[PATCH] PAL: Support of the fixed PHY
[linux-2.6-block.git] / drivers / net / fs_enet / fs_enet-main.c
CommitLineData
48257c4f
PA
1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
48257c4f
PA
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/sched.h>
22#include <linux/string.h>
23#include <linux/ptrace.h>
24#include <linux/errno.h>
25#include <linux/ioport.h>
26#include <linux/slab.h>
27#include <linux/interrupt.h>
28#include <linux/pci.h>
29#include <linux/init.h>
30#include <linux/delay.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/spinlock.h>
35#include <linux/mii.h>
36#include <linux/ethtool.h>
37#include <linux/bitops.h>
38#include <linux/fs.h>
f7b99969 39#include <linux/platform_device.h>
48257c4f
PA
40
41#include <linux/vmalloc.h>
42#include <asm/pgtable.h>
43
44#include <asm/pgtable.h>
45#include <asm/irq.h>
46#include <asm/uaccess.h>
47
48#include "fs_enet.h"
49
50/*************************************************/
51
52static char version[] __devinitdata =
53 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
54
55MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
56MODULE_DESCRIPTION("Freescale Ethernet Driver");
57MODULE_LICENSE("GPL");
58MODULE_VERSION(DRV_MODULE_VERSION);
59
8d3b33f6
RR
60int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
61module_param(fs_enet_debug, int, 0);
48257c4f
PA
62MODULE_PARM_DESC(fs_enet_debug,
63 "Freescale bitmapped debugging message enable value");
64
48257c4f
PA
65
66static void fs_set_multicast_list(struct net_device *dev)
67{
68 struct fs_enet_private *fep = netdev_priv(dev);
69
70 (*fep->ops->set_multicast_list)(dev);
71}
72
73/* NAPI receive function */
74static int fs_enet_rx_napi(struct net_device *dev, int *budget)
75{
76 struct fs_enet_private *fep = netdev_priv(dev);
77 const struct fs_platform_info *fpi = fep->fpi;
78 cbd_t *bdp;
79 struct sk_buff *skb, *skbn, *skbt;
80 int received = 0;
81 u16 pkt_len, sc;
82 int curidx;
83 int rx_work_limit = 0; /* pacify gcc */
84
85 rx_work_limit = min(dev->quota, *budget);
86
87 if (!netif_running(dev))
88 return 0;
89
90 /*
91 * First, grab all of the stats for the incoming packet.
92 * These get messed up if we get called due to a busy condition.
93 */
94 bdp = fep->cur_rx;
95
96 /* clear RX status bits for napi*/
97 (*fep->ops->napi_clear_rx_event)(dev);
98
99 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
100
101 curidx = bdp - fep->rx_bd_base;
102
103 /*
104 * Since we have allocated space to hold a complete frame,
105 * the last indicator should be set.
106 */
107 if ((sc & BD_ENET_RX_LAST) == 0)
108 printk(KERN_WARNING DRV_MODULE_NAME
109 ": %s rcv is not +last\n",
110 dev->name);
111
112 /*
113 * Check for errors.
114 */
115 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
116 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
117 fep->stats.rx_errors++;
118 /* Frame too long or too short. */
119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
120 fep->stats.rx_length_errors++;
121 /* Frame alignment */
122 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
123 fep->stats.rx_frame_errors++;
124 /* CRC Error */
125 if (sc & BD_ENET_RX_CR)
126 fep->stats.rx_crc_errors++;
127 /* FIFO overrun */
128 if (sc & BD_ENET_RX_OV)
129 fep->stats.rx_crc_errors++;
130
131 skb = fep->rx_skbuff[curidx];
132
34e30d61 133 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
48257c4f
PA
134 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
135 DMA_FROM_DEVICE);
136
137 skbn = skb;
138
139 } else {
140
141 /* napi, got packet but no quota */
142 if (--rx_work_limit < 0)
143 break;
144
145 skb = fep->rx_skbuff[curidx];
146
34e30d61 147 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
48257c4f
PA
148 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
149 DMA_FROM_DEVICE);
150
151 /*
152 * Process the incoming frame.
