net/fec: consolidate all i.MX options to CONFIG_ARM
[linux-block.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
b5680e0b
SG
20 *
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/pci.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/spinlock.h>
39#include <linux/workqueue.h>
40#include <linux/bitops.h>
6f501b17
SH
41#include <linux/io.h>
42#include <linux/irq.h>
196719ec 43#include <linux/clk.h>
ead73183 44#include <linux/platform_device.h>
e6b043d5 45#include <linux/phy.h>
5eb32bd0 46#include <linux/fec.h>
1da177e4 47
080853af 48#include <asm/cacheflush.h>
196719ec 49
b5680e0b 50#ifndef CONFIG_ARM
1da177e4
LT
51#include <asm/coldfire.h>
52#include <asm/mcfsim.h>
196719ec 53#endif
6f501b17 54
1da177e4 55#include "fec.h"
1da177e4 56
085e79ed 57#if defined(CONFIG_ARM)
196719ec
SH
58#define FEC_ALIGNMENT 0xf
59#else
60#define FEC_ALIGNMENT 0x3
61#endif
62
b5680e0b
SG
63#define DRIVER_NAME "fec"
64
65/* Controller is ENET-MAC */
66#define FEC_QUIRK_ENET_MAC (1 << 0)
67/* Controller needs driver to swap frame */
68#define FEC_QUIRK_SWAP_FRAME (1 << 1)
69
70static struct platform_device_id fec_devtype[] = {
71 {
72 .name = DRIVER_NAME,
73 .driver_data = 0,
74 }, {
75 .name = "imx28-fec",
76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
77 }
78};
79
49da97dc
SG
80static unsigned char macaddr[ETH_ALEN];
81module_param_array(macaddr, byte, NULL, 0);
82MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
1da177e4 83
49da97dc 84#if defined(CONFIG_M5272)
1da177e4
LT
85/*
86 * Some hardware gets it MAC address out of local flash memory.
87 * if this is non-zero then assume it is the address to get MAC from.
88 */
89#if defined(CONFIG_NETtel)
90#define FEC_FLASHMAC 0xf0006006
91#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
92#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
93#elif defined(CONFIG_CANCam)
94#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
95#elif defined (CONFIG_M5272C3)
96#define FEC_FLASHMAC (0xffe04000 + 4)
97#elif defined(CONFIG_MOD5272)
98#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
99#else
100#define FEC_FLASHMAC 0
101#endif
43be6366 102#endif /* CONFIG_M5272 */
ead73183 103
1da177e4
LT
104/* The number of Tx and Rx buffers. These are allocated from the page
105 * pool. The code may assume these are power of two, so it it best
106 * to keep them that size.
107 * We don't need to allocate pages for the transmitter. We just use
108 * the skbuffer directly.
109 */
110#define FEC_ENET_RX_PAGES 8
111#define FEC_ENET_RX_FRSIZE 2048
112#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
113#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
114#define FEC_ENET_TX_FRSIZE 2048
115#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
116#define TX_RING_SIZE 16 /* Must be power of two */
117#define TX_RING_MOD_MASK 15 /* for this to work */
118
562d2f8c 119#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 120#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
121#endif
122
22f6b860 123/* Interrupt events/masks. */
1da177e4
LT
124#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
125#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
126#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
127#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
128#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
129#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
130#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
131#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
132#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
133#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
134
4bee1f9a
WS
135#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
136
1da177e4
LT
137/* The FEC stores dest/src/type, data, and checksum for receive packets.
138 */
139#define PKT_MAXBUF_SIZE 1518
140#define PKT_MINBUF_SIZE 64
141#define PKT_MAXBLR_SIZE 1520
142
143
144/*
6b265293 145 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
146 * size bits. Other FEC hardware does not, so we need to take that into
147 * account when setting it.
148 */
562d2f8c 149#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
085e79ed 150 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
1da177e4
LT
151#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
152#else
153#define OPT_FRAME_SIZE 0
154#endif
155
156/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
157 * tx_bd_base always point to the base of the buffer descriptors. The
158 * cur_rx and cur_tx point to the currently available buffer.
159 * The dirty_tx tracks the current buffer that is being sent by the
160 * controller. The cur_tx and dirty_tx are equal under both completely
161 * empty and completely full conditions. The empty/ready indicator in
162 * the buffer descriptor determines the actual condition.
163 */
164struct fec_enet_private {
165 /* Hardware registers of the FEC device */
f44d6305 166 void __iomem *hwp;
1da177e4 167
cb84d6e7
GU
168 struct net_device *netdev;
169
ead73183
SH
170 struct clk *clk;
171
1da177e4
LT
172 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
173 unsigned char *tx_bounce[TX_RING_SIZE];
174 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 175 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
176 ushort skb_cur;
177 ushort skb_dirty;
178
22f6b860 179 /* CPM dual port RAM relative addresses */
4661e75b 180 dma_addr_t bd_dma;
22f6b860 181 /* Address of Rx and Tx buffers */
2e28532f
SH
182 struct bufdesc *rx_bd_base;
183 struct bufdesc *tx_bd_base;
184 /* The next free ring entry */
185 struct bufdesc *cur_rx, *cur_tx;
22f6b860 186 /* The ring entries to be free()ed */
2e28532f
SH
187 struct bufdesc *dirty_tx;
188
1da177e4 189 uint tx_full;
3b2b74ca
SS
190 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
191 spinlock_t hw_lock;
1da177e4 192
e6b043d5 193 struct platform_device *pdev;
1da177e4 194
e6b043d5 195 int opened;
1da177e4 196
e6b043d5
BW
197 /* Phylib and MDIO interface */
198 struct mii_bus *mii_bus;
199 struct phy_device *phy_dev;
200 int mii_timeout;
201 uint phy_speed;
5eb32bd0 202 phy_interface_t phy_interface;
1da177e4 203 int link;
1da177e4 204 int full_duplex;
97b72e43 205 struct completion mdio_done;
1da177e4
LT
206};
207
7d12e780 208static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
209static void fec_enet_tx(struct net_device *dev);
210static void fec_enet_rx(struct net_device *dev);
211static int fec_enet_close(struct net_device *dev);
1da177e4
LT
212static void fec_restart(struct net_device *dev, int duplex);
213static void fec_stop(struct net_device *dev);
1da177e4 214
e6b043d5
BW
215/* FEC MII MMFR bits definition */
216#define FEC_MMFR_ST (1 << 30)
217#define FEC_MMFR_OP_READ (2 << 28)
218#define FEC_MMFR_OP_WRITE (1 << 28)
219#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
220#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
221#define FEC_MMFR_TA (2 << 16)
222#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 223
97b72e43 224#define FEC_MII_TIMEOUT 1000 /* us */
1da177e4 225
22f6b860
SH
226/* Transmitter timeout */
227#define TX_TIMEOUT (2 * HZ)
1da177e4 228
b5680e0b
SG
229static void *swap_buffer(void *bufaddr, int len)
230{
231 int i;
232 unsigned int *buf = bufaddr;
233
234 for (i = 0; i < (len + 3) / 4; i++, buf++)
235 *buf = cpu_to_be32(*buf);
236
237 return bufaddr;
238}
239
c7621cb3 240static netdev_tx_t
1da177e4
LT
241fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
242{
f44d6305 243 struct fec_enet_private *fep = netdev_priv(dev);
b5680e0b
SG
244 const struct platform_device_id *id_entry =
245 platform_get_device_id(fep->pdev);
2e28532f 246 struct bufdesc *bdp;
9555b31e 247 void *bufaddr;
0e702ab3 248 unsigned short status;
3b2b74ca 249 unsigned long flags;
1da177e4 250
1da177e4
LT
251 if (!fep->link) {
252 /* Link is down or autonegotiation is in progress. */
5b548140 253 return NETDEV_TX_BUSY;
1da177e4
LT
254 }
255
3b2b74ca 256 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
257 /* Fill in a Tx ring entry */
258 bdp = fep->cur_tx;
259
0e702ab3 260 status = bdp->cbd_sc;
22f6b860 261
0e702ab3 262 if (status & BD_ENET_TX_READY) {
1da177e4
LT
263 /* Ooops. All transmit buffers are full. Bail out.
