sfc: Refactor channel and queue lookup and iteration
[linux-2.6-block.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
1ab00629
SH
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
28b581ab
NT
116static unsigned int separate_tx_channels;
117module_param(separate_tx_channels, uint, 0644);
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130unsigned int efx_monitor_interval = 1 * HZ;
131
8ceee660
BH
132/* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139static unsigned int allow_bad_hwaddr;
140
141/* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147static unsigned int rx_irq_mod_usec = 60;
148
149/* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
157 */
158static unsigned int tx_irq_mod_usec = 150;
159
160/* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165static unsigned int interrupt_mode;
166
167/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174static unsigned int rss_cpus;
175module_param(rss_cpus, uint, 0444);
176MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
84ae48fe
BH
178static int phy_flash_cfg;
179module_param(phy_flash_cfg, int, 0644);
180MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
6fb70fd1
BH
182static unsigned irq_adapt_low_thresh = 10000;
183module_param(irq_adapt_low_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
186
187static unsigned irq_adapt_high_thresh = 20000;
188module_param(irq_adapt_high_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
191
62776d03
BH
192static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
193 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
194 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
195 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
196module_param(debug, uint, 0);
197MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
198
8ceee660
BH
199/**************************************************************************
200 *
201 * Utility functions and prototypes
202 *
203 *************************************************************************/
204static void efx_remove_channel(struct efx_channel *channel);
205static void efx_remove_port(struct efx_nic *efx);
206static void efx_fini_napi(struct efx_nic *efx);
207static void efx_fini_channels(struct efx_nic *efx);
208
209#define EFX_ASSERT_RESET_SERIALISED(efx) \
210 do { \
332c1ce9
BH
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
8ceee660
BH
213 ASSERT_RTNL(); \
214 } while (0)
215
216/**************************************************************************
217 *
218 * Event queue processing
219 *
220 *************************************************************************/
221
222/* Process channel's event queue
223 *
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
228 */
fa236e18 229static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 230{
42cbe2d7 231 struct efx_nic *efx = channel->efx;
fa236e18 232 int spent;
8ceee660 233
42cbe2d7 234 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 235 !channel->enabled))
42cbe2d7 236 return 0;
8ceee660 237
fa236e18
BH
238 spent = efx_nic_process_eventq(channel, budget);
239 if (spent == 0)
42cbe2d7 240 return 0;
8ceee660
BH
241
242 /* Deliver last RX packet. */
243 if (channel->rx_pkt) {
244 __efx_rx_packet(channel, channel->rx_pkt,
245 channel->rx_pkt_csummed);
246 channel->rx_pkt = NULL;
247 }
248
8ceee660
BH
249 efx_rx_strategy(channel);
250
f7d12cdc 251 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 252
fa236e18 253 return spent;
8ceee660
BH
254}
255
256/* Mark channel as finished processing
257 *
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
261 */
262static inline void efx_channel_processed(struct efx_channel *channel)
263{
5b9e207c
BH
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
dc8cfa55 267 channel->work_pending = false;
5b9e207c
BH
268 smp_wmb();
269
152b6a62 270 efx_nic_eventq_read_ack(channel);
8ceee660
BH
271}
272
273/* NAPI poll handler
274 *
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
277 */
278static int efx_poll(struct napi_struct *napi, int budget)
279{
280 struct efx_channel *channel =
281 container_of(napi, struct efx_channel, napi_str);
62776d03 282 struct efx_nic *efx = channel->efx;
fa236e18 283 int spent;
8ceee660 284
62776d03
BH
285 netif_vdbg(efx, intr, efx->net_dev,
286 "channel %d NAPI poll executing on CPU %d\n",
287 channel->channel, raw_smp_processor_id());
8ceee660 288
fa236e18 289 spent = efx_process_channel(channel, budget);
8ceee660 290
fa236e18 291 if (spent < budget) {
a4900ac9 292 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
293 efx->irq_rx_adaptive &&
294 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
295 if (unlikely(channel->irq_mod_score <
296 irq_adapt_low_thresh)) {
0d86ebd8
BH
297 if (channel->irq_moderation > 1) {
298 channel->irq_moderation -= 1;
ef2b90ee 299 efx->type->push_irq_moderation(channel);
0d86ebd8 300 }
6fb70fd1
BH
301 } else if (unlikely(channel->irq_mod_score >
302 irq_adapt_high_thresh)) {
0d86ebd8
BH
303 if (channel->irq_moderation <
304 efx->irq_rx_moderation) {
305 channel->irq_moderation += 1;
ef2b90ee 306 efx->type->push_irq_moderation(channel);
0d86ebd8 307 }
6fb70fd1 308 }
6fb70fd1
BH
309 channel->irq_count = 0;
310 channel->irq_mod_score = 0;
311 }
312
8ceee660 313 /* There is no race here; although napi_disable() will
288379f0 314 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
317 */
288379f0 318 napi_complete(napi);
8ceee660
BH
319 efx_channel_processed(channel);
320 }
321
fa236e18 322 return spent;
8ceee660
BH
323}
324
325/* Process the eventq of the specified channel immediately on this CPU
326 *
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
330 *
331 * Since we are touching interrupts the caller should hold the suspend lock
332 */
333void efx_process_channel_now(struct efx_channel *channel)
334{
335 struct efx_nic *efx = channel->efx;
336
8ceee660
BH
337 BUG_ON(!channel->enabled);
338
339 /* Disable interrupts and wait for ISRs to complete */
152b6a62 340 efx_nic_disable_interrupts(efx);
8ceee660
BH
341 if (efx->legacy_irq)
342 synchronize_irq(efx->legacy_irq);
64ee3120 343 if (channel->irq)
8ceee660
BH
344 synchronize_irq(channel->irq);
345
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
348
349 /* Poll the channel */
3ffeabdd 350 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
351
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
355
356 napi_enable(&channel->napi_str);
152b6a62 357 efx_nic_enable_interrupts(efx);
8ceee660
BH
358}
359
360/* Create event queue
361 * Event queue memory allocations are done only once. If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
364 */
365static int efx_probe_eventq(struct efx_channel *channel)
366{
62776d03
BH
367 netif_dbg(channel->efx, probe, channel->efx->net_dev,
368 "chan %d create event queue\n", channel->channel);
8ceee660 369
152b6a62 370 return efx_nic_probe_eventq(channel);
8ceee660
BH
371}
372
373/* Prepare channel's event queue */
bc3c90a2 374static void efx_init_eventq(struct efx_channel *channel)
8ceee660 375{
62776d03
BH
376 netif_dbg(channel->efx, drv, channel->efx->net_dev,
377 "chan %d init event queue\n", channel->channel);
8ceee660
BH
378
379 channel->eventq_read_ptr = 0;
380
152b6a62 381 efx_nic_init_eventq(channel);
8ceee660
BH
382}
383
384static void efx_fini_eventq(struct efx_channel *channel)
385{
62776d03
BH
386 netif_dbg(channel->efx, drv, channel->efx->net_dev,
387 "chan %d fini event queue\n", channel->channel);
8ceee660 388
152b6a62 389 efx_nic_fini_eventq(channel);
8ceee660
BH
390}
391
392static void efx_remove_eventq(struct efx_channel *channel)
393{
62776d03
BH
394 netif_dbg(channel->efx, drv, channel->efx->net_dev,
395 "chan %d remove event queue\n", channel->channel);
8ceee660 396
152b6a62 397 efx_nic_remove_eventq(channel);
8ceee660
BH
398}
399
400/**************************************************************************
401 *
402 * Channel handling
403 *
404 *************************************************************************/
405
8ceee660
BH
406static int efx_probe_channel(struct efx_channel *channel)
407{
408 struct efx_tx_queue *tx_queue;
409 struct efx_rx_queue *rx_queue;
410 int rc;
411
62776d03
BH
412 netif_dbg(channel->efx, probe, channel->efx->net_dev,
413 "creating channel %d\n", channel->channel);
8ceee660
BH
414
415 rc = efx_probe_eventq(channel);
416 if (rc)
417 goto fail1;
418
419 efx_for_each_channel_tx_queue(tx_queue, channel) {
420 rc = efx_probe_tx_queue(tx_queue);
421 if (rc)
422 goto fail2;
423 }
424
425 efx_for_each_channel_rx_queue(rx_queue, channel) {
426 rc = efx_probe_rx_queue(rx_queue);
427 if (rc)
428 goto fail3;
429 }
430
431 channel->n_rx_frm_trunc = 0;
432
433 return 0;
434
435 fail3:
436 efx_for_each_channel_rx_queue(rx_queue, channel)
437 efx_remove_rx_queue(rx_queue);
438 fail2:
439 efx_for_each_channel_tx_queue(tx_queue, channel)
440 efx_remove_tx_queue(tx_queue);
441 fail1:
442 return rc;
443}
444
445
56536e9c
BH
446static void efx_set_channel_names(struct efx_nic *efx)
447{
448 struct efx_channel *channel;
449 const char *type = "";
450 int number;
451
452 efx_for_each_channel(channel, efx) {
453 number = channel->channel;
a4900ac9
BH
454 if (efx->n_channels > efx->n_rx_channels) {
455 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
456 type = "-rx";
457 } else {
458 type = "-tx";
a4900ac9 459 number -= efx->n_rx_channels;
56536e9c
BH
460 }
461 }
462 snprintf(channel->name, sizeof(channel->name),
463 "%s%s-%d", efx->name, type, number);
464 }
465}
466
8ceee660
BH
467/* Channels are shutdown and reinitialised whilst the NIC is running
468 * to propagate configuration changes (mtu, checksum offload), or
469 * to clear hardware error conditions
470 */
bc3c90a2 471static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
472{
473 struct efx_tx_queue *tx_queue;
474 struct efx_rx_queue *rx_queue;
475 struct efx_channel *channel;
8ceee660 476
f7f13b0b
BH
477 /* Calculate the rx buffer allocation parameters required to
478 * support the current MTU, including padding for header
479 * alignment and overruns.
