net/fec: improve pm for better suspend/resume
[linux-block.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
1da177e4
LT
20 */
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/string.h>
25#include <linux/ptrace.h>
26#include <linux/errno.h>
27#include <linux/ioport.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/spinlock.h>
37#include <linux/workqueue.h>
38#include <linux/bitops.h>
6f501b17
SH
39#include <linux/io.h>
40#include <linux/irq.h>
196719ec 41#include <linux/clk.h>
ead73183 42#include <linux/platform_device.h>
e6b043d5 43#include <linux/phy.h>
5eb32bd0 44#include <linux/fec.h>
1da177e4 45
080853af 46#include <asm/cacheflush.h>
196719ec
SH
47
48#ifndef CONFIG_ARCH_MXC
1da177e4
LT
49#include <asm/coldfire.h>
50#include <asm/mcfsim.h>
196719ec 51#endif
6f501b17 52
1da177e4 53#include "fec.h"
1da177e4 54
196719ec
SH
55#ifdef CONFIG_ARCH_MXC
56#include <mach/hardware.h>
57#define FEC_ALIGNMENT 0xf
58#else
59#define FEC_ALIGNMENT 0x3
60#endif
61
49da97dc
SG
62static unsigned char macaddr[ETH_ALEN];
63module_param_array(macaddr, byte, NULL, 0);
64MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
1da177e4 65
49da97dc 66#if defined(CONFIG_M5272)
1da177e4
LT
67/*
68 * Some hardware gets it MAC address out of local flash memory.
69 * if this is non-zero then assume it is the address to get MAC from.
70 */
71#if defined(CONFIG_NETtel)
72#define FEC_FLASHMAC 0xf0006006
73#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
74#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
75#elif defined(CONFIG_CANCam)
76#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
77#elif defined (CONFIG_M5272C3)
78#define FEC_FLASHMAC (0xffe04000 + 4)
79#elif defined(CONFIG_MOD5272)
80#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
81#else
82#define FEC_FLASHMAC 0
83#endif
43be6366 84#endif /* CONFIG_M5272 */
ead73183 85
1da177e4
LT
86/* The number of Tx and Rx buffers. These are allocated from the page
87 * pool. The code may assume these are power of two, so it it best
88 * to keep them that size.
89 * We don't need to allocate pages for the transmitter. We just use
90 * the skbuffer directly.
91 */
92#define FEC_ENET_RX_PAGES 8
93#define FEC_ENET_RX_FRSIZE 2048
94#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
95#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
96#define FEC_ENET_TX_FRSIZE 2048
97#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
98#define TX_RING_SIZE 16 /* Must be power of two */
99#define TX_RING_MOD_MASK 15 /* for this to work */
100
562d2f8c 101#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 102#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
103#endif
104
22f6b860 105/* Interrupt events/masks. */
1da177e4
LT
106#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
107#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
108#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
109#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
110#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
111#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
112#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
113#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
114#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
115#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
116
4bee1f9a
WS
117#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
118
1da177e4
LT
119/* The FEC stores dest/src/type, data, and checksum for receive packets.
120 */
121#define PKT_MAXBUF_SIZE 1518
122#define PKT_MINBUF_SIZE 64
123#define PKT_MAXBLR_SIZE 1520
124
125
126/*
6b265293 127 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
128 * size bits. Other FEC hardware does not, so we need to take that into
129 * account when setting it.
130 */
562d2f8c 131#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
196719ec 132 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
1da177e4
LT
133#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
134#else
135#define OPT_FRAME_SIZE 0
136#endif
137
138/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
139 * tx_bd_base always point to the base of the buffer descriptors. The
140 * cur_rx and cur_tx point to the currently available buffer.
141 * The dirty_tx tracks the current buffer that is being sent by the
142 * controller. The cur_tx and dirty_tx are equal under both completely
143 * empty and completely full conditions. The empty/ready indicator in
144 * the buffer descriptor determines the actual condition.
145 */
146struct fec_enet_private {
147 /* Hardware registers of the FEC device */
f44d6305 148 void __iomem *hwp;
1da177e4 149
cb84d6e7
GU
150 struct net_device *netdev;
151
ead73183
SH
152 struct clk *clk;
153
1da177e4
LT
154 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
155 unsigned char *tx_bounce[TX_RING_SIZE];
156 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 157 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
158 ushort skb_cur;
159 ushort skb_dirty;
160
22f6b860 161 /* CPM dual port RAM relative addresses */
4661e75b 162 dma_addr_t bd_dma;
22f6b860 163 /* Address of Rx and Tx buffers */
2e28532f
SH
164 struct bufdesc *rx_bd_base;
165 struct bufdesc *tx_bd_base;
166 /* The next free ring entry */
167 struct bufdesc *cur_rx, *cur_tx;
22f6b860 168 /* The ring entries to be free()ed */
2e28532f
SH
169 struct bufdesc *dirty_tx;
170
1da177e4 171 uint tx_full;
3b2b74ca
SS
172 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
173 spinlock_t hw_lock;
1da177e4 174
e6b043d5 175 struct platform_device *pdev;
1da177e4 176
e6b043d5 177 int opened;
1da177e4 178
e6b043d5
BW
179 /* Phylib and MDIO interface */
180 struct mii_bus *mii_bus;
181 struct phy_device *phy_dev;
182 int mii_timeout;
183 uint phy_speed;
5eb32bd0 184 phy_interface_t phy_interface;
1da177e4 185 int link;
1da177e4 186 int full_duplex;
97b72e43 187 struct completion mdio_done;
1da177e4
LT
188};
189
7d12e780 190static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
191static void fec_enet_tx(struct net_device *dev);
192static void fec_enet_rx(struct net_device *dev);
193static int fec_enet_close(struct net_device *dev);
1da177e4
LT
194static void fec_restart(struct net_device *dev, int duplex);
195static void fec_stop(struct net_device *dev);
1da177e4 196
e6b043d5
BW
197/* FEC MII MMFR bits definition */
198#define FEC_MMFR_ST (1 << 30)
199#define FEC_MMFR_OP_READ (2 << 28)
200#define FEC_MMFR_OP_WRITE (1 << 28)
201#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
202#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
203#define FEC_MMFR_TA (2 << 16)
204#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 205
97b72e43 206#define FEC_MII_TIMEOUT 1000 /* us */
1da177e4 207
22f6b860
SH
208/* Transmitter timeout */
209#define TX_TIMEOUT (2 * HZ)
1da177e4 210
c7621cb3 211static netdev_tx_t
1da177e4
LT
212fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
213{
f44d6305 214 struct fec_enet_private *fep = netdev_priv(dev);
2e28532f 215 struct bufdesc *bdp;
9555b31e 216 void *bufaddr;
0e702ab3 217 unsigned short status;
3b2b74ca 218 unsigned long flags;
1da177e4 219
1da177e4
LT
220 if (!fep->link) {
221 /* Link is down or autonegotiation is in progress. */
5b548140 222 return NETDEV_TX_BUSY;
1da177e4
LT
223 }
224
3b2b74ca 225 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
226 /* Fill in a Tx ring entry */
227 bdp = fep->cur_tx;
228
0e702ab3 229 status = bdp->cbd_sc;
22f6b860 230
0e702ab3 231 if (status & BD_ENET_TX_READY) {
1da177e4
LT
232 /* Ooops. All transmit buffers are full. Bail out.
