Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / drivers / net / ethernet / sfc / ptp.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
7c236c43 2/****************************************************************************
f7a6d2c4
BH
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2011-2013 Solarflare Communications Inc.
7c236c43
SH
5 */
6
7/* Theory of operation:
8 *
9 * PTP support is assisted by firmware running on the MC, which provides
10 * the hardware timestamping capabilities. Both transmitted and received
11 * PTP event packets are queued onto internal queues for subsequent processing;
12 * this is because the MC operations are relatively long and would block
13 * block NAPI/interrupt operation.
14 *
15 * Receive event processing:
16 * The event contains the packet's UUID and sequence number, together
17 * with the hardware timestamp. The PTP receive packet queue is searched
18 * for this UUID/sequence number and, if found, put on a pending queue.
19 * Packets not matching are delivered without timestamps (MCDI events will
20 * always arrive after the actual packet).
21 * It is important for the operation of the PTP protocol that the ordering
22 * of packets between the event and general port is maintained.
23 *
24 * Work queue processing:
25 * If work waiting, synchronise host/hardware time
26 *
27 * Transmit: send packet through MC, which returns the transmission time
28 * that is converted to an appropriate timestamp.
29 *
30 * Receive: the packet's reception time is converted to an appropriate
31 * timestamp.
32 */
33#include <linux/ip.h>
34#include <linux/udp.h>
35#include <linux/time.h>
36#include <linux/ktime.h>
37#include <linux/module.h>
38#include <linux/net_tstamp.h>
39#include <linux/pps_kernel.h>
40#include <linux/ptp_clock_kernel.h>
41#include "net_driver.h"
42#include "efx.h"
43#include "mcdi.h"
44#include "mcdi_pcol.h"
45#include "io.h"
8b8a95a1 46#include "farch_regs.h"
7c236c43
SH
47#include "nic.h"
48
49/* Maximum number of events expected to make up a PTP event */
50#define MAX_EVENT_FRAGS 3
51
52/* Maximum delay, ms, to begin synchronisation */
53#define MAX_SYNCHRONISE_WAIT_MS 2
54
55/* How long, at most, to spend synchronising */
56#define SYNCHRONISE_PERIOD_NS 250000
57
58/* How often to update the shared memory time */
59#define SYNCHRONISATION_GRANULARITY_NS 200
60
61/* Minimum permitted length of a (corrected) synchronisation time */
a6f73460 62#define DEFAULT_MIN_SYNCHRONISATION_NS 120
7c236c43
SH
63
64/* Maximum permitted length of a (corrected) synchronisation time */
65#define MAX_SYNCHRONISATION_NS 1000
66
67/* How many (MC) receive events that can be queued */
68#define MAX_RECEIVE_EVENTS 8
69
70/* Length of (modified) moving average. */
71#define AVERAGE_LENGTH 16
72
73/* How long an unmatched event or packet can be held */
74#define PKT_EVENT_LIFETIME_MS 10
75
76/* Offsets into PTP packet for identification. These offsets are from the
77 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
78 * PTP V2 permit the use of IPV4 options.
79 */
80#define PTP_DPORT_OFFSET 22
81
82#define PTP_V1_VERSION_LENGTH 2
83#define PTP_V1_VERSION_OFFSET 28
84
85#define PTP_V1_UUID_LENGTH 6
86#define PTP_V1_UUID_OFFSET 50
87
88#define PTP_V1_SEQUENCE_LENGTH 2
89#define PTP_V1_SEQUENCE_OFFSET 58
90
91/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
92 * includes IP header.
93 */
94#define PTP_V1_MIN_LENGTH 64
95
96#define PTP_V2_VERSION_LENGTH 1
97#define PTP_V2_VERSION_OFFSET 29
98
c939a316
LE
99#define PTP_V2_UUID_LENGTH 8
100#define PTP_V2_UUID_OFFSET 48
101
7c236c43
SH
102/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
103 * the MC only captures the last six bytes of the clock identity. These values
104 * reflect those, not the ones used in the standard. The standard permits
105 * mapping of V1 UUIDs to V2 UUIDs with these same values.
106 */
107#define PTP_V2_MC_UUID_LENGTH 6
108#define PTP_V2_MC_UUID_OFFSET 50
109
110#define PTP_V2_SEQUENCE_LENGTH 2
111#define PTP_V2_SEQUENCE_OFFSET 58
112
113/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
114 * includes IP header.
115 */
116#define PTP_V2_MIN_LENGTH 63
117
118#define PTP_MIN_LENGTH 63
119
120#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
121#define PTP_EVENT_PORT 319
122#define PTP_GENERAL_PORT 320
123
124/* Annoyingly the format of the version numbers are different between
125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
126 */
127#define PTP_VERSION_V1 1
128
129#define PTP_VERSION_V2 2
130#define PTP_VERSION_V2_MASK 0x0f
131
132enum ptp_packet_state {
133 PTP_PACKET_STATE_UNMATCHED = 0,
134 PTP_PACKET_STATE_MATCHED,
135 PTP_PACKET_STATE_TIMED_OUT,
136 PTP_PACKET_STATE_MATCH_UNWANTED
137};
138
139/* NIC synchronised with single word of time only comprising
140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
141 */
142#define MC_NANOSECOND_BITS 30
143#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
144#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
145
146/* Maximum parts-per-billion adjustment that is acceptable */
147#define MAX_PPB 1000000
148
7c236c43 149/* Precalculate scale word to avoid long long division at runtime */
88a4fb5f
LE
150/* This is equivalent to 2^66 / 10^9. */
151#define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
152
153/* How much to shift down after scaling to convert to FP40 */
154#define PPB_SHIFT_FP40 26
155/* ... and FP44. */
156#define PPB_SHIFT_FP44 22
7c236c43
SH
157
158#define PTP_SYNC_ATTEMPTS 4
159
160/**
161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
162 * @words: UUID and (partial) sequence number
163 * @expiry: Time after which the packet should be delivered irrespective of
164 * event arrival.
165 * @state: The state of the packet - whether it is ready for processing or
166 * whether that is of no interest.
167 */
168struct efx_ptp_match {
169 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
170 unsigned long expiry;
171 enum ptp_packet_state state;
172};
173
174/**
175 * struct efx_ptp_event_rx - A PTP receive event (from MC)
176 * @seq0: First part of (PTP) UUID
177 * @seq1: Second part of (PTP) UUID and sequence number
178 * @hwtimestamp: Event timestamp
179 */
180struct efx_ptp_event_rx {
181 struct list_head link;
182 u32 seq0;
183 u32 seq1;
184 ktime_t hwtimestamp;
185 unsigned long expiry;
186};
187
188/**
189 * struct efx_ptp_timeset - Synchronisation between host and MC
190 * @host_start: Host time immediately before hardware timestamp taken
a6f73460
LE
191 * @major: Hardware timestamp, major
192 * @minor: Hardware timestamp, minor
7c236c43 193 * @host_end: Host time immediately after hardware timestamp taken
a6f73460 194 * @wait: Number of NIC clock ticks between hardware timestamp being read and
7c236c43
SH
195 * host end time being seen
196 * @window: Difference of host_end and host_start
197 * @valid: Whether this timeset is valid
198 */
199struct efx_ptp_timeset {
200 u32 host_start;
a6f73460
LE
201 u32 major;
202 u32 minor;
7c236c43 203 u32 host_end;
a6f73460 204 u32 wait;
7c236c43
SH
205 u32 window; /* Derived: end - start, allowing for wrap */
206};
207
208/**
209 * struct efx_ptp_data - Precision Time Protocol (PTP) state
ac36baf8
BH
210 * @efx: The NIC context
211 * @channel: The PTP channel (Siena only)
bd9a265d
JC
212 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
213 * separate events)
23418dc1
MH
214 * @rxq: Receive SKB queue (awaiting timestamps)
215 * @txq: Transmit SKB queue
7c236c43
SH
216 * @evt_list: List of MC receive events awaiting packets
217 * @evt_free_list: List of free events
218 * @evt_lock: Lock for manipulating evt_list and evt_free_list
219 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
220 * @workwq: Work queue for processing pending PTP operations
221 * @work: Work task
222 * @reset_required: A serious error has occurred and the PTP task needs to be
223 * reset (disable, enable).
224 * @rxfilter_event: Receive filter when operating
225 * @rxfilter_general: Receive filter when operating
226 * @config: Current timestamp configuration
227 * @enabled: PTP operation enabled
228 * @mode: Mode in which PTP operating (PTP version)
a6f73460
LE
229 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
230 * @nic_to_kernel_time: Function to convert from NIC to kernel time
1280c0f8
EC
231 * @nic_time.minor_max: Wrap point for NIC minor times
232 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
233 * in packet prefix and last MCDI time sync event i.e. how much earlier than
234 * the last sync event time a packet timestamp can be.
235 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
236 * in packet prefix and last MCDI time sync event i.e. how much later than
237 * the last sync event time a packet timestamp can be.
238 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
239 * field in MCDI time sync event.
a6f73460 240 * @min_synchronisation_ns: Minimum acceptable corrected sync window
04796f4c
LE
241 * @capabilities: Capabilities flags from the NIC
242 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
243 * timestamps
244 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
245 * timestamps
a6f73460
LE
246 * @ts_corrections.pps_out: PPS output error (information only)
247 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
04796f4c
LE
248 * @ts_corrections.general_tx: Required driver correction of general packet
249 * transmit timestamps
250 * @ts_corrections.general_rx: Required driver correction of general packet
251 * receive timestamps
7c236c43
SH
252 * @evt_frags: Partly assembled PTP events
253 * @evt_frag_idx: Current fragment number
254 * @evt_code: Last event code
255 * @start: Address at which MC indicates ready for synchronisation
256 * @host_time_pps: Host time at last PPS
88a4fb5f
LE
257 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
258 * frequency adjustment into a fixed point fractional nanosecond format.