480 */
481 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
482 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 483 efx->type->rx_buffer_hash_size +
f7f13b0b 484 efx->type->rx_buffer_padding);
62b330ba
SH
485 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
486 sizeof(struct efx_rx_page_state));
8ceee660
BH
487
488 /* Initialise the channels */
489 efx_for_each_channel(channel, efx) {
62776d03
BH
490 netif_dbg(channel->efx, drv, channel->efx->net_dev,
491 "init chan %d\n", channel->channel);
8ceee660 492
bc3c90a2 493 efx_init_eventq(channel);
8ceee660 494
bc3c90a2
BH
495 efx_for_each_channel_tx_queue(tx_queue, channel)
496 efx_init_tx_queue(tx_queue);
8ceee660
BH
497
498 /* The rx buffer allocation strategy is MTU dependent */
499 efx_rx_strategy(channel);
500
bc3c90a2
BH
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_init_rx_queue(rx_queue);
8ceee660
BH
503
504 WARN_ON(channel->rx_pkt != NULL);
505 efx_rx_strategy(channel);
506 }
8ceee660
BH
507}
508
509/* This enables event queue processing and packet transmission.
510 *
511 * Note that this function is not allowed to fail, since that would
512 * introduce too much complexity into the suspend/resume path.
513 */
514static void efx_start_channel(struct efx_channel *channel)
515{
516 struct efx_rx_queue *rx_queue;
517
62776d03
BH
518 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
519 "starting chan %d\n", channel->channel);
8ceee660 520
5b9e207c
BH
521 /* The interrupt handler for this channel may set work_pending
522 * as soon as we enable it. Make sure it's cleared before
523 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
524 channel->work_pending = false;
525 channel->enabled = true;
5b9e207c 526 smp_wmb();
8ceee660 527
90d683af 528 /* Fill the queues before enabling NAPI */
8ceee660
BH
529 efx_for_each_channel_rx_queue(rx_queue, channel)
530 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
531
532 napi_enable(&channel->napi_str);
8ceee660
BH
533}
534
535/* This disables event queue processing and packet transmission.
536 * This function does not guarantee that all queue processing
537 * (e.g. RX refill) is complete.
538 */
539static void efx_stop_channel(struct efx_channel *channel)
540{
8ceee660
BH
541 if (!channel->enabled)
542 return;
543
62776d03
BH
544 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
545 "stop chan %d\n", channel->channel);
8ceee660 546
dc8cfa55 547 channel->enabled = false;
8ceee660 548 napi_disable(&channel->napi_str);
8ceee660
BH
549}
550
551static void efx_fini_channels(struct efx_nic *efx)
552{
553 struct efx_channel *channel;
554 struct efx_tx_queue *tx_queue;
555 struct efx_rx_queue *rx_queue;
6bc5d3a9 556 int rc;
8ceee660
BH
557
558 EFX_ASSERT_RESET_SERIALISED(efx);
559 BUG_ON(efx->port_enabled);
560
152b6a62 561 rc = efx_nic_flush_queues(efx);
fd371e32
SH
562 if (rc && EFX_WORKAROUND_7803(efx)) {
563 /* Schedule a reset to recover from the flush failure. The
564 * descriptor caches reference memory we're about to free,
565 * but falcon_reconfigure_mac_wrapper() won't reconnect
566 * the MACs because of the pending reset. */
62776d03
BH
567 netif_err(efx, drv, efx->net_dev,
568 "Resetting to recover from flush failure\n");
fd371e32
SH
569 efx_schedule_reset(efx, RESET_TYPE_ALL);
570 } else if (rc) {
62776d03 571 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 572 } else {
62776d03
BH
573 netif_dbg(efx, drv, efx->net_dev,
574 "successfully flushed all queues\n");
fd371e32 575 }
6bc5d3a9 576
8ceee660 577 efx_for_each_channel(channel, efx) {
62776d03
BH
578 netif_dbg(channel->efx, drv, channel->efx->net_dev,
579 "shut down chan %d\n", channel->channel);
8ceee660
BH
580
581 efx_for_each_channel_rx_queue(rx_queue, channel)
582 efx_fini_rx_queue(rx_queue);
583 efx_for_each_channel_tx_queue(tx_queue, channel)
584 efx_fini_tx_queue(tx_queue);
8ceee660
BH
585 efx_fini_eventq(channel);
586 }
587}
588
589static void efx_remove_channel(struct efx_channel *channel)
590{
591 struct efx_tx_queue *tx_queue;
592 struct efx_rx_queue *rx_queue;
593
62776d03
BH
594 netif_dbg(channel->efx, drv, channel->efx->net_dev,
595 "destroy chan %d\n", channel->channel);
8ceee660
BH
596
597 efx_for_each_channel_rx_queue(rx_queue, channel)
598 efx_remove_rx_queue(rx_queue);
599 efx_for_each_channel_tx_queue(tx_queue, channel)
600 efx_remove_tx_queue(tx_queue);
601 efx_remove_eventq(channel);
8ceee660
BH
602}
603
90d683af 604void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 605{
90d683af 606 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
607}
608
609/**************************************************************************
610 *
611 * Port handling
612 *
613 **************************************************************************/
614
615/* This ensures that the kernel is kept informed (via
616 * netif_carrier_on/off) of the link status, and also maintains the
617 * link status's stop on the port's TX queue.
618 */
fdaa9aed 619void efx_link_status_changed(struct efx_nic *efx)
8ceee660 620{
eb50c0d6
BH
621 struct efx_link_state *link_state = &efx->link_state;
622
8ceee660
BH
623 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
624 * that no events are triggered between unregister_netdev() and the
625 * driver unloading. A more general condition is that NETDEV_CHANGE
626 * can only be generated between NETDEV_UP and NETDEV_DOWN */
627 if (!netif_running(efx->net_dev))
628 return;
629
8c8661e4
BH
630 if (efx->port_inhibited) {
631 netif_carrier_off(efx->net_dev);
632 return;
633 }
634
eb50c0d6 635 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
636 efx->n_link_state_changes++;
637
eb50c0d6 638 if (link_state->up)
8ceee660
BH
639 netif_carrier_on(efx->net_dev);
640 else
641 netif_carrier_off(efx->net_dev);
642 }
643
644 /* Status message for kernel log */
eb50c0d6 645 if (link_state->up) {
62776d03
BH
646 netif_info(efx, link, efx->net_dev,
647 "link up at %uMbps %s-duplex (MTU %d)%s\n",
648 link_state->speed, link_state->fd ? "full" : "half",
649 efx->net_dev->mtu,
650 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 651 } else {
62776d03 652 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
653 }
654
655}
656
d3245b28
BH
657void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
658{
659 efx->link_advertising = advertising;
660 if (advertising) {
661 if (advertising & ADVERTISED_Pause)
662 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
663 else
664 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
665 if (advertising & ADVERTISED_Asym_Pause)
666 efx->wanted_fc ^= EFX_FC_TX;
667 }
668}
669
670void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
671{
672 efx->wanted_fc = wanted_fc;
673 if (efx->link_advertising) {
674 if (wanted_fc & EFX_FC_RX)
675 efx->link_advertising |= (ADVERTISED_Pause |
676 ADVERTISED_Asym_Pause);
677 else
678 efx->link_advertising &= ~(ADVERTISED_Pause |
679 ADVERTISED_Asym_Pause);
680 if (wanted_fc & EFX_FC_TX)
681 efx->link_advertising ^= ADVERTISED_Asym_Pause;
682 }
683}
684
115122af
BH
685static void efx_fini_port(struct efx_nic *efx);
686
d3245b28
BH
687/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
688 * the MAC appropriately. All other PHY configuration changes are pushed
689 * through phy_op->set_settings(), and pushed asynchronously to the MAC
690 * through efx_monitor().