153 */
154 fep->stats.rx_packets++;
155 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
156 fep->stats.rx_bytes += pkt_len + 4;
157
158 if (pkt_len <= fpi->rx_copybreak) {
159 /* +2 to make IP header L1 cache aligned */
160 skbn = dev_alloc_skb(pkt_len + 2);
161 if (skbn != NULL) {
162 skb_reserve(skbn, 2); /* align IP header */
163 memcpy(skbn->data, skb->data, pkt_len);
164 /* swap */
165 skbt = skb;
166 skb = skbn;
167 skbn = skbt;
168 }
169 } else
170 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
171
172 if (skbn != NULL) {
173 skb->dev = dev;
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
176 received++;
177 netif_receive_skb(skb);
178 } else {
179 printk(KERN_WARNING DRV_MODULE_NAME
180 ": %s Memory squeeze, dropping packet.\n",
181 dev->name);
182 fep->stats.rx_dropped++;
183 skbn = skb;
184 }
185 }
186
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 DMA_FROM_DEVICE));
191 CBDW_DATLEN(bdp, 0);
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194 /*
195 * Update BD pointer to next entry.
196 */
197 if ((sc & BD_ENET_RX_WRAP) == 0)
198 bdp++;
199 else
200 bdp = fep->rx_bd_base;
201
202 (*fep->ops->rx_bd_done)(dev);
203 }
204
205 fep->cur_rx = bdp;
206
207 dev->quota -= received;
208 *budget -= received;
209
210 if (rx_work_limit < 0)
211 return 1; /* not done */
212
213 /* done */
214 netif_rx_complete(dev);
215
216 (*fep->ops->napi_enable_rx)(dev);
217
218 return 0;
219}
220
221/* non NAPI receive function */
222static int fs_enet_rx_non_napi(struct net_device *dev)
223{
224 struct fs_enet_private *fep = netdev_priv(dev);
225 const struct fs_platform_info *fpi = fep->fpi;
226 cbd_t *bdp;
227 struct sk_buff *skb, *skbn, *skbt;
228 int received = 0;
229 u16 pkt_len, sc;
230 int curidx;
231 /*
232 * First, grab all of the stats for the incoming packet.
233 * These get messed up if we get called due to a busy condition.
234 */
235 bdp = fep->cur_rx;
236
237 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
238
239 curidx = bdp - fep->rx_bd_base;
240
241 /*
242 * Since we have allocated space to hold a complete frame,
243 * the last indicator should be set.
244 */
245 if ((sc & BD_ENET_RX_LAST) == 0)
246 printk(KERN_WARNING DRV_MODULE_NAME
247 ": %s rcv is not +last\n",
248 dev->name);
249
250 /*
251 * Check for errors.
252 */
253 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
254 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
255 fep->stats.rx_errors++;
256 /* Frame too long or too short. */
257 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
258 fep->stats.rx_length_errors++;
259 /* Frame alignment */
260 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
261 fep->stats.rx_frame_errors++;
262 /* CRC Error */
263 if (sc & BD_ENET_RX_CR)
264 fep->stats.rx_crc_errors++;
265 /* FIFO overrun */
266 if (sc & BD_ENET_RX_OV)
267 fep->stats.rx_crc_errors++;
268
269 skb = fep->rx_skbuff[curidx];
270
34e30d61 271 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
48257c4f
PA
272 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
273 DMA_FROM_DEVICE);
274
275 skbn = skb;
276
277 } else {
278
279 skb = fep->rx_skbuff[curidx];
280
34e30d61 281 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
48257c4f
PA
282 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
283 DMA_FROM_DEVICE);
284
285 /*
286 * Process the incoming frame.
287 */
288 fep->stats.rx_packets++;
289 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
290 fep->stats.rx_bytes += pkt_len + 4;
291
292 if (pkt_len <= fpi->rx_copybreak) {
293 /* +2 to make IP header L1 cache aligned */
294 skbn = dev_alloc_skb(pkt_len + 2);
295 if (skbn != NULL) {
296 skb_reserve(skbn, 2); /* align IP header */
297 memcpy(skbn->data, skb->data, pkt_len);
298 /* swap */
299 skbt = skb;
300 skb = skbn;
301 skbn = skbt;
302 }
303 } else
304 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
305
306 if (skbn != NULL) {
307 skb->dev = dev;
308 skb_put(skb, pkt_len); /* Make room */
309 skb->protocol = eth_type_trans(skb, dev);
310 received++;
311 netif_rx(skb);
312 } else {
313 printk(KERN_WARNING DRV_MODULE_NAME
314 ": %s Memory squeeze, dropping packet.\n",
315 dev->name);
316 fep->stats.rx_dropped++;
317 skbn = skb;
318 }
319 }
320
321 fep->rx_skbuff[curidx] = skbn;
322 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
323 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
324 DMA_FROM_DEVICE));
325 CBDW_DATLEN(bdp, 0);
326 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
327
328 /*
329 * Update BD pointer to next entry.