7c236c43 259 * @current_adjfreq: Current ppb adjustment.
9aecda95 260 * @phc_clock: Pointer to registered phc device (if primary function)
7c236c43
SH
261 * @phc_clock_info: Registration structure for phc device
262 * @pps_work: pps work task for handling pps events
263 * @pps_workwq: pps work queue
264 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
265 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
266 * allocations in main data path).
99691c4a
BH
267 * @good_syncs: Number of successful synchronisations.
268 * @fast_syncs: Number of synchronisations requiring short delay
269 * @bad_syncs: Number of failed synchronisations.
270 * @sync_timeouts: Number of synchronisation timeouts
271 * @no_time_syncs: Number of synchronisations with no good times.
272 * @invalid_sync_windows: Number of sync windows with bad durations.
273 * @undersize_sync_windows: Number of corrected sync windows that are too small
274 * @oversize_sync_windows: Number of corrected sync windows that are too large
275 * @rx_no_timestamp: Number of packets received without a timestamp.
7c236c43 276 * @timeset: Last set of synchronisation statistics.
23418dc1 277 * @xmit_skb: Transmit SKB function.
7c236c43
SH
278 */
279struct efx_ptp_data {
ac36baf8 280 struct efx_nic *efx;
7c236c43 281 struct efx_channel *channel;
bd9a265d 282 bool rx_ts_inline;
7c236c43
SH
283 struct sk_buff_head rxq;
284 struct sk_buff_head txq;
285 struct list_head evt_list;
286 struct list_head evt_free_list;
287 spinlock_t evt_lock;
288 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
289 struct workqueue_struct *workwq;
290 struct work_struct work;
291 bool reset_required;
292 u32 rxfilter_event;
293 u32 rxfilter_general;
294 bool rxfilter_installed;
295 struct hwtstamp_config config;
296 bool enabled;
297 unsigned int mode;
a6f73460
LE
298 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
299 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
300 s32 correction);
1280c0f8
EC
301 struct {
302 u32 minor_max;
303 u32 sync_event_diff_min;
304 u32 sync_event_diff_max;
305 unsigned int sync_event_minor_shift;
306 } nic_time;
a6f73460 307 unsigned int min_synchronisation_ns;
88a4fb5f 308 unsigned int capabilities;
a6f73460 309 struct {
04796f4c
LE
310 s32 ptp_tx;
311 s32 ptp_rx;
a6f73460
LE
312 s32 pps_out;
313 s32 pps_in;
04796f4c
LE
314 s32 general_tx;
315 s32 general_rx;
a6f73460 316 } ts_corrections;
7c236c43
SH
317 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
318 int evt_frag_idx;
319 int evt_code;
320 struct efx_buffer start;
321 struct pps_event_time host_time_pps;
88a4fb5f 322 unsigned int adjfreq_ppb_shift;
7c236c43
SH
323 s64 current_adjfreq;
324 struct ptp_clock *phc_clock;
325 struct ptp_clock_info phc_clock_info;
326 struct work_struct pps_work;
327 struct workqueue_struct *pps_workwq;
328 bool nic_ts_enabled;
aa09a3da 329 _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
99691c4a
BH
330
331 unsigned int good_syncs;
332 unsigned int fast_syncs;
333 unsigned int bad_syncs;
334 unsigned int sync_timeouts;
335 unsigned int no_time_syncs;
336 unsigned int invalid_sync_windows;
337 unsigned int undersize_sync_windows;
338 unsigned int oversize_sync_windows;
339 unsigned int rx_no_timestamp;
7c236c43
SH
340 struct efx_ptp_timeset
341 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
23418dc1 342 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
7c236c43
SH
343};
344
345static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
346static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
0fcb5c76 347static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
7c236c43 348static int efx_phc_settime(struct ptp_clock_info *ptp,
0fcb5c76 349 const struct timespec64 *e_ts);
7c236c43
SH
350static int efx_phc_enable(struct ptp_clock_info *ptp,
351 struct ptp_clock_request *request, int on);
352
9c3afb33
MH
353bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
354{
355 struct efx_ef10_nic_data *nic_data = efx->nic_data;
356
357 return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
358 (nic_data->datapath_caps2 &
359 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
360 ));
361}
362
2935e3c3
EC
363/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
365 */
e7345ba3 366static bool efx_ptp_want_txqs(struct efx_channel *channel)
2935e3c3
EC
367{
368 return efx_ptp_use_mac_tx_timestamps(channel->efx);
369}
370
99691c4a
BH
371#define PTP_SW_STAT(ext_name, field_name) \
372 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
373#define PTP_MC_STAT(ext_name, mcdi_name) \
374 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
375static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
376 PTP_SW_STAT(ptp_good_syncs, good_syncs),
377 PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
378 PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
379 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
380 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
381 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
382 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
383 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
384 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
385 PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
386 PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
387 PTP_MC_STAT(ptp_timestamp_packets, TS),
388 PTP_MC_STAT(ptp_filter_matches, FM),
389 PTP_MC_STAT(ptp_non_filter_matches, NFM),
390};
391#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
392static const unsigned long efx_ptp_stat_mask[] = {
393 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
394};
395
396size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
397{
398 if (!efx->ptp_data)
399 return 0;
400
401 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
402 efx_ptp_stat_mask, strings);
403}
404
405size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
406{
407 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
408 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
409 size_t i;
410 int rc;
411
412 if (!efx->ptp_data)
413 return 0;
414
415 /* Copy software statistics */
416 for (i = 0; i < PTP_STAT_COUNT; i++) {
417 if (efx_ptp_stat_desc[i].dma_width)
418 continue;
419 stats[i] = *(unsigned int *)((char *)efx->ptp_data +
420 efx_ptp_stat_desc[i].offset);
421 }
422
423 /* Fetch MC statistics. We *must* fill in all statistics or
424 * risk leaking kernel memory to userland, so if the MCDI
425 * request fails we pretend we got zeroes.
426 */
427 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
428 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
429 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
430 outbuf, sizeof(outbuf), NULL);
3de1b513 431 if (rc)
99691c4a 432 memset(outbuf, 0, sizeof(outbuf));
99691c4a
BH
433 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
434 efx_ptp_stat_mask,
435 stats, _MCDI_PTR(outbuf, 0), false);
436
437 return PTP_STAT_COUNT;
438}
439
a6f73460
LE
440/* For Siena platforms NIC time is s and ns */
441static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
442{
090e2edb
AB
443 struct timespec64 ts = ns_to_timespec64(ns);
444 *nic_major = (u32)ts.tv_sec;
a6f73460
LE
445 *nic_minor = ts.tv_nsec;
446}
447
bd9a265d
JC
448static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
449 s32 correction)
a6f73460
LE
450{
451 ktime_t kt = ktime_set(nic_major, nic_minor);
452 if (correction >= 0)
453 kt = ktime_add_ns(kt, (u64)correction);
454 else
455 kt = ktime_sub_ns(kt, (u64)-correction);
456 return kt;
457}
458
459/* To convert from s27 format to ns we multiply then divide by a power of 2.
460 * For the conversion from ns to s27, the operation is also converted to a
461 * multiply and shift.
462 */
463#define S27_TO_NS_SHIFT (27)
464#define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
465#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
466#define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
467
468/* For Huntington platforms NIC time is in seconds and fractions of a second
469 * where the minor register only uses 27 bits in units of 2^-27s.
470 */
471static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
472{
090e2edb
AB
473 struct timespec64 ts = ns_to_timespec64(ns);
474 u32 maj = (u32)ts.tv_sec;
a6f73460
LE
475 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
476 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
477
478 /* The conversion can result in the minor value exceeding the maximum.
479 * In this case, round up to the next second.
480 */
481 if (min >= S27_MINOR_MAX) {
482 min -= S27_MINOR_MAX;
483 maj++;
484 }
485
486 *nic_major = maj;
487 *nic_minor = min;
488}
489
bd9a265d 490static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
a6f73460 491{
bd9a265d
JC
492 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
493 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
494 return ktime_set(nic_major, ns);
495}
a6f73460 496
bd9a265d
JC
497static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
498 s32 correction)
499{
a6f73460
LE
500 /* Apply the correction and deal with carry */
501 nic_minor += correction;
502 if ((s32)nic_minor < 0) {
503 nic_minor += S27_MINOR_MAX;
504 nic_major--;
505 } else if (nic_minor >= S27_MINOR_MAX) {
506 nic_minor -= S27_MINOR_MAX;
507 nic_major++;
508 }
509
bd9a265d 510 return efx_ptp_s27_to_ktime(nic_major, nic_minor);
a6f73460
LE
511}
512
1280c0f8
EC
513/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
514static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
515{
516 struct timespec64 ts = ns_to_timespec64(ns);
517
518 *nic_major = (u32)ts.tv_sec;
519 *nic_minor = ts.tv_nsec * 4;
520}
521
522static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
523 s32 correction)
524{
525 ktime_t kt;
526
527 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
528 correction = DIV_ROUND_CLOSEST(correction, 4);
529
530 kt = ktime_set(nic_major, nic_minor);
531
532 if (correction >= 0)
533 kt = ktime_add_ns(kt, (u64)correction);
534 else
535 kt = ktime_sub_ns(kt, (u64)-correction);
536 return kt;
537}
538
c1d0d339
MH
539struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
540{
541 return efx->ptp_data ? efx->ptp_data->channel : NULL;
542}
543
544static u32 last_sync_timestamp_major(struct efx_nic *efx)
545{
546 struct efx_channel *channel = efx_ptp_channel(efx);
547 u32 major = 0;
548
549 if (channel)
550 major = channel->sync_timestamp_major;
551 return major;
552}
553
554/* The 8000 series and later can provide the time from the MAC, which is only
555 * 48 bits long and provides meta-information in the top 2 bits.
