net: Remove debugging code
[linux-block.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
c54106bb 42#include <linux/pci-aspm.h>
9d5c8243
AK
43#include <linux/delay.h>
44#include <linux/interrupt.h>
45#include <linux/if_ether.h>
40a914fa 46#include <linux/aer.h>
421e02f0 47#ifdef CONFIG_IGB_DCA
fe4506b6
JC
48#include <linux/dca.h>
49#endif
9d5c8243
AK
50#include "igb.h"
51
86d5d38f 52#define DRV_VERSION "1.3.16-k2"
9d5c8243
AK
53char igb_driver_name[] = "igb";
54char igb_driver_version[] = DRV_VERSION;
55static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 57static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 58
9d5c8243
AK
59static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61};
62
63static struct pci_device_id igb_pci_tbl[] = {
2d064c06 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
2d064c06
AD
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
c8ea5ea9 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
73 /* required last entry */
74 {0, }
75};
76
77MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
78
79void igb_reset(struct igb_adapter *);
80static int igb_setup_all_tx_resources(struct igb_adapter *);
81static int igb_setup_all_rx_resources(struct igb_adapter *);
82static void igb_free_all_tx_resources(struct igb_adapter *);
83static void igb_free_all_rx_resources(struct igb_adapter *);
9d5c8243
AK
84void igb_update_stats(struct igb_adapter *);
85static int igb_probe(struct pci_dev *, const struct pci_device_id *);
86static void __devexit igb_remove(struct pci_dev *pdev);
87static int igb_sw_init(struct igb_adapter *);
88static int igb_open(struct net_device *);
89static int igb_close(struct net_device *);
90static void igb_configure_tx(struct igb_adapter *);
91static void igb_configure_rx(struct igb_adapter *);
92static void igb_setup_rctl(struct igb_adapter *);
93static void igb_clean_all_tx_rings(struct igb_adapter *);
94static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
95static void igb_clean_tx_ring(struct igb_ring *);
96static void igb_clean_rx_ring(struct igb_ring *);
9d5c8243
AK
97static void igb_set_multi(struct net_device *);
98static void igb_update_phy_info(unsigned long);
99static void igb_watchdog(unsigned long);
100static void igb_watchdog_task(struct work_struct *);
3b29a56d
SH
101static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
102 struct net_device *,
103 struct igb_ring *);
104static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
105 struct net_device *);
9d5c8243
AK
106static struct net_device_stats *igb_get_stats(struct net_device *);
107static int igb_change_mtu(struct net_device *, int);
108static int igb_set_mac(struct net_device *, void *);
109static irqreturn_t igb_intr(int irq, void *);
110static irqreturn_t igb_intr_msi(int irq, void *);
111static irqreturn_t igb_msix_other(int irq, void *);
112static irqreturn_t igb_msix_rx(int irq, void *);
113static irqreturn_t igb_msix_tx(int irq, void *);
421e02f0 114#ifdef CONFIG_IGB_DCA
fe4506b6
JC
115static void igb_update_rx_dca(struct igb_ring *);
116static void igb_update_tx_dca(struct igb_ring *);
117static void igb_setup_dca(struct igb_adapter *);
421e02f0 118#endif /* CONFIG_IGB_DCA */
3b644cf6 119static bool igb_clean_tx_irq(struct igb_ring *);
661086df 120static int igb_poll(struct napi_struct *, int);
3b644cf6
MW
121static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
122static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
9d5c8243
AK
123static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124static void igb_tx_timeout(struct net_device *);
125static void igb_reset_task(struct work_struct *);
126static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127static void igb_vlan_rx_add_vid(struct net_device *, u16);
128static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129static void igb_restore_vlan(struct igb_adapter *);
4ae196df
AD
130static void igb_ping_all_vfs(struct igb_adapter *);
131static void igb_msg_task(struct igb_adapter *);
132static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
28fc06f5 133static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
4ae196df 134static void igb_vmm_control(struct igb_adapter *);
4ae196df
AD
135static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
9d5c8243 137
c8159b2d
ED
138static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
139{
140 u32 reg_data;
141
142 reg_data = rd32(E1000_VMOLR(vfn));
143 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
144 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
145 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
146 E1000_VMOLR_AUPE | /* Accept untagged packets */
147 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
148 wr32(E1000_VMOLR(vfn), reg_data);
149}
150
151static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
152 int vfn)
153{
154 struct e1000_hw *hw = &adapter->hw;
155 u32 vmolr;
156
157 vmolr = rd32(E1000_VMOLR(vfn));
158 vmolr &= ~E1000_VMOLR_RLPML_MASK;
159 vmolr |= size | E1000_VMOLR_LPE;
160 wr32(E1000_VMOLR(vfn), vmolr);
161
162 return 0;
163}
164
165static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
166{
167 u32 reg_data;
168
169 reg_data = rd32(E1000_RAH(entry));
170 reg_data &= ~E1000_RAH_POOL_MASK;
171 reg_data |= E1000_RAH_POOL_1 << pool;;
172 wr32(E1000_RAH(entry), reg_data);
173}
174
9d5c8243 175#ifdef CONFIG_PM
3fe7c4c9 176static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
177static int igb_resume(struct pci_dev *);
178#endif
179static void igb_shutdown(struct pci_dev *);
421e02f0 180#ifdef CONFIG_IGB_DCA
fe4506b6
JC
181static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
182static struct notifier_block dca_notifier = {
183 .notifier_call = igb_notify_dca,
184 .next = NULL,
185 .priority = 0
186};
187#endif
9d5c8243
AK
188#ifdef CONFIG_NET_POLL_CONTROLLER
189/* for netdump / net console */
190static void igb_netpoll(struct net_device *);
191#endif
37680117 192#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
193static unsigned int max_vfs = 0;
194module_param(max_vfs, uint, 0);
195MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
196 "per physical function");
197#endif /* CONFIG_PCI_IOV */
198
9d5c8243
AK
199static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
200 pci_channel_state_t);
201static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
202static void igb_io_resume(struct pci_dev *);
203
204static struct pci_error_handlers igb_err_handler = {
205 .error_detected = igb_io_error_detected,
206 .slot_reset = igb_io_slot_reset,
207 .resume = igb_io_resume,
208};
209
210
211static struct pci_driver igb_driver = {
212 .name = igb_driver_name,
213 .id_table = igb_pci_tbl,
214 .probe = igb_probe,
215 .remove = __devexit_p(igb_remove),
216#ifdef CONFIG_PM
217 /* Power Managment Hooks */
218 .suspend = igb_suspend,
219 .resume = igb_resume,
220#endif
221 .shutdown = igb_shutdown,
222 .err_handler = &igb_err_handler
223};
224
7dfc16fa
AD
225static int global_quad_port_a; /* global quad port a indication */
226
9d5c8243
AK
227MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
228MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
229MODULE_LICENSE("GPL");
230MODULE_VERSION(DRV_VERSION);
231
38c845c7
PO
232/**
233 * Scale the NIC clock cycle by a large factor so that
234 * relatively small clock corrections can be added or
235 * substracted at each clock tick. The drawbacks of a
236 * large factor are a) that the clock register overflows
237 * more quickly (not such a big deal) and b) that the
238 * increment per tick has to fit into 24 bits.
239 *
240 * Note that
241 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
242 * IGB_TSYNC_SCALE
243 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
244 *
245 * The base scale factor is intentionally a power of two
246 * so that the division in %struct timecounter can be done with
247 * a shift.
248 */
249#define IGB_TSYNC_SHIFT (19)
250#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
251
252/**
253 * The duration of one clock cycle of the NIC.
254 *
255 * @todo This hard-coded value is part of the specification and might change
256 * in future hardware revisions. Add revision check.
257 */
258#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
259
260#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
261# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
262#endif
263
264/**
265 * igb_read_clock - read raw cycle counter (to be used by time counter)
266 */
267static cycle_t igb_read_clock(const struct cyclecounter *tc)
268{
269 struct igb_adapter *adapter =
270 container_of(tc, struct igb_adapter, cycles);
271 struct e1000_hw *hw = &adapter->hw;
272 u64 stamp;
273
274 stamp = rd32(E1000_SYSTIML);
275 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
276
277 return stamp;
278}
279
9d5c8243
AK
280#ifdef DEBUG
281/**
282 * igb_get_hw_dev_name - return device name string
283 * used by hardware layer to print debugging information
284 **/
285char *igb_get_hw_dev_name(struct e1000_hw *hw)
286{
287 struct igb_adapter *adapter = hw->back;
288 return adapter->netdev->name;
289}
38c845c7
PO
290
291/**
292 * igb_get_time_str - format current NIC and system time as string
293 */
294static char *igb_get_time_str(struct igb_adapter *adapter,
295 char buffer[160])
296{
297 cycle_t hw = adapter->cycles.read(&adapter->cycles);
298 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
299 struct timespec sys;
300 struct timespec delta;
301 getnstimeofday(&sys);
302
303 delta = timespec_sub(nic, sys);
304
305 sprintf(buffer,
33af6bcc
PO
306 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
307 hw,
38c845c7
PO
308 (long)nic.tv_sec, nic.tv_nsec,
309 (long)sys.tv_sec, sys.tv_nsec,
310 (long)delta.tv_sec, delta.tv_nsec);
311
312 return buffer;
313}
9d5c8243
AK
314#endif
315
c493ea45
AD
316/**
317 * igb_desc_unused - calculate if we have unused descriptors
318 **/
319static int igb_desc_unused(struct igb_ring *ring)
320{
321 if (ring->next_to_clean > ring->next_to_use)
322 return ring->next_to_clean - ring->next_to_use - 1;
323
324 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
325}
326
9d5c8243
AK
327/**
328 * igb_init_module - Driver Registration Routine
329 *
330 * igb_init_module is the first routine called when the driver is
331 * loaded. All it does is register with the PCI subsystem.
332 **/
333static int __init igb_init_module(void)
334{
335 int ret;
336 printk(KERN_INFO "%s - version %s\n",
337 igb_driver_string, igb_driver_version);
338
339 printk(KERN_INFO "%s\n", igb_copyright);
340
7dfc16fa
AD
341 global_quad_port_a = 0;
342
421e02f0 343#ifdef CONFIG_IGB_DCA
fe4506b6
JC
344 dca_register_notify(&dca_notifier);
345#endif
bbd98fe4
AD
346
347 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
348 return ret;
349}
350
351module_init(igb_init_module);
352
353/**
354 * igb_exit_module - Driver Exit Cleanup Routine
355 *
356 * igb_exit_module is called just before the driver is removed
357 * from memory.
358 **/
359static void __exit igb_exit_module(void)
360{
421e02f0 361#ifdef CONFIG_IGB_DCA
fe4506b6
JC
362 dca_unregister_notify(&dca_notifier);
363#endif
9d5c8243
AK
364 pci_unregister_driver(&igb_driver);
365}
366
367module_exit(igb_exit_module);
368
26bc19ec
AD
369#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
370/**
371 * igb_cache_ring_register - Descriptor ring to register mapping
372 * @adapter: board private structure to initialize
373 *
374 * Once we know the feature-set enabled for the device, we'll cache
375 * the register offset the descriptor ring is assigned to.
376 **/
377static void igb_cache_ring_register(struct igb_adapter *adapter)
378{
379 int i;
1bfaf07b 380 unsigned int rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
381
382 switch (adapter->hw.mac.type) {
383 case e1000_82576:
384 /* The queues are allocated for virtualization such that VF 0
385 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
386 * In order to avoid collision we start at the first free queue
387 * and continue consuming queues in the same sequence
388 */
389 for (i = 0; i < adapter->num_rx_queues; i++)
1bfaf07b
AD
390 adapter->rx_ring[i].reg_idx = rbase_offset +
391 Q_IDX_82576(i);
26bc19ec 392 for (i = 0; i < adapter->num_tx_queues; i++)
1bfaf07b
AD
393 adapter->tx_ring[i].reg_idx = rbase_offset +
394 Q_IDX_82576(i);
26bc19ec
AD
395 break;
396 case e1000_82575:
397 default:
398 for (i = 0; i < adapter->num_rx_queues; i++)
399 adapter->rx_ring[i].reg_idx = i;
400 for (i = 0; i < adapter->num_tx_queues; i++)
401 adapter->tx_ring[i].reg_idx = i;
402 break;
403 }
404}
405
9d5c8243
AK
406/**
407 * igb_alloc_queues - Allocate memory for all rings
408 * @adapter: board private structure to initialize
409 *
410 * We allocate one ring per queue at run-time since we don't know the
411 * number of queues at compile-time.
412 **/
413static int igb_alloc_queues(struct igb_adapter *adapter)
414{
415 int i;
416
417 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
418 sizeof(struct igb_ring), GFP_KERNEL);
419 if (!adapter->tx_ring)
420 return -ENOMEM;
421
422 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
423 sizeof(struct igb_ring), GFP_KERNEL);
424 if (!adapter->rx_ring) {
425 kfree(adapter->tx_ring);
426 return -ENOMEM;
427 }
428
6eb5a7f1
AD
429 adapter->rx_ring->buddy = adapter->tx_ring;
430
661086df
PWJ
431 for (i = 0; i < adapter->num_tx_queues; i++) {
432 struct igb_ring *ring = &(adapter->tx_ring[i]);
68fd9910 433 ring->count = adapter->tx_ring_count;
661086df
PWJ
434 ring->adapter = adapter;
435 ring->queue_index = i;
436 }
9d5c8243
AK
437 for (i = 0; i < adapter->num_rx_queues; i++) {
438 struct igb_ring *ring = &(adapter->rx_ring[i]);
68fd9910 439 ring->count = adapter->rx_ring_count;
9d5c8243 440 ring->adapter = adapter;
844290e5 441 ring->queue_index = i;
9d5c8243
AK
442 ring->itr_register = E1000_ITR;
443
844290e5 444 /* set a default napi handler for each rx_ring */
661086df 445 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
9d5c8243 446 }
26bc19ec
AD
447
448 igb_cache_ring_register(adapter);
9d5c8243
AK
449 return 0;
450}
451
a88f10ec
AD
452static void igb_free_queues(struct igb_adapter *adapter)
453{
454 int i;
455
456 for (i = 0; i < adapter->num_rx_queues; i++)
457 netif_napi_del(&adapter->rx_ring[i].napi);
458
d1a8c9e1
AD
459 adapter->num_rx_queues = 0;
460 adapter->num_tx_queues = 0;
461
a88f10ec
AD
462 kfree(adapter->tx_ring);
463 kfree(adapter->rx_ring);
464}
465
9d5c8243
AK
466#define IGB_N0_QUEUE -1
467static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
468 int tx_queue, int msix_vector)
469{
470 u32 msixbm = 0;
471 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
472 u32 ivar, index;
473
474 switch (hw->mac.type) {
475 case e1000_82575:
9d5c8243
AK
476 /* The 82575 assigns vectors using a bitmask, which matches the
477 bitmask for the EICR/EIMS/EIMC registers. To assign one
478 or more queues to a vector, we write the appropriate bits
479 into the MSIXBM register for that vector. */
480 if (rx_queue > IGB_N0_QUEUE) {
481 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
482 adapter->rx_ring[rx_queue].eims_value = msixbm;
483 }
484 if (tx_queue > IGB_N0_QUEUE) {
485 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
486 adapter->tx_ring[tx_queue].eims_value =
487 E1000_EICR_TX_QUEUE0 << tx_queue;
488 }
489 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
2d064c06
AD
490 break;
491 case e1000_82576:
26bc19ec 492 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
493 Each queue has a single entry in the table to which we write
494 a vector number along with a "valid" bit. Sadly, the layout
495 of the table is somewhat counterintuitive. */
496 if (rx_queue > IGB_N0_QUEUE) {
1bfaf07b 497 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
2d064c06 498 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 499 if (rx_queue & 0x1) {
2d064c06
AD
500 /* vector goes into third byte of register */
501 ivar = ivar & 0xFF00FFFF;
502 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
26bc19ec
AD
503 } else {
504 /* vector goes into low byte of register */
505 ivar = ivar & 0xFFFFFF00;
506 ivar |= msix_vector | E1000_IVAR_VALID;
2d064c06
AD
507 }
508 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
509 array_wr32(E1000_IVAR0, index, ivar);
510 }
511 if (tx_queue > IGB_N0_QUEUE) {
1bfaf07b 512 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
2d064c06 513 ivar = array_rd32(E1000_IVAR0, index);
26bc19ec 514 if (tx_queue & 0x1) {
2d064c06
AD
515 /* vector goes into high byte of register */
516 ivar = ivar & 0x00FFFFFF;
517 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
26bc19ec
AD
518 } else {
519 /* vector goes into second byte of register */
520 ivar = ivar & 0xFFFF00FF;
521 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
2d064c06
AD
522 }
523 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
524 array_wr32(E1000_IVAR0, index, ivar);
525 }
526 break;
527 default:
528 BUG();
529 break;
530 }
9d5c8243
AK
531}
532
533/**
534 * igb_configure_msix - Configure MSI-X hardware
535 *
536 * igb_configure_msix sets up the hardware to properly
537 * generate MSI-X interrupts.
538 **/
539static void igb_configure_msix(struct igb_adapter *adapter)
540{
541 u32 tmp;
542 int i, vector = 0;
543 struct e1000_hw *hw = &adapter->hw;
544
545 adapter->eims_enable_mask = 0;
2d064c06
AD
546 if (hw->mac.type == e1000_82576)
547 /* Turn on MSI-X capability first, or our settings
548 * won't stick. And it will take days to debug. */
549 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
eebbbdba 550 E1000_GPIE_PBA | E1000_GPIE_EIAME |
2d064c06 551 E1000_GPIE_NSICR);
9d5c8243
AK
552
553 for (i = 0; i < adapter->num_tx_queues; i++) {
554 struct igb_ring *tx_ring = &adapter->tx_ring[i];
555 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
556 adapter->eims_enable_mask |= tx_ring->eims_value;
557 if (tx_ring->itr_val)
6eb5a7f1 558 writel(tx_ring->itr_val,
9d5c8243
AK
559 hw->hw_addr + tx_ring->itr_register);
560 else
561 writel(1, hw->hw_addr + tx_ring->itr_register);
562 }
563
564 for (i = 0; i < adapter->num_rx_queues; i++) {
565 struct igb_ring *rx_ring = &adapter->rx_ring[i];
25ac3c24 566 rx_ring->buddy = NULL;
9d5c8243
AK
567 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
568 adapter->eims_enable_mask |= rx_ring->eims_value;
569 if (rx_ring->itr_val)
6eb5a7f1 570 writel(rx_ring->itr_val,
9d5c8243
AK
571 hw->hw_addr + rx_ring->itr_register);
572 else
573 writel(1, hw->hw_addr + rx_ring->itr_register);
574 }
575
576
577 /* set vector for other causes, i.e. link changes */
2d064c06
AD
578 switch (hw->mac.type) {
579 case e1000_82575:
9d5c8243
AK
580 array_wr32(E1000_MSIXBM(0), vector++,
581 E1000_EIMS_OTHER);
582
9d5c8243
AK
583 tmp = rd32(E1000_CTRL_EXT);
584 /* enable MSI-X PBA support*/
585 tmp |= E1000_CTRL_EXT_PBA_CLR;
586
587 /* Auto-Mask interrupts upon ICR read. */
588 tmp |= E1000_CTRL_EXT_EIAME;
589 tmp |= E1000_CTRL_EXT_IRCA;
590
591 wr32(E1000_CTRL_EXT, tmp);
592 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
844290e5 593 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 594
2d064c06
AD
595 break;
596
597 case e1000_82576:
598 tmp = (vector++ | E1000_IVAR_VALID) << 8;
599 wr32(E1000_IVAR_MISC, tmp);
600
601 adapter->eims_enable_mask = (1 << (vector)) - 1;
602 adapter->eims_other = 1 << (vector - 1);
603 break;
604 default:
605 /* do nothing, since nothing else supports MSI-X */
606 break;
607 } /* switch (hw->mac.type) */
9d5c8243
AK
608 wrfl();
609}
610
611/**
612 * igb_request_msix - Initialize MSI-X interrupts
613 *
614 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
615 * kernel.
616 **/
617static int igb_request_msix(struct igb_adapter *adapter)
618{
619 struct net_device *netdev = adapter->netdev;
620 int i, err = 0, vector = 0;
621
622 vector = 0;
623
624 for (i = 0; i < adapter->num_tx_queues; i++) {
625 struct igb_ring *ring = &(adapter->tx_ring[i]);
cb7b48f6 626 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
9d5c8243
AK
627 err = request_irq(adapter->msix_entries[vector].vector,
628 &igb_msix_tx, 0, ring->name,
629 &(adapter->tx_ring[i]));
630 if (err)
631 goto out;
632 ring->itr_register = E1000_EITR(0) + (vector << 2);
6eb5a7f1 633 ring->itr_val = 976; /* ~4000 ints/sec */
9d5c8243
AK
634 vector++;
635 }
636 for (i = 0; i < adapter->num_rx_queues; i++) {
637 struct igb_ring *ring = &(adapter->rx_ring[i]);
638 if (strlen(netdev->name) < (IFNAMSIZ - 5))
cb7b48f6 639 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
9d5c8243
AK
640 else
641 memcpy(ring->name, netdev->name, IFNAMSIZ);
642 err = request_irq(adapter->msix_entries[vector].vector,
643 &igb_msix_rx, 0, ring->name,
644 &(adapter->rx_ring[i]));
645 if (err)
646 goto out;
647 ring->itr_register = E1000_EITR(0) + (vector << 2);
648 ring->itr_val = adapter->itr;
649 vector++;
650 }
651
652 err = request_irq(adapter->msix_entries[vector].vector,
653 &igb_msix_other, 0, netdev->name, netdev);
654 if (err)
655 goto out;
656
9d5c8243
AK
657 igb_configure_msix(adapter);
658 return 0;
659out:
660 return err;
661}
662
663static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
664{
665 if (adapter->msix_entries) {
666 pci_disable_msix(adapter->pdev);
667 kfree(adapter->msix_entries);
668 adapter->msix_entries = NULL;
7dfc16fa 669 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
9d5c8243
AK
670 pci_disable_msi(adapter->pdev);
671 return;
672}
673
674
675/**
676 * igb_set_interrupt_capability - set MSI or MSI-X if supported
677 *
678 * Attempt to configure interrupts using the best available
679 * capabilities of the hardware and kernel.
680 **/
681static void igb_set_interrupt_capability(struct igb_adapter *adapter)
682{
683 int err;
684 int numvecs, i;
685
83b7180d
AD
686 /* Number of supported queues. */
687 /* Having more queues than CPUs doesn't make sense. */
688 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
689 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
690
9d5c8243
AK
691 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
692 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
693 GFP_KERNEL);
694 if (!adapter->msix_entries)
695 goto msi_only;
696
697 for (i = 0; i < numvecs; i++)
698 adapter->msix_entries[i].entry = i;
699
700 err = pci_enable_msix(adapter->pdev,
701 adapter->msix_entries,
702 numvecs);
703 if (err == 0)
34a20e89 704 goto out;
9d5c8243
AK
705
706 igb_reset_interrupt_capability(adapter);
707
708 /* If we can't do MSI-X, try MSI */
709msi_only:
2a3abf6d
AD
710#ifdef CONFIG_PCI_IOV
711 /* disable SR-IOV for non MSI-X configurations */
712 if (adapter->vf_data) {
713 struct e1000_hw *hw = &adapter->hw;
714 /* disable iov and allow time for transactions to clear */
715 pci_disable_sriov(adapter->pdev);
716 msleep(500);
717
718 kfree(adapter->vf_data);
719 adapter->vf_data = NULL;
720 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
721 msleep(100);
722 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
723 }
724#endif
9d5c8243 725 adapter->num_rx_queues = 1;
661086df 726 adapter->num_tx_queues = 1;
9d5c8243 727 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 728 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 729out:
661086df 730 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 731 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
732 return;
733}
734
735/**
736 * igb_request_irq - initialize interrupts
737 *
738 * Attempts to configure interrupts using the best available
739 * capabilities of the hardware and kernel.
