80000000
354};
355
356/* Bits in ChipCmd. */
357enum chip_cmd_bits {
358 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
359 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
360 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
361 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
362};
363
364struct rhine_private {
365 /* Descriptor rings */
366 struct rx_desc *rx_ring;
367 struct tx_desc *tx_ring;
368 dma_addr_t rx_ring_dma;
369 dma_addr_t tx_ring_dma;
370
371 /* The addresses of receive-in-place skbuffs. */
372 struct sk_buff *rx_skbuff[RX_RING_SIZE];
373 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
374
375 /* The saved address of a sent-in-place packet/buffer, for later free(). */
376 struct sk_buff *tx_skbuff[TX_RING_SIZE];
377 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
378
4be5de25 379 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
380 unsigned char *tx_buf[TX_RING_SIZE];
381 unsigned char *tx_bufs;
382 dma_addr_t tx_bufs_dma;
383
384 struct pci_dev *pdev;
385 long pioaddr;
386 struct net_device_stats stats;
387 spinlock_t lock;
388
389 /* Frequently used values: keep some adjacent for cache effect. */
390 u32 quirks;
391 struct rx_desc *rx_head_desc;
392 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
393 unsigned int cur_tx, dirty_tx;
394 unsigned int rx_buf_sz; /* Based on MTU+slack. */
395 u8 wolopts;
396
397 u8 tx_thresh, rx_thresh;
398
399 struct mii_if_info mii_if;
400 void __iomem *base;
401};
402
403static int mdio_read(struct net_device *dev, int phy_id, int location);
404static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
405static int rhine_open(struct net_device *dev);
406static void rhine_tx_timeout(struct net_device *dev);
407static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 408static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 409static void rhine_tx(struct net_device *dev);
633949a1 410static int rhine_rx(struct net_device *dev, int limit);
1da177e4
LT
411static void rhine_error(struct net_device *dev, int intr_status);
412static void rhine_set_rx_mode(struct net_device *dev);
413static struct net_device_stats *rhine_get_stats(struct net_device *dev);
414static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 415static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 416static int rhine_close(struct net_device *dev);
d18c3db5 417static void rhine_shutdown (struct pci_dev *pdev);
1da177e4
LT
418
419#define RHINE_WAIT_FOR(condition) do { \
420 int i=1024; \
421 while (!(condition) && --i) \
422 ; \
423 if (debug > 1 && i < 512) \
424 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
425 DRV_NAME, 1024-i, __func__, __LINE__); \
426} while(0)
427
428static inline u32 get_intr_status(struct net_device *dev)
429{
430 struct rhine_private *rp = netdev_priv(dev);
431 void __iomem *ioaddr = rp->base;
432 u32 intr_status;
433
434 intr_status = ioread16(ioaddr + IntrStatus);
435 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
436 if (rp->quirks & rqStatusWBRace)
437 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
438 return intr_status;
439}
440
441/*
442 * Get power related registers into sane state.
443 * Notify user about past WOL event.
444 */
445static void rhine_power_init(struct net_device *dev)
446{
447 struct rhine_private *rp = netdev_priv(dev);
448 void __iomem *ioaddr = rp->base;
449 u16 wolstat;
450
451 if (rp->quirks & rqWOL) {
452 /* Make sure chip is in power state D0 */
453 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
454
455 /* Disable "force PME-enable" */
456 iowrite8(0x80, ioaddr + WOLcgClr);
457
458 /* Clear power-event config bits (WOL) */
459 iowrite8(0xFF, ioaddr + WOLcrClr);
460 /* More recent cards can manage two additional patterns */
461 if (rp->quirks & rq6patterns)
462 iowrite8(0x03, ioaddr + WOLcrClr1);
463
464 /* Save power-event status bits */
465 wolstat = ioread8(ioaddr + PwrcsrSet);
466 if (rp->quirks & rq6patterns)
467 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
468
469 /* Clear power-event status bits */
470 iowrite8(0xFF, ioaddr + PwrcsrClr);
471 if (rp->quirks & rq6patterns)
472 iowrite8(0x03, ioaddr + PwrcsrClr1);
473
474 if (wolstat) {
475 char *reason;
476 switch (wolstat) {
477 case WOLmagic:
478 reason = "Magic packet";
479 break;
480 case WOLlnkon:
481 reason = "Link went up";
482 break;
483 case WOLlnkoff:
484 reason = "Link went down";
485 break;
486 case WOLucast:
487 reason = "Unicast packet";
488 break;
489 case WOLbmcast:
490 reason = "Multicast/broadcast packet";
491 break;
492 default:
493 reason = "Unknown";
494 }
495 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
496 DRV_NAME, reason);
497 }
498 }
499}
500
501static void rhine_chip_reset(struct net_device *dev)
502{
503 struct rhine_private *rp = netdev_priv(dev);
504 void __iomem *ioaddr = rp->base;
505
506 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
507 IOSYNC;
508
509 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
510 printk(KERN_INFO "%s: Reset not complete yet. "
511 "Trying harder.\n", DRV_NAME);
512
513 /* Force reset */
514 if (rp->quirks & rqForceReset)
515 iowrite8(0x40, ioaddr + MiscCmd);
516
517 /* Reset can take somewhat longer (rare) */
518 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
519 }
520
521 if (debug > 1)
522 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
523 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
524 "failed" : "succeeded");
525}
526
527#ifdef USE_MMIO
528static void enable_mmio(long pioaddr, u32 quirks)
529{
530 int n;
531 if (quirks & rqRhineI) {
532 /* More recent docs say that this bit is reserved ... */
533 n = inb(pioaddr + ConfigA) | 0x20;
534 outb(n, pioaddr + ConfigA);
535 } else {
536 n = inb(pioaddr + ConfigD) | 0x80;
537 outb(n, pioaddr + ConfigD);
538 }
539}
540#endif
541
542/*
543 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
544 * (plus 0x6C for Rhine-I/II)
545 */
546static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
547{
548 struct rhine_private *rp = netdev_priv(dev);
549 void __iomem *ioaddr = rp->base;
550
551 outb(0x20, pioaddr + MACRegEEcsr);
552 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
553
554#ifdef USE_MMIO
555 /*
556 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
557 * MMIO. If reloading EEPROM was done first this could be avoided, but
558 * it is not known if that still works with the "win98-reboot" problem.