556 */
557static ktime_t
1280c0f8
EC
558efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
559 struct efx_ptp_data *ptp,
c1d0d339
MH
560 u32 nic_major, u32 nic_minor,
561 s32 correction)
562{
23797b98 563 u32 sync_timestamp;
c1d0d339 564 ktime_t kt = { 0 };
23797b98 565 s16 delta;
c1d0d339
MH
566
567 if (!(nic_major & 0x80000000)) {
568 WARN_ON_ONCE(nic_major >> 16);
23797b98
AM
569
570 /* Medford provides 48 bits of timestamp, so we must get the top
571 * 16 bits from the timesync event state.
572 *
573 * We only have the lower 16 bits of the time now, but we do
574 * have a full resolution timestamp at some point in past. As
575 * long as the difference between the (real) now and the sync
576 * is less than 2^15, then we can reconstruct the difference
577 * between those two numbers using only the lower 16 bits of
578 * each.
579 *
580 * Put another way
581 *
582 * a - b = ((a mod k) - b) mod k
583 *
584 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
585 * (a mod k) and b, so can calculate the delta, a - b.
586 *
587 */
588 sync_timestamp = last_sync_timestamp_major(efx);
589
590 /* Because delta is s16 this does an implicit mask down to
591 * 16 bits which is what we need, assuming
592 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
593 * we can deal with the (unlikely) case of sync timestamps
594 * arriving from the future.
595 */
596 delta = nic_major - sync_timestamp;
597
598 /* Recover the fully specified time now, by applying the offset
599 * to the (fully specified) sync time.
600 */
601 nic_major = sync_timestamp + delta;
c1d0d339 602
1280c0f8
EC
603 kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
604 correction);
c1d0d339
MH
605 }
606 return kt;
607}
608
b9b603d4
MH
609ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
610{
611 struct efx_nic *efx = tx_queue->efx;
612 struct efx_ptp_data *ptp = efx->ptp_data;
613 ktime_t kt;
614
c1d0d339 615 if (efx_ptp_use_mac_tx_timestamps(efx))
1280c0f8 616 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
c1d0d339 617 tx_queue->completed_timestamp_major,
04796f4c
LE
618 tx_queue->completed_timestamp_minor,
619 ptp->ts_corrections.general_tx);
c1d0d339
MH
620 else
621 kt = ptp->nic_to_kernel_time(
622 tx_queue->completed_timestamp_major,
04796f4c
LE
623 tx_queue->completed_timestamp_minor,
624 ptp->ts_corrections.general_tx);
b9b603d4
MH
625 return kt;
626}
627
a6f73460
LE
628/* Get PTP attributes and set up time conversions */
629static int efx_ptp_get_attributes(struct efx_nic *efx)
630{
631 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
632 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
633 struct efx_ptp_data *ptp = efx->ptp_data;
634 int rc;
635 u32 fmt;
636 size_t out_len;
637
638 /* Get the PTP attributes. If the NIC doesn't support the operation we
639 * use the default format for compatibility with older NICs i.e.
640 * seconds and nanoseconds.
641 */
642 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
643 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3de1b513
EC
644 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
645 outbuf, sizeof(outbuf), &out_len);
646 if (rc == 0) {
a6f73460 647 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
3de1b513 648 } else if (rc == -EINVAL) {
a6f73460 649 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
3de1b513
EC
650 } else if (rc == -EPERM) {
651 netif_info(efx, probe, efx->net_dev, "no PTP support\n");
a6f73460 652 return rc;
3de1b513
EC
653 } else {
654 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
655 outbuf, sizeof(outbuf), rc);
656 return rc;
657 }
a6f73460 658
1280c0f8
EC
659 switch (fmt) {
660 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
a6f73460 661 ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
bd9a265d 662 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
1280c0f8
EC
663 ptp->nic_time.minor_max = 1 << 27;
664 ptp->nic_time.sync_event_minor_shift = 19;
665 break;
666 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
a6f73460 667 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
bd9a265d 668 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
1280c0f8
EC
669 ptp->nic_time.minor_max = 1000000000;
670 ptp->nic_time.sync_event_minor_shift = 22;
671 break;
672 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
673 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
674 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
5b09179e 675 ptp->nic_time.minor_max = 4000000000UL;
1280c0f8
EC
676 ptp->nic_time.sync_event_minor_shift = 24;
677 break;
678 default:
a6f73460
LE
679 return -ERANGE;
680 }
681
1280c0f8
EC
682 /* Precalculate acceptable difference between the minor time in the
683 * packet prefix and the last MCDI time sync event. We expect the
684 * packet prefix timestamp to be after of sync event by up to one
685 * sync event interval (0.25s) but we allow it to exceed this by a
686 * fuzz factor of (0.1s)
687 */
688 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
689 - (ptp->nic_time.minor_max / 10);
690 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
691 + (ptp->nic_time.minor_max / 10);
692
693 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
694 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
695 * a value to use for the minimum acceptable corrected synchronization
696 * window and may return further capabilities.
a6f73460
LE
697 * If we have the extra information store it. For older firmware that
698 * does not implement the extended command use the default value.
699 */
1280c0f8
EC
700 if (rc == 0 &&
701 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
a6f73460
LE
702 ptp->min_synchronisation_ns =
703 MCDI_DWORD(outbuf,
704 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
705 else
706 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
707
88a4fb5f
LE
708 if (rc == 0 &&
709 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
710 ptp->capabilities = MCDI_DWORD(outbuf,
711 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
712 else
713 ptp->capabilities = 0;
714
715 /* Set up the shift for conversion between frequency
716 * adjustments in parts-per-billion and the fixed-point
717 * fractional ns format that the adapter uses.
718 */
719 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
720 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
721 else
722 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
723
a6f73460
LE
724 return 0;
725}
726
727/* Get PTP timestamp corrections */
728static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
729{
730 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
04796f4c 731 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
a6f73460 732 int rc;
04796f4c 733 size_t out_len;
a6f73460
LE
734
735 /* Get the timestamp corrections from the NIC. If this operation is
736 * not supported (older NICs) then no correction is required.
737 */
738 MCDI_SET_DWORD(inbuf, PTP_IN_OP,
739 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
740 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
741
3de1b513 742 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
04796f4c 743 outbuf, sizeof(outbuf), &out_len);
a6f73460 744 if (rc == 0) {
04796f4c 745 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
a6f73460 746 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
04796f4c 747 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
a6f73460
LE
748 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
749 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
750 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
751 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
752 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
04796f4c
LE
753
754 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
755 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
756 outbuf,
757 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
758 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
759 outbuf,
760 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
761 } else {
762 efx->ptp_data->ts_corrections.general_tx =
763 efx->ptp_data->ts_corrections.ptp_tx;
764 efx->ptp_data->ts_corrections.general_rx =
765 efx->ptp_data->ts_corrections.ptp_rx;
766 }
a6f73460 767 } else if (rc == -EINVAL) {
04796f4c
LE
768 efx->ptp_data->ts_corrections.ptp_tx = 0;
769 efx->ptp_data->ts_corrections.ptp_rx = 0;
a6f73460
LE
770 efx->ptp_data->ts_corrections.pps_out = 0;
771 efx->ptp_data->ts_corrections.pps_in = 0;
04796f4c
LE
772 efx->ptp_data->ts_corrections.general_tx = 0;
773 efx->ptp_data->ts_corrections.general_rx = 0;
a6f73460 774 } else {
3de1b513
EC
775 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
776 sizeof(outbuf), rc);
a6f73460
LE
777 return rc;
778 }
779
780 return 0;
781}
782
7c236c43
SH
783/* Enable MCDI PTP support. */
784static int efx_ptp_enable(struct efx_nic *efx)
785{
59cfc479 786 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
aa09a3da 787 MCDI_DECLARE_BUF_ERR(outbuf);
1e0b8120 788 int rc;
7c236c43
SH
789
790 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
c1d828bd 791 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
7c236c43 792 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
ac36baf8
BH
793 efx->ptp_data->channel ?
794 efx->ptp_data->channel->channel : 0);
7c236c43
SH
795 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
796
1e0b8120
EC
797 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
798 outbuf, sizeof(outbuf), NULL);
799 rc = (rc == -EALREADY) ? 0 : rc;
800 if (rc)
801 efx_mcdi_display_error(efx, MC_CMD_PTP,
802 MC_CMD_PTP_IN_ENABLE_LEN,
803 outbuf, sizeof(outbuf), rc);
804 return rc;
7c236c43
SH
805}
806
807/* Disable MCDI PTP support.
808 *
809 * Note that this function should never rely on the presence of ptp_data -
810 * may be called before that exists.
811 */
812static int efx_ptp_disable(struct efx_nic *efx)
813{
59cfc479 814 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
aa09a3da 815 MCDI_DECLARE_BUF_ERR(outbuf);
1e0b8120 816 int rc;
7c236c43
SH
817
818 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
c1d828bd 819 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1e0b8120
EC
820 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
821 outbuf, sizeof(outbuf), NULL);
822 rc = (rc == -EALREADY) ? 0 : rc;
b1336389
EC
823 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
824 * should only have been called during probe.
825 */
826 if (rc == -ENOSYS || rc == -EPERM)
827 netif_info(efx, probe, efx->net_dev, "no PTP support\n");
828 else if (rc)
1e0b8120
EC
829 efx_mcdi_display_error(efx, MC_CMD_PTP,
830 MC_CMD_PTP_IN_DISABLE_LEN,
831 outbuf, sizeof(outbuf), rc);
832 return rc;
7c236c43
SH
833}
834
835static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
836{
837 struct sk_buff *skb;
838
839 while ((skb = skb_dequeue(q))) {
840 local_bh_disable();
841 netif_receive_skb(skb);
842 local_bh_enable();
843 }
844}
845
846static void efx_ptp_handle_no_channel(struct efx_nic *efx)
847{
848 netif_err(efx, drv, efx->net_dev,
849 "ERROR: PTP requires MSI-X and 1 additional interrupt"
850 "vector. PTP disabled\n");
851}
852
853/* Repeatedly send the host time to the MC which will capture the hardware
854 * time.