691 *
692 * Callers must hold the mac_lock
693 */
694int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 695{
d3245b28
BH
696 enum efx_phy_mode phy_mode;
697 int rc;
8ceee660 698
d3245b28 699 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 700
a816f75a
BH
701 /* Serialise the promiscuous flag with efx_set_multicast_list. */
702 if (efx_dev_registered(efx)) {
703 netif_addr_lock_bh(efx->net_dev);
704 netif_addr_unlock_bh(efx->net_dev);
705 }
706
d3245b28
BH
707 /* Disable PHY transmit in mac level loopbacks */
708 phy_mode = efx->phy_mode;
177dfcd8
BH
709 if (LOOPBACK_INTERNAL(efx))
710 efx->phy_mode |= PHY_MODE_TX_DISABLED;
711 else
712 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 713
d3245b28 714 rc = efx->type->reconfigure_port(efx);
8ceee660 715
d3245b28
BH
716 if (rc)
717 efx->phy_mode = phy_mode;
177dfcd8 718
d3245b28 719 return rc;
8ceee660
BH
720}
721
722/* Reinitialise the MAC to pick up new PHY settings, even if the port is
723 * disabled. */
d3245b28 724int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 725{
d3245b28
BH
726 int rc;
727
8ceee660
BH
728 EFX_ASSERT_RESET_SERIALISED(efx);
729
730 mutex_lock(&efx->mac_lock);
d3245b28 731 rc = __efx_reconfigure_port(efx);
8ceee660 732 mutex_unlock(&efx->mac_lock);
d3245b28
BH
733
734 return rc;
8ceee660
BH
735}
736
8be4f3e6
BH
737/* Asynchronous work item for changing MAC promiscuity and multicast
738 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
739 * MAC directly. */
766ca0fa
BH
740static void efx_mac_work(struct work_struct *data)
741{
742 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
743
744 mutex_lock(&efx->mac_lock);
8be4f3e6 745 if (efx->port_enabled) {
ef2b90ee 746 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
747 efx->mac_op->reconfigure(efx);
748 }
766ca0fa
BH
749 mutex_unlock(&efx->mac_lock);
750}
751
8ceee660
BH
752static int efx_probe_port(struct efx_nic *efx)
753{
754 int rc;
755
62776d03 756 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 757
ff3b00a0
SH
758 if (phy_flash_cfg)
759 efx->phy_mode = PHY_MODE_SPECIAL;
760
ef2b90ee
BH
761 /* Connect up MAC/PHY operations table */
762 rc = efx->type->probe_port(efx);
8ceee660 763 if (rc)
e42de262 764 return rc;
8ceee660
BH
765
766 /* Sanity check MAC address */
767 if (is_valid_ether_addr(efx->mac_address)) {
768 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
769 } else {
62776d03
BH
770 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
771 efx->mac_address);
8ceee660
BH
772 if (!allow_bad_hwaddr) {
773 rc = -EINVAL;
774 goto err;
775 }
776 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
777 netif_info(efx, probe, efx->net_dev,
778 "using locally-generated MAC %pM\n",
779 efx->net_dev->dev_addr);
8ceee660
BH
780 }
781
782 return 0;
783
784 err:
e42de262 785 efx->type->remove_port(efx);
8ceee660
BH
786 return rc;
787}
788
789static int efx_init_port(struct efx_nic *efx)
790{
791 int rc;
792
62776d03 793 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 794
1dfc5cea
BH
795 mutex_lock(&efx->mac_lock);
796
177dfcd8 797 rc = efx->phy_op->init(efx);
8ceee660 798 if (rc)
1dfc5cea 799 goto fail1;
8ceee660 800
dc8cfa55 801 efx->port_initialized = true;
1dfc5cea 802
d3245b28
BH
803 /* Reconfigure the MAC before creating dma queues (required for
804 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
805 efx->mac_op->reconfigure(efx);
806
807 /* Ensure the PHY advertises the correct flow control settings */
808 rc = efx->phy_op->reconfigure(efx);
809 if (rc)
810 goto fail2;
811
1dfc5cea 812 mutex_unlock(&efx->mac_lock);
8ceee660 813 return 0;
177dfcd8 814
1dfc5cea 815fail2:
177dfcd8 816 efx->phy_op->fini(efx);
1dfc5cea
BH
817fail1:
818 mutex_unlock(&efx->mac_lock);
177dfcd8 819 return rc;
8ceee660
BH
820}
821
8ceee660
BH
822static void efx_start_port(struct efx_nic *efx)
823{
62776d03 824 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
825 BUG_ON(efx->port_enabled);
826
827 mutex_lock(&efx->mac_lock);
dc8cfa55 828 efx->port_enabled = true;
8be4f3e6
BH
829
830 /* efx_mac_work() might have been scheduled after efx_stop_port(),
831 * and then cancelled by efx_flush_all() */
ef2b90ee 832 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
833 efx->mac_op->reconfigure(efx);
834
8ceee660
BH
835 mutex_unlock(&efx->mac_lock);
836}
837
fdaa9aed 838/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
839static void efx_stop_port(struct efx_nic *efx)
840{
62776d03 841 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
842
843 mutex_lock(&efx->mac_lock);
dc8cfa55 844 efx->port_enabled = false;
8ceee660
BH
845 mutex_unlock(&efx->mac_lock);
846
847 /* Serialise against efx_set_multicast_list() */
55668611 848 if (efx_dev_registered(efx)) {
b9e40857
DM
849 netif_addr_lock_bh(efx->net_dev);
850 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
851 }
852}
853
854static void efx_fini_port(struct efx_nic *efx)
855{
62776d03 856 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
857
858 if (!efx->port_initialized)
859 return;
860
177dfcd8 861 efx->phy_op->fini(efx);
dc8cfa55 862 efx->port_initialized = false;
8ceee660 863
eb50c0d6 864 efx->link_state.up = false;
8ceee660
BH
865 efx_link_status_changed(efx);
866}
867
868static void efx_remove_port(struct efx_nic *efx)
869{
62776d03 870 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 871
ef2b90ee 872 efx->type->remove_port(efx);
8ceee660
BH
873}
874
875/**************************************************************************
876 *
877 * NIC handling
878 *
879 **************************************************************************/
880
881/* This configures the PCI device to enable I/O and DMA. */
882static int efx_init_io(struct efx_nic *efx)
883{
884 struct pci_dev *pci_dev = efx->pci_dev;
885 dma_addr_t dma_mask = efx->type->max_dma_mask;
886 int rc;
887
62776d03 888 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
889
890 rc = pci_enable_device(pci_dev);
891 if (rc) {
62776d03
BH
892 netif_err(efx, probe, efx->net_dev,
893 "failed to enable PCI device\n");
8ceee660
BH
894 goto fail1;
895 }
896
897 pci_set_master(pci_dev);
898
899 /* Set the PCI DMA mask. Try all possibilities from our
900 * genuine mask down to 32 bits, because some architectures
901 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
902 * masks event though they reject 46 bit masks.
903 */
904 while (dma_mask > 0x7fffffffUL) {
905 if (pci_dma_supported(pci_dev, dma_mask) &&
906 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
907 break;
908 dma_mask >>= 1;
909 }
910 if (rc) {
62776d03
BH
911 netif_err(efx, probe, efx->net_dev,
912 "could not find a suitable DMA mask\n");
8ceee660
BH
913 goto fail2;
914 }
62776d03
BH
915 netif_dbg(efx, probe, efx->net_dev,
916 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
917 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
918 if (rc) {
919 /* pci_set_consistent_dma_mask() is not *allowed* to
920 * fail with a mask that pci_set_dma_mask() accepted,
921 * but just in case...
922 */
62776d03
BH
923 netif_err(efx, probe, efx->net_dev,
924 "failed to set consistent DMA mask\n");
8ceee660
BH
925 goto fail2;
926 }
927
dc803df8
BH
928 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
929 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 930 if (rc) {
62776d03
BH
931 netif_err(efx, probe, efx->net_dev,
932 "request for memory BAR failed\n");
8ceee660
BH
933 rc = -EIO;
934 goto fail3;
935 }
936 efx->membase = ioremap_nocache(efx->membase_phys,
937 efx->type->mem_map_size);
938 if (!efx->membase) {
62776d03
BH
939 netif_err(efx, probe, efx->net_dev,
940 "could not map memory BAR at %llx+%x\n",
941 (unsigned long long)efx->membase_phys,
942 efx->type->mem_map_size);
8ceee660
BH
943 rc = -ENOMEM;
944 goto fail4;
945 }
62776d03
BH
946 netif_dbg(efx, probe, efx->net_dev,
947 "memory BAR at %llx+%x (virtual %p)\n",
948 (unsigned long long)efx->membase_phys,
949 efx->type->mem_map_size, efx->membase);
8ceee660
BH
950
951 return 0;
952
953 fail4:
dc803df8 954 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 955 fail3:
2c118e0f 956 efx->membase_phys = 0;
8ceee660
BH
957 fail2:
958 pci_disable_device(efx->pci_dev);
959 fail1:
960 return rc;
961}
962
963static void efx_fini_io(struct efx_nic *efx)
964{
62776d03 965 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
966
967 if (efx->membase) {
968 iounmap(efx->membase);
969 efx->membase = NULL;
970 }
971
972 if (efx->membase_phys) {
dc803df8 973 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 974 efx->membase_phys = 0;
8ceee660
BH
975 }
976
977 pci_disable_device(efx->pci_dev);
978}
979
a4900ac9
BH
980/* Get number of channels wanted. Each channel will have its own IRQ,
981 * 1 RX queue and/or 2 TX queues. */
982static int efx_wanted_channels(void)
46123d04 983{
2f8975fb 984 cpumask_var_t core_mask;
46123d04
BH
985 int count;
986 int cpu;
987
79f55997 988 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 989 printk(KERN_WARNING
3977d033 990 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
991 return 1;
992 }
993
46123d04
BH
994 count = 0;
995 for_each_online_cpu(cpu) {
2f8975fb 996 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 997 ++count;
2f8975fb 998 cpumask_or(core_mask, core_mask,
fbd59a8d 999 topology_core_cpumask(cpu));
46123d04
BH
1000 }
1001 }
1002
2f8975fb 1003 free_cpumask_var(core_mask);
46123d04
BH
1004 return count;
1005}
1006
1007/* Probe the number and type of interrupts we are able to obtain, and
1008 * the resulting numbers of channels and RX queues.