233 * This should not happen, since dev->tbusy should be set.
234 */
235 printk("%s: tx queue full!.\n", dev->name);
3b2b74ca 236 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 237 return NETDEV_TX_BUSY;
1da177e4 238 }
1da177e4 239
22f6b860 240 /* Clear all of the status flags */
0e702ab3 241 status &= ~BD_ENET_TX_STATS;
1da177e4 242
22f6b860 243 /* Set buffer length and buffer pointer */
9555b31e 244 bufaddr = skb->data;
1da177e4
LT
245 bdp->cbd_datlen = skb->len;
246
247 /*
22f6b860
SH
248 * On some FEC implementations data must be aligned on
249 * 4-byte boundaries. Use bounce buffers to copy data
250 * and get it aligned. Ugh.
1da177e4 251 */
9555b31e 252 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
253 unsigned int index;
254 index = bdp - fep->tx_bd_base;
6989f512 255 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
9555b31e 256 bufaddr = fep->tx_bounce[index];
1da177e4
LT
257 }
258
22f6b860 259 /* Save skb pointer */
1da177e4
LT
260 fep->tx_skbuff[fep->skb_cur] = skb;
261
09f75cd7 262 dev->stats.tx_bytes += skb->len;
1da177e4 263 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 264
1da177e4
LT
265 /* Push the data cache so the CPM does not get stale memory
266 * data.
267 */
9555b31e 268 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
f0b3fbea 269 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 270
0e702ab3
GU
271 /* Send it on its way. Tell FEC it's ready, interrupt when done,
272 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 273 */
0e702ab3 274 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 275 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 276 bdp->cbd_sc = status;
1da177e4 277
1da177e4 278 /* Trigger transmission start */
f44d6305 279 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 280
22f6b860
SH
281 /* If this was the last BD in the ring, start at the beginning again. */
282 if (status & BD_ENET_TX_WRAP)
1da177e4 283 bdp = fep->tx_bd_base;
22f6b860 284 else
1da177e4 285 bdp++;
1da177e4
LT
286
287 if (bdp == fep->dirty_tx) {
288 fep->tx_full = 1;
289 netif_stop_queue(dev);
290 }
291
2e28532f 292 fep->cur_tx = bdp;
1da177e4 293
3b2b74ca 294 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 295
6ed10654 296 return NETDEV_TX_OK;
1da177e4
LT
297}
298
299static void
300fec_timeout(struct net_device *dev)
301{
302 struct fec_enet_private *fep = netdev_priv(dev);
303
09f75cd7 304 dev->stats.tx_errors++;
1da177e4 305
7dd6a2aa 306 fec_restart(dev, fep->full_duplex);
1da177e4
LT
307 netif_wake_queue(dev);
308}
309
1da177e4 310static irqreturn_t
7d12e780 311fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
312{
313 struct net_device *dev = dev_id;
f44d6305 314 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4 315 uint int_events;
3b2b74ca 316 irqreturn_t ret = IRQ_NONE;
1da177e4 317
3b2b74ca 318 do {
f44d6305
SH
319 int_events = readl(fep->hwp + FEC_IEVENT);
320 writel(int_events, fep->hwp + FEC_IEVENT);
1da177e4 321
1da177e4 322 if (int_events & FEC_ENET_RXF) {
3b2b74ca 323 ret = IRQ_HANDLED;
1da177e4
LT
324 fec_enet_rx(dev);
325 }
326
327 /* Transmit OK, or non-fatal error. Update the buffer
f44d6305
SH
328 * descriptors. FEC handles all errors, we just discover
329 * them as part of the transmit process.
330 */
1da177e4 331 if (int_events & FEC_ENET_TXF) {
3b2b74ca 332 ret = IRQ_HANDLED;
1da177e4
LT
333 fec_enet_tx(dev);
334 }
97b72e43
BS
335
336 if (int_events & FEC_ENET_MII) {
337 ret = IRQ_HANDLED;
338 complete(&fep->mdio_done);
339 }
3b2b74ca
SS
340 } while (int_events);
341
342 return ret;
1da177e4
LT
343}
344
345
346static void
347fec_enet_tx(struct net_device *dev)
348{
349 struct fec_enet_private *fep;
2e28532f 350 struct bufdesc *bdp;
0e702ab3 351 unsigned short status;
1da177e4
LT
352 struct sk_buff *skb;
353
354 fep = netdev_priv(dev);
81538e74 355 spin_lock(&fep->hw_lock);
1da177e4
LT
356 bdp = fep->dirty_tx;
357
0e702ab3 358 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
359 if (bdp == fep->cur_tx && fep->tx_full == 0)
360 break;
361
362 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
363 bdp->cbd_bufaddr = 0;
1da177e4
LT
364
365 skb = fep->tx_skbuff[fep->skb_dirty];
366 /* Check for errors. */
0e702ab3 367 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
368 BD_ENET_TX_RL | BD_ENET_TX_UN |
369 BD_ENET_TX_CSL)) {
09f75cd7 370 dev->stats.tx_errors++;
0e702ab3 371 if (status & BD_ENET_TX_HB) /* No heartbeat */
09f75cd7 372 dev->stats.tx_heartbeat_errors++;
0e702ab3 373 if (status & BD_ENET_TX_LC) /* Late collision */
09f75cd7 374 dev->stats.tx_window_errors++;
0e702ab3 375 if (status & BD_ENET_TX_RL) /* Retrans limit */
09f75cd7 376 dev->stats.tx_aborted_errors++;
0e702ab3 377 if (status & BD_ENET_TX_UN) /* Underrun */
09f75cd7 378 dev->stats.tx_fifo_errors++;
0e702ab3 379 if (status & BD_ENET_TX_CSL) /* Carrier lost */
09f75cd7 380 dev->stats.tx_carrier_errors++;
1da177e4 381 } else {
09f75cd7 382 dev->stats.tx_packets++;
1da177e4
LT
383 }
384
0e702ab3 385 if (status & BD_ENET_TX_READY)
1da177e4 386 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 387
1da177e4
LT
388 /* Deferred means some collisions occurred during transmit,
389 * but we eventually sent the packet OK.