264 * This should not happen, since dev->tbusy should be set.
265 */
266 printk("%s: tx queue full!.\n", dev->name);
3b2b74ca 267 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 268 return NETDEV_TX_BUSY;
1da177e4 269 }
1da177e4 270
22f6b860 271 /* Clear all of the status flags */
0e702ab3 272 status &= ~BD_ENET_TX_STATS;
1da177e4 273
22f6b860 274 /* Set buffer length and buffer pointer */
9555b31e 275 bufaddr = skb->data;
1da177e4
LT
276 bdp->cbd_datlen = skb->len;
277
278 /*
22f6b860
SH
279 * On some FEC implementations data must be aligned on
280 * 4-byte boundaries. Use bounce buffers to copy data
281 * and get it aligned. Ugh.
1da177e4 282 */
9555b31e 283 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
284 unsigned int index;
285 index = bdp - fep->tx_bd_base;
8a73b0bc 286 memcpy(fep->tx_bounce[index], skb->data, skb->len);
9555b31e 287 bufaddr = fep->tx_bounce[index];
1da177e4
LT
288 }
289
b5680e0b
SG
290 /*
291 * Some design made an incorrect assumption on endian mode of
292 * the system that it's running on. As the result, driver has to
293 * swap every frame going to and coming from the controller.
294 */
295 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
296 swap_buffer(bufaddr, skb->len);
297
22f6b860 298 /* Save skb pointer */
1da177e4
LT
299 fep->tx_skbuff[fep->skb_cur] = skb;
300
09f75cd7 301 dev->stats.tx_bytes += skb->len;
1da177e4 302 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 303
1da177e4
LT
304 /* Push the data cache so the CPM does not get stale memory
305 * data.
306 */
9555b31e 307 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
f0b3fbea 308 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 309
0e702ab3
GU
310 /* Send it on its way. Tell FEC it's ready, interrupt when done,
311 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 312 */
0e702ab3 313 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 314 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 315 bdp->cbd_sc = status;
1da177e4 316
1da177e4 317 /* Trigger transmission start */
f44d6305 318 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 319
22f6b860
SH
320 /* If this was the last BD in the ring, start at the beginning again. */
321 if (status & BD_ENET_TX_WRAP)
1da177e4 322 bdp = fep->tx_bd_base;
22f6b860 323 else
1da177e4 324 bdp++;
1da177e4
LT
325
326 if (bdp == fep->dirty_tx) {
327 fep->tx_full = 1;
328 netif_stop_queue(dev);
329 }
330
2e28532f 331 fep->cur_tx = bdp;
1da177e4 332
3b2b74ca 333 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 334
6ed10654 335 return NETDEV_TX_OK;
1da177e4
LT
336}
337
338static void
339fec_timeout(struct net_device *dev)
340{
341 struct fec_enet_private *fep = netdev_priv(dev);
342
09f75cd7 343 dev->stats.tx_errors++;
1da177e4 344
7dd6a2aa 345 fec_restart(dev, fep->full_duplex);
1da177e4
LT
346 netif_wake_queue(dev);
347}
348
1da177e4 349static irqreturn_t
7d12e780 350fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
351{
352 struct net_device *dev = dev_id;
f44d6305 353 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4 354 uint int_events;
3b2b74ca 355 irqreturn_t ret = IRQ_NONE;
1da177e4 356
3b2b74ca 357 do {
f44d6305
SH
358 int_events = readl(fep->hwp + FEC_IEVENT);
359 writel(int_events, fep->hwp + FEC_IEVENT);
1da177e4 360
1da177e4 361 if (int_events & FEC_ENET_RXF) {
3b2b74ca 362 ret = IRQ_HANDLED;
1da177e4
LT
363 fec_enet_rx(dev);
364 }
365
366 /* Transmit OK, or non-fatal error. Update the buffer
f44d6305
SH
367 * descriptors. FEC handles all errors, we just discover
368 * them as part of the transmit process.
369 */
1da177e4 370 if (int_events & FEC_ENET_TXF) {
3b2b74ca 371 ret = IRQ_HANDLED;
1da177e4
LT
372 fec_enet_tx(dev);
373 }
97b72e43
BS
374
375 if (int_events & FEC_ENET_MII) {
376 ret = IRQ_HANDLED;
377 complete(&fep->mdio_done);
378 }
3b2b74ca
SS
379 } while (int_events);
380
381 return ret;
1da177e4
LT
382}
383
384
385static void
386fec_enet_tx(struct net_device *dev)
387{
388 struct fec_enet_private *fep;
2e28532f 389 struct bufdesc *bdp;
0e702ab3 390 unsigned short status;
1da177e4
LT
391 struct sk_buff *skb;
392
393 fep = netdev_priv(dev);
81538e74 394 spin_lock(&fep->hw_lock);
1da177e4
LT
395 bdp = fep->dirty_tx;
396
0e702ab3 397 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
398 if (bdp == fep->cur_tx && fep->tx_full == 0)
399 break;
400
401 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
402 bdp->cbd_bufaddr = 0;
1da177e4
LT
403
404 skb = fep->tx_skbuff[fep->skb_dirty];
405 /* Check for errors. */
0e702ab3 406 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
407 BD_ENET_TX_RL | BD_ENET_TX_UN |
408 BD_ENET_TX_CSL)) {
09f75cd7 409 dev->stats.tx_errors++;
0e702ab3 410 if (status & BD_ENET_TX_HB) /* No heartbeat */
09f75cd7 411 dev->stats.tx_heartbeat_errors++;
0e702ab3 412 if (status & BD_ENET_TX_LC) /* Late collision */
09f75cd7 413 dev->stats.tx_window_errors++;
0e702ab3 414 if (status & BD_ENET_TX_RL) /* Retrans limit */
09f75cd7 415 dev->stats.tx_aborted_errors++;
0e702ab3 416 if (status & BD_ENET_TX_UN) /* Underrun */
09f75cd7 417 dev->stats.tx_fifo_errors++;
0e702ab3 418 if (status & BD_ENET_TX_CSL) /* Carrier lost */
09f75cd7 419 dev->stats.tx_carrier_errors++;
1da177e4 420 } else {
09f75cd7 421 dev->stats.tx_packets++;
1da177e4
LT
422 }
423
0e702ab3 424 if (status & BD_ENET_TX_READY)
1da177e4 425 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 426
1da177e4
LT
427 /* Deferred means some collisions occurred during transmit,
428 * but we eventually sent the packet OK.