1009 */
8ceee660
BH
1010static void efx_probe_interrupts(struct efx_nic *efx)
1011{
46123d04
BH
1012 int max_channels =
1013 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1014 int rc, i;
1015
1016 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1017 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1018 int n_channels;
aa6ef27e 1019
a4900ac9
BH
1020 n_channels = efx_wanted_channels();
1021 if (separate_tx_channels)
1022 n_channels *= 2;
1023 n_channels = min(n_channels, max_channels);
8ceee660 1024
a4900ac9 1025 for (i = 0; i < n_channels; i++)
8ceee660 1026 xentries[i].entry = i;
a4900ac9 1027 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1028 if (rc > 0) {
62776d03
BH
1029 netif_err(efx, drv, efx->net_dev,
1030 "WARNING: Insufficient MSI-X vectors"
1031 " available (%d < %d).\n", rc, n_channels);
1032 netif_err(efx, drv, efx->net_dev,
1033 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1034 EFX_BUG_ON_PARANOID(rc >= n_channels);
1035 n_channels = rc;
8ceee660 1036 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1037 n_channels);
8ceee660
BH
1038 }
1039
1040 if (rc == 0) {
a4900ac9
BH
1041 efx->n_channels = n_channels;
1042 if (separate_tx_channels) {
1043 efx->n_tx_channels =
1044 max(efx->n_channels / 2, 1U);
1045 efx->n_rx_channels =
1046 max(efx->n_channels -
1047 efx->n_tx_channels, 1U);
1048 } else {
1049 efx->n_tx_channels = efx->n_channels;
1050 efx->n_rx_channels = efx->n_channels;
1051 }
1052 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1053 efx_get_channel(efx, i)->irq =
1054 xentries[i].vector;
8ceee660
BH
1055 } else {
1056 /* Fall back to single channel MSI */
1057 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1058 netif_err(efx, drv, efx->net_dev,
1059 "could not enable MSI-X\n");
8ceee660
BH
1060 }
1061 }
1062
1063 /* Try single interrupt MSI */
1064 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1065 efx->n_channels = 1;
a4900ac9
BH
1066 efx->n_rx_channels = 1;
1067 efx->n_tx_channels = 1;
8ceee660
BH
1068 rc = pci_enable_msi(efx->pci_dev);
1069 if (rc == 0) {
f7d12cdc 1070 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1071 } else {
62776d03
BH
1072 netif_err(efx, drv, efx->net_dev,
1073 "could not enable MSI\n");
8ceee660
BH
1074 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1075 }
1076 }
1077
1078 /* Assume legacy interrupts */
1079 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1080 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1081 efx->n_rx_channels = 1;
1082 efx->n_tx_channels = 1;
8ceee660
BH
1083 efx->legacy_irq = efx->pci_dev->irq;
1084 }
1085}
1086
1087static void efx_remove_interrupts(struct efx_nic *efx)
1088{
1089 struct efx_channel *channel;
1090
1091 /* Remove MSI/MSI-X interrupts */
64ee3120 1092 efx_for_each_channel(channel, efx)
8ceee660
BH
1093 channel->irq = 0;
1094 pci_disable_msi(efx->pci_dev);
1095 pci_disable_msix(efx->pci_dev);
1096
1097 /* Remove legacy interrupt */
1098 efx->legacy_irq = 0;
1099}
1100
8831da7b 1101static void efx_set_channels(struct efx_nic *efx)
8ceee660 1102{
a4900ac9 1103 struct efx_channel *channel;
8ceee660
BH
1104 struct efx_tx_queue *tx_queue;
1105 struct efx_rx_queue *rx_queue;
a4900ac9
BH
1106 unsigned tx_channel_offset =
1107 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1108
a4900ac9
BH
1109 efx_for_each_channel(channel, efx) {
1110 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1111 channel->tx_queue = &efx->tx_queue[
1112 (channel->channel - tx_channel_offset) *
1113 EFX_TXQ_TYPES];
1114 efx_for_each_channel_tx_queue(tx_queue, channel)
1115 tx_queue->channel = channel;
1116 }
60ac1065 1117 }
8ceee660 1118
a4900ac9 1119 efx_for_each_rx_queue(rx_queue, efx)
8831da7b 1120 rx_queue->channel = &efx->channel[rx_queue->queue];
8ceee660
BH
1121}
1122
1123static int efx_probe_nic(struct efx_nic *efx)
1124{
765c9f46 1125 size_t i;
8ceee660
BH
1126 int rc;
1127
62776d03 1128 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1129
1130 /* Carry out hardware-type specific initialisation */
ef2b90ee 1131 rc = efx->type->probe(efx);
8ceee660
BH
1132 if (rc)
1133 return rc;
1134
a4900ac9 1135 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1136 * in MSI-X interrupts. */
1137 efx_probe_interrupts(efx);
1138
5d3a6fca
BH
1139 if (efx->n_channels > 1)
1140 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46
BH
1141 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1142 efx->rx_indir_table[i] = i % efx->n_rx_channels;
5d3a6fca 1143
8831da7b 1144 efx_set_channels(efx);
a4900ac9 1145 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1146
1147 /* Initialise the interrupt moderation settings */
6fb70fd1 1148 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1149
1150 return 0;
1151}
1152
1153static void efx_remove_nic(struct efx_nic *efx)
1154{
62776d03 1155 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1156
1157 efx_remove_interrupts(efx);
ef2b90ee 1158 efx->type->remove(efx);
8ceee660
BH
1159}
1160
1161/**************************************************************************
1162 *
1163 * NIC startup/shutdown
1164 *
1165 *************************************************************************/
1166
1167static int efx_probe_all(struct efx_nic *efx)
1168{
1169 struct efx_channel *channel;
1170 int rc;
1171
1172 /* Create NIC */
1173 rc = efx_probe_nic(efx);
1174 if (rc) {
62776d03 1175 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1176 goto fail1;
1177 }
1178
1179 /* Create port */
1180 rc = efx_probe_port(efx);
1181 if (rc) {
62776d03 1182 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1183 goto fail2;
1184 }
1185
1186 /* Create channels */
1187 efx_for_each_channel(channel, efx) {
1188 rc = efx_probe_channel(channel);
1189 if (rc) {
62776d03
BH
1190 netif_err(efx, probe, efx->net_dev,
1191 "failed to create channel %d\n",
1192 channel->channel);
8ceee660
BH
1193 goto fail3;
1194 }
1195 }
56536e9c 1196 efx_set_channel_names(efx);
8ceee660
BH
1197
1198 return 0;
1199
1200 fail3:
1201 efx_for_each_channel(channel, efx)
1202 efx_remove_channel(channel);
1203 efx_remove_port(efx);
1204 fail2:
1205 efx_remove_nic(efx);
1206 fail1:
1207 return rc;
1208}
1209
1210/* Called after previous invocation(s) of efx_stop_all, restarts the
1211 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1212 * and ensures that the port is scheduled to be reconfigured.
1213 * This function is safe to call multiple times when the NIC is in any
1214 * state. */
1215static void efx_start_all(struct efx_nic *efx)
1216{
1217 struct efx_channel *channel;
1218
1219 EFX_ASSERT_RESET_SERIALISED(efx);
1220
1221 /* Check that it is appropriate to restart the interface. All
1222 * of these flags are safe to read under just the rtnl lock */
1223 if (efx->port_enabled)
1224 return;
1225 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1226 return;
55668611 1227 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1228 return;
1229
1230 /* Mark the port as enabled so port reconfigurations can start, then
1231 * restart the transmit interface early so the watchdog timer stops */
1232 efx_start_port(efx);
8ceee660 1233
a4900ac9
BH
1234 efx_for_each_channel(channel, efx) {
1235 if (efx_dev_registered(efx))
1236 efx_wake_queue(channel);
8ceee660 1237 efx_start_channel(channel);
a4900ac9 1238 }
8ceee660 1239
152b6a62 1240 efx_nic_enable_interrupts(efx);
8ceee660 1241
8880f4ec
BH
1242 /* Switch to event based MCDI completions after enabling interrupts.
1243 * If a reset has been scheduled, then we need to stay in polled mode.
1244 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1245 * reset_pending [modified from an atomic context], we instead guarantee
1246 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1247 efx_mcdi_mode_event(efx);
1248 if (efx->reset_pending != RESET_TYPE_NONE)
1249 efx_mcdi_mode_poll(efx);
1250
78c1f0a0
SH
1251 /* Start the hardware monitor if there is one. Otherwise (we're link
1252 * event driven), we have to poll the PHY because after an event queue
1253 * flush, we could have a missed a link state change */
1254 if (efx->type->monitor != NULL) {
8ceee660
BH
1255 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1256 efx_monitor_interval);
78c1f0a0
SH
1257 } else {
1258 mutex_lock(&efx->mac_lock);
1259 if (efx->phy_op->poll(efx))
1260 efx_link_status_changed(efx);
1261 mutex_unlock(&efx->mac_lock);
1262 }
55edc6e6 1263
ef2b90ee 1264 efx->type->start_stats(efx);
8ceee660
BH
1265}
1266
1267/* Flush all delayed work. Should only be called when no more delayed work
1268 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1269 * since we're holding the rtnl_lock at this point. */
1270static void efx_flush_all(struct efx_nic *efx)
1271{
8ceee660
BH
1272 /* Make sure the hardware monitor is stopped */
1273 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1274 /* Stop scheduled port reconfigurations */
766ca0fa 1275 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1276}
1277
1278/* Quiesce hardware and software without bringing the link down.