559 */
560 enable_mmio(pioaddr, rp->quirks);
561#endif
562
563 /* Turn off EEPROM-controlled wake-up (magic packet) */
564 if (rp->quirks & rqWOL)
565 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
566
567}
568
569#ifdef CONFIG_NET_POLL_CONTROLLER
570static void rhine_poll(struct net_device *dev)
571{
572 disable_irq(dev->irq);
7d12e780 573 rhine_interrupt(dev->irq, (void *)dev);
1da177e4
LT
574 enable_irq(dev->irq);
575}
576#endif
577
633949a1
RL
578#ifdef CONFIG_VIA_RHINE_NAPI
579static int rhine_napipoll(struct net_device *dev, int *budget)
580{
581 struct rhine_private *rp = netdev_priv(dev);
582 void __iomem *ioaddr = rp->base;
583 int done, limit = min(dev->quota, *budget);
584
585 done = rhine_rx(dev, limit);
586 *budget -= done;
587 dev->quota -= done;
588
589 if (done < limit) {
590 netif_rx_complete(dev);
591
592 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
593 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
594 IntrTxDone | IntrTxError | IntrTxUnderrun |
595 IntrPCIErr | IntrStatsMax | IntrLinkChange,
596 ioaddr + IntrEnable);
597 return 0;
598 }
599 else
600 return 1;
601}
602#endif
603
1da177e4
LT
604static void rhine_hw_init(struct net_device *dev, long pioaddr)
605{
606 struct rhine_private *rp = netdev_priv(dev);
607
608 /* Reset the chip to erase previous misconfiguration. */
609 rhine_chip_reset(dev);
610
611 /* Rhine-I needs extra time to recuperate before EEPROM reload */
612 if (rp->quirks & rqRhineI)
613 msleep(5);
614
615 /* Reload EEPROM controlled bytes cleared by soft reset */
616 rhine_reload_eeprom(pioaddr, dev);
617}
618
619static int __devinit rhine_init_one(struct pci_dev *pdev,
620 const struct pci_device_id *ent)
621{
622 struct net_device *dev;
623 struct rhine_private *rp;
624 int i, rc;
625 u8 pci_rev;
626 u32 quirks;
627 long pioaddr;
628 long memaddr;
629 void __iomem *ioaddr;
630 int io_size, phy_id;
631 const char *name;
632#ifdef USE_MMIO
633 int bar = 1;
634#else
635 int bar = 0;
636#endif
637
638/* when built into the kernel, we only print version if device is found */
639#ifndef MODULE
640 static int printed_version;
641 if (!printed_version++)
642 printk(version);
643#endif
644
645 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
646
647 io_size = 256;
648 phy_id = 0;
649 quirks = 0;
650 name = "Rhine";
651 if (pci_rev < VTunknown0) {
652 quirks = rqRhineI;
653 io_size = 128;
654 }
655 else if (pci_rev >= VT6102) {
656 quirks = rqWOL | rqForceReset;
657 if (pci_rev < VT6105) {
658 name = "Rhine II";
659 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
660 }
661 else {
662 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
663 if (pci_rev >= VT6105_B0)
664 quirks |= rq6patterns;
665 if (pci_rev < VT6105M)
666 name = "Rhine III";
667 else
668 name = "Rhine III (Management Adapter)";
669 }
670 }
671
672 rc = pci_enable_device(pdev);
673 if (rc)
674 goto err_out;
675
676 /* this should always be supported */
1e7f0bd8 677 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1da177e4
LT
678 if (rc) {
679 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
680 "the card!?\n");
681 goto err_out;
682 }
683
684 /* sanity check */
685 if ((pci_resource_len(pdev, 0) < io_size) ||
686 (pci_resource_len(pdev, 1) < io_size)) {
687 rc = -EIO;
688 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
689 goto err_out;
690 }
691
692 pioaddr = pci_resource_start(pdev, 0);
693 memaddr = pci_resource_start(pdev, 1);
694
695 pci_set_master(pdev);
696
697 dev = alloc_etherdev(sizeof(struct rhine_private));
698 if (!dev) {
699 rc = -ENOMEM;
700 printk(KERN_ERR "alloc_etherdev failed\n");
701 goto err_out;
702 }
703 SET_MODULE_OWNER(dev);
704 SET_NETDEV_DEV(dev, &pdev->dev);
705
706 rp = netdev_priv(dev);
707 rp->quirks = quirks;
708 rp->pioaddr = pioaddr;
709 rp->pdev = pdev;
710
711 rc = pci_request_regions(pdev, DRV_NAME);
712 if (rc)
713 goto err_out_free_netdev;
714
715 ioaddr = pci_iomap(pdev, bar, io_size);
716 if (!ioaddr) {
717 rc = -EIO;
718 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
719 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
720 goto err_out_free_res;
721 }
722
723#ifdef USE_MMIO
724 enable_mmio(pioaddr, quirks);
725
726 /* Check that selected MMIO registers match the PIO ones */
727 i = 0;
728 while (mmio_verify_registers[i]) {
729 int reg = mmio_verify_registers[i++];
730 unsigned char a = inb(pioaddr+reg);
731 unsigned char b = readb(ioaddr+reg);
732 if (a != b) {
733 rc = -EIO;
734 printk(KERN_ERR "MMIO do not match PIO [%02x] "
735 "(%02x != %02x)\n", reg, a, b);
736 goto err_out_unmap;
737 }
738 }
739#endif /* USE_MMIO */
740
741 dev->base_addr = (unsigned long)ioaddr;
742 rp->base = ioaddr;
743
744 /* Get chip registers into a sane state */
745 rhine_power_init(dev);
746 rhine_hw_init(dev, pioaddr);
747
748 for (i = 0; i < 6; i++)
749 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
b81e8e1f 750 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4 751
b81e8e1f 752 if (!is_valid_ether_addr(dev->perm_addr)) {
1da177e4
LT
753 rc = -EIO;
754 printk(KERN_ERR "Invalid MAC address\n");
755 goto err_out_unmap;
756 }
757
758 /* For Rhine-I/II, phy_id is loaded from EEPROM */
759 if (!phy_id)
760 phy_id = ioread8(ioaddr + 0x6C);
761
762 dev->irq = pdev->irq;
763
764 spin_lock_init(&rp->lock);
765 rp->mii_if.dev = dev;
766 rp->mii_if.mdio_read = mdio_read;
767 rp->mii_if.mdio_write = mdio_write;
768 rp->mii_if.phy_id_mask = 0x1f;
769 rp->mii_if.reg_num_mask = 0x1f;
770
771 /* The chip-specific entries in the device structure. */
772 dev->open = rhine_open;
773 dev->hard_start_xmit = rhine_start_tx;
774 dev->stop = rhine_close;
775 dev->get_stats = rhine_get_stats;
776 dev->set_multicast_list = rhine_set_rx_mode;
777 dev->do_ioctl = netdev_ioctl;
778 dev->ethtool_ops = &netdev_ethtool_ops;
779 dev->tx_timeout = rhine_tx_timeout;
780 dev->watchdog_timeo = TX_TIMEOUT;
781#ifdef CONFIG_NET_POLL_CONTROLLER
782 dev->poll_controller = rhine_poll;
633949a1
RL
783#endif
784#ifdef CONFIG_VIA_RHINE_NAPI
785 dev->poll = rhine_napipoll;
786 dev->weight = 64;
1da177e4
LT