740 **/
741static int igb_request_irq(struct igb_adapter *adapter)
742{
743 struct net_device *netdev = adapter->netdev;
744 struct e1000_hw *hw = &adapter->hw;
745 int err = 0;
746
747 if (adapter->msix_entries) {
748 err = igb_request_msix(adapter);
844290e5 749 if (!err)
9d5c8243 750 goto request_done;
9d5c8243
AK
751 /* fall back to MSI */
752 igb_reset_interrupt_capability(adapter);
753 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 754 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
755 igb_free_all_tx_resources(adapter);
756 igb_free_all_rx_resources(adapter);
757 adapter->num_rx_queues = 1;
758 igb_alloc_queues(adapter);
844290e5 759 } else {
2d064c06
AD
760 switch (hw->mac.type) {
761 case e1000_82575:
762 wr32(E1000_MSIXBM(0),
763 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
764 break;
765 case e1000_82576:
766 wr32(E1000_IVAR0, E1000_IVAR_VALID);
767 break;
768 default:
769 break;
770 }
9d5c8243 771 }
844290e5 772
7dfc16fa 773 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243
AK
774 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
775 netdev->name, netdev);
776 if (!err)
777 goto request_done;
778 /* fall back to legacy interrupts */
779 igb_reset_interrupt_capability(adapter);
7dfc16fa 780 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
781 }
782
783 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
784 netdev->name, netdev);
785
6cb5e577 786 if (err)
9d5c8243
AK
787 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
788 err);
9d5c8243
AK
789
790request_done:
791 return err;
792}
793
794static void igb_free_irq(struct igb_adapter *adapter)
795{
796 struct net_device *netdev = adapter->netdev;
797
798 if (adapter->msix_entries) {
799 int vector = 0, i;
800
801 for (i = 0; i < adapter->num_tx_queues; i++)
802 free_irq(adapter->msix_entries[vector++].vector,
803 &(adapter->tx_ring[i]));
804 for (i = 0; i < adapter->num_rx_queues; i++)
805 free_irq(adapter->msix_entries[vector++].vector,
806 &(adapter->rx_ring[i]));
807
808 free_irq(adapter->msix_entries[vector++].vector, netdev);
809 return;
810 }
811
812 free_irq(adapter->pdev->irq, netdev);
813}
814
815/**
816 * igb_irq_disable - Mask off interrupt generation on the NIC
817 * @adapter: board private structure
818 **/
819static void igb_irq_disable(struct igb_adapter *adapter)
820{
821 struct e1000_hw *hw = &adapter->hw;
822
823 if (adapter->msix_entries) {
844290e5 824 wr32(E1000_EIAM, 0);
9d5c8243
AK
825 wr32(E1000_EIMC, ~0);
826 wr32(E1000_EIAC, 0);
827 }
844290e5
PW
828
829 wr32(E1000_IAM, 0);
9d5c8243
AK
830 wr32(E1000_IMC, ~0);
831 wrfl();
832 synchronize_irq(adapter->pdev->irq);
833}
834
835/**
836 * igb_irq_enable - Enable default interrupt generation settings
837 * @adapter: board private structure
838 **/
839static void igb_irq_enable(struct igb_adapter *adapter)
840{
841 struct e1000_hw *hw = &adapter->hw;
842
843 if (adapter->msix_entries) {
844290e5
PW
844 wr32(E1000_EIAC, adapter->eims_enable_mask);
845 wr32(E1000_EIAM, adapter->eims_enable_mask);
846 wr32(E1000_EIMS, adapter->eims_enable_mask);
4ae196df
AD
847 if (adapter->vfs_allocated_count)
848 wr32(E1000_MBVFIMR, 0xFF);
849 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
850 E1000_IMS_DOUTSYNC));
844290e5
PW
851 } else {
852 wr32(E1000_IMS, IMS_ENABLE_MASK);
853 wr32(E1000_IAM, IMS_ENABLE_MASK);
854 }
9d5c8243
AK
855}
856
857static void igb_update_mng_vlan(struct igb_adapter *adapter)
858{
859 struct net_device *netdev = adapter->netdev;
860 u16 vid = adapter->hw.mng_cookie.vlan_id;
861 u16 old_vid = adapter->mng_vlan_id;
862 if (adapter->vlgrp) {
863 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
864 if (adapter->hw.mng_cookie.status &
865 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
866 igb_vlan_rx_add_vid(netdev, vid);
867 adapter->mng_vlan_id = vid;
868 } else
869 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
870
871 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
872 (vid != old_vid) &&
873 !vlan_group_get_device(adapter->vlgrp, old_vid))
874 igb_vlan_rx_kill_vid(netdev, old_vid);
875 } else
876 adapter->mng_vlan_id = vid;
877 }
878}
879
880/**
881 * igb_release_hw_control - release control of the h/w to f/w
882 * @adapter: address of board private structure
883 *
884 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
885 * For ASF and Pass Through versions of f/w this means that the
886 * driver is no longer loaded.
887 *
888 **/
889static void igb_release_hw_control(struct igb_adapter *adapter)
890{
891 struct e1000_hw *hw = &adapter->hw;
892 u32 ctrl_ext;
893
894 /* Let firmware take over control of h/w */
895 ctrl_ext = rd32(E1000_CTRL_EXT);
896 wr32(E1000_CTRL_EXT,
897 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
898}
899
900
901/**
902 * igb_get_hw_control - get control of the h/w from f/w
903 * @adapter: address of board private structure
904 *
905 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
906 * For ASF and Pass Through versions of f/w this means that
907 * the driver is loaded.
908 *
909 **/
910static void igb_get_hw_control(struct igb_adapter *adapter)
911{
912 struct e1000_hw *hw = &adapter->hw;
913 u32 ctrl_ext;
914
915 /* Let firmware know the driver has taken over */
916 ctrl_ext = rd32(E1000_CTRL_EXT);
917 wr32(E1000_CTRL_EXT,
918 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
919}
920
9d5c8243
AK
921/**
922 * igb_configure - configure the hardware for RX and TX
923 * @adapter: private board structure
924 **/
925static void igb_configure(struct igb_adapter *adapter)
926{
927 struct net_device *netdev = adapter->netdev;
928 int i;
929
930 igb_get_hw_control(adapter);
931 igb_set_multi(netdev);
932
933 igb_restore_vlan(adapter);
9d5c8243
AK
934
935 igb_configure_tx(adapter);
936 igb_setup_rctl(adapter);
937 igb_configure_rx(adapter);
662d7205
AD
938
939 igb_rx_fifo_flush_82575(&adapter->hw);
940
c493ea45 941 /* call igb_desc_unused which always leaves
9d5c8243
AK
942 * at least 1 descriptor unused to make sure
943 * next_to_use != next_to_clean */
944 for (i = 0; i < adapter->num_rx_queues; i++) {
945 struct igb_ring *ring = &adapter->rx_ring[i];
c493ea45 946 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243
AK
947 }
948
949
950 adapter->tx_queue_len = netdev->tx_queue_len;
951}
952
953
954/**
955 * igb_up - Open the interface and prepare it to handle traffic
956 * @adapter: board private structure
957 **/
958
959int igb_up(struct igb_adapter *adapter)
960{
961 struct e1000_hw *hw = &adapter->hw;
962 int i;
963
964 /* hardware has been reset, we need to reload some things */
965 igb_configure(adapter);
966
967 clear_bit(__IGB_DOWN, &adapter->state);
968
844290e5
PW
969 for (i = 0; i < adapter->num_rx_queues; i++)
970 napi_enable(&adapter->rx_ring[i].napi);
971 if (adapter->msix_entries)
9d5c8243 972 igb_configure_msix(adapter);
9d5c8243 973
4ae196df 974 igb_vmm_control(adapter);
e1739522
AD
975 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
976 igb_set_vmolr(hw, adapter->vfs_allocated_count);
977
9d5c8243
AK
978 /* Clear any pending interrupts. */
979 rd32(E1000_ICR);
980 igb_irq_enable(adapter);
981
4cb9be7a
JB
982 netif_tx_start_all_queues(adapter->netdev);
983
9d5c8243
AK
984 /* Fire a link change interrupt to start the watchdog. */
985 wr32(E1000_ICS, E1000_ICS_LSC);
986 return 0;
987}
988
989void igb_down(struct igb_adapter *adapter)
990{
991 struct e1000_hw *hw = &adapter->hw;
992 struct net_device *netdev = adapter->netdev;
993 u32 tctl, rctl;
994 int i;
995
996 /* signal that we're down so the interrupt handler does not
997 * reschedule our watchdog timer */
998 set_bit(__IGB_DOWN, &adapter->state);
999
1000 /* disable receives in the hardware */
1001 rctl = rd32(E1000_RCTL);
1002 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1003 /* flush and sleep below */
1004
fd2ea0a7 1005 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1006
1007 /* disable transmits in the hardware */
1008 tctl = rd32(E1000_TCTL);
1009 tctl &= ~E1000_TCTL_EN;
1010 wr32(E1000_TCTL, tctl);
1011 /* flush both disables and wait for them to finish */
1012 wrfl();
1013 msleep(10);
1014
844290e5
PW
1015 for (i = 0; i < adapter->num_rx_queues; i++)
1016 napi_disable(&adapter->rx_ring[i].napi);
9d5c8243 1017
9d5c8243
AK
1018 igb_irq_disable(adapter);
1019
1020 del_timer_sync(&adapter->watchdog_timer);
1021 del_timer_sync(&adapter->phy_info_timer);
1022
1023 netdev->tx_queue_len = adapter->tx_queue_len;
1024 netif_carrier_off(netdev);
04fe6358
AD
1025
1026 /* record the stats before reset*/
1027 igb_update_stats(adapter);
1028
9d5c8243
AK
1029 adapter->link_speed = 0;
1030 adapter->link_duplex = 0;
1031
3023682e
JK
1032 if (!pci_channel_offline(adapter->pdev))
1033 igb_reset(adapter);
9d5c8243
AK
1034 igb_clean_all_tx_rings(adapter);
1035 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1036#ifdef CONFIG_IGB_DCA
1037
1038 /* since we reset the hardware DCA settings were cleared */
1039 igb_setup_dca(adapter);
1040#endif
9d5c8243
AK
1041}
1042
1043void igb_reinit_locked(struct igb_adapter *adapter)
1044{
1045 WARN_ON(in_interrupt());
1046 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1047 msleep(1);
1048 igb_down(adapter);
1049 igb_up(adapter);
1050 clear_bit(__IGB_RESETTING, &adapter->state);
1051}
1052
1053void igb_reset(struct igb_adapter *adapter)
1054{
1055 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1056 struct e1000_mac_info *mac = &hw->mac;
1057 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1058 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1059 u16 hwm;
1060
1061 /* Repartition Pba for greater than 9k mtu
1062 * To take effect CTRL.RST is required.
1063 */
fa4dfae0
AD
1064 switch (mac->type) {
1065 case e1000_82576:
2d064c06 1066 pba = E1000_PBA_64K;
fa4dfae0
AD
1067 break;
1068 case e1000_82575:
1069 default:
1070 pba = E1000_PBA_34K;
1071 break;
2d064c06 1072 }
9d5c8243 1073
2d064c06
AD
1074 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1075 (mac->type < e1000_82576)) {
9d5c8243
AK
1076 /* adjust PBA for jumbo frames */
1077 wr32(E1000_PBA, pba);
1078
1079 /* To maintain wire speed transmits, the Tx FIFO should be
1080 * large enough to accommodate two full transmit packets,
1081 * rounded up to the next 1KB and expressed in KB. Likewise,
1082 * the Rx FIFO should be large enough to accommodate at least
1083 * one full receive packet and is similarly rounded up and
1084 * expressed in KB. */
1085 pba = rd32(E1000_PBA);
1086 /* upper 16 bits has Tx packet buffer allocation size in KB */
1087 tx_space = pba >> 16;
1088 /* lower 16 bits has Rx packet buffer allocation size in KB */
1089 pba &= 0xffff;
1090 /* the tx fifo also stores 16 bytes of information about the tx
1091 * but don't include ethernet FCS because hardware appends it */
1092 min_tx_space = (adapter->max_frame_size +
85e8d004 1093 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1094 ETH_FCS_LEN) * 2;
1095 min_tx_space = ALIGN(min_tx_space, 1024);
1096 min_tx_space >>= 10;
1097 /* software strips receive CRC, so leave room for it */
1098 min_rx_space = adapter->max_frame_size;
1099 min_rx_space = ALIGN(min_rx_space, 1024);
1100 min_rx_space >>= 10;
1101
1102 /* If current Tx allocation is less than the min Tx FIFO size,
1103 * and the min Tx FIFO size is less than the current Rx FIFO
1104 * allocation, take space away from current Rx allocation */
1105 if (tx_space < min_tx_space &&
1106 ((min_tx_space - tx_space) < pba)) {
1107 pba = pba - (min_tx_space - tx_space);
1108
1109 /* if short on rx space, rx wins and must trump tx
1110 * adjustment */
1111 if (pba < min_rx_space)
1112 pba = min_rx_space;
1113 }
2d064c06 1114 wr32(E1000_PBA, pba);
9d5c8243 1115 }
9d5c8243
AK
1116
1117 /* flow control settings */
1118 /* The high water mark must be low enough to fit one full frame
1119 * (or the size used for early receive) above it in the Rx FIFO.
1120 * Set it to the lower of:
1121 * - 90% of the Rx FIFO size, or
1122 * - the full Rx FIFO size minus one full frame */
1123 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1124 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1125
2d064c06
AD
1126 if (mac->type < e1000_82576) {
1127 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1128 fc->low_water = fc->high_water - 8;
1129 } else {
1130 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1131 fc->low_water = fc->high_water - 16;
1132 }
9d5c8243
AK
1133 fc->pause_time = 0xFFFF;
1134 fc->send_xon = 1;
0cce119a 1135 fc->current_mode = fc->requested_mode;
9d5c8243 1136
4ae196df
AD
1137 /* disable receive for all VFs and wait one second */
1138 if (adapter->vfs_allocated_count) {
1139 int i;
1140 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1141 adapter->vf_data[i].clear_to_send = false;
1142
1143 /* ping all the active vfs to let them know we are going down */
1144 igb_ping_all_vfs(adapter);
1145
1146 /* disable transmits and receives */
1147 wr32(E1000_VFRE, 0);
1148 wr32(E1000_VFTE, 0);
1149 }
1150
9d5c8243
AK
1151 /* Allow time for pending master requests to run */
1152 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1153 wr32(E1000_WUC, 0);
1154
1155 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1156 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1157
1158 igb_update_mng_vlan(adapter);
1159
1160 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1161 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1162
1163 igb_reset_adaptive(&adapter->hw);
f5f4cf08 1164 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
1165}
1166
2e5c6922
SH
1167static const struct net_device_ops igb_netdev_ops = {
1168 .ndo_open = igb_open,
1169 .ndo_stop = igb_close,
00829823 1170 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922
SH
1171 .ndo_get_stats = igb_get_stats,
1172 .ndo_set_multicast_list = igb_set_multi,
1173 .ndo_set_mac_address = igb_set_mac,
1174 .ndo_change_mtu = igb_change_mtu,
1175 .ndo_do_ioctl = igb_ioctl,
1176 .ndo_tx_timeout = igb_tx_timeout,
1177 .ndo_validate_addr = eth_validate_addr,
1178 .ndo_vlan_rx_register = igb_vlan_rx_register,
1179 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1180 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1181#ifdef CONFIG_NET_POLL_CONTROLLER
1182 .ndo_poll_controller = igb_netpoll,
1183#endif
1184};
1185
9d5c8243
AK
1186/**
1187 * igb_probe - Device Initialization Routine
1188 * @pdev: PCI device information struct
1189 * @ent: entry in igb_pci_tbl
1190 *
1191 * Returns 0 on success, negative on failure
1192 *
1193 * igb_probe initializes an adapter identified by a pci_dev structure.
1194 * The OS initialization, configuring of the adapter private structure,
1195 * and a hardware reset occur.
1196 **/
1197static int __devinit igb_probe(struct pci_dev *pdev,
1198 const struct pci_device_id *ent)
1199{
1200 struct net_device *netdev;
1201 struct igb_adapter *adapter;
1202 struct e1000_hw *hw;
1203 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1204 unsigned long mmio_start, mmio_len;
2d6a5e95 1205 int err, pci_using_dac;
682337fe 1206 u16 eeprom_data = 0;
9d5c8243
AK
1207 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1208 u32 part_num;
1209
aed5dec3 1210 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1211 if (err)
1212 return err;
1213
1214 pci_using_dac = 0;
6a35528a 1215 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243 1216 if (!err) {
6a35528a 1217 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243
AK
1218 if (!err)
1219 pci_using_dac = 1;
1220 } else {
284901a9 1221 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243 1222 if (err) {
284901a9 1223 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243
AK
1224 if (err) {
1225 dev_err(&pdev->dev, "No usable DMA "
1226 "configuration, aborting\n");
1227 goto err_dma;
1228 }
1229 }
1230 }
1231
aed5dec3
AD
1232 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1233 IORESOURCE_MEM),
1234 igb_driver_name);
9d5c8243
AK
1235 if (err)
1236 goto err_pci_reg;
1237
ea943d41
JK
1238 err = pci_enable_pcie_error_reporting(pdev);
1239 if (err) {
1240 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1241 "0x%x\n", err);
1242 /* non-fatal, continue */
1243 }
40a914fa 1244
9d5c8243 1245 pci_set_master(pdev);
c682fc23 1246 pci_save_state(pdev);
9d5c8243
AK
1247
1248 err = -ENOMEM;
1bfaf07b
AD
1249 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1250 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1251 if (!netdev)
1252 goto err_alloc_etherdev;
1253
1254 SET_NETDEV_DEV(netdev, &pdev->dev);
1255
1256 pci_set_drvdata(pdev, netdev);
1257 adapter = netdev_priv(netdev);
1258 adapter->netdev = netdev;
1259 adapter->pdev = pdev;
1260 hw = &adapter->hw;
1261 hw->back = adapter;
1262 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1263
1264 mmio_start = pci_resource_start(pdev, 0);
1265 mmio_len = pci_resource_len(pdev, 0);
1266
1267 err = -EIO;
28b0759c
AD
1268 hw->hw_addr = ioremap(mmio_start, mmio_len);
1269 if (!hw->hw_addr)
9d5c8243
AK
1270 goto err_ioremap;
1271
2e5c6922 1272 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1273 igb_set_ethtool_ops(netdev);
9d5c8243 1274 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1275
1276 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1277
1278 netdev->mem_start = mmio_start;
1279 netdev->mem_end = mmio_start + mmio_len;
1280
9d5c8243
AK
1281 /* PCI config space info */
1282 hw->vendor_id = pdev->vendor;
1283 hw->device_id = pdev->device;
1284 hw->revision_id = pdev->revision;
1285 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1286 hw->subsystem_device_id = pdev->subsystem_device;
1287
1288 /* setup the private structure */
1289 hw->back = adapter;
1290 /* Copy the default MAC, PHY and NVM function pointers */
1291 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1292 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1293 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1294 /* Initialize skew-specific constants */
1295 err = ei->get_invariants(hw);
1296 if (err)
450c87c8 1297 goto err_sw_init;
9d5c8243 1298
2a3abf6d
AD
1299#ifdef CONFIG_PCI_IOV
1300 /* since iov functionality isn't critical to base device function we
1301 * can accept failure. If it fails we don't allow iov to be enabled */
1302 if (hw->mac.type == e1000_82576) {
1303 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1304 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1305 int i;
1306 unsigned char mac_addr[ETH_ALEN];
1307
9ca046d5 1308 if (num_vfs) {
2a3abf6d
AD
1309 adapter->vf_data = kcalloc(num_vfs,
1310 sizeof(struct vf_data_storage),
1311 GFP_KERNEL);
9ca046d5
AD
1312 if (!adapter->vf_data) {
1313 dev_err(&pdev->dev,
1314 "Could not allocate VF private data - "
1315 "IOV enable failed\n");
2a3abf6d 1316 } else {
9ca046d5
AD
1317 err = pci_enable_sriov(pdev, num_vfs);
1318 if (!err) {
1319 adapter->vfs_allocated_count = num_vfs;
1320 dev_info(&pdev->dev,
1321 "%d vfs allocated\n",
1322 num_vfs);
1323 for (i = 0;
1324 i < adapter->vfs_allocated_count;
1325 i++) {
1326 random_ether_addr(mac_addr);
1327 igb_set_vf_mac(adapter, i,
1328 mac_addr);
1329 }
1330 } else {
1331 kfree(adapter->vf_data);
1332 adapter->vf_data = NULL;
1333 }
2a3abf6d
AD
1334 }
1335 }
1336 }
1337
1338#endif
450c87c8 1339 /* setup the private structure */
9d5c8243
AK
1340 err = igb_sw_init(adapter);
1341 if (err)
1342 goto err_sw_init;
1343
1344 igb_get_bus_info_pcie(hw);
1345
7dfc16fa
AD
1346 /* set flags */
1347 switch (hw->mac.type) {
7dfc16fa 1348 case e1000_82575:
7dfc16fa
AD
1349 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1350 break;
bbd98fe4 1351 case e1000_82576:
7dfc16fa
AD
1352 default:
1353 break;
1354 }
1355
9d5c8243
AK
1356 hw->phy.autoneg_wait_to_complete = false;
1357 hw->mac.adaptive_ifs = true;
1358
1359 /* Copper options */
1360 if (hw->phy.media_type == e1000_media_type_copper) {
1361 hw->phy.mdix = AUTO_ALL_MODES;
1362 hw->phy.disable_polarity_correction = false;
1363 hw->phy.ms_type = e1000_ms_hw_default;
1364 }
1365
1366 if (igb_check_reset_block(hw))
1367 dev_info(&pdev->dev,
1368 "PHY reset is blocked due to SOL/IDER session.\n");
1369
1370 netdev->features = NETIF_F_SG |
7d8eb29e 1371 NETIF_F_IP_CSUM |
9d5c8243
AK
1372 NETIF_F_HW_VLAN_TX |
1373 NETIF_F_HW_VLAN_RX |
1374 NETIF_F_HW_VLAN_FILTER;
1375
7d8eb29e 1376 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1377 netdev->features |= NETIF_F_TSO;
9d5c8243 1378 netdev->features |= NETIF_F_TSO6;
48f29ffc 1379
5c0999b7 1380 netdev->features |= NETIF_F_GRO;
d3352520 1381
48f29ffc
JK
1382 netdev->vlan_features |= NETIF_F_TSO;
1383 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1384 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1385 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1386 netdev->vlan_features |= NETIF_F_SG;
1387
9d5c8243
AK
1388 if (pci_using_dac)
1389 netdev->features |= NETIF_F_HIGHDMA;
1390
b9473560
JB
1391 if (adapter->hw.mac.type == e1000_82576)
1392 netdev->features |= NETIF_F_SCTP_CSUM;
1393
9d5c8243
AK
1394 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1395
1396 /* before reading the NVM, reset the controller to put the device in a
1397 * known good starting state */
1398 hw->mac.ops.reset_hw(hw);
1399
1400 /* make sure the NVM is good */
1401 if (igb_validate_nvm_checksum(hw) < 0) {
1402 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1403 err = -EIO;
1404 goto err_eeprom;
1405 }
1406
1407 /* copy the MAC address out of the NVM */
1408 if (hw->mac.ops.read_mac_addr(hw))
1409 dev_err(&pdev->dev, "NVM Read Error\n");
1410
1411 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1412 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1413
1414 if (!is_valid_ether_addr(netdev->perm_addr)) {
1415 dev_err(&pdev->dev, "Invalid MAC Address\n");
1416 err = -EIO;
1417 goto err_eeprom;
1418 }
1419
0e340485
AD
1420 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1421 (unsigned long) adapter);
1422 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1423 (unsigned long) adapter);
9d5c8243
AK
1424
1425 INIT_WORK(&adapter->reset_task, igb_reset_task);
1426 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1427
450c87c8 1428 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1429 adapter->fc_autoneg = true;
1430 hw->mac.autoneg = true;
1431 hw->phy.autoneg_advertised = 0x2f;
1432
0cce119a
AD
1433 hw->fc.requested_mode = e1000_fc_default;
1434 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1435
cbd347ad 1436 adapter->itr_setting = IGB_DEFAULT_ITR;
9d5c8243
AK
1437 adapter->itr = IGB_START_ITR;
1438
1439 igb_validate_mdi_setting(hw);
1440
9d5c8243
AK
1441 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1442 * enable the ACPI Magic Packet filter
1443 */
1444
a2cf8b6c 1445 if (hw->bus.func == 0)
312c75ae 1446 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
a2cf8b6c
AD
1447 else if (hw->bus.func == 1)
1448 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1449
1450 if (eeprom_data & eeprom_apme_mask)
1451 adapter->eeprom_wol |= E1000_WUFC_MAG;
1452
1453 /* now that we have the eeprom settings, apply the special cases where
1454 * the eeprom may be wrong or the board simply won't support wake on
1455 * lan on a particular port */
1456 switch (pdev->device) {
1457 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1458 adapter->eeprom_wol = 0;
1459 break;
1460 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1461 case E1000_DEV_ID_82576_FIBER:
1462 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1463 /* Wake events only supported on port A for dual fiber
1464 * regardless of eeprom setting */
1465 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1466 adapter->eeprom_wol = 0;
1467 break;
c8ea5ea9
AD
1468 case E1000_DEV_ID_82576_QUAD_COPPER:
1469 /* if quad port adapter, disable WoL on all but port A */
1470 if (global_quad_port_a != 0)
1471 adapter->eeprom_wol = 0;
1472 else
1473 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1474 /* Reset for multiple quad port adapters */
1475 if (++global_quad_port_a == 4)
1476 global_quad_port_a = 0;
1477 break;
9d5c8243
AK
1478 }
1479
1480 /* initialize the wol settings based on the eeprom settings */
1481 adapter->wol = adapter->eeprom_wol;
e1b86d84 1482 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1483
1484 /* reset the hardware with the new settings */
1485 igb_reset(adapter);
1486
1487 /* let the f/w know that the h/w is now under the control of the
1488 * driver. */
1489 igb_get_hw_control(adapter);
1490
9d5c8243
AK
1491 strcpy(netdev->name, "eth%d");
1492 err = register_netdev(netdev);
1493 if (err)
1494 goto err_register;
1495
b168dfc5
JB
1496 /* carrier off reporting is important to ethtool even BEFORE open */
1497 netif_carrier_off(netdev);
1498
421e02f0 1499#ifdef CONFIG_IGB_DCA
bbd98fe4 1500 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1501 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1502 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1503 igb_setup_dca(adapter);
1504 }
1505#endif
1506
38c845c7
PO
1507 /*
1508 * Initialize hardware timer: we keep it running just in case
1509 * that some program needs it later on.
