[BNX2X]: fix slowpath races and locking
[linux-2.6-block.git] / drivers / net / mv643xx_eth.c
CommitLineData
1da177e4 1/*
9c1bbdfe 2 * Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports
1da177e4
LT
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
3bb8a18a 9 * written by Manish Lachwani
1da177e4
LT
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
c8aaea25 13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
1da177e4
LT
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
b6298c22
AV
35#include <linux/in.h>
36#include <linux/ip.h>
1da177e4
LT
37#include <linux/tcp.h>
38#include <linux/udp.h>
39#include <linux/etherdevice.h>
40
41#include <linux/bitops.h>
42#include <linux/delay.h>
43#include <linux/ethtool.h>
d052d1be
RK
44#include <linux/platform_device.h>
45
fbd6a754
LB
46#include <linux/module.h>
47#include <linux/kernel.h>
48#include <linux/spinlock.h>
49#include <linux/workqueue.h>
50#include <linux/mii.h>
51
52#include <linux/mv643xx_eth.h>
53
1da177e4
LT
54#include <asm/io.h>
55#include <asm/types.h>
56#include <asm/pgtable.h>
57#include <asm/system.h>
58#include <asm/delay.h>
fbd6a754
LB
59#include <asm/dma-mapping.h>
60
fbd6a754
LB
61#define MV643XX_CHECKSUM_OFFLOAD_TX
62#define MV643XX_NAPI
63#define MV643XX_TX_FAST_REFILL
64#undef MV643XX_COAL
65
66/*
67 * Number of RX / TX descriptors on RX / TX rings.
68 * Note that allocating RX descriptors is done by allocating the RX
69 * ring AND a preallocated RX buffers (skb's) for each descriptor.
70 * The TX descriptors only allocates the TX descriptors ring,
71 * with no pre allocated TX buffers (skb's are allocated by higher layers.
72 */
73
74/* Default TX ring size is 1000 descriptors */
75#define MV643XX_DEFAULT_TX_QUEUE_SIZE 1000
76
77/* Default RX ring size is 400 descriptors */
78#define MV643XX_DEFAULT_RX_QUEUE_SIZE 400
79
80#define MV643XX_TX_COAL 100
81#ifdef MV643XX_COAL
82#define MV643XX_RX_COAL 100
83#endif
84
85#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
86#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
87#else
88#define MAX_DESCS_PER_SKB 1
89#endif
90
91#define ETH_VLAN_HLEN 4
92#define ETH_FCS_LEN 4
93#define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
94#define ETH_WRAPPER_LEN (ETH_HW_IP_ALIGN + ETH_HLEN + \
95 ETH_VLAN_HLEN + ETH_FCS_LEN)
96#define ETH_RX_SKB_SIZE (dev->mtu + ETH_WRAPPER_LEN + \
97 dma_get_cache_alignment())
98
99/*
100 * Registers shared between all ports.
101 */
102#define PHY_ADDR_REG 0x0000
103#define SMI_REG 0x0004
104
105/*
106 * Per-port registers.
107 */
108#define PORT_CONFIG_REG(p) (0x0400 + ((p) << 10))
109#define PORT_CONFIG_EXTEND_REG(p) (0x0404 + ((p) << 10))
110#define MAC_ADDR_LOW(p) (0x0414 + ((p) << 10))
111#define MAC_ADDR_HIGH(p) (0x0418 + ((p) << 10))
112#define SDMA_CONFIG_REG(p) (0x041c + ((p) << 10))
113#define PORT_SERIAL_CONTROL_REG(p) (0x043c + ((p) << 10))
114#define PORT_STATUS_REG(p) (0x0444 + ((p) << 10))
115#define TRANSMIT_QUEUE_COMMAND_REG(p) (0x0448 + ((p) << 10))
116#define MAXIMUM_TRANSMIT_UNIT(p) (0x0458 + ((p) << 10))
117#define INTERRUPT_CAUSE_REG(p) (0x0460 + ((p) << 10))
118#define INTERRUPT_CAUSE_EXTEND_REG(p) (0x0464 + ((p) << 10))
119#define INTERRUPT_MASK_REG(p) (0x0468 + ((p) << 10))
120#define INTERRUPT_EXTEND_MASK_REG(p) (0x046c + ((p) << 10))
121#define TX_FIFO_URGENT_THRESHOLD_REG(p) (0x0474 + ((p) << 10))
122#define RX_CURRENT_QUEUE_DESC_PTR_0(p) (0x060c + ((p) << 10))
123#define RECEIVE_QUEUE_COMMAND_REG(p) (0x0680 + ((p) << 10))
124#define TX_CURRENT_QUEUE_DESC_PTR_0(p) (0x06c0 + ((p) << 10))
125#define MIB_COUNTERS_BASE(p) (0x1000 + ((p) << 7))
126#define DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(p) (0x1400 + ((p) << 10))
127#define DA_FILTER_OTHER_MULTICAST_TABLE_BASE(p) (0x1500 + ((p) << 10))
128#define DA_FILTER_UNICAST_TABLE_BASE(p) (0x1600 + ((p) << 10))
129
130/* These macros describe Ethernet Port configuration reg (Px_cR) bits */
131#define UNICAST_NORMAL_MODE (0 << 0)
132#define UNICAST_PROMISCUOUS_MODE (1 << 0)
133#define DEFAULT_RX_QUEUE(queue) ((queue) << 1)
134#define DEFAULT_RX_ARP_QUEUE(queue) ((queue) << 4)
135#define RECEIVE_BC_IF_NOT_IP_OR_ARP (0 << 7)
136#define REJECT_BC_IF_NOT_IP_OR_ARP (1 << 7)
137#define RECEIVE_BC_IF_IP (0 << 8)
138#define REJECT_BC_IF_IP (1 << 8)
139#define RECEIVE_BC_IF_ARP (0 << 9)
140#define REJECT_BC_IF_ARP (1 << 9)
141#define TX_AM_NO_UPDATE_ERROR_SUMMARY (1 << 12)
142#define CAPTURE_TCP_FRAMES_DIS (0 << 14)
143#define CAPTURE_TCP_FRAMES_EN (1 << 14)
144#define CAPTURE_UDP_FRAMES_DIS (0 << 15)
145#define CAPTURE_UDP_FRAMES_EN (1 << 15)
146#define DEFAULT_RX_TCP_QUEUE(queue) ((queue) << 16)
147#define DEFAULT_RX_UDP_QUEUE(queue) ((queue) << 19)
148#define DEFAULT_RX_BPDU_QUEUE(queue) ((queue) << 22)
149
150#define PORT_CONFIG_DEFAULT_VALUE \
151 UNICAST_NORMAL_MODE | \
152 DEFAULT_RX_QUEUE(0) | \
153 DEFAULT_RX_ARP_QUEUE(0) | \
154 RECEIVE_BC_IF_NOT_IP_OR_ARP | \
155 RECEIVE_BC_IF_IP | \
156 RECEIVE_BC_IF_ARP | \
157 CAPTURE_TCP_FRAMES_DIS | \
158 CAPTURE_UDP_FRAMES_DIS | \
159 DEFAULT_RX_TCP_QUEUE(0) | \
160 DEFAULT_RX_UDP_QUEUE(0) | \
161 DEFAULT_RX_BPDU_QUEUE(0)
162
163/* These macros describe Ethernet Port configuration extend reg (Px_cXR) bits*/
164#define CLASSIFY_EN (1 << 0)
165#define SPAN_BPDU_PACKETS_AS_NORMAL (0 << 1)
166#define SPAN_BPDU_PACKETS_TO_RX_QUEUE_7 (1 << 1)
167#define PARTITION_DISABLE (0 << 2)
168#define PARTITION_ENABLE (1 << 2)
169
170#define PORT_CONFIG_EXTEND_DEFAULT_VALUE \
171 SPAN_BPDU_PACKETS_AS_NORMAL | \
172 PARTITION_DISABLE
173
174/* These macros describe Ethernet Port Sdma configuration reg (SDCR) bits */
175#define RIFB (1 << 0)
176#define RX_BURST_SIZE_1_64BIT (0 << 1)
177#define RX_BURST_SIZE_2_64BIT (1 << 1)
178#define RX_BURST_SIZE_4_64BIT (2 << 1)
179#define RX_BURST_SIZE_8_64BIT (3 << 1)
180#define RX_BURST_SIZE_16_64BIT (4 << 1)
181#define BLM_RX_NO_SWAP (1 << 4)
182#define BLM_RX_BYTE_SWAP (0 << 4)
183#define BLM_TX_NO_SWAP (1 << 5)
184#define BLM_TX_BYTE_SWAP (0 << 5)
185#define DESCRIPTORS_BYTE_SWAP (1 << 6)
186#define DESCRIPTORS_NO_SWAP (0 << 6)
187#define IPG_INT_RX(value) (((value) & 0x3fff) << 8)
188#define TX_BURST_SIZE_1_64BIT (0 << 22)
189#define TX_BURST_SIZE_2_64BIT (1 << 22)
190#define TX_BURST_SIZE_4_64BIT (2 << 22)
191#define TX_BURST_SIZE_8_64BIT (3 << 22)
192#define TX_BURST_SIZE_16_64BIT (4 << 22)
193
194#if defined(__BIG_ENDIAN)
195#define PORT_SDMA_CONFIG_DEFAULT_VALUE \
196 RX_BURST_SIZE_4_64BIT | \
197 IPG_INT_RX(0) | \
198 TX_BURST_SIZE_4_64BIT
199#elif defined(__LITTLE_ENDIAN)
200#define PORT_SDMA_CONFIG_DEFAULT_VALUE \
201 RX_BURST_SIZE_4_64BIT | \
202 BLM_RX_NO_SWAP | \
203 BLM_TX_NO_SWAP | \
204 IPG_INT_RX(0) | \
205 TX_BURST_SIZE_4_64BIT
206#else
207#error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
208#endif
209
210/* These macros describe Ethernet Port serial control reg (PSCR) bits */
211#define SERIAL_PORT_DISABLE (0 << 0)
212#define SERIAL_PORT_ENABLE (1 << 0)
213#define DO_NOT_FORCE_LINK_PASS (0 << 1)
214#define FORCE_LINK_PASS (1 << 1)
215#define ENABLE_AUTO_NEG_FOR_DUPLX (0 << 2)
216#define DISABLE_AUTO_NEG_FOR_DUPLX (1 << 2)
217#define ENABLE_AUTO_NEG_FOR_FLOW_CTRL (0 << 3)
218#define DISABLE_AUTO_NEG_FOR_FLOW_CTRL (1 << 3)
219#define ADV_NO_FLOW_CTRL (0 << 4)
220#define ADV_SYMMETRIC_FLOW_CTRL (1 << 4)
221#define FORCE_FC_MODE_NO_PAUSE_DIS_TX (0 << 5)
222#define FORCE_FC_MODE_TX_PAUSE_DIS (1 << 5)
223#define FORCE_BP_MODE_NO_JAM (0 << 7)
224#define FORCE_BP_MODE_JAM_TX (1 << 7)
225#define FORCE_BP_MODE_JAM_TX_ON_RX_ERR (2 << 7)
226#define SERIAL_PORT_CONTROL_RESERVED (1 << 9)
227#define FORCE_LINK_FAIL (0 << 10)
228#define DO_NOT_FORCE_LINK_FAIL (1 << 10)
229#define RETRANSMIT_16_ATTEMPTS (0 << 11)
230#define RETRANSMIT_FOREVER (1 << 11)
231#define ENABLE_AUTO_NEG_SPEED_GMII (0 << 13)
232#define DISABLE_AUTO_NEG_SPEED_GMII (1 << 13)
233#define DTE_ADV_0 (0 << 14)
234#define DTE_ADV_1 (1 << 14)
235#define DISABLE_AUTO_NEG_BYPASS (0 << 15)
236#define ENABLE_AUTO_NEG_BYPASS (1 << 15)
237#define AUTO_NEG_NO_CHANGE (0 << 16)
238#define RESTART_AUTO_NEG (1 << 16)
239#define MAX_RX_PACKET_1518BYTE (0 << 17)
240#define MAX_RX_PACKET_1522BYTE (1 << 17)
241#define MAX_RX_PACKET_1552BYTE (2 << 17)
242#define MAX_RX_PACKET_9022BYTE (3 << 17)
243#define MAX_RX_PACKET_9192BYTE (4 << 17)
244#define MAX_RX_PACKET_9700BYTE (5 << 17)
245#define MAX_RX_PACKET_MASK (7 << 17)
246#define CLR_EXT_LOOPBACK (0 << 20)
247#define SET_EXT_LOOPBACK (1 << 20)
248#define SET_HALF_DUPLEX_MODE (0 << 21)
249#define SET_FULL_DUPLEX_MODE (1 << 21)
250#define DISABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX (0 << 22)
251#define ENABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX (1 << 22)
252#define SET_GMII_SPEED_TO_10_100 (0 << 23)
253#define SET_GMII_SPEED_TO_1000 (1 << 23)
254#define SET_MII_SPEED_TO_10 (0 << 24)
255#define SET_MII_SPEED_TO_100 (1 << 24)
256
257#define PORT_SERIAL_CONTROL_DEFAULT_VALUE \
258 DO_NOT_FORCE_LINK_PASS | \
259 ENABLE_AUTO_NEG_FOR_DUPLX | \
260 DISABLE_AUTO_NEG_FOR_FLOW_CTRL | \
261 ADV_SYMMETRIC_FLOW_CTRL | \
262 FORCE_FC_MODE_NO_PAUSE_DIS_TX | \
263 FORCE_BP_MODE_NO_JAM | \
264 (1 << 9) /* reserved */ | \
265 DO_NOT_FORCE_LINK_FAIL | \
266 RETRANSMIT_16_ATTEMPTS | \
267 ENABLE_AUTO_NEG_SPEED_GMII | \
268 DTE_ADV_0 | \
269 DISABLE_AUTO_NEG_BYPASS | \
270 AUTO_NEG_NO_CHANGE | \
271 MAX_RX_PACKET_9700BYTE | \
272 CLR_EXT_LOOPBACK | \
273 SET_FULL_DUPLEX_MODE | \
274 ENABLE_FLOW_CTRL_TX_RX_IN_FULL_DUPLEX
275
276/* These macros describe Ethernet Serial Status reg (PSR) bits */
277#define PORT_STATUS_MODE_10_BIT (1 << 0)
278#define PORT_STATUS_LINK_UP (1 << 1)
279#define PORT_STATUS_FULL_DUPLEX (1 << 2)
280#define PORT_STATUS_FLOW_CONTROL (1 << 3)
281#define PORT_STATUS_GMII_1000 (1 << 4)
282#define PORT_STATUS_MII_100 (1 << 5)
283/* PSR bit 6 is undocumented */
284#define PORT_STATUS_TX_IN_PROGRESS (1 << 7)
285#define PORT_STATUS_AUTONEG_BYPASSED (1 << 8)
286#define PORT_STATUS_PARTITION (1 << 9)
287#define PORT_STATUS_TX_FIFO_EMPTY (1 << 10)
288/* PSR bits 11-31 are reserved */
289
290#define PORT_DEFAULT_TRANSMIT_QUEUE_SIZE 800
291#define PORT_DEFAULT_RECEIVE_QUEUE_SIZE 400
292
293#define DESC_SIZE 64
294
295#define ETH_RX_QUEUES_ENABLED (1 << 0) /* use only Q0 for receive */
296#define ETH_TX_QUEUES_ENABLED (1 << 0) /* use only Q0 for transmit */
297
298#define ETH_INT_CAUSE_RX_DONE (ETH_RX_QUEUES_ENABLED << 2)
299#define ETH_INT_CAUSE_RX_ERROR (ETH_RX_QUEUES_ENABLED << 9)
300#define ETH_INT_CAUSE_RX (ETH_INT_CAUSE_RX_DONE | ETH_INT_CAUSE_RX_ERROR)
301#define ETH_INT_CAUSE_EXT 0x00000002
302#define ETH_INT_UNMASK_ALL (ETH_INT_CAUSE_RX | ETH_INT_CAUSE_EXT)
303
304#define ETH_INT_CAUSE_TX_DONE (ETH_TX_QUEUES_ENABLED << 0)
305#define ETH_INT_CAUSE_TX_ERROR (ETH_TX_QUEUES_ENABLED << 8)
306#define ETH_INT_CAUSE_TX (ETH_INT_CAUSE_TX_DONE | ETH_INT_CAUSE_TX_ERROR)
307#define ETH_INT_CAUSE_PHY 0x00010000
308#define ETH_INT_CAUSE_STATE 0x00100000
309#define ETH_INT_UNMASK_ALL_EXT (ETH_INT_CAUSE_TX | ETH_INT_CAUSE_PHY | \
310 ETH_INT_CAUSE_STATE)
311
312#define ETH_INT_MASK_ALL 0x00000000
313#define ETH_INT_MASK_ALL_EXT 0x00000000
314
315#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
316#define PHY_WAIT_MICRO_SECONDS 10
317
318/* Buffer offset from buffer pointer */
319#define RX_BUF_OFFSET 0x2
320
321/* Gigabit Ethernet Unit Global Registers */
322
323/* MIB Counters register definitions */
324#define ETH_MIB_GOOD_OCTETS_RECEIVED_LOW 0x0
325#define ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH 0x4
326#define ETH_MIB_BAD_OCTETS_RECEIVED 0x8
327#define ETH_MIB_INTERNAL_MAC_TRANSMIT_ERR 0xc
328#define ETH_MIB_GOOD_FRAMES_RECEIVED 0x10
329#define ETH_MIB_BAD_FRAMES_RECEIVED 0x14
330#define ETH_MIB_BROADCAST_FRAMES_RECEIVED 0x18
331#define ETH_MIB_MULTICAST_FRAMES_RECEIVED 0x1c
332#define ETH_MIB_FRAMES_64_OCTETS 0x20