787#endif
788 if (rp->quirks & rqRhineI)
789 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
790
791 /* dev->name not defined before register_netdev()! */
792 rc = register_netdev(dev);
793 if (rc)
794 goto err_out_unmap;
795
796 printk(KERN_INFO "%s: VIA %s at 0x%lx, ",
797 dev->name, name,
798#ifdef USE_MMIO
799 memaddr
800#else
801 (long)ioaddr
802#endif
803 );
804
805 for (i = 0; i < 5; i++)
806 printk("%2.2x:", dev->dev_addr[i]);
807 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], pdev->irq);
808
809 pci_set_drvdata(pdev, dev);
810
811 {
812 u16 mii_cmd;
813 int mii_status = mdio_read(dev, phy_id, 1);
814 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
815 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
816 if (mii_status != 0xffff && mii_status != 0x0000) {
817 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
818 printk(KERN_INFO "%s: MII PHY found at address "
819 "%d, status 0x%4.4x advertising %4.4x "
820 "Link %4.4x.\n", dev->name, phy_id,
821 mii_status, rp->mii_if.advertising,
822 mdio_read(dev, phy_id, 5));
823
824 /* set IFF_RUNNING */
825 if (mii_status & BMSR_LSTATUS)
826 netif_carrier_on(dev);
827 else
828 netif_carrier_off(dev);
829
830 }
831 }
832 rp->mii_if.phy_id = phy_id;
b933b4d9
RL
833 if (debug > 1 && avoid_D3)
834 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
835 dev->name);
1da177e4
LT
836
837 return 0;
838
839err_out_unmap:
840 pci_iounmap(pdev, ioaddr);
841err_out_free_res:
842 pci_release_regions(pdev);
843err_out_free_netdev:
844 free_netdev(dev);
845err_out:
846 return rc;
847}
848
849static int alloc_ring(struct net_device* dev)
850{
851 struct rhine_private *rp = netdev_priv(dev);
852 void *ring;
853 dma_addr_t ring_dma;
854
855 ring = pci_alloc_consistent(rp->pdev,
856 RX_RING_SIZE * sizeof(struct rx_desc) +
857 TX_RING_SIZE * sizeof(struct tx_desc),
858 &ring_dma);
859 if (!ring) {
860 printk(KERN_ERR "Could not allocate DMA memory.\n");
861 return -ENOMEM;
862 }
863 if (rp->quirks & rqRhineI) {
864 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
865 PKT_BUF_SZ * TX_RING_SIZE,
866 &rp->tx_bufs_dma);
867 if (rp->tx_bufs == NULL) {
868 pci_free_consistent(rp->pdev,
869 RX_RING_SIZE * sizeof(struct rx_desc) +
870 TX_RING_SIZE * sizeof(struct tx_desc),
871 ring, ring_dma);
872 return -ENOMEM;
873 }
874 }
875
876 rp->rx_ring = ring;
877 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
878 rp->rx_ring_dma = ring_dma;
879 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
880
881 return 0;
882}
883
884static void free_ring(struct net_device* dev)
885{
886 struct rhine_private *rp = netdev_priv(dev);
887
888 pci_free_consistent(rp->pdev,
889 RX_RING_SIZE * sizeof(struct rx_desc) +
890 TX_RING_SIZE * sizeof(struct tx_desc),
891 rp->rx_ring, rp->rx_ring_dma);
892 rp->tx_ring = NULL;
893
894 if (rp->tx_bufs)
895 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
896 rp->tx_bufs, rp->tx_bufs_dma);
897
898 rp->tx_bufs = NULL;
899
900}
901
902static void alloc_rbufs(struct net_device *dev)
903{
904 struct rhine_private *rp = netdev_priv(dev);
905 dma_addr_t next;
906 int i;
907
908 rp->dirty_rx = rp->cur_rx = 0;
909
910 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
911 rp->rx_head_desc = &rp->rx_ring[0];
912 next = rp->rx_ring_dma;
913
914 /* Init the ring entries */
915 for (i = 0; i < RX_RING_SIZE; i++) {
916 rp->rx_ring[i].rx_status = 0;
917 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
918 next += sizeof(struct rx_desc);
919 rp->rx_ring[i].next_desc = cpu_to_le32(next);
920 rp->rx_skbuff[i] = NULL;
921 }
922 /* Mark the last entry as wrapping the ring. */
923 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
924
925 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
926 for (i = 0; i < RX_RING_SIZE; i++) {
927 struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
928 rp->rx_skbuff[i] = skb;
929 if (skb == NULL)
930 break;
931 skb->dev = dev; /* Mark as being used by this device. */
932
933 rp->rx_skbuff_dma[i] =
689be439 934 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4
LT
935 PCI_DMA_FROMDEVICE);
936
937 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
938 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
939 }
940 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
941}
942
943static void free_rbufs(struct net_device* dev)
944{
945 struct rhine_private *rp = netdev_priv(dev);
946 int i;
947
948 /* Free all the skbuffs in the Rx queue. */
949 for (i = 0; i < RX_RING_SIZE; i++) {
950 rp->rx_ring[i].rx_status = 0;
951 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
952 if (rp->rx_skbuff[i]) {
953 pci_unmap_single(rp->pdev,
954 rp->rx_skbuff_dma[i],
955 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
956 dev_kfree_skb(rp->rx_skbuff[i]);
957 }
958 rp->rx_skbuff[i] = NULL;
959 }
960}
961
962static void alloc_tbufs(struct net_device* dev)
963{
964 struct rhine_private *rp = netdev_priv(dev);
965 dma_addr_t next;
966 int i;
967
968 rp->dirty_tx = rp->cur_tx = 0;
969 next = rp->tx_ring_dma;
970 for (i = 0; i < TX_RING_SIZE; i++) {
971 rp->tx_skbuff[i] = NULL;
972 rp->tx_ring[i].tx_status = 0;
973 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
974 next += sizeof(struct tx_desc);
975 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
976 if (rp->quirks & rqRhineI)
977 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
978 }
979 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
980
981}
982
983static void free_tbufs(struct net_device* dev)
984{
985 struct rhine_private *rp = netdev_priv(dev);
986 int i;
987
988 for (i = 0; i < TX_RING_SIZE; i++) {
989 rp->tx_ring[i].tx_status = 0;
990 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
991 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
992 if (rp->tx_skbuff[i]) {
993 if (rp->tx_skbuff_dma[i]) {
994 pci_unmap_single(rp->pdev,
995 rp->tx_skbuff_dma[i],
996 rp->tx_skbuff[i]->len,
997 PCI_DMA_TODEVICE);
998 }
999 dev_kfree_skb(rp->tx_skbuff[i]);
1000 }
1001 rp->tx_skbuff[i] = NULL;
1002 rp->tx_buf[i] = NULL;
1003 }
1004}
1005
