sfc: Remove efx_process_channel_now()
[linux-block.git] / drivers / net / ethernet / sfc / nic.c
CommitLineData
8e730c15
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2006-2011 Solarflare Communications Inc.
8e730c15
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
a6b7a407 13#include <linux/interrupt.h>
8e730c15
BH
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
1899c111 17#include <linux/cpu_rmap.h>
8e730c15
BH
18#include "net_driver.h"
19#include "bitfield.h"
20#include "efx.h"
21#include "nic.h"
8b8a95a1 22#include "farch_regs.h"
8e730c15
BH
23#include "io.h"
24#include "workarounds.h"
25
26/**************************************************************************
27 *
28 * Configurable values
29 *
30 **************************************************************************
31 */
32
33/* This is set to 16 for a good reason. In summary, if larger than
34 * 16, the descriptor cache holds more than a default socket
35 * buffer's worth of packets (for UDP we can only have at most one
36 * socket buffer's worth outstanding). This combined with the fact
37 * that we only get 1 TX event per descriptor cache means the NIC
38 * goes idle.
39 */
40#define TX_DC_ENTRIES 16
41#define TX_DC_ENTRIES_ORDER 1
42
43#define RX_DC_ENTRIES 64
44#define RX_DC_ENTRIES_ORDER 3
45
8e730c15
BH
46/* If EFX_MAX_INT_ERRORS internal errors occur within
47 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
48 * disable it.
49 */
50#define EFX_INT_ERROR_EXPIRE 3600
51#define EFX_MAX_INT_ERRORS 5
52
8e730c15
BH
53/* Depth of RX flush request fifo */
54#define EFX_RX_FLUSH_COUNT 4
55
4ef594eb
BH
56/* Driver generated events */
57#define _EFX_CHANNEL_MAGIC_TEST 0x000101
58#define _EFX_CHANNEL_MAGIC_FILL 0x000102
9f2cb71c
BH
59#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
60#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
d730dc52 61
4ef594eb
BH
62#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
63#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
64
65#define EFX_CHANNEL_MAGIC_TEST(_channel) \
66 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
2ae75dac
BH
67#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
69 efx_rx_queue_index(_rx_queue))
9f2cb71c
BH
70#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
71 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
72 efx_rx_queue_index(_rx_queue))
73#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
74 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
75 (_tx_queue)->queue)
90d683af 76
525d9e82
DP
77static void efx_magic_event(struct efx_channel *channel, u32 magic);
78
8e730c15
BH
79/**************************************************************************
80 *
81 * Solarstorm hardware access
82 *
83 **************************************************************************/
84
85static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
86 unsigned int index)
87{
88 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
89 value, index);
90}
91
92/* Read the current event from the event queue */
93static inline efx_qword_t *efx_event(struct efx_channel *channel,
94 unsigned int index)
95{
caa75586 96 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
d4fabcc8 97 (index & channel->eventq_mask);
8e730c15
BH
98}
99
100/* See if an event is present
101 *
102 * We check both the high and low dword of the event for all ones. We
103 * wrote all ones when we cleared the event, and no valid event can
104 * have all ones in either its high or low dwords. This approach is
105 * robust against reordering.
106 *
107 * Note that using a single 64-bit comparison is incorrect; even
108 * though the CPU read will be atomic, the DMA write may not be.
109 */
110static inline int efx_event_present(efx_qword_t *event)
111{
807540ba
ED
112 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
113 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
8e730c15
BH
114}
115
116static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
117 const efx_oword_t *mask)
118{
119 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
120 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
121}
122
123int efx_nic_test_registers(struct efx_nic *efx,
124 const struct efx_nic_register_test *regs,
125 size_t n_regs)
126{
127 unsigned address = 0, i, j;
128 efx_oword_t mask, imask, original, reg, buf;
129
8e730c15
BH
130 for (i = 0; i < n_regs; ++i) {
131 address = regs[i].address;
132 mask = imask = regs[i].mask;
133 EFX_INVERT_OWORD(imask);
134
135 efx_reado(efx, &original, address);
136
137 /* bit sweep on and off */
138 for (j = 0; j < 128; j++) {
139 if (!EFX_EXTRACT_OWORD32(mask, j, j))
140 continue;
141
142 /* Test this testable bit can be set in isolation */
143 EFX_AND_OWORD(reg, original, mask);
144 EFX_SET_OWORD32(reg, j, j, 1);
145
146 efx_writeo(efx, &reg, address);
147 efx_reado(efx, &buf, address);
148
149 if (efx_masked_compare_oword(&reg, &buf, &mask))
150 goto fail;
151
152 /* Test this testable bit can be cleared in isolation */
153 EFX_OR_OWORD(reg, original, mask);
154 EFX_SET_OWORD32(reg, j, j, 0);
155
156 efx_writeo(efx, &reg, address);
157 efx_reado(efx, &buf, address);
158
159 if (efx_masked_compare_oword(&reg, &buf, &mask))
160 goto fail;
161 }
162
163 efx_writeo(efx, &original, address);
164 }
165
166 return 0;
167
168fail:
62776d03
BH
169 netif_err(efx, hw, efx->net_dev,
170 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
171 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
172 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
8e730c15
BH
173 return -EIO;
174}
175
176/**************************************************************************
177 *
178 * Special buffer handling
179 * Special buffers are used for event queues and the TX and RX
180 * descriptor rings.
181 *
182 *************************************************************************/
183
184/*
185 * Initialise a special buffer
186 *
187 * This will define a buffer (previously allocated via
188 * efx_alloc_special_buffer()) in the buffer table, allowing
189 * it to be used for event queues, descriptor rings etc.
190 */
191static void
192efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
193{
194 efx_qword_t buf_desc;
5bbe2f4f 195 unsigned int index;
8e730c15
BH
196 dma_addr_t dma_addr;
197 int i;
198
caa75586 199 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
8e730c15
BH
200
201 /* Write buffer descriptors to NIC */
202 for (i = 0; i < buffer->entries; i++) {
203 index = buffer->index + i;
caa75586 204 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
62776d03
BH
205 netif_dbg(efx, probe, efx->net_dev,
206 "mapping special buffer %d at %llx\n",
207 index, (unsigned long long)dma_addr);
8e730c15
BH
208 EFX_POPULATE_QWORD_3(buf_desc,
209 FRF_AZ_BUF_ADR_REGION, 0,
210 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
211 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
212 efx_write_buf_tbl(efx, &buf_desc, index);
213 }
214}
215
216/* Unmaps a buffer and clears the buffer table entries */
217static void
218efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
219{
220 efx_oword_t buf_tbl_upd;
221 unsigned int start = buffer->index;
222 unsigned int end = (buffer->index + buffer->entries - 1);
223
224 if (!buffer->entries)
225 return;
226
62776d03
BH
227 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
228 buffer->index, buffer->index + buffer->entries - 1);
8e730c15
BH
229
230 EFX_POPULATE_OWORD_4(buf_tbl_upd,
231 FRF_AZ_BUF_UPD_CMD, 0,
232 FRF_AZ_BUF_CLR_CMD, 1,
233 FRF_AZ_BUF_CLR_END_ID, end,
234 FRF_AZ_BUF_CLR_START_ID, start);
235 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
236}
237
238/*
239 * Allocate a new special buffer
240 *
241 * This allocates memory for a new buffer, clears it and allocates a
242 * new buffer ID range. It does not write into the buffer table.