390 */
0e702ab3 391 if (status & BD_ENET_TX_DEF)
09f75cd7 392 dev->stats.collisions++;
6aa20a22 393
22f6b860 394 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
395 dev_kfree_skb_any(skb);
396 fep->tx_skbuff[fep->skb_dirty] = NULL;
397 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 398
22f6b860 399 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 400 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
401 bdp = fep->tx_bd_base;
402 else
403 bdp++;
6aa20a22 404
22f6b860 405 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
406 */
407 if (fep->tx_full) {
408 fep->tx_full = 0;
409 if (netif_queue_stopped(dev))
410 netif_wake_queue(dev);
411 }
412 }
2e28532f 413 fep->dirty_tx = bdp;
81538e74 414 spin_unlock(&fep->hw_lock);
1da177e4
LT
415}
416
417
418/* During a receive, the cur_rx points to the current incoming buffer.
419 * When we update through the ring, if the next incoming buffer has
420 * not been given to the system, we just set the empty indicator,
421 * effectively tossing the packet.
422 */
423static void
424fec_enet_rx(struct net_device *dev)
425{
f44d6305 426 struct fec_enet_private *fep = netdev_priv(dev);
2e28532f 427 struct bufdesc *bdp;
0e702ab3 428 unsigned short status;
1da177e4
LT
429 struct sk_buff *skb;
430 ushort pkt_len;
431 __u8 *data;
6aa20a22 432
0e702ab3
GU
433#ifdef CONFIG_M532x
434 flush_cache_all();
6aa20a22 435#endif
1da177e4 436
81538e74 437 spin_lock(&fep->hw_lock);
3b2b74ca 438
1da177e4
LT
439 /* First, grab all of the stats for the incoming packet.
440 * These get messed up if we get called due to a busy condition.
441 */
442 bdp = fep->cur_rx;
443
22f6b860 444 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 445
22f6b860
SH
446 /* Since we have allocated space to hold a complete frame,
447 * the last indicator should be set.
448 */
449 if ((status & BD_ENET_RX_LAST) == 0)
450 printk("FEC ENET: rcv is not +last\n");
1da177e4 451
22f6b860
SH
452 if (!fep->opened)
453 goto rx_processing_done;
1da177e4 454
22f6b860
SH
455 /* Check for errors. */
456 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 457 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
22f6b860
SH
458 dev->stats.rx_errors++;
459 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
460 /* Frame too long or too short. */
461 dev->stats.rx_length_errors++;
462 }
463 if (status & BD_ENET_RX_NO) /* Frame alignment */
464 dev->stats.rx_frame_errors++;
465 if (status & BD_ENET_RX_CR) /* CRC Error */
466 dev->stats.rx_crc_errors++;
467 if (status & BD_ENET_RX_OV) /* FIFO overrun */
468 dev->stats.rx_fifo_errors++;
1da177e4 469 }
1da177e4 470
22f6b860
SH
471 /* Report late collisions as a frame error.
472 * On this error, the BD is closed, but we don't know what we
473 * have in the buffer. So, just drop this frame on the floor.
474 */
475 if (status & BD_ENET_RX_CL) {
476 dev->stats.rx_errors++;
477 dev->stats.rx_frame_errors++;
478 goto rx_processing_done;
479 }
1da177e4 480
22f6b860
SH
481 /* Process the incoming frame. */
482 dev->stats.rx_packets++;
483 pkt_len = bdp->cbd_datlen;
484 dev->stats.rx_bytes += pkt_len;
485 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 486
f0b3fbea
SH
487 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
488 DMA_FROM_DEVICE);
ccdc4f19 489
22f6b860
SH
490 /* This does 16 byte alignment, exactly what we need.
491 * The packet length includes FCS, but we don't want to
492 * include that when passing upstream as it messes up
493 * bridging applications.
494 */
8549889c 495 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
1da177e4 496
8549889c 497 if (unlikely(!skb)) {
22f6b860
SH
498 printk("%s: Memory squeeze, dropping packet.\n",
499 dev->name);
500 dev->stats.rx_dropped++;
501 } else {
8549889c 502 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
503 skb_put(skb, pkt_len - 4); /* Make room */
504 skb_copy_to_linear_data(skb, data, pkt_len - 4);
505 skb->protocol = eth_type_trans(skb, dev);
506 netif_rx(skb);
507 }
f0b3fbea
SH
508
509 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
510 DMA_FROM_DEVICE);
22f6b860
SH
511rx_processing_done:
512 /* Clear the status flags for this buffer */
513 status &= ~BD_ENET_RX_STATS;
1da177e4 514
22f6b860
SH
515 /* Mark the buffer empty */
516 status |= BD_ENET_RX_EMPTY;
517 bdp->cbd_sc = status;
6aa20a22 518
22f6b860
SH
519 /* Update BD pointer to next entry */
520 if (status & BD_ENET_RX_WRAP)
521 bdp = fep->rx_bd_base;
522 else
523 bdp++;
524 /* Doing this here will keep the FEC running while we process
525 * incoming frames. On a heavily loaded network, we should be
526 * able to keep up at the expense of system resources.