1006static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1007{
1008 struct rhine_private *rp = netdev_priv(dev);
1009 void __iomem *ioaddr = rp->base;
1010
1011 mii_check_media(&rp->mii_if, debug, init_media);
1012
1013 if (rp->mii_if.full_duplex)
1014 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1015 ioaddr + ChipCmd1);
1016 else
1017 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1018 ioaddr + ChipCmd1);
00b428c2
RL
1019 if (debug > 1)
1020 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1021 rp->mii_if.force_media, netif_carrier_ok(dev));
1022}
1023
1024/* Called after status of force_media possibly changed */
0761be4f 1025static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2
RL
1026{
1027 if (mii->force_media) {
1028 /* autoneg is off: Link is always assumed to be up */
1029 if (!netif_carrier_ok(mii->dev))
1030 netif_carrier_on(mii->dev);
1031 }
1032 else /* Let MMI library update carrier status */
1033 rhine_check_media(mii->dev, 0);
1034 if (debug > 1)
1035 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1036 mii->dev->name, mii->force_media,
1037 netif_carrier_ok(mii->dev));
1da177e4
LT
1038}
1039
1040static void init_registers(struct net_device *dev)
1041{
1042 struct rhine_private *rp = netdev_priv(dev);
1043 void __iomem *ioaddr = rp->base;
1044 int i;
1045
1046 for (i = 0; i < 6; i++)
1047 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1048
1049 /* Initialize other registers. */
1050 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1051 /* Configure initial FIFO thresholds. */
1052 iowrite8(0x20, ioaddr + TxConfig);
1053 rp->tx_thresh = 0x20;
1054 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1055
1056 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1057 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1058
1059 rhine_set_rx_mode(dev);
1060
ab197668
SH
1061 netif_poll_enable(dev);
1062
1da177e4
LT
1063 /* Enable interrupts by setting the interrupt mask. */
1064 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1065 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1066 IntrTxDone | IntrTxError | IntrTxUnderrun |
1067 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1068 ioaddr + IntrEnable);
1069
1070 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1071 ioaddr + ChipCmd);
1072 rhine_check_media(dev, 1);
1073}
1074
1075/* Enable MII link status auto-polling (required for IntrLinkChange) */
1076static void rhine_enable_linkmon(void __iomem *ioaddr)
1077{
1078 iowrite8(0, ioaddr + MIICmd);
1079 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1080 iowrite8(0x80, ioaddr + MIICmd);
1081
1082 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1083
1084 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1085}
1086
1087/* Disable MII link status auto-polling (required for MDIO access) */
1088static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1089{
1090 iowrite8(0, ioaddr + MIICmd);
1091
1092 if (quirks & rqRhineI) {
1093 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1094
38bb6b28
JL
1095 /* Can be called from ISR. Evil. */
1096 mdelay(1);
1da177e4
LT
1097
1098 /* 0x80 must be set immediately before turning it off */
1099 iowrite8(0x80, ioaddr + MIICmd);
1100
1101 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1102
1103 /* Heh. Now clear 0x80 again. */
1104 iowrite8(0, ioaddr + MIICmd);
1105 }
1106 else
1107 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1108}
1109
1110/* Read and write over the MII Management Data I/O (MDIO) interface. */
1111
1112static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1113{
1114 struct rhine_private *rp = netdev_priv(dev);
1115 void __iomem *ioaddr = rp->base;
1116 int result;
1117
1118 rhine_disable_linkmon(ioaddr, rp->quirks);
1119
1120 /* rhine_disable_linkmon already cleared MIICmd */
1121 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1122 iowrite8(regnum, ioaddr + MIIRegAddr);
1123 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1124 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1125 result = ioread16(ioaddr + MIIData);
1126
1127 rhine_enable_linkmon(ioaddr);
1128 return result;
1129}
1130
1131static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1132{
1133 struct rhine_private *rp = netdev_priv(dev);
1134 void __iomem *ioaddr = rp->base;
1135
1136 rhine_disable_linkmon(ioaddr, rp->quirks);
1137
1138 /* rhine_disable_linkmon already cleared MIICmd */
1139 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1140 iowrite8(regnum, ioaddr + MIIRegAddr);
1141 iowrite16(value, ioaddr + MIIData);
1142 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1143 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1144
1145 rhine_enable_linkmon(ioaddr);
1146}
1147
1148static int rhine_open(struct net_device *dev)
1149{
1150 struct rhine_private *rp = netdev_priv(dev);
1151 void __iomem *ioaddr = rp->base;
1152 int rc;
1153
1fb9df5d 1154 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1155 dev);
1156 if (rc)
1157 return rc;
1158
1159 if (debug > 1)
1160 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1161 dev->name, rp->pdev->irq);
1162
1163 rc = alloc_ring(dev);
1164 if (rc) {
1165 free_irq(rp->pdev->irq, dev);
1166 return rc;
1167 }
1168 alloc_rbufs(dev);
1169 alloc_tbufs(dev);
1170 rhine_chip_reset(dev);
1171 init_registers(dev);
1172 if (debug > 2)
1173 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1174 "MII status: %4.4x.\n",
1175 dev->name, ioread16(ioaddr + ChipCmd),
1176 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1177
1178 netif_start_queue(dev);
1179
1180 return 0;
1181}
1182
1183static void rhine_tx_timeout(struct net_device *dev)
1184{
1185 struct rhine_private *rp = netdev_priv(dev);
1186 void __iomem *ioaddr = rp->base;
1187
1188 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1189 "%4.4x, resetting...\n",
1190 dev->name, ioread16(ioaddr + IntrStatus),
1191 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1192
1193 /* protect against concurrent rx interrupts */
1194 disable_irq(rp->pdev->irq);
1195
1196 spin_lock(&rp->lock);
1197
1198 /* clear all descriptors */