429 */
0e702ab3 430 if (status & BD_ENET_TX_DEF)
09f75cd7 431 dev->stats.collisions++;
6aa20a22 432
22f6b860 433 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
434 dev_kfree_skb_any(skb);
435 fep->tx_skbuff[fep->skb_dirty] = NULL;
436 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 437
22f6b860 438 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 439 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
440 bdp = fep->tx_bd_base;
441 else
442 bdp++;
6aa20a22 443
22f6b860 444 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
445 */
446 if (fep->tx_full) {
447 fep->tx_full = 0;
448 if (netif_queue_stopped(dev))
449 netif_wake_queue(dev);
450 }
451 }
2e28532f 452 fep->dirty_tx = bdp;
81538e74 453 spin_unlock(&fep->hw_lock);
1da177e4
LT
454}
455
456
457/* During a receive, the cur_rx points to the current incoming buffer.
458 * When we update through the ring, if the next incoming buffer has
459 * not been given to the system, we just set the empty indicator,
460 * effectively tossing the packet.
461 */
462static void
463fec_enet_rx(struct net_device *dev)
464{
f44d6305 465 struct fec_enet_private *fep = netdev_priv(dev);
b5680e0b
SG
466 const struct platform_device_id *id_entry =
467 platform_get_device_id(fep->pdev);
2e28532f 468 struct bufdesc *bdp;
0e702ab3 469 unsigned short status;
1da177e4
LT
470 struct sk_buff *skb;
471 ushort pkt_len;
472 __u8 *data;
6aa20a22 473
0e702ab3
GU
474#ifdef CONFIG_M532x
475 flush_cache_all();
6aa20a22 476#endif
1da177e4 477
81538e74 478 spin_lock(&fep->hw_lock);
3b2b74ca 479
1da177e4
LT
480 /* First, grab all of the stats for the incoming packet.
481 * These get messed up if we get called due to a busy condition.
482 */
483 bdp = fep->cur_rx;
484
22f6b860 485 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 486
22f6b860
SH
487 /* Since we have allocated space to hold a complete frame,
488 * the last indicator should be set.
489 */
490 if ((status & BD_ENET_RX_LAST) == 0)
491 printk("FEC ENET: rcv is not +last\n");
1da177e4 492
22f6b860
SH
493 if (!fep->opened)
494 goto rx_processing_done;
1da177e4 495
22f6b860
SH
496 /* Check for errors. */
497 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 498 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
22f6b860
SH
499 dev->stats.rx_errors++;
500 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
501 /* Frame too long or too short. */
502 dev->stats.rx_length_errors++;
503 }
504 if (status & BD_ENET_RX_NO) /* Frame alignment */
505 dev->stats.rx_frame_errors++;
506 if (status & BD_ENET_RX_CR) /* CRC Error */
507 dev->stats.rx_crc_errors++;
508 if (status & BD_ENET_RX_OV) /* FIFO overrun */
509 dev->stats.rx_fifo_errors++;
1da177e4 510 }
1da177e4 511
22f6b860
SH
512 /* Report late collisions as a frame error.
513 * On this error, the BD is closed, but we don't know what we
514 * have in the buffer. So, just drop this frame on the floor.
515 */
516 if (status & BD_ENET_RX_CL) {
517 dev->stats.rx_errors++;
518 dev->stats.rx_frame_errors++;
519 goto rx_processing_done;
520 }
1da177e4 521
22f6b860
SH
522 /* Process the incoming frame. */
523 dev->stats.rx_packets++;
524 pkt_len = bdp->cbd_datlen;
525 dev->stats.rx_bytes += pkt_len;
526 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 527
f0b3fbea
SH
528 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
529 DMA_FROM_DEVICE);
ccdc4f19 530
b5680e0b
SG
531 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
532 swap_buffer(data, pkt_len);
533
22f6b860
SH
534 /* This does 16 byte alignment, exactly what we need.
535 * The packet length includes FCS, but we don't want to
536 * include that when passing upstream as it messes up
537 * bridging applications.
538 */
8549889c 539 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
1da177e4 540
8549889c 541 if (unlikely(!skb)) {
22f6b860
SH
542 printk("%s: Memory squeeze, dropping packet.\n",
543 dev->name);
544 dev->stats.rx_dropped++;
545 } else {
8549889c 546 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
547 skb_put(skb, pkt_len - 4); /* Make room */
548 skb_copy_to_linear_data(skb, data, pkt_len - 4);
549 skb->protocol = eth_type_trans(skb, dev);
550 netif_rx(skb);
551 }
f0b3fbea
SH
552
553 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
554 DMA_FROM_DEVICE);
22f6b860
SH
555rx_processing_done:
556 /* Clear the status flags for this buffer */
557 status &= ~BD_ENET_RX_STATS;
1da177e4 558
22f6b860
SH
559 /* Mark the buffer empty */
560 status |= BD_ENET_RX_EMPTY;
561 bdp->cbd_sc = status;
6aa20a22 562
22f6b860
SH
563 /* Update BD pointer to next entry */
564 if (status & BD_ENET_RX_WRAP)
565 bdp = fep->rx_bd_base;
566 else
567 bdp++;
568 /* Doing this here will keep the FEC running while we process
569 * incoming frames. On a heavily loaded network, we should be
570 * able to keep up at the expense of system resources.