527 */
528 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
529 }
2e28532f 530 fep->cur_rx = bdp;
1da177e4 531
81538e74 532 spin_unlock(&fep->hw_lock);
1da177e4
LT
533}
534
e6b043d5 535/* ------------------------------------------------------------------------- */
e6b043d5 536static void __inline__ fec_get_mac(struct net_device *dev)
1da177e4 537{
e6b043d5 538 struct fec_enet_private *fep = netdev_priv(dev);
49da97dc 539 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
e6b043d5 540 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 541
49da97dc
SG
542 /*
543 * try to get mac address in following order:
544 *
545 * 1) module parameter via kernel command line in form
546 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
547 */
548 iap = macaddr;
549
550 /*
551 * 2) from flash or fuse (via platform data)
552 */
553 if (!is_valid_ether_addr(iap)) {
554#ifdef CONFIG_M5272
555 if (FEC_FLASHMAC)
556 iap = (unsigned char *)FEC_FLASHMAC;
557#else
558 if (pdata)
559 memcpy(iap, pdata->mac, ETH_ALEN);
560#endif
561 }
562
563 /*
564 * 3) FEC mac registers set by bootloader
565 */
566 if (!is_valid_ether_addr(iap)) {
567 *((unsigned long *) &tmpaddr[0]) =
568 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
569 *((unsigned short *) &tmpaddr[4]) =
570 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
e6b043d5 571 iap = &tmpaddr[0];
1da177e4
LT
572 }
573
e6b043d5 574 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4 575
49da97dc
SG
576 /* Adjust MAC if using macaddr */
577 if (iap == macaddr)
578 dev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
1da177e4
LT
579}
580
e6b043d5 581/* ------------------------------------------------------------------------- */
1da177e4 582
e6b043d5
BW
583/*
584 * Phy section
585 */
586static void fec_enet_adjust_link(struct net_device *dev)
1da177e4
LT
587{
588 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5
BW
589 struct phy_device *phy_dev = fep->phy_dev;
590 unsigned long flags;
1da177e4 591
e6b043d5 592 int status_change = 0;
1da177e4 593
e6b043d5 594 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 595
e6b043d5
BW
596 /* Prevent a state halted on mii error */
597 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
598 phy_dev->state = PHY_RESUMING;
599 goto spin_unlock;
600 }
1da177e4 601
e6b043d5
BW
602 /* Duplex link change */
603 if (phy_dev->link) {
604 if (fep->full_duplex != phy_dev->duplex) {
605 fec_restart(dev, phy_dev->duplex);
606 status_change = 1;
607 }
608 }
1da177e4 609
e6b043d5
BW
610 /* Link on or off change */
611 if (phy_dev->link != fep->link) {
612 fep->link = phy_dev->link;
613 if (phy_dev->link)
614 fec_restart(dev, phy_dev->duplex);
1da177e4 615 else
e6b043d5
BW
616 fec_stop(dev);
617 status_change = 1;
1da177e4 618 }
6aa20a22 619
e6b043d5
BW
620spin_unlock:
621 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 622
e6b043d5
BW
623 if (status_change)
624 phy_print_status(phy_dev);
625}
1da177e4 626
e6b043d5 627static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 628{
e6b043d5 629 struct fec_enet_private *fep = bus->priv;
97b72e43 630 unsigned long time_left;
1da177e4 631
e6b043d5 632 fep->mii_timeout = 0;
97b72e43 633 init_completion(&fep->mdio_done);
e6b043d5
BW
634
635 /* start a read op */
636 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
637 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
638 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
639
640 /* wait for end of transfer */
97b72e43
BS
641 time_left = wait_for_completion_timeout(&fep->mdio_done,
642 usecs_to_jiffies(FEC_MII_TIMEOUT));
643 if (time_left == 0) {
644 fep->mii_timeout = 1;
645 printk(KERN_ERR "FEC: MDIO read timeout\n");
646 return -ETIMEDOUT;
1da177e4 647 }
1da177e4 648
e6b043d5
BW
649 /* return value */
650 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 651}
6aa20a22 652
e6b043d5
BW
653static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
654 u16 value)
1da177e4 655{
e6b043d5 656 struct fec_enet_private *fep = bus->priv;
97b72e43 657 unsigned long time_left;
1da177e4 658
e6b043d5 659 fep->mii_timeout = 0;
97b72e43 660 init_completion(&fep->mdio_done);
1da177e4 661
862f0982
SG
662 /* start a write op */
663 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
e6b043d5
BW
664 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
665 FEC_MMFR_TA | FEC_MMFR_DATA(value),
666 fep->hwp + FEC_MII_DATA);
667
668 /* wait for end of transfer */
97b72e43
BS
669 time_left = wait_for_completion_timeout(&fep->mdio_done,
670 usecs_to_jiffies(FEC_MII_TIMEOUT));
671 if (time_left == 0) {
672 fep->mii_timeout = 1;
673 printk(KERN_ERR "FEC: MDIO write timeout\n");
674 return -ETIMEDOUT;
e6b043d5 675 }
1da177e4 676
e6b043d5
BW
677 return 0;
678}
1da177e4 679
e6b043d5 680static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 681{
e6b043d5 682 return 0;
1da177e4
LT
683}
684
e6b043d5 685static int fec_enet_mii_probe(struct net_device *dev)
562d2f8c 686{
4cf1653a 687 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 688 struct phy_device *phy_dev = NULL;
6fcc040f
GU
689 char mdio_bus_id[MII_BUS_ID_SIZE];
690 char phy_name[MII_BUS_ID_SIZE + 3];
691 int phy_id;
562d2f8c 692
418bd0d4
BW
693 fep->phy_dev = NULL;
694
6fcc040f
GU
695 /* check for attached phy */
696 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
697 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
698 continue;
699 if (fep->mii_bus->phy_map[phy_id] == NULL)
700 continue;
701 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
702 continue;
703 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
704 break;
e6b043d5 705 }
1da177e4 706
6fcc040f
GU
707 if (phy_id >= PHY_MAX_ADDR) {
708 printk(KERN_INFO "%s: no PHY, assuming direct connection "
709 "to switch\n", dev->name);
710 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
711 phy_id = 0;
712 }
713
714 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
715 phy_dev = phy_connect(dev, phy_name, &fec_enet_adjust_link, 0,
716 PHY_INTERFACE_MODE_MII);
717 if (IS_ERR(phy_dev)) {
718 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