333#define ETH_MIB_FRAMES_65_TO_127_OCTETS 0x24
334#define ETH_MIB_FRAMES_128_TO_255_OCTETS 0x28
335#define ETH_MIB_FRAMES_256_TO_511_OCTETS 0x2c
336#define ETH_MIB_FRAMES_512_TO_1023_OCTETS 0x30
337#define ETH_MIB_FRAMES_1024_TO_MAX_OCTETS 0x34
338#define ETH_MIB_GOOD_OCTETS_SENT_LOW 0x38
339#define ETH_MIB_GOOD_OCTETS_SENT_HIGH 0x3c
340#define ETH_MIB_GOOD_FRAMES_SENT 0x40
341#define ETH_MIB_EXCESSIVE_COLLISION 0x44
342#define ETH_MIB_MULTICAST_FRAMES_SENT 0x48
343#define ETH_MIB_BROADCAST_FRAMES_SENT 0x4c
344#define ETH_MIB_UNREC_MAC_CONTROL_RECEIVED 0x50
345#define ETH_MIB_FC_SENT 0x54
346#define ETH_MIB_GOOD_FC_RECEIVED 0x58
347#define ETH_MIB_BAD_FC_RECEIVED 0x5c
348#define ETH_MIB_UNDERSIZE_RECEIVED 0x60
349#define ETH_MIB_FRAGMENTS_RECEIVED 0x64
350#define ETH_MIB_OVERSIZE_RECEIVED 0x68
351#define ETH_MIB_JABBER_RECEIVED 0x6c
352#define ETH_MIB_MAC_RECEIVE_ERROR 0x70
353#define ETH_MIB_BAD_CRC_EVENT 0x74
354#define ETH_MIB_COLLISION 0x78
355#define ETH_MIB_LATE_COLLISION 0x7c
356
357/* Port serial status reg (PSR) */
358#define ETH_INTERFACE_PCM 0x00000001
359#define ETH_LINK_IS_UP 0x00000002
360#define ETH_PORT_AT_FULL_DUPLEX 0x00000004
361#define ETH_RX_FLOW_CTRL_ENABLED 0x00000008
362#define ETH_GMII_SPEED_1000 0x00000010
363#define ETH_MII_SPEED_100 0x00000020
364#define ETH_TX_IN_PROGRESS 0x00000080
365#define ETH_BYPASS_ACTIVE 0x00000100
366#define ETH_PORT_AT_PARTITION_STATE 0x00000200
367#define ETH_PORT_TX_FIFO_EMPTY 0x00000400
368
369/* SMI reg */
370#define ETH_SMI_BUSY 0x10000000 /* 0 - Write, 1 - Read */
371#define ETH_SMI_READ_VALID 0x08000000 /* 0 - Write, 1 - Read */
372#define ETH_SMI_OPCODE_WRITE 0 /* Completion of Read */
373#define ETH_SMI_OPCODE_READ 0x04000000 /* Operation is in progress */
374
375/* Interrupt Cause Register Bit Definitions */
376
377/* SDMA command status fields macros */
378
379/* Tx & Rx descriptors status */
380#define ETH_ERROR_SUMMARY 0x00000001
381
382/* Tx & Rx descriptors command */
383#define ETH_BUFFER_OWNED_BY_DMA 0x80000000
384
385/* Tx descriptors status */
386#define ETH_LC_ERROR 0
387#define ETH_UR_ERROR 0x00000002
388#define ETH_RL_ERROR 0x00000004
389#define ETH_LLC_SNAP_FORMAT 0x00000200
390
391/* Rx descriptors status */
392#define ETH_OVERRUN_ERROR 0x00000002
393#define ETH_MAX_FRAME_LENGTH_ERROR 0x00000004
394#define ETH_RESOURCE_ERROR 0x00000006
395#define ETH_VLAN_TAGGED 0x00080000
396#define ETH_BPDU_FRAME 0x00100000
397#define ETH_UDP_FRAME_OVER_IP_V_4 0x00200000
398#define ETH_OTHER_FRAME_TYPE 0x00400000
399#define ETH_LAYER_2_IS_ETH_V_2 0x00800000
400#define ETH_FRAME_TYPE_IP_V_4 0x01000000
401#define ETH_FRAME_HEADER_OK 0x02000000
402#define ETH_RX_LAST_DESC 0x04000000
403#define ETH_RX_FIRST_DESC 0x08000000
404#define ETH_UNKNOWN_DESTINATION_ADDR 0x10000000
405#define ETH_RX_ENABLE_INTERRUPT 0x20000000
406#define ETH_LAYER_4_CHECKSUM_OK 0x40000000
407
408/* Rx descriptors byte count */
409#define ETH_FRAME_FRAGMENTED 0x00000004
410
411/* Tx descriptors command */
412#define ETH_LAYER_4_CHECKSUM_FIRST_DESC 0x00000400
413#define ETH_FRAME_SET_TO_VLAN 0x00008000
414#define ETH_UDP_FRAME 0x00010000
415#define ETH_GEN_TCP_UDP_CHECKSUM 0x00020000
416#define ETH_GEN_IP_V_4_CHECKSUM 0x00040000
417#define ETH_ZERO_PADDING 0x00080000
418#define ETH_TX_LAST_DESC 0x00100000
419#define ETH_TX_FIRST_DESC 0x00200000
420#define ETH_GEN_CRC 0x00400000
421#define ETH_TX_ENABLE_INTERRUPT 0x00800000
422#define ETH_AUTO_MODE 0x40000000
423
424#define ETH_TX_IHL_SHIFT 11
425
426/* typedefs */
427
428typedef enum _eth_func_ret_status {
429 ETH_OK, /* Returned as expected. */
430 ETH_ERROR, /* Fundamental error. */
431 ETH_RETRY, /* Could not process request. Try later.*/
432 ETH_END_OF_JOB, /* Ring has nothing to process. */
433 ETH_QUEUE_FULL, /* Ring resource error. */
434 ETH_QUEUE_LAST_RESOURCE /* Ring resources about to exhaust. */
435} ETH_FUNC_RET_STATUS;
436
437typedef enum _eth_target {
438 ETH_TARGET_DRAM,
439 ETH_TARGET_DEVICE,
440 ETH_TARGET_CBS,
441 ETH_TARGET_PCI0,
442 ETH_TARGET_PCI1
443} ETH_TARGET;
444
445/* These are for big-endian machines. Little endian needs different
446 * definitions.
447 */
448#if defined(__BIG_ENDIAN)
449struct eth_rx_desc {
450 u16 byte_cnt; /* Descriptor buffer byte count */
451 u16 buf_size; /* Buffer size */
452 u32 cmd_sts; /* Descriptor command status */
453 u32 next_desc_ptr; /* Next descriptor pointer */
454 u32 buf_ptr; /* Descriptor buffer pointer */
455};
456
457struct eth_tx_desc {
458 u16 byte_cnt; /* buffer byte count */
459 u16 l4i_chk; /* CPU provided TCP checksum */
460 u32 cmd_sts; /* Command/status field */
461 u32 next_desc_ptr; /* Pointer to next descriptor */
462 u32 buf_ptr; /* pointer to buffer for this descriptor*/
463};
464#elif defined(__LITTLE_ENDIAN)
465struct eth_rx_desc {
466 u32 cmd_sts; /* Descriptor command status */
467 u16 buf_size; /* Buffer size */
468 u16 byte_cnt; /* Descriptor buffer byte count */
469 u32 buf_ptr; /* Descriptor buffer pointer */
470 u32 next_desc_ptr; /* Next descriptor pointer */
471};
472
473struct eth_tx_desc {
474 u32 cmd_sts; /* Command/status field */
475 u16 l4i_chk; /* CPU provided TCP checksum */
476 u16 byte_cnt; /* buffer byte count */
477 u32 buf_ptr; /* pointer to buffer for this descriptor*/
478 u32 next_desc_ptr; /* Pointer to next descriptor */
479};
480#else
481#error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
482#endif
483
484/* Unified struct for Rx and Tx operations. The user is not required to */
485/* be familier with neither Tx nor Rx descriptors. */
486struct pkt_info {
487 unsigned short byte_cnt; /* Descriptor buffer byte count */
488 unsigned short l4i_chk; /* Tx CPU provided TCP Checksum */
489 unsigned int cmd_sts; /* Descriptor command status */
490 dma_addr_t buf_ptr; /* Descriptor buffer pointer */
491 struct sk_buff *return_info; /* User resource return information */
492};
493
494/* Ethernet port specific information */
495struct mv643xx_mib_counters {
496 u64 good_octets_received;
497 u32 bad_octets_received;
498 u32 internal_mac_transmit_err;
499 u32 good_frames_received;
500 u32 bad_frames_received;
501 u32 broadcast_frames_received;
502 u32 multicast_frames_received;
503 u32 frames_64_octets;
504 u32 frames_65_to_127_octets;
505 u32 frames_128_to_255_octets;
506 u32 frames_256_to_511_octets;
507 u32 frames_512_to_1023_octets;
508 u32 frames_1024_to_max_octets;
509 u64 good_octets_sent;
510 u32 good_frames_sent;
511 u32 excessive_collision;
512 u32 multicast_frames_sent;
513 u32 broadcast_frames_sent;
514 u32 unrec_mac_control_received;
515 u32 fc_sent;
516 u32 good_fc_received;
517 u32 bad_fc_received;
518 u32 undersize_received;
519 u32 fragments_received;
520 u32 oversize_received;
521 u32 jabber_received;
522 u32 mac_receive_error;
523 u32 bad_crc_event;
524 u32 collision;
525 u32 late_collision;
526};
527
528struct mv643xx_private {
529 int port_num; /* User Ethernet port number */
530
531 u32 rx_sram_addr; /* Base address of rx sram area */
532 u32 rx_sram_size; /* Size of rx sram area */
533 u32 tx_sram_addr; /* Base address of tx sram area */
534 u32 tx_sram_size; /* Size of tx sram area */
535
536 int rx_resource_err; /* Rx ring resource error flag */
537
538 /* Tx/Rx rings managment indexes fields. For driver use */
539
540 /* Next available and first returning Rx resource */
541 int rx_curr_desc_q, rx_used_desc_q;
542
543 /* Next available and first returning Tx resource */
544 int tx_curr_desc_q, tx_used_desc_q;
545
546#ifdef MV643XX_TX_FAST_REFILL
547 u32 tx_clean_threshold;
548#endif
549
550 struct eth_rx_desc *p_rx_desc_area;
551 dma_addr_t rx_desc_dma;
552 int rx_desc_area_size;
553 struct sk_buff **rx_skb;
554
555 struct eth_tx_desc *p_tx_desc_area;
556 dma_addr_t tx_desc_dma;
557 int tx_desc_area_size;
558 struct sk_buff **tx_skb;
559
560 struct work_struct tx_timeout_task;
561
562 struct net_device *dev;
563 struct napi_struct napi;
564 struct net_device_stats stats;
565 struct mv643xx_mib_counters mib_counters;
566 spinlock_t lock;
567 /* Size of Tx Ring per queue */
568 int tx_ring_size;
569 /* Number of tx descriptors in use */
570 int tx_desc_count;
571 /* Size of Rx Ring per queue */
572 int rx_ring_size;
573 /* Number of rx descriptors in use */
574 int rx_desc_count;
575
576 /*
577 * Used in case RX Ring is empty, which can be caused when
578 * system does not have resources (skb's)
579 */
580 struct timer_list timeout;
581
582 u32 rx_int_coal;
583 u32 tx_int_coal;
584 struct mii_if_info mii;
585};
1da177e4 586
1da177e4 587/* Static function declarations */
fbd6a754
LB
588static void eth_port_init(struct mv643xx_private *mp);
589static void eth_port_reset(unsigned int eth_port_num);
590static void eth_port_start(struct net_device *dev);
591
592static void ethernet_phy_reset(unsigned int eth_port_num);
593
594static void eth_port_write_smi_reg(unsigned int eth_port_num,
595 unsigned int phy_reg, unsigned int value);
596
597static void eth_port_read_smi_reg(unsigned int eth_port_num,
598 unsigned int phy_reg, unsigned int *value);
599
600static void eth_clear_mib_counters(unsigned int eth_port_num);
601
602static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
603 struct pkt_info *p_pkt_info);
604static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
605 struct pkt_info *p_pkt_info);
606
144213d7
GP
607static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr);
608static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr);
16e03018 609static void eth_port_set_multicast_list(struct net_device *);
9f8dd319 610static void mv643xx_eth_port_enable_tx(unsigned int port_num,
12a87c64 611 unsigned int queues);
9f8dd319 612static void mv643xx_eth_port_enable_rx(unsigned int port_num,
12a87c64 613 unsigned int queues);
9f8dd319
DF
614static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
615static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
ab4384a6
DF
616static int mv643xx_eth_open(struct net_device *);
617static int mv643xx_eth_stop(struct net_device *);
1da177e4 618static int mv643xx_eth_change_mtu(struct net_device *, int);
1da177e4
LT
619static void eth_port_init_mac_tables(unsigned int eth_port_num);
620#ifdef MV643XX_NAPI
bea3348e 621static int mv643xx_poll(struct napi_struct *napi, int budget);
1da177e4 622#endif
c28a4f89 623static int ethernet_phy_get(unsigned int eth_port_num);
1da177e4
LT
624static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
625static int ethernet_phy_detect(unsigned int eth_port_num);
c28a4f89
JC
626static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
627static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
d0412d96 628static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
7282d491 629static const struct ethtool_ops mv643xx_ethtool_ops;
1da177e4
LT
630
631static char mv643xx_driver_name[] = "mv643xx_eth";
632static char mv643xx_driver_version[] = "1.0";
633
f9fbbc18 634static void __iomem *mv643xx_eth_base;
1da177e4 635
e4d00fa9 636/* used to protect SMI_REG, which is shared across ports */
a9f6a0dd 637static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
1da177e4
LT
638
639static inline u32 mv_read(int offset)
640{
f9fbbc18 641 return readl(mv643xx_eth_base + offset);
1da177e4
LT
642}
643
644static inline void mv_write(int offset, u32 data)
645{
f9fbbc18 646 writel(data, mv643xx_eth_base + offset);
1da177e4
LT
647}
648
649/*
650 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
651 *
652 * Input : pointer to ethernet interface network device structure
653 * new mtu size
654 * Output : 0 upon success, -EINVAL upon failure
655 */
656static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
657{
8f518703 658 if ((new_mtu > 9500) || (new_mtu < 64))
1da177e4 659 return -EINVAL;
1da177e4
LT
660
661 dev->mtu = new_mtu;
662 /*
663 * Stop then re-open the interface. This will allocate RX skb's with
664 * the new MTU.