571 */
572 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
573 }
2e28532f 574 fep->cur_rx = bdp;
1da177e4 575
81538e74 576 spin_unlock(&fep->hw_lock);
1da177e4
LT
577}
578
e6b043d5 579/* ------------------------------------------------------------------------- */
e6b043d5 580static void __inline__ fec_get_mac(struct net_device *dev)
1da177e4 581{
e6b043d5 582 struct fec_enet_private *fep = netdev_priv(dev);
49da97dc 583 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
e6b043d5 584 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 585
49da97dc
SG
586 /*
587 * try to get mac address in following order:
588 *
589 * 1) module parameter via kernel command line in form
590 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
591 */
592 iap = macaddr;
593
594 /*
595 * 2) from flash or fuse (via platform data)
596 */
597 if (!is_valid_ether_addr(iap)) {
598#ifdef CONFIG_M5272
599 if (FEC_FLASHMAC)
600 iap = (unsigned char *)FEC_FLASHMAC;
601#else
602 if (pdata)
603 memcpy(iap, pdata->mac, ETH_ALEN);
604#endif
605 }
606
607 /*
608 * 3) FEC mac registers set by bootloader
609 */
610 if (!is_valid_ether_addr(iap)) {
611 *((unsigned long *) &tmpaddr[0]) =
612 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
613 *((unsigned short *) &tmpaddr[4]) =
614 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
e6b043d5 615 iap = &tmpaddr[0];
1da177e4
LT
616 }
617
e6b043d5 618 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4 619
49da97dc
SG
620 /* Adjust MAC if using macaddr */
621 if (iap == macaddr)
622 dev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
1da177e4
LT
623}
624
e6b043d5 625/* ------------------------------------------------------------------------- */
1da177e4 626
e6b043d5
BW
627/*
628 * Phy section
629 */
630static void fec_enet_adjust_link(struct net_device *dev)
1da177e4
LT
631{
632 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5
BW
633 struct phy_device *phy_dev = fep->phy_dev;
634 unsigned long flags;
1da177e4 635
e6b043d5 636 int status_change = 0;
1da177e4 637
e6b043d5 638 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 639
e6b043d5
BW
640 /* Prevent a state halted on mii error */
641 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
642 phy_dev->state = PHY_RESUMING;
643 goto spin_unlock;
644 }
1da177e4 645
e6b043d5
BW
646 /* Duplex link change */
647 if (phy_dev->link) {
648 if (fep->full_duplex != phy_dev->duplex) {
649 fec_restart(dev, phy_dev->duplex);
650 status_change = 1;
651 }
652 }
1da177e4 653
e6b043d5
BW
654 /* Link on or off change */
655 if (phy_dev->link != fep->link) {
656 fep->link = phy_dev->link;
657 if (phy_dev->link)
658 fec_restart(dev, phy_dev->duplex);
1da177e4 659 else
e6b043d5
BW
660 fec_stop(dev);
661 status_change = 1;
1da177e4 662 }
6aa20a22 663
e6b043d5
BW
664spin_unlock:
665 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 666
e6b043d5
BW
667 if (status_change)
668 phy_print_status(phy_dev);
669}
1da177e4 670
e6b043d5 671static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 672{
e6b043d5 673 struct fec_enet_private *fep = bus->priv;
97b72e43 674 unsigned long time_left;
1da177e4 675
e6b043d5 676 fep->mii_timeout = 0;
97b72e43 677 init_completion(&fep->mdio_done);
e6b043d5
BW
678
679 /* start a read op */
680 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
681 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
682 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
683
684 /* wait for end of transfer */
97b72e43
BS
685 time_left = wait_for_completion_timeout(&fep->mdio_done,
686 usecs_to_jiffies(FEC_MII_TIMEOUT));
687 if (time_left == 0) {
688 fep->mii_timeout = 1;
689 printk(KERN_ERR "FEC: MDIO read timeout\n");
690 return -ETIMEDOUT;
1da177e4 691 }
1da177e4 692
e6b043d5
BW
693 /* return value */
694 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 695}
6aa20a22 696
e6b043d5
BW
697static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
698 u16 value)
1da177e4 699{
e6b043d5 700 struct fec_enet_private *fep = bus->priv;
97b72e43 701 unsigned long time_left;
1da177e4 702
e6b043d5 703 fep->mii_timeout = 0;
97b72e43 704 init_completion(&fep->mdio_done);
1da177e4 705
862f0982
SG
706 /* start a write op */
707 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
e6b043d5
BW
708 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
709 FEC_MMFR_TA | FEC_MMFR_DATA(value),
710 fep->hwp + FEC_MII_DATA);
711
712 /* wait for end of transfer */
97b72e43
BS
713 time_left = wait_for_completion_timeout(&fep->mdio_done,
714 usecs_to_jiffies(FEC_MII_TIMEOUT));
715 if (time_left == 0) {
716 fep->mii_timeout = 1;
717 printk(KERN_ERR "FEC: MDIO write timeout\n");
718 return -ETIMEDOUT;
e6b043d5 719 }
1da177e4 720
e6b043d5
BW
721 return 0;
722}
1da177e4 723
e6b043d5 724static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 725{
e6b043d5 726 return 0;
1da177e4
LT
727}
728
e6b043d5 729static int fec_enet_mii_probe(struct net_device *dev)
562d2f8c 730{
4cf1653a 731 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 732 struct phy_device *phy_dev = NULL;
6fcc040f
GU
733 char mdio_bus_id[MII_BUS_ID_SIZE];
734 char phy_name[MII_BUS_ID_SIZE + 3];
735 int phy_id;
b5680e0b 736 int dev_id = fep->pdev->id;
562d2f8c 737
418bd0d4
BW
738 fep->phy_dev = NULL;
739
6fcc040f
GU
740 /* check for attached phy */
741 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
742 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
743 continue;
744 if (fep->mii_bus->phy_map[phy_id] == NULL)
745 continue;
746 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
747 continue;
b5680e0b
SG
748 if (dev_id--)
749 continue;
6fcc040f
GU
750 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
751 break;
e6b043d5 752 }
1da177e4 753
6fcc040f
GU
754 if (phy_id >= PHY_MAX_ADDR) {
755 printk(KERN_INFO "%s: no PHY, assuming direct connection "
756 "to switch\n", dev->name);
757 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
758 phy_id = 0;
759 }
760
761 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
762 phy_dev = phy_connect(dev, phy_name, &fec_enet_adjust_link, 0,
763 PHY_INTERFACE_MODE_MII);
764 if (IS_ERR(phy_dev)) {
765 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
766 return PTR_ERR(phy_dev);
e6b043d5 767 }
1da177e4 768
e6b043d5
BW
769 /* mask with MAC supported features */
770 phy_dev->supported &= PHY_BASIC_FEATURES;
771 phy_dev->advertising = phy_dev->supported;
1da177e4 772
e6b043d5
BW
773 fep->phy_dev = phy_dev;
774 fep->link = 0;
775 fep->full_duplex = 0;
1da177e4 776
418bd0d4
BW
777 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
778 "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
779 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
780 fep->phy_dev->irq);
781
e6b043d5 782 return 0;
1da177e4
LT
783}
784
e6b043d5 785static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 786{
b5680e0b 787 static struct mii_bus *fec0_mii_bus;
e6b043d5 788 struct net_device *dev = platform_get_drvdata(pdev);
562d2f8c 789 struct fec_enet_private *fep = netdev_priv(dev);
b5680e0b
SG
790 const struct platform_device_id *id_entry =
791 platform_get_device_id(fep->pdev);
e6b043d5 792 int err = -ENXIO, i;
6b265293 793
b5680e0b
SG
794 /*
795 * The dual fec interfaces are not equivalent with enet-mac.