1199 free_tbufs(dev);
1200 free_rbufs(dev);
1201 alloc_tbufs(dev);
1202 alloc_rbufs(dev);
1203
1204 /* Reinitialize the hardware. */
1205 rhine_chip_reset(dev);
1206 init_registers(dev);
1207
1208 spin_unlock(&rp->lock);
1209 enable_irq(rp->pdev->irq);
1210
1211 dev->trans_start = jiffies;
1212 rp->stats.tx_errors++;
1213 netif_wake_queue(dev);
1214}
1215
1216static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1217{
1218 struct rhine_private *rp = netdev_priv(dev);
1219 void __iomem *ioaddr = rp->base;
1220 unsigned entry;
1221
1222 /* Caution: the write order is important here, set the field
1223 with the "ownership" bits last. */
1224
1225 /* Calculate the next Tx descriptor entry. */
1226 entry = rp->cur_tx % TX_RING_SIZE;
1227
5b057c6b
HX
1228 if (skb_padto(skb, ETH_ZLEN))
1229 return 0;
1da177e4
LT
1230
1231 rp->tx_skbuff[entry] = skb;
1232
1233 if ((rp->quirks & rqRhineI) &&
84fa7933 1234 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1235 /* Must use alignment buffer. */
1236 if (skb->len > PKT_BUF_SZ) {
1237 /* packet too long, drop it */
1238 dev_kfree_skb(skb);
1239 rp->tx_skbuff[entry] = NULL;
1240 rp->stats.tx_dropped++;
1241 return 0;
1242 }
3e0d167a
CB
1243
1244 /* Padding is not copied and so must be redone. */
1da177e4 1245 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1246 if (skb->len < ETH_ZLEN)
1247 memset(rp->tx_buf[entry] + skb->len, 0,
1248 ETH_ZLEN - skb->len);
1da177e4
LT
1249 rp->tx_skbuff_dma[entry] = 0;
1250 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1251 (rp->tx_buf[entry] -
1252 rp->tx_bufs));
1253 } else {
1254 rp->tx_skbuff_dma[entry] =
1255 pci_map_single(rp->pdev, skb->data, skb->len,
1256 PCI_DMA_TODEVICE);
1257 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1258 }
1259
1260 rp->tx_ring[entry].desc_length =
1261 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1262
1263 /* lock eth irq */
1264 spin_lock_irq(&rp->lock);
1265 wmb();
1266 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1267 wmb();
1268
1269 rp->cur_tx++;
1270
1271 /* Non-x86 Todo: explicitly flush cache lines here. */
1272
1273 /* Wake the potentially-idle transmit channel */
1274 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1275 ioaddr + ChipCmd1);
1276 IOSYNC;
1277
1278 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1279 netif_stop_queue(dev);
1280
1281 dev->trans_start = jiffies;
1282
1283 spin_unlock_irq(&rp->lock);
1284
1285 if (debug > 4) {
1286 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1287 dev->name, rp->cur_tx-1, entry);
1288 }
1289 return 0;
1290}
1291
1292/* The interrupt handler does all of the Rx thread work and cleans up
1293 after the Tx thread. */
7d12e780 1294static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1295{
1296 struct net_device *dev = dev_instance;
1297 struct rhine_private *rp = netdev_priv(dev);
1298 void __iomem *ioaddr = rp->base;
1299 u32 intr_status;
1300 int boguscnt = max_interrupt_work;
1301 int handled = 0;
1302
1303 while ((intr_status = get_intr_status(dev))) {
1304 handled = 1;
1305
1306 /* Acknowledge all of the current interrupt sources ASAP. */
1307 if (intr_status & IntrTxDescRace)
1308 iowrite8(0x08, ioaddr + IntrStatus2);
1309 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1310 IOSYNC;
1311
1312 if (debug > 4)
1313 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1314 dev->name, intr_status);
1315
1316 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
633949a1
RL
1317 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1318#ifdef CONFIG_VIA_RHINE_NAPI
1319 iowrite16(IntrTxAborted |
1320 IntrTxDone | IntrTxError | IntrTxUnderrun |
1321 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1322 ioaddr + IntrEnable);
1323
1324 netif_rx_schedule(dev);
1325#else
1326 rhine_rx(dev, RX_RING_SIZE);
1327#endif
1328 }
1da177e4
LT
1329
1330 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1331 if (intr_status & IntrTxErrSummary) {
1332 /* Avoid scavenging before Tx engine turned off */
1333 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1334 if (debug > 2 &&
1335 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1336 printk(KERN_WARNING "%s: "
1337 "rhine_interrupt() Tx engine"
1338 "still on.\n", dev->name);
1339 }
1340 rhine_tx(dev);
1341 }
1342
1343 /* Abnormal error summary/uncommon events handlers. */
1344 if (intr_status & (IntrPCIErr | IntrLinkChange |
1345 IntrStatsMax | IntrTxError | IntrTxAborted |
1346 IntrTxUnderrun | IntrTxDescRace))
1347 rhine_error(dev, intr_status);
1348
1349 if (--boguscnt < 0) {
1350 printk(KERN_WARNING "%s: Too much work at interrupt, "
1351 "status=%#8.8x.\n",
1352 dev->name, intr_status);
1353 break;
1354 }
1355 }
1356
1357 if (debug > 3)
1358 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1359 dev->name, ioread16(ioaddr + IntrStatus));
1360 return IRQ_RETVAL(handled);
1361}
1362
1363/* This routine is logically part of the interrupt handler, but isolated
1364 for clarity. */
1365static void rhine_tx(struct net_device *dev)
1366{
1367 struct rhine_private *rp = netdev_priv(dev);
1368 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1369
1370 spin_lock(&rp->lock);
1371
1372 /* find and cleanup dirty tx descriptors */
1373 while (rp->dirty_tx != rp->cur_tx) {
1374 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1375 if (debug > 6)
ed4030d1 1376 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1da177e4
LT
1377 entry, txstatus);
1378 if (txstatus & DescOwn)
1379 break;
1380 if (txstatus & 0x8000) {
1381 if (debug > 1)
1382 printk(KERN_DEBUG "%s: Transmit error, "
1383 "Tx status %8.8x.\n",
1384 dev->name, txstatus);
1385 rp->stats.tx_errors++;
1386 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1387 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1388 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1389 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1390 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1391 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1392 rp->stats.tx_fifo_errors++;
1393 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1394 break; /* Keep the skb - we try again */