665 * There is a possible danger that the open will not successed, due
666 * to memory is full, which might fail the open function.
667 */
668 if (netif_running(dev)) {
ab4384a6
DF
669 mv643xx_eth_stop(dev);
670 if (mv643xx_eth_open(dev))
1da177e4
LT
671 printk(KERN_ERR
672 "%s: Fatal error on opening device\n",
673 dev->name);
674 }
675
1da177e4
LT
676 return 0;
677}
678
679/*
f78fb474 680 * mv643xx_eth_rx_refill_descs
1da177e4
LT
681 *
682 * Fills / refills RX queue on a certain gigabit ethernet port
683 *
684 * Input : pointer to ethernet interface network device structure
685 * Output : N/A
686 */
f78fb474 687static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
1da177e4 688{
1da177e4
LT
689 struct mv643xx_private *mp = netdev_priv(dev);
690 struct pkt_info pkt_info;
691 struct sk_buff *skb;
b44cd572 692 int unaligned;
1da177e4 693
f78fb474 694 while (mp->rx_desc_count < mp->rx_ring_size) {
908b637f 695 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
1da177e4
LT
696 if (!skb)
697 break;
f98e36f1 698 mp->rx_desc_count++;
908b637f 699 unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
b44cd572 700 if (unaligned)
908b637f 701 skb_reserve(skb, dma_get_cache_alignment() - unaligned);
1da177e4 702 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
7303fde8
DF
703 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
704 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
705 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
1da177e4
LT
706 pkt_info.return_info = skb;
707 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
708 printk(KERN_ERR
709 "%s: Error allocating RX Ring\n", dev->name);
710 break;
711 }
7303fde8 712 skb_reserve(skb, ETH_HW_IP_ALIGN);
1da177e4 713 }
1da177e4
LT
714 /*
715 * If RX ring is empty of SKB, set a timer to try allocating
f78fb474 716 * again at a later time.
1da177e4 717 */
f78fb474 718 if (mp->rx_desc_count == 0) {
1da177e4 719 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
f78fb474 720 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
1da177e4 721 add_timer(&mp->timeout);
1da177e4 722 }
1da177e4
LT
723}
724
725/*
f78fb474 726 * mv643xx_eth_rx_refill_descs_timer_wrapper
1da177e4
LT
727 *
728 * Timer routine to wake up RX queue filling task. This function is
729 * used only in case the RX queue is empty, and all alloc_skb has
730 * failed (due to out of memory event).
731 *
732 * Input : pointer to ethernet interface network device structure
733 * Output : N/A
734 */
f78fb474 735static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
1da177e4 736{
f78fb474 737 mv643xx_eth_rx_refill_descs((struct net_device *)data);
1da177e4
LT
738}
739
740/*
741 * mv643xx_eth_update_mac_address
742 *
743 * Update the MAC address of the port in the address table
744 *
745 * Input : pointer to ethernet interface network device structure
746 * Output : N/A
747 */
748static void mv643xx_eth_update_mac_address(struct net_device *dev)
749{
750 struct mv643xx_private *mp = netdev_priv(dev);
751 unsigned int port_num = mp->port_num;
752
753 eth_port_init_mac_tables(port_num);
ed9b5d45 754 eth_port_uc_addr_set(port_num, dev->dev_addr);
1da177e4
LT
755}
756
757/*
758 * mv643xx_eth_set_rx_mode
759 *
760 * Change from promiscuos to regular rx mode
761 *
762 * Input : pointer to ethernet interface network device structure
763 * Output : N/A
764 */
765static void mv643xx_eth_set_rx_mode(struct net_device *dev)
766{
767 struct mv643xx_private *mp = netdev_priv(dev);
01999873 768 u32 config_reg;
1da177e4 769
e4d00fa9 770 config_reg = mv_read(PORT_CONFIG_REG(mp->port_num));
1da177e4 771 if (dev->flags & IFF_PROMISC)
e4d00fa9 772 config_reg |= (u32) UNICAST_PROMISCUOUS_MODE;
1da177e4 773 else
e4d00fa9
LB
774 config_reg &= ~(u32) UNICAST_PROMISCUOUS_MODE;
775 mv_write(PORT_CONFIG_REG(mp->port_num), config_reg);
16e03018
DF
776
777 eth_port_set_multicast_list(dev);
1da177e4
LT
778}
779
780/*
781 * mv643xx_eth_set_mac_address
782 *
783 * Change the interface's mac address.
784 * No special hardware thing should be done because interface is always
785 * put in promiscuous mode.
786 *
787 * Input : pointer to ethernet interface network device structure and
788 * a pointer to the designated entry to be added to the cache.
789 * Output : zero upon success, negative upon failure
790 */
791static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
792{
793 int i;
794
795 for (i = 0; i < 6; i++)
796 /* +2 is for the offset of the HW addr type */
797 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
798 mv643xx_eth_update_mac_address(dev);
799 return 0;
800}
801
802/*
803 * mv643xx_eth_tx_timeout
804 *
805 * Called upon a timeout on transmitting a packet
806 *
807 * Input : pointer to ethernet interface network device structure.
808 * Output : N/A
809 */
810static void mv643xx_eth_tx_timeout(struct net_device *dev)
811{
812 struct mv643xx_private *mp = netdev_priv(dev);
813
814 printk(KERN_INFO "%s: TX timeout ", dev->name);
815
816 /* Do the reset outside of interrupt context */
817 schedule_work(&mp->tx_timeout_task);
818}
819
820/*
821 * mv643xx_eth_tx_timeout_task
822 *
823 * Actual routine to reset the adapter when a timeout on Tx has occurred
824 */
91c7c568 825static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
1da177e4 826{
91c7c568
AV
827 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
828 tx_timeout_task);
829 struct net_device *dev = mp->mii.dev; /* yuck */
1da177e4 830
94843566
DF
831 if (!netif_running(dev))
832 return;
833
834 netif_stop_queue(dev);
835
1da177e4 836 eth_port_reset(mp->port_num);
ed9b5d45 837 eth_port_start(dev);
94843566
DF
838
839 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
840 netif_wake_queue(dev);
1da177e4
LT
841}
842
ff561eef
DF
843/**
844 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
1da177e4 845 *
ff561eef 846 * If force is non-zero, frees uncompleted descriptors as well
1da177e4 847 */
ff561eef 848int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
1da177e4
LT
849{
850 struct mv643xx_private *mp = netdev_priv(dev);
ff561eef
DF
851 struct eth_tx_desc *desc;
852 u32 cmd_sts;
853 struct sk_buff *skb;
854 unsigned long flags;
855 int tx_index;
856 dma_addr_t addr;
857 int count;
858 int released = 0;
1da177e4 859
ff561eef
DF
860 while (mp->tx_desc_count > 0) {
861 spin_lock_irqsave(&mp->lock, flags);
d344bff9
DF
862
863 /* tx_desc_count might have changed before acquiring the lock */
864 if (mp->tx_desc_count <= 0) {
865 spin_unlock_irqrestore(&mp->lock, flags);
866 return released;
867 }
868
ff561eef
DF
869 tx_index = mp->tx_used_desc_q;
870 desc = &mp->p_tx_desc_area[tx_index];
871 cmd_sts = desc->cmd_sts;
872
873 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
874 spin_unlock_irqrestore(&mp->lock, flags);
875 return released;
876 }
877
878 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
879 mp->tx_desc_count--;
880
881 addr = desc->buf_ptr;
882 count = desc->byte_cnt;
883 skb = mp->tx_skb[tx_index];
884 if (skb)
885 mp->tx_skb[tx_index] = NULL;
886
7303fde8 887 if (cmd_sts & ETH_ERROR_SUMMARY) {
1da177e4 888 printk("%s: Error in TX\n", dev->name);
09f75cd7 889 dev->stats.tx_errors++;
1da177e4
LT
890 }
891
d344bff9
DF
892 spin_unlock_irqrestore(&mp->lock, flags);
893
ff561eef
DF
894 if (cmd_sts & ETH_TX_FIRST_DESC)
895 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
cb415d30 896 else
ff561eef 897 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
1da177e4 898
ff561eef
DF
899 if (skb)
900 dev_kfree_skb_irq(skb);
901
902 released = 1;
1da177e4
LT
903 }
904
1da177e4
LT
905 return released;
906}
907
ff561eef
DF
908static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
909{
910 struct mv643xx_private *mp = netdev_priv(dev);
911
912 if (mv643xx_eth_free_tx_descs(dev, 0) &&
913 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
914 netif_wake_queue(dev);
915}
916
917static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
918{
919 mv643xx_eth_free_tx_descs(dev, 1);
920}
921
1da177e4
LT
922/*
923 * mv643xx_eth_receive
924 *
925 * This function is forward packets that are received from the port's
926 * queues toward kernel core or FastRoute them to another interface.
927 *
928 * Input : dev - a pointer to the required interface
929 * max - maximum number to receive (0 means unlimted)
930 *
931 * Output : number of served packets
932 */
1da177e4 933static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
1da177e4
LT
934{
935 struct mv643xx_private *mp = netdev_priv(dev);
09f75cd7 936 struct net_device_stats *stats = &dev->stats;
1da177e4
LT
937 unsigned int received_packets = 0;
938 struct sk_buff *skb;
939 struct pkt_info pkt_info;
940
b1dd9ca1 941 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
54caf44d 942 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
71d28725 943 DMA_FROM_DEVICE);
f98e36f1 944 mp->rx_desc_count--;
1da177e4 945 received_packets++;
b1dd9ca1 946
468d09f8
DF
947 /*
948 * Update statistics.
949 * Note byte count includes 4 byte CRC count
950 */
1da177e4
LT
951 stats->rx_packets++;
952 stats->rx_bytes += pkt_info.byte_cnt;
953 skb = pkt_info.return_info;
954 /*
955 * In case received a packet without first / last bits on OR
956 * the error summary bit is on, the packets needs to be dropeed.
957 */
958 if (((pkt_info.cmd_sts
959 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
960 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
961 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
962 stats->rx_dropped++;
963 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
964 ETH_RX_LAST_DESC)) !=
965 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
966 if (net_ratelimit())
967 printk(KERN_ERR
968 "%s: Received packet spread "
969 "on multiple descriptors\n",
970 dev->name);
971 }
972 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
973 stats->rx_errors++;
974
975 dev_kfree_skb_irq(skb);
976 } else {
977 /*
978 * The -4 is for the CRC in the trailer of the
979 * received packet
980 */
981 skb_put(skb, pkt_info.byte_cnt - 4);
1da177e4
LT
982
983 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
984 skb->ip_summed = CHECKSUM_UNNECESSARY;
985 skb->csum = htons(
986 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
987 }
988 skb->protocol = eth_type_trans(skb, dev);
989#ifdef MV643XX_NAPI
990 netif_receive_skb(skb);
991#else
992 netif_rx(skb);
993#endif
994 }
12ad74f8 995 dev->last_rx = jiffies;
1da177e4 996 }
f78fb474 997 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
1da177e4
LT
998
999 return received_packets;
1000}
1001
d0412d96
JC
1002/* Set the mv643xx port configuration register for the speed/duplex mode. */
1003static void mv643xx_eth_update_pscr(struct net_device *dev,
1004 struct ethtool_cmd *ecmd)
1005{
1006 struct mv643xx_private *mp = netdev_priv(dev);
1007 int port_num = mp->port_num;
1008 u32 o_pscr, n_pscr;
12a87c64 1009 unsigned int queues;
d0412d96 1010
e4d00fa9 1011 o_pscr = mv_read(PORT_SERIAL_CONTROL_REG(port_num));
d0412d96
JC
1012 n_pscr = o_pscr;
1013
1014 /* clear speed, duplex and rx buffer size fields */
e4d00fa9
LB
1015 n_pscr &= ~(SET_MII_SPEED_TO_100 |
1016 SET_GMII_SPEED_TO_1000 |
1017 SET_FULL_DUPLEX_MODE |
1018 MAX_RX_PACKET_MASK);
d0412d96
JC
1019
1020 if (ecmd->duplex == DUPLEX_FULL)
e4d00fa9 1021 n_pscr |= SET_FULL_DUPLEX_MODE;
d0412d96
JC
1022
1023 if (ecmd->speed == SPEED_1000)
e4d00fa9
LB
1024 n_pscr |= SET_GMII_SPEED_TO_1000 |
1025 MAX_RX_PACKET_9700BYTE;
d0412d96
JC
1026 else {
1027 if (ecmd->speed == SPEED_100)
e4d00fa9
LB
1028 n_pscr |= SET_MII_SPEED_TO_100;
1029 n_pscr |= MAX_RX_PACKET_1522BYTE;
d0412d96
JC
1030 }
1031
1032 if (n_pscr != o_pscr) {
e4d00fa9
LB
1033 if ((o_pscr & SERIAL_PORT_ENABLE) == 0)
1034 mv_write(PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
d0412d96 1035 else {
12a87c64 1036 queues = mv643xx_eth_port_disable_tx(port_num);
d0412d96 1037
e4d00fa9
LB
1038 o_pscr &= ~SERIAL_PORT_ENABLE;
1039 mv_write(PORT_SERIAL_CONTROL_REG(port_num), o_pscr);
1040 mv_write(PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
1041 mv_write(PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
12a87c64
DF
1042 if (queues)
1043 mv643xx_eth_port_enable_tx(port_num, queues);
d0412d96
JC
1044 }
1045 }
1046}
1047
1da177e4
LT
1048/*
1049 * mv643xx_eth_int_handler
1050 *
1051 * Main interrupt handler for the gigbit ethernet ports
1052 *
1053 * Input : irq - irq number (not used)
1054 * dev_id - a pointer to the required interface's data structure
1055 * regs - not used
1056 * Output : N/A
1057 */
1058
7d12e780 1059static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
1da177e4
LT
1060{
1061 struct net_device *dev = (struct net_device *)dev_id;
1062 struct mv643xx_private *mp = netdev_priv(dev);
1063 u32 eth_int_cause, eth_int_cause_ext = 0;
1064 unsigned int port_num = mp->port_num;
1065
1066 /* Read interrupt cause registers */
e4d00fa9 1067 eth_int_cause = mv_read(INTERRUPT_CAUSE_REG(port_num)) &
7303fde8 1068 ETH_INT_UNMASK_ALL;
468d09f8 1069 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
1da177e4 1070 eth_int_cause_ext = mv_read(
e4d00fa9 1071 INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
7303fde8 1072 ETH_INT_UNMASK_ALL_EXT;
e4d00fa9 1073 mv_write(INTERRUPT_CAUSE_EXTEND_REG(port_num),
468d09f8 1074 ~eth_int_cause_ext);
1da177e4 1075 }
7303fde8 1076
1da177e4 1077 /* PHY status changed */
2bcff60f 1078 if (eth_int_cause_ext & (ETH_INT_CAUSE_PHY | ETH_INT_CAUSE_STATE)) {
d0412d96
JC
1079 struct ethtool_cmd cmd;
1080
c28a4f89 1081 if (mii_link_ok(&mp->mii)) {
d0412d96
JC
1082 mii_ethtool_gset(&mp->mii, &cmd);
1083 mv643xx_eth_update_pscr(dev, &cmd);
ff561eef
DF
1084 mv643xx_eth_port_enable_tx(port_num,
1085 ETH_TX_QUEUES_ENABLED);
c28a4f89
JC
1086 if (!netif_carrier_ok(dev)) {
1087 netif_carrier_on(dev);
ff561eef
DF
1088 if (mp->tx_ring_size - mp->tx_desc_count >=
1089 MAX_DESCS_PER_SKB)
d0412d96 1090 netif_wake_queue(dev);
c28a4f89
JC
1091 }
1092 } else if (netif_carrier_ok(dev)) {
1da177e4 1093 netif_stop_queue(dev);
c28a4f89 1094 netif_carrier_off(dev);
1da177e4
LT
1095 }
1096 }
1097
468d09f8
DF
1098#ifdef MV643XX_NAPI
1099 if (eth_int_cause & ETH_INT_CAUSE_RX) {
1100 /* schedule the NAPI poll routine to maintain port */
e4d00fa9
LB
1101 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1102
468d09f8 1103 /* wait for previous write to complete */
e4d00fa9 1104 mv_read(INTERRUPT_MASK_REG(port_num));
468d09f8 1105
bea3348e 1106 netif_rx_schedule(dev, &mp->napi);
468d09f8
DF
1107 }
1108#else
1109 if (eth_int_cause & ETH_INT_CAUSE_RX)
1110 mv643xx_eth_receive_queue(dev, INT_MAX);
5c537408 1111#endif
468d09f8
DF
1112 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
1113 mv643xx_eth_free_completed_tx_descs(dev);
468d09f8 1114
1da177e4
LT
1115 /*
1116 * If no real interrupt occured, exit.