330 */
331 if ((sc & BD_ENET_RX_WRAP) == 0)
332 bdp++;
333 else
334 bdp = fep->rx_bd_base;
335
336 (*fep->ops->rx_bd_done)(dev);
337 }
338
339 fep->cur_rx = bdp;
340
341 return 0;
342}
343
344static void fs_enet_tx(struct net_device *dev)
345{
346 struct fs_enet_private *fep = netdev_priv(dev);
347 cbd_t *bdp;
348 struct sk_buff *skb;
349 int dirtyidx, do_wake, do_restart;
350 u16 sc;
351
352 spin_lock(&fep->lock);
353 bdp = fep->dirty_tx;
354
355 do_wake = do_restart = 0;
356 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
357
358 dirtyidx = bdp - fep->tx_bd_base;
359
360 if (fep->tx_free == fep->tx_ring)
361 break;
362
363 skb = fep->tx_skbuff[dirtyidx];
364
365 /*
366 * Check for errors.
367 */
368 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
369 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
370
371 if (sc & BD_ENET_TX_HB) /* No heartbeat */
372 fep->stats.tx_heartbeat_errors++;
373 if (sc & BD_ENET_TX_LC) /* Late collision */
374 fep->stats.tx_window_errors++;
375 if (sc & BD_ENET_TX_RL) /* Retrans limit */
376 fep->stats.tx_aborted_errors++;
377 if (sc & BD_ENET_TX_UN) /* Underrun */
378 fep->stats.tx_fifo_errors++;
379 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
380 fep->stats.tx_carrier_errors++;
381
382 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
383 fep->stats.tx_errors++;
384 do_restart = 1;
385 }
386 } else
387 fep->stats.tx_packets++;
388
389 if (sc & BD_ENET_TX_READY)
390 printk(KERN_WARNING DRV_MODULE_NAME
391 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
392 dev->name);
393
394 /*
395 * Deferred means some collisions occurred during transmit,
396 * but we eventually sent the packet OK.
397 */
398 if (sc & BD_ENET_TX_DEF)
399 fep->stats.collisions++;
400
401 /* unmap */
34e30d61
PA
402 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
403 skb->len, DMA_TO_DEVICE);
48257c4f
PA
404
405 /*
406 * Free the sk buffer associated with this last transmit.
407 */
408 dev_kfree_skb_irq(skb);
409 fep->tx_skbuff[dirtyidx] = NULL;
410
411 /*
412 * Update pointer to next buffer descriptor to be transmitted.
413 */
414 if ((sc & BD_ENET_TX_WRAP) == 0)
415 bdp++;
416 else
417 bdp = fep->tx_bd_base;
418
419 /*
420 * Since we have freed up a buffer, the ring is no longer
421 * full.
422 */
423 if (!fep->tx_free++)
424 do_wake = 1;
425 }
426
427 fep->dirty_tx = bdp;
428
429 if (do_restart)
430 (*fep->ops->tx_restart)(dev);
431
432 spin_unlock(&fep->lock);
433
434 if (do_wake)
435 netif_wake_queue(dev);
436}
437
438/*
439 * The interrupt handler.
440 * This is called from the MPC core interrupt.
441 */
442static irqreturn_t
443fs_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
444{
445 struct net_device *dev = dev_id;
446 struct fs_enet_private *fep;
447 const struct fs_platform_info *fpi;
448 u32 int_events;
449 u32 int_clr_events;
450 int nr, napi_ok;
451 int handled;
452
453 fep = netdev_priv(dev);
454 fpi = fep->fpi;
455
456 nr = 0;
457 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
458
459 nr++;
460
461 int_clr_events = int_events;
462 if (fpi->use_napi)
463 int_clr_events &= ~fep->ev_napi_rx;
464
465 (*fep->ops->clear_int_events)(dev, int_clr_events);
466
467 if (int_events & fep->ev_err)
468 (*fep->ops->ev_error)(dev, int_events);
469
470 if (int_events & fep->ev_rx) {
471 if (!fpi->use_napi)
472 fs_enet_rx_non_napi(dev);
473 else {
474 napi_ok = netif_rx_schedule_prep(dev);
475
476 (*fep->ops->napi_disable_rx)(dev);
477 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
478
479 /* NOTE: it is possible for FCCs in NAPI mode */
480 /* to submit a spurious interrupt while in poll */
481 if (napi_ok)
482 __netif_rx_schedule(dev);
483 }
484 }
485
486 if (int_events & fep->ev_tx)
487 fs_enet_tx(dev);
488 }
489
490 handled = nr > 0;
491 return IRQ_RETVAL(handled);
492}
493
494void fs_init_bds(struct net_device *dev)
495{
496 struct fs_enet_private *fep = netdev_priv(dev);
497 cbd_t *bdp;
498 struct sk_buff *skb;
499 int i;
500
501 fs_cleanup_bds(dev);
502
503 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
504 fep->tx_free = fep->tx_ring;
505 fep->cur_rx = fep->rx_bd_base;
506
507 /*
508 * Initialize the receive buffer descriptors.