719 return PTR_ERR(phy_dev);
e6b043d5 720 }
1da177e4 721
e6b043d5
BW
722 /* mask with MAC supported features */
723 phy_dev->supported &= PHY_BASIC_FEATURES;
724 phy_dev->advertising = phy_dev->supported;
1da177e4 725
e6b043d5
BW
726 fep->phy_dev = phy_dev;
727 fep->link = 0;
728 fep->full_duplex = 0;
1da177e4 729
418bd0d4
BW
730 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
731 "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
732 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
733 fep->phy_dev->irq);
734
e6b043d5 735 return 0;
1da177e4
LT
736}
737
e6b043d5 738static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 739{
e6b043d5 740 struct net_device *dev = platform_get_drvdata(pdev);
562d2f8c 741 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 742 int err = -ENXIO, i;
6b265293 743
e6b043d5 744 fep->mii_timeout = 0;
1da177e4 745
e6b043d5
BW
746 /*
747 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
748 */
749 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
750 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 751
e6b043d5
BW
752 fep->mii_bus = mdiobus_alloc();
753 if (fep->mii_bus == NULL) {
754 err = -ENOMEM;
755 goto err_out;
1da177e4
LT
756 }
757
e6b043d5
BW
758 fep->mii_bus->name = "fec_enet_mii_bus";
759 fep->mii_bus->read = fec_enet_mdio_read;
760 fep->mii_bus->write = fec_enet_mdio_write;
761 fep->mii_bus->reset = fec_enet_mdio_reset;
6fcc040f 762 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
e6b043d5
BW
763 fep->mii_bus->priv = fep;
764 fep->mii_bus->parent = &pdev->dev;
765
766 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
767 if (!fep->mii_bus->irq) {
768 err = -ENOMEM;
769 goto err_out_free_mdiobus;
1da177e4
LT
770 }
771
e6b043d5
BW
772 for (i = 0; i < PHY_MAX_ADDR; i++)
773 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 774
e6b043d5 775 platform_set_drvdata(dev, fep->mii_bus);
1da177e4 776
e6b043d5
BW
777 if (mdiobus_register(fep->mii_bus))
778 goto err_out_free_mdio_irq;
1da177e4 779
e6b043d5 780 return 0;
1da177e4 781
e6b043d5
BW
782err_out_free_mdio_irq:
783 kfree(fep->mii_bus->irq);
784err_out_free_mdiobus:
785 mdiobus_free(fep->mii_bus);
786err_out:
787 return err;
1da177e4
LT
788}
789
e6b043d5 790static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 791{
e6b043d5
BW
792 if (fep->phy_dev)
793 phy_disconnect(fep->phy_dev);
794 mdiobus_unregister(fep->mii_bus);
795 kfree(fep->mii_bus->irq);
796 mdiobus_free(fep->mii_bus);
1da177e4
LT
797}
798
e6b043d5
BW
799static int fec_enet_get_settings(struct net_device *dev,
800 struct ethtool_cmd *cmd)
1da177e4
LT
801{
802 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 803 struct phy_device *phydev = fep->phy_dev;
1da177e4 804
e6b043d5
BW
805 if (!phydev)
806 return -ENODEV;
1da177e4 807
e6b043d5 808 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
809}
810
e6b043d5
BW
811static int fec_enet_set_settings(struct net_device *dev,
812 struct ethtool_cmd *cmd)
1da177e4
LT
813{
814 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 815 struct phy_device *phydev = fep->phy_dev;
1da177e4 816
e6b043d5
BW
817 if (!phydev)
818 return -ENODEV;
1da177e4 819
e6b043d5 820 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
821}
822
e6b043d5
BW
823static void fec_enet_get_drvinfo(struct net_device *dev,
824 struct ethtool_drvinfo *info)
1da177e4 825{
e6b043d5 826 struct fec_enet_private *fep = netdev_priv(dev);
6aa20a22 827
e6b043d5
BW
828 strcpy(info->driver, fep->pdev->dev.driver->name);
829 strcpy(info->version, "Revision: 1.0");
830 strcpy(info->bus_info, dev_name(&dev->dev));
1da177e4
LT
831}
832
e6b043d5
BW
833static struct ethtool_ops fec_enet_ethtool_ops = {
834 .get_settings = fec_enet_get_settings,
835 .set_settings = fec_enet_set_settings,
836 .get_drvinfo = fec_enet_get_drvinfo,
837 .get_link = ethtool_op_get_link,
838};
1da177e4 839
e6b043d5 840static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4 841{
1da177e4 842 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 843 struct phy_device *phydev = fep->phy_dev;
1da177e4 844
e6b043d5
BW
845 if (!netif_running(dev))
846 return -EINVAL;
1da177e4 847
e6b043d5
BW
848 if (!phydev)
849 return -ENODEV;
850
28b04113 851 return phy_mii_ioctl(phydev, rq, cmd);
1da177e4
LT
852}
853
f0b3fbea
SH
854static void fec_enet_free_buffers(struct net_device *dev)
855{
856 struct fec_enet_private *fep = netdev_priv(dev);
857 int i;
858 struct sk_buff *skb;
859 struct bufdesc *bdp;
860
861 bdp = fep->rx_bd_base;
862 for (i = 0; i < RX_RING_SIZE; i++) {
863 skb = fep->rx_skbuff[i];
864
865 if (bdp->cbd_bufaddr)
866 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
867 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
868 if (skb)
869 dev_kfree_skb(skb);
870 bdp++;
871 }
872
873 bdp = fep->tx_bd_base;
874 for (i = 0; i < TX_RING_SIZE; i++)
875 kfree(fep->tx_bounce[i]);
876}
877
878static int fec_enet_alloc_buffers(struct net_device *dev)
879{
880 struct fec_enet_private *fep = netdev_priv(dev);
881 int i;
882 struct sk_buff *skb;
883 struct bufdesc *bdp;
884
885 bdp = fep->rx_bd_base;
886 for (i = 0; i < RX_RING_SIZE; i++) {
887 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
888 if (!skb) {
889 fec_enet_free_buffers(dev);
890 return -ENOMEM;
891 }
892 fep->rx_skbuff[i] = skb;
893
894 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
895 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
896 bdp->cbd_sc = BD_ENET_RX_EMPTY;
897 bdp++;
898 }
899
900 /* Set the last buffer to wrap. */
901 bdp--;
902 bdp->cbd_sc |= BD_SC_WRAP;
903
904 bdp = fep->tx_bd_base;
905 for (i = 0; i < TX_RING_SIZE; i++) {
906 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
907
908 bdp->cbd_sc = 0;
909 bdp->cbd_bufaddr = 0;
910 bdp++;
911 }
912
913 /* Set the last buffer to wrap. */
914 bdp--;
915 bdp->cbd_sc |= BD_SC_WRAP;
916
917 return 0;
918}
919
1da177e4
LT
920static int
921fec_enet_open(struct net_device *dev)
922{
923 struct fec_enet_private *fep = netdev_priv(dev);
f0b3fbea 924 int ret;
1da177e4
LT
925
926 /* I should reset the ring buffers here, but I don't yet know
927 * a simple way to do that.