1117 * This can happen when using gigE interrupt coalescing mechanism.
1118 */
1119 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
1120 return IRQ_NONE;
1121
1122 return IRQ_HANDLED;
1123}
1124
1125#ifdef MV643XX_COAL
1126
1127/*
1128 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
1129 *
1130 * DESCRIPTION:
1131 * This routine sets the RX coalescing interrupt mechanism parameter.
1132 * This parameter is a timeout counter, that counts in 64 t_clk
1133 * chunks ; that when timeout event occurs a maskable interrupt
1134 * occurs.
1135 * The parameter is calculated using the tClk of the MV-643xx chip
1136 * , and the required delay of the interrupt in usec.
1137 *
1138 * INPUT:
1139 * unsigned int eth_port_num Ethernet port number
1140 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
1141 * unsigned int delay Delay in usec
1142 *
1143 * OUTPUT:
1144 * Interrupt coalescing mechanism value is set in MV-643xx chip.
1145 *
1146 * RETURN:
1147 * The interrupt coalescing value set in the gigE port.
1148 *
1149 */
1150static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
1151 unsigned int t_clk, unsigned int delay)
1152{
1153 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
1154
1155 /* Set RX Coalescing mechanism */
e4d00fa9 1156 mv_write(SDMA_CONFIG_REG(eth_port_num),
1da177e4 1157 ((coal & 0x3fff) << 8) |
e4d00fa9 1158 (mv_read(SDMA_CONFIG_REG(eth_port_num))
1da177e4
LT
1159 & 0xffc000ff));
1160
1161 return coal;
1162}
1163#endif
1164
1165/*
1166 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
1167 *
1168 * DESCRIPTION:
1169 * This routine sets the TX coalescing interrupt mechanism parameter.
1170 * This parameter is a timeout counter, that counts in 64 t_clk
1171 * chunks ; that when timeout event occurs a maskable interrupt
1172 * occurs.
1173 * The parameter is calculated using the t_cLK frequency of the
1174 * MV-643xx chip and the required delay in the interrupt in uSec
1175 *
1176 * INPUT:
1177 * unsigned int eth_port_num Ethernet port number
1178 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
1179 * unsigned int delay Delay in uSeconds
1180 *
1181 * OUTPUT:
1182 * Interrupt coalescing mechanism value is set in MV-643xx chip.
1183 *
1184 * RETURN:
1185 * The interrupt coalescing value set in the gigE port.
1186 *
1187 */
1188static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
1189 unsigned int t_clk, unsigned int delay)
1190{
1191 unsigned int coal;
1192 coal = ((t_clk / 1000000) * delay) / 64;
1193 /* Set TX Coalescing mechanism */
e4d00fa9 1194 mv_write(TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num), coal << 4);
1da177e4
LT
1195 return coal;
1196}
1197
1da177e4
LT
1198/*
1199 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
1200 *
1201 * DESCRIPTION:
1202 * This function prepares a Rx chained list of descriptors and packet
1203 * buffers in a form of a ring. The routine must be called after port
1204 * initialization routine and before port start routine.
1205 * The Ethernet SDMA engine uses CPU bus addresses to access the various
1206 * devices in the system (i.e. DRAM). This function uses the ethernet
1207 * struct 'virtual to physical' routine (set by the user) to set the ring
1208 * with physical addresses.
1209 *
1210 * INPUT:
1211 * struct mv643xx_private *mp Ethernet Port Control srtuct.
1212 *
1213 * OUTPUT:
1214 * The routine updates the Ethernet port control struct with information
1215 * regarding the Rx descriptors and buffers.
1216 *
1217 * RETURN:
1218 * None.
1219 */
1220static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
1221{
1222 volatile struct eth_rx_desc *p_rx_desc;
1223 int rx_desc_num = mp->rx_ring_size;
1224 int i;
1225
1226 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1227 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
1228 for (i = 0; i < rx_desc_num; i++) {
1229 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
1230 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
1231 }
1232
1233 /* Save Rx desc pointer to driver struct. */
1234 mp->rx_curr_desc_q = 0;
1235 mp->rx_used_desc_q = 0;
1236
1237 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
1da177e4
LT
1238}
1239
1240/*
1241 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
1242 *
1243 * DESCRIPTION:
1244 * This function prepares a Tx chained list of descriptors and packet
1245 * buffers in a form of a ring. The routine must be called after port
1246 * initialization routine and before port start routine.
1247 * The Ethernet SDMA engine uses CPU bus addresses to access the various
1248 * devices in the system (i.e. DRAM). This function uses the ethernet
1249 * struct 'virtual to physical' routine (set by the user) to set the ring
1250 * with physical addresses.
1251 *
1252 * INPUT:
1253 * struct mv643xx_private *mp Ethernet Port Control srtuct.
1254 *
1255 * OUTPUT:
1256 * The routine updates the Ethernet port control struct with information
1257 * regarding the Tx descriptors and buffers.
1258 *
1259 * RETURN:
1260 * None.
1261 */
1262static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
1263{
1264 int tx_desc_num = mp->tx_ring_size;
1265 struct eth_tx_desc *p_tx_desc;
1266 int i;
1267
1268 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1269 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
1270 for (i = 0; i < tx_desc_num; i++) {
1271 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
1272 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
1273 }
1274
1275 mp->tx_curr_desc_q = 0;
1276 mp->tx_used_desc_q = 0;
1da177e4
LT
1277
1278 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
1da177e4
LT
1279}
1280
d0412d96
JC
1281static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1282{
1283 struct mv643xx_private *mp = netdev_priv(dev);
1284 int err;
1285
1286 spin_lock_irq(&mp->lock);
1287 err = mii_ethtool_sset(&mp->mii, cmd);
1288 spin_unlock_irq(&mp->lock);
1289
1290 return err;
1291}
1292
1293static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1294{
1295 struct mv643xx_private *mp = netdev_priv(dev);
1296 int err;
1297
1298 spin_lock_irq(&mp->lock);
1299 err = mii_ethtool_gset(&mp->mii, cmd);
1300 spin_unlock_irq(&mp->lock);
1301
1302 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
1303 cmd->supported &= ~SUPPORTED_1000baseT_Half;
1304 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
1305
1306 return err;
1307}
1308
ab4384a6
DF
1309/*
1310 * mv643xx_eth_open
1311 *
1312 * This function is called when openning the network device. The function
1313 * should initialize all the hardware, initialize cyclic Rx/Tx
1314 * descriptors chain and buffers and allocate an IRQ to the network
1315 * device.
1316 *
1317 * Input : a pointer to the network device structure
1318 *
1319 * Output : zero of success , nonzero if fails.
1320 */
1321
1322static int mv643xx_eth_open(struct net_device *dev)
1da177e4
LT
1323{
1324 struct mv643xx_private *mp = netdev_priv(dev);
1325 unsigned int port_num = mp->port_num;
1326 unsigned int size;
ab4384a6
DF
1327 int err;
1328
85cf572c 1329 /* Clear any pending ethernet port interrupts */
e4d00fa9
LB
1330 mv_write(INTERRUPT_CAUSE_REG(port_num), 0);
1331 mv_write(INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
85cf572c 1332 /* wait for previous write to complete */
e4d00fa9 1333 mv_read (INTERRUPT_CAUSE_EXTEND_REG(port_num));
85cf572c 1334
ab4384a6 1335 err = request_irq(dev->irq, mv643xx_eth_int_handler,
1fb9df5d 1336 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
ab4384a6
DF
1337 if (err) {
1338 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
1339 port_num);
1340 return -EAGAIN;
1341 }
1da177e4 1342
1da177e4
LT
1343 eth_port_init(mp);
1344
1da177e4 1345 memset(&mp->timeout, 0, sizeof(struct timer_list));
f78fb474 1346 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
1da177e4
LT
1347 mp->timeout.data = (unsigned long)dev;
1348
1da177e4
LT
1349 /* Allocate RX and TX skb rings */
1350 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
1351 GFP_KERNEL);
1352 if (!mp->rx_skb) {
1353 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
ab4384a6
DF
1354 err = -ENOMEM;
1355 goto out_free_irq;
1da177e4
LT
1356 }
1357 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
1358 GFP_KERNEL);
1359 if (!mp->tx_skb) {
1360 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
ab4384a6
DF
1361 err = -ENOMEM;
1362 goto out_free_rx_skb;
1da177e4
LT
1363 }
1364
1365 /* Allocate TX ring */
f98e36f1 1366 mp->tx_desc_count = 0;
1da177e4
LT
1367 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
1368 mp->tx_desc_area_size = size;
1369
1370 if (mp->tx_sram_size) {
1371 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
1372 mp->tx_sram_size);
1373 mp->tx_desc_dma = mp->tx_sram_addr;
1374 } else
1375 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
1376 &mp->tx_desc_dma,
1377 GFP_KERNEL);
1378
1379 if (!mp->p_tx_desc_area) {
1380 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1381 dev->name, size);
ab4384a6
DF
1382 err = -ENOMEM;
1383 goto out_free_tx_skb;
1da177e4
LT
1384 }
1385 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
1386 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
1387
1388 ether_init_tx_desc_ring(mp);
1389
1390 /* Allocate RX ring */
f98e36f1 1391 mp->rx_desc_count = 0;
1da177e4
LT
1392 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
1393 mp->rx_desc_area_size = size;
1394
1395 if (mp->rx_sram_size) {
1396 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
1397 mp->rx_sram_size);
1398 mp->rx_desc_dma = mp->rx_sram_addr;
1399 } else
1400 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
1401 &mp->rx_desc_dma,
1402 GFP_KERNEL);
1403
1404 if (!mp->p_rx_desc_area) {
1405 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
1406 dev->name, size);
1407 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
1408 dev->name);
1409 if (mp->rx_sram_size)
dd09b1de 1410 iounmap(mp->p_tx_desc_area);
1da177e4
LT
1411 else
1412 dma_free_coherent(NULL, mp->tx_desc_area_size,
1413 mp->p_tx_desc_area, mp->tx_desc_dma);
ab4384a6
DF
1414 err = -ENOMEM;
1415 goto out_free_tx_skb;
1da177e4
LT
1416 }
1417 memset((void *)mp->p_rx_desc_area, 0, size);
1418
1419 ether_init_rx_desc_ring(mp);
1420
f78fb474 1421 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
1da177e4 1422
bea3348e
SH
1423#ifdef MV643XX_NAPI
1424 napi_enable(&mp->napi);
1425#endif
1426
ed9b5d45 1427 eth_port_start(dev);
1da177e4
LT
1428
1429 /* Interrupt Coalescing */
1430
1431#ifdef MV643XX_COAL
1432 mp->rx_int_coal =
1433 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
1434#endif
1435
1436 mp->tx_int_coal =
1437 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
1438
8f518703 1439 /* Unmask phy and link status changes interrupts */
e4d00fa9 1440 mv_write(INTERRUPT_EXTEND_MASK_REG(port_num), ETH_INT_UNMASK_ALL_EXT);
1da177e4 1441
8f518703 1442 /* Unmask RX buffer and TX end interrupt */
e4d00fa9 1443 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
d0412d96 1444
1da177e4 1445 return 0;
ab4384a6
DF
1446
1447out_free_tx_skb:
1448 kfree(mp->tx_skb);
1449out_free_rx_skb:
1450 kfree(mp->rx_skb);
1451out_free_irq:
1452 free_irq(dev->irq, dev);
1453
1454 return err;
1da177e4
LT
1455}
1456
1457static void mv643xx_eth_free_tx_rings(struct net_device *dev)
1458{
1459 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4
LT
1460
1461 /* Stop Tx Queues */
ff561eef 1462 mv643xx_eth_port_disable_tx(mp->port_num);
1da177e4 1463
ff561eef
DF
1464 /* Free outstanding skb's on TX ring */
1465 mv643xx_eth_free_all_tx_descs(dev);
1466
1467 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
1da177e4
LT
1468
1469 /* Free TX ring */
1470 if (mp->tx_sram_size)
1471 iounmap(mp->p_tx_desc_area);
1472 else
1473 dma_free_coherent(NULL, mp->tx_desc_area_size,
1474 mp->p_tx_desc_area, mp->tx_desc_dma);
1475}
1476
1477static void mv643xx_eth_free_rx_rings(struct net_device *dev)
1478{
1479 struct mv643xx_private *mp = netdev_priv(dev);
1480 unsigned int port_num = mp->port_num;
1481 int curr;
1482
1483 /* Stop RX Queues */
9f8dd319 1484 mv643xx_eth_port_disable_rx(port_num);
1da177e4
LT
1485
1486 /* Free preallocated skb's on RX rings */
f98e36f1 1487 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
1da177e4
LT
1488 if (mp->rx_skb[curr]) {
1489 dev_kfree_skb(mp->rx_skb[curr]);
f98e36f1 1490 mp->rx_desc_count--;
1da177e4
LT
1491 }
1492 }
1493
f98e36f1 1494 if (mp->rx_desc_count)
1da177e4
LT
1495 printk(KERN_ERR
1496 "%s: Error in freeing Rx Ring. %d skb's still"
1497 " stuck in RX Ring - ignoring them\n", dev->name,
f98e36f1 1498 mp->rx_desc_count);
1da177e4
LT
1499 /* Free RX ring */
1500 if (mp->rx_sram_size)
1501 iounmap(mp->p_rx_desc_area);
1502 else
1503 dma_free_coherent(NULL, mp->rx_desc_area_size,
1504 mp->p_rx_desc_area, mp->rx_desc_dma);
1505}
1506
1507/*
1508 * mv643xx_eth_stop
1509 *
1510 * This function is used when closing the network device.
1511 * It updates the hardware,
1512 * release all memory that holds buffers and descriptors and release the IRQ.