1395 }
1396 /* Transmitter restarted in 'abnormal' handler. */
1397 } else {
1398 if (rp->quirks & rqRhineI)
1399 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1400 else
1401 rp->stats.collisions += txstatus & 0x0F;
1402 if (debug > 6)
1403 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1404 (txstatus >> 3) & 0xF,
1405 txstatus & 0xF);
1406 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1407 rp->stats.tx_packets++;
1408 }
1409 /* Free the original skb. */
1410 if (rp->tx_skbuff_dma[entry]) {
1411 pci_unmap_single(rp->pdev,
1412 rp->tx_skbuff_dma[entry],
1413 rp->tx_skbuff[entry]->len,
1414 PCI_DMA_TODEVICE);
1415 }
1416 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1417 rp->tx_skbuff[entry] = NULL;
1418 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1419 }
1420 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1421 netif_wake_queue(dev);
1422
1423 spin_unlock(&rp->lock);
1424}
1425
633949a1
RL
1426/* Process up to limit frames from receive ring */
1427static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1428{
1429 struct rhine_private *rp = netdev_priv(dev);
633949a1 1430 int count;
1da177e4 1431 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4
LT
1432
1433 if (debug > 4) {
1434 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1435 dev->name, entry,
1436 le32_to_cpu(rp->rx_head_desc->rx_status));
1437 }
1438
1439 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1440 for (count = 0; count < limit; ++count) {
1da177e4
LT
1441 struct rx_desc *desc = rp->rx_head_desc;
1442 u32 desc_status = le32_to_cpu(desc->rx_status);
1443 int data_size = desc_status >> 16;
1444
633949a1
RL
1445 if (desc_status & DescOwn)
1446 break;
1447
1da177e4 1448 if (debug > 4)
ed4030d1 1449 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1da177e4 1450 desc_status);
633949a1 1451
1da177e4
LT
1452 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1453 if ((desc_status & RxWholePkt) != RxWholePkt) {
1454 printk(KERN_WARNING "%s: Oversized Ethernet "
1455 "frame spanned multiple buffers, entry "
1456 "%#x length %d status %8.8x!\n",
1457 dev->name, entry, data_size,
1458 desc_status);
1459 printk(KERN_WARNING "%s: Oversized Ethernet "
1460 "frame %p vs %p.\n", dev->name,
1461 rp->rx_head_desc, &rp->rx_ring[entry]);
1462 rp->stats.rx_length_errors++;
1463 } else if (desc_status & RxErr) {
1464 /* There was a error. */
1465 if (debug > 2)
ed4030d1 1466 printk(KERN_DEBUG "rhine_rx() Rx "
1da177e4
LT
1467 "error was %8.8x.\n",
1468 desc_status);
1469 rp->stats.rx_errors++;
1470 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1471 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1472 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1473 if (desc_status & 0x0002) {
1474 /* this can also be updated outside the interrupt handler */
1475 spin_lock(&rp->lock);
1476 rp->stats.rx_crc_errors++;
1477 spin_unlock(&rp->lock);
1478 }
1479 }
1480 } else {
1481 struct sk_buff *skb;
1482 /* Length should omit the CRC */
1483 int pkt_len = data_size - 4;
1484
1485 /* Check if the packet is long enough to accept without
1486 copying to a minimally-sized skbuff. */
1487 if (pkt_len < rx_copybreak &&
1488 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1489 skb->dev = dev;
1490 skb_reserve(skb, 2); /* 16 byte align the IP header */
1491 pci_dma_sync_single_for_cpu(rp->pdev,
1492 rp->rx_skbuff_dma[entry],
1493 rp->rx_buf_sz,
1494 PCI_DMA_FROMDEVICE);
1495
1496 eth_copy_and_sum(skb,
689be439 1497 rp->rx_skbuff[entry]->data,
1da177e4
LT
1498 pkt_len, 0);
1499 skb_put(skb, pkt_len);
1500 pci_dma_sync_single_for_device(rp->pdev,
1501 rp->rx_skbuff_dma[entry],
1502 rp->rx_buf_sz,
1503 PCI_DMA_FROMDEVICE);
1504 } else {
1505 skb = rp->rx_skbuff[entry];
1506 if (skb == NULL) {
1507 printk(KERN_ERR "%s: Inconsistent Rx "
1508 "descriptor chain.\n",
1509 dev->name);
1510 break;
1511 }
1512 rp->rx_skbuff[entry] = NULL;
1513 skb_put(skb, pkt_len);
1514 pci_unmap_single(rp->pdev,
1515 rp->rx_skbuff_dma[entry],
1516 rp->rx_buf_sz,
1517 PCI_DMA_FROMDEVICE);
1518 }
1519 skb->protocol = eth_type_trans(skb, dev);
633949a1
RL
1520#ifdef CONFIG_VIA_RHINE_NAPI
1521 netif_receive_skb(skb);
1522#else
1da177e4 1523 netif_rx(skb);
633949a1 1524#endif
1da177e4
LT
1525 dev->last_rx = jiffies;
1526 rp->stats.rx_bytes += pkt_len;
1527 rp->stats.rx_packets++;
1528 }
1529 entry = (++rp->cur_rx) % RX_RING_SIZE;
1530 rp->rx_head_desc = &rp->rx_ring[entry];
1531 }
1532
1533 /* Refill the Rx ring buffers. */
1534 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1535 struct sk_buff *skb;
1536 entry = rp->dirty_rx % RX_RING_SIZE;
1537 if (rp->rx_skbuff[entry] == NULL) {
1538 skb = dev_alloc_skb(rp->rx_buf_sz);
1539 rp->rx_skbuff[entry] = skb;
1540 if (skb == NULL)
1541 break; /* Better luck next round. */
1542 skb->dev = dev; /* Mark as being used by this device. */
1543 rp->rx_skbuff_dma[entry] =
689be439 1544 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1545 rp->rx_buf_sz,
1546 PCI_DMA_FROMDEVICE);
1547 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1548 }
1549 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1550 }
633949a1
RL
1551
1552 return count;
1da177e4
LT
1553}
1554
1555/*
1556 * Clears the "tally counters" for CRC errors and missed frames(?).
1557 * It has been reported that some chips need a write of 0 to clear
1558 * these, for others the counters are set to 1 when written to and
1559 * instead cleared when read. So we clear them both ways ...
1560 */
1561static inline void clear_tally_counters(void __iomem *ioaddr)
1562{
1563 iowrite32(0, ioaddr + RxMissed);
1564 ioread16(ioaddr + RxCRCErrs);
1565 ioread16(ioaddr + RxMissed);
1566}
1567
1568static void rhine_restart_tx(struct net_device *dev) {
1569 struct rhine_private *rp = netdev_priv(dev);
1570 void __iomem *ioaddr = rp->base;
1571 int entry = rp->dirty_tx % TX_RING_SIZE;
1572 u32 intr_status;
1573
1574 /*
1575 * If new errors occured, we need to sort them out before doing Tx.
1576 * In that case the ISR will be back here RSN anyway.