1279 * Safe to call multiple times, when the nic and interface is in any
1280 * state. The caller is guaranteed to subsequently be in a position
1281 * to modify any hardware and software state they see fit without
1282 * taking locks. */
1283static void efx_stop_all(struct efx_nic *efx)
1284{
1285 struct efx_channel *channel;
1286
1287 EFX_ASSERT_RESET_SERIALISED(efx);
1288
1289 /* port_enabled can be read safely under the rtnl lock */
1290 if (!efx->port_enabled)
1291 return;
1292
ef2b90ee 1293 efx->type->stop_stats(efx);
55edc6e6 1294
8880f4ec
BH
1295 /* Switch to MCDI polling on Siena before disabling interrupts */
1296 efx_mcdi_mode_poll(efx);
1297
8ceee660 1298 /* Disable interrupts and wait for ISR to complete */
152b6a62 1299 efx_nic_disable_interrupts(efx);
8ceee660
BH
1300 if (efx->legacy_irq)
1301 synchronize_irq(efx->legacy_irq);
64ee3120 1302 efx_for_each_channel(channel, efx) {
8ceee660
BH
1303 if (channel->irq)
1304 synchronize_irq(channel->irq);
b3475645 1305 }
8ceee660
BH
1306
1307 /* Stop all NAPI processing and synchronous rx refills */
1308 efx_for_each_channel(channel, efx)
1309 efx_stop_channel(channel);
1310
1311 /* Stop all asynchronous port reconfigurations. Since all
1312 * event processing has already been stopped, there is no
1313 * window to loose phy events */
1314 efx_stop_port(efx);
1315
fdaa9aed 1316 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1317 efx_flush_all(efx);
1318
8ceee660
BH
1319 /* Stop the kernel transmit interface late, so the watchdog
1320 * timer isn't ticking over the flush */
55668611 1321 if (efx_dev_registered(efx)) {
a4900ac9
BH
1322 struct efx_channel *channel;
1323 efx_for_each_channel(channel, efx)
1324 efx_stop_queue(channel);
8ceee660
BH
1325 netif_tx_lock_bh(efx->net_dev);
1326 netif_tx_unlock_bh(efx->net_dev);
1327 }
1328}
1329
1330static void efx_remove_all(struct efx_nic *efx)
1331{
1332 struct efx_channel *channel;
1333
1334 efx_for_each_channel(channel, efx)
1335 efx_remove_channel(channel);
1336 efx_remove_port(efx);
1337 efx_remove_nic(efx);
1338}
1339
8ceee660
BH
1340/**************************************************************************
1341 *
1342 * Interrupt moderation
1343 *
1344 **************************************************************************/
1345
0d86ebd8
BH
1346static unsigned irq_mod_ticks(int usecs, int resolution)
1347{
1348 if (usecs <= 0)
1349 return 0; /* cannot receive interrupts ahead of time :-) */
1350 if (usecs < resolution)
1351 return 1; /* never round down to 0 */
1352 return usecs / resolution;
1353}
1354
8ceee660 1355/* Set interrupt moderation parameters */
6fb70fd1
BH
1356void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1357 bool rx_adaptive)
8ceee660 1358{
f7d12cdc 1359 struct efx_channel *channel;
152b6a62
BH
1360 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1361 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1362
1363 EFX_ASSERT_RESET_SERIALISED(efx);
1364
6fb70fd1 1365 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1366 efx->irq_rx_moderation = rx_ticks;
f7d12cdc
BH
1367 efx_for_each_channel(channel, efx) {
1368 if (efx_channel_get_rx_queue(channel))
1369 channel->irq_moderation = rx_ticks;
1370 else if (efx_channel_get_tx_queue(channel, 0))
1371 channel->irq_moderation = tx_ticks;
1372 }
8ceee660
BH
1373}
1374
1375/**************************************************************************
1376 *
1377 * Hardware monitor
1378 *
1379 **************************************************************************/
1380
1381/* Run periodically off the general workqueue. Serialised against
1382 * efx_reconfigure_port via the mac_lock */
1383static void efx_monitor(struct work_struct *data)
1384{
1385 struct efx_nic *efx = container_of(data, struct efx_nic,
1386 monitor_work.work);
8ceee660 1387
62776d03
BH
1388 netif_vdbg(efx, timer, efx->net_dev,
1389 "hardware monitor executing on CPU %d\n",
1390 raw_smp_processor_id());
ef2b90ee 1391 BUG_ON(efx->type->monitor == NULL);
8ceee660 1392
8ceee660
BH
1393 /* If the mac_lock is already held then it is likely a port
1394 * reconfiguration is already in place, which will likely do
1395 * most of the work of check_hw() anyway. */
766ca0fa
BH
1396 if (!mutex_trylock(&efx->mac_lock))
1397 goto out_requeue;
1398 if (!efx->port_enabled)
1399 goto out_unlock;
ef2b90ee 1400 efx->type->monitor(efx);
8ceee660 1401
766ca0fa 1402out_unlock:
8ceee660 1403 mutex_unlock(&efx->mac_lock);
766ca0fa 1404out_requeue:
8ceee660
BH
1405 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1406 efx_monitor_interval);
1407}
1408
1409/**************************************************************************
1410 *
1411 * ioctls
1412 *
1413 *************************************************************************/
1414
1415/* Net device ioctl
1416 * Context: process, rtnl_lock() held.
1417 */
1418static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1419{
767e468c 1420 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1421 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1422
1423 EFX_ASSERT_RESET_SERIALISED(efx);
1424
68e7f45e
BH
1425 /* Convert phy_id from older PRTAD/DEVAD format */
1426 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1427 (data->phy_id & 0xfc00) == 0x0400)
1428 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1429
1430 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1431}
1432
1433/**************************************************************************
1434 *
1435 * NAPI interface
1436 *
1437 **************************************************************************/
1438
1439static int efx_init_napi(struct efx_nic *efx)
1440{
1441 struct efx_channel *channel;
8ceee660
BH
1442
1443 efx_for_each_channel(channel, efx) {
1444 channel->napi_dev = efx->net_dev;
718cff1e
BH
1445 netif_napi_add(channel->napi_dev, &channel->napi_str,
1446 efx_poll, napi_weight);
8ceee660
BH
1447 }
1448 return 0;
8ceee660
BH
1449}
1450
1451static void efx_fini_napi(struct efx_nic *efx)
1452{
1453 struct efx_channel *channel;
1454
1455 efx_for_each_channel(channel, efx) {
718cff1e
BH
1456 if (channel->napi_dev)
1457 netif_napi_del(&channel->napi_str);
8ceee660
BH
1458 channel->napi_dev = NULL;
1459 }
1460}
1461
1462/**************************************************************************
1463 *
1464 * Kernel netpoll interface
1465 *
1466 *************************************************************************/
1467
1468#ifdef CONFIG_NET_POLL_CONTROLLER
1469
1470/* Although in the common case interrupts will be disabled, this is not
1471 * guaranteed. However, all our work happens inside the NAPI callback,
1472 * so no locking is required.
1473 */
1474static void efx_netpoll(struct net_device *net_dev)
1475{
767e468c 1476 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1477 struct efx_channel *channel;
1478
64ee3120 1479 efx_for_each_channel(channel, efx)
8ceee660
BH
1480 efx_schedule_channel(channel);
1481}
1482
1483#endif
1484
1485/**************************************************************************
1486 *
1487 * Kernel net device interface
1488 *
1489 *************************************************************************/
1490
1491/* Context: process, rtnl_lock() held. */
1492static int efx_net_open(struct net_device *net_dev)
1493{
767e468c 1494 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1495 EFX_ASSERT_RESET_SERIALISED(efx);
1496
62776d03
BH
1497 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1498 raw_smp_processor_id());
8ceee660 1499
f4bd954e
BH
1500 if (efx->state == STATE_DISABLED)
1501 return -EIO;
f8b87c17
BH
1502 if (efx->phy_mode & PHY_MODE_SPECIAL)
1503 return -EBUSY;
8880f4ec
BH
1504 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1505 return -EIO;
f8b87c17 1506
78c1f0a0
SH
1507 /* Notify the kernel of the link state polled during driver load,
1508 * before the monitor starts running */
1509 efx_link_status_changed(efx);
1510
8ceee660
BH
1511 efx_start_all(efx);
1512 return 0;
1513}
1514
1515/* Context: process, rtnl_lock() held.
1516 * Note that the kernel will ignore our return code; this method
1517 * should really be a void.
1518 */
1519static int efx_net_stop(struct net_device *net_dev)
1520{
767e468c 1521 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1522
62776d03
BH
1523 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1524 raw_smp_processor_id());
8ceee660 1525
f4bd954e
BH
1526 if (efx->state != STATE_DISABLED) {
1527 /* Stop the device and flush all the channels */
1528 efx_stop_all(efx);
1529 efx_fini_channels(efx);
1530 efx_init_channels(efx);
1531 }
8ceee660
BH
1532
1533 return 0;
1534}
1535
5b9e207c 1536/* Context: process, dev_base_lock or RTNL held, non-blocking. */
28172739 1537static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
8ceee660 1538{
767e468c 1539 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1540 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1541
55edc6e6 1542 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1543 efx->type->update_stats(efx);
55edc6e6 1544 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1545
1546 stats->rx_packets = mac_stats->rx_packets;
1547 stats->tx_packets = mac_stats->tx_packets;
1548 stats->rx_bytes = mac_stats->rx_bytes;
1549 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1550 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1551 stats->multicast = mac_stats->rx_multicast;
1552 stats->collisions = mac_stats->tx_collision;
1553 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1554 mac_stats->rx_length_error);
8ceee660
BH
1555 stats->rx_crc_errors = mac_stats->rx_bad;
1556 stats->rx_frame_errors = mac_stats->rx_align_error;
1557 stats->rx_fifo_errors = mac_stats->rx_overflow;
1558 stats->rx_missed_errors = mac_stats->rx_missed;
1559 stats->tx_window_errors = mac_stats->tx_late_collision;
1560
1561 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1562 stats->rx_crc_errors +
1563 stats->rx_frame_errors +
8ceee660
BH
1564 mac_stats->rx_symbol_error);
1565 stats->tx_errors = (stats->tx_window_errors +
1566 mac_stats->tx_bad);
1567
1568 return stats;
1569}
1570
1571/* Context: netif_tx_lock held, BHs disabled. */
1572static void efx_watchdog(struct net_device *net_dev)
1573{
767e468c 1574 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1575
62776d03
BH
1576 netif_err(efx, tx_err, efx->net_dev,
1577 "TX stuck with port_enabled=%d: resetting channels\n",
1578 efx->port_enabled);
8ceee660 1579
739bb23d 1580 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1581}
1582
1583
1584/* Context: process, rtnl_lock() held. */
1585static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1586{
767e468c 1587 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1588 int rc = 0;
1589
1590 EFX_ASSERT_RESET_SERIALISED(efx);
1591
1592 if (new_mtu > EFX_MAX_MTU)
1593 return -EINVAL;
1594
1595 efx_stop_all(efx);
1596
62776d03 1597 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1598
1599 efx_fini_channels(efx);
d3245b28
BH
1600
1601 mutex_lock(&efx->mac_lock);
1602 /* Reconfigure the MAC before enabling the dma queues so that
1603 * the RX buffers don't overflow */
8ceee660 1604 net_dev->mtu = new_mtu;
d3245b28
BH
1605 efx->mac_op->reconfigure(efx);
1606 mutex_unlock(&efx->mac_lock);
1607
bc3c90a2 1608 efx_init_channels(efx);
8ceee660
BH
1609
1610 efx_start_all(efx);
1611 return rc;
8ceee660
BH
1612}
1613
1614static int efx_set_mac_address(struct net_device *net_dev, void *data)
1615{
767e468c 1616 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1617 struct sockaddr *addr = data;
1618 char *new_addr = addr->sa_data;
1619
1620 EFX_ASSERT_RESET_SERIALISED(efx);
1621
1622 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1623 netif_err(efx, drv, efx->net_dev,
1624 "invalid ethernet MAC address requested: %pM\n",
1625 new_addr);
8ceee660
BH
1626 return -EINVAL;
1627 }
1628
1629 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1630
1631 /* Reconfigure the MAC */
d3245b28
BH
1632 mutex_lock(&efx->mac_lock);
1633 efx->mac_op->reconfigure(efx);
1634 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1635
1636 return 0;
1637}
1638
a816f75a 1639/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1640static void efx_set_multicast_list(struct net_device *net_dev)
1641{
767e468c 1642 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1643 struct netdev_hw_addr *ha;
8ceee660 1644 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1645 u32 crc;
1646 int bit;
8ceee660 1647
8be4f3e6 1648 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1649
1650 /* Build multicast hash table */
8be4f3e6 1651 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1652 memset(mc_hash, 0xff, sizeof(*mc_hash));
1653 } else {
1654 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1655 netdev_for_each_mc_addr(ha, net_dev) {
1656 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1657 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1658 set_bit_le(bit, mc_hash->byte);
8ceee660 1659 }
8ceee660 1660
8be4f3e6
BH
1661 /* Broadcast packets go through the multicast hash filter.