1513 * Input : a pointer to the device structure
1514 * Output : zero if success , nonzero if fails
1515 */
1516
ab4384a6 1517static int mv643xx_eth_stop(struct net_device *dev)
1da177e4
LT
1518{
1519 struct mv643xx_private *mp = netdev_priv(dev);
1520 unsigned int port_num = mp->port_num;
1521
c2e5b352 1522 /* Mask all interrupts on ethernet port */
e4d00fa9 1523 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
c2e5b352 1524 /* wait for previous write to complete */
e4d00fa9 1525 mv_read(INTERRUPT_MASK_REG(port_num));
8f518703
DF
1526
1527#ifdef MV643XX_NAPI
bea3348e 1528 napi_disable(&mp->napi);
8f518703 1529#endif
1da177e4
LT
1530 netif_carrier_off(dev);
1531 netif_stop_queue(dev);
1532
1da177e4
LT
1533 eth_port_reset(mp->port_num);
1534
8f518703
DF
1535 mv643xx_eth_free_tx_rings(dev);
1536 mv643xx_eth_free_rx_rings(dev);
1da177e4 1537
1da177e4 1538 free_irq(dev->irq, dev);
1da177e4
LT
1539
1540 return 0;
1541}
1542
1543#ifdef MV643XX_NAPI
1da177e4
LT
1544/*
1545 * mv643xx_poll
1546 *
1547 * This function is used in case of NAPI
1548 */
bea3348e 1549static int mv643xx_poll(struct napi_struct *napi, int budget)
1da177e4 1550{
bea3348e
SH
1551 struct mv643xx_private *mp = container_of(napi, struct mv643xx_private, napi);
1552 struct net_device *dev = mp->dev;
1da177e4 1553 unsigned int port_num = mp->port_num;
bea3348e 1554 int work_done;
1da177e4
LT
1555
1556#ifdef MV643XX_TX_FAST_REFILL
1557 if (++mp->tx_clean_threshold > 5) {
ff561eef 1558 mv643xx_eth_free_completed_tx_descs(dev);
1da177e4 1559 mp->tx_clean_threshold = 0;
1da177e4
LT
1560 }
1561#endif
1562
bea3348e 1563 work_done = 0;
e4d00fa9 1564 if ((mv_read(RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
bea3348e
SH
1565 != (u32) mp->rx_used_desc_q)
1566 work_done = mv643xx_eth_receive_queue(dev, budget);
1da177e4 1567
bea3348e
SH
1568 if (work_done < budget) {
1569 netif_rx_complete(dev, napi);
e4d00fa9
LB
1570 mv_write(INTERRUPT_CAUSE_REG(port_num), 0);
1571 mv_write(INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1572 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1da177e4
LT
1573 }
1574
bea3348e 1575 return work_done;
1da177e4
LT
1576}
1577#endif
1578
c8aaea25
DF
1579/**
1580 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1581 *
1582 * Hardware can't handle unaligned fragments smaller than 9 bytes.
f7ea3337
PJ
1583 * This helper function detects that case.
1584 */
1585
1586static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1587{
b4de9051
DF
1588 unsigned int frag;
1589 skb_frag_t *fragp;
f7ea3337 1590
b4de9051
DF
1591 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1592 fragp = &skb_shinfo(skb)->frags[frag];
1593 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1594 return 1;
1595 }
1596 return 0;
f7ea3337
PJ
1597}
1598
c8aaea25
DF
1599/**
1600 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1601 */
1602static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1603{
1604 int tx_desc_curr;
1605
c8aaea25 1606 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
c8aaea25 1607
ff561eef 1608 tx_desc_curr = mp->tx_curr_desc_q;
c8aaea25
DF
1609 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1610
1611 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1612
1613 return tx_desc_curr;
1614}
1615
1616/**
1617 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1da177e4 1618 *
c8aaea25
DF
1619 * Ensure the data for each fragment to be transmitted is mapped properly,
1620 * then fill in descriptors in the tx hw queue.
1da177e4 1621 */
c8aaea25
DF
1622static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1623 struct sk_buff *skb)
1da177e4 1624{
c8aaea25
DF
1625 int frag;
1626 int tx_index;
1627 struct eth_tx_desc *desc;
1da177e4 1628
c8aaea25
DF
1629 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1630 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1631
1632 tx_index = eth_alloc_tx_desc_index(mp);
1633 desc = &mp->p_tx_desc_area[tx_index];
1634
1635 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1636 /* Last Frag enables interrupt and frees the skb */
1637 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1638 desc->cmd_sts |= ETH_ZERO_PADDING |
1639 ETH_TX_LAST_DESC |
1640 ETH_TX_ENABLE_INTERRUPT;
1641 mp->tx_skb[tx_index] = skb;
1642 } else
05980775 1643 mp->tx_skb[tx_index] = NULL;
c8aaea25
DF
1644
1645 desc = &mp->p_tx_desc_area[tx_index];
1646 desc->l4i_chk = 0;
1647 desc->byte_cnt = this_frag->size;
1648 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1649 this_frag->page_offset,
1650 this_frag->size,
1651 DMA_TO_DEVICE);
1da177e4 1652 }
c8aaea25 1653}
1da177e4 1654
324ff2c1
BB
1655static inline __be16 sum16_as_be(__sum16 sum)
1656{
1657 return (__force __be16)sum;
1658}
1659
c8aaea25
DF
1660/**
1661 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1662 *
1663 * Ensure the data for an skb to be transmitted is mapped properly,
1664 * then fill in descriptors in the tx hw queue and start the hardware.
1665 */
ff561eef
DF
1666static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1667 struct sk_buff *skb)
c8aaea25
DF
1668{
1669 int tx_index;
1670 struct eth_tx_desc *desc;
1671 u32 cmd_sts;
1672 int length;
ff561eef 1673 int nr_frags = skb_shinfo(skb)->nr_frags;
1da177e4 1674
c8aaea25 1675 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1da177e4 1676
c8aaea25
DF
1677 tx_index = eth_alloc_tx_desc_index(mp);
1678 desc = &mp->p_tx_desc_area[tx_index];
1679
ff561eef 1680 if (nr_frags) {
c8aaea25
DF
1681 eth_tx_fill_frag_descs(mp, skb);
1682
1683 length = skb_headlen(skb);
05980775 1684 mp->tx_skb[tx_index] = NULL;
c8aaea25
DF
1685 } else {
1686 cmd_sts |= ETH_ZERO_PADDING |
1687 ETH_TX_LAST_DESC |
1688 ETH_TX_ENABLE_INTERRUPT;
1689 length = skb->len;
1690 mp->tx_skb[tx_index] = skb;
f7ea3337
PJ
1691 }
1692
c8aaea25
DF
1693 desc->byte_cnt = length;
1694 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1da177e4 1695
84fa7933 1696 if (skb->ip_summed == CHECKSUM_PARTIAL) {
324ff2c1 1697 BUG_ON(skb->protocol != htons(ETH_P_IP));
c8aaea25
DF
1698
1699 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1700 ETH_GEN_IP_V_4_CHECKSUM |
eddc9ec5 1701 ip_hdr(skb)->ihl << ETH_TX_IHL_SHIFT;
c8aaea25 1702
eddc9ec5 1703 switch (ip_hdr(skb)->protocol) {
c8aaea25
DF
1704 case IPPROTO_UDP:
1705 cmd_sts |= ETH_UDP_FRAME;
324ff2c1 1706 desc->l4i_chk = ntohs(sum16_as_be(udp_hdr(skb)->check));
c8aaea25
DF
1707 break;
1708 case IPPROTO_TCP:
324ff2c1 1709 desc->l4i_chk = ntohs(sum16_as_be(tcp_hdr(skb)->check));
c8aaea25
DF
1710 break;
1711 default:
1712 BUG();
1da177e4 1713 }
1da177e4 1714 } else {
c8aaea25
DF
1715 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1716 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1717 desc->l4i_chk = 0;
1718 }
1da177e4 1719
c8aaea25
DF
1720 /* ensure all other descriptors are written before first cmd_sts */
1721 wmb();
1722 desc->cmd_sts = cmd_sts;
1da177e4 1723
c8aaea25
DF
1724 /* ensure all descriptors are written before poking hardware */
1725 wmb();
ff561eef 1726 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1da177e4 1727
ff561eef 1728 mp->tx_desc_count += nr_frags + 1;
c8aaea25 1729}
1da177e4 1730
c8aaea25
DF
1731/**
1732 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1733 *
1734 */
1735static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1736{
1737 struct mv643xx_private *mp = netdev_priv(dev);
09f75cd7 1738 struct net_device_stats *stats = &dev->stats;
c8aaea25 1739 unsigned long flags;
1da177e4 1740
c8aaea25
DF
1741 BUG_ON(netif_queue_stopped(dev));
1742 BUG_ON(skb == NULL);
94843566
DF
1743
1744 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1745 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1746 netif_stop_queue(dev);
1747 return 1;
1748 }
1da177e4 1749
c8aaea25 1750 if (has_tiny_unaligned_frags(skb)) {
364c6bad 1751 if (__skb_linearize(skb)) {
c8aaea25
DF
1752 stats->tx_dropped++;
1753 printk(KERN_DEBUG "%s: failed to linearize tiny "
1754 "unaligned fragment\n", dev->name);
1755 return 1;
1da177e4
LT
1756 }
1757 }
f7ea3337 1758
c8aaea25 1759 spin_lock_irqsave(&mp->lock, flags);
1da177e4 1760
ff561eef 1761 eth_tx_submit_descs_for_skb(mp, skb);
e7e381f6 1762 stats->tx_bytes += skb->len;
1da177e4
LT
1763 stats->tx_packets++;
1764 dev->trans_start = jiffies;
1765
c8aaea25
DF
1766 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1767 netif_stop_queue(dev);
1768
1da177e4
LT
1769 spin_unlock_irqrestore(&mp->lock, flags);
1770
1771 return 0; /* success */
1772}
1773
63c9e549 1774#ifdef CONFIG_NET_POLL_CONTROLLER
63c9e549
DF
1775static void mv643xx_netpoll(struct net_device *netdev)
1776{
1777 struct mv643xx_private *mp = netdev_priv(netdev);
c2e5b352
DF
1778 int port_num = mp->port_num;
1779
e4d00fa9 1780 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
c2e5b352 1781 /* wait for previous write to complete */
e4d00fa9 1782 mv_read(INTERRUPT_MASK_REG(port_num));
63c9e549 1783
9da3b1ad 1784 mv643xx_eth_int_handler(netdev->irq, netdev);
c2e5b352 1785
e4d00fa9 1786 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
63c9e549
DF
1787}
1788#endif
1789
d0412d96
JC
1790static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1791 int speed, int duplex,
1792 struct ethtool_cmd *cmd)
1793{
1794 struct mv643xx_private *mp = netdev_priv(dev);
1795
1796 memset(cmd, 0, sizeof(*cmd));
1797
1798 cmd->port = PORT_MII;
1799 cmd->transceiver = XCVR_INTERNAL;
1800 cmd->phy_address = phy_address;
1801
1802 if (speed == 0) {
1803 cmd->autoneg = AUTONEG_ENABLE;
1804 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1805 cmd->speed = SPEED_100;
1806 cmd->advertising = ADVERTISED_10baseT_Half |
1807 ADVERTISED_10baseT_Full |
1808 ADVERTISED_100baseT_Half |
1809 ADVERTISED_100baseT_Full;
1810 if (mp->mii.supports_gmii)
1811 cmd->advertising |= ADVERTISED_1000baseT_Full;
1812 } else {
1813 cmd->autoneg = AUTONEG_DISABLE;
1814 cmd->speed = speed;
1815 cmd->duplex = duplex;
1816 }
1817}
1818
1da177e4
LT
1819/*/
1820 * mv643xx_eth_probe
1821 *
1822 * First function called after registering the network device.