796 * Here are the differences:
797 *
798 * - fec0 supports MII & RMII modes while fec1 only supports RMII
799 * - fec0 acts as the 1588 time master while fec1 is slave
800 * - external phys can only be configured by fec0
801 *
802 * That is to say fec1 can not work independently. It only works
803 * when fec0 is working. The reason behind this design is that the
804 * second interface is added primarily for Switch mode.
805 *
806 * Because of the last point above, both phys are attached on fec0
807 * mdio interface in board design, and need to be configured by
808 * fec0 mii_bus.
809 */
810 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
811 /* fec1 uses fec0 mii_bus */
812 fep->mii_bus = fec0_mii_bus;
813 return 0;
814 }
815
e6b043d5 816 fep->mii_timeout = 0;
1da177e4 817
e6b043d5
BW
818 /*
819 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
820 */
821 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
822 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 823
e6b043d5
BW
824 fep->mii_bus = mdiobus_alloc();
825 if (fep->mii_bus == NULL) {
826 err = -ENOMEM;
827 goto err_out;
1da177e4
LT
828 }
829
e6b043d5
BW
830 fep->mii_bus->name = "fec_enet_mii_bus";
831 fep->mii_bus->read = fec_enet_mdio_read;
832 fep->mii_bus->write = fec_enet_mdio_write;
833 fep->mii_bus->reset = fec_enet_mdio_reset;
6fcc040f 834 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
e6b043d5
BW
835 fep->mii_bus->priv = fep;
836 fep->mii_bus->parent = &pdev->dev;
837
838 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
839 if (!fep->mii_bus->irq) {
840 err = -ENOMEM;
841 goto err_out_free_mdiobus;
1da177e4
LT
842 }
843
e6b043d5
BW
844 for (i = 0; i < PHY_MAX_ADDR; i++)
845 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 846
e6b043d5 847 platform_set_drvdata(dev, fep->mii_bus);
1da177e4 848
e6b043d5
BW
849 if (mdiobus_register(fep->mii_bus))
850 goto err_out_free_mdio_irq;
1da177e4 851
b5680e0b
SG
852 /* save fec0 mii_bus */
853 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
854 fec0_mii_bus = fep->mii_bus;
855
e6b043d5 856 return 0;
1da177e4 857
e6b043d5
BW
858err_out_free_mdio_irq:
859 kfree(fep->mii_bus->irq);
860err_out_free_mdiobus:
861 mdiobus_free(fep->mii_bus);
862err_out:
863 return err;
1da177e4
LT
864}
865
e6b043d5 866static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 867{
e6b043d5
BW
868 if (fep->phy_dev)
869 phy_disconnect(fep->phy_dev);
870 mdiobus_unregister(fep->mii_bus);
871 kfree(fep->mii_bus->irq);
872 mdiobus_free(fep->mii_bus);
1da177e4
LT
873}
874
e6b043d5
BW
875static int fec_enet_get_settings(struct net_device *dev,
876 struct ethtool_cmd *cmd)
1da177e4
LT
877{
878 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 879 struct phy_device *phydev = fep->phy_dev;
1da177e4 880
e6b043d5
BW
881 if (!phydev)
882 return -ENODEV;
1da177e4 883
e6b043d5 884 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
885}
886
e6b043d5
BW
887static int fec_enet_set_settings(struct net_device *dev,
888 struct ethtool_cmd *cmd)
1da177e4
LT
889{
890 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 891 struct phy_device *phydev = fep->phy_dev;
1da177e4 892
e6b043d5
BW
893 if (!phydev)
894 return -ENODEV;
1da177e4 895
e6b043d5 896 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
897}
898
e6b043d5
BW
899static void fec_enet_get_drvinfo(struct net_device *dev,
900 struct ethtool_drvinfo *info)
1da177e4 901{
e6b043d5 902 struct fec_enet_private *fep = netdev_priv(dev);
6aa20a22 903
e6b043d5
BW
904 strcpy(info->driver, fep->pdev->dev.driver->name);
905 strcpy(info->version, "Revision: 1.0");
906 strcpy(info->bus_info, dev_name(&dev->dev));
1da177e4
LT
907}
908
e6b043d5
BW
909static struct ethtool_ops fec_enet_ethtool_ops = {
910 .get_settings = fec_enet_get_settings,
911 .set_settings = fec_enet_set_settings,
912 .get_drvinfo = fec_enet_get_drvinfo,
913 .get_link = ethtool_op_get_link,
914};
1da177e4 915
e6b043d5 916static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4 917{
1da177e4 918 struct fec_enet_private *fep = netdev_priv(dev);
e6b043d5 919 struct phy_device *phydev = fep->phy_dev;
1da177e4 920
e6b043d5
BW
921 if (!netif_running(dev))
922 return -EINVAL;
1da177e4 923
e6b043d5
BW
924 if (!phydev)
925 return -ENODEV;
926
28b04113 927 return phy_mii_ioctl(phydev, rq, cmd);
1da177e4
LT
928}
929
f0b3fbea
SH
930static void fec_enet_free_buffers(struct net_device *dev)
931{
932 struct fec_enet_private *fep = netdev_priv(dev);
933 int i;
934 struct sk_buff *skb;
935 struct bufdesc *bdp;
936
937 bdp = fep->rx_bd_base;
938 for (i = 0; i < RX_RING_SIZE; i++) {
939 skb = fep->rx_skbuff[i];
940
941 if (bdp->cbd_bufaddr)
942 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
943 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
944 if (skb)
945 dev_kfree_skb(skb);
946 bdp++;
947 }
948
949 bdp = fep->tx_bd_base;
950 for (i = 0; i < TX_RING_SIZE; i++)
951 kfree(fep->tx_bounce[i]);
952}
953
954static int fec_enet_alloc_buffers(struct net_device *dev)
955{
956 struct fec_enet_private *fep = netdev_priv(dev);
957 int i;
958 struct sk_buff *skb;
959 struct bufdesc *bdp;
960
961 bdp = fep->rx_bd_base;
962 for (i = 0; i < RX_RING_SIZE; i++) {
963 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
964 if (!skb) {
965 fec_enet_free_buffers(dev);
966 return -ENOMEM;
967 }
968 fep->rx_skbuff[i] = skb;
969
970 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
971 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
972 bdp->cbd_sc = BD_ENET_RX_EMPTY;
973 bdp++;
974 }
975
976 /* Set the last buffer to wrap. */
977 bdp--;
978 bdp->cbd_sc |= BD_SC_WRAP;
979
980 bdp = fep->tx_bd_base;
981 for (i = 0; i < TX_RING_SIZE; i++) {
982 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
983
984 bdp->cbd_sc = 0;
985 bdp->cbd_bufaddr = 0;
986 bdp++;
987 }
988
989 /* Set the last buffer to wrap. */
990 bdp--;
991 bdp->cbd_sc |= BD_SC_WRAP;
992
993 return 0;
994}
995
1da177e4
LT
996static int
997fec_enet_open(struct net_device *dev)
998{
999 struct fec_enet_private *fep = netdev_priv(dev);
f0b3fbea 1000 int ret;
1da177e4
LT
1001
1002 /* I should reset the ring buffers here, but I don't yet know
1003 * a simple way to do that.