1577 */
1578 intr_status = get_intr_status(dev);
1579
1580 if ((intr_status & IntrTxErrSummary) == 0) {
1581
1582 /* We know better than the chip where it should continue. */
1583 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1584 ioaddr + TxRingPtr);
1585
1586 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1587 ioaddr + ChipCmd);
1588 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1589 ioaddr + ChipCmd1);
1590 IOSYNC;
1591 }
1592 else {
1593 /* This should never happen */
1594 if (debug > 1)
1595 printk(KERN_WARNING "%s: rhine_restart_tx() "
1596 "Another error occured %8.8x.\n",
1597 dev->name, intr_status);
1598 }
1599
1600}
1601
1602static void rhine_error(struct net_device *dev, int intr_status)
1603{
1604 struct rhine_private *rp = netdev_priv(dev);
1605 void __iomem *ioaddr = rp->base;
1606
1607 spin_lock(&rp->lock);
1608
1609 if (intr_status & IntrLinkChange)
38bb6b28 1610 rhine_check_media(dev, 0);
1da177e4
LT
1611 if (intr_status & IntrStatsMax) {
1612 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1613 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1614 clear_tally_counters(ioaddr);
1615 }
1616 if (intr_status & IntrTxAborted) {
1617 if (debug > 1)
1618 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1619 dev->name, intr_status);
1620 }
1621 if (intr_status & IntrTxUnderrun) {
1622 if (rp->tx_thresh < 0xE0)
1623 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1624 if (debug > 1)
1625 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1626 "threshold now %2.2x.\n",
1627 dev->name, rp->tx_thresh);
1628 }
1629 if (intr_status & IntrTxDescRace) {
1630 if (debug > 2)
1631 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1632 dev->name);
1633 }
1634 if ((intr_status & IntrTxError) &&
1635 (intr_status & (IntrTxAborted |
1636 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1637 if (rp->tx_thresh < 0xE0) {
1638 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1639 }
1640 if (debug > 1)
1641 printk(KERN_INFO "%s: Unspecified error. Tx "
1642 "threshold now %2.2x.\n",
1643 dev->name, rp->tx_thresh);
1644 }
1645 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1646 IntrTxError))
1647 rhine_restart_tx(dev);
1648
1649 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1650 IntrTxError | IntrTxAborted | IntrNormalSummary |
1651 IntrTxDescRace)) {
1652 if (debug > 1)
1653 printk(KERN_ERR "%s: Something Wicked happened! "
1654 "%8.8x.\n", dev->name, intr_status);
1655 }
1656
1657 spin_unlock(&rp->lock);
1658}
1659
1660static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1661{
1662 struct rhine_private *rp = netdev_priv(dev);
1663 void __iomem *ioaddr = rp->base;
1664 unsigned long flags;
1665
1666 spin_lock_irqsave(&rp->lock, flags);
1667 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1668 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1669 clear_tally_counters(ioaddr);
1670 spin_unlock_irqrestore(&rp->lock, flags);
1671
1672 return &rp->stats;
1673}
1674
1675static void rhine_set_rx_mode(struct net_device *dev)
1676{
1677 struct rhine_private *rp = netdev_priv(dev);
1678 void __iomem *ioaddr = rp->base;
1679 u32 mc_filter[2]; /* Multicast hash filter */
1680 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1681
1682 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1683 rx_mode = 0x1C;
1684 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1685 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1686 } else if ((dev->mc_count > multicast_filter_limit)
1687 || (dev->flags & IFF_ALLMULTI)) {
1688 /* Too many to match, or accept all multicasts. */
1689 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1690 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1691 rx_mode = 0x0C;
1692 } else {
1693 struct dev_mc_list *mclist;
1694 int i;
1695 memset(mc_filter, 0, sizeof(mc_filter));
1696 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1697 i++, mclist = mclist->next) {
1698 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1699
1700 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1701 }
1702 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1703 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1704 rx_mode = 0x0C;
1705 }
1706 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1707}
1708
1709static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1710{
1711 struct rhine_private *rp = netdev_priv(dev);
1712
1713 strcpy(info->driver, DRV_NAME);
1714 strcpy(info->version, DRV_VERSION);
1715 strcpy(info->bus_info, pci_name(rp->pdev));
1716}
1717
1718static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1719{
1720 struct rhine_private *rp = netdev_priv(dev);
1721 int rc;
1722
1723 spin_lock_irq(&rp->lock);
1724 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1725 spin_unlock_irq(&rp->lock);
1726
1727 return rc;
1728}
1729
1730static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1731{
1732 struct rhine_private *rp = netdev_priv(dev);
1733 int rc;
1734
1735 spin_lock_irq(&rp->lock);
1736 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1737 spin_unlock_irq(&rp->lock);
00b428c2 1738 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1739
1740 return rc;
1741}
1742
1743static int netdev_nway_reset(struct net_device *dev)
1744{
1745 struct rhine_private *rp = netdev_priv(dev);
1746
1747 return mii_nway_restart(&rp->mii_if);
1748}
1749
1750static u32 netdev_get_link(struct net_device *dev)
1751{
1752 struct rhine_private *rp = netdev_priv(dev);
1753
1754 return mii_link_ok(&rp->mii_if);
1755}
1756
1757static u32 netdev_get_msglevel(struct net_device *dev)
1758{
1759 return debug;
1760}
1761
1762static void netdev_set_msglevel(struct net_device *dev, u32 value)
1763{
1764 debug = value;
1765}
1766
1767static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1768{
1769 struct rhine_private *rp = netdev_priv(dev);
1770
1771 if (!(rp->quirks & rqWOL))
1772 return;
1773
1774 spin_lock_irq(&rp->lock);
1775 wol->supported = WAKE_PHY | WAKE_MAGIC |
1776 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1777 wol->wolopts = rp->wolopts;
1778 spin_unlock_irq(&rp->lock);
1779}
1780
1781static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1782{
1783 struct rhine_private *rp = netdev_priv(dev);
1784 u32 support = WAKE_PHY | WAKE_MAGIC |
1785 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1786
1787 if (!(rp->quirks & rqWOL))
1788 return -EINVAL;
1789
1790 if (wol->wolopts & ~support)
1791 return -EINVAL;
1792
1793 spin_lock_irq(&rp->lock);
1794 rp->wolopts = wol->wolopts;
1795 spin_unlock_irq(&rp->lock);
1796
1797 return 0;
1798}
1799
7282d491 1800static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
1801 .get_drvinfo = netdev_get_drvinfo,
1802 .get_settings = netdev_get_settings,