855 */
856static void efx_ptp_send_times(struct efx_nic *efx,
857 struct pps_event_time *last_time)
858{
859 struct pps_event_time now;
ade1bdff 860 struct timespec64 limit;
7c236c43 861 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
862 int *mc_running = ptp->start.addr;
863
864 pps_get_ts(&now);
7c236c43 865 limit = now.ts_real;
ade1bdff 866 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
7c236c43
SH
867
868 /* Write host time for specified period or until MC is done */
ade1bdff 869 while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
6aa7de05 870 READ_ONCE(*mc_running)) {
ade1bdff 871 struct timespec64 update_time;
7c236c43
SH
872 unsigned int host_time;
873
874 /* Don't update continuously to avoid saturating the PCIe bus */
875 update_time = now.ts_real;
ade1bdff 876 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
7c236c43
SH
877 do {
878 pps_get_ts(&now);
ade1bdff 879 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
6aa7de05 880 READ_ONCE(*mc_running));
7c236c43
SH
881
882 /* Synchronise NIC with single word of time only */
883 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
884 now.ts_real.tv_nsec);
885 /* Update host time in NIC memory */
977a5d5d 886 efx->type->ptp_write_host_time(efx, host_time);
7c236c43
SH
887 }
888 *last_time = now;
889}
890
891/* Read a timeset from the MC's results and partial process. */
c5bb0e98
BH
892static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
893 struct efx_ptp_timeset *timeset)
7c236c43
SH
894{
895 unsigned start_ns, end_ns;
896
897 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
a6f73460
LE
898 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
899 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
7c236c43 900 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
a6f73460 901 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
7c236c43
SH
902
903 /* Ignore seconds */
904 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
905 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
906 /* Allow for rollover */
907 if (end_ns < start_ns)
908 end_ns += NSEC_PER_SEC;
909 /* Determine duration of operation */
910 timeset->window = end_ns - start_ns;
911}
912
913/* Process times received from MC.
914 *
915 * Extract times from returned results, and establish the minimum value
916 * seen. The minimum value represents the "best" possible time and events
917 * too much greater than this are rejected - the machine is, perhaps, too
918 * busy. A number of readings are taken so that, hopefully, at least one good
919 * synchronisation will be seen in the results.
920 */
c5bb0e98
BH
921static int
922efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
923 size_t response_length,
924 const struct pps_event_time *last_time)
7c236c43 925{
c5bb0e98
BH
926 unsigned number_readings =
927 MCDI_VAR_ARRAY_LEN(response_length,
928 PTP_OUT_SYNCHRONIZE_TIMESET);
7c236c43 929 unsigned i;
7c236c43
SH
930 unsigned ngood = 0;
931 unsigned last_good = 0;
932 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
933 u32 last_sec;
934 u32 start_sec;
ade1bdff 935 struct timespec64 delta;
a6f73460 936 ktime_t mc_time;
7c236c43
SH
937
938 if (number_readings == 0)
939 return -EAGAIN;
940
dfd8d581
LE
941 /* Read the set of results and find the last good host-MC
942 * synchronization result. The MC times when it finishes reading the
943 * host time so the corrected window time should be fairly constant
99691c4a
BH
944 * for a given platform. Increment stats for any results that appear
945 * to be erroneous.
7c236c43
SH
946 */
947 for (i = 0; i < number_readings; i++) {
dfd8d581 948 s32 window, corrected;
090e2edb 949 struct timespec64 wait;
dfd8d581 950
c5bb0e98
BH
951 efx_ptp_read_timeset(
952 MCDI_ARRAY_STRUCT_PTR(synch_buf,
953 PTP_OUT_SYNCHRONIZE_TIMESET, i),
954 &ptp->timeset[i]);
7c236c43 955
090e2edb 956 wait = ktime_to_timespec64(
a6f73460 957 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
dfd8d581 958 window = ptp->timeset[i].window;
a6f73460 959 corrected = window - wait.tv_nsec;
dfd8d581
LE
960
961 /* We expect the uncorrected synchronization window to be at
962 * least as large as the interval between host start and end
963 * times. If it is smaller than this then this is mostly likely
964 * to be a consequence of the host's time being adjusted.
965 * Check that the corrected sync window is in a reasonable
966 * range. If it is out of range it is likely to be because an
967 * interrupt or other delay occurred between reading the system
968 * time and writing it to MC memory.
969 */
99691c4a
BH
970 if (window < SYNCHRONISATION_GRANULARITY_NS) {
971 ++ptp->invalid_sync_windows;
972 } else if (corrected >= MAX_SYNCHRONISATION_NS) {
99691c4a 973 ++ptp->oversize_sync_windows;
13c92e82
BH
974 } else if (corrected < ptp->min_synchronisation_ns) {
975 ++ptp->undersize_sync_windows;
99691c4a 976 } else {
dfd8d581
LE
977 ngood++;
978 last_good = i;
7c236c43 979 }
dfd8d581 980 }
7c236c43
SH
981
982 if (ngood == 0) {
983 netif_warn(efx, drv, efx->net_dev,
94cd60d0 984 "PTP no suitable synchronisations\n");
7c236c43
SH
985 return -EAGAIN;
986 }
987
92d8f766
BH
988 /* Calculate delay from last good sync (host time) to last_time.
989 * It is possible that the seconds rolled over between taking
7c236c43
SH
990 * the start reading and the last value written by the host. The
991 * timescales are such that a gap of more than one second is never
92d8f766 992 * expected. delta is *not* normalised.
7c236c43
SH
993 */
994 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
995 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
92d8f766
BH
996 if (start_sec != last_sec &&
997 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
998 netif_warn(efx, hw, efx->net_dev,
999 "PTP bad synchronisation seconds\n");
1000 return -EAGAIN;
7c236c43 1001 }
92d8f766
BH
1002 delta.tv_sec = (last_sec - start_sec) & 1;
1003 delta.tv_nsec =
1004 last_time->ts_real.tv_nsec -
1005 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1006
1007 /* Convert the NIC time at last good sync into kernel time.
1008 * No correction is required - this time is the output of a
1009 * firmware process.
1010 */
1011 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1012 ptp->timeset[last_good].minor, 0);
1013
1014 /* Calculate delay from NIC top of second to last_time */
090e2edb 1015 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
7c236c43 1016
92d8f766 1017 /* Set PPS timestamp to match NIC top of second */
7c236c43
SH
1018 ptp->host_time_pps = *last_time;
1019 pps_sub_ts(&ptp->host_time_pps, delta);
1020
1021 return 0;
1022}
1023
1024/* Synchronize times between the host and the MC */
1025static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1026{
1027 struct efx_ptp_data *ptp = efx->ptp_data;
59cfc479 1028 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
7c236c43
SH
1029 size_t response_length;
1030 int rc;
1031 unsigned long timeout;
1032 struct pps_event_time last_time = {};
1033 unsigned int loops = 0;
1034 int *start = ptp->start.addr;
1035
1036 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
c1d828bd 1037 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
7c236c43
SH
1038 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1039 num_readings);
338f74df
BH
1040 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1041 ptp->start.dma_addr);
7c236c43
SH
1042
1043 /* Clear flag that signals MC ready */
6aa7de05 1044 WRITE_ONCE(*start, 0);
df2cd8af
BH
1045 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1046 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
e01b16a7 1047 EFX_WARN_ON_ONCE_PARANOID(rc);
7c236c43
SH
1048
1049 /* Wait for start from MCDI (or timeout) */
1050 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
6aa7de05 1051 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
7c236c43
SH
1052 udelay(20); /* Usually start MCDI execution quickly */
1053 loops++;
1054 }
1055
99691c4a
BH
1056 if (loops <= 1)
1057 ++ptp->fast_syncs;
1058 if (!time_before(jiffies, timeout))
1059 ++ptp->sync_timeouts;
1060
6aa7de05 1061 if (READ_ONCE(*start))
7c236c43
SH
1062 efx_ptp_send_times(efx, &last_time);
1063
1064 /* Collect results */
1065 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1066 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1067 synch_buf, sizeof(synch_buf),
1068 &response_length);
99691c4a 1069 if (rc == 0) {
7c236c43
SH
1070 rc = efx_ptp_process_times(efx, synch_buf, response_length,
1071 &last_time);
99691c4a
BH
1072 if (rc == 0)
1073 ++ptp->good_syncs;
1074 else
1075 ++ptp->no_time_syncs;
1076 }
1077
1078 /* Increment the bad syncs counter if the synchronize fails, whatever
1079 * the reason.