1823 * It's purpose is to initialize the device as an ethernet device,
1824 * fill the ethernet device structure with pointers * to functions,
1825 * and set the MAC address of the interface
1826 *
1827 * Input : struct device *
1828 * Output : -ENOMEM if failed , 0 if success
1829 */
3ae5eaec 1830static int mv643xx_eth_probe(struct platform_device *pdev)
1da177e4 1831{
1da177e4 1832 struct mv643xx_eth_platform_data *pd;
84dd619e 1833 int port_num;
1da177e4
LT
1834 struct mv643xx_private *mp;
1835 struct net_device *dev;
1836 u8 *p;
1837 struct resource *res;
1838 int err;
d0412d96 1839 struct ethtool_cmd cmd;
01999873
DF
1840 int duplex = DUPLEX_HALF;
1841 int speed = 0; /* default to auto-negotiation */
c5d6471f 1842 DECLARE_MAC_BUF(mac);
1da177e4 1843
84dd619e
DF
1844 pd = pdev->dev.platform_data;
1845 if (pd == NULL) {
1846 printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1847 return -ENODEV;
1848 }
1849
1da177e4
LT
1850 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1851 if (!dev)
1852 return -ENOMEM;
1853
3ae5eaec 1854 platform_set_drvdata(pdev, dev);
1da177e4
LT
1855
1856 mp = netdev_priv(dev);
bea3348e
SH
1857 mp->dev = dev;
1858#ifdef MV643XX_NAPI
1859 netif_napi_add(dev, &mp->napi, mv643xx_poll, 64);
1860#endif
1da177e4
LT
1861
1862 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1863 BUG_ON(!res);
1864 dev->irq = res->start;
1865
1da177e4
LT
1866 dev->open = mv643xx_eth_open;
1867 dev->stop = mv643xx_eth_stop;
1868 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1da177e4
LT
1869 dev->set_mac_address = mv643xx_eth_set_mac_address;
1870 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1871
1872 /* No need to Tx Timeout */
1873 dev->tx_timeout = mv643xx_eth_tx_timeout;
1da177e4 1874
63c9e549
DF
1875#ifdef CONFIG_NET_POLL_CONTROLLER
1876 dev->poll_controller = mv643xx_netpoll;
1877#endif
1878
1da177e4 1879 dev->watchdog_timeo = 2 * HZ;
1da177e4
LT
1880 dev->base_addr = 0;
1881 dev->change_mtu = mv643xx_eth_change_mtu;
d0412d96 1882 dev->do_ioctl = mv643xx_eth_do_ioctl;
1da177e4
LT
1883 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1884
1885#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1886#ifdef MAX_SKB_FRAGS
1887 /*
1888 * Zero copy can only work if we use Discovery II memory. Else, we will
1889 * have to map the buffers to ISA memory which is only 16 MB
1890 */
63890576 1891 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1da177e4
LT
1892#endif
1893#endif
1894
1895 /* Configure the timeout task */
91c7c568 1896 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1da177e4
LT
1897
1898 spin_lock_init(&mp->lock);
1899
fadac406 1900 port_num = mp->port_num = pd->port_number;
84dd619e 1901
1da177e4 1902 /* set default config values */
144213d7 1903 eth_port_uc_addr_get(port_num, dev->dev_addr);
e4d00fa9
LB
1904 mp->rx_ring_size = PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1905 mp->tx_ring_size = PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1da177e4 1906
84dd619e
DF
1907 if (is_valid_ether_addr(pd->mac_addr))
1908 memcpy(dev->dev_addr, pd->mac_addr, 6);
1da177e4 1909
84dd619e
DF
1910 if (pd->phy_addr || pd->force_phy_addr)
1911 ethernet_phy_set(port_num, pd->phy_addr);
1da177e4 1912
84dd619e
DF
1913 if (pd->rx_queue_size)
1914 mp->rx_ring_size = pd->rx_queue_size;
1da177e4 1915
84dd619e
DF
1916 if (pd->tx_queue_size)
1917 mp->tx_ring_size = pd->tx_queue_size;
1da177e4 1918
84dd619e
DF
1919 if (pd->tx_sram_size) {
1920 mp->tx_sram_size = pd->tx_sram_size;
1921 mp->tx_sram_addr = pd->tx_sram_addr;
1922 }
01999873 1923
84dd619e
DF
1924 if (pd->rx_sram_size) {
1925 mp->rx_sram_size = pd->rx_sram_size;
1926 mp->rx_sram_addr = pd->rx_sram_addr;
1da177e4
LT
1927 }
1928
84dd619e
DF
1929 duplex = pd->duplex;
1930 speed = pd->speed;
1931
c28a4f89
JC
1932 /* Hook up MII support for ethtool */
1933 mp->mii.dev = dev;
1934 mp->mii.mdio_read = mv643xx_mdio_read;
1935 mp->mii.mdio_write = mv643xx_mdio_write;
1936 mp->mii.phy_id = ethernet_phy_get(port_num);
1937 mp->mii.phy_id_mask = 0x3f;
1938 mp->mii.reg_num_mask = 0x1f;
1939
1da177e4
LT
1940 err = ethernet_phy_detect(port_num);
1941 if (err) {
1942 pr_debug("MV643xx ethernet port %d: "
1943 "No PHY detected at addr %d\n",
1944 port_num, ethernet_phy_get(port_num));
d0412d96 1945 goto out;
1da177e4
LT
1946 }
1947
01999873 1948 ethernet_phy_reset(port_num);
c28a4f89 1949 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
d0412d96
JC
1950 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1951 mv643xx_eth_update_pscr(dev, &cmd);
1952 mv643xx_set_settings(dev, &cmd);
c28a4f89 1953
b0b8dab2 1954 SET_NETDEV_DEV(dev, &pdev->dev);
1da177e4
LT
1955 err = register_netdev(dev);
1956 if (err)
1957 goto out;
1958
1959 p = dev->dev_addr;
1960 printk(KERN_NOTICE
0795af57
JP
1961 "%s: port %d with MAC address %s\n",
1962 dev->name, port_num, print_mac(mac, p));
1da177e4
LT
1963
1964 if (dev->features & NETIF_F_SG)
1965 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1966
1967 if (dev->features & NETIF_F_IP_CSUM)
1968 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1969 dev->name);
1970
1971#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1972 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1973#endif
1974
1975#ifdef MV643XX_COAL
1976 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1977 dev->name);
1978#endif
1979
1980#ifdef MV643XX_NAPI
1981 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1982#endif
1983
b1529871
ND
1984 if (mp->tx_sram_size > 0)
1985 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1986
1da177e4
LT
1987 return 0;
1988
1989out:
1990 free_netdev(dev);
1991
1992 return err;
1993}
1994
3ae5eaec 1995static int mv643xx_eth_remove(struct platform_device *pdev)
1da177e4 1996{
3ae5eaec 1997 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
1998
1999 unregister_netdev(dev);
2000 flush_scheduled_work();
2001
2002 free_netdev(dev);
3ae5eaec 2003 platform_set_drvdata(pdev, NULL);
1da177e4
LT
2004 return 0;
2005}
2006
3ae5eaec 2007static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1da177e4 2008{
1da177e4
LT
2009 struct resource *res;
2010
2011 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
2012
2013 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2014 if (res == NULL)
2015 return -ENODEV;
2016
f9fbbc18
LB
2017 mv643xx_eth_base = ioremap(res->start, res->end - res->start + 1);
2018 if (mv643xx_eth_base == NULL)
1da177e4
LT
2019 return -ENOMEM;
2020
2021 return 0;
2022
2023}
2024
3ae5eaec 2025static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1da177e4 2026{
f9fbbc18
LB
2027 iounmap(mv643xx_eth_base);
2028 mv643xx_eth_base = NULL;
1da177e4
LT
2029
2030 return 0;
2031}
2032
d57ab6fd
DF
2033static void mv643xx_eth_shutdown(struct platform_device *pdev)
2034{
2035 struct net_device *dev = platform_get_drvdata(pdev);
2036 struct mv643xx_private *mp = netdev_priv(dev);
2037 unsigned int port_num = mp->port_num;
2038
2039 /* Mask all interrupts on ethernet port */
e4d00fa9
LB
2040 mv_write(INTERRUPT_MASK_REG(port_num), 0);
2041 mv_read (INTERRUPT_MASK_REG(port_num));
d57ab6fd
DF
2042
2043 eth_port_reset(port_num);
2044}
2045
3ae5eaec 2046static struct platform_driver mv643xx_eth_driver = {
1da177e4
LT
2047 .probe = mv643xx_eth_probe,
2048 .remove = mv643xx_eth_remove,
d57ab6fd 2049 .shutdown = mv643xx_eth_shutdown,
3ae5eaec
RK
2050 .driver = {
2051 .name = MV643XX_ETH_NAME,
2052 },
1da177e4
LT
2053};
2054
3ae5eaec 2055static struct platform_driver mv643xx_eth_shared_driver = {
1da177e4
LT
2056 .probe = mv643xx_eth_shared_probe,
2057 .remove = mv643xx_eth_shared_remove,
3ae5eaec
RK
2058 .driver = {
2059 .name = MV643XX_ETH_SHARED_NAME,
2060 },
1da177e4
LT
2061};
2062
2063/*
2064 * mv643xx_init_module
2065 *
2066 * Registers the network drivers into the Linux kernel
2067 *
2068 * Input : N/A
2069 *
2070 * Output : N/A
2071 */
2072static int __init mv643xx_init_module(void)
2073{
2074 int rc;
2075
3ae5eaec 2076 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1da177e4 2077 if (!rc) {
3ae5eaec 2078 rc = platform_driver_register(&mv643xx_eth_driver);
1da177e4 2079 if (rc)
3ae5eaec 2080 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
2081 }
2082 return rc;
2083}
2084
2085/*
2086 * mv643xx_cleanup_module
2087 *
2088 * Registers the network drivers into the Linux kernel
2089 *
2090 * Input : N/A
2091 *
2092 * Output : N/A
2093 */
2094static void __exit mv643xx_cleanup_module(void)
2095{
3ae5eaec
RK
2096 platform_driver_unregister(&mv643xx_eth_driver);
2097 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
2098}
2099
2100module_init(mv643xx_init_module);
2101module_exit(mv643xx_cleanup_module);
2102
2103MODULE_LICENSE("GPL");
2104MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
2105 " and Dale Farnsworth");
2106MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
2107
2108/*
2109 * The second part is the low level driver of the gigE ethernet ports.
2110 */
2111
2112/*
2113 * Marvell's Gigabit Ethernet controller low level driver
2114 *
2115 * DESCRIPTION:
2116 * This file introduce low level API to Marvell's Gigabit Ethernet
2117 * controller. This Gigabit Ethernet Controller driver API controls
2118 * 1) Operations (i.e. port init, start, reset etc').
2119 * 2) Data flow (i.e. port send, receive etc').
2120 * Each Gigabit Ethernet port is controlled via
2121 * struct mv643xx_private.
2122 * This struct includes user configuration information as well as
2123 * driver internal data needed for its operations.
2124 *
2125 * Supported Features:
2126 * - This low level driver is OS independent. Allocating memory for
2127 * the descriptor rings and buffers are not within the scope of
2128 * this driver.
2129 * - The user is free from Rx/Tx queue managing.
2130 * - This low level driver introduce functionality API that enable
2131 * the to operate Marvell's Gigabit Ethernet Controller in a
2132 * convenient way.
2133 * - Simple Gigabit Ethernet port operation API.
2134 * - Simple Gigabit Ethernet port data flow API.
2135 * - Data flow and operation API support per queue functionality.
2136 * - Support cached descriptors for better performance.
2137 * - Enable access to all four DRAM banks and internal SRAM memory
2138 * spaces.
2139 * - PHY access and control API.
2140 * - Port control register configuration API.
2141 * - Full control over Unicast and Multicast MAC configurations.
2142 *
2143 * Operation flow:
2144 *
2145 * Initialization phase
2146 * This phase complete the initialization of the the
2147 * mv643xx_private struct.
2148 * User information regarding port configuration has to be set
2149 * prior to calling the port initialization routine.
2150 *
2151 * In this phase any port Tx/Rx activity is halted, MIB counters
2152 * are cleared, PHY address is set according to user parameter and
2153 * access to DRAM and internal SRAM memory spaces.
2154 *
2155 * Driver ring initialization
2156 * Allocating memory for the descriptor rings and buffers is not
2157 * within the scope of this driver. Thus, the user is required to
2158 * allocate memory for the descriptors ring and buffers. Those
2159 * memory parameters are used by the Rx and Tx ring initialization
2160 * routines in order to curve the descriptor linked list in a form
2161 * of a ring.
2162 * Note: Pay special attention to alignment issues when using
2163 * cached descriptors/buffers. In this phase the driver store
2164 * information in the mv643xx_private struct regarding each queue
2165 * ring.
2166 *
2167 * Driver start
2168 * This phase prepares the Ethernet port for Rx and Tx activity.
2169 * It uses the information stored in the mv643xx_private struct to
2170 * initialize the various port registers.
2171 *
2172 * Data flow:
2173 * All packet references to/from the driver are done using
2174 * struct pkt_info.
2175 * This struct is a unified struct used with Rx and Tx operations.
2176 * This way the user is not required to be familiar with neither
2177 * Tx nor Rx descriptors structures.
2178 * The driver's descriptors rings are management by indexes.
2179 * Those indexes controls the ring resources and used to indicate
2180 * a SW resource error:
2181 * 'current'
2182 * This index points to the current available resource for use. For
2183 * example in Rx process this index will point to the descriptor
2184 * that will be passed to the user upon calling the receive
2185 * routine. In Tx process, this index will point to the descriptor
2186 * that will be assigned with the user packet info and transmitted.
2187 * 'used'
2188 * This index points to the descriptor that need to restore its
2189 * resources. For example in Rx process, using the Rx buffer return
2190 * API will attach the buffer returned in packet info to the
2191 * descriptor pointed by 'used'. In Tx process, using the Tx
2192 * descriptor return will merely return the user packet info with
2193 * the command status of the transmitted buffer pointed by the
2194 * 'used' index. Nevertheless, it is essential to use this routine
2195 * to update the 'used' index.
2196 * 'first'
2197 * This index supports Tx Scatter-Gather. It points to the first
2198 * descriptor of a packet assembled of multiple buffers. For
2199 * example when in middle of Such packet we have a Tx resource
2200 * error the 'curr' index get the value of 'first' to indicate
2201 * that the ring returned to its state before trying to transmit
2202 * this packet.
2203 *
2204 * Receive operation:
2205 * The eth_port_receive API set the packet information struct,
2206 * passed by the caller, with received information from the
2207 * 'current' SDMA descriptor.
2208 * It is the user responsibility to return this resource back
2209 * to the Rx descriptor ring to enable the reuse of this source.
2210 * Return Rx resource is done using the eth_rx_return_buff API.
2211 *
1da177e4
LT
2212 * Prior to calling the initialization routine eth_port_init() the user
2213 * must set the following fields under mv643xx_private struct:
2214 * port_num User Ethernet port number.
1da177e4
LT
2215 * port_config User port configuration value.
2216 * port_config_extend User port config extend value.
2217 * port_sdma_config User port SDMA config value.
2218 * port_serial_control User port serial control value.
2219 *
2220 * This driver data flow is done using the struct pkt_info which
2221 * is a unified struct for Rx and Tx operations:
2222 *
2223 * byte_cnt Tx/Rx descriptor buffer byte count.
2224 * l4i_chk CPU provided TCP Checksum. For Tx operation
2225 * only.
2226 * cmd_sts Tx/Rx descriptor command status.
2227 * buf_ptr Tx/Rx descriptor buffer pointer.
2228 * return_info Tx/Rx user resource return information.
2229 */
2230
1da177e4
LT
2231/* PHY routines */
2232static int ethernet_phy_get(unsigned int eth_port_num);
2233static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
2234
2235/* Ethernet Port routines */
cf4086c7 2236static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1da177e4
LT
2237
2238/*
2239 * eth_port_init - Initialize the Ethernet port driver
2240 *
2241 * DESCRIPTION:
2242 * This function prepares the ethernet port to start its activity:
2243 * 1) Completes the ethernet port driver struct initialization toward port
2244 * start routine.
2245 * 2) Resets the device to a quiescent state in case of warm reboot.
2246 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
2247 * 4) Clean MAC tables. The reset status of those tables is unknown.
2248 * 5) Set PHY address.
2249 * Note: Call this routine prior to eth_port_start routine and after
2250 * setting user values in the user fields of Ethernet port control
2251 * struct.
2252 *
2253 * INPUT:
2254 * struct mv643xx_private *mp Ethernet port control struct
2255 *
2256 * OUTPUT:
2257 * See description.
2258 *
2259 * RETURN:
2260 * None.
2261 */
2262static void eth_port_init(struct mv643xx_private *mp)
2263{
1da177e4 2264 mp->rx_resource_err = 0;
1da177e4
LT
2265
2266 eth_port_reset(mp->port_num);
2267
2268 eth_port_init_mac_tables(mp->port_num);
1da177e4
LT
2269}
2270
2271/*
2272 * eth_port_start - Start the Ethernet port activity.
2273 *
2274 * DESCRIPTION:
2275 * This routine prepares the Ethernet port for Rx and Tx activity:
2276 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
2277 * has been initialized a descriptor's ring (using
2278 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
2279 * 2. Initialize and enable the Ethernet configuration port by writing to
2280 * the port's configuration and command registers.
2281 * 3. Initialize and enable the SDMA by writing to the SDMA's
2282 * configuration and command registers. After completing these steps,
2283 * the ethernet port SDMA can starts to perform Rx and Tx activities.
2284 *
2285 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
2286 * to calling this function (use ether_init_tx_desc_ring for Tx queues
2287 * and ether_init_rx_desc_ring for Rx queues).
2288 *
2289 * INPUT:
ed9b5d45 2290 * dev - a pointer to the required interface
1da177e4
LT
2291 *
2292 * OUTPUT:
2293 * Ethernet port is ready to receive and transmit.
2294 *
2295 * RETURN:
2296 * None.