1662 * ether_crc_le() of the broadcast address is 0xbe2612ff
1663 * so we always add bit 0xff to the mask.
1664 */
1665 set_bit_le(0xff, mc_hash->byte);
1666 }
a816f75a 1667
8be4f3e6
BH
1668 if (efx->port_enabled)
1669 queue_work(efx->workqueue, &efx->mac_work);
1670 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1671}
1672
c3ecb9f3
SH
1673static const struct net_device_ops efx_netdev_ops = {
1674 .ndo_open = efx_net_open,
1675 .ndo_stop = efx_net_stop,
4472702e 1676 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1677 .ndo_tx_timeout = efx_watchdog,
1678 .ndo_start_xmit = efx_hard_start_xmit,
1679 .ndo_validate_addr = eth_validate_addr,
1680 .ndo_do_ioctl = efx_ioctl,
1681 .ndo_change_mtu = efx_change_mtu,
1682 .ndo_set_mac_address = efx_set_mac_address,
1683 .ndo_set_multicast_list = efx_set_multicast_list,
1684#ifdef CONFIG_NET_POLL_CONTROLLER
1685 .ndo_poll_controller = efx_netpoll,
1686#endif
1687};
1688
7dde596e
BH
1689static void efx_update_name(struct efx_nic *efx)
1690{
1691 strcpy(efx->name, efx->net_dev->name);
1692 efx_mtd_rename(efx);
1693 efx_set_channel_names(efx);
1694}
1695
8ceee660
BH
1696static int efx_netdev_event(struct notifier_block *this,
1697 unsigned long event, void *ptr)
1698{
d3208b5e 1699 struct net_device *net_dev = ptr;
8ceee660 1700
7dde596e
BH
1701 if (net_dev->netdev_ops == &efx_netdev_ops &&
1702 event == NETDEV_CHANGENAME)
1703 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1704
1705 return NOTIFY_DONE;
1706}
1707
1708static struct notifier_block efx_netdev_notifier = {
1709 .notifier_call = efx_netdev_event,
1710};
1711
06d5e193
BH
1712static ssize_t
1713show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1714{
1715 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1716 return sprintf(buf, "%d\n", efx->phy_type);
1717}
1718static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1719
8ceee660
BH
1720static int efx_register_netdev(struct efx_nic *efx)
1721{
1722 struct net_device *net_dev = efx->net_dev;
1723 int rc;
1724
1725 net_dev->watchdog_timeo = 5 * HZ;
1726 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1727 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1728 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1729
8ceee660 1730 /* Clear MAC statistics */
177dfcd8 1731 efx->mac_op->update_stats(efx);
8ceee660
BH
1732 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1733
7dde596e 1734 rtnl_lock();
aed0628d
BH
1735
1736 rc = dev_alloc_name(net_dev, net_dev->name);
1737 if (rc < 0)
1738 goto fail_locked;
7dde596e 1739 efx_update_name(efx);
aed0628d
BH
1740
1741 rc = register_netdevice(net_dev);
1742 if (rc)
1743 goto fail_locked;
1744
1745 /* Always start with carrier off; PHY events will detect the link */
1746 netif_carrier_off(efx->net_dev);
1747
7dde596e 1748 rtnl_unlock();
8ceee660 1749
06d5e193
BH
1750 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1751 if (rc) {
62776d03
BH
1752 netif_err(efx, drv, efx->net_dev,
1753 "failed to init net dev attributes\n");
06d5e193
BH
1754 goto fail_registered;
1755 }
1756
8ceee660 1757 return 0;
06d5e193 1758
aed0628d
BH
1759fail_locked:
1760 rtnl_unlock();
62776d03 1761 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1762 return rc;
1763
06d5e193
BH
1764fail_registered:
1765 unregister_netdev(net_dev);
1766 return rc;
8ceee660
BH
1767}
1768
1769static void efx_unregister_netdev(struct efx_nic *efx)
1770{
f7d12cdc 1771 struct efx_channel *channel;
8ceee660
BH
1772 struct efx_tx_queue *tx_queue;
1773
1774 if (!efx->net_dev)
1775 return;
1776
767e468c 1777 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1778
1779 /* Free up any skbs still remaining. This has to happen before
1780 * we try to unregister the netdev as running their destructors
1781 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
1782 efx_for_each_channel(channel, efx) {
1783 efx_for_each_channel_tx_queue(tx_queue, channel)
1784 efx_release_tx_buffers(tx_queue);
1785 }
8ceee660 1786
55668611 1787 if (efx_dev_registered(efx)) {
8ceee660 1788 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1789 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1790 unregister_netdev(efx->net_dev);
1791 }
1792}
1793
1794/**************************************************************************
1795 *
1796 * Device reset and suspend
1797 *
1798 **************************************************************************/
1799
2467ca46
BH
1800/* Tears down the entire software state and most of the hardware state
1801 * before reset. */
d3245b28 1802void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1803{
8ceee660
BH
1804 EFX_ASSERT_RESET_SERIALISED(efx);
1805
2467ca46
BH
1806 efx_stop_all(efx);
1807 mutex_lock(&efx->mac_lock);
f4150724 1808 mutex_lock(&efx->spi_lock);
2467ca46 1809
8ceee660 1810 efx_fini_channels(efx);
4b988280
SH
1811 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1812 efx->phy_op->fini(efx);
ef2b90ee 1813 efx->type->fini(efx);
8ceee660
BH
1814}
1815
2467ca46
BH
1816/* This function will always ensure that the locks acquired in
1817 * efx_reset_down() are released. A failure return code indicates
1818 * that we were unable to reinitialise the hardware, and the
1819 * driver should be disabled. If ok is false, then the rx and tx
1820 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1821int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1822{
1823 int rc;
1824
2467ca46 1825 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1826
ef2b90ee 1827 rc = efx->type->init(efx);
8ceee660 1828 if (rc) {
62776d03 1829 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 1830 goto fail;
8ceee660
BH
1831 }
1832
eb9f6744
BH
1833 if (!ok)
1834 goto fail;
1835
4b988280 1836 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1837 rc = efx->phy_op->init(efx);
1838 if (rc)
1839 goto fail;
1840 if (efx->phy_op->reconfigure(efx))
62776d03
BH
1841 netif_err(efx, drv, efx->net_dev,
1842 "could not restore PHY settings\n");
4b988280
SH
1843 }
1844
eb9f6744 1845 efx->mac_op->reconfigure(efx);
8ceee660 1846
eb9f6744
BH
1847 efx_init_channels(efx);
1848
1849 mutex_unlock(&efx->spi_lock);
1850 mutex_unlock(&efx->mac_lock);
1851
1852 efx_start_all(efx);
1853
1854 return 0;
1855
1856fail:
1857 efx->port_initialized = false;
2467ca46 1858
f4150724 1859 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1860 mutex_unlock(&efx->mac_lock);
1861
8ceee660
BH
1862 return rc;
1863}
1864
eb9f6744
BH
1865/* Reset the NIC using the specified method. Note that the reset may
1866 * fail, in which case the card will be left in an unusable state.
8ceee660 1867 *
eb9f6744 1868 * Caller must hold the rtnl_lock.
8ceee660 1869 */
eb9f6744 1870int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1871{
eb9f6744
BH
1872 int rc, rc2;
1873 bool disabled;
8ceee660 1874
62776d03
BH
1875 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
1876 RESET_TYPE(method));
8ceee660 1877
d3245b28 1878 efx_reset_down(efx, method);
8ceee660 1879
ef2b90ee 1880 rc = efx->type->reset(efx, method);
8ceee660 1881 if (rc) {
62776d03 1882 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 1883 goto out;
8ceee660
BH
1884 }
1885
1886 /* Allow resets to be rescheduled. */
1887 efx->reset_pending = RESET_TYPE_NONE;
1888
1889 /* Reinitialise bus-mastering, which may have been turned off before
1890 * the reset was scheduled. This is still appropriate, even in the
1891 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1892 * can respond to requests. */
1893 pci_set_master(efx->pci_dev);
1894
eb9f6744 1895out:
8ceee660 1896 /* Leave device stopped if necessary */
eb9f6744
BH
1897 disabled = rc || method == RESET_TYPE_DISABLE;
1898 rc2 = efx_reset_up(efx, method, !disabled);
1899 if (rc2) {
1900 disabled = true;
1901 if (!rc)
1902 rc = rc2;
8ceee660
BH
1903 }
1904
eb9f6744 1905 if (disabled) {
f49a4589 1906 dev_close(efx->net_dev);
62776d03 1907 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 1908 efx->state = STATE_DISABLED;
f4bd954e 1909 } else {
62776d03 1910 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
f4bd954e 1911 }
8ceee660
BH
1912 return rc;
1913}
1914
1915/* The worker thread exists so that code that cannot sleep can
1916 * schedule a reset for later.