1080 */
1081 if (rc != 0)
1082 ++ptp->bad_syncs;
7c236c43
SH
1083
1084 return rc;
1085}
1086
23418dc1
MH
1087/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1088static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1089{
1090 struct efx_ptp_data *ptp_data = efx->ptp_data;
1091 struct efx_tx_queue *tx_queue;
1092 u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1093
1094 tx_queue = &ptp_data->channel->tx_queue[type];
1095 if (tx_queue && tx_queue->timestamping) {
1096 efx_enqueue_skb(tx_queue, skb);
1097 } else {
1098 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1099 dev_kfree_skb_any(skb);
1100 }
1101}
1102
7c236c43 1103/* Transmit a PTP packet, via the MCDI interface, to the wire. */
23418dc1 1104static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
7c236c43 1105{
c5bb0e98 1106 struct efx_ptp_data *ptp_data = efx->ptp_data;
7c236c43
SH
1107 struct skb_shared_hwtstamps timestamps;
1108 int rc = -EIO;
59cfc479 1109 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
9528b921 1110 size_t len;
7c236c43 1111
c5bb0e98 1112 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
c1d828bd 1113 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
c5bb0e98 1114 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
7c236c43
SH
1115 if (skb_shinfo(skb)->nr_frags != 0) {
1116 rc = skb_linearize(skb);
1117 if (rc != 0)
1118 goto fail;
1119 }
1120
1121 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1122 rc = skb_checksum_help(skb);
1123 if (rc != 0)
1124 goto fail;
1125 }
1126 skb_copy_from_linear_data(skb,
c5bb0e98
BH
1127 MCDI_PTR(ptp_data->txbuf,
1128 PTP_IN_TRANSMIT_PACKET),
9528b921
BH
1129 skb->len);
1130 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1131 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1132 txtime, sizeof(txtime), &len);
7c236c43
SH
1133 if (rc != 0)
1134 goto fail;
1135
1136 memset(&timestamps, 0, sizeof(timestamps));
a6f73460
LE
1137 timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1138 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1139 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
04796f4c 1140 ptp_data->ts_corrections.ptp_tx);
7c236c43
SH
1141
1142 skb_tstamp_tx(skb, &timestamps);
1143
1144 rc = 0;
1145
1146fail:
23418dc1 1147 dev_kfree_skb_any(skb);
7c236c43 1148
23418dc1 1149 return;
7c236c43
SH
1150}
1151
1152static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1153{
1154 struct efx_ptp_data *ptp = efx->ptp_data;
1155 struct list_head *cursor;
1156 struct list_head *next;
1157
bd9a265d
JC
1158 if (ptp->rx_ts_inline)
1159 return;
1160
7c236c43
SH
1161 /* Drop time-expired events */
1162 spin_lock_bh(&ptp->evt_lock);
1163 if (!list_empty(&ptp->evt_list)) {
1164 list_for_each_safe(cursor, next, &ptp->evt_list) {
1165 struct efx_ptp_event_rx *evt;
1166
1167 evt = list_entry(cursor, struct efx_ptp_event_rx,
1168 link);
1169 if (time_after(jiffies, evt->expiry)) {
9545f4e2 1170 list_move(&evt->link, &ptp->evt_free_list);
7c236c43
SH
1171 netif_warn(efx, hw, efx->net_dev,
1172 "PTP rx event dropped\n");
1173 }
1174 }
1175 }
1176 spin_unlock_bh(&ptp->evt_lock);
1177}
1178
1179static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1180 struct sk_buff *skb)
1181{
1182 struct efx_ptp_data *ptp = efx->ptp_data;
1183 bool evts_waiting;
1184 struct list_head *cursor;
1185 struct list_head *next;
1186 struct efx_ptp_match *match;
1187 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1188
bd9a265d
JC
1189 WARN_ON_ONCE(ptp->rx_ts_inline);
1190
7c236c43
SH
1191 spin_lock_bh(&ptp->evt_lock);
1192 evts_waiting = !list_empty(&ptp->evt_list);
1193 spin_unlock_bh(&ptp->evt_lock);
1194
1195 if (!evts_waiting)
1196 return PTP_PACKET_STATE_UNMATCHED;
1197
1198 match = (struct efx_ptp_match *)skb->cb;
1199 /* Look for a matching timestamp in the event queue */
1200 spin_lock_bh(&ptp->evt_lock);
1201 list_for_each_safe(cursor, next, &ptp->evt_list) {
1202 struct efx_ptp_event_rx *evt;
1203
1204 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1205 if ((evt->seq0 == match->words[0]) &&
1206 (evt->seq1 == match->words[1])) {
1207 struct skb_shared_hwtstamps *timestamps;
1208
1209 /* Match - add in hardware timestamp */
1210 timestamps = skb_hwtstamps(skb);
1211 timestamps->hwtstamp = evt->hwtimestamp;
1212
1213 match->state = PTP_PACKET_STATE_MATCHED;
1214 rc = PTP_PACKET_STATE_MATCHED;
9545f4e2 1215 list_move(&evt->link, &ptp->evt_free_list);
7c236c43
SH
1216 break;
1217 }
1218 }
1219 spin_unlock_bh(&ptp->evt_lock);
1220
1221 return rc;
1222}
1223
1224/* Process any queued receive events and corresponding packets
1225 *
1226 * q is returned with all the packets that are ready for delivery.
7c236c43 1227 */
bbbe7149 1228static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
7c236c43
SH
1229{
1230 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
1231 struct sk_buff *skb;
1232
1233 while ((skb = skb_dequeue(&ptp->rxq))) {
1234 struct efx_ptp_match *match;
1235
1236 match = (struct efx_ptp_match *)skb->cb;
1237 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1238 __skb_queue_tail(q, skb);
1239 } else if (efx_ptp_match_rx(efx, skb) ==
1240 PTP_PACKET_STATE_MATCHED) {
7c236c43
SH
1241 __skb_queue_tail(q, skb);
1242 } else if (time_after(jiffies, match->expiry)) {
1243 match->state = PTP_PACKET_STATE_TIMED_OUT;
99691c4a 1244 ++ptp->rx_no_timestamp;
7c236c43
SH
1245 __skb_queue_tail(q, skb);
1246 } else {
1247 /* Replace unprocessed entry and stop */
1248 skb_queue_head(&ptp->rxq, skb);
1249 break;
1250 }
1251 }
7c236c43
SH
1252}
1253
1254/* Complete processing of a received packet */
1255static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1256{
1257 local_bh_disable();
1258 netif_receive_skb(skb);
1259 local_bh_enable();
1260}
1261
62a1c703
BH
1262static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1263{
1264 struct efx_ptp_data *ptp = efx->ptp_data;
1265
1266 if (ptp->rxfilter_installed) {
1267 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1268 ptp->rxfilter_general);
1269 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1270 ptp->rxfilter_event);
1271 ptp->rxfilter_installed = false;
1272 }
1273}
1274
1275static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
7c236c43
SH
1276{
1277 struct efx_ptp_data *ptp = efx->ptp_data;
1278 struct efx_filter_spec rxfilter;
1279 int rc;
1280
ac36baf8 1281 if (!ptp->channel || ptp->rxfilter_installed)
62a1c703 1282 return 0;
7c236c43
SH
1283
1284 /* Must filter on both event and general ports to ensure
1285 * that there is no packet re-ordering.
1286 */
1287 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1288 efx_rx_queue_index(
1289 efx_channel_get_rx_queue(ptp->channel)));
1290 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1291 htonl(PTP_ADDRESS),
1292 htons(PTP_EVENT_PORT));
1293 if (rc != 0)
1294 return rc;
1295
1296 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1297 if (rc < 0)
1298 return rc;
1299 ptp->rxfilter_event = rc;
1300
1301 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1302 efx_rx_queue_index(
1303 efx_channel_get_rx_queue(ptp->channel)));
1304 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1305 htonl(PTP_ADDRESS),
1306 htons(PTP_GENERAL_PORT));
1307 if (rc != 0)
1308 goto fail;
1309
1310 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1311 if (rc < 0)
1312 goto fail;
1313 ptp->rxfilter_general = rc;
1314
62a1c703
BH
1315 ptp->rxfilter_installed = true;
1316 return 0;
1317
1318fail:
1319 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1320 ptp->rxfilter_event);
1321 return rc;
1322}
1323
1324static int efx_ptp_start(struct efx_nic *efx)
1325{
1326 struct efx_ptp_data *ptp = efx->ptp_data;
1327 int rc;
1328
1329 ptp->reset_required = false;
1330
1331 rc = efx_ptp_insert_multicast_filters(efx);
1332 if (rc)
1333 return rc;
1334
7c236c43
SH
1335 rc = efx_ptp_enable(efx);
1336 if (rc != 0)
62a1c703 1337 goto fail;
7c236c43
SH
1338
1339 ptp->evt_frag_idx = 0;
1340 ptp->current_adjfreq = 0;
7c236c43
SH
1341
1342 return 0;
1343
7c236c43 1344fail:
62a1c703 1345 efx_ptp_remove_multicast_filters(efx);
7c236c43
SH
1346 return rc;
1347}
1348
1349static int efx_ptp_stop(struct efx_nic *efx)
1350{
1351 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
1352 struct list_head *cursor;
1353 struct list_head *next;
2ea4dc28
AR
1354 int rc;
1355
1356 if (ptp == NULL)
1357 return 0;
1358
1359 rc = efx_ptp_disable(efx);
7c236c43 1360
62a1c703 1361 efx_ptp_remove_multicast_filters(efx);
7c236c43
SH
1362
1363 /* Make sure RX packets are really delivered */
1364 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1365 skb_queue_purge(&efx->ptp_data->txq);
1366
1367 /* Drop any pending receive events */
1368 spin_lock_bh(&efx->ptp_data->evt_lock);
1369 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
9545f4e2 1370 list_move(cursor, &efx->ptp_data->evt_free_list);
7c236c43
SH
1371 }
1372 spin_unlock_bh(&efx->ptp_data->evt_lock);
1373
1374 return rc;
1375}
1376
2ea4dc28
AR
1377static int efx_ptp_restart(struct efx_nic *efx)
1378{
1379 if (efx->ptp_data && efx->ptp_data->enabled)
1380 return efx_ptp_start(efx);
1381 return 0;
1382}
1383
7c236c43
SH