1803 .set_settings = netdev_set_settings,
1804 .nway_reset = netdev_nway_reset,
1805 .get_link = netdev_get_link,
1806 .get_msglevel = netdev_get_msglevel,
1807 .set_msglevel = netdev_set_msglevel,
1808 .get_wol = rhine_get_wol,
1809 .set_wol = rhine_set_wol,
1810 .get_sg = ethtool_op_get_sg,
1811 .get_tx_csum = ethtool_op_get_tx_csum,
b81e8e1f 1812 .get_perm_addr = ethtool_op_get_perm_addr,
1da177e4
LT
1813};
1814
1815static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1816{
1817 struct rhine_private *rp = netdev_priv(dev);
1818 int rc;
1819
1820 if (!netif_running(dev))
1821 return -EINVAL;
1822
1823 spin_lock_irq(&rp->lock);
1824 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1825 spin_unlock_irq(&rp->lock);
00b428c2 1826 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1827
1828 return rc;
1829}
1830
1831static int rhine_close(struct net_device *dev)
1832{
1833 struct rhine_private *rp = netdev_priv(dev);
1834 void __iomem *ioaddr = rp->base;
1835
1836 spin_lock_irq(&rp->lock);
1837
1838 netif_stop_queue(dev);
633949a1 1839 netif_poll_disable(dev);
1da177e4
LT
1840
1841 if (debug > 1)
1842 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1843 "status was %4.4x.\n",
1844 dev->name, ioread16(ioaddr + ChipCmd));
1845
1846 /* Switch to loopback mode to avoid hardware races. */
1847 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1848
1849 /* Disable interrupts by clearing the interrupt mask. */
1850 iowrite16(0x0000, ioaddr + IntrEnable);
1851
1852 /* Stop the chip's Tx and Rx processes. */
1853 iowrite16(CmdStop, ioaddr + ChipCmd);
1854
1855 spin_unlock_irq(&rp->lock);
1856
1857 free_irq(rp->pdev->irq, dev);
1858 free_rbufs(dev);
1859 free_tbufs(dev);
1860 free_ring(dev);
1861
1862 return 0;
1863}
1864
1865
1866static void __devexit rhine_remove_one(struct pci_dev *pdev)
1867{
1868 struct net_device *dev = pci_get_drvdata(pdev);
1869 struct rhine_private *rp = netdev_priv(dev);
1870
1871 unregister_netdev(dev);
1872
1873 pci_iounmap(pdev, rp->base);
1874 pci_release_regions(pdev);
1875
1876 free_netdev(dev);
1877 pci_disable_device(pdev);
1878 pci_set_drvdata(pdev, NULL);
1879}
1880
d18c3db5 1881static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 1882{
1da177e4
LT
1883 struct net_device *dev = pci_get_drvdata(pdev);
1884 struct rhine_private *rp = netdev_priv(dev);
1885 void __iomem *ioaddr = rp->base;
1886
1887 if (!(rp->quirks & rqWOL))
1888 return; /* Nothing to do for non-WOL adapters */
1889
1890 rhine_power_init(dev);
1891
1892 /* Make sure we use pattern 0, 1 and not 4, 5 */
1893 if (rp->quirks & rq6patterns)
1894 iowrite8(0x04, ioaddr + 0xA7);
1895
1896 if (rp->wolopts & WAKE_MAGIC) {
1897 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1898 /*
1899 * Turn EEPROM-controlled wake-up back on -- some hardware may
1900 * not cooperate otherwise.
1901 */
1902 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1903 }
1904
1905 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1906 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1907
1908 if (rp->wolopts & WAKE_PHY)
1909 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1910
1911 if (rp->wolopts & WAKE_UCAST)
1912 iowrite8(WOLucast, ioaddr + WOLcrSet);
1913
1914 if (rp->wolopts) {
1915 /* Enable legacy WOL (for old motherboards) */
1916 iowrite8(0x01, ioaddr + PwcfgSet);
1917 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1918 }
1919
1920 /* Hit power state D3 (sleep) */
b933b4d9
RL
1921 if (!avoid_D3)
1922 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4
LT
1923
1924 /* TODO: Check use of pci_enable_wake() */
1925
1926}
1927
1928#ifdef CONFIG_PM
1929static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1930{
1931 struct net_device *dev = pci_get_drvdata(pdev);
1932 struct rhine_private *rp = netdev_priv(dev);
1933 unsigned long flags;
1934
1935 if (!netif_running(dev))
1936 return 0;
1937
1938 netif_device_detach(dev);
1939 pci_save_state(pdev);
1940
1941 spin_lock_irqsave(&rp->lock, flags);
d18c3db5 1942 rhine_shutdown(pdev);
1da177e4
LT
1943 spin_unlock_irqrestore(&rp->lock, flags);
1944
1945 free_irq(dev->irq, dev);
1946 return 0;
1947}
1948
1949static int rhine_resume(struct pci_dev *pdev)
1950{
1951 struct net_device *dev = pci_get_drvdata(pdev);
1952 struct rhine_private *rp = netdev_priv(dev);
1953 unsigned long flags;
1954 int ret;
1955
1956 if (!netif_running(dev))
1957 return 0;
1958
1fb9df5d 1959 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1da177e4
LT
1960 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1961
1962 ret = pci_set_power_state(pdev, PCI_D0);
1963 if (debug > 1)
1964 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1965 dev->name, ret ? "failed" : "succeeded", ret);
1966
1967 pci_restore_state(pdev);
1968
1969 spin_lock_irqsave(&rp->lock, flags);
1970#ifdef USE_MMIO
1971 enable_mmio(rp->pioaddr, rp->quirks);
1972#endif
1973 rhine_power_init(dev);
1974 free_tbufs(dev);
1975 free_rbufs(dev);
1976 alloc_tbufs(dev);
1977 alloc_rbufs(dev);
1978 init_registers(dev);
1979 spin_unlock_irqrestore(&rp->lock, flags);
1980
1981 netif_device_attach(dev);
1982
1983 return 0;
1984}
1985#endif /* CONFIG_PM */
1986
1987static struct pci_driver rhine_driver = {
1988 .name = DRV_NAME,
1989 .id_table = rhine_pci_tbl,
1990 .probe = rhine_init_one,
1991 .remove = __devexit_p(rhine_remove_one),
1992#ifdef CONFIG_PM
1993 .suspend = rhine_suspend,
1994 .resume = rhine_resume,
1995#endif /* CONFIG_PM */
d18c3db5 1996 .shutdown = rhine_shutdown,
1da177e4
LT
1997};
1998
e84df485
RL
1999static struct dmi_system_id __initdata rhine_dmi_table[] = {
2000 {
2001 .ident = "EPIA-M",
2002 .matches = {
2003 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2004 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2005 },
2006 },
2007 {
2008 .ident = "KV7",
2009 .matches = {
2010 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2011 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2012 },
2013 },
2014 { NULL }
2015};
1da177e4
LT
2016
2017static int __init rhine_init(void)
2018{
2019/* when a module, this is printed whether or not devices are found in probe */
2020#ifdef MODULE
2021 printk(version);
2022#endif
e84df485
RL
2023 if (dmi_check_system(rhine_dmi_table)) {
2024 /* these BIOSes fail at PXE boot if chip is in D3 */
2025 avoid_D3 = 1;
2026 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2027 "enabled.\n",
2028 DRV_NAME);
2029 }
2030 else if (avoid_D3)
2031 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2032
29917620 2033 return pci_register_driver(&rhine_driver);
1da177e4
LT
2034}
2035
2036
2037static void __exit rhine_cleanup(void)
2038{
2039 pci_unregister_driver(&rhine_driver);
2040}
2041
2042
2043module_init(rhine_init);
2044module_exit(rhine_cleanup);