1510 */
1511 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1512 adapter->cycles.read = igb_read_clock;
1513 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1514 adapter->cycles.mult = 1;
1515 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1516 wr32(E1000_TIMINCA,
1517 (1<<24) |
1518 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1519#if 0
1520 /*
1521 * Avoid rollover while we initialize by resetting the time counter.
1522 */
1523 wr32(E1000_SYSTIML, 0x00000000);
1524 wr32(E1000_SYSTIMH, 0x00000000);
1525#else
1526 /*
1527 * Set registers so that rollover occurs soon to test this.
1528 */
1529 wr32(E1000_SYSTIML, 0x00000000);
1530 wr32(E1000_SYSTIMH, 0xFF800000);
1531#endif
1532 wrfl();
1533 timecounter_init(&adapter->clock,
1534 &adapter->cycles,
1535 ktime_to_ns(ktime_get_real()));
1536
33af6bcc
PO
1537 /*
1538 * Synchronize our NIC clock against system wall clock. NIC
1539 * time stamp reading requires ~3us per sample, each sample
1540 * was pretty stable even under load => only require 10
1541 * samples for each offset comparison.
1542 */
1543 memset(&adapter->compare, 0, sizeof(adapter->compare));
1544 adapter->compare.source = &adapter->clock;
1545 adapter->compare.target = ktime_get_real;
1546 adapter->compare.num_samples = 10;
1547 timecompare_update(&adapter->compare, 0);
1548
38c845c7
PO
1549#ifdef DEBUG
1550 {
1551 char buffer[160];
1552 printk(KERN_DEBUG
1553 "igb: %s: hw %p initialized timer\n",
1554 igb_get_time_str(adapter, buffer),
1555 &adapter->hw);
1556 }
1557#endif
1558
9d5c8243
AK
1559 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1560 /* print bus type/speed/width info */
7c510e4b 1561 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243
AK
1562 netdev->name,
1563 ((hw->bus.speed == e1000_bus_speed_2500)
1564 ? "2.5Gb/s" : "unknown"),
59c3de89
AD
1565 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1566 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1567 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1568 "unknown"),
7c510e4b 1569 netdev->dev_addr);
9d5c8243
AK
1570
1571 igb_read_part_num(hw, &part_num);
1572 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1573 (part_num >> 8), (part_num & 0xff));
1574
1575 dev_info(&pdev->dev,
1576 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1577 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1578 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1579 adapter->num_rx_queues, adapter->num_tx_queues);
1580
9d5c8243
AK
1581 return 0;
1582
1583err_register:
1584 igb_release_hw_control(adapter);
1585err_eeprom:
1586 if (!igb_check_reset_block(hw))
f5f4cf08 1587 igb_reset_phy(hw);
9d5c8243
AK
1588
1589 if (hw->flash_address)
1590 iounmap(hw->flash_address);
1591
a88f10ec 1592 igb_free_queues(adapter);
9d5c8243 1593err_sw_init:
9d5c8243
AK
1594 iounmap(hw->hw_addr);
1595err_ioremap:
1596 free_netdev(netdev);
1597err_alloc_etherdev:
aed5dec3
AD
1598 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1599 IORESOURCE_MEM));
9d5c8243
AK
1600err_pci_reg:
1601err_dma:
1602 pci_disable_device(pdev);
1603 return err;
1604}
1605
1606/**
1607 * igb_remove - Device Removal Routine
1608 * @pdev: PCI device information struct
1609 *
1610 * igb_remove is called by the PCI subsystem to alert the driver
1611 * that it should release a PCI device. The could be caused by a
1612 * Hot-Plug event, or because the driver is going to be removed from
1613 * memory.
1614 **/
1615static void __devexit igb_remove(struct pci_dev *pdev)
1616{
1617 struct net_device *netdev = pci_get_drvdata(pdev);
1618 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1619 struct e1000_hw *hw = &adapter->hw;
ea943d41 1620 int err;
9d5c8243
AK
1621
1622 /* flush_scheduled work may reschedule our watchdog task, so
1623 * explicitly disable watchdog tasks from being rescheduled */
1624 set_bit(__IGB_DOWN, &adapter->state);
1625 del_timer_sync(&adapter->watchdog_timer);
1626 del_timer_sync(&adapter->phy_info_timer);
1627
1628 flush_scheduled_work();
1629
421e02f0 1630#ifdef CONFIG_IGB_DCA
7dfc16fa 1631 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1632 dev_info(&pdev->dev, "DCA disabled\n");
1633 dca_remove_requester(&pdev->dev);
7dfc16fa 1634 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1635 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1636 }
1637#endif
1638
9d5c8243
AK
1639 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1640 * would have already happened in close and is redundant. */
1641 igb_release_hw_control(adapter);
1642
1643 unregister_netdev(netdev);
1644
f5f4cf08
AD
1645 if (!igb_check_reset_block(&adapter->hw))
1646 igb_reset_phy(&adapter->hw);
9d5c8243 1647
9d5c8243
AK
1648 igb_reset_interrupt_capability(adapter);
1649
a88f10ec 1650 igb_free_queues(adapter);
9d5c8243 1651
37680117
AD
1652#ifdef CONFIG_PCI_IOV
1653 /* reclaim resources allocated to VFs */
1654 if (adapter->vf_data) {
1655 /* disable iov and allow time for transactions to clear */
1656 pci_disable_sriov(pdev);
1657 msleep(500);
1658
1659 kfree(adapter->vf_data);
1660 adapter->vf_data = NULL;
1661 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1662 msleep(100);
1663 dev_info(&pdev->dev, "IOV Disabled\n");
1664 }
1665#endif
28b0759c
AD
1666 iounmap(hw->hw_addr);
1667 if (hw->flash_address)
1668 iounmap(hw->flash_address);
aed5dec3
AD
1669 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1670 IORESOURCE_MEM));
9d5c8243
AK
1671
1672 free_netdev(netdev);
1673
ea943d41
JK
1674 err = pci_disable_pcie_error_reporting(pdev);
1675 if (err)
1676 dev_err(&pdev->dev,
1677 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
40a914fa 1678
9d5c8243
AK
1679 pci_disable_device(pdev);
1680}
1681
1682/**
1683 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1684 * @adapter: board private structure to initialize
1685 *
1686 * igb_sw_init initializes the Adapter private data structure.
1687 * Fields are initialized based on PCI device information and
1688 * OS network device settings (MTU size).
1689 **/
1690static int __devinit igb_sw_init(struct igb_adapter *adapter)
1691{
1692 struct e1000_hw *hw = &adapter->hw;
1693 struct net_device *netdev = adapter->netdev;
1694 struct pci_dev *pdev = adapter->pdev;
1695
1696 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1697
68fd9910
AD
1698 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1699 adapter->rx_ring_count = IGB_DEFAULT_RXD;
9d5c8243
AK
1700 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1701 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1702 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1703 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1704
661086df
PWJ
1705 /* This call may decrease the number of queues depending on
1706 * interrupt mode. */
9d5c8243
AK
1707 igb_set_interrupt_capability(adapter);
1708
1709 if (igb_alloc_queues(adapter)) {
1710 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1711 return -ENOMEM;
1712 }
1713
1714 /* Explicitly disable IRQ since the NIC can be in any state. */
1715 igb_irq_disable(adapter);
1716
1717 set_bit(__IGB_DOWN, &adapter->state);
1718 return 0;
1719}
1720
1721/**
1722 * igb_open - Called when a network interface is made active
1723 * @netdev: network interface device structure
1724 *
1725 * Returns 0 on success, negative value on failure
1726 *
1727 * The open entry point is called when a network interface is made
1728 * active by the system (IFF_UP). At this point all resources needed
1729 * for transmit and receive operations are allocated, the interrupt
1730 * handler is registered with the OS, the watchdog timer is started,
1731 * and the stack is notified that the interface is ready.
1732 **/
1733static int igb_open(struct net_device *netdev)
1734{
1735 struct igb_adapter *adapter = netdev_priv(netdev);
1736 struct e1000_hw *hw = &adapter->hw;
1737 int err;
1738 int i;
1739
1740 /* disallow open during test */
1741 if (test_bit(__IGB_TESTING, &adapter->state))
1742 return -EBUSY;
1743
b168dfc5
JB
1744 netif_carrier_off(netdev);
1745
9d5c8243
AK
1746 /* allocate transmit descriptors */
1747 err = igb_setup_all_tx_resources(adapter);
1748 if (err)
1749 goto err_setup_tx;
1750
1751 /* allocate receive descriptors */
1752 err = igb_setup_all_rx_resources(adapter);
1753 if (err)
1754 goto err_setup_rx;
1755
1756 /* e1000_power_up_phy(adapter); */
1757
1758 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1759 if ((adapter->hw.mng_cookie.status &
1760 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1761 igb_update_mng_vlan(adapter);
1762
1763 /* before we allocate an interrupt, we must be ready to handle it.
1764 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1765 * as soon as we call pci_request_irq, so we have to setup our
1766 * clean_rx handler before we do so. */
1767 igb_configure(adapter);
1768
4ae196df 1769 igb_vmm_control(adapter);
e1739522
AD
1770 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1771 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1772
9d5c8243
AK
1773 err = igb_request_irq(adapter);
1774 if (err)
1775 goto err_req_irq;
1776
1777 /* From here on the code is the same as igb_up() */
1778 clear_bit(__IGB_DOWN, &adapter->state);
1779
844290e5
PW
1780 for (i = 0; i < adapter->num_rx_queues; i++)
1781 napi_enable(&adapter->rx_ring[i].napi);
9d5c8243
AK
1782
1783 /* Clear any pending interrupts. */
1784 rd32(E1000_ICR);
844290e5
PW
1785
1786 igb_irq_enable(adapter);
1787
d55b53ff
JK
1788 netif_tx_start_all_queues(netdev);
1789
9d5c8243
AK
1790 /* Fire a link status change interrupt to start the watchdog. */
1791 wr32(E1000_ICS, E1000_ICS_LSC);
1792
1793 return 0;
1794
1795err_req_irq:
1796 igb_release_hw_control(adapter);
1797 /* e1000_power_down_phy(adapter); */
1798 igb_free_all_rx_resources(adapter);
1799err_setup_rx:
1800 igb_free_all_tx_resources(adapter);
1801err_setup_tx:
1802 igb_reset(adapter);
1803
1804 return err;
1805}
1806
1807/**
1808 * igb_close - Disables a network interface
1809 * @netdev: network interface device structure
1810 *
1811 * Returns 0, this is not allowed to fail
1812 *
1813 * The close entry point is called when an interface is de-activated
1814 * by the OS. The hardware is still under the driver's control, but
1815 * needs to be disabled. A global MAC reset is issued to stop the
1816 * hardware, and all transmit and receive resources are freed.
1817 **/
1818static int igb_close(struct net_device *netdev)
1819{
1820 struct igb_adapter *adapter = netdev_priv(netdev);
1821
1822 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1823 igb_down(adapter);
1824
1825 igb_free_irq(adapter);
1826
1827 igb_free_all_tx_resources(adapter);
1828 igb_free_all_rx_resources(adapter);
1829
1830 /* kill manageability vlan ID if supported, but not if a vlan with
1831 * the same ID is registered on the host OS (let 8021q kill it) */
1832 if ((adapter->hw.mng_cookie.status &
1833 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1834 !(adapter->vlgrp &&
1835 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1836 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1837
1838 return 0;
1839}
1840
1841/**
1842 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1843 * @adapter: board private structure
1844 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1845 *
1846 * Return 0 on success, negative on failure
1847 **/
9d5c8243
AK
1848int igb_setup_tx_resources(struct igb_adapter *adapter,
1849 struct igb_ring *tx_ring)
1850{
1851 struct pci_dev *pdev = adapter->pdev;
1852 int size;
1853
1854 size = sizeof(struct igb_buffer) * tx_ring->count;
1855 tx_ring->buffer_info = vmalloc(size);
1856 if (!tx_ring->buffer_info)
1857 goto err;
1858 memset(tx_ring->buffer_info, 0, size);
1859
1860 /* round up to nearest 4K */
85e8d004 1861 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1862 tx_ring->size = ALIGN(tx_ring->size, 4096);
1863
1864 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1865 &tx_ring->dma);
1866
1867 if (!tx_ring->desc)
1868 goto err;
1869
1870 tx_ring->adapter = adapter;
1871 tx_ring->next_to_use = 0;
1872 tx_ring->next_to_clean = 0;
9d5c8243
AK
1873 return 0;
1874
1875err:
1876 vfree(tx_ring->buffer_info);
1877 dev_err(&adapter->pdev->dev,
1878 "Unable to allocate memory for the transmit descriptor ring\n");
1879 return -ENOMEM;
1880}
1881
1882/**
1883 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1884 * (Descriptors) for all queues
1885 * @adapter: board private structure
1886 *
1887 * Return 0 on success, negative on failure
1888 **/
1889static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1890{
1891 int i, err = 0;
661086df 1892 int r_idx;
9d5c8243
AK
1893
1894 for (i = 0; i < adapter->num_tx_queues; i++) {
1895 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1896 if (err) {
1897 dev_err(&adapter->pdev->dev,
1898 "Allocation for Tx Queue %u failed\n", i);
1899 for (i--; i >= 0; i--)
3b644cf6 1900 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1901 break;
1902 }
1903 }
1904
661086df
PWJ
1905 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1906 r_idx = i % adapter->num_tx_queues;
1907 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
eebbbdba 1908 }
9d5c8243
AK
1909 return err;
1910}
1911
1912/**
1913 * igb_configure_tx - Configure transmit Unit after Reset
1914 * @adapter: board private structure
1915 *
1916 * Configure the Tx unit of the MAC after a reset.
1917 **/
1918static void igb_configure_tx(struct igb_adapter *adapter)
1919{
0e014cb1 1920 u64 tdba;
9d5c8243
AK
1921 struct e1000_hw *hw = &adapter->hw;
1922 u32 tctl;
1923 u32 txdctl, txctrl;
26bc19ec 1924 int i, j;
9d5c8243
AK
1925
1926 for (i = 0; i < adapter->num_tx_queues; i++) {
73cd78f1 1927 struct igb_ring *ring = &adapter->tx_ring[i];
26bc19ec
AD
1928 j = ring->reg_idx;
1929 wr32(E1000_TDLEN(j),
85e8d004 1930 ring->count * sizeof(union e1000_adv_tx_desc));
9d5c8243 1931 tdba = ring->dma;
26bc19ec 1932 wr32(E1000_TDBAL(j),
73cd78f1 1933 tdba & 0x00000000ffffffffULL);
26bc19ec 1934 wr32(E1000_TDBAH(j), tdba >> 32);
9d5c8243 1935
26bc19ec
AD
1936 ring->head = E1000_TDH(j);
1937 ring->tail = E1000_TDT(j);
9d5c8243
AK
1938 writel(0, hw->hw_addr + ring->tail);
1939 writel(0, hw->hw_addr + ring->head);
26bc19ec 1940 txdctl = rd32(E1000_TXDCTL(j));
9d5c8243 1941 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
26bc19ec 1942 wr32(E1000_TXDCTL(j), txdctl);
9d5c8243
AK
1943
1944 /* Turn off Relaxed Ordering on head write-backs. The
1945 * writebacks MUST be delivered in order or it will
1946 * completely screw up our bookeeping.
1947 */
26bc19ec 1948 txctrl = rd32(E1000_DCA_TXCTRL(j));
9d5c8243 1949 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
26bc19ec 1950 wr32(E1000_DCA_TXCTRL(j), txctrl);
9d5c8243
AK
1951 }
1952
e1739522
AD
1953 /* disable queue 0 to prevent tail bump w/o re-configuration */
1954 if (adapter->vfs_allocated_count)
1955 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
1956
1957 /* Program the Transmit Control Register */
9d5c8243
AK
1958 tctl = rd32(E1000_TCTL);
1959 tctl &= ~E1000_TCTL_CT;
1960 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1961 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1962
1963 igb_config_collision_dist(hw);
1964
1965 /* Setup Transmit Descriptor Settings for eop descriptor */
1966 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1967
1968 /* Enable transmits */
1969 tctl |= E1000_TCTL_EN;
1970
1971 wr32(E1000_TCTL, tctl);
1972}
1973
1974/**
1975 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1976 * @adapter: board private structure
1977 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1978 *
1979 * Returns 0 on success, negative on failure
1980 **/
9d5c8243
AK
1981int igb_setup_rx_resources(struct igb_adapter *adapter,
1982 struct igb_ring *rx_ring)
1983{
1984 struct pci_dev *pdev = adapter->pdev;
1985 int size, desc_len;
1986
1987 size = sizeof(struct igb_buffer) * rx_ring->count;
1988 rx_ring->buffer_info = vmalloc(size);
1989 if (!rx_ring->buffer_info)
1990 goto err;
1991 memset(rx_ring->buffer_info, 0, size);
1992
1993 desc_len = sizeof(union e1000_adv_rx_desc);
1994
1995 /* Round up to nearest 4K */
1996 rx_ring->size = rx_ring->count * desc_len;
1997 rx_ring->size = ALIGN(rx_ring->size, 4096);
1998
1999 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2000 &rx_ring->dma);
2001
2002 if (!rx_ring->desc)
2003 goto err;
2004
2005 rx_ring->next_to_clean = 0;
2006 rx_ring->next_to_use = 0;
9d5c8243
AK
2007
2008 rx_ring->adapter = adapter;
9d5c8243
AK
2009
2010 return 0;
2011
2012err:
2013 vfree(rx_ring->buffer_info);
2014 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
2015 "the receive descriptor ring\n");
2016 return -ENOMEM;
2017}
2018
2019/**
2020 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2021 * (Descriptors) for all queues
2022 * @adapter: board private structure
2023 *
2024 * Return 0 on success, negative on failure
2025 **/
2026static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2027{
2028 int i, err = 0;
2029
2030 for (i = 0; i < adapter->num_rx_queues; i++) {
2031 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2032 if (err) {
2033 dev_err(&adapter->pdev->dev,
2034 "Allocation for Rx Queue %u failed\n", i);
2035 for (i--; i >= 0; i--)
3b644cf6 2036 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2037 break;
2038 }
2039 }
2040
2041 return err;
2042}
2043
2044/**
2045 * igb_setup_rctl - configure the receive control registers
2046 * @adapter: Board private structure
2047 **/
2048static void igb_setup_rctl(struct igb_adapter *adapter)
2049{
2050 struct e1000_hw *hw = &adapter->hw;
2051 u32 rctl;
2052 u32 srrctl = 0;
77a22941 2053 int i;
9d5c8243
AK
2054
2055 rctl = rd32(E1000_RCTL);
2056
2057 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2058 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2059
69d728ba 2060 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2061 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2062
87cb7e8c
AK
2063 /*
2064 * enable stripping of CRC. It's unlikely this will break BMC
2065 * redirection as it did with e1000. Newer features require
2066 * that the HW strips the CRC.
73cd78f1 2067 */
87cb7e8c 2068 rctl |= E1000_RCTL_SECRC;
9d5c8243 2069
9b07f3d3 2070 /*
ec54d7d6 2071 * disable store bad packets and clear size bits.