1384static void efx_ptp_pps_worker(struct work_struct *work)
1385{
1386 struct efx_ptp_data *ptp =
1387 container_of(work, struct efx_ptp_data, pps_work);
ac36baf8 1388 struct efx_nic *efx = ptp->efx;
7c236c43
SH
1389 struct ptp_clock_event ptp_evt;
1390
1391 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1392 return;
1393
1394 ptp_evt.type = PTP_CLOCK_PPSUSR;
1395 ptp_evt.pps_times = ptp->host_time_pps;
1396 ptp_clock_event(ptp->phc_clock, &ptp_evt);
1397}
1398
7c236c43
SH
1399static void efx_ptp_worker(struct work_struct *work)
1400{
1401 struct efx_ptp_data *ptp_data =
1402 container_of(work, struct efx_ptp_data, work);
ac36baf8 1403 struct efx_nic *efx = ptp_data->efx;
7c236c43
SH
1404 struct sk_buff *skb;
1405 struct sk_buff_head tempq;
1406
1407 if (ptp_data->reset_required) {
1408 efx_ptp_stop(efx);
1409 efx_ptp_start(efx);
1410 return;
1411 }
1412
1413 efx_ptp_drop_time_expired_events(efx);
1414
1415 __skb_queue_head_init(&tempq);
bbbe7149 1416 efx_ptp_process_events(efx, &tempq);
7c236c43 1417
bbbe7149 1418 while ((skb = skb_dequeue(&ptp_data->txq)))
23418dc1 1419 ptp_data->xmit_skb(efx, skb);
7c236c43
SH
1420
1421 while ((skb = __skb_dequeue(&tempq)))
1422 efx_ptp_process_rx(efx, skb);
1423}
1424
5d0dab01
BH
1425static const struct ptp_clock_info efx_phc_clock_info = {
1426 .owner = THIS_MODULE,
1427 .name = "sfc",
1428 .max_adj = MAX_PPB,
1429 .n_alarm = 0,
1430 .n_ext_ts = 0,
1431 .n_per_out = 0,
4986b4f0 1432 .n_pins = 0,
5d0dab01
BH
1433 .pps = 1,
1434 .adjfreq = efx_phc_adjfreq,
1435 .adjtime = efx_phc_adjtime,
0fcb5c76
RC
1436 .gettime64 = efx_phc_gettime,
1437 .settime64 = efx_phc_settime,
5d0dab01
BH
1438 .enable = efx_phc_enable,
1439};
1440
ac36baf8
BH
1441/* Initialise PTP state. */
1442int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
7c236c43 1443{
7c236c43
SH
1444 struct efx_ptp_data *ptp;
1445 int rc = 0;
1446 unsigned int pos;
1447
7c236c43
SH
1448 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1449 efx->ptp_data = ptp;
1450 if (!efx->ptp_data)
1451 return -ENOMEM;
1452
ac36baf8
BH
1453 ptp->efx = efx;
1454 ptp->channel = channel;
bd9a265d 1455 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
ac36baf8 1456
0d19a540 1457 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
7c236c43
SH
1458 if (rc != 0)
1459 goto fail1;
1460
7c236c43
SH
1461 skb_queue_head_init(&ptp->rxq);
1462 skb_queue_head_init(&ptp->txq);
1463 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1464 if (!ptp->workwq) {
1465 rc = -ENOMEM;
1466 goto fail2;
1467 }
1468
2935e3c3 1469 if (efx_ptp_use_mac_tx_timestamps(efx)) {
23418dc1 1470 ptp->xmit_skb = efx_ptp_xmit_skb_queue;
2935e3c3
EC
1471 /* Request sync events on this channel. */
1472 channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1473 } else {
1474 ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1475 }
23418dc1 1476
7c236c43
SH
1477 INIT_WORK(&ptp->work, efx_ptp_worker);
1478 ptp->config.flags = 0;
1479 ptp->config.tx_type = HWTSTAMP_TX_OFF;
1480 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1481 INIT_LIST_HEAD(&ptp->evt_list);
1482 INIT_LIST_HEAD(&ptp->evt_free_list);
1483 spin_lock_init(&ptp->evt_lock);
1484 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1485 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1486
a6f73460
LE
1487 /* Get the NIC PTP attributes and set up time conversions */
1488 rc = efx_ptp_get_attributes(efx);
1489 if (rc < 0)
1490 goto fail3;
1491
1492 /* Get the timestamp corrections */
1493 rc = efx_ptp_get_timestamp_corrections(efx);
1494 if (rc < 0)
1495 goto fail3;
1496
9aecda95
BH
1497 if (efx->mcdi->fn_flags &
1498 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1499 ptp->phc_clock_info = efx_phc_clock_info;
1500 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1501 &efx->pci_dev->dev);
1502 if (IS_ERR(ptp->phc_clock)) {
1503 rc = PTR_ERR(ptp->phc_clock);
1504 goto fail3;
efee95f4
NP
1505 } else if (ptp->phc_clock) {
1506 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1507 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1508 if (!ptp->pps_workwq) {
1509 rc = -ENOMEM;
1510 goto fail4;
1511 }
9aecda95 1512 }
7c236c43
SH
1513 }
1514 ptp->nic_ts_enabled = false;
1515
1516 return 0;
1517fail4:
1518 ptp_clock_unregister(efx->ptp_data->phc_clock);
1519
1520fail3:
1521 destroy_workqueue(efx->ptp_data->workwq);
1522
1523fail2:
1524 efx_nic_free_buffer(efx, &ptp->start);
1525
1526fail1:
1527 kfree(efx->ptp_data);
1528 efx->ptp_data = NULL;
1529
1530 return rc;
1531}
1532
ac36baf8
BH
1533/* Initialise PTP channel.
1534 *
1535 * Setting core_index to zero causes the queue to be initialised and doesn't
1536 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1537 */
1538static int efx_ptp_probe_channel(struct efx_channel *channel)
7c236c43
SH
1539{
1540 struct efx_nic *efx = channel->efx;
23418dc1 1541 int rc;
7c236c43 1542
539de7c5 1543 channel->irq_moderation_us = 0;
ac36baf8
BH
1544 channel->rx_queue.core_index = 0;
1545
23418dc1
MH
1546 rc = efx_ptp_probe(efx, channel);
1547 /* Failure to probe PTP is not fatal; this channel will just not be
1548 * used for anything.
1549 * In the case of EPERM, efx_ptp_probe will print its own message (in
1550 * efx_ptp_get_attributes()), so we don't need to.
1551 */
1552 if (rc && rc != -EPERM)
1553 netif_warn(efx, drv, efx->net_dev,
1554 "Failed to probe PTP, rc=%d\n", rc);
1555 return 0;
ac36baf8
BH
1556}
1557
1558void efx_ptp_remove(struct efx_nic *efx)
1559{
7c236c43
SH
1560 if (!efx->ptp_data)
1561 return;
1562
ac36baf8 1563 (void)efx_ptp_disable(efx);
7c236c43
SH
1564
1565 cancel_work_sync(&efx->ptp_data->work);
723eb536
MH
1566 if (efx->ptp_data->pps_workwq)
1567 cancel_work_sync(&efx->ptp_data->pps_work);
7c236c43
SH
1568
1569 skb_queue_purge(&efx->ptp_data->rxq);
1570 skb_queue_purge(&efx->ptp_data->txq);
1571
9aecda95
BH
1572 if (efx->ptp_data->phc_clock) {
1573 destroy_workqueue(efx->ptp_data->pps_workwq);
1574 ptp_clock_unregister(efx->ptp_data->phc_clock);
1575 }
7c236c43
SH
1576
1577 destroy_workqueue(efx->ptp_data->workwq);
7c236c43
SH
1578
1579 efx_nic_free_buffer(efx, &efx->ptp_data->start);
1580 kfree(efx->ptp_data);
23418dc1 1581 efx->ptp_data = NULL;
7c236c43
SH
1582}
1583
ac36baf8
BH
1584static void efx_ptp_remove_channel(struct efx_channel *channel)
1585{
1586 efx_ptp_remove(channel->efx);
1587}
1588
7c236c43
SH
1589static void efx_ptp_get_channel_name(struct efx_channel *channel,
1590 char *buf, size_t len)
1591{
1592 snprintf(buf, len, "%s-ptp", channel->efx->name);
1593}
1594
1595/* Determine whether this packet should be processed by the PTP module
1596 * or transmitted conventionally.
1597 */
1598bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1599{
1600 return efx->ptp_data &&
1601 efx->ptp_data->enabled &&
1602 skb->len >= PTP_MIN_LENGTH &&
1603 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1604 likely(skb->protocol == htons(ETH_P_IP)) &&
e5a498e9
BH
1605 skb_transport_header_was_set(skb) &&
1606 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
7c236c43 1607 ip_hdr(skb)->protocol == IPPROTO_UDP &&
e5a498e9
BH
1608 skb_headlen(skb) >=
1609 skb_transport_offset(skb) + sizeof(struct udphdr) &&
7c236c43
SH
1610 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1611}
1612
1613/* Receive a PTP packet. Packets are queued until the arrival of
1614 * the receive timestamp from the MC - this will probably occur after the
1615 * packet arrival because of the processing in the MC.
1616 */
4a74dc65 1617static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
7c236c43
SH
1618{
1619 struct efx_nic *efx = channel->efx;
1620 struct efx_ptp_data *ptp = efx->ptp_data;
1621 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
c939a316 1622 u8 *match_data_012, *match_data_345;
7c236c43 1623 unsigned int version;
ce320f44 1624 u8 *data;
7c236c43
SH
1625
1626 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1627
1628 /* Correct version? */
1629 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
97d48a10 1630 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
4a74dc65 1631 return false;
7c236c43 1632 }
ce320f44
BH
1633 data = skb->data;
1634 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
7c236c43 1635 if (version != PTP_VERSION_V1) {
4a74dc65 1636 return false;
7c236c43 1637 }
c939a316
LE
1638
1639 /* PTP V1 uses all six bytes of the UUID to match the packet
1640 * to the timestamp
1641 */
ce320f44
BH
1642 match_data_012 = data + PTP_V1_UUID_OFFSET;
1643 match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
7c236c43 1644 } else {
97d48a10 1645 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
4a74dc65 1646 return false;
7c236c43 1647 }
ce320f44
BH
1648 data = skb->data;
1649 version = data[PTP_V2_VERSION_OFFSET];
7c236c43 1650 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
4a74dc65 1651 return false;
7c236c43 1652 }
c939a316
LE
1653
1654 /* The original V2 implementation uses bytes 2-7 of
1655 * the UUID to match the packet to the timestamp. This
1656 * discards two of the bytes of the MAC address used
1657 * to create the UUID (SF bug 33070). The PTP V2
1658 * enhanced mode fixes this issue and uses bytes 0-2
1659 * and byte 5-7 of the UUID.