1004 */
1da177e4 1005
f0b3fbea
SH
1006 ret = fec_enet_alloc_buffers(dev);
1007 if (ret)
1008 return ret;
1009
418bd0d4
BW
1010 /* Probe and connect to PHY when open the interface */
1011 ret = fec_enet_mii_probe(dev);
1012 if (ret) {
1013 fec_enet_free_buffers(dev);
1014 return ret;
1015 }
e6b043d5 1016 phy_start(fep->phy_dev);
1da177e4
LT
1017 netif_start_queue(dev);
1018 fep->opened = 1;
22f6b860 1019 return 0;
1da177e4
LT
1020}
1021
1022static int
1023fec_enet_close(struct net_device *dev)
1024{
1025 struct fec_enet_private *fep = netdev_priv(dev);
1026
22f6b860 1027 /* Don't know what to do yet. */
1da177e4
LT
1028 fep->opened = 0;
1029 netif_stop_queue(dev);
1030 fec_stop(dev);
1031
418bd0d4
BW
1032 if (fep->phy_dev)
1033 phy_disconnect(fep->phy_dev);
1034
f0b3fbea
SH
1035 fec_enet_free_buffers(dev);
1036
1da177e4
LT
1037 return 0;
1038}
1039
1da177e4
LT
1040/* Set or clear the multicast filter for this adaptor.
1041 * Skeleton taken from sunlance driver.
1042 * The CPM Ethernet implementation allows Multicast as well as individual
1043 * MAC address filtering. Some of the drivers check to make sure it is
1044 * a group multicast address, and discard those that are not. I guess I
1045 * will do the same for now, but just remove the test if you want
1046 * individual filtering as well (do the upper net layers want or support
1047 * this kind of feature?).
1048 */
1049
1050#define HASH_BITS 6 /* #bits in hash */
1051#define CRC32_POLY 0xEDB88320
1052
1053static void set_multicast_list(struct net_device *dev)
1054{
f44d6305 1055 struct fec_enet_private *fep = netdev_priv(dev);
22bedad3 1056 struct netdev_hw_addr *ha;
48e2f183 1057 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
1058 unsigned char hash;
1059
22f6b860 1060 if (dev->flags & IFF_PROMISC) {
f44d6305
SH
1061 tmp = readl(fep->hwp + FEC_R_CNTRL);
1062 tmp |= 0x8;
1063 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
1064 return;
1065 }
1da177e4 1066
4e831836
SH
1067 tmp = readl(fep->hwp + FEC_R_CNTRL);
1068 tmp &= ~0x8;
1069 writel(tmp, fep->hwp + FEC_R_CNTRL);
1070
1071 if (dev->flags & IFF_ALLMULTI) {
1072 /* Catch all multicast addresses, so set the
1073 * filter to all 1's
1074 */
1075 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1076 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1077
1078 return;
1079 }
1080
1081 /* Clear filter and add the addresses in hash register
1082 */
1083 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1084 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1085
22bedad3 1086 netdev_for_each_mc_addr(ha, dev) {
4e831836 1087 /* Only support group multicast for now */
22bedad3 1088 if (!(ha->addr[0] & 1))
4e831836
SH
1089 continue;
1090
1091 /* calculate crc32 value of mac address */
1092 crc = 0xffffffff;
1093
22bedad3
JP
1094 for (i = 0; i < dev->addr_len; i++) {
1095 data = ha->addr[i];
4e831836
SH
1096 for (bit = 0; bit < 8; bit++, data >>= 1) {
1097 crc = (crc >> 1) ^
1098 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
1099 }
1100 }
4e831836
SH
1101
1102 /* only upper 6 bits (HASH_BITS) are used
1103 * which point to specific bit in he hash registers
1104 */
1105 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1106
1107 if (hash > 31) {
1108 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1109 tmp |= 1 << (hash - 32);
1110 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1111 } else {
1112 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1113 tmp |= 1 << hash;
1114 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1115 }
1da177e4
LT
1116 }
1117}
1118
22f6b860 1119/* Set a MAC change in hardware. */
009fda83
SH
1120static int
1121fec_set_mac_address(struct net_device *dev, void *p)
1da177e4 1122{
f44d6305 1123 struct fec_enet_private *fep = netdev_priv(dev);
009fda83
SH
1124 struct sockaddr *addr = p;
1125
1126 if (!is_valid_ether_addr(addr->sa_data))
1127 return -EADDRNOTAVAIL;
1128
1129 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1da177e4 1130
f44d6305
SH
1131 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1132 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1133 fep->hwp + FEC_ADDR_LOW);
1134 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
7cff0943 1135 fep->hwp + FEC_ADDR_HIGH);
009fda83 1136 return 0;
1da177e4
LT
1137}
1138
009fda83
SH
1139static const struct net_device_ops fec_netdev_ops = {
1140 .ndo_open = fec_enet_open,
1141 .ndo_stop = fec_enet_close,
1142 .ndo_start_xmit = fec_enet_start_xmit,
1143 .ndo_set_multicast_list = set_multicast_list,
635ecaa7 1144 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1145 .ndo_validate_addr = eth_validate_addr,
1146 .ndo_tx_timeout = fec_timeout,
1147 .ndo_set_mac_address = fec_set_mac_address,
e6b043d5 1148 .ndo_do_ioctl = fec_enet_ioctl,
009fda83
SH
1149};
1150
1da177e4
LT
1151 /*
1152 * XXX: We need to clean up on failure exits here.