243 *
244 * This call will allocate 4KB buffers, since 8KB buffers can't be
245 * used for event queues and descriptor rings.
246 */
247static int efx_alloc_special_buffer(struct efx_nic *efx,
248 struct efx_special_buffer *buffer,
249 unsigned int len)
250{
251 len = ALIGN(len, EFX_BUF_SIZE);
252
caa75586 253 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
8e730c15 254 return -ENOMEM;
8e730c15 255 buffer->entries = len / EFX_BUF_SIZE;
caa75586 256 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
8e730c15 257
8e730c15
BH
258 /* Select new buffer ID */
259 buffer->index = efx->next_buffer_table;
260 efx->next_buffer_table += buffer->entries;
cd2d5b52
BH
261#ifdef CONFIG_SFC_SRIOV
262 BUG_ON(efx_sriov_enabled(efx) &&
263 efx->vf_buftbl_base < efx->next_buffer_table);
264#endif
8e730c15 265
62776d03
BH
266 netif_dbg(efx, probe, efx->net_dev,
267 "allocating special buffers %d-%d at %llx+%x "
268 "(virt %p phys %llx)\n", buffer->index,
269 buffer->index + buffer->entries - 1,
caa75586
BH
270 (u64)buffer->buf.dma_addr, len,
271 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
8e730c15
BH
272
273 return 0;
274}
275
276static void
277efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
278{
caa75586 279 if (!buffer->buf.addr)
8e730c15
BH
280 return;
281
62776d03
BH
282 netif_dbg(efx, hw, efx->net_dev,
283 "deallocating special buffers %d-%d at %llx+%x "
284 "(virt %p phys %llx)\n", buffer->index,
285 buffer->index + buffer->entries - 1,
caa75586
BH
286 (u64)buffer->buf.dma_addr, buffer->buf.len,
287 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
8e730c15 288
caa75586 289 efx_nic_free_buffer(efx, &buffer->buf);
8e730c15
BH
290 buffer->entries = 0;
291}
292
293/**************************************************************************
294 *
295 * Generic buffer handling
f7251a9c 296 * These buffers are used for interrupt status, MAC stats, etc.
8e730c15
BH
297 *
298 **************************************************************************/
299
300int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
0d19a540 301 unsigned int len, gfp_t gfp_flags)
8e730c15 302{
0e33d870 303 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
1f9061d2 304 &buffer->dma_addr,
0d19a540 305 gfp_flags | __GFP_ZERO);
8e730c15
BH
306 if (!buffer->addr)
307 return -ENOMEM;
308 buffer->len = len;
8e730c15
BH
309 return 0;
310}
311
312void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
313{
314 if (buffer->addr) {
0e33d870
BH
315 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
316 buffer->addr, buffer->dma_addr);
8e730c15
BH
317 buffer->addr = NULL;
318 }
319}
320
321/**************************************************************************
322 *
323 * TX path
324 *
325 **************************************************************************/
326
327/* Returns a pointer to the specified transmit descriptor in the TX
328 * descriptor queue belonging to the specified channel.
329 */
330static inline efx_qword_t *
331efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
332{
caa75586 333 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
8e730c15
BH
334}
335
336/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
337static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
338{
339 unsigned write_ptr;
340 efx_dword_t reg;
341
ecc910f5 342 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
343 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
344 efx_writed_page(tx_queue->efx, &reg,
345 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
346}
347
cd38557d
BH
348/* Write pointer and first descriptor for TX descriptor ring */
349static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
350 const efx_qword_t *txd)
351{
352 unsigned write_ptr;
353 efx_oword_t reg;
354
355 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
356 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
357
358 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
359 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
360 FRF_AZ_TX_DESC_WPTR, write_ptr);
361 reg.qword[0] = *txd;
362 efx_writeo_page(tx_queue->efx, &reg,
363 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
364}
365
366static inline bool
367efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
368{
369 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
370
371 if (empty_read_count == 0)
372 return false;
373
374 tx_queue->empty_read_count = 0;
fae8563b
BH
375 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
376 && tx_queue->write_count - write_count == 1;
cd38557d 377}
8e730c15
BH
378
379/* For each entry inserted into the software descriptor ring, create a
380 * descriptor in the hardware TX descriptor ring (in host memory), and
381 * write a doorbell.