1660 */
ce320f44 1661 match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
c939a316 1662 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
ce320f44 1663 match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
c939a316 1664 } else {
ce320f44 1665 match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
c939a316
LE
1666 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1667 }
7c236c43
SH
1668 }
1669
1670 /* Does this packet require timestamping? */
ce320f44 1671 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
7c236c43
SH
1672 match->state = PTP_PACKET_STATE_UNMATCHED;
1673
c939a316
LE
1674 /* We expect the sequence number to be in the same position in
1675 * the packet for PTP V1 and V2
1676 */
1677 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1678 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1679
7c236c43 1680 /* Extract UUID/Sequence information */
c939a316
LE
1681 match->words[0] = (match_data_012[0] |
1682 (match_data_012[1] << 8) |
1683 (match_data_012[2] << 16) |
1684 (match_data_345[0] << 24));
1685 match->words[1] = (match_data_345[1] |
1686 (match_data_345[2] << 8) |
ce320f44
BH
1687 (data[PTP_V1_SEQUENCE_OFFSET +
1688 PTP_V1_SEQUENCE_LENGTH - 1] <<
7c236c43
SH
1689 16));
1690 } else {
1691 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1692 }
1693
1694 skb_queue_tail(&ptp->rxq, skb);
1695 queue_work(ptp->workwq, &ptp->work);
4a74dc65
BH
1696
1697 return true;
7c236c43
SH
1698}
1699
1700/* Transmit a PTP packet. This has to be transmitted by the MC
1701 * itself, through an MCDI call. MCDI calls aren't permitted
1702 * in the transmit path so defer the actual transmission to a suitable worker.
1703 */
1704int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1705{
1706 struct efx_ptp_data *ptp = efx->ptp_data;
1707
1708 skb_queue_tail(&ptp->txq, skb);
1709
1710 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1711 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1712 efx_xmit_hwtstamp_pending(skb);
1713 queue_work(ptp->workwq, &ptp->work);
1714
1715 return NETDEV_TX_OK;
1716}
1717
9ec06595
DP
1718int efx_ptp_get_mode(struct efx_nic *efx)
1719{
1720 return efx->ptp_data->mode;
1721}
1722
1723int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1724 unsigned int new_mode)
7c236c43
SH
1725{
1726 if ((enable_wanted != efx->ptp_data->enabled) ||
1727 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
2ea4dc28 1728 int rc = 0;
7c236c43
SH
1729
1730 if (enable_wanted) {
1731 /* Change of mode requires disable */
1732 if (efx->ptp_data->enabled &&
1733 (efx->ptp_data->mode != new_mode)) {
1734 efx->ptp_data->enabled = false;
1735 rc = efx_ptp_stop(efx);
1736 if (rc != 0)
1737 return rc;
1738 }
1739
1740 /* Set new operating mode and establish
1741 * baseline synchronisation, which must
1742 * succeed.
1743 */
1744 efx->ptp_data->mode = new_mode;
2ea4dc28
AR
1745 if (netif_running(efx->net_dev))
1746 rc = efx_ptp_start(efx);
7c236c43
SH
1747 if (rc == 0) {
1748 rc = efx_ptp_synchronize(efx,
1749 PTP_SYNC_ATTEMPTS * 2);
1750 if (rc != 0)
1751 efx_ptp_stop(efx);
1752 }
1753 } else {
1754 rc = efx_ptp_stop(efx);
1755 }
1756
1757 if (rc != 0)
1758 return rc;
1759
1760 efx->ptp_data->enabled = enable_wanted;
1761 }
1762
1763 return 0;
1764}
1765
1766static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1767{
7c236c43
SH
1768 int rc;
1769
1770 if (init->flags)
1771 return -EINVAL;
1772
1773 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1774 (init->tx_type != HWTSTAMP_TX_ON))
1775 return -ERANGE;
1776
9ec06595
DP
1777 rc = efx->type->ptp_set_ts_config(efx, init);
1778 if (rc)
7c236c43
SH
1779 return rc;
1780
1781 efx->ptp_data->config = *init;
7c236c43
SH
1782 return 0;
1783}
1784
62ebac92 1785void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
7c236c43 1786{
7c236c43 1787 struct efx_ptp_data *ptp = efx->ptp_data;
9aecda95
BH
1788 struct efx_nic *primary = efx->primary;
1789
1790 ASSERT_RTNL();
7c236c43
SH
1791
1792 if (!ptp)
62ebac92 1793 return;
7c236c43 1794
62ebac92
BH
1795 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1796 SOF_TIMESTAMPING_RX_HARDWARE |
1797 SOF_TIMESTAMPING_RAW_HARDWARE);
6aa47c87
MH
1798 /* Check licensed features. If we don't have the license for TX
1799 * timestamps, the NIC will not support them.
1800 */
1801 if (efx_ptp_use_mac_tx_timestamps(efx)) {
1802 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1803
1804 if (!(nic_data->licensed_features &
1805 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1806 ts_info->so_timestamping &=
1807 ~SOF_TIMESTAMPING_TX_HARDWARE;
1808 }
9aecda95
BH
1809 if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1810 ts_info->phc_index =
1811 ptp_clock_index(primary->ptp_data->phc_clock);
7c236c43 1812 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
9ec06595 1813 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
7c236c43
SH
1814}
1815
433dc9b3 1816int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
7c236c43
SH
1817{
1818 struct hwtstamp_config config;
1819 int rc;
1820
1821 /* Not a PTP enabled port */
1822 if (!efx->ptp_data)
1823 return -EOPNOTSUPP;
1824
1825 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1826 return -EFAULT;
1827
1828 rc = efx_ptp_ts_init(efx, &config);
1829 if (rc != 0)
1830 return rc;
1831
1832 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1833 ? -EFAULT : 0;
1834}
1835
433dc9b3
BH
1836int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1837{
1838 if (!efx->ptp_data)
1839 return -EOPNOTSUPP;
1840
1841 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1842 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1843}
1844
7c236c43
SH
1845static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1846{
1847 struct efx_ptp_data *ptp = efx->ptp_data;
1848
1849 netif_err(efx, hw, efx->net_dev,
1850 "PTP unexpected event length: got %d expected %d\n",
1851 ptp->evt_frag_idx, expected_frag_len);
1852 ptp->reset_required = true;
1853 queue_work(ptp->workwq, &ptp->work);
1854}
1855
1856/* Process a completed receive event. Put it on the event queue and
1857 * start worker thread. This is required because event and their
1858 * correspoding packets may come in either order.
1859 */
1860static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1861{
1862 struct efx_ptp_event_rx *evt = NULL;
1863
bd9a265d
JC
1864 if (WARN_ON_ONCE(ptp->rx_ts_inline))
1865 return;
1866
7c236c43
SH
1867 if (ptp->evt_frag_idx != 3) {
1868 ptp_event_failure(efx, 3);
1869 return;
1870 }
1871
1872 spin_lock_bh(&ptp->evt_lock);
1873 if (!list_empty(&ptp->evt_free_list)) {
1874 evt = list_first_entry(&ptp->evt_free_list,
1875 struct efx_ptp_event_rx, link);
1876 list_del(&evt->link);
1877
1878 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1879 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1880 MCDI_EVENT_SRC) |
1881 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1882 MCDI_EVENT_SRC) << 8) |
1883 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1884 MCDI_EVENT_SRC) << 16));
a6f73460 1885 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
7c236c43 1886 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
a6f73460 1887 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
04796f4c 1888 ptp->ts_corrections.ptp_rx);
7c236c43
SH
1889 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1890 list_add_tail(&evt->link, &ptp->evt_list);
1891
1892 queue_work(ptp->workwq, &ptp->work);
f9fd7ec7
LE
1893 } else if (net_ratelimit()) {
1894 /* Log a rate-limited warning message. */
f3211600 1895 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
7c236c43
SH
1896 }
1897 spin_unlock_bh(&ptp->evt_lock);
1898}
1899
1900static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1901{
1902 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1903 if (ptp->evt_frag_idx != 1) {
1904 ptp_event_failure(efx, 1);
1905 return;
1906 }
1907
1908 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1909}
1910
1911static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1912{
1913 if (ptp->nic_ts_enabled)
1914 queue_work(ptp->pps_workwq, &ptp->pps_work);
1915}
1916
1917void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1918{
1919 struct efx_ptp_data *ptp = efx->ptp_data;
1920 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1921
8f355e5c 1922 if (!ptp) {
acaef3c1 1923 if (!efx->ptp_warned) {
8f355e5c
EC
1924 netif_warn(efx, drv, efx->net_dev,
1925 "Received PTP event but PTP not set up\n");
acaef3c1
EC
1926 efx->ptp_warned = true;
1927 }
8f355e5c
EC
1928 return;
1929 }
1930
7c236c43
SH
1931 if (!ptp->enabled)
1932 return;
1933
1934 if (ptp->evt_frag_idx == 0) {
1935 ptp->evt_code = code;
1936 } else if (ptp->evt_code != code) {
1937 netif_err(efx, hw, efx->net_dev,
1938 "PTP out of sequence event %d\n", code);
1939 ptp->evt_frag_idx = 0;
1940 }
1941
1942 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1943 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1944 /* Process resulting event */
1945 switch (code) {
1946 case MCDI_EVENT_CODE_PTP_RX:
1947 ptp_event_rx(efx, ptp);
1948 break;
1949 case MCDI_EVENT_CODE_PTP_FAULT:
1950 ptp_event_fault(efx, ptp);
1951 break;
1952 case MCDI_EVENT_CODE_PTP_PPS:
1953 ptp_event_pps(efx, ptp);
1954 break;
1955 default:
1956 netif_err(efx, hw, efx->net_dev,
1957 "PTP unknown event %d\n", code);
1958 break;
1959 }
1960 ptp->evt_frag_idx = 0;
1961 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1962 netif_err(efx, hw, efx->net_dev,
1963 "PTP too many event fragments\n");
1964 ptp->evt_frag_idx = 0;
1965 }
1966}
1967
bd9a265d
JC
1968void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1969{
1280c0f8
EC
1970 struct efx_nic *efx = channel->efx;
1971 struct efx_ptp_data *ptp = efx->ptp_data;
1972
1973 /* When extracting the sync timestamp minor value, we should discard
1974 * the least significant two bits. These are not required in order
1975 * to reconstruct full-range timestamps and they are optionally used
1976 * to report status depending on the options supplied when subscribing
1977 * for sync events.