ead73183 1153 *
1da177e4 1154 */
8649a230 1155static int fec_enet_init(struct net_device *dev)
1da177e4
LT
1156{
1157 struct fec_enet_private *fep = netdev_priv(dev);
f0b3fbea 1158 struct bufdesc *cbd_base;
633e7533 1159 struct bufdesc *bdp;
f0b3fbea 1160 int i;
1da177e4 1161
8d4dd5cf
SH
1162 /* Allocate memory for buffer descriptors. */
1163 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1164 GFP_KERNEL);
1165 if (!cbd_base) {
562d2f8c
GU
1166 printk("FEC: allocate descriptor memory failed?\n");
1167 return -ENOMEM;
1168 }
1169
3b2b74ca 1170 spin_lock_init(&fep->hw_lock);
3b2b74ca 1171
cb84d6e7 1172 fep->netdev = dev;
1da177e4 1173
49da97dc 1174 /* Get the Ethernet address */
1da177e4
LT
1175 fec_get_mac(dev);
1176
8d4dd5cf 1177 /* Set receive and transmit descriptor base. */
1da177e4
LT
1178 fep->rx_bd_base = cbd_base;
1179 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1180
22f6b860 1181 /* The FEC Ethernet specific entries in the device structure */
1da177e4 1182 dev->watchdog_timeo = TX_TIMEOUT;
009fda83 1183 dev->netdev_ops = &fec_netdev_ops;
e6b043d5 1184 dev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1185
1186 /* Initialize the receive buffer descriptors. */
1187 bdp = fep->rx_bd_base;
1188 for (i = 0; i < RX_RING_SIZE; i++) {
1189
1190 /* Initialize the BD for every fragment in the page. */
1191 bdp->cbd_sc = 0;
1192 bdp++;
1193 }
1194
1195 /* Set the last buffer to wrap */
1196 bdp--;
1197 bdp->cbd_sc |= BD_SC_WRAP;
1198
1199 /* ...and the same for transmit */
1200 bdp = fep->tx_bd_base;
1201 for (i = 0; i < TX_RING_SIZE; i++) {
1202
1203 /* Initialize the BD for every fragment in the page. */
1204 bdp->cbd_sc = 0;
1205 bdp->cbd_bufaddr = 0;
1206 bdp++;
1207 }
1208
1209 /* Set the last buffer to wrap */
1210 bdp--;
1211 bdp->cbd_sc |= BD_SC_WRAP;
1212
ead73183 1213 fec_restart(dev, 0);
1da177e4 1214
1da177e4
LT
1215 return 0;
1216}
1217
1218/* This function is called to start or restart the FEC during a link
1219 * change. This only happens when switching between half and full
1220 * duplex.
1221 */
1222static void
1223fec_restart(struct net_device *dev, int duplex)
1224{
f44d6305 1225 struct fec_enet_private *fep = netdev_priv(dev);
b5680e0b
SG
1226 const struct platform_device_id *id_entry =
1227 platform_get_device_id(fep->pdev);
1da177e4 1228 int i;
b5680e0b 1229 u32 val, temp_mac[2];
1da177e4 1230
f44d6305
SH
1231 /* Whack a reset. We should wait for this. */
1232 writel(1, fep->hwp + FEC_ECNTRL);
1da177e4
LT
1233 udelay(10);
1234
b5680e0b
SG
1235 /*
1236 * enet-mac reset will reset mac address registers too,
1237 * so need to reconfigure it.
1238 */
1239 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1240 memcpy(&temp_mac, dev->dev_addr, ETH_ALEN);
1241 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
1242 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
1243 }
1244
f44d6305
SH
1245 /* Clear any outstanding interrupt. */
1246 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 1247
f44d6305
SH
1248 /* Reset all multicast. */
1249 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1250 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
4f1ceb4b
SH
1251#ifndef CONFIG_M5272
1252 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1253 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1254#endif
1da177e4 1255
f44d6305
SH
1256 /* Set maximum receive buffer size. */
1257 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 1258
f44d6305
SH
1259 /* Set receive and transmit descriptor base. */
1260 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
2e28532f 1261 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
f44d6305 1262 fep->hwp + FEC_X_DES_START);
1da177e4
LT
1263
1264 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1265 fep->cur_rx = fep->rx_bd_base;
1266
f44d6305 1267 /* Reset SKB transmit buffers. */
1da177e4 1268 fep->skb_cur = fep->skb_dirty = 0;
22f6b860
SH
1269 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1270 if (fep->tx_skbuff[i]) {
1da177e4
LT
1271 dev_kfree_skb_any(fep->tx_skbuff[i]);
1272 fep->tx_skbuff[i] = NULL;
1273 }
1274 }
1275
22f6b860 1276 /* Enable MII mode */
1da177e4 1277 if (duplex) {
f44d6305
SH
1278 /* MII enable / FD enable */
1279 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1280 writel(0x04, fep->hwp + FEC_X_CNTRL);
f909b1ef 1281 } else {
f44d6305
SH
1282 /* MII enable / No Rcv on Xmit */
1283 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1284 writel(0x0, fep->hwp + FEC_X_CNTRL);
1da177e4
LT
1285 }
1286 fep->full_duplex = duplex;
1287
22f6b860 1288 /* Set MII speed */
f44d6305 1289 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 1290
b5680e0b
SG
1291 /*
1292 * The phy interface and speed need to get configured
1293 * differently on enet-mac.
1294 */
1295 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1296 val = readl(fep->hwp + FEC_R_CNTRL);
5eb32bd0 1297
b5680e0b
SG
1298 /* MII or RMII */
1299 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1300 val |= (1 << 8);
1301 else
1302 val &= ~(1 << 8);
5eb32bd0 1303
b5680e0b
SG
1304 /* 10M or 100M */
1305 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
1306 val &= ~(1 << 9);
1307 else
1308 val |= (1 << 9);
1309
1310 writel(val, fep->hwp + FEC_R_CNTRL);
1311 } else {
1312#ifdef FEC_MIIGSK_ENR
1313 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
1314 /* disable the gasket and wait */
1315 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1316 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1317 udelay(1);
1318
1319 /*
1320 * configure the gasket:
1321 * RMII, 50 MHz, no loopback, no echo
1322 */
1323 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
1324
1325 /* re-enable the gasket */
1326 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1327 }
5eb32bd0 1328#endif
b5680e0b 1329 }
5eb32bd0 1330
22f6b860 1331 /* And last, enable the transmit and receive processing */
f44d6305
SH
1332 writel(2, fep->hwp + FEC_ECNTRL);
1333 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
6b265293 1334
22f6b860 1335 /* Enable interrupts we wish to service */
4bee1f9a 1336 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