2297 */
ed9b5d45 2298static void eth_port_start(struct net_device *dev)
1da177e4 2299{
ed9b5d45 2300 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4
LT
2301 unsigned int port_num = mp->port_num;
2302 int tx_curr_desc, rx_curr_desc;
d0412d96
JC
2303 u32 pscr;
2304 struct ethtool_cmd ethtool_cmd;
1da177e4
LT
2305
2306 /* Assignment of Tx CTRP of given queue */
2307 tx_curr_desc = mp->tx_curr_desc_q;
e4d00fa9 2308 mv_write(TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1da177e4
LT
2309 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
2310
2311 /* Assignment of Rx CRDP of given queue */
2312 rx_curr_desc = mp->rx_curr_desc_q;
e4d00fa9 2313 mv_write(RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1da177e4
LT
2314 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
2315
2316 /* Add the assigned Ethernet address to the port's address table */
ed9b5d45 2317 eth_port_uc_addr_set(port_num, dev->dev_addr);
1da177e4
LT
2318
2319 /* Assign port configuration and command. */
e4d00fa9
LB
2320 mv_write(PORT_CONFIG_REG(port_num),
2321 PORT_CONFIG_DEFAULT_VALUE);
01999873 2322
e4d00fa9
LB
2323 mv_write(PORT_CONFIG_EXTEND_REG(port_num),
2324 PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1da177e4 2325
e4d00fa9 2326 pscr = mv_read(PORT_SERIAL_CONTROL_REG(port_num));
01999873 2327
e4d00fa9
LB
2328 pscr &= ~(SERIAL_PORT_ENABLE | FORCE_LINK_PASS);
2329 mv_write(PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4 2330
e4d00fa9
LB
2331 pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
2332 DISABLE_AUTO_NEG_SPEED_GMII |
2333 DISABLE_AUTO_NEG_FOR_DUPLX |
2334 DO_NOT_FORCE_LINK_FAIL |
2335 SERIAL_PORT_CONTROL_RESERVED;
1da177e4 2336
e4d00fa9 2337 mv_write(PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4 2338
e4d00fa9
LB
2339 pscr |= SERIAL_PORT_ENABLE;
2340 mv_write(PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4
LT
2341
2342 /* Assign port SDMA configuration */
e4d00fa9
LB
2343 mv_write(SDMA_CONFIG_REG(port_num),
2344 PORT_SDMA_CONFIG_DEFAULT_VALUE);
1da177e4
LT
2345
2346 /* Enable port Rx. */
ff561eef 2347 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
8f543718
DF
2348
2349 /* Disable port bandwidth limits by clearing MTU register */
e4d00fa9 2350 mv_write(MAXIMUM_TRANSMIT_UNIT(port_num), 0);
d0412d96
JC
2351
2352 /* save phy settings across reset */
2353 mv643xx_get_settings(dev, &ethtool_cmd);
2354 ethernet_phy_reset(mp->port_num);
2355 mv643xx_set_settings(dev, &ethtool_cmd);
1da177e4
LT
2356}
2357
2358/*
144213d7 2359 * eth_port_uc_addr_set - Write a MAC address into the port's hw registers
1da177e4 2360 */
144213d7 2361static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr)
1da177e4
LT
2362{
2363 unsigned int mac_h;
2364 unsigned int mac_l;
cf4086c7 2365 int table;
1da177e4
LT
2366
2367 mac_l = (p_addr[4] << 8) | (p_addr[5]);
2368 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
2369 (p_addr[3] << 0);
2370
e4d00fa9
LB
2371 mv_write(MAC_ADDR_LOW(port_num), mac_l);
2372 mv_write(MAC_ADDR_HIGH(port_num), mac_h);
1da177e4 2373
144213d7 2374 /* Accept frames with this address */
e4d00fa9 2375 table = DA_FILTER_UNICAST_TABLE_BASE(port_num);
cf4086c7 2376 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1da177e4
LT
2377}
2378
2379/*
144213d7 2380 * eth_port_uc_addr_get - Read the MAC address from the port's hw registers
1da177e4 2381 */
144213d7 2382static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr)
1da177e4 2383{
1da177e4
LT
2384 unsigned int mac_h;
2385 unsigned int mac_l;
2386
e4d00fa9
LB
2387 mac_h = mv_read(MAC_ADDR_HIGH(port_num));
2388 mac_l = mv_read(MAC_ADDR_LOW(port_num));
1da177e4
LT
2389
2390 p_addr[0] = (mac_h >> 24) & 0xff;
2391 p_addr[1] = (mac_h >> 16) & 0xff;
2392 p_addr[2] = (mac_h >> 8) & 0xff;
2393 p_addr[3] = mac_h & 0xff;
2394 p_addr[4] = (mac_l >> 8) & 0xff;
2395 p_addr[5] = mac_l & 0xff;
2396}
2397
16e03018
DF
2398/*
2399 * The entries in each table are indexed by a hash of a packet's MAC
2400 * address. One bit in each entry determines whether the packet is
2401 * accepted. There are 4 entries (each 8 bits wide) in each register
2402 * of the table. The bits in each entry are defined as follows:
2403 * 0 Accept=1, Drop=0
2404 * 3-1 Queue (ETH_Q0=0)
2405 * 7-4 Reserved = 0;
2406 */
2407static void eth_port_set_filter_table_entry(int table, unsigned char entry)
2408{
2409 unsigned int table_reg;
2410 unsigned int tbl_offset;
2411 unsigned int reg_offset;
2412
2413 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
2414 reg_offset = entry % 4; /* Entry offset within the register */
2415
2416 /* Set "accepts frame bit" at specified table entry */
2417 table_reg = mv_read(table + tbl_offset);
2418 table_reg |= 0x01 << (8 * reg_offset);
2419 mv_write(table + tbl_offset, table_reg);
2420}
2421
2422/*
2423 * eth_port_mc_addr - Multicast address settings.
2424 *
2425 * The MV device supports multicast using two tables:
2426 * 1) Special Multicast Table for MAC addresses of the form
2427 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
2428 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2429 * Table entries in the DA-Filter table.
2430 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
2431 * is used as an index to the Other Multicast Table entries in the
2432 * DA-Filter table. This function calculates the CRC-8bit value.
2433 * In either case, eth_port_set_filter_table_entry() is then called
2434 * to set to set the actual table entry.
2435 */
2436static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
2437{
2438 unsigned int mac_h;
2439 unsigned int mac_l;
2440 unsigned char crc_result = 0;
2441 int table;
2442 int mac_array[48];
2443 int crc[8];
2444 int i;
2445
2446 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
2447 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
e4d00fa9 2448 table = DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
16e03018
DF
2449 (eth_port_num);
2450 eth_port_set_filter_table_entry(table, p_addr[5]);
2451 return;
2452 }
2453
2454 /* Calculate CRC-8 out of the given address */
2455 mac_h = (p_addr[0] << 8) | (p_addr[1]);
2456 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
2457 (p_addr[4] << 8) | (p_addr[5] << 0);
2458
2459 for (i = 0; i < 32; i++)
2460 mac_array[i] = (mac_l >> i) & 0x1;
2461 for (i = 32; i < 48; i++)
2462 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
2463
2464 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
2465 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
2466 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
2467 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
2468 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
2469
2470 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2471 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
2472 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2473 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2474 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2475 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2476 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2477
2478 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2479 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2480 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2481 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2482 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2483 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2484
2485 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2486 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2487 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2488 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2489 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2490 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2491
2492 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2493 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2494 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2495 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2496 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2497 mac_array[3] ^ mac_array[2];
2498
2499 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2500 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2501 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2502 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2503 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2504 mac_array[4] ^ mac_array[3];
2505
2506 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2507 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2508 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2509 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2510 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2511 mac_array[4];
2512
2513 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2514 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2515 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2516 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2517 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2518
2519 for (i = 0; i < 8; i++)
2520 crc_result = crc_result | (crc[i] << i);
2521
e4d00fa9 2522 table = DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
16e03018
DF
2523 eth_port_set_filter_table_entry(table, crc_result);
2524}
2525
2526/*
2527 * Set the entire multicast list based on dev->mc_list.
2528 */
2529static void eth_port_set_multicast_list(struct net_device *dev)
2530{
2531
2532 struct dev_mc_list *mc_list;
2533 int i;
2534 int table_index;
2535 struct mv643xx_private *mp = netdev_priv(dev);
2536 unsigned int eth_port_num = mp->port_num;
2537
2538 /* If the device is in promiscuous mode or in all multicast mode,
2539 * we will fully populate both multicast tables with accept.
2540 * This is guaranteed to yield a match on all multicast addresses...
2541 */
2542 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2543 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
b4de9051
DF
2544 /* Set all entries in DA filter special multicast
2545 * table (Ex_dFSMT)
2546 * Set for ETH_Q0 for now
2547 * Bits
2548 * 0 Accept=1, Drop=0
2549 * 3-1 Queue ETH_Q0=0
2550 * 7-4 Reserved = 0;
2551 */
e4d00fa9 2552 mv_write(DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
b4de9051
DF
2553
2554 /* Set all entries in DA filter other multicast
2555 * table (Ex_dFOMT)
2556 * Set for ETH_Q0 for now
2557 * Bits
2558 * 0 Accept=1, Drop=0
2559 * 3-1 Queue ETH_Q0=0
2560 * 7-4 Reserved = 0;
2561 */
e4d00fa9 2562 mv_write(DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
b4de9051 2563 }
16e03018
DF
2564 return;
2565 }
2566
2567 /* We will clear out multicast tables every time we get the list.
2568 * Then add the entire new list...
2569 */
2570 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2571 /* Clear DA filter special multicast table (Ex_dFSMT) */
e4d00fa9 2572 mv_write(DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
16e03018
DF
2573 (eth_port_num) + table_index, 0);
2574
2575 /* Clear DA filter other multicast table (Ex_dFOMT) */
e4d00fa9 2576 mv_write(DA_FILTER_OTHER_MULTICAST_TABLE_BASE
16e03018
DF
2577 (eth_port_num) + table_index, 0);
2578 }
2579
2580 /* Get pointer to net_device multicast list and add each one... */
2581 for (i = 0, mc_list = dev->mc_list;
2582 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2583 i++, mc_list = mc_list->next)
2584 if (mc_list->dmi_addrlen == 6)
2585 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2586}
2587
1da177e4
LT
2588/*
2589 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2590 *
2591 * DESCRIPTION:
2592 * Go through all the DA filter tables (Unicast, Special Multicast &
2593 * Other Multicast) and set each entry to 0.
2594 *
2595 * INPUT:
2596 * unsigned int eth_port_num Ethernet Port number.
2597 *
2598 * OUTPUT:
2599 * Multicast and Unicast packets are rejected.
2600 *
2601 * RETURN:
2602 * None.
2603 */
2604static void eth_port_init_mac_tables(unsigned int eth_port_num)
2605{
2606 int table_index;
2607
2608 /* Clear DA filter unicast table (Ex_dFUT) */
2609 for (table_index = 0; table_index <= 0xC; table_index += 4)
e4d00fa9 2610 mv_write(DA_FILTER_UNICAST_TABLE_BASE
cf4086c7 2611 (eth_port_num) + table_index, 0);
1da177e4
LT
2612
2613 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2614 /* Clear DA filter special multicast table (Ex_dFSMT) */
e4d00fa9 2615 mv_write(DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
16e03018 2616 (eth_port_num) + table_index, 0);
1da177e4 2617 /* Clear DA filter other multicast table (Ex_dFOMT) */
e4d00fa9 2618 mv_write(DA_FILTER_OTHER_MULTICAST_TABLE_BASE
16e03018 2619 (eth_port_num) + table_index, 0);
1da177e4
LT
2620 }
2621}
2622
2623/*
2624 * eth_clear_mib_counters - Clear all MIB counters
2625 *
2626 * DESCRIPTION:
2627 * This function clears all MIB counters of a specific ethernet port.
2628 * A read from the MIB counter will reset the counter.
2629 *
2630 * INPUT:
2631 * unsigned int eth_port_num Ethernet Port number.
2632 *
2633 * OUTPUT:
2634 * After reading all MIB counters, the counters resets.
2635 *
2636 * RETURN:
2637 * MIB counter value.
2638 *
2639 */
2640static void eth_clear_mib_counters(unsigned int eth_port_num)
2641{
2642 int i;
2643
2644 /* Perform dummy reads from MIB counters */
2645 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2646 i += 4)
e4d00fa9 2647 mv_read(MIB_COUNTERS_BASE(eth_port_num) + i);
1da177e4
LT
2648}
2649
2650static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2651{
e4d00fa9 2652 return mv_read(MIB_COUNTERS_BASE(mp->port_num) + offset);
1da177e4
LT
2653}
2654
2655static void eth_update_mib_counters(struct mv643xx_private *mp)
2656{
2657 struct mv643xx_mib_counters *p = &mp->mib_counters;
2658 int offset;
2659
2660 p->good_octets_received +=
2661 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2662 p->good_octets_received +=
2663 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2664
2665 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2666 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2667 offset += 4)
70fbf327 2668 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
1da177e4
LT
2669
2670 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2671 p->good_octets_sent +=
2672 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2673
2674 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2675 offset <= ETH_MIB_LATE_COLLISION;
2676 offset += 4)
70fbf327 2677 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
1da177e4
LT
2678}
2679
2680/*
2681 * ethernet_phy_detect - Detect whether a phy is present
2682 *
2683 * DESCRIPTION:
2684 * This function tests whether there is a PHY present on
2685 * the specified port.
2686 *
2687 * INPUT:
2688 * unsigned int eth_port_num Ethernet Port number.
2689 *
2690 * OUTPUT:
2691 * None
2692 *
2693 * RETURN:
2694 * 0 on success
2695 * -ENODEV on failure
2696 *
2697 */
2698static int ethernet_phy_detect(unsigned int port_num)
2699{
2700 unsigned int phy_reg_data0;
2701 int auto_neg;
2702
2703 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2704 auto_neg = phy_reg_data0 & 0x1000;
2705 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2706 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2707
2708 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2709 if ((phy_reg_data0 & 0x1000) == auto_neg)
2710 return -ENODEV; /* change didn't take */
2711
2712 phy_reg_data0 ^= 0x1000;
2713 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2714 return 0;
2715}
2716
2717/*
2718 * ethernet_phy_get - Get the ethernet port PHY address.
2719 *
2720 * DESCRIPTION:
2721 * This routine returns the given ethernet port PHY address.
2722 *
2723 * INPUT:
2724 * unsigned int eth_port_num Ethernet Port number.
2725 *
2726 * OUTPUT:
2727 * None.
2728 *
2729 * RETURN:
2730 * PHY address.
2731 *
2732 */
2733static int ethernet_phy_get(unsigned int eth_port_num)
2734{
2735 unsigned int reg_data;
2736
e4d00fa9 2737 reg_data = mv_read(PHY_ADDR_REG);
1da177e4
LT
2738
2739 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2740}
2741
2742/*
2743 * ethernet_phy_set - Set the ethernet port PHY address.
2744 *
2745 * DESCRIPTION:
2746 * This routine sets the given ethernet port PHY address.
2747 *
2748 * INPUT:
2749 * unsigned int eth_port_num Ethernet Port number.
2750 * int phy_addr PHY address.
2751 *
2752 * OUTPUT:
2753 * None.
2754 *
2755 * RETURN:
2756 * None.
2757 *
2758 */
2759static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2760{
2761 u32 reg_data;
2762 int addr_shift = 5 * eth_port_num;
2763
e4d00fa9 2764 reg_data = mv_read(PHY_ADDR_REG);
1da177e4
LT
2765 reg_data &= ~(0x1f << addr_shift);
2766 reg_data |= (phy_addr & 0x1f) << addr_shift;
e4d00fa9 2767 mv_write(PHY_ADDR_REG, reg_data);
1da177e4
LT
2768}
2769
2770/*
2771 * ethernet_phy_reset - Reset Ethernet port PHY.
2772 *
2773 * DESCRIPTION:
2774 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2775 *
2776 * INPUT:
2777 * unsigned int eth_port_num Ethernet Port number.
2778 *
2779 * OUTPUT:
2780 * The PHY is reset.
2781 *
2782 * RETURN:
2783 * None.