928 */
1da177e4 929
f0b3fbea
SH
930 ret = fec_enet_alloc_buffers(dev);
931 if (ret)
932 return ret;
933
418bd0d4
BW
934 /* Probe and connect to PHY when open the interface */
935 ret = fec_enet_mii_probe(dev);
936 if (ret) {
937 fec_enet_free_buffers(dev);
938 return ret;
939 }
e6b043d5 940 phy_start(fep->phy_dev);
1da177e4
LT
941 netif_start_queue(dev);
942 fep->opened = 1;
22f6b860 943 return 0;
1da177e4
LT
944}
945
946static int
947fec_enet_close(struct net_device *dev)
948{
949 struct fec_enet_private *fep = netdev_priv(dev);
950
22f6b860 951 /* Don't know what to do yet. */
1da177e4
LT
952 fep->opened = 0;
953 netif_stop_queue(dev);
954 fec_stop(dev);
955
418bd0d4
BW
956 if (fep->phy_dev)
957 phy_disconnect(fep->phy_dev);
958
f0b3fbea
SH
959 fec_enet_free_buffers(dev);
960
1da177e4
LT
961 return 0;
962}
963
1da177e4
LT
964/* Set or clear the multicast filter for this adaptor.
965 * Skeleton taken from sunlance driver.
966 * The CPM Ethernet implementation allows Multicast as well as individual
967 * MAC address filtering. Some of the drivers check to make sure it is
968 * a group multicast address, and discard those that are not. I guess I
969 * will do the same for now, but just remove the test if you want
970 * individual filtering as well (do the upper net layers want or support
971 * this kind of feature?).
972 */
973
974#define HASH_BITS 6 /* #bits in hash */
975#define CRC32_POLY 0xEDB88320
976
977static void set_multicast_list(struct net_device *dev)
978{
f44d6305 979 struct fec_enet_private *fep = netdev_priv(dev);
22bedad3 980 struct netdev_hw_addr *ha;
48e2f183 981 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
982 unsigned char hash;
983
22f6b860 984 if (dev->flags & IFF_PROMISC) {
f44d6305
SH
985 tmp = readl(fep->hwp + FEC_R_CNTRL);
986 tmp |= 0x8;
987 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
988 return;
989 }
1da177e4 990
4e831836
SH
991 tmp = readl(fep->hwp + FEC_R_CNTRL);
992 tmp &= ~0x8;
993 writel(tmp, fep->hwp + FEC_R_CNTRL);
994
995 if (dev->flags & IFF_ALLMULTI) {
996 /* Catch all multicast addresses, so set the
997 * filter to all 1's
998 */
999 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1000 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1001
1002 return;
1003 }
1004
1005 /* Clear filter and add the addresses in hash register
1006 */
1007 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1008 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1009
22bedad3 1010 netdev_for_each_mc_addr(ha, dev) {
4e831836 1011 /* Only support group multicast for now */
22bedad3 1012 if (!(ha->addr[0] & 1))
4e831836
SH
1013 continue;
1014
1015 /* calculate crc32 value of mac address */
1016 crc = 0xffffffff;
1017
22bedad3
JP
1018 for (i = 0; i < dev->addr_len; i++) {
1019 data = ha->addr[i];
4e831836
SH
1020 for (bit = 0; bit < 8; bit++, data >>= 1) {
1021 crc = (crc >> 1) ^
1022 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
1023 }
1024 }
4e831836
SH
1025
1026 /* only upper 6 bits (HASH_BITS) are used
1027 * which point to specific bit in he hash registers
1028 */
1029 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1030
1031 if (hash > 31) {
1032 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1033 tmp |= 1 << (hash - 32);
1034 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1035 } else {
1036 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1037 tmp |= 1 << hash;
1038 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1039 }
1da177e4
LT
1040 }
1041}
1042
22f6b860 1043/* Set a MAC change in hardware. */
009fda83
SH
1044static int
1045fec_set_mac_address(struct net_device *dev, void *p)
1da177e4 1046{
f44d6305 1047 struct fec_enet_private *fep = netdev_priv(dev);
009fda83
SH
1048 struct sockaddr *addr = p;
1049
1050 if (!is_valid_ether_addr(addr->sa_data))
1051 return -EADDRNOTAVAIL;
1052
1053 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1da177e4 1054
f44d6305
SH
1055 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1056 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1057 fep->hwp + FEC_ADDR_LOW);
1058 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
7cff0943 1059 fep->hwp + FEC_ADDR_HIGH);
009fda83 1060 return 0;
1da177e4
LT
1061}
1062
009fda83
SH
1063static const struct net_device_ops fec_netdev_ops = {
1064 .ndo_open = fec_enet_open,
1065 .ndo_stop = fec_enet_close,
1066 .ndo_start_xmit = fec_enet_start_xmit,
1067 .ndo_set_multicast_list = set_multicast_list,
635ecaa7 1068 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1069 .ndo_validate_addr = eth_validate_addr,
1070 .ndo_tx_timeout = fec_timeout,
1071 .ndo_set_mac_address = fec_set_mac_address,
e6b043d5 1072 .ndo_do_ioctl = fec_enet_ioctl,
009fda83
SH
1073};
1074
1da177e4
LT
1075 /*
1076 * XXX: We need to clean up on failure exits here.