509 */
510 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
511 skb = dev_alloc_skb(ENET_RX_FRSIZE);
512 if (skb == NULL) {
513 printk(KERN_WARNING DRV_MODULE_NAME
514 ": %s Memory squeeze, unable to allocate skb\n",
515 dev->name);
516 break;
517 }
518 fep->rx_skbuff[i] = skb;
519 skb->dev = dev;
520 CBDW_BUFADDR(bdp,
521 dma_map_single(fep->dev, skb->data,
522 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
523 DMA_FROM_DEVICE));
524 CBDW_DATLEN(bdp, 0); /* zero */
525 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
526 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
527 }
528 /*
529 * if we failed, fillup remainder
530 */
531 for (; i < fep->rx_ring; i++, bdp++) {
532 fep->rx_skbuff[i] = NULL;
533 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
534 }
535
536 /*
537 * ...and the same for transmit.
538 */
539 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
540 fep->tx_skbuff[i] = NULL;
541 CBDW_BUFADDR(bdp, 0);
542 CBDW_DATLEN(bdp, 0);
543 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
544 }
545}
546
547void fs_cleanup_bds(struct net_device *dev)
548{
549 struct fs_enet_private *fep = netdev_priv(dev);
550 struct sk_buff *skb;
34e30d61 551 cbd_t *bdp;
48257c4f
PA
552 int i;
553
554 /*
555 * Reset SKB transmit buffers.
556 */
34e30d61 557 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
48257c4f
PA
558 if ((skb = fep->tx_skbuff[i]) == NULL)
559 continue;
560
561 /* unmap */
34e30d61
PA
562 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
563 skb->len, DMA_TO_DEVICE);
48257c4f
PA
564
565 fep->tx_skbuff[i] = NULL;
566 dev_kfree_skb(skb);
567 }
568
569 /*
570 * Reset SKB receive buffers
571 */
34e30d61 572 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
48257c4f
PA
573 if ((skb = fep->rx_skbuff[i]) == NULL)
574 continue;
575
576 /* unmap */
34e30d61 577 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
48257c4f
PA
578 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
579 DMA_FROM_DEVICE);
580
581 fep->rx_skbuff[i] = NULL;
582
583 dev_kfree_skb(skb);
584 }
585}
586
587/**********************************************************************************/
588
589static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
590{
591 struct fs_enet_private *fep = netdev_priv(dev);
592 cbd_t *bdp;
593 int curidx;
594 u16 sc;
595 unsigned long flags;
596
597 spin_lock_irqsave(&fep->tx_lock, flags);
598
599 /*
600 * Fill in a Tx ring entry
601 */
602 bdp = fep->cur_tx;
603
604 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
605 netif_stop_queue(dev);
606 spin_unlock_irqrestore(&fep->tx_lock, flags);
607
608 /*
609 * Ooops. All transmit buffers are full. Bail out.
610 * This should not happen, since the tx queue should be stopped.
611 */
612 printk(KERN_WARNING DRV_MODULE_NAME
613 ": %s tx queue full!.\n", dev->name);
614 return NETDEV_TX_BUSY;
615 }
616
617 curidx = bdp - fep->tx_bd_base;
618 /*
619 * Clear all of the status flags.
620 */
621 CBDC_SC(bdp, BD_ENET_TX_STATS);
622
623 /*
624 * Save skb pointer.
625 */
626 fep->tx_skbuff[curidx] = skb;
627
628 fep->stats.tx_bytes += skb->len;
629
630 /*
631 * Push the data cache so the CPM does not get stale memory data.
632 */
633 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
634 skb->data, skb->len, DMA_TO_DEVICE));
635 CBDW_DATLEN(bdp, skb->len);
636
637 dev->trans_start = jiffies;
638
639 /*
640 * If this was the last BD in the ring, start at the beginning again.