2784 *
2785 */
2786static void ethernet_phy_reset(unsigned int eth_port_num)
2787{
2788 unsigned int phy_reg_data;
2789
2790 /* Reset the PHY */
2791 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2792 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2793 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
d0412d96
JC
2794
2795 /* wait for PHY to come out of reset */
2796 do {
2797 udelay(1);
2798 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2799 } while (phy_reg_data & 0x8000);
1da177e4
LT
2800}
2801
9f8dd319 2802static void mv643xx_eth_port_enable_tx(unsigned int port_num,
12a87c64 2803 unsigned int queues)
9f8dd319 2804{
e4d00fa9 2805 mv_write(TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
9f8dd319
DF
2806}
2807
2808static void mv643xx_eth_port_enable_rx(unsigned int port_num,
12a87c64 2809 unsigned int queues)
9f8dd319 2810{
e4d00fa9 2811 mv_write(RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
9f8dd319
DF
2812}
2813
2814static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2815{
12a87c64 2816 u32 queues;
9f8dd319
DF
2817
2818 /* Stop Tx port activity. Check port Tx activity. */
e4d00fa9 2819 queues = mv_read(TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF;
12a87c64
DF
2820 if (queues) {
2821 /* Issue stop command for active queues only */
e4d00fa9 2822 mv_write(TRANSMIT_QUEUE_COMMAND_REG(port_num), (queues << 8));
9f8dd319
DF
2823
2824 /* Wait for all Tx activity to terminate. */
2825 /* Check port cause register that all Tx queues are stopped */
e4d00fa9 2826 while (mv_read(TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF)
9f8dd319
DF
2827 udelay(PHY_WAIT_MICRO_SECONDS);
2828
2829 /* Wait for Tx FIFO to empty */
e4d00fa9 2830 while (mv_read(PORT_STATUS_REG(port_num)) &
9f8dd319
DF
2831 ETH_PORT_TX_FIFO_EMPTY)
2832 udelay(PHY_WAIT_MICRO_SECONDS);
2833 }
2834
12a87c64 2835 return queues;
9f8dd319
DF
2836}
2837
2838static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2839{
12a87c64 2840 u32 queues;
9f8dd319
DF
2841
2842 /* Stop Rx port activity. Check port Rx activity. */
e4d00fa9 2843 queues = mv_read(RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF;
12a87c64
DF
2844 if (queues) {
2845 /* Issue stop command for active queues only */
e4d00fa9 2846 mv_write(RECEIVE_QUEUE_COMMAND_REG(port_num), (queues << 8));
9f8dd319
DF
2847
2848 /* Wait for all Rx activity to terminate. */
2849 /* Check port cause register that all Rx queues are stopped */
e4d00fa9 2850 while (mv_read(RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF)
9f8dd319
DF
2851 udelay(PHY_WAIT_MICRO_SECONDS);
2852 }
2853
12a87c64 2854 return queues;
9f8dd319
DF
2855}
2856
1da177e4
LT
2857/*
2858 * eth_port_reset - Reset Ethernet port
2859 *
2860 * DESCRIPTION:
2861 * This routine resets the chip by aborting any SDMA engine activity and
2862 * clearing the MIB counters. The Receiver and the Transmit unit are in
2863 * idle state after this command is performed and the port is disabled.
2864 *
2865 * INPUT:
2866 * unsigned int eth_port_num Ethernet Port number.
2867 *
2868 * OUTPUT:
2869 * Channel activity is halted.
2870 *
2871 * RETURN:
2872 * None.
2873 *
2874 */
2875static void eth_port_reset(unsigned int port_num)
2876{
2877 unsigned int reg_data;
2878
9f8dd319
DF
2879 mv643xx_eth_port_disable_tx(port_num);
2880 mv643xx_eth_port_disable_rx(port_num);
1da177e4
LT
2881
2882 /* Clear all MIB counters */
2883 eth_clear_mib_counters(port_num);
2884
2885 /* Reset the Enable bit in the Configuration Register */
e4d00fa9
LB
2886 reg_data = mv_read(PORT_SERIAL_CONTROL_REG(port_num));
2887 reg_data &= ~(SERIAL_PORT_ENABLE |
2888 DO_NOT_FORCE_LINK_FAIL |
2889 FORCE_LINK_PASS);
2890 mv_write(PORT_SERIAL_CONTROL_REG(port_num), reg_data);
1da177e4
LT
2891}
2892
1da177e4 2893
1da177e4
LT
2894/*
2895 * eth_port_read_smi_reg - Read PHY registers
2896 *
2897 * DESCRIPTION:
2898 * This routine utilize the SMI interface to interact with the PHY in
2899 * order to perform PHY register read.
2900 *
2901 * INPUT:
2902 * unsigned int port_num Ethernet Port number.
2903 * unsigned int phy_reg PHY register address offset.
2904 * unsigned int *value Register value buffer.
2905 *
2906 * OUTPUT:
2907 * Write the value of a specified PHY register into given buffer.
2908 *
2909 * RETURN:
2910 * false if the PHY is busy or read data is not in valid state.
2911 * true otherwise.
2912 *
2913 */
2914static void eth_port_read_smi_reg(unsigned int port_num,
2915 unsigned int phy_reg, unsigned int *value)
2916{
2917 int phy_addr = ethernet_phy_get(port_num);
2918 unsigned long flags;
2919 int i;
2920
2921 /* the SMI register is a shared resource */
2922 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2923
2924 /* wait for the SMI register to become available */
e4d00fa9 2925 for (i = 0; mv_read(SMI_REG) & ETH_SMI_BUSY; i++) {
1da177e4
LT
2926 if (i == PHY_WAIT_ITERATIONS) {
2927 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2928 goto out;
2929 }
2930 udelay(PHY_WAIT_MICRO_SECONDS);
2931 }
2932
e4d00fa9 2933 mv_write(SMI_REG,
1da177e4
LT
2934 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2935
2936 /* now wait for the data to be valid */
e4d00fa9 2937 for (i = 0; !(mv_read(SMI_REG) & ETH_SMI_READ_VALID); i++) {
1da177e4
LT
2938 if (i == PHY_WAIT_ITERATIONS) {
2939 printk("mv643xx PHY read timeout, port %d\n", port_num);
2940 goto out;
2941 }
2942 udelay(PHY_WAIT_MICRO_SECONDS);
2943 }
2944
e4d00fa9 2945 *value = mv_read(SMI_REG) & 0xffff;
1da177e4
LT
2946out:
2947 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2948}
2949
2950/*
2951 * eth_port_write_smi_reg - Write to PHY registers
2952 *
2953 * DESCRIPTION:
2954 * This routine utilize the SMI interface to interact with the PHY in
2955 * order to perform writes to PHY registers.
2956 *
2957 * INPUT:
2958 * unsigned int eth_port_num Ethernet Port number.
2959 * unsigned int phy_reg PHY register address offset.
2960 * unsigned int value Register value.
2961 *
2962 * OUTPUT:
2963 * Write the given value to the specified PHY register.
2964 *
2965 * RETURN:
2966 * false if the PHY is busy.
2967 * true otherwise.
2968 *
2969 */
2970static void eth_port_write_smi_reg(unsigned int eth_port_num,
2971 unsigned int phy_reg, unsigned int value)
2972{
2973 int phy_addr;
2974 int i;
2975 unsigned long flags;
2976
2977 phy_addr = ethernet_phy_get(eth_port_num);
2978
2979 /* the SMI register is a shared resource */
2980 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2981
2982 /* wait for the SMI register to become available */
e4d00fa9 2983 for (i = 0; mv_read(SMI_REG) & ETH_SMI_BUSY; i++) {
1da177e4
LT
2984 if (i == PHY_WAIT_ITERATIONS) {
2985 printk("mv643xx PHY busy timeout, port %d\n",
2986 eth_port_num);
2987 goto out;
2988 }
2989 udelay(PHY_WAIT_MICRO_SECONDS);
2990 }
2991
e4d00fa9 2992 mv_write(SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
1da177e4
LT
2993 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2994out:
2995 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2996}
2997
c28a4f89
JC
2998/*
2999 * Wrappers for MII support library.
3000 */
3001static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
3002{
3003 int val;
3004 struct mv643xx_private *mp = netdev_priv(dev);
3005
3006 eth_port_read_smi_reg(mp->port_num, location, &val);
3007 return val;
3008}
3009
3010static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
3011{
3012 struct mv643xx_private *mp = netdev_priv(dev);
3013 eth_port_write_smi_reg(mp->port_num, location, val);
3014}
3015
1da177e4
LT
3016/*
3017 * eth_port_receive - Get received information from Rx ring.
3018 *
3019 * DESCRIPTION:
3020 * This routine returns the received data to the caller. There is no
3021 * data copying during routine operation. All information is returned
3022 * using pointer to packet information struct passed from the caller.
3023 * If the routine exhausts Rx ring resources then the resource error flag
3024 * is set.
3025 *
3026 * INPUT:
3027 * struct mv643xx_private *mp Ethernet Port Control srtuct.
3028 * struct pkt_info *p_pkt_info User packet buffer.
3029 *
3030 * OUTPUT:
3031 * Rx ring current and used indexes are updated.
3032 *
3033 * RETURN:
3034 * ETH_ERROR in case the routine can not access Rx desc ring.
3035 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
3036 * ETH_END_OF_JOB if there is no received data.
3037 * ETH_OK otherwise.
3038 */
3039static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
3040 struct pkt_info *p_pkt_info)
3041{
3042 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
3043 volatile struct eth_rx_desc *p_rx_desc;
3044 unsigned int command_status;
8f518703 3045 unsigned long flags;
1da177e4
LT
3046
3047 /* Do not process Rx ring in case of Rx ring resource error */
3048 if (mp->rx_resource_err)
3049 return ETH_QUEUE_FULL;
3050
8f518703
DF
3051 spin_lock_irqsave(&mp->lock, flags);
3052
1da177e4
LT
3053 /* Get the Rx Desc ring 'curr and 'used' indexes */
3054 rx_curr_desc = mp->rx_curr_desc_q;
3055 rx_used_desc = mp->rx_used_desc_q;
3056
3057 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
3058
3059 /* The following parameters are used to save readings from memory */
3060 command_status = p_rx_desc->cmd_sts;
3061 rmb();
3062
3063 /* Nothing to receive... */
8f518703
DF
3064 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
3065 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4 3066 return ETH_END_OF_JOB;
8f518703 3067 }
1da177e4
LT
3068
3069 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
3070 p_pkt_info->cmd_sts = command_status;
3071 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
3072 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
3073 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
3074
b4de9051
DF
3075 /*
3076 * Clean the return info field to indicate that the
3077 * packet has been moved to the upper layers
3078 */
1da177e4
LT
3079 mp->rx_skb[rx_curr_desc] = NULL;
3080
3081 /* Update current index in data structure */
3082 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
3083 mp->rx_curr_desc_q = rx_next_curr_desc;
3084
3085 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
3086 if (rx_next_curr_desc == rx_used_desc)
3087 mp->rx_resource_err = 1;
3088
8f518703
DF
3089 spin_unlock_irqrestore(&mp->lock, flags);
3090
1da177e4
LT
3091 return ETH_OK;
3092}
3093
3094/*
3095 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
3096 *
3097 * DESCRIPTION:
3098 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
3099 * next 'used' descriptor and attached the returned buffer to it.
3100 * In case the Rx ring was in "resource error" condition, where there are
3101 * no available Rx resources, the function resets the resource error flag.
3102 *
3103 * INPUT:
3104 * struct mv643xx_private *mp Ethernet Port Control srtuct.
3105 * struct pkt_info *p_pkt_info Information on returned buffer.
3106 *
3107 * OUTPUT:
3108 * New available Rx resource in Rx descriptor ring.
3109 *
3110 * RETURN:
3111 * ETH_ERROR in case the routine can not access Rx desc ring.
3112 * ETH_OK otherwise.
3113 */
3114static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
3115 struct pkt_info *p_pkt_info)
3116{
3117 int used_rx_desc; /* Where to return Rx resource */
3118 volatile struct eth_rx_desc *p_used_rx_desc;
8f518703
DF
3119 unsigned long flags;
3120
3121 spin_lock_irqsave(&mp->lock, flags);
1da177e4
LT
3122
3123 /* Get 'used' Rx descriptor */
3124 used_rx_desc = mp->rx_used_desc_q;
3125 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
3126
3127 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
3128 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
3129 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
3130
3131 /* Flush the write pipe */
3132
3133 /* Return the descriptor to DMA ownership */
3134 wmb();
3135 p_used_rx_desc->cmd_sts =
3136 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
3137 wmb();
3138
3139 /* Move the used descriptor pointer to the next descriptor */
3140 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
3141
3142 /* Any Rx return cancels the Rx resource error status */
3143 mp->rx_resource_err = 0;
3144
8f518703
DF
3145 spin_unlock_irqrestore(&mp->lock, flags);
3146
1da177e4
LT
3147 return ETH_OK;
3148}
3149
3150/************* Begin ethtool support *************************/
3151
3152struct mv643xx_stats {
3153 char stat_string[ETH_GSTRING_LEN];
3154 int sizeof_stat;
3155 int stat_offset;
3156};
3157
3158#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
b4de9051 3159 offsetof(struct mv643xx_private, m)
1da177e4
LT
3160
3161static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
3162 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
3163 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
3164 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
3165 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
3166 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
3167 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
3168 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
3169 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
3170 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
3171 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
3172 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
3173 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
3174 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
3175 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
3176 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
3177 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
3178 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
3179 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
3180 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
3181 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
3182 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
3183 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
3184 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
3185 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
3186 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
3187 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
3188 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
3189 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
3190 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
3191 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
3192 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
3193 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
3194 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
3195 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
3196 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
3197 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
3198 { "collision", MV643XX_STAT(mib_counters.collision) },
3199 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
3200};
3201
ff8ac609 3202#define MV643XX_STATS_LEN ARRAY_SIZE(mv643xx_gstrings_stats)
1da177e4 3203
b4de9051
DF
3204static void mv643xx_get_drvinfo(struct net_device *netdev,
3205 struct ethtool_drvinfo *drvinfo)
1da177e4
LT
3206{
3207 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3208 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3209 strncpy(drvinfo->fw_version, "N/A", 32);
3210 strncpy(drvinfo->bus_info, "mv643xx", 32);
3211 drvinfo->n_stats = MV643XX_STATS_LEN;
3212}
3213
b9f2c044 3214static int mv643xx_get_sset_count(struct net_device *netdev, int sset)
1da177e4 3215{
b9f2c044
JG
3216 switch (sset) {
3217 case ETH_SS_STATS:
3218 return MV643XX_STATS_LEN;
3219 default:
3220 return -EOPNOTSUPP;
3221 }
1da177e4
LT
3222}
3223
b4de9051
DF
3224static void mv643xx_get_ethtool_stats(struct net_device *netdev,
3225 struct ethtool_stats *stats, uint64_t *data)
1da177e4
LT
3226{
3227 struct mv643xx_private *mp = netdev->priv;
3228 int i;
3229
3230 eth_update_mib_counters(mp);
3231
b4de9051 3232 for (i = 0; i < MV643XX_STATS_LEN; i++) {
6aa20a22 3233 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
b4de9051 3234 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
1da177e4
LT
3235 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3236 }
3237}
3238
b4de9051
DF
3239static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
3240 uint8_t *data)
1da177e4
LT
3241{
3242 int i;
3243
3244 switch(stringset) {
3245 case ETH_SS_STATS:
3246 for (i=0; i < MV643XX_STATS_LEN; i++) {
b4de9051
DF
3247 memcpy(data + i * ETH_GSTRING_LEN,
3248 mv643xx_gstrings_stats[i].stat_string,
3249 ETH_GSTRING_LEN);
1da177e4
LT
3250 }
3251 break;
3252 }
3253}
3254
d0412d96
JC
3255static u32 mv643xx_eth_get_link(struct net_device *dev)
3256{
3257 struct mv643xx_private *mp = netdev_priv(dev);
3258
3259 return mii_link_ok(&mp->mii);
3260}
3261
3262static int mv643xx_eth_nway_restart(struct net_device *dev)
3263{
3264 struct mv643xx_private *mp = netdev_priv(dev);
3265
3266 return mii_nway_restart(&mp->mii);
3267}
3268
3269static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3270{
3271 struct mv643xx_private *mp = netdev_priv(dev);
3272
3273 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
3274}
3275
7282d491 3276static const struct ethtool_ops mv643xx_ethtool_ops = {
1da177e4 3277 .get_settings = mv643xx_get_settings,
d0412d96 3278 .set_settings = mv643xx_set_settings,
1da177e4 3279 .get_drvinfo = mv643xx_get_drvinfo,
d0412d96 3280 .get_link = mv643xx_eth_get_link,
1da177e4 3281 .set_sg = ethtool_op_set_sg,
194b2d0e 3282 .get_sset_count = mv643xx_get_sset_count,
1da177e4 3283 .get_ethtool_stats = mv643xx_get_ethtool_stats,
d0412d96 3284 .get_strings = mv643xx_get_strings,
d0412d96 3285 .nway_reset = mv643xx_eth_nway_restart,
1da177e4
LT
3286};
3287
3288/************* End ethtool support *************************/