382 */
383void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
384{
385
386 struct efx_tx_buffer *buffer;
387 efx_qword_t *txd;
388 unsigned write_ptr;
cd38557d 389 unsigned old_write_count = tx_queue->write_count;
8e730c15
BH
390
391 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
392
393 do {
ecc910f5 394 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
395 buffer = &tx_queue->buffer[write_ptr];
396 txd = efx_tx_desc(tx_queue, write_ptr);
397 ++tx_queue->write_count;
398
399 /* Create TX descriptor ring entry */
7668ff9c 400 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
8e730c15 401 EFX_POPULATE_QWORD_4(*txd,
7668ff9c
BH
402 FSF_AZ_TX_KER_CONT,
403 buffer->flags & EFX_TX_BUF_CONT,
8e730c15
BH
404 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
405 FSF_AZ_TX_KER_BUF_REGION, 0,
406 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
407 } while (tx_queue->write_count != tx_queue->insert_count);
408
409 wmb(); /* Ensure descriptors are written before they are fetched */
cd38557d
BH
410
411 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
412 txd = efx_tx_desc(tx_queue,
413 old_write_count & tx_queue->ptr_mask);
414 efx_push_tx_desc(tx_queue, txd);
415 ++tx_queue->pushes;
416 } else {
417 efx_notify_tx_desc(tx_queue);
418 }
8e730c15
BH
419}
420
421/* Allocate hardware resources for a TX queue */
422int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
423{
424 struct efx_nic *efx = tx_queue->efx;
ecc910f5
SH
425 unsigned entries;
426
427 entries = tx_queue->ptr_mask + 1;
8e730c15 428 return efx_alloc_special_buffer(efx, &tx_queue->txd,
ecc910f5 429 entries * sizeof(efx_qword_t));
8e730c15
BH
430}
431
432void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
433{
8e730c15 434 struct efx_nic *efx = tx_queue->efx;
94b274bf 435 efx_oword_t reg;
8e730c15 436
8e730c15
BH
437 /* Pin TX descriptor ring */
438 efx_init_special_buffer(efx, &tx_queue->txd);
439
440 /* Push TX descriptor ring to card */
94b274bf 441 EFX_POPULATE_OWORD_10(reg,
8e730c15
BH
442 FRF_AZ_TX_DESCQ_EN, 1,
443 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
444 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
445 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
446 FRF_AZ_TX_DESCQ_EVQ_ID,
447 tx_queue->channel->channel,
448 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
449 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
450 FRF_AZ_TX_DESCQ_SIZE,
451 __ffs(tx_queue->txd.entries),
452 FRF_AZ_TX_DESCQ_TYPE, 0,
453 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
454
455 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
a4900ac9 456 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
94b274bf
BH
457 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
458 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
8e730c15
BH
459 !csum);
460 }
461
94b274bf 462 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
8e730c15
BH
463 tx_queue->queue);
464
465 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
8e730c15 466 /* Only 128 bits in this register */
a4900ac9 467 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
8e730c15
BH
468
469 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
a4900ac9 470 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
32766ec8 471 __clear_bit_le(tx_queue->queue, &reg);
8e730c15 472 else
32766ec8 473 __set_bit_le(tx_queue->queue, &reg);
8e730c15
BH
474 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 }
94b274bf
BH
476
477 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
478 EFX_POPULATE_OWORD_1(reg,
479 FRF_BZ_TX_PACE,
480 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
481 FFE_BZ_TX_PACE_OFF :
482 FFE_BZ_TX_PACE_RESERVED);
483 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
484 tx_queue->queue);
485 }
8e730c15
BH
486}
487
488static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
489{
490 struct efx_nic *efx = tx_queue->efx;
491 efx_oword_t tx_flush_descq;
492
525d9e82
DP
493 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
494 atomic_set(&tx_queue->flush_outstanding, 1);
495
8e730c15
BH
496 EFX_POPULATE_OWORD_2(tx_flush_descq,
497 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
498 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
499 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
500}
501
502void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
503{
504 struct efx_nic *efx = tx_queue->efx;
505 efx_oword_t tx_desc_ptr;
506
8e730c15
BH
507 /* Remove TX descriptor ring from card */
508 EFX_ZERO_OWORD(tx_desc_ptr);
509 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
510 tx_queue->queue);
511
512 /* Unpin TX descriptor ring */
513 efx_fini_special_buffer(efx, &tx_queue->txd);
514}
515
516/* Free buffers backing TX queue */
517void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
518{
519 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
520}
521
522/**************************************************************************
523 *
524 * RX path
525 *
526 **************************************************************************/
527
528/* Returns a pointer to the specified descriptor in the RX descriptor queue */
529static inline efx_qword_t *
530efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
531{
caa75586 532 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
8e730c15
BH
533}
534
535/* This creates an entry in the RX descriptor queue */
536static inline void
537efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
538{
539 struct efx_rx_buffer *rx_buf;
540 efx_qword_t *rxd;
541
542 rxd = efx_rx_desc(rx_queue, index);
543 rx_buf = efx_rx_buffer(rx_queue, index);
544 EFX_POPULATE_QWORD_3(*rxd,
545 FSF_AZ_RX_KER_BUF_SIZE,
546 rx_buf->len -
547 rx_queue->efx->type->rx_buffer_padding,
548 FSF_AZ_RX_KER_BUF_REGION, 0,
549 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
550}
551
552/* This writes to the RX_DESC_WPTR register for the specified receive
553 * descriptor ring.
554 */
555void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
556{
ecc910f5 557 struct efx_nic *efx = rx_queue->efx;
8e730c15
BH
558 efx_dword_t reg;
559 unsigned write_ptr;
560
561 while (rx_queue->notified_count != rx_queue->added_count) {
ecc910f5
SH
562 efx_build_rx_desc(
563 rx_queue,
564 rx_queue->notified_count & rx_queue->ptr_mask);
8e730c15
BH
565 ++rx_queue->notified_count;
566 }
567
568 wmb();
ecc910f5 569 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
8e730c15 570 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
ecc910f5 571 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
ba1e8a35 572 efx_rx_queue_index(rx_queue));
8e730c15
BH
573}
574
575int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
576{
577 struct efx_nic *efx = rx_queue->efx;
ecc910f5
SH
578 unsigned entries;
579
580 entries = rx_queue->ptr_mask + 1;
8e730c15 581 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
ecc910f5 582 entries * sizeof(efx_qword_t));
8e730c15
BH
583}
584
585void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
586{
587 efx_oword_t rx_desc_ptr;
588 struct efx_nic *efx = rx_queue->efx;
589 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
590 bool iscsi_digest_en = is_b0;
85740cdf
BH
591 bool jumbo_en;
592
593 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
594 * DMA to continue after a PCIe page boundary (and scattering
595 * is not possible). In Falcon B0 and Siena, it enables
596 * scatter.
597 */
598 jumbo_en = !is_b0 || efx->rx_scatter;
8e730c15 599
62776d03
BH
600 netif_dbg(efx, hw, efx->net_dev,
601 "RX queue %d ring in special buffers %d-%d\n",
ba1e8a35 602 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
62776d03 603 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
8e730c15 604
85740cdf
BH
605 rx_queue->scatter_n = 0;
606
8e730c15
BH
607 /* Pin RX descriptor ring */
608 efx_init_special_buffer(efx, &rx_queue->rxd);
609
610 /* Push RX descriptor ring to card */
611 EFX_POPULATE_OWORD_10(rx_desc_ptr,
612 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
613 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
614 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
615 FRF_AZ_RX_DESCQ_EVQ_ID,
ba1e8a35 616 efx_rx_queue_channel(rx_queue)->channel,
8e730c15 617 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
ba1e8a35
BH
618 FRF_AZ_RX_DESCQ_LABEL,
619 efx_rx_queue_index(rx_queue),
8e730c15
BH
620 FRF_AZ_RX_DESCQ_SIZE,
621 __ffs(rx_queue->rxd.entries),
622 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
85740cdf 623 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
8e730c15
BH
624 FRF_AZ_RX_DESCQ_EN, 1);
625 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 626 efx_rx_queue_index(rx_queue));
8e730c15
BH
627}
628
629static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
630{
631 struct efx_nic *efx = rx_queue->efx;
632 efx_oword_t rx_flush_descq;
633
8e730c15
BH
634 EFX_POPULATE_OWORD_2(rx_flush_descq,
635 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
ba1e8a35
BH
636 FRF_AZ_RX_FLUSH_DESCQ,
637 efx_rx_queue_index(rx_queue));
8e730c15
BH
638 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
639}
640
641void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
642{
643 efx_oword_t rx_desc_ptr;
644 struct efx_nic *efx = rx_queue->efx;
645
8e730c15
BH
646 /* Remove RX descriptor ring from card */
647 EFX_ZERO_OWORD(rx_desc_ptr);
648 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 649 efx_rx_queue_index(rx_queue));
8e730c15
BH
650
651 /* Unpin RX descriptor ring */
652 efx_fini_special_buffer(efx, &rx_queue->rxd);
653}
654
655/* Free buffers backing RX queue */
656void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
657{
658 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
659}
660
9f2cb71c
BH
661/**************************************************************************
662 *
663 * Flush handling
664 *
665 **************************************************************************/
666
667/* efx_nic_flush_queues() must be woken up when all flushes are completed,
668 * or more RX flushes can be kicked off.