641 */
642 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
643 fep->cur_tx++;
644 else
645 fep->cur_tx = fep->tx_bd_base;
646
647 if (!--fep->tx_free)
648 netif_stop_queue(dev);
649
650 /* Trigger transmission start */
651 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
652 BD_ENET_TX_LAST | BD_ENET_TX_TC;
653
654 /* note that while FEC does not have this bit
655 * it marks it as available for software use
656 * yay for hw reuse :) */
657 if (skb->len <= 60)
658 sc |= BD_ENET_TX_PAD;
659 CBDS_SC(bdp, sc);
660
661 (*fep->ops->tx_kickstart)(dev);
662
663 spin_unlock_irqrestore(&fep->tx_lock, flags);
664
665 return NETDEV_TX_OK;
666}
667
668static int fs_request_irq(struct net_device *dev, int irq, const char *name,
669 irqreturn_t (*irqf)(int irq, void *dev_id, struct pt_regs *regs))
670{
671 struct fs_enet_private *fep = netdev_priv(dev);
672
673 (*fep->ops->pre_request_irq)(dev, irq);
1fb9df5d 674 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
48257c4f
PA
675}
676
677static void fs_free_irq(struct net_device *dev, int irq)
678{
679 struct fs_enet_private *fep = netdev_priv(dev);
680
681 free_irq(irq, dev);
682 (*fep->ops->post_free_irq)(dev, irq);
683}
684
685/**********************************************************************************/
686
687/* This interrupt occurs when the PHY detects a link change. */
688static irqreturn_t
689fs_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs)
690{
691 struct net_device *dev = dev_id;
692 struct fs_enet_private *fep;
693 const struct fs_platform_info *fpi;
694
695 fep = netdev_priv(dev);
696 fpi = fep->fpi;
697
698 /*
699 * Acknowledge the interrupt if possible. If we have not
700 * found the PHY yet we can't process or acknowledge the
701 * interrupt now. Instead we ignore this interrupt for now,
702 * which we can do since it is edge triggered. It will be
703 * acknowledged later by fs_enet_open().
704 */
705 if (!fep->phy)
706 return IRQ_NONE;
707
708 fs_mii_ack_int(dev);
709 fs_mii_link_status_change_check(dev, 0);
710
711 return IRQ_HANDLED;
712}
713
714static void fs_timeout(struct net_device *dev)
715{
716 struct fs_enet_private *fep = netdev_priv(dev);
717 unsigned long flags;
718 int wake = 0;
719
720 fep->stats.tx_errors++;
721
722 spin_lock_irqsave(&fep->lock, flags);
723
724 if (dev->flags & IFF_UP) {
725 (*fep->ops->stop)(dev);
726 (*fep->ops->restart)(dev);
727 }
728
729 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
730 spin_unlock_irqrestore(&fep->lock, flags);
731
732 if (wake)
733 netif_wake_queue(dev);
734}
735
736static int fs_enet_open(struct net_device *dev)
737{
738 struct fs_enet_private *fep = netdev_priv(dev);
739 const struct fs_platform_info *fpi = fep->fpi;
740 int r;
741
742 /* Install our interrupt handler. */
743 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
744 if (r != 0) {
745 printk(KERN_ERR DRV_MODULE_NAME
746 ": %s Could not allocate FEC IRQ!", dev->name);
747 return -EINVAL;
748 }
749
750 /* Install our phy interrupt handler */
751 if (fpi->phy_irq != -1) {
752
753 r = fs_request_irq(dev, fpi->phy_irq, "fs_enet-phy", fs_mii_link_interrupt);
754 if (r != 0) {
755 printk(KERN_ERR DRV_MODULE_NAME
756 ": %s Could not allocate PHY IRQ!", dev->name);
757 fs_free_irq(dev, fep->interrupt);
758 return -EINVAL;
759 }
760 }
761
762 fs_mii_startup(dev);
763 netif_carrier_off(dev);
764 fs_mii_link_status_change_check(dev, 1);
765
766 return 0;
767}
768
769static int fs_enet_close(struct net_device *dev)
770{
771 struct fs_enet_private *fep = netdev_priv(dev);
772 const struct fs_platform_info *fpi = fep->fpi;
773 unsigned long flags;
774
775 netif_stop_queue(dev);
776 netif_carrier_off(dev);
777 fs_mii_shutdown(dev);
778