9b07f3d3 2072 */
ec54d7d6 2073 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2074
ec54d7d6 2075 /* enable LPE when to prevent packets larger than max_frame_size */
9b07f3d3 2076 rctl |= E1000_RCTL_LPE;
b4557be2
AD
2077
2078 /* Setup buffer sizes */
2079 switch (adapter->rx_buffer_len) {
2080 case IGB_RXBUFFER_256:
2081 rctl |= E1000_RCTL_SZ_256;
2082 break;
2083 case IGB_RXBUFFER_512:
2084 rctl |= E1000_RCTL_SZ_512;
2085 break;
2086 default:
2087 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2088 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2089 break;
9d5c8243
AK
2090 }
2091
2092 /* 82575 and greater support packet-split where the protocol
2093 * header is placed in skb->data and the packet data is
2094 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2095 * In the case of a non-split, skb->data is linearly filled,
2096 * followed by the page buffers. Therefore, skb->data is
2097 * sized to hold the largest protocol header.
2098 */
2099 /* allocations using alloc_page take too long for regular MTU
2100 * so only enable packet split for jumbo frames */
ec54d7d6 2101 if (adapter->netdev->mtu > ETH_DATA_LEN) {
9d5c8243 2102 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
bf36c1a0 2103 srrctl |= adapter->rx_ps_hdr_size <<
9d5c8243 2104 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
9d5c8243
AK
2105 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2106 } else {
2107 adapter->rx_ps_hdr_size = 0;
2108 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2109 }
2110
e1739522
AD
2111 /* Attention!!! For SR-IOV PF driver operations you must enable
2112 * queue drop for all VF and PF queues to prevent head of line blocking
2113 * if an un-trusted VF does not provide descriptors to hardware.
2114 */
2115 if (adapter->vfs_allocated_count) {
2116 u32 vmolr;
2117
e1739522
AD
2118 /* set all queue drop enable bits */
2119 wr32(E1000_QDE, ALL_QUEUES);
2120 srrctl |= E1000_SRRCTL_DROP_EN;
2121
2122 /* disable queue 0 to prevent tail write w/o re-config */
2123 wr32(E1000_RXDCTL(0), 0);
2124
77a22941 2125 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
e1739522
AD
2126 if (rctl & E1000_RCTL_LPE)
2127 vmolr |= E1000_VMOLR_LPE;
77a22941 2128 if (adapter->num_rx_queues > 1)
e1739522 2129 vmolr |= E1000_VMOLR_RSSE;
77a22941 2130 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
e1739522
AD
2131 }
2132
26bc19ec 2133 for (i = 0; i < adapter->num_rx_queues; i++) {
77a22941 2134 int j = adapter->rx_ring[i].reg_idx;
26bc19ec
AD
2135 wr32(E1000_SRRCTL(j), srrctl);
2136 }
9d5c8243
AK
2137
2138 wr32(E1000_RCTL, rctl);
2139}
2140
e1739522
AD
2141/**
2142 * igb_rlpml_set - set maximum receive packet size
2143 * @adapter: board private structure
2144 *
2145 * Configure maximum receivable packet size.
2146 **/
2147static void igb_rlpml_set(struct igb_adapter *adapter)
2148{
2149 u32 max_frame_size = adapter->max_frame_size;
2150 struct e1000_hw *hw = &adapter->hw;
2151 u16 pf_id = adapter->vfs_allocated_count;
2152
2153 if (adapter->vlgrp)
2154 max_frame_size += VLAN_TAG_SIZE;
2155
2156 /* if vfs are enabled we set RLPML to the largest possible request
2157 * size and set the VMOLR RLPML to the size we need */
2158 if (pf_id) {
2159 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2160 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2161 }
2162
2163 wr32(E1000_RLPML, max_frame_size);
2164}
2165
2166/**
2167 * igb_configure_vt_default_pool - Configure VT default pool
2168 * @adapter: board private structure
2169 *
2170 * Configure the default pool
2171 **/
2172static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2173{
2174 struct e1000_hw *hw = &adapter->hw;
2175 u16 pf_id = adapter->vfs_allocated_count;
2176 u32 vtctl;
2177
2178 /* not in sr-iov mode - do nothing */
2179 if (!pf_id)
2180 return;
2181
2182 vtctl = rd32(E1000_VT_CTL);
2183 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2184 E1000_VT_CTL_DISABLE_DEF_POOL);
2185 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2186 wr32(E1000_VT_CTL, vtctl);
2187}
2188
9d5c8243
AK
2189/**
2190 * igb_configure_rx - Configure receive Unit after Reset
2191 * @adapter: board private structure
2192 *
2193 * Configure the Rx unit of the MAC after a reset.
2194 **/
2195static void igb_configure_rx(struct igb_adapter *adapter)
2196{
2197 u64 rdba;
2198 struct e1000_hw *hw = &adapter->hw;
2199 u32 rctl, rxcsum;
2200 u32 rxdctl;
9107584e 2201 int i;
9d5c8243
AK
2202
2203 /* disable receives while setting up the descriptors */
2204 rctl = rd32(E1000_RCTL);
2205 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2206 wrfl();
2207 mdelay(10);
2208
2209 if (adapter->itr_setting > 3)
6eb5a7f1 2210 wr32(E1000_ITR, adapter->itr);
9d5c8243
AK
2211
2212 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2213 * the Base and Length of the Rx Descriptor Ring */
2214 for (i = 0; i < adapter->num_rx_queues; i++) {
73cd78f1 2215 struct igb_ring *ring = &adapter->rx_ring[i];
9107584e 2216 int j = ring->reg_idx;
9d5c8243 2217 rdba = ring->dma;
26bc19ec 2218 wr32(E1000_RDBAL(j),
73cd78f1 2219 rdba & 0x00000000ffffffffULL);
26bc19ec
AD
2220 wr32(E1000_RDBAH(j), rdba >> 32);
2221 wr32(E1000_RDLEN(j),
73cd78f1 2222 ring->count * sizeof(union e1000_adv_rx_desc));
9d5c8243 2223
26bc19ec
AD
2224 ring->head = E1000_RDH(j);
2225 ring->tail = E1000_RDT(j);
9d5c8243
AK
2226 writel(0, hw->hw_addr + ring->tail);
2227 writel(0, hw->hw_addr + ring->head);
2228
26bc19ec 2229 rxdctl = rd32(E1000_RXDCTL(j));
9d5c8243
AK
2230 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2231 rxdctl &= 0xFFF00000;
2232 rxdctl |= IGB_RX_PTHRESH;
2233 rxdctl |= IGB_RX_HTHRESH << 8;
2234 rxdctl |= IGB_RX_WTHRESH << 16;
26bc19ec 2235 wr32(E1000_RXDCTL(j), rxdctl);
9d5c8243
AK
2236 }
2237
2238 if (adapter->num_rx_queues > 1) {
2239 u32 random[10];
2240 u32 mrqc;
2241 u32 j, shift;
2242 union e1000_reta {
2243 u32 dword;
2244 u8 bytes[4];
2245 } reta;
2246
2247 get_random_bytes(&random[0], 40);
2248
2d064c06
AD
2249 if (hw->mac.type >= e1000_82576)
2250 shift = 0;
2251 else
2252 shift = 6;
9d5c8243
AK
2253 for (j = 0; j < (32 * 4); j++) {
2254 reta.bytes[j & 3] =
26bc19ec 2255 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
9d5c8243
AK
2256 if ((j & 3) == 3)
2257 writel(reta.dword,
2258 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2259 }
e1739522
AD
2260 if (adapter->vfs_allocated_count)
2261 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2262 else
2263 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
9d5c8243
AK
2264
2265 /* Fill out hash function seeds */
2266 for (j = 0; j < 10; j++)
2267 array_wr32(E1000_RSSRK(0), j, random[j]);
2268
2269 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2270 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2271 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2272 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2273 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2274 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2275 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2276 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2277
9d5c8243 2278 wr32(E1000_MRQC, mrqc);
2844f797 2279 } else if (adapter->vfs_allocated_count) {
e1739522 2280 /* Enable multi-queue for sr-iov */
2844f797 2281 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
9d5c8243
AK
2282 }
2283
2844f797
AD
2284 /* Enable Receive Checksum Offload for TCP and UDP */
2285 rxcsum = rd32(E1000_RXCSUM);
2286 /* Disable raw packet checksumming */
2287 rxcsum |= E1000_RXCSUM_PCSD;
7beb0146
AD
2288
2289 if (adapter->hw.mac.type == e1000_82576)
b9473560
JB
2290 /* Enable Receive Checksum Offload for SCTP */
2291 rxcsum |= E1000_RXCSUM_CRCOFL;
2292
7beb0146 2293 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2844f797
AD
2294 wr32(E1000_RXCSUM, rxcsum);
2295
e1739522
AD
2296 /* Set the default pool for the PF's first queue */
2297 igb_configure_vt_default_pool(adapter);
2298
2299 igb_rlpml_set(adapter);
9d5c8243
AK
2300
2301 /* Enable Receives */
2302 wr32(E1000_RCTL, rctl);
2303}
2304
2305/**
2306 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2307 * @tx_ring: Tx descriptor ring for a specific queue
2308 *
2309 * Free all transmit software resources
2310 **/
68fd9910 2311void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2312{
3b644cf6 2313 struct pci_dev *pdev = tx_ring->adapter->pdev;
9d5c8243 2314
3b644cf6 2315 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2316
2317 vfree(tx_ring->buffer_info);
2318 tx_ring->buffer_info = NULL;
2319
2320 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2321
2322 tx_ring->desc = NULL;
2323}
2324
2325/**
2326 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2327 * @adapter: board private structure
2328 *
2329 * Free all transmit software resources
2330 **/
2331static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2332{
2333 int i;
2334
2335 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2336 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2337}
2338
2339static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2340 struct igb_buffer *buffer_info)
2341{
65689fef 2342 buffer_info->dma = 0;
9d5c8243 2343 if (buffer_info->skb) {
65689fef
AD
2344 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2345 DMA_TO_DEVICE);
9d5c8243
AK
2346 dev_kfree_skb_any(buffer_info->skb);
2347 buffer_info->skb = NULL;
2348 }
2349 buffer_info->time_stamp = 0;
2350 /* buffer_info must be completely set up in the transmit path */
2351}
2352
2353/**
2354 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2355 * @tx_ring: ring to be cleaned
2356 **/
3b644cf6 2357static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 2358{
3b644cf6 2359 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243
AK
2360 struct igb_buffer *buffer_info;
2361 unsigned long size;
2362 unsigned int i;
2363
2364 if (!tx_ring->buffer_info)
2365 return;
2366 /* Free all the Tx ring sk_buffs */
2367
2368 for (i = 0; i < tx_ring->count; i++) {
2369 buffer_info = &tx_ring->buffer_info[i];
2370 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2371 }
2372
2373 size = sizeof(struct igb_buffer) * tx_ring->count;
2374 memset(tx_ring->buffer_info, 0, size);
2375
2376 /* Zero out the descriptor ring */
2377
2378 memset(tx_ring->desc, 0, tx_ring->size);
2379
2380 tx_ring->next_to_use = 0;
2381 tx_ring->next_to_clean = 0;
2382
2383 writel(0, adapter->hw.hw_addr + tx_ring->head);
2384 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2385}
2386
2387/**
2388 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2389 * @adapter: board private structure
2390 **/
2391static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2392{
2393 int i;
2394
2395 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2396 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2397}
2398
2399/**
2400 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2401 * @rx_ring: ring to clean the resources from
2402 *
2403 * Free all receive software resources
2404 **/
68fd9910 2405void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2406{
3b644cf6 2407 struct pci_dev *pdev = rx_ring->adapter->pdev;
9d5c8243 2408
3b644cf6 2409 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2410
2411 vfree(rx_ring->buffer_info);
2412 rx_ring->buffer_info = NULL;
2413
2414 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2415
2416 rx_ring->desc = NULL;
2417}
2418
2419/**
2420 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2421 * @adapter: board private structure
2422 *
2423 * Free all receive software resources
2424 **/
2425static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2426{
2427 int i;
2428
2429 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2430 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2431}
2432
2433/**
2434 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2435 * @rx_ring: ring to free buffers from
2436 **/
3b644cf6 2437static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 2438{
3b644cf6 2439 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
2440 struct igb_buffer *buffer_info;
2441 struct pci_dev *pdev = adapter->pdev;
2442 unsigned long size;
2443 unsigned int i;
2444
2445 if (!rx_ring->buffer_info)
2446 return;
2447 /* Free all the Rx ring sk_buffs */
2448 for (i = 0; i < rx_ring->count; i++) {
2449 buffer_info = &rx_ring->buffer_info[i];
2450 if (buffer_info->dma) {
2451 if (adapter->rx_ps_hdr_size)
2452 pci_unmap_single(pdev, buffer_info->dma,
2453 adapter->rx_ps_hdr_size,
2454 PCI_DMA_FROMDEVICE);
2455 else
2456 pci_unmap_single(pdev, buffer_info->dma,
2457 adapter->rx_buffer_len,
2458 PCI_DMA_FROMDEVICE);
2459 buffer_info->dma = 0;
2460 }
2461
2462 if (buffer_info->skb) {
2463 dev_kfree_skb(buffer_info->skb);
2464 buffer_info->skb = NULL;
2465 }
2466 if (buffer_info->page) {
bf36c1a0
AD
2467 if (buffer_info->page_dma)
2468 pci_unmap_page(pdev, buffer_info->page_dma,
2469 PAGE_SIZE / 2,
2470 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2471 put_page(buffer_info->page);
2472 buffer_info->page = NULL;
2473 buffer_info->page_dma = 0;
bf36c1a0 2474 buffer_info->page_offset = 0;
9d5c8243
AK
2475 }
2476 }
2477
9d5c8243
AK
2478 size = sizeof(struct igb_buffer) * rx_ring->count;
2479 memset(rx_ring->buffer_info, 0, size);
2480
2481 /* Zero out the descriptor ring */
2482 memset(rx_ring->desc, 0, rx_ring->size);
2483
2484 rx_ring->next_to_clean = 0;
2485 rx_ring->next_to_use = 0;
2486
2487 writel(0, adapter->hw.hw_addr + rx_ring->head);
2488 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2489}
2490
2491/**
2492 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2493 * @adapter: board private structure
2494 **/
2495static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2496{
2497 int i;
2498
2499 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2500 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2501}
2502
2503/**
2504 * igb_set_mac - Change the Ethernet Address of the NIC
2505 * @netdev: network interface device structure
2506 * @p: pointer to an address structure
2507 *
2508 * Returns 0 on success, negative on failure
2509 **/
2510static int igb_set_mac(struct net_device *netdev, void *p)
2511{
2512 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2513 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2514 struct sockaddr *addr = p;
2515
2516 if (!is_valid_ether_addr(addr->sa_data))
2517 return -EADDRNOTAVAIL;
2518
2519 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2520 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2521
28b0759c 2522 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
9d5c8243 2523
e1739522
AD
2524 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2525
9d5c8243
AK
2526 return 0;
2527}
2528
2529/**
2530 * igb_set_multi - Multicast and Promiscuous mode set
2531 * @netdev: network interface device structure
2532 *
2533 * The set_multi entry point is called whenever the multicast address
2534 * list or the network interface flags are updated. This routine is
2535 * responsible for configuring the hardware for proper multicast,
2536 * promiscuous mode, and all-multi behavior.
2537 **/
2538static void igb_set_multi(struct net_device *netdev)
2539{
2540 struct igb_adapter *adapter = netdev_priv(netdev);
2541 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2542 struct dev_mc_list *mc_ptr;
c5cd11e3 2543 u8 *mta_list = NULL;
9d5c8243
AK
2544 u32 rctl;
2545 int i;
2546
2547 /* Check for Promiscuous and All Multicast modes */
2548
2549 rctl = rd32(E1000_RCTL);
2550
746b9f02 2551 if (netdev->flags & IFF_PROMISC) {
9d5c8243 2552 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02
PM
2553 rctl &= ~E1000_RCTL_VFE;
2554 } else {
2555 if (netdev->flags & IFF_ALLMULTI) {
2556 rctl |= E1000_RCTL_MPE;
2557 rctl &= ~E1000_RCTL_UPE;
2558 } else
2559 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
78ed11a5 2560 rctl |= E1000_RCTL_VFE;
746b9f02 2561 }
9d5c8243
AK
2562 wr32(E1000_RCTL, rctl);
2563
28fc06f5
AD
2564 if (!netdev->mc_count) {
2565 /* nothing to program, so clear mc list */
2566 igb_update_mc_addr_list(hw, NULL, 0);
2567 igb_restore_vf_multicasts(adapter);
2568 return;
2569 }
2570
2571 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2572 if (!mta_list) {
2573 dev_err(&adapter->pdev->dev,
2574 "failed to allocate multicast filter list\n");
2575 return;
9d5c8243
AK
2576 }
2577
9d5c8243
AK
2578 /* The shared function expects a packed array of only addresses. */
2579 mc_ptr = netdev->mc_list;
2580
2581 for (i = 0; i < netdev->mc_count; i++) {
2582 if (!mc_ptr)
2583 break;
2584 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2585 mc_ptr = mc_ptr->next;
2586 }
28fc06f5 2587 igb_update_mc_addr_list(hw, mta_list, i);
9d5c8243 2588 kfree(mta_list);
28fc06f5 2589 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
2590}
2591
2592/* Need to wait a few seconds after link up to get diagnostic information from
2593 * the phy */
2594static void igb_update_phy_info(unsigned long data)
2595{
2596 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 2597 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
2598}
2599
4d6b725e
AD
2600/**
2601 * igb_has_link - check shared code for link and determine up/down
2602 * @adapter: pointer to driver private info
2603 **/
2604static bool igb_has_link(struct igb_adapter *adapter)
2605{
2606 struct e1000_hw *hw = &adapter->hw;
2607 bool link_active = false;
2608 s32 ret_val = 0;
2609
2610 /* get_link_status is set on LSC (link status) interrupt or
2611 * rx sequence error interrupt. get_link_status will stay
2612 * false until the e1000_check_for_link establishes link
2613 * for copper adapters ONLY
2614 */
2615 switch (hw->phy.media_type) {
2616 case e1000_media_type_copper:
2617 if (hw->mac.get_link_status) {
2618 ret_val = hw->mac.ops.check_for_link(hw);
2619 link_active = !hw->mac.get_link_status;
2620 } else {
2621 link_active = true;
2622 }
2623 break;
4d6b725e
AD
2624 case e1000_media_type_internal_serdes:
2625 ret_val = hw->mac.ops.check_for_link(hw);
2626 link_active = hw->mac.serdes_has_link;
2627 break;
2628 default:
2629 case e1000_media_type_unknown:
2630 break;
2631 }
2632
2633 return link_active;
2634}
2635
9d5c8243
AK
2636/**
2637 * igb_watchdog - Timer Call-back
2638 * @data: pointer to adapter cast into an unsigned long
2639 **/
2640static void igb_watchdog(unsigned long data)
2641{
2642 struct igb_adapter *adapter = (struct igb_adapter *)data;
2643 /* Do the rest outside of interrupt context */
2644 schedule_work(&adapter->watchdog_task);
2645}
2646
2647static void igb_watchdog_task(struct work_struct *work)
2648{
2649 struct igb_adapter *adapter = container_of(work,
2650 struct igb_adapter, watchdog_task);
2651 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2652 struct net_device *netdev = adapter->netdev;
2653 struct igb_ring *tx_ring = adapter->tx_ring;
9d5c8243 2654 u32 link;
7a6ea550 2655 u32 eics = 0;
7a6ea550 2656 int i;
9d5c8243 2657
4d6b725e
AD
2658 link = igb_has_link(adapter);
2659 if ((netif_carrier_ok(netdev)) && link)
9d5c8243
AK
2660 goto link_up;
2661
9d5c8243
AK
2662 if (link) {
2663 if (!netif_carrier_ok(netdev)) {
2664 u32 ctrl;
2665 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2666 &adapter->link_speed,
2667 &adapter->link_duplex);
2668
2669 ctrl = rd32(E1000_CTRL);
527d47c1
AD
2670 /* Links status message must follow this format */
2671 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 2672 "Flow Control: %s\n",
527d47c1 2673 netdev->name,
9d5c8243
AK
2674 adapter->link_speed,
2675 adapter->link_duplex == FULL_DUPLEX ?
2676 "Full Duplex" : "Half Duplex",
2677 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2678 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2679 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2680 E1000_CTRL_TFCE) ? "TX" : "None")));
2681
2682 /* tweak tx_queue_len according to speed/duplex and
2683 * adjust the timeout factor */
2684 netdev->tx_queue_len = adapter->tx_queue_len;
2685 adapter->tx_timeout_factor = 1;
2686 switch (adapter->link_speed) {
2687 case SPEED_10:
2688 netdev->tx_queue_len = 10;
2689 adapter->tx_timeout_factor = 14;
2690 break;
2691 case SPEED_100:
2692 netdev->tx_queue_len = 100;
2693 /* maybe add some timeout factor ? */
2694 break;
2695 }
2696
2697 netif_carrier_on(netdev);
9d5c8243 2698
4ae196df
AD
2699 igb_ping_all_vfs(adapter);
2700
4b1a9877 2701 /* link state has changed, schedule phy info update */
9d5c8243
AK
2702 if (!test_bit(__IGB_DOWN, &adapter->state))
2703 mod_timer(&adapter->phy_info_timer,
2704 round_jiffies(jiffies + 2 * HZ));
2705 }
2706 } else {
2707 if (netif_carrier_ok(netdev)) {
2708 adapter->link_speed = 0;
2709 adapter->link_duplex = 0;
527d47c1
AD
2710 /* Links status message must follow this format */
2711 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2712 netdev->name);
9d5c8243 2713 netif_carrier_off(netdev);
4b1a9877 2714
4ae196df
AD
2715 igb_ping_all_vfs(adapter);
2716
4b1a9877 2717 /* link state has changed, schedule phy info update */
9d5c8243
AK
2718 if (!test_bit(__IGB_DOWN, &adapter->state))
2719 mod_timer(&adapter->phy_info_timer,
2720 round_jiffies(jiffies + 2 * HZ));
2721 }
2722 }
2723
2724link_up:
2725 igb_update_stats(adapter);
2726
4b1a9877 2727 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
9d5c8243 2728 adapter->tpt_old = adapter->stats.tpt;
4b1a9877 2729 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
9d5c8243
AK
2730 adapter->colc_old = adapter->stats.colc;
2731
2732 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2733 adapter->gorc_old = adapter->stats.gorc;
2734 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2735 adapter->gotc_old = adapter->stats.gotc;
2736
2737 igb_update_adaptive(&adapter->hw);
2738
2739 if (!netif_carrier_ok(netdev)) {
c493ea45 2740 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
9d5c8243
AK
2741 /* We've lost link, so the controller stops DMA,
2742 * but we've got queued Tx work that's never going
2743 * to get done, so reset controller to flush Tx.