669 */
670static bool efx_flush_wake(struct efx_nic *efx)
671{
672 /* Ensure that all updates are visible to efx_nic_flush_queues() */
673 smp_mb();
674
675 return (atomic_read(&efx->drain_pending) == 0 ||
676 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
677 && atomic_read(&efx->rxq_flush_pending) > 0));
678}
679
525d9e82
DP
680static bool efx_check_tx_flush_complete(struct efx_nic *efx)
681{
682 bool i = true;
683 efx_oword_t txd_ptr_tbl;
684 struct efx_channel *channel;
685 struct efx_tx_queue *tx_queue;
686
687 efx_for_each_channel(channel, efx) {
688 efx_for_each_channel_tx_queue(tx_queue, channel) {
689 efx_reado_table(efx, &txd_ptr_tbl,
690 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
691 if (EFX_OWORD_FIELD(txd_ptr_tbl,
692 FRF_AZ_TX_DESCQ_FLUSH) ||
693 EFX_OWORD_FIELD(txd_ptr_tbl,
694 FRF_AZ_TX_DESCQ_EN)) {
695 netif_dbg(efx, hw, efx->net_dev,
696 "flush did not complete on TXQ %d\n",
697 tx_queue->queue);
698 i = false;
699 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
700 1, 0)) {
701 /* The flush is complete, but we didn't
702 * receive a flush completion event
703 */
704 netif_dbg(efx, hw, efx->net_dev,
705 "flush complete on TXQ %d, so drain "
706 "the queue\n", tx_queue->queue);
707 /* Don't need to increment drain_pending as it
708 * has already been incremented for the queues
709 * which did not drain
710 */
711 efx_magic_event(channel,
712 EFX_CHANNEL_MAGIC_TX_DRAIN(
713 tx_queue));
714 }
715 }
716 }
717
718 return i;
719}
720
9f2cb71c
BH
721/* Flush all the transmit queues, and continue flushing receive queues until
722 * they're all flushed. Wait for the DRAIN events to be recieved so that there
723 * are no more RX and TX events left on any channel. */
724int efx_nic_flush_queues(struct efx_nic *efx)
725{
726 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
727 struct efx_channel *channel;
728 struct efx_rx_queue *rx_queue;
729 struct efx_tx_queue *tx_queue;
730 int rc = 0;
731
732 efx->type->prepare_flush(efx);
733
734 efx_for_each_channel(channel, efx) {
735 efx_for_each_channel_tx_queue(tx_queue, channel) {
736 atomic_inc(&efx->drain_pending);
737 efx_flush_tx_queue(tx_queue);
738 }
739 efx_for_each_channel_rx_queue(rx_queue, channel) {
740 atomic_inc(&efx->drain_pending);
741 rx_queue->flush_pending = true;
742 atomic_inc(&efx->rxq_flush_pending);
743 }
744 }
745
746 while (timeout && atomic_read(&efx->drain_pending) > 0) {
cd2d5b52
BH
747 /* If SRIOV is enabled, then offload receive queue flushing to
748 * the firmware (though we will still have to poll for
749 * completion). If that fails, fall back to the old scheme.
750 */
751 if (efx_sriov_enabled(efx)) {
752 rc = efx_mcdi_flush_rxqs(efx);
753 if (!rc)
754 goto wait;
755 }
756
9f2cb71c
BH
757 /* The hardware supports four concurrent rx flushes, each of
758 * which may need to be retried if there is an outstanding
759 * descriptor fetch
760 */
761 efx_for_each_channel(channel, efx) {
762 efx_for_each_channel_rx_queue(rx_queue, channel) {
763 if (atomic_read(&efx->rxq_flush_outstanding) >=
764 EFX_RX_FLUSH_COUNT)
765 break;
766
767 if (rx_queue->flush_pending) {
768 rx_queue->flush_pending = false;
769 atomic_dec(&efx->rxq_flush_pending);
770 atomic_inc(&efx->rxq_flush_outstanding);
771 efx_flush_rx_queue(rx_queue);
772 }
773 }
774 }
775
cd2d5b52 776 wait:
9f2cb71c
BH
777 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
778 timeout);
779 }
780
525d9e82
DP
781 if (atomic_read(&efx->drain_pending) &&
782 !efx_check_tx_flush_complete(efx)) {
9f2cb71c
BH
783 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
784 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
785 atomic_read(&efx->rxq_flush_outstanding),
786 atomic_read(&efx->rxq_flush_pending));
787 rc = -ETIMEDOUT;
788
789 atomic_set(&efx->drain_pending, 0);
790 atomic_set(&efx->rxq_flush_pending, 0);
791 atomic_set(&efx->rxq_flush_outstanding, 0);
792 }
793
d5e8cc6c 794 efx->type->finish_flush(efx);
a606f432 795
9f2cb71c
BH
796 return rc;
797}
798
8e730c15
BH
799/**************************************************************************
800 *
801 * Event queue processing
802 * Event queues are processed by per-channel tasklets.
803 *
804 **************************************************************************/
805
806/* Update a channel's event queue's read pointer (RPTR) register
807 *
808 * This writes the EVQ_RPTR_REG register for the specified channel's
809 * event queue.
8e730c15
BH
810 */
811void efx_nic_eventq_read_ack(struct efx_channel *channel)
812{
813 efx_dword_t reg;
814 struct efx_nic *efx = channel->efx;
815
d4fabcc8
BH
816 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
817 channel->eventq_read_ptr & channel->eventq_mask);
778cdaf6
BH
818
819 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
820 * of 4 bytes, but it is really 16 bytes just like later revisions.