779 spin_lock_irqsave(&fep->lock, flags);
780 (*fep->ops->stop)(dev);
781 spin_unlock_irqrestore(&fep->lock, flags);
782
783 /* release any irqs */
784 if (fpi->phy_irq != -1)
785 fs_free_irq(dev, fpi->phy_irq);
786 fs_free_irq(dev, fep->interrupt);
787
788 return 0;
789}
790
791static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
792{
793 struct fs_enet_private *fep = netdev_priv(dev);
794 return &fep->stats;
795}
796
797/*************************************************************************/
798
799static void fs_get_drvinfo(struct net_device *dev,
800 struct ethtool_drvinfo *info)
801{
802 strcpy(info->driver, DRV_MODULE_NAME);
803 strcpy(info->version, DRV_MODULE_VERSION);
804}
805
806static int fs_get_regs_len(struct net_device *dev)
807{
808 struct fs_enet_private *fep = netdev_priv(dev);
809
810 return (*fep->ops->get_regs_len)(dev);
811}
812
813static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
814 void *p)
815{
816 struct fs_enet_private *fep = netdev_priv(dev);
817 unsigned long flags;
818 int r, len;
819
820 len = regs->len;
821
822 spin_lock_irqsave(&fep->lock, flags);
823 r = (*fep->ops->get_regs)(dev, p, &len);
824 spin_unlock_irqrestore(&fep->lock, flags);
825
826 if (r == 0)
827 regs->version = 0;
828}
829
830static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
831{
832 struct fs_enet_private *fep = netdev_priv(dev);
833 unsigned long flags;
834 int rc;
835
836 spin_lock_irqsave(&fep->lock, flags);
837 rc = mii_ethtool_gset(&fep->mii_if, cmd);
838 spin_unlock_irqrestore(&fep->lock, flags);
839
840 return rc;
841}
842
843static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
844{
845 struct fs_enet_private *fep = netdev_priv(dev);
846 unsigned long flags;
847 int rc;
848
849 spin_lock_irqsave(&fep->lock, flags);
850 rc = mii_ethtool_sset(&fep->mii_if, cmd);
851 spin_unlock_irqrestore(&fep->lock, flags);
852
853 return rc;
854}
855
856static int fs_nway_reset(struct net_device *dev)
857{
858 struct fs_enet_private *fep = netdev_priv(dev);
859 return mii_nway_restart(&fep->mii_if);
860}
861
862static u32 fs_get_msglevel(struct net_device *dev)
863{
864 struct fs_enet_private *fep = netdev_priv(dev);
865 return fep->msg_enable;
866}
867
868static void fs_set_msglevel(struct net_device *dev, u32 value)
869{
870 struct fs_enet_private *fep = netdev_priv(dev);
871 fep->msg_enable = value;
872}
873
874static struct ethtool_ops fs_ethtool_ops = {
875 .get_drvinfo = fs_get_drvinfo,
876 .get_regs_len = fs_get_regs_len,
877 .get_settings = fs_get_settings,
878 .set_settings = fs_set_settings,
879 .nway_reset = fs_nway_reset,
880 .get_link = ethtool_op_get_link,
881 .get_msglevel = fs_get_msglevel,
882 .set_msglevel = fs_set_msglevel,
883 .get_tx_csum = ethtool_op_get_tx_csum,
884 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
885 .get_sg = ethtool_op_get_sg,
886 .set_sg = ethtool_op_set_sg,
887 .get_regs = fs_get_regs,
888};
889
890static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
891{
892 struct fs_enet_private *fep = netdev_priv(dev);
893 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
894 unsigned long flags;
895 int rc;
896
897 if (!netif_running(dev))
898 return -EINVAL;
899
900 spin_lock_irqsave(&fep->lock, flags);
901 rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
902 spin_unlock_irqrestore(&fep->lock, flags);
903 return rc;
904}
905
906extern int fs_mii_connect(struct net_device *dev);
907extern void fs_mii_disconnect(struct net_device *dev);
908
909static struct net_device *fs_init_instance(struct device *dev,
910 const struct fs_platform_info *fpi)
911{
912 struct net_device *ndev = NULL;
913 struct fs_enet_private *fep = NULL;
914 int privsize, i, r, err = 0, registered = 0;