2744 * (Do the reset outside of interrupt context). */
2745 adapter->tx_timeout_count++;
2746 schedule_work(&adapter->reset_task);
c2d5ab49
JB
2747 /* return immediately since reset is imminent */
2748 return;
9d5c8243
AK
2749 }
2750 }
2751
2752 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550
AD
2753 if (adapter->msix_entries) {
2754 for (i = 0; i < adapter->num_rx_queues; i++)
2755 eics |= adapter->rx_ring[i].eims_value;
2756 wr32(E1000_EICS, eics);
2757 } else {
2758 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2759 }
9d5c8243
AK
2760
2761 /* Force detection of hung controller every watchdog period */
2762 tx_ring->detect_tx_hung = true;
2763
2764 /* Reset the timer */
2765 if (!test_bit(__IGB_DOWN, &adapter->state))
2766 mod_timer(&adapter->watchdog_timer,
2767 round_jiffies(jiffies + 2 * HZ));
2768}
2769
2770enum latency_range {
2771 lowest_latency = 0,
2772 low_latency = 1,
2773 bulk_latency = 2,
2774 latency_invalid = 255
2775};
2776
2777
6eb5a7f1
AD
2778/**
2779 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2780 *
2781 * Stores a new ITR value based on strictly on packet size. This
2782 * algorithm is less sophisticated than that used in igb_update_itr,
2783 * due to the difficulty of synchronizing statistics across multiple
2784 * receive rings. The divisors and thresholds used by this fuction
2785 * were determined based on theoretical maximum wire speed and testing
2786 * data, in order to minimize response time while increasing bulk
2787 * throughput.
2788 * This functionality is controlled by the InterruptThrottleRate module
2789 * parameter (see igb_param.c)
2790 * NOTE: This function is called only when operating in a multiqueue
2791 * receive environment.
2792 * @rx_ring: pointer to ring
2793 **/
2794static void igb_update_ring_itr(struct igb_ring *rx_ring)
9d5c8243 2795{
6eb5a7f1
AD
2796 int new_val = rx_ring->itr_val;
2797 int avg_wire_size = 0;
2798 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 2799
6eb5a7f1
AD
2800 if (!rx_ring->total_packets)
2801 goto clear_counts; /* no packets, so don't do anything */
9d5c8243 2802
6eb5a7f1
AD
2803 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2804 * ints/sec - ITR timer value of 120 ticks.
2805 */
2806 if (adapter->link_speed != SPEED_1000) {
2807 new_val = 120;
2808 goto set_itr_val;
9d5c8243 2809 }
6eb5a7f1 2810 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
9d5c8243 2811
6eb5a7f1
AD
2812 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2813 avg_wire_size += 24;
2814
2815 /* Don't starve jumbo frames */
2816 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 2817
6eb5a7f1
AD
2818 /* Give a little boost to mid-size frames */
2819 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2820 new_val = avg_wire_size / 3;
2821 else
2822 new_val = avg_wire_size / 2;
9d5c8243 2823
6eb5a7f1 2824set_itr_val:
9d5c8243
AK
2825 if (new_val != rx_ring->itr_val) {
2826 rx_ring->itr_val = new_val;
6eb5a7f1 2827 rx_ring->set_itr = 1;
9d5c8243 2828 }
6eb5a7f1
AD
2829clear_counts:
2830 rx_ring->total_bytes = 0;
2831 rx_ring->total_packets = 0;
9d5c8243
AK
2832}
2833
2834/**
2835 * igb_update_itr - update the dynamic ITR value based on statistics
2836 * Stores a new ITR value based on packets and byte
2837 * counts during the last interrupt. The advantage of per interrupt
2838 * computation is faster updates and more accurate ITR for the current
2839 * traffic pattern. Constants in this function were computed
2840 * based on theoretical maximum wire speed and thresholds were set based
2841 * on testing data as well as attempting to minimize response time
2842 * while increasing bulk throughput.
2843 * this functionality is controlled by the InterruptThrottleRate module
2844 * parameter (see igb_param.c)
2845 * NOTE: These calculations are only valid when operating in a single-
2846 * queue environment.
2847 * @adapter: pointer to adapter
2848 * @itr_setting: current adapter->itr
2849 * @packets: the number of packets during this measurement interval
2850 * @bytes: the number of bytes during this measurement interval
2851 **/
2852static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2853 int packets, int bytes)
2854{
2855 unsigned int retval = itr_setting;
2856
2857 if (packets == 0)
2858 goto update_itr_done;
2859
2860 switch (itr_setting) {
2861 case lowest_latency:
2862 /* handle TSO and jumbo frames */
2863 if (bytes/packets > 8000)
2864 retval = bulk_latency;
2865 else if ((packets < 5) && (bytes > 512))
2866 retval = low_latency;
2867 break;
2868 case low_latency: /* 50 usec aka 20000 ints/s */
2869 if (bytes > 10000) {
2870 /* this if handles the TSO accounting */
2871 if (bytes/packets > 8000) {
2872 retval = bulk_latency;
2873 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2874 retval = bulk_latency;
2875 } else if ((packets > 35)) {
2876 retval = lowest_latency;
2877 }
2878 } else if (bytes/packets > 2000) {
2879 retval = bulk_latency;
2880 } else if (packets <= 2 && bytes < 512) {
2881 retval = lowest_latency;
2882 }
2883 break;
2884 case bulk_latency: /* 250 usec aka 4000 ints/s */
2885 if (bytes > 25000) {
2886 if (packets > 35)
2887 retval = low_latency;
1e5c3d21 2888 } else if (bytes < 1500) {
9d5c8243
AK
2889 retval = low_latency;
2890 }
2891 break;
2892 }
2893
2894update_itr_done:
2895 return retval;
2896}
2897
6eb5a7f1 2898static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243
AK
2899{
2900 u16 current_itr;
2901 u32 new_itr = adapter->itr;
2902
2903 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2904 if (adapter->link_speed != SPEED_1000) {
2905 current_itr = 0;
2906 new_itr = 4000;
2907 goto set_itr_now;
2908 }
2909
2910 adapter->rx_itr = igb_update_itr(adapter,
2911 adapter->rx_itr,
2912 adapter->rx_ring->total_packets,
2913 adapter->rx_ring->total_bytes);
9d5c8243 2914
6eb5a7f1 2915 if (adapter->rx_ring->buddy) {
9d5c8243
AK
2916 adapter->tx_itr = igb_update_itr(adapter,
2917 adapter->tx_itr,
2918 adapter->tx_ring->total_packets,
2919 adapter->tx_ring->total_bytes);
9d5c8243
AK
2920 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2921 } else {
2922 current_itr = adapter->rx_itr;
2923 }
2924
6eb5a7f1 2925 /* conservative mode (itr 3) eliminates the lowest_latency setting */
73cd78f1 2926 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
2927 current_itr = low_latency;
2928
9d5c8243
AK
2929 switch (current_itr) {
2930 /* counts and packets in update_itr are dependent on these numbers */
2931 case lowest_latency:
78b1f607 2932 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
2933 break;
2934 case low_latency:
78b1f607 2935 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
2936 break;
2937 case bulk_latency:
78b1f607 2938 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
2939 break;
2940 default:
2941 break;
2942 }
2943
2944set_itr_now:
6eb5a7f1
AD
2945 adapter->rx_ring->total_bytes = 0;
2946 adapter->rx_ring->total_packets = 0;
2947 if (adapter->rx_ring->buddy) {
2948 adapter->rx_ring->buddy->total_bytes = 0;
2949 adapter->rx_ring->buddy->total_packets = 0;
2950 }
2951
9d5c8243
AK
2952 if (new_itr != adapter->itr) {
2953 /* this attempts to bias the interrupt rate towards Bulk
2954 * by adding intermediate steps when interrupt rate is
2955 * increasing */
2956 new_itr = new_itr > adapter->itr ?
78b1f607
AD
2957 max((new_itr * adapter->itr) /
2958 (new_itr + (adapter->itr >> 2)), new_itr) :
9d5c8243
AK
2959 new_itr;
2960 /* Don't write the value here; it resets the adapter's
2961 * internal timer, and causes us to delay far longer than
2962 * we should between interrupts. Instead, we write the ITR
2963 * value at the beginning of the next interrupt so the timing
2964 * ends up being correct.
2965 */
2966 adapter->itr = new_itr;
78b1f607 2967 adapter->rx_ring->itr_val = new_itr;
6eb5a7f1 2968 adapter->rx_ring->set_itr = 1;
9d5c8243
AK
2969 }
2970
2971 return;
2972}
2973
2974
2975#define IGB_TX_FLAGS_CSUM 0x00000001
2976#define IGB_TX_FLAGS_VLAN 0x00000002
2977#define IGB_TX_FLAGS_TSO 0x00000004
2978#define IGB_TX_FLAGS_IPV4 0x00000008
33af6bcc 2979#define IGB_TX_FLAGS_TSTAMP 0x00000010
9d5c8243
AK
2980#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2981#define IGB_TX_FLAGS_VLAN_SHIFT 16
2982
2983static inline int igb_tso_adv(struct igb_adapter *adapter,
2984 struct igb_ring *tx_ring,
2985 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2986{
2987 struct e1000_adv_tx_context_desc *context_desc;
2988 unsigned int i;
2989 int err;
2990 struct igb_buffer *buffer_info;
2991 u32 info = 0, tu_cmd = 0;
2992 u32 mss_l4len_idx, l4len;
2993 *hdr_len = 0;
2994
2995 if (skb_header_cloned(skb)) {
2996 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2997 if (err)
2998 return err;
2999 }
3000
3001 l4len = tcp_hdrlen(skb);
3002 *hdr_len += l4len;
3003
3004 if (skb->protocol == htons(ETH_P_IP)) {
3005 struct iphdr *iph = ip_hdr(skb);
3006 iph->tot_len = 0;
3007 iph->check = 0;
3008 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3009 iph->daddr, 0,
3010 IPPROTO_TCP,
3011 0);
3012 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3013 ipv6_hdr(skb)->payload_len = 0;
3014 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3015 &ipv6_hdr(skb)->daddr,
3016 0, IPPROTO_TCP, 0);
3017 }
3018
3019 i = tx_ring->next_to_use;
3020
3021 buffer_info = &tx_ring->buffer_info[i];
3022 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3023 /* VLAN MACLEN IPLEN */
3024 if (tx_flags & IGB_TX_FLAGS_VLAN)
3025 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3026 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3027 *hdr_len += skb_network_offset(skb);
3028 info |= skb_network_header_len(skb);
3029 *hdr_len += skb_network_header_len(skb);
3030 context_desc->vlan_macip_lens = cpu_to_le32(info);
3031
3032 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3033 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3034
3035 if (skb->protocol == htons(ETH_P_IP))
3036 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3037 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3038
3039 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3040
3041 /* MSS L4LEN IDX */
3042 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3043 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3044
73cd78f1 3045 /* For 82575, context index must be unique per ring. */
7dfc16fa
AD
3046 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3047 mss_l4len_idx |= tx_ring->queue_index << 4;
9d5c8243
AK
3048
3049 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3050 context_desc->seqnum_seed = 0;
3051
3052 buffer_info->time_stamp = jiffies;
0e014cb1 3053 buffer_info->next_to_watch = i;
9d5c8243
AK
3054 buffer_info->dma = 0;
3055 i++;
3056 if (i == tx_ring->count)
3057 i = 0;
3058
3059 tx_ring->next_to_use = i;
3060
3061 return true;
3062}
3063
3064static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3065 struct igb_ring *tx_ring,
3066 struct sk_buff *skb, u32 tx_flags)
3067{
3068 struct e1000_adv_tx_context_desc *context_desc;
3069 unsigned int i;
3070 struct igb_buffer *buffer_info;
3071 u32 info = 0, tu_cmd = 0;
3072
3073 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3074 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3075 i = tx_ring->next_to_use;
3076 buffer_info = &tx_ring->buffer_info[i];
3077 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3078
3079 if (tx_flags & IGB_TX_FLAGS_VLAN)
3080 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3081 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3082 if (skb->ip_summed == CHECKSUM_PARTIAL)
3083 info |= skb_network_header_len(skb);
3084
3085 context_desc->vlan_macip_lens = cpu_to_le32(info);
3086
3087 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3088
3089 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3090 __be16 protocol;
3091
3092 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3093 const struct vlan_ethhdr *vhdr =
3094 (const struct vlan_ethhdr*)skb->data;
3095
3096 protocol = vhdr->h_vlan_encapsulated_proto;
3097 } else {
3098 protocol = skb->protocol;
3099 }
3100
3101 switch (protocol) {
09640e63 3102 case cpu_to_be16(ETH_P_IP):
9d5c8243 3103 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3104 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3105 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3106 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3107 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3108 break;
09640e63 3109 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3110 /* XXX what about other V6 headers?? */
3111 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3112 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3113 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3114 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3115 break;
3116 default:
3117 if (unlikely(net_ratelimit()))
3118 dev_warn(&adapter->pdev->dev,
3119 "partial checksum but proto=%x!\n",
3120 skb->protocol);
3121 break;
3122 }
9d5c8243
AK
3123 }
3124
3125 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3126 context_desc->seqnum_seed = 0;
7dfc16fa
AD
3127 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3128 context_desc->mss_l4len_idx =
3129 cpu_to_le32(tx_ring->queue_index << 4);
265de409
AD
3130 else
3131 context_desc->mss_l4len_idx = 0;
9d5c8243
AK
3132
3133 buffer_info->time_stamp = jiffies;
0e014cb1 3134 buffer_info->next_to_watch = i;
9d5c8243
AK
3135 buffer_info->dma = 0;
3136
3137 i++;
3138 if (i == tx_ring->count)
3139 i = 0;
3140 tx_ring->next_to_use = i;
3141
3142 return true;
3143 }
9d5c8243
AK
3144 return false;
3145}
3146
3147#define IGB_MAX_TXD_PWR 16
3148#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3149
3150static inline int igb_tx_map_adv(struct igb_adapter *adapter,
0e014cb1
AD
3151 struct igb_ring *tx_ring, struct sk_buff *skb,
3152 unsigned int first)
9d5c8243
AK
3153{
3154 struct igb_buffer *buffer_info;
3155 unsigned int len = skb_headlen(skb);
3156 unsigned int count = 0, i;
3157 unsigned int f;
65689fef 3158 dma_addr_t *map;
9d5c8243
AK
3159
3160 i = tx_ring->next_to_use;
3161
65689fef
AD
3162 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3163 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3164 return 0;
3165 }
3166
3167 map = skb_shinfo(skb)->dma_maps;
3168
9d5c8243
AK
3169 buffer_info = &tx_ring->buffer_info[i];
3170 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3171 buffer_info->length = len;
3172 /* set time_stamp *before* dma to help avoid a possible race */
3173 buffer_info->time_stamp = jiffies;
0e014cb1 3174 buffer_info->next_to_watch = i;
042a53a9 3175 buffer_info->dma = skb_shinfo(skb)->dma_head;
9d5c8243
AK
3176
3177 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3178 struct skb_frag_struct *frag;
3179
65689fef
AD
3180 i++;
3181 if (i == tx_ring->count)
3182 i = 0;
3183
9d5c8243
AK
3184 frag = &skb_shinfo(skb)->frags[f];
3185 len = frag->size;
3186
3187 buffer_info = &tx_ring->buffer_info[i];
3188 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3189 buffer_info->length = len;
3190 buffer_info->time_stamp = jiffies;
0e014cb1 3191 buffer_info->next_to_watch = i;
65689fef 3192 buffer_info->dma = map[count];
9d5c8243 3193 count++;
9d5c8243
AK
3194 }
3195
9d5c8243 3196 tx_ring->buffer_info[i].skb = skb;
0e014cb1 3197 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3198
042a53a9 3199 return count + 1;
9d5c8243
AK
3200}
3201
3202static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3203 struct igb_ring *tx_ring,
3204 int tx_flags, int count, u32 paylen,
3205 u8 hdr_len)
3206{
3207 union e1000_adv_tx_desc *tx_desc = NULL;
3208 struct igb_buffer *buffer_info;
3209 u32 olinfo_status = 0, cmd_type_len;
3210 unsigned int i;
3211
3212 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3213 E1000_ADVTXD_DCMD_DEXT);
3214
3215 if (tx_flags & IGB_TX_FLAGS_VLAN)
3216 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3217
33af6bcc
PO
3218 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3219 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3220
9d5c8243
AK
3221 if (tx_flags & IGB_TX_FLAGS_TSO) {
3222 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3223
3224 /* insert tcp checksum */
3225 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3226
3227 /* insert ip checksum */
3228 if (tx_flags & IGB_TX_FLAGS_IPV4)
3229 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3230
3231 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3232 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3233 }
3234
7dfc16fa
AD
3235 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3236 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3237 IGB_TX_FLAGS_VLAN)))
661086df 3238 olinfo_status |= tx_ring->queue_index << 4;
9d5c8243
AK
3239
3240 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3241
3242 i = tx_ring->next_to_use;
3243 while (count--) {
3244 buffer_info = &tx_ring->buffer_info[i];
3245 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3246 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3247 tx_desc->read.cmd_type_len =
3248 cpu_to_le32(cmd_type_len | buffer_info->length);
3249 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3250 i++;
3251 if (i == tx_ring->count)
3252 i = 0;
3253 }
3254
3255 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3256 /* Force memory writes to complete before letting h/w
3257 * know there are new descriptors to fetch. (Only
3258 * applicable for weak-ordered memory model archs,
3259 * such as IA-64). */
3260 wmb();
3261
3262 tx_ring->next_to_use = i;
3263 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3264 /* we need this if more than one processor can write to our tail
3265 * at a time, it syncronizes IO on IA64/Altix systems */
3266 mmiowb();
3267}
3268
3269static int __igb_maybe_stop_tx(struct net_device *netdev,
3270 struct igb_ring *tx_ring, int size)
3271{
3272 struct igb_adapter *adapter = netdev_priv(netdev);
3273
661086df 3274 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3275
9d5c8243
AK
3276 /* Herbert's original patch had:
3277 * smp_mb__after_netif_stop_queue();
3278 * but since that doesn't exist yet, just open code it. */
3279 smp_mb();
3280
3281 /* We need to check again in a case another CPU has just
3282 * made room available. */
c493ea45 3283 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
3284 return -EBUSY;
3285
3286 /* A reprieve! */
661086df 3287 netif_wake_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
3288 ++adapter->restart_queue;
3289 return 0;
3290}
3291
3292static int igb_maybe_stop_tx(struct net_device *netdev,
3293 struct igb_ring *tx_ring, int size)
3294{
c493ea45 3295 if (igb_desc_unused(tx_ring) >= size)
9d5c8243
AK
3296 return 0;
3297 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3298}
3299
3b29a56d
SH
3300static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3301 struct net_device *netdev,
3302 struct igb_ring *tx_ring)
9d5c8243
AK
3303{
3304 struct igb_adapter *adapter = netdev_priv(netdev);
0e014cb1 3305 unsigned int first;
9d5c8243 3306 unsigned int tx_flags = 0;
9d5c8243 3307 u8 hdr_len = 0;
65689fef 3308 int count = 0;
9d5c8243 3309 int tso = 0;
33af6bcc 3310 union skb_shared_tx *shtx;
9d5c8243 3311
9d5c8243
AK
3312 if (test_bit(__IGB_DOWN, &adapter->state)) {
3313 dev_kfree_skb_any(skb);
3314 return NETDEV_TX_OK;
3315 }
3316
3317 if (skb->len <= 0) {
3318 dev_kfree_skb_any(skb);
3319 return NETDEV_TX_OK;
3320 }
3321
9d5c8243
AK
3322 /* need: 1 descriptor per page,
3323 * + 2 desc gap to keep tail from touching head,
3324 * + 1 desc for skb->data,
3325 * + 1 desc for context descriptor,
3326 * otherwise try next time */
3327 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3328 /* this is a hard error */
9d5c8243
AK
3329 return NETDEV_TX_BUSY;
3330 }
33af6bcc
PO
3331
3332 /*
3333 * TODO: check that there currently is no other packet with
3334 * time stamping in the queue
3335 *
3336 * When doing time stamping, keep the connection to the socket
3337 * a while longer: it is still needed by skb_hwtstamp_tx(),
3338 * called either in igb_tx_hwtstamp() or by our caller when
3339 * doing software time stamping.
3340 */
3341 shtx = skb_tx(skb);
3342 if (unlikely(shtx->hardware)) {
3343 shtx->in_progress = 1;
3344 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3345 }
9d5c8243
AK
3346
3347 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3348 tx_flags |= IGB_TX_FLAGS_VLAN;
3349 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3350 }
3351
661086df
PWJ
3352 if (skb->protocol == htons(ETH_P_IP))
3353 tx_flags |= IGB_TX_FLAGS_IPV4;
3354
0e014cb1 3355 first = tx_ring->next_to_use;
9d5c8243
AK
3356 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3357 &hdr_len) : 0;
3358
3359 if (tso < 0) {
3360 dev_kfree_skb_any(skb);
9d5c8243
AK
3361 return NETDEV_TX_OK;
3362 }
3363
3364 if (tso)
3365 tx_flags |= IGB_TX_FLAGS_TSO;
bc1cbd34
AD
3366 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3367 (skb->ip_summed == CHECKSUM_PARTIAL))
3368 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3369
65689fef
AD
3370 /*
3371 * count reflects descriptors mapped, if 0 then mapping error
3372 * has occured and we need to rewind the descriptor queue
3373 */
3374 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3375
3376 if (count) {
3377 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3378 skb->len, hdr_len);
65689fef
AD
3379 /* Make sure there is space in the ring for the next send. */
3380 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3381 } else {
3382 dev_kfree_skb_any(skb);
3383 tx_ring->buffer_info[first].time_stamp = 0;
3384 tx_ring->next_to_use = first;
3385 }
9d5c8243 3386
9d5c8243
AK
3387 return NETDEV_TX_OK;
3388}
3389
3b29a56d
SH
3390static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3391 struct net_device *netdev)
9d5c8243
AK
3392{
3393 struct igb_adapter *adapter = netdev_priv(netdev);
661086df
PWJ
3394 struct igb_ring *tx_ring;
3395
661086df 3396 int r_idx = 0;
1bfaf07b 3397 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3398 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3399
3400 /* This goes back to the question of how to logically map a tx queue
3401 * to a flow. Right now, performance is impacted slightly negatively
3402 * if using multiple tx queues. If the stack breaks away from a
3403 * single qdisc implementation, we can look at this again. */
3b29a56d 3404 return igb_xmit_frame_ring_adv(skb, netdev, tx_ring);
9d5c8243
AK
3405}
3406
3407/**
3408 * igb_tx_timeout - Respond to a Tx Hang
3409 * @netdev: network interface device structure
3410 **/
3411static void igb_tx_timeout(struct net_device *netdev)
3412{
3413 struct igb_adapter *adapter = netdev_priv(netdev);
3414 struct e1000_hw *hw = &adapter->hw;
3415
3416 /* Do the reset outside of interrupt context */
3417 adapter->tx_timeout_count++;
3418 schedule_work(&adapter->reset_task);
265de409
AD
3419 wr32(E1000_EICS,
3420 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3421}
3422
3423static void igb_reset_task(struct work_struct *work)
3424{
3425 struct igb_adapter *adapter;
3426 adapter = container_of(work, struct igb_adapter, reset_task);
3427
3428 igb_reinit_locked(adapter);
3429}
3430
3431/**
3432 * igb_get_stats - Get System Network Statistics
3433 * @netdev: network interface device structure
3434 *
3435 * Returns the address of the device statistics structure.