821 */
822 efx_writed(efx, &reg,
823 efx->type->evq_rptr_tbl_base +
824 FR_BZ_EVQ_RPTR_STEP * channel->channel);
8e730c15
BH
825}
826
827/* Use HW to insert a SW defined event */
90893000
BH
828void efx_generate_event(struct efx_nic *efx, unsigned int evq,
829 efx_qword_t *event)
8e730c15
BH
830{
831 efx_oword_t drv_ev_reg;
832
833 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
834 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
835 drv_ev_reg.u32[0] = event->u32[0];
836 drv_ev_reg.u32[1] = event->u32[1];
837 drv_ev_reg.u32[2] = 0;
838 drv_ev_reg.u32[3] = 0;
90893000
BH
839 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
840 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
8e730c15
BH
841}
842
4ef594eb
BH
843static void efx_magic_event(struct efx_channel *channel, u32 magic)
844{
845 efx_qword_t event;
846
847 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
848 FSE_AZ_EV_CODE_DRV_GEN_EV,
849 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
90893000 850 efx_generate_event(channel->efx, channel->channel, &event);
4ef594eb
BH
851}
852
8e730c15
BH
853/* Handle a transmit completion event
854 *
855 * The NIC batches TX completion events; the message we receive is of
856 * the form "complete all TX events up to this index".
857 */
fa236e18 858static int
8e730c15
BH
859efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
860{
861 unsigned int tx_ev_desc_ptr;
862 unsigned int tx_ev_q_label;
863 struct efx_tx_queue *tx_queue;
864 struct efx_nic *efx = channel->efx;
fa236e18 865 int tx_packets = 0;
8e730c15 866
9f2cb71c
BH
867 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
868 return 0;
869
8e730c15
BH
870 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
871 /* Transmit completion */
872 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
873 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
874 tx_queue = efx_channel_get_tx_queue(
875 channel, tx_ev_q_label % EFX_TXQ_TYPES);
fa236e18 876 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
ecc910f5 877 tx_queue->ptr_mask);
8e730c15
BH
878 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
879 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
880 /* Rewrite the FIFO write pointer */
881 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
882 tx_queue = efx_channel_get_tx_queue(
883 channel, tx_ev_q_label % EFX_TXQ_TYPES);
8e730c15 884
73ba7b68 885 netif_tx_lock(efx->net_dev);
8e730c15 886 efx_notify_tx_desc(tx_queue);
73ba7b68 887 netif_tx_unlock(efx->net_dev);
8e730c15
BH
888 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
889 EFX_WORKAROUND_10727(efx)) {
890 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
891 } else {
62776d03
BH
892 netif_err(efx, tx_err, efx->net_dev,
893 "channel %d unexpected TX event "
894 EFX_QWORD_FMT"\n", channel->channel,
895 EFX_QWORD_VAL(*event));
8e730c15 896 }
fa236e18
BH
897
898 return tx_packets;
8e730c15
BH
899}
900
901/* Detect errors included in the rx_evt_pkt_ok bit. */
db339569
BH
902static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
903 const efx_qword_t *event)
8e730c15 904{
ba1e8a35 905 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
8e730c15
BH
906 struct efx_nic *efx = rx_queue->efx;
907 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
908 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
909 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
910 bool rx_ev_other_err, rx_ev_pause_frm;
911 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
912 unsigned rx_ev_pkt_type;
913
914 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
915 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
916 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
917 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
918 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
919 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
920 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
921 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
922 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
923 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
924 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
925 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
926 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
927 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
928 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
929
930 /* Every error apart from tobe_disc and pause_frm */
931 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
932 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
933 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
934
935 /* Count errors that are not in MAC stats. Ignore expected
936 * checksum errors during self-test. */
937 if (rx_ev_frm_trunc)
ba1e8a35 938 ++channel->n_rx_frm_trunc;
8e730c15 939 else if (rx_ev_tobe_disc)
ba1e8a35 940 ++channel->n_rx_tobe_disc;
8e730c15
BH
941 else if (!efx->loopback_selftest) {
942 if (rx_ev_ip_hdr_chksum_err)
ba1e8a35 943 ++channel->n_rx_ip_hdr_chksum_err;
8e730c15 944 else if (rx_ev_tcp_udp_chksum_err)
ba1e8a35 945 ++channel->n_rx_tcp_udp_chksum_err;
8e730c15
BH
946 }
947
8e730c15
BH
948 /* TOBE_DISC is expected on unicast mismatches; don't print out an
949 * error message. FRM_TRUNC indicates RXDP dropped the packet due
950 * to a FIFO overflow.
951 */
5f3f9d6c 952#ifdef DEBUG
62776d03
BH
953 if (rx_ev_other_err && net_ratelimit()) {
954 netif_dbg(efx, rx_err, efx->net_dev,
955 " RX queue %d unexpected RX event "
956 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
ba1e8a35 957 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
62776d03
BH
958 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
959 rx_ev_ip_hdr_chksum_err ?
960 " [IP_HDR_CHKSUM_ERR]" : "",
961 rx_ev_tcp_udp_chksum_err ?
962 " [TCP_UDP_CHKSUM_ERR]" : "",
963 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
964 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
965 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
966 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
967 rx_ev_pause_frm ? " [PAUSE]" : "");
8e730c15
BH
968 }
969#endif
db339569
BH
970
971 /* The frame must be discarded if any of these are true. */
972 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
973 rx_ev_tobe_disc | rx_ev_pause_frm) ?
974 EFX_RX_PKT_DISCARD : 0;
8e730c15
BH
975}
976
85740cdf
BH
977/* Handle receive events that are not in-order. Return true if this
978 * can be handled as a partial packet discard, false if it's more
979 * serious.
980 */
981static bool
8e730c15
BH
982efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
983{
85740cdf 984 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
8e730c15
BH
985 struct efx_nic *efx = rx_queue->efx;
986 unsigned expected, dropped;
987
85740cdf
BH
988 if (rx_queue->scatter_n &&
989 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
990 rx_queue->ptr_mask)) {
991 ++channel->n_rx_nodesc_trunc;
992 return true;
993 }
994
ecc910f5
SH
995 expected = rx_queue->removed_count & rx_queue->ptr_mask;
996 dropped = (index - expected) & rx_queue->ptr_mask;
62776d03
BH
997 netif_info(efx, rx_err, efx->net_dev,
998 "dropped %d events (index=%d expected=%d)\n",
999 dropped, index, expected);
8e730c15
BH
1000
1001 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1002 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
85740cdf 1003 return false;
8e730c15
BH
1004}
1005
1006/* Handle a packet received event
1007 *
1008 * The NIC gives a "discard" flag if it's a unicast packet with the
1009 * wrong destination address
1010 * Also "is multicast" and "matches multicast filter" flags can be used to
1011 * discard non-matching multicast packets.