1978 */
bd9a265d
JC
1979 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1980 channel->sync_timestamp_minor =
1280c0f8
EC
1981 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1982 << ptp->nic_time.sync_event_minor_shift;
1983
bd9a265d
JC
1984 /* if sync events have been disabled then we want to silently ignore
1985 * this event, so throw away result.
1986 */
1987 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1988 SYNC_EVENTS_VALID);
1989}
1990
bd9a265d
JC
1991static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1992{
1993#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1994 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1995#else
1996 const u8 *data = eh + efx->rx_packet_ts_offset;
1997 return (u32)data[0] |
1998 (u32)data[1] << 8 |
1999 (u32)data[2] << 16 |
2000 (u32)data[3] << 24;
2001#endif
2002}
2003
2004void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2005 struct sk_buff *skb)
2006{
2007 struct efx_nic *efx = channel->efx;
1280c0f8 2008 struct efx_ptp_data *ptp = efx->ptp_data;
bd9a265d
JC
2009 u32 pkt_timestamp_major, pkt_timestamp_minor;
2010 u32 diff, carry;
2011 struct skb_shared_hwtstamps *timestamps;
2012
1280c0f8
EC
2013 if (channel->sync_events_state != SYNC_EVENTS_VALID)
2014 return;
2015
c4f64fcc 2016 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
bd9a265d
JC
2017
2018 /* get the difference between the packet and sync timestamps,
2019 * modulo one second
2020 */
1280c0f8
EC
2021 diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2022 if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2023 diff += ptp->nic_time.minor_max;
2024
bd9a265d 2025 /* do we roll over a second boundary and need to carry the one? */
1280c0f8 2026 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
bd9a265d
JC
2027 1 : 0;
2028
1280c0f8 2029 if (diff <= ptp->nic_time.sync_event_diff_max) {
bd9a265d
JC
2030 /* packet is ahead of the sync event by a quarter of a second or
2031 * less (allowing for fuzz)
2032 */
2033 pkt_timestamp_major = channel->sync_timestamp_major + carry;
1280c0f8 2034 } else if (diff >= ptp->nic_time.sync_event_diff_min) {
bd9a265d
JC
2035 /* packet is behind the sync event but within the fuzz factor.
2036 * This means the RX packet and sync event crossed as they were
2037 * placed on the event queue, which can sometimes happen.
2038 */
2039 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2040 } else {
2041 /* it's outside tolerance in both directions. this might be
2042 * indicative of us missing sync events for some reason, so
2043 * we'll call it an error rather than risk giving a bogus
2044 * timestamp.
2045 */
2046 netif_vdbg(efx, drv, efx->net_dev,
2047 "packet timestamp %x too far from sync event %x:%x\n",
2048 pkt_timestamp_minor, channel->sync_timestamp_major,
2049 channel->sync_timestamp_minor);
2050 return;
2051 }
2052
2053 /* attach the timestamps to the skb */
2054 timestamps = skb_hwtstamps(skb);
1280c0f8
EC
2055 timestamps->hwtstamp =
2056 ptp->nic_to_kernel_time(pkt_timestamp_major,
2057 pkt_timestamp_minor,
2058 ptp->ts_corrections.general_rx);
bd9a265d
JC
2059}
2060
7c236c43
SH
2061static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2062{
2063 struct efx_ptp_data *ptp_data = container_of(ptp,
2064 struct efx_ptp_data,
2065 phc_clock_info);
ac36baf8 2066 struct efx_nic *efx = ptp_data->efx;
59cfc479 2067 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
7c236c43
SH
2068 s64 adjustment_ns;
2069 int rc;
2070
2071 if (delta > MAX_PPB)
2072 delta = MAX_PPB;
2073 else if (delta < -MAX_PPB)
2074 delta = -MAX_PPB;
2075
88a4fb5f
LE
2076 /* Convert ppb to fixed point ns taking care to round correctly. */
2077 adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2078 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2079 ptp_data->adjfreq_ppb_shift;
7c236c43
SH
2080
2081 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
c1d828bd 2082 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
338f74df 2083 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
7c236c43
SH
2084 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2085 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2086 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2087 NULL, 0, NULL);
2088 if (rc != 0)
2089 return rc;
2090
cd6fe65e 2091 ptp_data->current_adjfreq = adjustment_ns;
7c236c43
SH
2092 return 0;
2093}
2094
2095static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2096{
a6f73460 2097 u32 nic_major, nic_minor;
7c236c43
SH
2098 struct efx_ptp_data *ptp_data = container_of(ptp,
2099 struct efx_ptp_data,
2100 phc_clock_info);
ac36baf8 2101 struct efx_nic *efx = ptp_data->efx;
59cfc479 2102 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
7c236c43 2103
a6f73460
LE
2104 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2105
7c236c43 2106 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
c1d828bd 2107 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
cd6fe65e 2108 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
a6f73460
LE
2109 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2110 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
7c236c43
SH
2111 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2112 NULL, 0, NULL);
2113}
2114
0fcb5c76 2115static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
7c236c43
SH
2116{
2117 struct efx_ptp_data *ptp_data = container_of(ptp,
2118 struct efx_ptp_data,
2119 phc_clock_info);
ac36baf8 2120 struct efx_nic *efx = ptp_data->efx;
59cfc479
BH
2121 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2122 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
7c236c43 2123 int rc;
a6f73460 2124 ktime_t kt;
7c236c43
SH
2125
2126 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
c1d828bd 2127 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
7c236c43
SH
2128
2129 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2130 outbuf, sizeof(outbuf), NULL);
2131 if (rc != 0)
2132 return rc;
2133
a6f73460
LE
2134 kt = ptp_data->nic_to_kernel_time(
2135 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2136 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
0fcb5c76 2137 *ts = ktime_to_timespec64(kt);
7c236c43
SH
2138 return 0;
2139}
2140
2141static int efx_phc_settime(struct ptp_clock_info *ptp,
0fcb5c76 2142 const struct timespec64 *e_ts)
7c236c43
SH
2143{
2144 /* Get the current NIC time, efx_phc_gettime.
2145 * Subtract from the desired time to get the offset
2146 * call efx_phc_adjtime with the offset
2147 */
2148 int rc;
0fcb5c76
RC
2149 struct timespec64 time_now;
2150 struct timespec64 delta;
7c236c43
SH
2151
2152 rc = efx_phc_gettime(ptp, &time_now);
2153 if (rc != 0)
2154 return rc;
2155
0fcb5c76 2156 delta = timespec64_sub(*e_ts, time_now);
7c236c43 2157
0fcb5c76 2158 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
7c236c43
SH
2159 if (rc != 0)
2160 return rc;
2161
2162 return 0;
2163}
2164
2165static int efx_phc_enable(struct ptp_clock_info *ptp,
2166 struct ptp_clock_request *request,
2167 int enable)
2168{
2169 struct efx_ptp_data *ptp_data = container_of(ptp,
2170 struct efx_ptp_data,
2171 phc_clock_info);
2172 if (request->type != PTP_CLK_REQ_PPS)
2173 return -EOPNOTSUPP;
2174
2175 ptp_data->nic_ts_enabled = !!enable;
2176 return 0;
2177}
2178
e7345ba3 2179static const struct efx_channel_type efx_ptp_channel_type = {
7c236c43
SH
2180 .handle_no_channel = efx_ptp_handle_no_channel,
2181 .pre_probe = efx_ptp_probe_channel,
2182 .post_remove = efx_ptp_remove_channel,
2183 .get_name = efx_ptp_get_channel_name,
2184 /* no copy operation; there is no need to reallocate this channel */
2185 .receive_skb = efx_ptp_rx,
2935e3c3 2186 .want_txqs = efx_ptp_want_txqs,
7c236c43
SH
2187 .keep_eventq = false,
2188};
2189
ac36baf8 2190void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
7c236c43
SH
2191{
2192 /* Check whether PTP is implemented on this NIC. The DISABLE
2193 * operation will succeed if and only if it is implemented.
2194 */
2195 if (efx_ptp_disable(efx) == 0)
2196 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2197 &efx_ptp_channel_type;
2198}
2ea4dc28
AR
2199
2200void efx_ptp_start_datapath(struct efx_nic *efx)
2201{
2202 if (efx_ptp_restart(efx))
2203 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
bd9a265d
JC
2204 /* re-enable timestamping if it was previously enabled */
2205 if (efx->type->ptp_set_ts_sync_events)
2206 efx->type->ptp_set_ts_sync_events(efx, true, true);
2ea4dc28
AR
2207}
2208
2209void efx_ptp_stop_datapath(struct efx_nic *efx)
2210{
bd9a265d
JC
2211 /* temporarily disable timestamping */
2212 if (efx->type->ptp_set_ts_sync_events)
2213 efx->type->ptp_set_ts_sync_events(efx, false, true);
2ea4dc28
AR
2214 efx_ptp_stop(efx);
2215}