3436 * The statistics are actually updated from the timer callback.
3437 **/
73cd78f1 3438static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243
AK
3439{
3440 struct igb_adapter *adapter = netdev_priv(netdev);
3441
3442 /* only return the current stats */
3443 return &adapter->net_stats;
3444}
3445
3446/**
3447 * igb_change_mtu - Change the Maximum Transfer Unit
3448 * @netdev: network interface device structure
3449 * @new_mtu: new value for maximum frame size
3450 *
3451 * Returns 0 on success, negative on failure
3452 **/
3453static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3454{
3455 struct igb_adapter *adapter = netdev_priv(netdev);
3456 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3457
3458 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3459 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3460 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3461 return -EINVAL;
3462 }
3463
9d5c8243
AK
3464 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3465 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3466 return -EINVAL;
3467 }
3468
3469 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3470 msleep(1);
73cd78f1 3471
9d5c8243
AK
3472 /* igb_down has a dependency on max_frame_size */
3473 adapter->max_frame_size = max_frame;
3474 if (netif_running(netdev))
3475 igb_down(adapter);
3476
3477 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3478 * means we reserve 2 more, this pushes us to allocate from the next
3479 * larger slab size.
3480 * i.e. RXBUFFER_2048 --> size-4096 slab
3481 */
3482
3483 if (max_frame <= IGB_RXBUFFER_256)
3484 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3485 else if (max_frame <= IGB_RXBUFFER_512)
3486 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3487 else if (max_frame <= IGB_RXBUFFER_1024)
3488 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3489 else if (max_frame <= IGB_RXBUFFER_2048)
3490 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3491 else
bf36c1a0
AD
3492#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3493 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3494#else
3495 adapter->rx_buffer_len = PAGE_SIZE / 2;
3496#endif
e1739522
AD
3497
3498 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3499 if (adapter->vfs_allocated_count &&
3500 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3501 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3502
9d5c8243
AK
3503 /* adjust allocation if LPE protects us, and we aren't using SBP */
3504 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3505 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3506 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3507
3508 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3509 netdev->mtu, new_mtu);
3510 netdev->mtu = new_mtu;
3511
3512 if (netif_running(netdev))
3513 igb_up(adapter);
3514 else
3515 igb_reset(adapter);
3516
3517 clear_bit(__IGB_RESETTING, &adapter->state);
3518
3519 return 0;
3520}
3521
3522/**
3523 * igb_update_stats - Update the board statistics counters
3524 * @adapter: board private structure
3525 **/
3526
3527void igb_update_stats(struct igb_adapter *adapter)
3528{
3529 struct e1000_hw *hw = &adapter->hw;
3530 struct pci_dev *pdev = adapter->pdev;
3531 u16 phy_tmp;
3532
3533#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3534
3535 /*
3536 * Prevent stats update while adapter is being reset, or if the pci
3537 * connection is down.
3538 */
3539 if (adapter->link_speed == 0)
3540 return;
3541 if (pci_channel_offline(pdev))
3542 return;
3543
3544 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3545 adapter->stats.gprc += rd32(E1000_GPRC);
3546 adapter->stats.gorc += rd32(E1000_GORCL);
3547 rd32(E1000_GORCH); /* clear GORCL */
3548 adapter->stats.bprc += rd32(E1000_BPRC);
3549 adapter->stats.mprc += rd32(E1000_MPRC);
3550 adapter->stats.roc += rd32(E1000_ROC);
3551
3552 adapter->stats.prc64 += rd32(E1000_PRC64);
3553 adapter->stats.prc127 += rd32(E1000_PRC127);
3554 adapter->stats.prc255 += rd32(E1000_PRC255);
3555 adapter->stats.prc511 += rd32(E1000_PRC511);
3556 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3557 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3558 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3559 adapter->stats.sec += rd32(E1000_SEC);
3560
3561 adapter->stats.mpc += rd32(E1000_MPC);
3562 adapter->stats.scc += rd32(E1000_SCC);
3563 adapter->stats.ecol += rd32(E1000_ECOL);
3564 adapter->stats.mcc += rd32(E1000_MCC);
3565 adapter->stats.latecol += rd32(E1000_LATECOL);
3566 adapter->stats.dc += rd32(E1000_DC);
3567 adapter->stats.rlec += rd32(E1000_RLEC);
3568 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3569 adapter->stats.xontxc += rd32(E1000_XONTXC);
3570 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3571 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3572 adapter->stats.fcruc += rd32(E1000_FCRUC);
3573 adapter->stats.gptc += rd32(E1000_GPTC);
3574 adapter->stats.gotc += rd32(E1000_GOTCL);
3575 rd32(E1000_GOTCH); /* clear GOTCL */
3576 adapter->stats.rnbc += rd32(E1000_RNBC);
3577 adapter->stats.ruc += rd32(E1000_RUC);
3578 adapter->stats.rfc += rd32(E1000_RFC);
3579 adapter->stats.rjc += rd32(E1000_RJC);
3580 adapter->stats.tor += rd32(E1000_TORH);
3581 adapter->stats.tot += rd32(E1000_TOTH);
3582 adapter->stats.tpr += rd32(E1000_TPR);
3583
3584 adapter->stats.ptc64 += rd32(E1000_PTC64);
3585 adapter->stats.ptc127 += rd32(E1000_PTC127);
3586 adapter->stats.ptc255 += rd32(E1000_PTC255);
3587 adapter->stats.ptc511 += rd32(E1000_PTC511);
3588 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3589 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3590
3591 adapter->stats.mptc += rd32(E1000_MPTC);
3592 adapter->stats.bptc += rd32(E1000_BPTC);
3593
3594 /* used for adaptive IFS */
3595
3596 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3597 adapter->stats.tpt += hw->mac.tx_packet_delta;
3598 hw->mac.collision_delta = rd32(E1000_COLC);
3599 adapter->stats.colc += hw->mac.collision_delta;
3600
3601 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3602 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3603 adapter->stats.tncrs += rd32(E1000_TNCRS);
3604 adapter->stats.tsctc += rd32(E1000_TSCTC);
3605 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3606
3607 adapter->stats.iac += rd32(E1000_IAC);
3608 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3609 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3610 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3611 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3612 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3613 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3614 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3615 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3616
3617 /* Fill out the OS statistics structure */
3618 adapter->net_stats.multicast = adapter->stats.mprc;
3619 adapter->net_stats.collisions = adapter->stats.colc;
3620
3621 /* Rx Errors */
3622
8c0ab70a
JDB
3623 if (hw->mac.type != e1000_82575) {
3624 u32 rqdpc_tmp;
3ea73afa 3625 u64 rqdpc_total = 0;
8c0ab70a
JDB
3626 int i;
3627 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3628 * Queue Drop Packet Count) stats only gets incremented, if
3629 * the DROP_EN but it set (in the SRRCTL register for that
3630 * queue). If DROP_EN bit is NOT set, then the some what
3631 * equivalent count is stored in RNBC (not per queue basis).
3632 * Also note the drop count is due to lack of available
3633 * descriptors.
3634 */
3635 for (i = 0; i < adapter->num_rx_queues; i++) {
3636 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3637 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3ea73afa 3638 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
8c0ab70a 3639 }
3ea73afa 3640 adapter->net_stats.rx_fifo_errors = rqdpc_total;
8c0ab70a
JDB
3641 }
3642
3ea73afa
JDB
3643 /* Note RNBC (Receive No Buffers Count) is an not an exact
3644 * drop count as the hardware FIFO might save the day. Thats
3645 * one of the reason for saving it in rx_fifo_errors, as its
3646 * potentially not a true drop.
3647 */
3648 adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;
3649
9d5c8243 3650 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 3651 * our own version based on RUC and ROC */
9d5c8243
AK
3652 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3653 adapter->stats.crcerrs + adapter->stats.algnerrc +
3654 adapter->stats.ruc + adapter->stats.roc +
3655 adapter->stats.cexterr;
3656 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3657 adapter->stats.roc;
3658 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3659 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3660 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3661
3662 /* Tx Errors */
3663 adapter->net_stats.tx_errors = adapter->stats.ecol +
3664 adapter->stats.latecol;
3665 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3666 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3667 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3668
3669 /* Tx Dropped needs to be maintained elsewhere */
3670
3671 /* Phy Stats */
3672 if (hw->phy.media_type == e1000_media_type_copper) {
3673 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 3674 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
3675 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3676 adapter->phy_stats.idle_errors += phy_tmp;
3677 }
3678 }
3679
3680 /* Management Stats */
3681 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3682 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3683 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3684}
3685
9d5c8243
AK
3686static irqreturn_t igb_msix_other(int irq, void *data)
3687{
3688 struct net_device *netdev = data;
3689 struct igb_adapter *adapter = netdev_priv(netdev);
3690 struct e1000_hw *hw = &adapter->hw;
844290e5 3691 u32 icr = rd32(E1000_ICR);
9d5c8243 3692
844290e5 3693 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083
AD
3694
3695 if(icr & E1000_ICR_DOUTSYNC) {
3696 /* HW is reporting DMA is out of sync */
3697 adapter->stats.doosync++;
3698 }
eebbbdba 3699
4ae196df
AD
3700 /* Check for a mailbox event */
3701 if (icr & E1000_ICR_VMMB)
3702 igb_msg_task(adapter);
3703
3704 if (icr & E1000_ICR_LSC) {
3705 hw->mac.get_link_status = 1;
3706 /* guard against interrupt when we're going down */
3707 if (!test_bit(__IGB_DOWN, &adapter->state))
3708 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3709 }
3710
3711 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
844290e5 3712 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3713
3714 return IRQ_HANDLED;
3715}
3716
3717static irqreturn_t igb_msix_tx(int irq, void *data)
3718{
3719 struct igb_ring *tx_ring = data;
3720 struct igb_adapter *adapter = tx_ring->adapter;
3721 struct e1000_hw *hw = &adapter->hw;
3722
421e02f0 3723#ifdef CONFIG_IGB_DCA
7dfc16fa 3724 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3725 igb_update_tx_dca(tx_ring);
3726#endif
73cd78f1 3727
9d5c8243
AK
3728 tx_ring->total_bytes = 0;
3729 tx_ring->total_packets = 0;
661086df
PWJ
3730
3731 /* auto mask will automatically reenable the interrupt when we write
3732 * EICS */
3b644cf6 3733 if (!igb_clean_tx_irq(tx_ring))
9d5c8243
AK
3734 /* Ring was not completely cleaned, so fire another interrupt */
3735 wr32(E1000_EICS, tx_ring->eims_value);
661086df 3736 else
9d5c8243 3737 wr32(E1000_EIMS, tx_ring->eims_value);
661086df 3738
9d5c8243
AK
3739 return IRQ_HANDLED;
3740}
3741
6eb5a7f1
AD
3742static void igb_write_itr(struct igb_ring *ring)
3743{
3744 struct e1000_hw *hw = &ring->adapter->hw;
3745 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3746 switch (hw->mac.type) {
3747 case e1000_82576:
73cd78f1 3748 wr32(ring->itr_register, ring->itr_val |
6eb5a7f1
AD
3749 0x80000000);
3750 break;
3751 default:
73cd78f1 3752 wr32(ring->itr_register, ring->itr_val |
6eb5a7f1
AD
3753 (ring->itr_val << 16));
3754 break;
3755 }
3756 ring->set_itr = 0;
3757 }
3758}
3759
9d5c8243
AK
3760static irqreturn_t igb_msix_rx(int irq, void *data)
3761{
3762 struct igb_ring *rx_ring = data;
9d5c8243 3763
844290e5
PW
3764 /* Write the ITR value calculated at the end of the
3765 * previous interrupt.
3766 */
9d5c8243 3767
6eb5a7f1 3768 igb_write_itr(rx_ring);
9d5c8243 3769
288379f0
BH
3770 if (napi_schedule_prep(&rx_ring->napi))
3771 __napi_schedule(&rx_ring->napi);
844290e5 3772
421e02f0 3773#ifdef CONFIG_IGB_DCA
8d253320 3774 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
3775 igb_update_rx_dca(rx_ring);
3776#endif
3777 return IRQ_HANDLED;
3778}
3779
421e02f0 3780#ifdef CONFIG_IGB_DCA
fe4506b6
JC
3781static void igb_update_rx_dca(struct igb_ring *rx_ring)
3782{
3783 u32 dca_rxctrl;
3784 struct igb_adapter *adapter = rx_ring->adapter;
3785 struct e1000_hw *hw = &adapter->hw;
3786 int cpu = get_cpu();
26bc19ec 3787 int q = rx_ring->reg_idx;
fe4506b6
JC
3788
3789 if (rx_ring->cpu != cpu) {
3790 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
2d064c06
AD
3791 if (hw->mac.type == e1000_82576) {
3792 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
92be7917 3793 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
2d064c06
AD
3794 E1000_DCA_RXCTRL_CPUID_SHIFT;
3795 } else {
3796 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 3797 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3798 }
fe4506b6
JC
3799 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3800 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3801 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3802 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3803 rx_ring->cpu = cpu;
3804 }
3805 put_cpu();
3806}
3807
3808static void igb_update_tx_dca(struct igb_ring *tx_ring)
3809{
3810 u32 dca_txctrl;
3811 struct igb_adapter *adapter = tx_ring->adapter;
3812 struct e1000_hw *hw = &adapter->hw;
3813 int cpu = get_cpu();
26bc19ec 3814 int q = tx_ring->reg_idx;
fe4506b6
JC
3815
3816 if (tx_ring->cpu != cpu) {
3817 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
2d064c06
AD
3818 if (hw->mac.type == e1000_82576) {
3819 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
92be7917 3820 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
2d064c06
AD
3821 E1000_DCA_TXCTRL_CPUID_SHIFT;
3822 } else {
3823 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
92be7917 3824 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 3825 }
fe4506b6
JC
3826 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3827 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3828 tx_ring->cpu = cpu;
3829 }
3830 put_cpu();
3831}
3832
3833static void igb_setup_dca(struct igb_adapter *adapter)
3834{
7e0e99ef 3835 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
3836 int i;
3837
7dfc16fa 3838 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
3839 return;
3840
7e0e99ef
AD
3841 /* Always use CB2 mode, difference is masked in the CB driver. */
3842 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3843
fe4506b6
JC
3844 for (i = 0; i < adapter->num_tx_queues; i++) {
3845 adapter->tx_ring[i].cpu = -1;
3846 igb_update_tx_dca(&adapter->tx_ring[i]);
3847 }
3848 for (i = 0; i < adapter->num_rx_queues; i++) {
3849 adapter->rx_ring[i].cpu = -1;
3850 igb_update_rx_dca(&adapter->rx_ring[i]);
3851 }
3852}
3853
3854static int __igb_notify_dca(struct device *dev, void *data)
3855{
3856 struct net_device *netdev = dev_get_drvdata(dev);
3857 struct igb_adapter *adapter = netdev_priv(netdev);
3858 struct e1000_hw *hw = &adapter->hw;
3859 unsigned long event = *(unsigned long *)data;
3860
3861 switch (event) {
3862 case DCA_PROVIDER_ADD:
3863 /* if already enabled, don't do it again */
7dfc16fa 3864 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 3865 break;
fe4506b6
JC
3866 /* Always use CB2 mode, difference is masked
3867 * in the CB driver. */
cbd347ad 3868 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
fe4506b6 3869 if (dca_add_requester(dev) == 0) {
bbd98fe4 3870 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6
JC
3871 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3872 igb_setup_dca(adapter);
3873 break;
3874 }
3875 /* Fall Through since DCA is disabled. */
3876 case DCA_PROVIDER_REMOVE:
7dfc16fa 3877 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
3878 /* without this a class_device is left
3879 * hanging around in the sysfs model */
3880 dca_remove_requester(dev);
3881 dev_info(&adapter->pdev->dev, "DCA disabled\n");
7dfc16fa 3882 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 3883 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
3884 }
3885 break;
3886 }
bbd98fe4 3887
fe4506b6 3888 return 0;
9d5c8243
AK
3889}
3890
fe4506b6
JC
3891static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3892 void *p)
3893{
3894 int ret_val;
3895
3896 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3897 __igb_notify_dca);
3898
3899 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3900}
421e02f0 3901#endif /* CONFIG_IGB_DCA */
9d5c8243 3902
4ae196df
AD
3903static void igb_ping_all_vfs(struct igb_adapter *adapter)
3904{
3905 struct e1000_hw *hw = &adapter->hw;
3906 u32 ping;
3907 int i;
3908
3909 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3910 ping = E1000_PF_CONTROL_MSG;
3911 if (adapter->vf_data[i].clear_to_send)
3912 ping |= E1000_VT_MSGTYPE_CTS;
3913 igb_write_mbx(hw, &ping, 1, i);
3914 }
3915}
3916
3917static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3918 u32 *msgbuf, u32 vf)
3919{
3920 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3921 u16 *hash_list = (u16 *)&msgbuf[1];
3922 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3923 int i;
3924
3925 /* only up to 30 hash values supported */
3926 if (n > 30)
3927 n = 30;
3928
3929 /* salt away the number of multi cast addresses assigned
3930 * to this VF for later use to restore when the PF multi cast
3931 * list changes
3932 */
3933 vf_data->num_vf_mc_hashes = n;
3934
3935 /* VFs are limited to using the MTA hash table for their multicast
3936 * addresses */
3937 for (i = 0; i < n; i++)
3938 vf_data->vf_mc_hashes[i] = hash_list[i];;
3939
3940 /* Flush and reset the mta with the new values */
3941 igb_set_multi(adapter->netdev);
3942
3943 return 0;
3944}
3945
3946static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3947{
3948 struct e1000_hw *hw = &adapter->hw;
3949 struct vf_data_storage *vf_data;
3950 int i, j;
3951
3952 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3953 vf_data = &adapter->vf_data[i];
75f4f382 3954 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4ae196df
AD
3955 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3956 }
3957}
3958
3959static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3960{
3961 struct e1000_hw *hw = &adapter->hw;
3962 u32 pool_mask, reg, vid;
3963 int i;
3964
3965 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3966
3967 /* Find the vlan filter for this id */
3968 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3969 reg = rd32(E1000_VLVF(i));
3970
3971 /* remove the vf from the pool */
3972 reg &= ~pool_mask;
3973
3974 /* if pool is empty then remove entry from vfta */
3975 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3976 (reg & E1000_VLVF_VLANID_ENABLE)) {
3977 reg = 0;
3978 vid = reg & E1000_VLVF_VLANID_MASK;
3979 igb_vfta_set(hw, vid, false);
3980 }
3981
3982 wr32(E1000_VLVF(i), reg);
3983 }
3984}
3985
3986static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3987{
3988 struct e1000_hw *hw = &adapter->hw;
3989 u32 reg, i;
3990
3991 /* It is an error to call this function when VFs are not enabled */
3992 if (!adapter->vfs_allocated_count)
3993 return -1;
3994
3995 /* Find the vlan filter for this id */
3996 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3997 reg = rd32(E1000_VLVF(i));
3998 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3999 vid == (reg & E1000_VLVF_VLANID_MASK))
4000 break;
4001 }
4002
4003 if (add) {
4004 if (i == E1000_VLVF_ARRAY_SIZE) {
4005 /* Did not find a matching VLAN ID entry that was
4006 * enabled. Search for a free filter entry, i.e.
4007 * one without the enable bit set
4008 */
4009 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4010 reg = rd32(E1000_VLVF(i));
4011 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4012 break;
4013 }
4014 }
4015 if (i < E1000_VLVF_ARRAY_SIZE) {
4016 /* Found an enabled/available entry */
4017 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4018
4019 /* if !enabled we need to set this up in vfta */
4020 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
cad6d05f
AD
4021 /* add VID to filter table, if bit already set
4022 * PF must have added it outside of table */
4023 if (igb_vfta_set(hw, vid, true))
4024 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4025 adapter->vfs_allocated_count);
4ae196df
AD
4026 reg |= E1000_VLVF_VLANID_ENABLE;
4027 }
cad6d05f
AD
4028 reg &= ~E1000_VLVF_VLANID_MASK;
4029 reg |= vid;
4ae196df
AD
4030
4031 wr32(E1000_VLVF(i), reg);
4032 return 0;
4033 }
4034 } else {
4035 if (i < E1000_VLVF_ARRAY_SIZE) {
4036 /* remove vf from the pool */
4037 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4038 /* if pool is empty then remove entry from vfta */
4039 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4040 reg = 0;
4041 igb_vfta_set(hw, vid, false);
4042 }
4043 wr32(E1000_VLVF(i), reg);
4044 return 0;
4045 }
4046 }
4047 return -1;
4048}
4049
4050static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4051{
4052 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4053 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4054
4055 return igb_vlvf_set(adapter, vid, add, vf);
4056}
4057
4058static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4059{
4060 struct e1000_hw *hw = &adapter->hw;
4061
4062 /* disable mailbox functionality for vf */
4063 adapter->vf_data[vf].clear_to_send = false;
4064
4065 /* reset offloads to defaults */
4066 igb_set_vmolr(hw, vf);
4067
4068 /* reset vlans for device */
4069 igb_clear_vf_vfta(adapter, vf);
4070
4071 /* reset multicast table array for vf */
4072 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4073
4074 /* Flush and reset the mta with the new values */
4075 igb_set_multi(adapter->netdev);
4076}
4077
4078static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4079{
4080 struct e1000_hw *hw = &adapter->hw;
4081 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4082 u32 reg, msgbuf[3];
4083 u8 *addr = (u8 *)(&msgbuf[1]);
4084
4085 /* process all the same items cleared in a function level reset */
4086 igb_vf_reset_event(adapter, vf);
4087
4088 /* set vf mac address */
4089 igb_rar_set(hw, vf_mac, vf + 1);
4090 igb_set_rah_pool(hw, vf, vf + 1);
4091
4092 /* enable transmit and receive for vf */
4093 reg = rd32(E1000_VFTE);
4094 wr32(E1000_VFTE, reg | (1 << vf));
4095 reg = rd32(E1000_VFRE);
4096 wr32(E1000_VFRE, reg | (1 << vf));
4097
4098 /* enable mailbox functionality for vf */
4099 adapter->vf_data[vf].clear_to_send = true;
4100
4101 /* reply to reset with ack and vf mac address */
4102 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4103 memcpy(addr, vf_mac, 6);
4104 igb_write_mbx(hw, msgbuf, 3, vf);
4105}
4106
4107static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4108{
4109 unsigned char *addr = (char *)&msg[1];
4110 int err = -1;
4111
4112 if (is_valid_ether_addr(addr))
4113 err = igb_set_vf_mac(adapter, vf, addr);
4114
4115 return err;
4116
4117}
4118
4119static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4120{
4121 struct e1000_hw *hw = &adapter->hw;
4122 u32 msg = E1000_VT_MSGTYPE_NACK;
4123
4124 /* if device isn't clear to send it shouldn't be reading either */
4125 if (!adapter->vf_data[vf].clear_to_send)
4126 igb_write_mbx(hw, &msg, 1, vf);
4127}
4128
4129
4130static void igb_msg_task(struct igb_adapter *adapter)
4131{
4132 struct e1000_hw *hw = &adapter->hw;
4133 u32 vf;
4134
4135 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4136 /* process any reset requests */
4137 if (!igb_check_for_rst(hw, vf)) {
4138 adapter->vf_data[vf].clear_to_send = false;
4139 igb_vf_reset_event(adapter, vf);
4140 }
4141
4142 /* process any messages pending */
4143 if (!igb_check_for_msg(hw, vf))
4144 igb_rcv_msg_from_vf(adapter, vf);
4145
4146 /* process any acks */
4147 if (!igb_check_for_ack(hw, vf))
4148 igb_rcv_ack_from_vf(adapter, vf);
4149
4150 }
4151}
4152
4153static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4154{
4155 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4156 u32 msgbuf[mbx_size];
4157 struct e1000_hw *hw = &adapter->hw;
4158 s32 retval;
4159
4160 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4161
4162 if (retval)
4163 dev_err(&adapter->pdev->dev,
4164 "Error receiving message from VF\n");
4165
4166 /* this is a message we already processed, do nothing */
4167 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4168 return retval;
4169
4170 /*
4171 * until the vf completes a reset it should not be
4172 * allowed to start any configuration.