1012 */
1013static void
1014efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
1015{
1016 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1017 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1018 unsigned expected_ptr;
85740cdf 1019 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
db339569 1020 u16 flags;
8e730c15 1021 struct efx_rx_queue *rx_queue;
9f2cb71c
BH
1022 struct efx_nic *efx = channel->efx;
1023
1024 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1025 return;
8e730c15 1026
85740cdf
BH
1027 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1028 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
8e730c15
BH
1029 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1030 channel->channel);
1031
f7d12cdc 1032 rx_queue = efx_channel_get_rx_queue(channel);
8e730c15
BH
1033
1034 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
85740cdf
BH
1035 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1036 rx_queue->ptr_mask);
1037
1038 /* Check for partial drops and other errors */
1039 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1040 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1041 if (rx_ev_desc_ptr != expected_ptr &&
1042 !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1043 return;
1044
1045 /* Discard all pending fragments */
1046 if (rx_queue->scatter_n) {
1047 efx_rx_packet(
1048 rx_queue,
1049 rx_queue->removed_count & rx_queue->ptr_mask,
1050 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1051 rx_queue->removed_count += rx_queue->scatter_n;
1052 rx_queue->scatter_n = 0;
1053 }
1054
1055 /* Return if there is no new fragment */
1056 if (rx_ev_desc_ptr != expected_ptr)
1057 return;
1058
1059 /* Discard new fragment if not SOP */
1060 if (!rx_ev_sop) {
1061 efx_rx_packet(
1062 rx_queue,
1063 rx_queue->removed_count & rx_queue->ptr_mask,
1064 1, 0, EFX_RX_PKT_DISCARD);
1065 ++rx_queue->removed_count;
1066 return;
1067 }
1068 }
1069
1070 ++rx_queue->scatter_n;
1071 if (rx_ev_cont)
1072 return;
1073
1074 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1075 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1076 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
8e730c15
BH
1077
1078 if (likely(rx_ev_pkt_ok)) {
d07df8ec
BH
1079 /* If packet is marked as OK then we can rely on the
1080 * hardware checksum and classification.
8e730c15 1081 */
d07df8ec
BH
1082 flags = 0;
1083 switch (rx_ev_hdr_type) {
1084 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1085 flags |= EFX_RX_PKT_TCP;
1086 /* fall through */
1087 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1088 flags |= EFX_RX_PKT_CSUMMED;
1089 /* fall through */
1090 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1091 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1092 break;
1093 }
8e730c15 1094 } else {
db339569 1095 flags = efx_handle_rx_not_ok(rx_queue, event);
8e730c15
BH
1096 }
1097
1098 /* Detect multicast packets that didn't match the filter */
1099 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1100 if (rx_ev_mcast_pkt) {
1101 unsigned int rx_ev_mcast_hash_match =
1102 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1103
1104 if (unlikely(!rx_ev_mcast_hash_match)) {
1105 ++channel->n_rx_mcast_mismatch;
db339569 1106 flags |= EFX_RX_PKT_DISCARD;
8e730c15
BH
1107 }
1108 }
1109
1110 channel->irq_mod_score += 2;
1111
1112 /* Handle received packet */
85740cdf
BH
1113 efx_rx_packet(rx_queue,
1114 rx_queue->removed_count & rx_queue->ptr_mask,
1115 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1116 rx_queue->removed_count += rx_queue->scatter_n;
1117 rx_queue->scatter_n = 0;
8e730c15
BH
1118}
1119
9f2cb71c
BH
1120/* If this flush done event corresponds to a &struct efx_tx_queue, then
1121 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1122 * of all transmit completions.
1123 */
1124static void
1125efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1126{
1127 struct efx_tx_queue *tx_queue;
1128 int qid;
1129
1130 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1131 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1132 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1133 qid % EFX_TXQ_TYPES);
525d9e82
DP
1134 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1135 efx_magic_event(tx_queue->channel,
1136 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1137 }
9f2cb71c
BH
1138 }
1139}
1140
1141/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1142 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1143 * the RX queue back to the mask of RX queues in need of flushing.
1144 */
1145static void
1146efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1147{
1148 struct efx_channel *channel;
1149 struct efx_rx_queue *rx_queue;
1150 int qid;
1151 bool failed;
1152
1153 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1154 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1155 if (qid >= efx->n_channels)
1156 return;
1157 channel = efx_get_channel(efx, qid);
1158 if (!efx_channel_has_rx_queue(channel))
1159 return;
1160 rx_queue = efx_channel_get_rx_queue(channel);
1161
1162 if (failed) {
1163 netif_info(efx, hw, efx->net_dev,
1164 "RXQ %d flush retry\n", qid);
1165 rx_queue->flush_pending = true;
1166 atomic_inc(&efx->rxq_flush_pending);
1167 } else {
1168 efx_magic_event(efx_rx_queue_channel(rx_queue),
1169 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1170 }
1171 atomic_dec(&efx->rxq_flush_outstanding);
1172 if (efx_flush_wake(efx))
1173 wake_up(&efx->flush_wq);
1174}
1175
1176static void
1177efx_handle_drain_event(struct efx_channel *channel)
1178{
1179 struct efx_nic *efx = channel->efx;
1180
1181 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1182 atomic_dec(&efx->drain_pending);
1183 if (efx_flush_wake(efx))
1184 wake_up(&efx->flush_wq);
1185}
1186
90d683af
SH
1187static void
1188efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1189{
1190 struct efx_nic *efx = channel->efx;
2ae75dac
BH
1191 struct efx_rx_queue *rx_queue =
1192 efx_channel_has_rx_queue(channel) ?