ead73183 1077 *
1da177e4 1078 */
8649a230 1079static int fec_enet_init(struct net_device *dev)
1da177e4
LT
1080{
1081 struct fec_enet_private *fep = netdev_priv(dev);
f0b3fbea 1082 struct bufdesc *cbd_base;
633e7533 1083 struct bufdesc *bdp;
f0b3fbea 1084 int i;
1da177e4 1085
8d4dd5cf
SH
1086 /* Allocate memory for buffer descriptors. */
1087 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1088 GFP_KERNEL);
1089 if (!cbd_base) {
562d2f8c
GU
1090 printk("FEC: allocate descriptor memory failed?\n");
1091 return -ENOMEM;
1092 }
1093
3b2b74ca 1094 spin_lock_init(&fep->hw_lock);
3b2b74ca 1095
f44d6305 1096 fep->hwp = (void __iomem *)dev->base_addr;
cb84d6e7 1097 fep->netdev = dev;
1da177e4 1098
49da97dc 1099 /* Get the Ethernet address */
1da177e4
LT
1100 fec_get_mac(dev);
1101
8d4dd5cf 1102 /* Set receive and transmit descriptor base. */
1da177e4
LT
1103 fep->rx_bd_base = cbd_base;
1104 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1105
22f6b860 1106 /* The FEC Ethernet specific entries in the device structure */
1da177e4 1107 dev->watchdog_timeo = TX_TIMEOUT;
009fda83 1108 dev->netdev_ops = &fec_netdev_ops;
e6b043d5 1109 dev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1110
1111 /* Initialize the receive buffer descriptors. */
1112 bdp = fep->rx_bd_base;
1113 for (i = 0; i < RX_RING_SIZE; i++) {
1114
1115 /* Initialize the BD for every fragment in the page. */
1116 bdp->cbd_sc = 0;
1117 bdp++;
1118 }
1119
1120 /* Set the last buffer to wrap */
1121 bdp--;
1122 bdp->cbd_sc |= BD_SC_WRAP;
1123
1124 /* ...and the same for transmit */
1125 bdp = fep->tx_bd_base;
1126 for (i = 0; i < TX_RING_SIZE; i++) {
1127
1128 /* Initialize the BD for every fragment in the page. */
1129 bdp->cbd_sc = 0;
1130 bdp->cbd_bufaddr = 0;
1131 bdp++;
1132 }
1133
1134 /* Set the last buffer to wrap */
1135 bdp--;
1136 bdp->cbd_sc |= BD_SC_WRAP;
1137
ead73183 1138 fec_restart(dev, 0);
1da177e4 1139
1da177e4
LT
1140 return 0;
1141}
1142
1143/* This function is called to start or restart the FEC during a link
1144 * change. This only happens when switching between half and full
1145 * duplex.
1146 */
1147static void
1148fec_restart(struct net_device *dev, int duplex)
1149{
f44d6305 1150 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4
LT
1151 int i;
1152
f44d6305
SH
1153 /* Whack a reset. We should wait for this. */
1154 writel(1, fep->hwp + FEC_ECNTRL);
1da177e4
LT
1155 udelay(10);
1156
f44d6305
SH
1157 /* Clear any outstanding interrupt. */
1158 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 1159
f44d6305
SH
1160 /* Reset all multicast. */
1161 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1162 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
4f1ceb4b
SH
1163#ifndef CONFIG_M5272
1164 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1165 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1166#endif
1da177e4 1167
f44d6305
SH
1168 /* Set maximum receive buffer size. */
1169 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 1170
f44d6305
SH
1171 /* Set receive and transmit descriptor base. */
1172 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
2e28532f 1173 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
f44d6305 1174 fep->hwp + FEC_X_DES_START);
1da177e4
LT
1175
1176 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1177 fep->cur_rx = fep->rx_bd_base;
1178
f44d6305 1179 /* Reset SKB transmit buffers. */
1da177e4 1180 fep->skb_cur = fep->skb_dirty = 0;
22f6b860
SH
1181 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1182 if (fep->tx_skbuff[i]) {
1da177e4
LT
1183 dev_kfree_skb_any(fep->tx_skbuff[i]);
1184 fep->tx_skbuff[i] = NULL;
1185 }
1186 }
1187
22f6b860 1188 /* Enable MII mode */
1da177e4 1189 if (duplex) {
f44d6305
SH
1190 /* MII enable / FD enable */
1191 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1192 writel(0x04, fep->hwp + FEC_X_CNTRL);
f909b1ef 1193 } else {
f44d6305
SH
1194 /* MII enable / No Rcv on Xmit */
1195 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1196 writel(0x0, fep->hwp + FEC_X_CNTRL);
1da177e4
LT
1197 }
1198 fep->full_duplex = duplex;
1199
22f6b860 1200 /* Set MII speed */
f44d6305 1201 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 1202
5eb32bd0
BS
1203#ifdef FEC_MIIGSK_ENR
1204 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
1205 /* disable the gasket and wait */
1206 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1207 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1208 udelay(1);
1209
1210 /* configure the gasket: RMII, 50 MHz, no loopback, no echo */
1211 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
1212
1213 /* re-enable the gasket */
1214 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1215 }
1216#endif
1217
22f6b860 1218 /* And last, enable the transmit and receive processing */
f44d6305
SH
1219 writel(2, fep->hwp + FEC_ECNTRL);
1220 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
6b265293 1221
22f6b860 1222 /* Enable interrupts we wish to service */
4bee1f9a 1223 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
1224}
1225
1226static void
1227fec_stop(struct net_device *dev)
1228{
f44d6305 1229 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4 1230
22f6b860 1231 /* We cannot expect a graceful transmit stop without link !!! */
f44d6305
SH
1232 if (fep->link) {
1233 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
677177c5 1234 udelay(10);