1917 */
1918static void efx_reset_work(struct work_struct *data)
1919{
eb9f6744 1920 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1921
319ba649
SH
1922 if (efx->reset_pending == RESET_TYPE_NONE)
1923 return;
1924
eb9f6744
BH
1925 /* If we're not RUNNING then don't reset. Leave the reset_pending
1926 * flag set so that efx_pci_probe_main will be retried */
1927 if (efx->state != STATE_RUNNING) {
62776d03
BH
1928 netif_info(efx, drv, efx->net_dev,
1929 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
1930 return;
1931 }
1932
1933 rtnl_lock();
f49a4589 1934 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 1935 rtnl_unlock();
8ceee660
BH
1936}
1937
1938void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1939{
1940 enum reset_type method;
1941
1942 if (efx->reset_pending != RESET_TYPE_NONE) {
62776d03
BH
1943 netif_info(efx, drv, efx->net_dev,
1944 "quenching already scheduled reset\n");
8ceee660
BH
1945 return;
1946 }
1947
1948 switch (type) {
1949 case RESET_TYPE_INVISIBLE:
1950 case RESET_TYPE_ALL:
1951 case RESET_TYPE_WORLD:
1952 case RESET_TYPE_DISABLE:
1953 method = type;
1954 break;
1955 case RESET_TYPE_RX_RECOVERY:
1956 case RESET_TYPE_RX_DESC_FETCH:
1957 case RESET_TYPE_TX_DESC_FETCH:
1958 case RESET_TYPE_TX_SKIP:
1959 method = RESET_TYPE_INVISIBLE;
1960 break;
8880f4ec 1961 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1962 default:
1963 method = RESET_TYPE_ALL;
1964 break;
1965 }
1966
1967 if (method != type)
62776d03
BH
1968 netif_dbg(efx, drv, efx->net_dev,
1969 "scheduling %s reset for %s\n",
1970 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1971 else
62776d03
BH
1972 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
1973 RESET_TYPE(method));
8ceee660
BH
1974
1975 efx->reset_pending = method;
1976
8880f4ec
BH
1977 /* efx_process_channel() will no longer read events once a
1978 * reset is scheduled. So switch back to poll'd MCDI completions. */
1979 efx_mcdi_mode_poll(efx);
1980
1ab00629 1981 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1982}
1983
1984/**************************************************************************
1985 *
1986 * List of NICs we support
1987 *
1988 **************************************************************************/
1989
1990/* PCI device ID table */
a3aa1884 1991static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1992 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1993 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1994 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1995 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1996 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1997 .driver_data = (unsigned long) &siena_a0_nic_type},
1998 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1999 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2000 {0} /* end of list */
2001};
2002
2003/**************************************************************************
2004 *
3759433d 2005 * Dummy PHY/MAC operations
8ceee660 2006 *
01aad7b6 2007 * Can be used for some unimplemented operations
8ceee660
BH
2008 * Needed so all function pointers are valid and do not have to be tested
2009 * before use
2010 *
2011 **************************************************************************/
2012int efx_port_dummy_op_int(struct efx_nic *efx)
2013{
2014 return 0;
2015}
2016void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
2017void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2018{
2019}
fdaa9aed
SH
2020bool efx_port_dummy_op_poll(struct efx_nic *efx)
2021{
2022 return false;
2023}
8ceee660
BH
2024
2025static struct efx_phy_operations efx_dummy_phy_operations = {
2026 .init = efx_port_dummy_op_int,
d3245b28 2027 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2028 .poll = efx_port_dummy_op_poll,
8ceee660 2029 .fini = efx_port_dummy_op_void,
8ceee660
BH
2030};
2031
8ceee660
BH
2032/**************************************************************************
2033 *
2034 * Data housekeeping
2035 *
2036 **************************************************************************/
2037
2038/* This zeroes out and then fills in the invariants in a struct
2039 * efx_nic (including all sub-structures).
2040 */
2041static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2042 struct pci_dev *pci_dev, struct net_device *net_dev)
2043{
2044 struct efx_channel *channel;
2045 struct efx_tx_queue *tx_queue;
2046 struct efx_rx_queue *rx_queue;
1ab00629 2047 int i;
8ceee660
BH
2048
2049 /* Initialise common structures */
2050 memset(efx, 0, sizeof(*efx));
2051 spin_lock_init(&efx->biu_lock);
ab867461 2052 mutex_init(&efx->mdio_lock);
f4150724 2053 mutex_init(&efx->spi_lock);
76884835
BH
2054#ifdef CONFIG_SFC_MTD
2055 INIT_LIST_HEAD(&efx->mtd_list);
2056#endif
8ceee660
BH
2057 INIT_WORK(&efx->reset_work, efx_reset_work);
2058 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2059 efx->pci_dev = pci_dev;
62776d03 2060 efx->msg_enable = debug;
8ceee660
BH
2061 efx->state = STATE_INIT;
2062 efx->reset_pending = RESET_TYPE_NONE;
2063 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2064
2065 efx->net_dev = net_dev;
dc8cfa55 2066 efx->rx_checksum_enabled = true;
8ceee660
BH
2067 spin_lock_init(&efx->stats_lock);
2068 mutex_init(&efx->mac_lock);
b895d73e 2069 efx->mac_op = type->default_mac_ops;
8ceee660 2070 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2071 efx->mdio.dev = net_dev;
766ca0fa 2072 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2073
2074 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2075 channel = &efx->channel[i];
2076 channel->efx = efx;
2077 channel->channel = i;
dc8cfa55 2078 channel->work_pending = false;
a4900ac9
BH
2079 spin_lock_init(&channel->tx_stop_lock);
2080 atomic_set(&channel->tx_stop_count, 1);
8ceee660 2081 }
a4900ac9 2082 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
8ceee660
BH
2083 tx_queue = &efx->tx_queue[i];
2084 tx_queue->efx = efx;
2085 tx_queue->queue = i;
2086 tx_queue->buffer = NULL;
2087 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2088 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2089 }
2090 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2091 rx_queue = &efx->rx_queue[i];
2092 rx_queue->efx = efx;
2093 rx_queue->queue = i;
2094 rx_queue->channel = &efx->channel[0]; /* for safety */
2095 rx_queue->buffer = NULL;
90d683af
SH
2096 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2097 (unsigned long)rx_queue);
8ceee660
BH
2098 }
2099
2100 efx->type = type;
2101
8ceee660 2102 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2103 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2104
8ceee660
BH
2105 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2106
2107 /* Higher numbered interrupt modes are less capable! */
2108 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2109 interrupt_mode);
2110
6977dc63
BH
2111 /* Would be good to use the net_dev name, but we're too early */
2112 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2113 pci_name(pci_dev));
2114 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2115 if (!efx->workqueue)
2116 return -ENOMEM;
8d9853d9 2117
8ceee660 2118 return 0;
8ceee660
BH
2119}
2120
2121static void efx_fini_struct(struct efx_nic *efx)
2122{
2123 if (efx->workqueue) {
2124 destroy_workqueue(efx->workqueue);
2125 efx->workqueue = NULL;
2126 }
2127}
2128
2129/**************************************************************************
2130 *
2131 * PCI interface
2132 *
2133 **************************************************************************/
2134
2135/* Main body of final NIC shutdown code
2136 * This is called only at module unload (or hotplug removal).
2137 */
2138static void efx_pci_remove_main(struct efx_nic *efx)
2139{
152b6a62 2140 efx_nic_fini_interrupt(efx);
8ceee660
BH
2141 efx_fini_channels(efx);
2142 efx_fini_port(efx);
ef2b90ee 2143 efx->type->fini(efx);
8ceee660
BH
2144 efx_fini_napi(efx);
2145 efx_remove_all(efx);
2146}
2147
2148/* Final NIC shutdown
2149 * This is called only at module unload (or hotplug removal).
2150 */
2151static void efx_pci_remove(struct pci_dev *pci_dev)
2152{
2153 struct efx_nic *efx;
2154
2155 efx = pci_get_drvdata(pci_dev);
2156 if (!efx)
2157 return;
2158
2159 /* Mark the NIC as fini, then stop the interface */
2160 rtnl_lock();
2161 efx->state = STATE_FINI;
2162 dev_close(efx->net_dev);
2163
2164 /* Allow any queued efx_resets() to complete */
2165 rtnl_unlock();
2166
8ceee660
BH
2167 efx_unregister_netdev(efx);
2168
7dde596e
BH
2169 efx_mtd_remove(efx);
2170
8ceee660
BH
2171 /* Wait for any scheduled resets to complete. No more will be
2172 * scheduled from this point because efx_stop_all() has been
2173 * called, we are no longer registered with driverlink, and
2174 * the net_device's have been removed. */
1ab00629 2175 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2176
2177 efx_pci_remove_main(efx);
2178
8ceee660 2179 efx_fini_io(efx);
62776d03 2180 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2181
2182 pci_set_drvdata(pci_dev, NULL);
2183 efx_fini_struct(efx);
2184 free_netdev(efx->net_dev);
2185};
2186
2187/* Main body of NIC initialisation
2188 * This is called at module load (or hotplug insertion, theoretically).