1337}
1338
1339static void
1340fec_stop(struct net_device *dev)
1341{
f44d6305 1342 struct fec_enet_private *fep = netdev_priv(dev);
1da177e4 1343
22f6b860 1344 /* We cannot expect a graceful transmit stop without link !!! */
f44d6305
SH
1345 if (fep->link) {
1346 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
677177c5 1347 udelay(10);
f44d6305 1348 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
677177c5 1349 printk("fec_stop : Graceful transmit stop did not complete !\n");
f44d6305 1350 }
1da177e4 1351
f44d6305
SH
1352 /* Whack a reset. We should wait for this. */
1353 writel(1, fep->hwp + FEC_ECNTRL);
1da177e4 1354 udelay(10);
f44d6305 1355 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
4bee1f9a 1356 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
1357}
1358
ead73183
SH
1359static int __devinit
1360fec_probe(struct platform_device *pdev)
1361{
1362 struct fec_enet_private *fep;
5eb32bd0 1363 struct fec_platform_data *pdata;
ead73183
SH
1364 struct net_device *ndev;
1365 int i, irq, ret = 0;
1366 struct resource *r;
1367
1368 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1369 if (!r)
1370 return -ENXIO;
1371
1372 r = request_mem_region(r->start, resource_size(r), pdev->name);
1373 if (!r)
1374 return -EBUSY;
1375
1376 /* Init network device */
1377 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
28e2188e
UKK
1378 if (!ndev) {
1379 ret = -ENOMEM;
1380 goto failed_alloc_etherdev;
1381 }
ead73183
SH
1382
1383 SET_NETDEV_DEV(ndev, &pdev->dev);
1384
1385 /* setup board info structure */
1386 fep = netdev_priv(ndev);
ead73183 1387
24e531b4 1388 fep->hwp = ioremap(r->start, resource_size(r));
e6b043d5 1389 fep->pdev = pdev;
ead73183 1390
24e531b4 1391 if (!fep->hwp) {
ead73183
SH
1392 ret = -ENOMEM;
1393 goto failed_ioremap;
1394 }
1395
1396 platform_set_drvdata(pdev, ndev);
1397
5eb32bd0
BS
1398 pdata = pdev->dev.platform_data;
1399 if (pdata)
1400 fep->phy_interface = pdata->phy;
1401
ead73183
SH
1402 /* This device has up to three irqs on some platforms */
1403 for (i = 0; i < 3; i++) {
1404 irq = platform_get_irq(pdev, i);
1405 if (i && irq < 0)
1406 break;
1407 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1408 if (ret) {
b2b09ad6 1409 while (--i >= 0) {
ead73183
SH
1410 irq = platform_get_irq(pdev, i);
1411 free_irq(irq, ndev);
ead73183
SH
1412 }
1413 goto failed_irq;
1414 }
1415 }
1416
1417 fep->clk = clk_get(&pdev->dev, "fec_clk");
1418 if (IS_ERR(fep->clk)) {
1419 ret = PTR_ERR(fep->clk);
1420 goto failed_clk;
1421 }
1422 clk_enable(fep->clk);
1423
8649a230 1424 ret = fec_enet_init(ndev);
ead73183
SH
1425 if (ret)
1426 goto failed_init;
1427
e6b043d5
BW
1428 ret = fec_enet_mii_init(pdev);
1429 if (ret)
1430 goto failed_mii_init;
1431
03c698c9
OS
1432 /* Carrier starts down, phylib will bring it up */
1433 netif_carrier_off(ndev);
1434
ead73183
SH
1435 ret = register_netdev(ndev);
1436 if (ret)
1437 goto failed_register;
1438
1439 return 0;
1440
1441failed_register:
e6b043d5
BW
1442 fec_enet_mii_remove(fep);
1443failed_mii_init:
ead73183
SH
1444failed_init:
1445 clk_disable(fep->clk);
1446 clk_put(fep->clk);
1447failed_clk:
1448 for (i = 0; i < 3; i++) {
1449 irq = platform_get_irq(pdev, i);
1450 if (irq > 0)
1451 free_irq(irq, ndev);
1452 }
1453failed_irq:
24e531b4 1454 iounmap(fep->hwp);
ead73183
SH
1455failed_ioremap:
1456 free_netdev(ndev);
28e2188e
UKK
1457failed_alloc_etherdev:
1458 release_mem_region(r->start, resource_size(r));
ead73183
SH
1459
1460 return ret;
1461}
1462
1463static int __devexit
1464fec_drv_remove(struct platform_device *pdev)
1465{
1466 struct net_device *ndev = platform_get_drvdata(pdev);
1467 struct fec_enet_private *fep = netdev_priv(ndev);
28e2188e 1468 struct resource *r;
ead73183
SH
1469
1470 platform_set_drvdata(pdev, NULL);
1471
1472 fec_stop(ndev);
e6b043d5 1473 fec_enet_mii_remove(fep);
ead73183
SH
1474 clk_disable(fep->clk);
1475 clk_put(fep->clk);
24e531b4 1476 iounmap(fep->hwp);
ead73183
SH
1477 unregister_netdev(ndev);
1478 free_netdev(ndev);
28e2188e
UKK
1479
1480 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1481 BUG_ON(!r);
1482 release_mem_region(r->start, resource_size(r));
1483
ead73183
SH
1484 return 0;
1485}
1486
59d4289b 1487#ifdef CONFIG_PM
ead73183 1488static int
87cad5c3 1489fec_suspend(struct device *dev)
ead73183 1490{
87cad5c3 1491 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1492 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1493
04e5216d
UKK
1494 if (netif_running(ndev)) {
1495 fec_stop(ndev);
1496 netif_device_detach(ndev);
ead73183 1497 }
04e5216d
UKK
1498 clk_disable(fep->clk);
1499
ead73183
SH
1500 return 0;
1501}
1502
1503static int
87cad5c3 1504fec_resume(struct device *dev)
ead73183 1505{
87cad5c3 1506 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1507 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1508
04e5216d
UKK
1509 clk_enable(fep->clk);
1510 if (netif_running(ndev)) {
1511 fec_restart(ndev, fep->full_duplex);
1512 netif_device_attach(ndev);
ead73183 1513 }
04e5216d 1514
ead73183
SH
1515 return 0;
1516}
1517
59d4289b
DK
1518static const struct dev_pm_ops fec_pm_ops = {
1519 .suspend = fec_suspend,
1520 .resume = fec_resume,
1521 .freeze = fec_suspend,
1522 .thaw = fec_resume,
1523 .poweroff = fec_suspend,
1524 .restore = fec_resume,
1525};
87cad5c3 1526#endif
59d4289b 1527
ead73183
SH
1528static struct platform_driver fec_driver = {
1529 .driver = {
b5680e0b 1530 .name = DRIVER_NAME,
87cad5c3
EB
1531 .owner = THIS_MODULE,
1532#ifdef CONFIG_PM
1533 .pm = &fec_pm_ops,
1534#endif
ead73183 1535 },
b5680e0b 1536 .id_table = fec_devtype,
87cad5c3
EB
1537 .probe = fec_probe,
1538 .remove = __devexit_p(fec_drv_remove),
ead73183
SH
1539};
1540
1541static int __init
1542fec_enet_module_init(void)
1543{
1544 printk(KERN_INFO "FEC Ethernet Driver\n");
1545
1546 return platform_driver_register(&fec_driver);
1547}
1548
1549static void __exit
1550fec_enet_cleanup(void)
1551{
1552 platform_driver_unregister(&fec_driver);
1553}
1554
1555module_exit(fec_enet_cleanup);
1da177e4
LT
1556module_init(fec_enet_module_init);
1557
1558MODULE_LICENSE("GPL");