4173 */
4174
4175 if (msgbuf[0] == E1000_VF_RESET) {
4176 igb_vf_reset_msg(adapter, vf);
4177
4178 return retval;
4179 }
4180
4181 if (!adapter->vf_data[vf].clear_to_send) {
4182 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4183 igb_write_mbx(hw, msgbuf, 1, vf);
4184 return retval;
4185 }
4186
4187 switch ((msgbuf[0] & 0xFFFF)) {
4188 case E1000_VF_SET_MAC_ADDR:
4189 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4190 break;
4191 case E1000_VF_SET_MULTICAST:
4192 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4193 break;
4194 case E1000_VF_SET_LPE:
4195 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4196 break;
4197 case E1000_VF_SET_VLAN:
4198 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4199 break;
4200 default:
4201 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4202 retval = -1;
4203 break;
4204 }
4205
4206 /* notify the VF of the results of what it sent us */
4207 if (retval)
4208 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4209 else
4210 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4211
4212 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4213
4214 igb_write_mbx(hw, msgbuf, 1, vf);
4215
4216 return retval;
4217}
4218
9d5c8243
AK
4219/**
4220 * igb_intr_msi - Interrupt Handler
4221 * @irq: interrupt number
4222 * @data: pointer to a network interface device structure
4223 **/
4224static irqreturn_t igb_intr_msi(int irq, void *data)
4225{
4226 struct net_device *netdev = data;
4227 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
4228 struct e1000_hw *hw = &adapter->hw;
4229 /* read ICR disables interrupts using IAM */
4230 u32 icr = rd32(E1000_ICR);
4231
6eb5a7f1 4232 igb_write_itr(adapter->rx_ring);
9d5c8243 4233
dda0e083
AD
4234 if(icr & E1000_ICR_DOUTSYNC) {
4235 /* HW is reporting DMA is out of sync */
4236 adapter->stats.doosync++;
4237 }
4238
9d5c8243
AK
4239 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4240 hw->mac.get_link_status = 1;
4241 if (!test_bit(__IGB_DOWN, &adapter->state))
4242 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4243 }
4244
288379f0 4245 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
4246
4247 return IRQ_HANDLED;
4248}
4249
4250/**
4a3c6433 4251 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4252 * @irq: interrupt number
4253 * @data: pointer to a network interface device structure
4254 **/
4255static irqreturn_t igb_intr(int irq, void *data)
4256{
4257 struct net_device *netdev = data;
4258 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
4259 struct e1000_hw *hw = &adapter->hw;
4260 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4261 * need for the IMC write */
4262 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4263 if (!icr)
4264 return IRQ_NONE; /* Not our interrupt */
4265
6eb5a7f1 4266 igb_write_itr(adapter->rx_ring);
9d5c8243
AK
4267
4268 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4269 * not set, then the adapter didn't send an interrupt */
4270 if (!(icr & E1000_ICR_INT_ASSERTED))
4271 return IRQ_NONE;
4272
dda0e083
AD
4273 if(icr & E1000_ICR_DOUTSYNC) {
4274 /* HW is reporting DMA is out of sync */
4275 adapter->stats.doosync++;
4276 }
4277
9d5c8243
AK
4278 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4279 hw->mac.get_link_status = 1;
4280 /* guard against interrupt when we're going down */
4281 if (!test_bit(__IGB_DOWN, &adapter->state))
4282 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4283 }
4284
288379f0 4285 napi_schedule(&adapter->rx_ring[0].napi);
9d5c8243
AK
4286
4287 return IRQ_HANDLED;
4288}
4289
46544258 4290static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
9d5c8243 4291{
661086df 4292 struct igb_adapter *adapter = rx_ring->adapter;
46544258 4293 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4294
46544258
AD
4295 if (adapter->itr_setting & 3) {
4296 if (adapter->num_rx_queues == 1)
6eb5a7f1 4297 igb_set_itr(adapter);
46544258
AD
4298 else
4299 igb_update_ring_itr(rx_ring);
9d5c8243
AK
4300 }
4301
46544258
AD
4302 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4303 if (adapter->msix_entries)
4304 wr32(E1000_EIMS, rx_ring->eims_value);
4305 else
4306 igb_irq_enable(adapter);
4307 }
9d5c8243
AK
4308}
4309
46544258
AD
4310/**
4311 * igb_poll - NAPI Rx polling callback
4312 * @napi: napi polling structure
4313 * @budget: count of how many packets we should handle
4314 **/
4315static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243
AK
4316{
4317 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
9d5c8243
AK
4318 int work_done = 0;
4319
421e02f0 4320#ifdef CONFIG_IGB_DCA
bd38e5d1 4321 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6
JC
4322 igb_update_rx_dca(rx_ring);
4323#endif
3b644cf6 4324 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
9d5c8243 4325
46544258
AD
4326 if (rx_ring->buddy) {
4327#ifdef CONFIG_IGB_DCA
bd38e5d1 4328 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
46544258
AD
4329 igb_update_tx_dca(rx_ring->buddy);
4330#endif
4331 if (!igb_clean_tx_irq(rx_ring->buddy))
4332 work_done = budget;
4333 }
4334
9d5c8243 4335 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4336 if (work_done < budget) {
288379f0 4337 napi_complete(napi);
46544258 4338 igb_rx_irq_enable(rx_ring);
9d5c8243
AK
4339 }
4340
46544258 4341 return work_done;
9d5c8243 4342}
6d8126f9 4343
33af6bcc
PO
4344/**
4345 * igb_hwtstamp - utility function which checks for TX time stamp
4346 * @adapter: board private structure
4347 * @skb: packet that was just sent
4348 *
4349 * If we were asked to do hardware stamping and such a time stamp is
4350 * available, then it must have been for this skb here because we only
4351 * allow only one such packet into the queue.
4352 */
4353static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4354{
4355 union skb_shared_tx *shtx = skb_tx(skb);
4356 struct e1000_hw *hw = &adapter->hw;
4357
4358 if (unlikely(shtx->hardware)) {
4359 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4360 if (valid) {
4361 u64 regval = rd32(E1000_TXSTMPL);
4362 u64 ns;
4363 struct skb_shared_hwtstamps shhwtstamps;
4364
4365 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4366 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4367 ns = timecounter_cyc2time(&adapter->clock,
4368 regval);
4369 timecompare_update(&adapter->compare, ns);
4370 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4371 shhwtstamps.syststamp =
4372 timecompare_transform(&adapter->compare, ns);
4373 skb_tstamp_tx(skb, &shhwtstamps);
4374 }
33af6bcc
PO
4375 }
4376}
4377
9d5c8243
AK
4378/**
4379 * igb_clean_tx_irq - Reclaim resources after transmit completes
4380 * @adapter: board private structure
4381 * returns true if ring is completely cleaned
4382 **/
3b644cf6 4383static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
9d5c8243 4384{
3b644cf6 4385 struct igb_adapter *adapter = tx_ring->adapter;
3b644cf6 4386 struct net_device *netdev = adapter->netdev;
0e014cb1 4387 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4388 struct igb_buffer *buffer_info;
4389 struct sk_buff *skb;
0e014cb1 4390 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 4391 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
4392 unsigned int i, eop, count = 0;
4393 bool cleaned = false;
9d5c8243 4394
9d5c8243 4395 i = tx_ring->next_to_clean;
0e014cb1
AD
4396 eop = tx_ring->buffer_info[i].next_to_watch;
4397 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4398
4399 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4400 (count < tx_ring->count)) {
4401 for (cleaned = false; !cleaned; count++) {
4402 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 4403 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 4404 cleaned = (i == eop);
9d5c8243
AK
4405 skb = buffer_info->skb;
4406
4407 if (skb) {
4408 unsigned int segs, bytecount;
4409 /* gso_segs is currently only valid for tcp */
4410 segs = skb_shinfo(skb)->gso_segs ?: 1;
4411 /* multiply data chunks by size of headers */
4412 bytecount = ((segs - 1) * skb_headlen(skb)) +
4413 skb->len;
4414 total_packets += segs;
4415 total_bytes += bytecount;
33af6bcc
PO
4416
4417 igb_tx_hwtstamp(adapter, skb);
9d5c8243
AK
4418 }
4419
4420 igb_unmap_and_free_tx_resource(adapter, buffer_info);
0e014cb1 4421 tx_desc->wb.status = 0;
9d5c8243
AK
4422
4423 i++;
4424 if (i == tx_ring->count)
4425 i = 0;
9d5c8243 4426 }
0e014cb1
AD
4427 eop = tx_ring->buffer_info[i].next_to_watch;
4428 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4429 }
4430
9d5c8243
AK
4431 tx_ring->next_to_clean = i;
4432
fc7d345d 4433 if (unlikely(count &&
9d5c8243 4434 netif_carrier_ok(netdev) &&
c493ea45 4435 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
4436 /* Make sure that anybody stopping the queue after this
4437 * sees the new next_to_clean.
4438 */
4439 smp_mb();
661086df
PWJ
4440 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4441 !(test_bit(__IGB_DOWN, &adapter->state))) {
4442 netif_wake_subqueue(netdev, tx_ring->queue_index);
4443 ++adapter->restart_queue;
4444 }
9d5c8243
AK
4445 }
4446
4447 if (tx_ring->detect_tx_hung) {
4448 /* Detect a transmit hang in hardware, this serializes the
4449 * check with the clearing of time_stamp and movement of i */
4450 tx_ring->detect_tx_hung = false;
4451 if (tx_ring->buffer_info[i].time_stamp &&
4452 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4453 (adapter->tx_timeout_factor * HZ))
4454 && !(rd32(E1000_STATUS) &
4455 E1000_STATUS_TXOFF)) {
4456
9d5c8243
AK
4457 /* detected Tx unit hang */
4458 dev_err(&adapter->pdev->dev,
4459 "Detected Tx Unit Hang\n"
2d064c06 4460 " Tx Queue <%d>\n"
9d5c8243
AK
4461 " TDH <%x>\n"
4462 " TDT <%x>\n"
4463 " next_to_use <%x>\n"
4464 " next_to_clean <%x>\n"
9d5c8243
AK
4465 "buffer_info[next_to_clean]\n"
4466 " time_stamp <%lx>\n"
0e014cb1 4467 " next_to_watch <%x>\n"
9d5c8243
AK
4468 " jiffies <%lx>\n"
4469 " desc.status <%x>\n",
2d064c06 4470 tx_ring->queue_index,
9d5c8243
AK
4471 readl(adapter->hw.hw_addr + tx_ring->head),
4472 readl(adapter->hw.hw_addr + tx_ring->tail),
4473 tx_ring->next_to_use,
4474 tx_ring->next_to_clean,
9d5c8243 4475 tx_ring->buffer_info[i].time_stamp,
0e014cb1 4476 eop,
9d5c8243 4477 jiffies,
0e014cb1 4478 eop_desc->wb.status);
661086df 4479 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
4480 }
4481 }
4482 tx_ring->total_bytes += total_bytes;
4483 tx_ring->total_packets += total_packets;
e21ed353
AD
4484 tx_ring->tx_stats.bytes += total_bytes;
4485 tx_ring->tx_stats.packets += total_packets;
9d5c8243
AK
4486 adapter->net_stats.tx_bytes += total_bytes;
4487 adapter->net_stats.tx_packets += total_packets;
0e014cb1 4488 return (count < tx_ring->count);
9d5c8243
AK
4489}
4490
9d5c8243
AK
4491/**
4492 * igb_receive_skb - helper function to handle rx indications
eebbbdba 4493 * @ring: pointer to receive ring receving this packet
9d5c8243 4494 * @status: descriptor status field as written by hardware
73cd78f1 4495 * @rx_desc: receive descriptor containing vlan and type information.
9d5c8243
AK
4496 * @skb: pointer to sk_buff to be indicated to stack
4497 **/
d3352520
AD
4498static void igb_receive_skb(struct igb_ring *ring, u8 status,
4499 union e1000_adv_rx_desc * rx_desc,
4500 struct sk_buff *skb)
4501{
4502 struct igb_adapter * adapter = ring->adapter;
4503 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4504
0c8dfc83 4505 skb_record_rx_queue(skb, ring->queue_index);
182ff8df
AD
4506 if (vlan_extracted)
4507 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4508 le16_to_cpu(rx_desc->wb.upper.vlan),
4509 skb);
4510 else
4511 napi_gro_receive(&ring->napi, skb);
9d5c8243
AK
4512}
4513
9d5c8243
AK
4514static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4515 u32 status_err, struct sk_buff *skb)
4516{
4517 skb->ip_summed = CHECKSUM_NONE;
4518
4519 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
7beb0146
AD
4520 if ((status_err & E1000_RXD_STAT_IXSM) ||
4521 (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
9d5c8243
AK
4522 return;
4523 /* TCP/UDP checksum error bit is set */
4524 if (status_err &
4525 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
4526 /*
4527 * work around errata with sctp packets where the TCPE aka
4528 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4529 * packets, (aka let the stack check the crc32c)
4530 */
4531 if (!((adapter->hw.mac.type == e1000_82576) &&
4532 (skb->len == 60)))
4533 adapter->hw_csum_err++;
9d5c8243 4534 /* let the stack verify checksum errors */
9d5c8243
AK
4535 return;
4536 }
4537 /* It must be a TCP or UDP packet with a valid checksum */
4538 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4539 skb->ip_summed = CHECKSUM_UNNECESSARY;
4540
b9473560 4541 dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
4542 adapter->hw_csum_good++;
4543}
4544
2d94d8ab
AD
4545static inline u16 igb_get_hlen(struct igb_adapter *adapter,
4546 union e1000_adv_rx_desc *rx_desc)
4547{
4548 /* HW will not DMA in data larger than the given buffer, even if it
4549 * parses the (NFS, of course) header to be larger. In that case, it
4550 * fills the header buffer and spills the rest into the page.
4551 */
4552 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4553 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4554 if (hlen > adapter->rx_ps_hdr_size)
4555 hlen = adapter->rx_ps_hdr_size;
4556 return hlen;
4557}
4558
3b644cf6
MW
4559static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4560 int *work_done, int budget)
9d5c8243 4561{
3b644cf6 4562 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 4563 struct net_device *netdev = adapter->netdev;
33af6bcc 4564 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4565 struct pci_dev *pdev = adapter->pdev;
4566 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4567 struct igb_buffer *buffer_info , *next_buffer;
4568 struct sk_buff *skb;
9d5c8243
AK
4569 bool cleaned = false;
4570 int cleaned_count = 0;
4571 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 4572 unsigned int i;
2d94d8ab
AD
4573 u32 staterr;
4574 u16 length;
9d5c8243
AK
4575
4576 i = rx_ring->next_to_clean;
69d3ca53 4577 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
4578 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4579 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4580
4581 while (staterr & E1000_RXD_STAT_DD) {
4582 if (*work_done >= budget)
4583 break;
4584 (*work_done)++;
9d5c8243 4585
69d3ca53
AD
4586 skb = buffer_info->skb;
4587 prefetch(skb->data - NET_IP_ALIGN);
4588 buffer_info->skb = NULL;
4589
4590 i++;
4591 if (i == rx_ring->count)
4592 i = 0;
4593 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4594 prefetch(next_rxd);
4595 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
4596
4597 length = le16_to_cpu(rx_desc->wb.upper.length);
4598 cleaned = true;
4599 cleaned_count++;
4600
91615f76 4601 /* this is the fast path for the non-packet split case */
bf36c1a0
AD
4602 if (!adapter->rx_ps_hdr_size) {
4603 pci_unmap_single(pdev, buffer_info->dma,
91615f76 4604 adapter->rx_buffer_len,
bf36c1a0 4605 PCI_DMA_FROMDEVICE);
91615f76 4606 buffer_info->dma = 0;
bf36c1a0
AD
4607 skb_put(skb, length);
4608 goto send_up;
9d5c8243
AK
4609 }
4610
2d94d8ab
AD
4611 if (buffer_info->dma) {
4612 u16 hlen = igb_get_hlen(adapter, rx_desc);
bf36c1a0 4613 pci_unmap_single(pdev, buffer_info->dma,
91615f76 4614 adapter->rx_ps_hdr_size,
bf36c1a0 4615 PCI_DMA_FROMDEVICE);
91615f76 4616 buffer_info->dma = 0;
bf36c1a0
AD
4617 skb_put(skb, hlen);
4618 }
4619
4620 if (length) {
9d5c8243 4621 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 4622 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 4623 buffer_info->page_dma = 0;
bf36c1a0
AD
4624
4625 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4626 buffer_info->page,
4627 buffer_info->page_offset,
4628 length);
4629
4630 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4631 (page_count(buffer_info->page) != 1))
4632 buffer_info->page = NULL;
4633 else
4634 get_page(buffer_info->page);
9d5c8243
AK
4635
4636 skb->len += length;
4637 skb->data_len += length;
9d5c8243 4638
bf36c1a0 4639 skb->truesize += length;
9d5c8243 4640 }
9d5c8243 4641
bf36c1a0 4642 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
4643 buffer_info->skb = next_buffer->skb;
4644 buffer_info->dma = next_buffer->dma;
4645 next_buffer->skb = skb;
4646 next_buffer->dma = 0;
bf36c1a0
AD
4647 goto next_desc;
4648 }
69d3ca53 4649send_up:
33af6bcc
PO
4650 /*
4651 * If this bit is set, then the RX registers contain
4652 * the time stamp. No other packet will be time
4653 * stamped until we read these registers, so read the
4654 * registers to make them available again. Because
4655 * only one packet can be time stamped at a time, we
4656 * know that the register values must belong to this
4657 * one here and therefore we don't need to compare
4658 * any of the additional attributes stored for it.
4659 *
4660 * If nothing went wrong, then it should have a
4661 * skb_shared_tx that we can turn into a
4662 * skb_shared_hwtstamps.
4663 *
4664 * TODO: can time stamping be triggered (thus locking
4665 * the registers) without the packet reaching this point
4666 * here? In that case RX time stamping would get stuck.
4667 *
4668 * TODO: in "time stamp all packets" mode this bit is
4669 * not set. Need a global flag for this mode and then
4670 * always read the registers. Cannot be done without
4671 * a race condition.
4672 */
4673 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4674 u64 regval;
4675 u64 ns;
4676 struct skb_shared_hwtstamps *shhwtstamps =
4677 skb_hwtstamps(skb);
4678
4679 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4680 "igb: no RX time stamp available for time stamped packet");
4681 regval = rd32(E1000_RXSTMPL);
4682 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4683 ns = timecounter_cyc2time(&adapter->clock, regval);
4684 timecompare_update(&adapter->compare, ns);
4685 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4686 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4687 shhwtstamps->syststamp =
4688 timecompare_transform(&adapter->compare, ns);
4689 }
4690
9d5c8243
AK
4691 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4692 dev_kfree_skb_irq(skb);
4693 goto next_desc;
4694 }
9d5c8243
AK
4695
4696 total_bytes += skb->len;
4697 total_packets++;
4698
4699 igb_rx_checksum_adv(adapter, staterr, skb);
4700
4701 skb->protocol = eth_type_trans(skb, netdev);
4702
d3352520 4703 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
9d5c8243 4704
9d5c8243
AK
4705next_desc:
4706 rx_desc->wb.upper.status_error = 0;
4707
4708 /* return some buffers to hardware, one at a time is too slow */
4709 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 4710 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4711 cleaned_count = 0;
4712 }
4713
4714 /* use prefetched values */
4715 rx_desc = next_rxd;
4716 buffer_info = next_buffer;
9d5c8243
AK
4717 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4718 }
bf36c1a0 4719
9d5c8243 4720 rx_ring->next_to_clean = i;
c493ea45 4721 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
4722
4723 if (cleaned_count)
3b644cf6 4724 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
4725
4726 rx_ring->total_packets += total_packets;
4727 rx_ring->total_bytes += total_bytes;
4728 rx_ring->rx_stats.packets += total_packets;
4729 rx_ring->rx_stats.bytes += total_bytes;
4730 adapter->net_stats.rx_bytes += total_bytes;
4731 adapter->net_stats.rx_packets += total_packets;
4732 return cleaned;
4733}
4734
9d5c8243
AK
4735/**
4736 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4737 * @adapter: address of board private structure
4738 **/
3b644cf6 4739static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
9d5c8243
AK
4740 int cleaned_count)
4741{
3b644cf6 4742 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
4743 struct net_device *netdev = adapter->netdev;
4744 struct pci_dev *pdev = adapter->pdev;
4745 union e1000_adv_rx_desc *rx_desc;
4746 struct igb_buffer *buffer_info;
4747 struct sk_buff *skb;
4748 unsigned int i;
db761762 4749 int bufsz;
9d5c8243
AK
4750
4751 i = rx_ring->next_to_use;
4752 buffer_info = &rx_ring->buffer_info[i];
4753
db761762
AD
4754 if (adapter->rx_ps_hdr_size)
4755 bufsz = adapter->rx_ps_hdr_size;
4756 else
4757 bufsz = adapter->rx_buffer_len;
db761762 4758
9d5c8243
AK
4759 while (cleaned_count--) {
4760 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4761
bf36c1a0 4762 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
9d5c8243 4763 if (!buffer_info->page) {
bf36c1a0
AD
4764 buffer_info->page = alloc_page(GFP_ATOMIC);
4765 if (!buffer_info->page) {
4766 adapter->alloc_rx_buff_failed++;
4767 goto no_buffers;
4768 }
4769 buffer_info->page_offset = 0;
4770 } else {
4771 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
4772 }
4773 buffer_info->page_dma =
db761762 4774 pci_map_page(pdev, buffer_info->page,
bf36c1a0
AD
4775 buffer_info->page_offset,
4776 PAGE_SIZE / 2,
9d5c8243
AK
4777 PCI_DMA_FROMDEVICE);
4778 }
4779
4780 if (!buffer_info->skb) {
91615f76 4781 skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
9d5c8243
AK
4782 if (!skb) {
4783 adapter->alloc_rx_buff_failed++;
4784 goto no_buffers;
4785 }
4786
4787 /* Make buffer alignment 2 beyond a 16 byte boundary
4788 * this will result in a 16 byte aligned IP header after
4789 * the 14 byte MAC header is removed
4790 */
4791 skb_reserve(skb, NET_IP_ALIGN);
4792
4793 buffer_info->skb = skb;
4794 buffer_info->dma = pci_map_single(pdev, skb->data,
4795 bufsz,
4796 PCI_DMA_FROMDEVICE);
9d5c8243
AK
4797 }
4798 /* Refresh the desc even if buffer_addrs didn't change because
4799 * each write-back erases this info. */
4800 if (adapter->rx_ps_hdr_size) {
4801 rx_desc->read.pkt_addr =
4802 cpu_to_le64(buffer_info->page_dma);
4803 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4804 } else {
4805 rx_desc->read.pkt_addr =
4806 cpu_to_le64(buffer_info->dma);
4807 rx_desc->read.hdr_addr = 0;
4808 }
4809
4810 i++;
4811 if (i == rx_ring->count)
4812 i = 0;
4813 buffer_info = &rx_ring->buffer_info[i];
4814 }
4815
4816no_buffers:
4817 if (rx_ring->next_to_use != i) {
4818 rx_ring->next_to_use = i;
4819 if (i == 0)
4820 i = (rx_ring->count - 1);
4821 else
4822 i--;
4823
4824 /* Force memory writes to complete before letting h/w
4825 * know there are new descriptors to fetch. (Only
4826 * applicable for weak-ordered memory model archs,
4827 * such as IA-64). */
4828 wmb();
4829 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4830 }
4831}
4832
4833/**
4834 * igb_mii_ioctl -
4835 * @netdev:
4836 * @ifreq:
4837 * @cmd:
4838 **/
4839static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4840{
4841 struct igb_adapter *adapter = netdev_priv(netdev);
4842 struct mii_ioctl_data *data = if_mii(ifr);
4843
4844 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4845 return -EOPNOTSUPP;
4846
4847 switch (cmd) {
4848 case SIOCGMIIPHY:
4849 data->phy_id = adapter->hw.phy.addr;
4850 break;
4851 case SIOCGMIIREG:
4852 if (!capable(CAP_NET_ADMIN))
4853 return -EPERM;
f5f4cf08
AD
4854 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4855 &data->val_out))
9d5c8243
AK
4856 return -EIO;
4857 break;
4858 case SIOCSMIIREG:
4859 default:
4860 return -EOPNOTSUPP;
4861 }
4862 return 0;
4863}
4864
c6cb090b
PO
4865/**
4866 * igb_hwtstamp_ioctl - control hardware time stamping
4867 * @netdev:
4868 * @ifreq:
4869 * @cmd:
4870 *
33af6bcc
PO
4871 * Outgoing time stamping can be enabled and disabled. Play nice and
4872 * disable it when requested, although it shouldn't case any overhead
4873 * when no packet needs it. At most one packet in the queue may be
4874 * marked for time stamping, otherwise it would be impossible to tell
4875 * for sure to which packet the hardware time stamp belongs.