915
916 /* guard */
917 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
918 return ERR_PTR(-EINVAL);
919
920 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
921 (fpi->rx_ring + fpi->tx_ring));
922
923 ndev = alloc_etherdev(privsize);
924 if (!ndev) {
925 err = -ENOMEM;
926 goto err;
927 }
928 SET_MODULE_OWNER(ndev);
929
930 fep = netdev_priv(ndev);
931 memset(fep, 0, privsize); /* clear everything */
932
933 fep->dev = dev;
934 dev_set_drvdata(dev, ndev);
935 fep->fpi = fpi;
936 if (fpi->init_ioports)
937 fpi->init_ioports();
938
939#ifdef CONFIG_FS_ENET_HAS_FEC
940 if (fs_get_fec_index(fpi->fs_no) >= 0)
941 fep->ops = &fs_fec_ops;
942#endif
943
944#ifdef CONFIG_FS_ENET_HAS_SCC
945 if (fs_get_scc_index(fpi->fs_no) >=0 )
946 fep->ops = &fs_scc_ops;
947#endif
948
949#ifdef CONFIG_FS_ENET_HAS_FCC
950 if (fs_get_fcc_index(fpi->fs_no) >= 0)
951 fep->ops = &fs_fcc_ops;
952#endif
953
954 if (fep->ops == NULL) {
955 printk(KERN_ERR DRV_MODULE_NAME
956 ": %s No matching ops found (%d).\n",
957 ndev->name, fpi->fs_no);
958 err = -EINVAL;
959 goto err;
960 }
961
962 r = (*fep->ops->setup_data)(ndev);
963 if (r != 0) {
964 printk(KERN_ERR DRV_MODULE_NAME
965 ": %s setup_data failed\n",
966 ndev->name);
967 err = r;
968 goto err;
969 }
970
971 /* point rx_skbuff, tx_skbuff */
972 fep->rx_skbuff = (struct sk_buff **)&fep[1];
973 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
974
975 /* init locks */
976 spin_lock_init(&fep->lock);
977 spin_lock_init(&fep->tx_lock);
978
979 /*
980 * Set the Ethernet address.
981 */
982 for (i = 0; i < 6; i++)
983 ndev->dev_addr[i] = fpi->macaddr[i];
984
985 r = (*fep->ops->allocate_bd)(ndev);
986
987 if (fep->ring_base == NULL) {
988 printk(KERN_ERR DRV_MODULE_NAME
989 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
990 err = r;
991 goto err;
992 }
993
994 /*
995 * Set receive and transmit descriptor base.
996 */
997 fep->rx_bd_base = fep->ring_base;
998 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
999
1000 /* initialize ring size variables */
1001 fep->tx_ring = fpi->tx_ring;
1002 fep->rx_ring = fpi->rx_ring;
1003
1004 /*
1005 * The FEC Ethernet specific entries in the device structure.
1006 */
1007 ndev->open = fs_enet_open;
1008 ndev->hard_start_xmit = fs_enet_start_xmit;
1009 ndev->tx_timeout = fs_timeout;
1010 ndev->watchdog_timeo = 2 * HZ;
1011 ndev->stop = fs_enet_close;
1012 ndev->get_stats = fs_enet_get_stats;
1013 ndev->set_multicast_list = fs_set_multicast_list;
1014 if (fpi->use_napi) {
1015 ndev->poll = fs_enet_rx_napi;
1016 ndev->weight = fpi->napi_weight;
1017 }
1018 ndev->ethtool_ops = &fs_ethtool_ops;
1019 ndev->do_ioctl = fs_ioctl;
1020
1021 init_timer(&fep->phy_timer_list);
1022
1023 netif_carrier_off(ndev);
1024
1025 err = register_netdev(ndev);
1026 if (err != 0) {
1027 printk(KERN_ERR DRV_MODULE_NAME
1028 ": %s register_netdev failed.\n", ndev->name);
1029 goto err;
1030 }
1031 registered = 1;
1032
1033 err = fs_mii_connect(ndev);
1034 if (err != 0) {
1035 printk(KERN_ERR DRV_MODULE_NAME
1036 ": %s fs_mii_connect failed.\n", ndev->name);
1037 goto err;
1038 }
1039
1040 return ndev;
1041
1042 err:
1043 if (ndev != NULL) {
1044
1045 if (registered)
1046 unregister_netdev(ndev);
1047
1048 if (fep != NULL) {
1049 (*fep->ops->free_bd)(ndev);
1050 (*fep->ops->cleanup_data)(ndev);
1051 }
1052
1053 free_netdev(ndev);
1054 }
1055
1056 dev_set_drvdata(dev, NULL);
1057
1058 return ERR_PTR(err);
1059}
1060
1061static int fs_cleanup_instance(struct net_device *ndev)
1062{
1063 struct fs_enet_private *fep;
1064 const struct fs_platform_info *fpi;
1065 struct device *dev;
1066
1067 if (ndev == NULL)
1068 return -EINVAL;
1069
1070 fep = netdev_priv(ndev);