1193 efx_channel_get_rx_queue(channel) : NULL;
9f2cb71c 1194 unsigned magic, code;
90d683af 1195
4ef594eb 1196 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
9f2cb71c 1197 code = _EFX_CHANNEL_MAGIC_CODE(magic);
4ef594eb 1198
9f2cb71c 1199 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
dd40781e 1200 channel->event_test_cpu = raw_smp_processor_id();
9f2cb71c 1201 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
90d683af
SH
1202 /* The queue must be empty, so we won't receive any rx
1203 * events, so efx_process_channel() won't refill the
1204 * queue. Refill it here */
2ae75dac 1205 efx_fast_push_rx_descriptors(rx_queue);
9f2cb71c
BH
1206 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1207 rx_queue->enabled = false;
1208 efx_handle_drain_event(channel);
1209 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1210 efx_handle_drain_event(channel);
1211 } else {
62776d03
BH
1212 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1213 "generated event "EFX_QWORD_FMT"\n",
1214 channel->channel, EFX_QWORD_VAL(*event));
9f2cb71c 1215 }
90d683af
SH
1216}
1217
8e730c15
BH
1218static void
1219efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1220{
1221 struct efx_nic *efx = channel->efx;
1222 unsigned int ev_sub_code;
1223 unsigned int ev_sub_data;
1224
1225 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1226 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1227
1228 switch (ev_sub_code) {
1229 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
62776d03
BH
1230 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1231 channel->channel, ev_sub_data);
9f2cb71c 1232 efx_handle_tx_flush_done(efx, event);
cd2d5b52 1233 efx_sriov_tx_flush_done(efx, event);
8e730c15
BH
1234 break;
1235 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
62776d03
BH
1236 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1237 channel->channel, ev_sub_data);
9f2cb71c 1238 efx_handle_rx_flush_done(efx, event);
cd2d5b52 1239 efx_sriov_rx_flush_done(efx, event);
8e730c15
BH
1240 break;
1241 case FSE_AZ_EVQ_INIT_DONE_EV:
62776d03
BH
1242 netif_dbg(efx, hw, efx->net_dev,
1243 "channel %d EVQ %d initialised\n",
1244 channel->channel, ev_sub_data);
8e730c15
BH
1245 break;
1246 case FSE_AZ_SRM_UPD_DONE_EV:
62776d03
BH
1247 netif_vdbg(efx, hw, efx->net_dev,
1248 "channel %d SRAM update done\n", channel->channel);
8e730c15
BH
1249 break;
1250 case FSE_AZ_WAKE_UP_EV:
62776d03
BH
1251 netif_vdbg(efx, hw, efx->net_dev,
1252 "channel %d RXQ %d wakeup event\n",
1253 channel->channel, ev_sub_data);
8e730c15
BH
1254 break;
1255 case FSE_AZ_TIMER_EV:
62776d03
BH
1256 netif_vdbg(efx, hw, efx->net_dev,
1257 "channel %d RX queue %d timer expired\n",
1258 channel->channel, ev_sub_data);
8e730c15
BH
1259 break;
1260 case FSE_AA_RX_RECOVER_EV:
62776d03
BH
1261 netif_err(efx, rx_err, efx->net_dev,
1262 "channel %d seen DRIVER RX_RESET event. "
8e730c15
BH
1263 "Resetting.\n", channel->channel);
1264 atomic_inc(&efx->rx_reset);
1265 efx_schedule_reset(efx,
1266 EFX_WORKAROUND_6555(efx) ?
1267 RESET_TYPE_RX_RECOVERY :
1268 RESET_TYPE_DISABLE);
1269 break;
1270 case FSE_BZ_RX_DSC_ERROR_EV:
cd2d5b52
BH
1271 if (ev_sub_data < EFX_VI_BASE) {
1272 netif_err(efx, rx_err, efx->net_dev,
1273 "RX DMA Q %d reports descriptor fetch error."
1274 " RX Q %d is disabled.\n", ev_sub_data,
1275 ev_sub_data);
1276 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1277 } else
1278 efx_sriov_desc_fetch_err(efx, ev_sub_data);
8e730c15
BH
1279 break;
1280 case FSE_BZ_TX_DSC_ERROR_EV:
cd2d5b52
BH
1281 if (ev_sub_data < EFX_VI_BASE) {
1282 netif_err(efx, tx_err, efx->net_dev,
1283 "TX DMA Q %d reports descriptor fetch error."
1284 " TX Q %d is disabled.\n", ev_sub_data,
1285 ev_sub_data);
1286 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1287 } else
1288 efx_sriov_desc_fetch_err(efx, ev_sub_data);
8e730c15
BH
1289 break;
1290 default:
62776d03
BH
1291 netif_vdbg(efx, hw, efx->net_dev,
1292 "channel %d unknown driver event code %d "
1293 "data %04x\n", channel->channel, ev_sub_code,
1294 ev_sub_data);
8e730c15
BH
1295 break;
1296 }
1297}
1298
fa236e18 1299int efx_nic_process_eventq(struct efx_channel *channel, int budget)
8e730c15 1300{
ecc910f5 1301 struct efx_nic *efx = channel->efx;
8e730c15
BH
1302 unsigned int read_ptr;
1303 efx_qword_t event, *p_event;
1304 int ev_code;
fa236e18
BH
1305 int tx_packets = 0;
1306 int spent = 0;
8e730c15
BH
1307
1308 read_ptr = channel->eventq_read_ptr;
1309
fa236e18 1310 for (;;) {
8e730c15
BH
1311 p_event = efx_event(channel, read_ptr);
1312 event = *p_event;
1313
1314 if (!efx_event_present(&event))
1315 /* End of events */
1316 break;
1317
62776d03
BH
1318 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1319 "channel %d event is "EFX_QWORD_FMT"\n",
1320 channel->channel, EFX_QWORD_VAL(event));
8e730c15
BH
1321
1322 /* Clear this event by marking it all ones */
1323 EFX_SET_QWORD(*p_event);
1324
d4fabcc8 1325 ++read_ptr;
fa236e18 1326
8e730c15
BH
1327 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1328
1329 switch (ev_code) {
1330 case FSE_AZ_EV_CODE_RX_EV:
1331 efx_handle_rx_event(channel, &event);
fa236e18
BH
1332 if (++spent == budget)
1333 goto out;
8e730c15
BH
1334 break;
1335 case FSE_AZ_EV_CODE_TX_EV:
fa236e18 1336 tx_packets += efx_handle_tx_event(channel, &event);
ecc910f5 1337 if (tx_packets > efx->txq_entries) {
fa236e18
BH
1338 spent = budget;
1339 goto out;
1340 }
8e730c15
BH
1341 break;
1342 case FSE_AZ_EV_CODE_DRV_GEN_EV:
90d683af 1343 efx_handle_generated_event(channel, &event);
8e730c15 1344 break;
8e730c15
BH
1345 case FSE_AZ_EV_CODE_DRIVER_EV:
1346 efx_handle_driver_event(channel, &event);
1347 break;
cd2d5b52
BH
1348 case FSE_CZ_EV_CODE_USER_EV:
1349 efx_sriov_event(channel, &event);
1350 break;
8880f4ec
BH
1351 case FSE_CZ_EV_CODE_MCDI_EV:
1352 efx_mcdi_process_event(channel, &event);
1353 break;
40641ed9
BH
1354 case FSE_AZ_EV_CODE_GLOBAL_EV:
1355 if (efx->type->handle_global_event &&
1356 efx->type->handle_global_event(channel, &event))
1357 break;
1358 /* else fall through */
8e730c15 1359 default:
62776d03
BH
1360 netif_err(channel->efx, hw, channel->efx->net_dev,
1361 "channel %d unknown event type %d (data "
1362 EFX_QWORD_FMT ")\n", channel->channel,
1363 ev_code, EFX_QWORD_VAL(event));
8e730c15 1364 }
fa236e18 1365 }
8e730c15 1366
fa236e18 1367out:
8e730c15 1368 channel->eventq_read_ptr = read_ptr;
fa236e18 1369 return spent;
8e730c15
BH
1370}
1371
d4fabcc8
BH
1372/* Check whether an event is present in the eventq at the current
1373 * read pointer. Only useful for self-test.