4876 *
4877 * Incoming time stamping has to be configured via the hardware
4878 * filters. Not all combinations are supported, in particular event
4879 * type has to be specified. Matching the kind of event packet is
4880 * not supported, with the exception of "all V2 events regardless of
4881 * level 2 or 4".
4882 *
c6cb090b
PO
4883 **/
4884static int igb_hwtstamp_ioctl(struct net_device *netdev,
4885 struct ifreq *ifr, int cmd)
4886{
33af6bcc
PO
4887 struct igb_adapter *adapter = netdev_priv(netdev);
4888 struct e1000_hw *hw = &adapter->hw;
c6cb090b 4889 struct hwtstamp_config config;
33af6bcc
PO
4890 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4891 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4892 u32 tsync_rx_ctl_type = 0;
4893 u32 tsync_rx_cfg = 0;
4894 int is_l4 = 0;
4895 int is_l2 = 0;
4896 short port = 319; /* PTP */
4897 u32 regval;
c6cb090b
PO
4898
4899 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4900 return -EFAULT;
4901
4902 /* reserved for future extensions */
4903 if (config.flags)
4904 return -EINVAL;
4905
33af6bcc
PO
4906 switch (config.tx_type) {
4907 case HWTSTAMP_TX_OFF:
4908 tsync_tx_ctl_bit = 0;
4909 break;
4910 case HWTSTAMP_TX_ON:
4911 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4912 break;
4913 default:
4914 return -ERANGE;
4915 }
4916
4917 switch (config.rx_filter) {
4918 case HWTSTAMP_FILTER_NONE:
4919 tsync_rx_ctl_bit = 0;
4920 break;
4921 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4922 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4923 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4924 case HWTSTAMP_FILTER_ALL:
4925 /*
4926 * register TSYNCRXCFG must be set, therefore it is not
4927 * possible to time stamp both Sync and Delay_Req messages
4928 * => fall back to time stamping all packets
4929 */
4930 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4931 config.rx_filter = HWTSTAMP_FILTER_ALL;
4932 break;
4933 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4934 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4935 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4936 is_l4 = 1;
4937 break;
4938 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4939 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4940 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4941 is_l4 = 1;
4942 break;
4943 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4944 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4945 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4946 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4947 is_l2 = 1;
4948 is_l4 = 1;
4949 config.rx_filter = HWTSTAMP_FILTER_SOME;
4950 break;
4951 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4952 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4953 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4954 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4955 is_l2 = 1;
4956 is_l4 = 1;
4957 config.rx_filter = HWTSTAMP_FILTER_SOME;
4958 break;
4959 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4960 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4961 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4962 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4963 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4964 is_l2 = 1;
4965 break;
4966 default:
4967 return -ERANGE;
4968 }
4969
4970 /* enable/disable TX */
4971 regval = rd32(E1000_TSYNCTXCTL);
4972 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4973 wr32(E1000_TSYNCTXCTL, regval);
4974
4975 /* enable/disable RX, define which PTP packets are time stamped */
4976 regval = rd32(E1000_TSYNCRXCTL);
4977 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4978 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4979 wr32(E1000_TSYNCRXCTL, regval);
4980 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4981
4982 /*
4983 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4984 * (Ethertype to filter on)
4985 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4986 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4987 */
4988 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4989
4990 /* L4 Queue Filter[0]: only filter by source and destination port */
4991 wr32(E1000_SPQF0, htons(port));
4992 wr32(E1000_IMIREXT(0), is_l4 ?
4993 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4994 wr32(E1000_IMIR(0), is_l4 ?
4995 (htons(port)
4996 | (0<<16) /* immediate interrupt disabled */
4997 | 0 /* (1<<17) bit cleared: do not bypass
4998 destination port check */)
4999 : 0);
5000 wr32(E1000_FTQF0, is_l4 ?
5001 (0x11 /* UDP */
5002 | (1<<15) /* VF not compared */
5003 | (1<<27) /* Enable Timestamping */
5004 | (7<<28) /* only source port filter enabled,
5005 source/target address and protocol
5006 masked */)
5007 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5008 enabled */));
5009
5010 wrfl();
5011
5012 adapter->hwtstamp_config = config;
5013
5014 /* clear TX/RX time stamp registers, just to be sure */
5015 regval = rd32(E1000_TXSTMPH);
5016 regval = rd32(E1000_RXSTMPH);
c6cb090b 5017
33af6bcc
PO
5018 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5019 -EFAULT : 0;
c6cb090b
PO
5020}
5021
9d5c8243
AK
5022/**
5023 * igb_ioctl -
5024 * @netdev:
5025 * @ifreq:
5026 * @cmd:
5027 **/
5028static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5029{
5030 switch (cmd) {
5031 case SIOCGMIIPHY:
5032 case SIOCGMIIREG:
5033 case SIOCSMIIREG:
5034 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5035 case SIOCSHWTSTAMP:
5036 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5037 default:
5038 return -EOPNOTSUPP;
5039 }
5040}
5041
009bc06e
AD
5042s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5043{
5044 struct igb_adapter *adapter = hw->back;
5045 u16 cap_offset;
5046
5047 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5048 if (!cap_offset)
5049 return -E1000_ERR_CONFIG;
5050
5051 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5052
5053 return 0;
5054}
5055
5056s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5057{
5058 struct igb_adapter *adapter = hw->back;
5059 u16 cap_offset;
5060
5061 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5062 if (!cap_offset)
5063 return -E1000_ERR_CONFIG;
5064
5065 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5066
5067 return 0;
5068}
5069
9d5c8243
AK
5070static void igb_vlan_rx_register(struct net_device *netdev,
5071 struct vlan_group *grp)
5072{
5073 struct igb_adapter *adapter = netdev_priv(netdev);
5074 struct e1000_hw *hw = &adapter->hw;
5075 u32 ctrl, rctl;
5076
5077 igb_irq_disable(adapter);
5078 adapter->vlgrp = grp;
5079
5080 if (grp) {
5081 /* enable VLAN tag insert/strip */
5082 ctrl = rd32(E1000_CTRL);
5083 ctrl |= E1000_CTRL_VME;
5084 wr32(E1000_CTRL, ctrl);
5085
5086 /* enable VLAN receive filtering */
5087 rctl = rd32(E1000_RCTL);
9d5c8243
AK
5088 rctl &= ~E1000_RCTL_CFIEN;
5089 wr32(E1000_RCTL, rctl);
5090 igb_update_mng_vlan(adapter);
9d5c8243
AK
5091 } else {
5092 /* disable VLAN tag insert/strip */
5093 ctrl = rd32(E1000_CTRL);
5094 ctrl &= ~E1000_CTRL_VME;
5095 wr32(E1000_CTRL, ctrl);
5096
9d5c8243
AK
5097 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5098 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5099 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5100 }
9d5c8243
AK
5101 }
5102
e1739522
AD
5103 igb_rlpml_set(adapter);
5104
9d5c8243
AK
5105 if (!test_bit(__IGB_DOWN, &adapter->state))
5106 igb_irq_enable(adapter);
5107}
5108
5109static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5110{
5111 struct igb_adapter *adapter = netdev_priv(netdev);
5112 struct e1000_hw *hw = &adapter->hw;
4ae196df 5113 int pf_id = adapter->vfs_allocated_count;
9d5c8243 5114
28b0759c 5115 if ((hw->mng_cookie.status &
9d5c8243
AK
5116 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5117 (vid == adapter->mng_vlan_id))
5118 return;
4ae196df
AD
5119
5120 /* add vid to vlvf if sr-iov is enabled,
5121 * if that fails add directly to filter table */
5122 if (igb_vlvf_set(adapter, vid, true, pf_id))
5123 igb_vfta_set(hw, vid, true);
5124
9d5c8243
AK
5125}
5126
5127static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5128{
5129 struct igb_adapter *adapter = netdev_priv(netdev);
5130 struct e1000_hw *hw = &adapter->hw;
4ae196df 5131 int pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
5132
5133 igb_irq_disable(adapter);
5134 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5135
5136 if (!test_bit(__IGB_DOWN, &adapter->state))
5137 igb_irq_enable(adapter);
5138
5139 if ((adapter->hw.mng_cookie.status &
5140 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5141 (vid == adapter->mng_vlan_id)) {
5142 /* release control to f/w */
5143 igb_release_hw_control(adapter);
5144 return;
5145 }
5146
4ae196df
AD
5147 /* remove vid from vlvf if sr-iov is enabled,
5148 * if not in vlvf remove from vfta */
5149 if (igb_vlvf_set(adapter, vid, false, pf_id))
5150 igb_vfta_set(hw, vid, false);
9d5c8243
AK
5151}
5152
5153static void igb_restore_vlan(struct igb_adapter *adapter)
5154{
5155 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5156
5157 if (adapter->vlgrp) {
5158 u16 vid;
5159 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5160 if (!vlan_group_get_device(adapter->vlgrp, vid))
5161 continue;
5162 igb_vlan_rx_add_vid(adapter->netdev, vid);
5163 }
5164 }
5165}
5166
5167int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5168{
5169 struct e1000_mac_info *mac = &adapter->hw.mac;
5170
5171 mac->autoneg = 0;
5172
9d5c8243
AK
5173 switch (spddplx) {
5174 case SPEED_10 + DUPLEX_HALF:
5175 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5176 break;
5177 case SPEED_10 + DUPLEX_FULL:
5178 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5179 break;
5180 case SPEED_100 + DUPLEX_HALF:
5181 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5182 break;
5183 case SPEED_100 + DUPLEX_FULL:
5184 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5185 break;
5186 case SPEED_1000 + DUPLEX_FULL:
5187 mac->autoneg = 1;
5188 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5189 break;
5190 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5191 default:
5192 dev_err(&adapter->pdev->dev,
5193 "Unsupported Speed/Duplex configuration\n");
5194 return -EINVAL;
5195 }
5196 return 0;
5197}
5198
3fe7c4c9 5199static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
5200{
5201 struct net_device *netdev = pci_get_drvdata(pdev);
5202 struct igb_adapter *adapter = netdev_priv(netdev);
5203 struct e1000_hw *hw = &adapter->hw;
2d064c06 5204 u32 ctrl, rctl, status;
9d5c8243
AK
5205 u32 wufc = adapter->wol;
5206#ifdef CONFIG_PM
5207 int retval = 0;
5208#endif
5209
5210 netif_device_detach(netdev);
5211
a88f10ec
AD
5212 if (netif_running(netdev))
5213 igb_close(netdev);
5214
5215 igb_reset_interrupt_capability(adapter);
5216
5217 igb_free_queues(adapter);
9d5c8243
AK
5218
5219#ifdef CONFIG_PM
5220 retval = pci_save_state(pdev);
5221 if (retval)
5222 return retval;
5223#endif
5224
5225 status = rd32(E1000_STATUS);
5226 if (status & E1000_STATUS_LU)
5227 wufc &= ~E1000_WUFC_LNKC;
5228
5229 if (wufc) {
5230 igb_setup_rctl(adapter);
5231 igb_set_multi(netdev);
5232
5233 /* turn on all-multi mode if wake on multicast is enabled */
5234 if (wufc & E1000_WUFC_MC) {
5235 rctl = rd32(E1000_RCTL);
5236 rctl |= E1000_RCTL_MPE;
5237 wr32(E1000_RCTL, rctl);
5238 }
5239
5240 ctrl = rd32(E1000_CTRL);
5241 /* advertise wake from D3Cold */
5242 #define E1000_CTRL_ADVD3WUC 0x00100000
5243 /* phy power management enable */
5244 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5245 ctrl |= E1000_CTRL_ADVD3WUC;
5246 wr32(E1000_CTRL, ctrl);
5247
9d5c8243
AK
5248 /* Allow time for pending master requests to run */
5249 igb_disable_pcie_master(&adapter->hw);
5250
5251 wr32(E1000_WUC, E1000_WUC_PME_EN);
5252 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5253 } else {
5254 wr32(E1000_WUC, 0);
5255 wr32(E1000_WUFC, 0);
9d5c8243
AK
5256 }
5257
3fe7c4c9
RW
5258 *enable_wake = wufc || adapter->en_mng_pt;
5259 if (!*enable_wake)
2d064c06 5260 igb_shutdown_fiber_serdes_link_82575(hw);
9d5c8243
AK
5261
5262 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5263 * would have already happened in close and is redundant. */
5264 igb_release_hw_control(adapter);
5265
5266 pci_disable_device(pdev);
5267
9d5c8243
AK
5268 return 0;
5269}
5270
5271#ifdef CONFIG_PM
3fe7c4c9
RW
5272static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5273{
5274 int retval;
5275 bool wake;
5276
5277 retval = __igb_shutdown(pdev, &wake);
5278 if (retval)
5279 return retval;
5280
5281 if (wake) {
5282 pci_prepare_to_sleep(pdev);
5283 } else {
5284 pci_wake_from_d3(pdev, false);
5285 pci_set_power_state(pdev, PCI_D3hot);
5286 }
5287
5288 return 0;
5289}
5290
9d5c8243
AK
5291static int igb_resume(struct pci_dev *pdev)
5292{
5293 struct net_device *netdev = pci_get_drvdata(pdev);
5294 struct igb_adapter *adapter = netdev_priv(netdev);
5295 struct e1000_hw *hw = &adapter->hw;
5296 u32 err;
5297
5298 pci_set_power_state(pdev, PCI_D0);
5299 pci_restore_state(pdev);
42bfd33a 5300
aed5dec3 5301 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5302 if (err) {
5303 dev_err(&pdev->dev,
5304 "igb: Cannot enable PCI device from suspend\n");
5305 return err;
5306 }
5307 pci_set_master(pdev);
5308
5309 pci_enable_wake(pdev, PCI_D3hot, 0);
5310 pci_enable_wake(pdev, PCI_D3cold, 0);
5311
a88f10ec
AD
5312 igb_set_interrupt_capability(adapter);
5313
5314 if (igb_alloc_queues(adapter)) {
5315 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5316 return -ENOMEM;
9d5c8243
AK
5317 }
5318
5319 /* e1000_power_up_phy(adapter); */
5320
5321 igb_reset(adapter);
a8564f03
AD
5322
5323 /* let the f/w know that the h/w is now under the control of the
5324 * driver. */
5325 igb_get_hw_control(adapter);
5326
9d5c8243
AK
5327 wr32(E1000_WUS, ~0);
5328
a88f10ec
AD
5329 if (netif_running(netdev)) {
5330 err = igb_open(netdev);
5331 if (err)
5332 return err;
5333 }
9d5c8243
AK
5334
5335 netif_device_attach(netdev);
5336
9d5c8243
AK
5337 return 0;
5338}
5339#endif
5340
5341static void igb_shutdown(struct pci_dev *pdev)
5342{
3fe7c4c9
RW
5343 bool wake;
5344
5345 __igb_shutdown(pdev, &wake);
5346
5347 if (system_state == SYSTEM_POWER_OFF) {
5348 pci_wake_from_d3(pdev, wake);
5349 pci_set_power_state(pdev, PCI_D3hot);
5350 }
9d5c8243
AK
5351}
5352
5353#ifdef CONFIG_NET_POLL_CONTROLLER
5354/*
5355 * Polling 'interrupt' - used by things like netconsole to send skbs
5356 * without having to re-enable interrupts. It's not called while
5357 * the interrupt routine is executing.
5358 */
5359static void igb_netpoll(struct net_device *netdev)
5360{
5361 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5362 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5363 int i;
9d5c8243 5364
eebbbdba
AD
5365 if (!adapter->msix_entries) {
5366 igb_irq_disable(adapter);
5367 napi_schedule(&adapter->rx_ring[0].napi);
5368 return;
5369 }
9d5c8243 5370
eebbbdba
AD
5371 for (i = 0; i < adapter->num_tx_queues; i++) {
5372 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5373 wr32(E1000_EIMC, tx_ring->eims_value);
5374 igb_clean_tx_irq(tx_ring);
5375 wr32(E1000_EIMS, tx_ring->eims_value);
5376 }
9d5c8243 5377
eebbbdba
AD
5378 for (i = 0; i < adapter->num_rx_queues; i++) {
5379 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5380 wr32(E1000_EIMC, rx_ring->eims_value);
5381 napi_schedule(&rx_ring->napi);
5382 }
9d5c8243
AK
5383}
5384#endif /* CONFIG_NET_POLL_CONTROLLER */
5385
5386/**
5387 * igb_io_error_detected - called when PCI error is detected
5388 * @pdev: Pointer to PCI device
5389 * @state: The current pci connection state
5390 *
5391 * This function is called after a PCI bus error affecting
5392 * this device has been detected.
5393 */
5394static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5395 pci_channel_state_t state)
5396{
5397 struct net_device *netdev = pci_get_drvdata(pdev);
5398 struct igb_adapter *adapter = netdev_priv(netdev);
5399
5400 netif_device_detach(netdev);
5401
59ed6eec
AD
5402 if (state == pci_channel_io_perm_failure)
5403 return PCI_ERS_RESULT_DISCONNECT;
5404
9d5c8243
AK
5405 if (netif_running(netdev))
5406 igb_down(adapter);
5407 pci_disable_device(pdev);
5408
5409 /* Request a slot slot reset. */
5410 return PCI_ERS_RESULT_NEED_RESET;
5411}
5412
5413/**
5414 * igb_io_slot_reset - called after the pci bus has been reset.
5415 * @pdev: Pointer to PCI device
5416 *
5417 * Restart the card from scratch, as if from a cold-boot. Implementation
5418 * resembles the first-half of the igb_resume routine.
5419 */
5420static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5421{
5422 struct net_device *netdev = pci_get_drvdata(pdev);
5423 struct igb_adapter *adapter = netdev_priv(netdev);
5424 struct e1000_hw *hw = &adapter->hw;
40a914fa 5425 pci_ers_result_t result;
42bfd33a 5426 int err;
9d5c8243 5427
aed5dec3 5428 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
5429 dev_err(&pdev->dev,
5430 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
5431 result = PCI_ERS_RESULT_DISCONNECT;
5432 } else {
5433 pci_set_master(pdev);
5434 pci_restore_state(pdev);
9d5c8243 5435
40a914fa
AD
5436 pci_enable_wake(pdev, PCI_D3hot, 0);
5437 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 5438
40a914fa
AD
5439 igb_reset(adapter);
5440 wr32(E1000_WUS, ~0);
5441 result = PCI_ERS_RESULT_RECOVERED;
5442 }
9d5c8243 5443
ea943d41
JK
5444 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5445 if (err) {
5446 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5447 "failed 0x%0x\n", err);
5448 /* non-fatal, continue */
5449 }
40a914fa
AD
5450
5451 return result;
9d5c8243
AK
5452}
5453
5454/**
5455 * igb_io_resume - called when traffic can start flowing again.
5456 * @pdev: Pointer to PCI device
5457 *
5458 * This callback is called when the error recovery driver tells us that
5459 * its OK to resume normal operation. Implementation resembles the
5460 * second-half of the igb_resume routine.
5461 */
5462static void igb_io_resume(struct pci_dev *pdev)
5463{
5464 struct net_device *netdev = pci_get_drvdata(pdev);
5465 struct igb_adapter *adapter = netdev_priv(netdev);
5466
9d5c8243
AK
5467 if (netif_running(netdev)) {
5468 if (igb_up(adapter)) {
5469 dev_err(&pdev->dev, "igb_up failed after reset\n");
5470 return;
5471 }
5472 }
5473
5474 netif_device_attach(netdev);
5475
5476 /* let the f/w know that the h/w is now under the control of the
5477 * driver. */
5478 igb_get_hw_control(adapter);
9d5c8243
AK
5479}
5480
4ae196df
AD
5481static int igb_set_vf_mac(struct igb_adapter *adapter,
5482 int vf, unsigned char *mac_addr)
5483{
5484 struct e1000_hw *hw = &adapter->hw;
5485 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5486
5487 igb_rar_set(hw, mac_addr, rar_entry);
5488
37680117 5489 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df
AD
5490
5491 igb_set_rah_pool(hw, vf, rar_entry);
5492
5493 return 0;
5494}
5495
5496static void igb_vmm_control(struct igb_adapter *adapter)
5497{
5498 struct e1000_hw *hw = &adapter->hw;
5499 u32 reg_data;
5500
5501 if (!adapter->vfs_allocated_count)
5502 return;
5503
5504 /* VF's need PF reset indication before they
5505 * can send/receive mail */
5506 reg_data = rd32(E1000_CTRL_EXT);
5507 reg_data |= E1000_CTRL_EXT_PFRSTD;
5508 wr32(E1000_CTRL_EXT, reg_data);
5509
5510 igb_vmdq_set_loopback_pf(hw, true);
5511 igb_vmdq_set_replication_pf(hw, true);
5512}
5513
9d5c8243 5514/* igb_main.c */