2189 */
2190static int efx_pci_probe_main(struct efx_nic *efx)
2191{
2192 int rc;
2193
2194 /* Do start-of-day initialisation */
2195 rc = efx_probe_all(efx);
2196 if (rc)
2197 goto fail1;
2198
2199 rc = efx_init_napi(efx);
2200 if (rc)
2201 goto fail2;
2202
ef2b90ee 2203 rc = efx->type->init(efx);
8ceee660 2204 if (rc) {
62776d03
BH
2205 netif_err(efx, probe, efx->net_dev,
2206 "failed to initialise NIC\n");
278c0621 2207 goto fail3;
8ceee660
BH
2208 }
2209
2210 rc = efx_init_port(efx);
2211 if (rc) {
62776d03
BH
2212 netif_err(efx, probe, efx->net_dev,
2213 "failed to initialise port\n");
278c0621 2214 goto fail4;
8ceee660
BH
2215 }
2216
bc3c90a2 2217 efx_init_channels(efx);
8ceee660 2218
152b6a62 2219 rc = efx_nic_init_interrupt(efx);
8ceee660 2220 if (rc)
278c0621 2221 goto fail5;
8ceee660
BH
2222
2223 return 0;
2224
278c0621 2225 fail5:
bc3c90a2 2226 efx_fini_channels(efx);
8ceee660 2227 efx_fini_port(efx);
8ceee660 2228 fail4:
ef2b90ee 2229 efx->type->fini(efx);
8ceee660
BH
2230 fail3:
2231 efx_fini_napi(efx);
2232 fail2:
2233 efx_remove_all(efx);
2234 fail1:
2235 return rc;
2236}
2237
2238/* NIC initialisation
2239 *
2240 * This is called at module load (or hotplug insertion,
2241 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2242 * sets up and registers the network devices with the kernel and hooks
2243 * the interrupt service routine. It does not prepare the device for
2244 * transmission; this is left to the first time one of the network
2245 * interfaces is brought up (i.e. efx_net_open).
2246 */
2247static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2248 const struct pci_device_id *entry)
2249{
2250 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2251 struct net_device *net_dev;
2252 struct efx_nic *efx;
2253 int i, rc;
2254
2255 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2256 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2257 if (!net_dev)
2258 return -ENOMEM;
c383b537 2259 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2260 NETIF_F_HIGHDMA | NETIF_F_TSO |
2261 NETIF_F_GRO);
738a8f4b
BH
2262 if (type->offload_features & NETIF_F_V6_CSUM)
2263 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2264 /* Mask for features that also apply to VLAN devices */
2265 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2266 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2267 efx = netdev_priv(net_dev);
8ceee660 2268 pci_set_drvdata(pci_dev, efx);
62776d03 2269 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2270 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2271 if (rc)
2272 goto fail1;
2273
62776d03
BH
2274 netif_info(efx, probe, efx->net_dev,
2275 "Solarflare Communications NIC detected\n");
8ceee660
BH
2276
2277 /* Set up basic I/O (BAR mappings etc) */
2278 rc = efx_init_io(efx);
2279 if (rc)
2280 goto fail2;
2281
2282 /* No serialisation is required with the reset path because
2283 * we're in STATE_INIT. */
2284 for (i = 0; i < 5; i++) {
2285 rc = efx_pci_probe_main(efx);
8ceee660
BH
2286
2287 /* Serialise against efx_reset(). No more resets will be
2288 * scheduled since efx_stop_all() has been called, and we
2289 * have not and never have been registered with either
2290 * the rtnetlink or driverlink layers. */
1ab00629 2291 cancel_work_sync(&efx->reset_work);
8ceee660 2292
fa402b2e
SH
2293 if (rc == 0) {
2294 if (efx->reset_pending != RESET_TYPE_NONE) {
2295 /* If there was a scheduled reset during
2296 * probe, the NIC is probably hosed anyway */
2297 efx_pci_remove_main(efx);
2298 rc = -EIO;
2299 } else {
2300 break;
2301 }
2302 }
2303
8ceee660
BH
2304 /* Retry if a recoverably reset event has been scheduled */
2305 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2306 (efx->reset_pending != RESET_TYPE_ALL))
2307 goto fail3;
2308
2309 efx->reset_pending = RESET_TYPE_NONE;
2310 }
2311
2312 if (rc) {
62776d03 2313 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2314 goto fail4;
2315 }
2316
55edc6e6
BH
2317 /* Switch to the running state before we expose the device to the OS,
2318 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2319 efx->state = STATE_RUNNING;
7dde596e 2320
8ceee660
BH
2321 rc = efx_register_netdev(efx);
2322 if (rc)
2323 goto fail5;
2324
62776d03 2325 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2326
2327 rtnl_lock();
2328 efx_mtd_probe(efx); /* allowed to fail */
2329 rtnl_unlock();
8ceee660
BH
2330 return 0;
2331
2332 fail5:
2333 efx_pci_remove_main(efx);
2334 fail4:
2335 fail3:
2336 efx_fini_io(efx);
2337 fail2:
2338 efx_fini_struct(efx);
2339 fail1:
5e2a911c 2340 WARN_ON(rc > 0);
62776d03 2341 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2342 free_netdev(net_dev);
2343 return rc;
2344}
2345
89c758fa
BH
2346static int efx_pm_freeze(struct device *dev)
2347{
2348 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2349
2350 efx->state = STATE_FINI;
2351
2352 netif_device_detach(efx->net_dev);
2353
2354 efx_stop_all(efx);
2355 efx_fini_channels(efx);
2356
2357 return 0;
2358}
2359
2360static int efx_pm_thaw(struct device *dev)
2361{
2362 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2363
2364 efx->state = STATE_INIT;
2365
2366 efx_init_channels(efx);
2367
2368 mutex_lock(&efx->mac_lock);
2369 efx->phy_op->reconfigure(efx);
2370 mutex_unlock(&efx->mac_lock);
2371
2372 efx_start_all(efx);
2373
2374 netif_device_attach(efx->net_dev);
2375
2376 efx->state = STATE_RUNNING;
2377
2378 efx->type->resume_wol(efx);
2379
319ba649
SH
2380 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2381 queue_work(reset_workqueue, &efx->reset_work);
2382
89c758fa
BH
2383 return 0;
2384}
2385
2386static int efx_pm_poweroff(struct device *dev)
2387{
2388 struct pci_dev *pci_dev = to_pci_dev(dev);
2389 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2390
2391 efx->type->fini(efx);
2392
2393 efx->reset_pending = RESET_TYPE_NONE;
2394
2395 pci_save_state(pci_dev);
2396 return pci_set_power_state(pci_dev, PCI_D3hot);
2397}
2398
2399/* Used for both resume and restore */
2400static int efx_pm_resume(struct device *dev)
2401{
2402 struct pci_dev *pci_dev = to_pci_dev(dev);
2403 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2404 int rc;
2405
2406 rc = pci_set_power_state(pci_dev, PCI_D0);
2407 if (rc)
2408 return rc;
2409 pci_restore_state(pci_dev);
2410 rc = pci_enable_device(pci_dev);
2411 if (rc)
2412 return rc;
2413 pci_set_master(efx->pci_dev);
2414 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2415 if (rc)
2416 return rc;
2417 rc = efx->type->init(efx);
2418 if (rc)
2419 return rc;
2420 efx_pm_thaw(dev);
2421 return 0;
2422}
2423
2424static int efx_pm_suspend(struct device *dev)
2425{
2426 int rc;
2427
2428 efx_pm_freeze(dev);
2429 rc = efx_pm_poweroff(dev);
2430 if (rc)
2431 efx_pm_resume(dev);
2432 return rc;
2433}
2434
2435static struct dev_pm_ops efx_pm_ops = {
2436 .suspend = efx_pm_suspend,
2437 .resume = efx_pm_resume,
2438 .freeze = efx_pm_freeze,
2439 .thaw = efx_pm_thaw,
2440 .poweroff = efx_pm_poweroff,
2441 .restore = efx_pm_resume,
2442};
2443
8ceee660 2444static struct pci_driver efx_pci_driver = {
c5d5f5fd 2445 .name = KBUILD_MODNAME,
8ceee660
BH
2446 .id_table = efx_pci_table,
2447 .probe = efx_pci_probe,
2448 .remove = efx_pci_remove,
89c758fa 2449 .driver.pm = &efx_pm_ops,
8ceee660
BH
2450};
2451
2452/**************************************************************************
2453 *
2454 * Kernel module interface
2455 *
2456 *************************************************************************/
2457
2458module_param(interrupt_mode, uint, 0444);
2459MODULE_PARM_DESC(interrupt_mode,
2460 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2461
2462static int __init efx_init_module(void)
2463{
2464 int rc;
2465
2466 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2467
2468 rc = register_netdevice_notifier(&efx_netdev_notifier);
2469 if (rc)
2470 goto err_notifier;
2471
1ab00629
SH
2472 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2473 if (!reset_workqueue) {
2474 rc = -ENOMEM;
2475 goto err_reset;
2476 }
8ceee660
BH
2477
2478 rc = pci_register_driver(&efx_pci_driver);
2479 if (rc < 0)
2480 goto err_pci;
2481
2482 return 0;
2483
2484 err_pci:
1ab00629
SH
2485 destroy_workqueue(reset_workqueue);
2486 err_reset:
8ceee660
BH
2487 unregister_netdevice_notifier(&efx_netdev_notifier);
2488 err_notifier:
2489 return rc;
2490}
2491
2492static void __exit efx_exit_module(void)
2493{
2494 printk(KERN_INFO "Solarflare NET driver unloading\n");
2495
2496 pci_unregister_driver(&efx_pci_driver);
1ab00629 2497 destroy_workqueue(reset_workqueue);
8ceee660
BH
2498 unregister_netdevice_notifier(&efx_netdev_notifier);
2499
2500}
2501
2502module_init(efx_init_module);
2503module_exit(efx_exit_module);
2504
906bb26c
BH
2505MODULE_AUTHOR("Solarflare Communications and "
2506 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2507MODULE_DESCRIPTION("Solarflare Communications network driver");
2508MODULE_LICENSE("GPL");
2509MODULE_DEVICE_TABLE(pci, efx_pci_table);