f44d6305 1235 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
677177c5 1236 printk("fec_stop : Graceful transmit stop did not complete !\n");
f44d6305 1237 }
1da177e4 1238
f44d6305
SH
1239 /* Whack a reset. We should wait for this. */
1240 writel(1, fep->hwp + FEC_ECNTRL);
1da177e4 1241 udelay(10);
f44d6305 1242 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
4bee1f9a 1243 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
1244}
1245
ead73183
SH
1246static int __devinit
1247fec_probe(struct platform_device *pdev)
1248{
1249 struct fec_enet_private *fep;
5eb32bd0 1250 struct fec_platform_data *pdata;
ead73183
SH
1251 struct net_device *ndev;
1252 int i, irq, ret = 0;
1253 struct resource *r;
1254
1255 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1256 if (!r)
1257 return -ENXIO;
1258
1259 r = request_mem_region(r->start, resource_size(r), pdev->name);
1260 if (!r)
1261 return -EBUSY;
1262
1263 /* Init network device */
1264 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1265 if (!ndev)
1266 return -ENOMEM;
1267
1268 SET_NETDEV_DEV(ndev, &pdev->dev);
1269
1270 /* setup board info structure */
1271 fep = netdev_priv(ndev);
1272 memset(fep, 0, sizeof(*fep));
1273
1274 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
e6b043d5 1275 fep->pdev = pdev;
ead73183
SH
1276
1277 if (!ndev->base_addr) {
1278 ret = -ENOMEM;
1279 goto failed_ioremap;
1280 }
1281
1282 platform_set_drvdata(pdev, ndev);
1283
5eb32bd0
BS
1284 pdata = pdev->dev.platform_data;
1285 if (pdata)
1286 fep->phy_interface = pdata->phy;
1287
ead73183
SH
1288 /* This device has up to three irqs on some platforms */
1289 for (i = 0; i < 3; i++) {
1290 irq = platform_get_irq(pdev, i);
1291 if (i && irq < 0)
1292 break;
1293 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1294 if (ret) {
1295 while (i >= 0) {
1296 irq = platform_get_irq(pdev, i);
1297 free_irq(irq, ndev);
1298 i--;
1299 }
1300 goto failed_irq;
1301 }
1302 }
1303
1304 fep->clk = clk_get(&pdev->dev, "fec_clk");
1305 if (IS_ERR(fep->clk)) {
1306 ret = PTR_ERR(fep->clk);
1307 goto failed_clk;
1308 }
1309 clk_enable(fep->clk);
1310
8649a230 1311 ret = fec_enet_init(ndev);
ead73183
SH
1312 if (ret)
1313 goto failed_init;
1314
e6b043d5
BW
1315 ret = fec_enet_mii_init(pdev);
1316 if (ret)
1317 goto failed_mii_init;
1318
03c698c9
OS
1319 /* Carrier starts down, phylib will bring it up */
1320 netif_carrier_off(ndev);
1321
ead73183
SH
1322 ret = register_netdev(ndev);
1323 if (ret)
1324 goto failed_register;
1325
1326 return 0;
1327
1328failed_register:
e6b043d5
BW
1329 fec_enet_mii_remove(fep);
1330failed_mii_init:
ead73183
SH
1331failed_init:
1332 clk_disable(fep->clk);
1333 clk_put(fep->clk);
1334failed_clk:
1335 for (i = 0; i < 3; i++) {
1336 irq = platform_get_irq(pdev, i);
1337 if (irq > 0)
1338 free_irq(irq, ndev);
1339 }
1340failed_irq:
1341 iounmap((void __iomem *)ndev->base_addr);
1342failed_ioremap:
1343 free_netdev(ndev);
1344
1345 return ret;
1346}
1347
1348static int __devexit
1349fec_drv_remove(struct platform_device *pdev)
1350{
1351 struct net_device *ndev = platform_get_drvdata(pdev);
1352 struct fec_enet_private *fep = netdev_priv(ndev);
1353
1354 platform_set_drvdata(pdev, NULL);
1355
1356 fec_stop(ndev);
e6b043d5 1357 fec_enet_mii_remove(fep);
ead73183
SH
1358 clk_disable(fep->clk);
1359 clk_put(fep->clk);
1360 iounmap((void __iomem *)ndev->base_addr);
1361 unregister_netdev(ndev);
1362 free_netdev(ndev);
1363 return 0;
1364}
1365
59d4289b 1366#ifdef CONFIG_PM
ead73183 1367static int
87cad5c3 1368fec_suspend(struct device *dev)
ead73183 1369{
87cad5c3 1370 struct net_device *ndev = dev_get_drvdata(dev);
ead73183
SH
1371 struct fec_enet_private *fep;
1372
1373 if (ndev) {
1374 fep = netdev_priv(ndev);
bcc67771
SG
1375 if (netif_running(ndev)) {
1376 fec_stop(ndev);
1377 netif_device_detach(ndev);
1378 }
e3fe8558 1379 clk_disable(fep->clk);
ead73183
SH
1380 }
1381 return 0;
1382}
1383
1384static int
87cad5c3 1385fec_resume(struct device *dev)
ead73183 1386{
87cad5c3 1387 struct net_device *ndev = dev_get_drvdata(dev);
e3fe8558 1388 struct fec_enet_private *fep;
ead73183
SH
1389
1390 if (ndev) {
e3fe8558
EB
1391 fep = netdev_priv(ndev);
1392 clk_enable(fep->clk);
bcc67771
SG
1393 if (netif_running(ndev)) {
1394 fec_restart(ndev, fep->full_duplex);
1395 netif_device_attach(ndev);
1396 }
ead73183
SH
1397 }
1398 return 0;
1399}
1400
59d4289b
DK
1401static const struct dev_pm_ops fec_pm_ops = {
1402 .suspend = fec_suspend,
1403 .resume = fec_resume,
1404 .freeze = fec_suspend,
1405 .thaw = fec_resume,
1406 .poweroff = fec_suspend,
1407 .restore = fec_resume,
1408};
87cad5c3 1409#endif
59d4289b 1410
ead73183
SH
1411static struct platform_driver fec_driver = {
1412 .driver = {
87cad5c3
EB
1413 .name = "fec",
1414 .owner = THIS_MODULE,
1415#ifdef CONFIG_PM
1416 .pm = &fec_pm_ops,
1417#endif
ead73183 1418 },
87cad5c3
EB
1419 .probe = fec_probe,
1420 .remove = __devexit_p(fec_drv_remove),
ead73183
SH
1421};
1422
1423static int __init
1424fec_enet_module_init(void)
1425{
1426 printk(KERN_INFO "FEC Ethernet Driver\n");
1427
1428 return platform_driver_register(&fec_driver);
1429}
1430
1431static void __exit
1432fec_enet_cleanup(void)
1433{
1434 platform_driver_unregister(&fec_driver);
1435}
1436
1437module_exit(fec_enet_cleanup);
1da177e4
LT
1438module_init(fec_enet_module_init);
1439
1440MODULE_LICENSE("GPL");