1071 if (fep == NULL)
1072 return -EINVAL;
1073
1074 fpi = fep->fpi;
1075
1076 fs_mii_disconnect(ndev);
1077
1078 unregister_netdev(ndev);
1079
1080 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1081 fep->ring_base, fep->ring_mem_addr);
1082
1083 /* reset it */
1084 (*fep->ops->cleanup_data)(ndev);
1085
1086 dev = fep->dev;
1087 if (dev != NULL) {
1088 dev_set_drvdata(dev, NULL);
1089 fep->dev = NULL;
1090 }
1091
1092 free_netdev(ndev);
1093
1094 return 0;
1095}
1096
1097/**************************************************************************************/
1098
1099/* handy pointer to the immap */
1100void *fs_enet_immap = NULL;
1101
1102static int setup_immap(void)
1103{
1104 phys_addr_t paddr = 0;
1105 unsigned long size = 0;
1106
1107#ifdef CONFIG_CPM1
1108 paddr = IMAP_ADDR;
1109 size = 0x10000; /* map 64K */
1110#endif
1111
1112#ifdef CONFIG_CPM2
1113 paddr = CPM_MAP_ADDR;
1114 size = 0x40000; /* map 256 K */
1115#endif
1116 fs_enet_immap = ioremap(paddr, size);
1117 if (fs_enet_immap == NULL)
1118 return -EBADF; /* XXX ahem; maybe just BUG_ON? */
1119
1120 return 0;
1121}
1122
1123static void cleanup_immap(void)
1124{
1125 if (fs_enet_immap != NULL) {
1126 iounmap(fs_enet_immap);
1127 fs_enet_immap = NULL;
1128 }
1129}
1130
1131/**************************************************************************************/
1132
1133static int __devinit fs_enet_probe(struct device *dev)
1134{
1135 struct net_device *ndev;
1136
1137 /* no fixup - no device */
1138 if (dev->platform_data == NULL) {
1139 printk(KERN_INFO "fs_enet: "
1140 "probe called with no platform data; "
1141 "remove unused devices\n");
1142 return -ENODEV;
1143 }
1144
1145 ndev = fs_init_instance(dev, dev->platform_data);
1146 if (IS_ERR(ndev))
1147 return PTR_ERR(ndev);
1148 return 0;
1149}
1150
1151static int fs_enet_remove(struct device *dev)
1152{
1153 return fs_cleanup_instance(dev_get_drvdata(dev));
1154}
1155
1156static struct device_driver fs_enet_fec_driver = {
1157 .name = "fsl-cpm-fec",
1158 .bus = &platform_bus_type,
1159 .probe = fs_enet_probe,
1160 .remove = fs_enet_remove,
1161#ifdef CONFIG_PM
1162/* .suspend = fs_enet_suspend, TODO */
1163/* .resume = fs_enet_resume, TODO */
1164#endif
1165};
1166
1167static struct device_driver fs_enet_scc_driver = {
1168 .name = "fsl-cpm-scc",
1169 .bus = &platform_bus_type,
1170 .probe = fs_enet_probe,
1171 .remove = fs_enet_remove,
1172#ifdef CONFIG_PM
1173/* .suspend = fs_enet_suspend, TODO */
1174/* .resume = fs_enet_resume, TODO */
1175#endif
1176};
1177
1178static struct device_driver fs_enet_fcc_driver = {
1179 .name = "fsl-cpm-fcc",
1180 .bus = &platform_bus_type,
1181 .probe = fs_enet_probe,
1182 .remove = fs_enet_remove,
1183#ifdef CONFIG_PM
1184/* .suspend = fs_enet_suspend, TODO */
1185/* .resume = fs_enet_resume, TODO */
1186#endif
1187};
1188
1189static int __init fs_init(void)
1190{
1191 int r;
1192
1193 printk(KERN_INFO
1194 "%s", version);
1195
1196 r = setup_immap();
1197 if (r != 0)
1198 return r;
1199 r = driver_register(&fs_enet_fec_driver);
1200 if (r != 0)
1201 goto err;
1202
1203 r = driver_register(&fs_enet_fcc_driver);
1204 if (r != 0)
1205 goto err;
1206
1207 r = driver_register(&fs_enet_scc_driver);
1208 if (r != 0)
1209 goto err;
1210
1211 return 0;
1212err:
1213 cleanup_immap();
1214 return r;
1215
1216}
1217
1218static void __exit fs_cleanup(void)
1219{
1220 driver_unregister(&fs_enet_fec_driver);
1221 driver_unregister(&fs_enet_fcc_driver);
1222 driver_unregister(&fs_enet_scc_driver);
1223 cleanup_immap();
1224}
1225
1226/**************************************************************************************/
1227
1228module_init(fs_init);
1229module_exit(fs_cleanup);