1374 */
1375bool efx_nic_event_present(struct efx_channel *channel)
1376{
1377 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1378}
8e730c15
BH
1379
1380/* Allocate buffer table entries for event queue */
1381int efx_nic_probe_eventq(struct efx_channel *channel)
1382{
1383 struct efx_nic *efx = channel->efx;
ecc910f5
SH
1384 unsigned entries;
1385
1386 entries = channel->eventq_mask + 1;
8e730c15 1387 return efx_alloc_special_buffer(efx, &channel->eventq,
ecc910f5 1388 entries * sizeof(efx_qword_t));
8e730c15
BH
1389}
1390
1391void efx_nic_init_eventq(struct efx_channel *channel)
1392{
8880f4ec 1393 efx_oword_t reg;
8e730c15
BH
1394 struct efx_nic *efx = channel->efx;
1395
62776d03
BH
1396 netif_dbg(efx, hw, efx->net_dev,
1397 "channel %d event queue in special buffers %d-%d\n",
1398 channel->channel, channel->eventq.index,
1399 channel->eventq.index + channel->eventq.entries - 1);
8e730c15 1400
8880f4ec
BH
1401 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1402 EFX_POPULATE_OWORD_3(reg,
1403 FRF_CZ_TIMER_Q_EN, 1,
1404 FRF_CZ_HOST_NOTIFY_MODE, 0,
1405 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1406 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1407 }
1408
8e730c15
BH
1409 /* Pin event queue buffer */
1410 efx_init_special_buffer(efx, &channel->eventq);
1411
1412 /* Fill event queue with all ones (i.e. empty events) */
caa75586 1413 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
8e730c15
BH
1414
1415 /* Push event queue to card */
8880f4ec 1416 EFX_POPULATE_OWORD_3(reg,
8e730c15
BH
1417 FRF_AZ_EVQ_EN, 1,
1418 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1419 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
8880f4ec 1420 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15
BH
1421 channel->channel);
1422
1423 efx->type->push_irq_moderation(channel);
1424}
1425
1426void efx_nic_fini_eventq(struct efx_channel *channel)
1427{
8880f4ec 1428 efx_oword_t reg;
8e730c15
BH
1429 struct efx_nic *efx = channel->efx;
1430
1431 /* Remove event queue from card */
8880f4ec
BH
1432 EFX_ZERO_OWORD(reg);
1433 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15 1434 channel->channel);
8880f4ec
BH
1435 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1436 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
8e730c15
BH
1437
1438 /* Unpin event queue */
1439 efx_fini_special_buffer(efx, &channel->eventq);
1440}
1441
1442/* Free buffers backing event queue */
1443void efx_nic_remove_eventq(struct efx_channel *channel)
1444{
1445 efx_free_special_buffer(channel->efx, &channel->eventq);
1446}
1447
1448
eee6f6a9 1449void efx_nic_event_test_start(struct efx_channel *channel)
8e730c15 1450{
dd40781e 1451 channel->event_test_cpu = -1;
eee6f6a9 1452 smp_wmb();
4ef594eb 1453 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
90d683af
SH
1454}
1455
2ae75dac 1456void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
90d683af 1457{
2ae75dac
BH
1458 efx_magic_event(efx_rx_queue_channel(rx_queue),
1459 EFX_CHANNEL_MAGIC_FILL(rx_queue));
8e730c15
BH
1460}
1461
8e730c15
BH
1462/**************************************************************************
1463 *
1464 * Hardware interrupts
1465 * The hardware interrupt handler does very little work; all the event
1466 * queue processing is carried out by per-channel tasklets.
1467 *
1468 **************************************************************************/
1469
1470/* Enable/disable/generate interrupts */
1471static inline void efx_nic_interrupts(struct efx_nic *efx,
1472 bool enabled, bool force)
1473{
1474 efx_oword_t int_en_reg_ker;
8880f4ec
BH
1475
1476 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1646a6f3 1477 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
8e730c15
BH
1478 FRF_AZ_KER_INT_KER, force,
1479 FRF_AZ_DRV_INT_EN_KER, enabled);
1480 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1481}
1482
1483void efx_nic_enable_interrupts(struct efx_nic *efx)
1484{
8e730c15
BH
1485 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1486 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1487
8e730c15 1488 efx_nic_interrupts(efx, true, false);
8e730c15
BH
1489}
1490
1491void efx_nic_disable_interrupts(struct efx_nic *efx)
1492{
1493 /* Disable interrupts */
1494 efx_nic_interrupts(efx, false, false);
1495}
1496
1497/* Generate a test interrupt
1498 * Interrupt must already have been enabled, otherwise nasty things
1499 * may happen.
1500 */
eee6f6a9 1501void efx_nic_irq_test_start(struct efx_nic *efx)
8e730c15 1502{
eee6f6a9
BH
1503 efx->last_irq_cpu = -1;
1504 smp_wmb();
8e730c15
BH
1505 efx_nic_interrupts(efx, true, true);
1506}
1507
1508/* Process a fatal interrupt
1509 * Disable bus mastering ASAP and schedule a reset
1510 */
1511irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1512{
1513 struct falcon_nic_data *nic_data = efx->nic_data;
1514 efx_oword_t *int_ker = efx->irq_status.addr;
1515 efx_oword_t fatal_intr;
1516 int error, mem_perr;
1517
1518 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1519 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1520
62776d03
BH
1521 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1522 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1523 EFX_OWORD_VAL(fatal_intr),
1524 error ? "disabling bus mastering" : "no recognised error");
8e730c15
BH
1525
1526 /* If this is a memory parity error dump which blocks are offending */
97e1eaa0
SH
1527 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1528 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
8e730c15
BH
1529 if (mem_perr) {
1530 efx_oword_t reg;
1531 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
62776d03
BH
1532 netif_err(efx, hw, efx->net_dev,
1533 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1534 EFX_OWORD_VAL(reg));
8e730c15
BH
1535 }
1536
1537 /* Disable both devices */
1538 pci_clear_master(efx->pci_dev);
1539 if (efx_nic_is_dual_func(efx))
1540 pci_clear_master(nic_data->pci_dev2);
1541 efx_nic_disable_interrupts(efx);
1542
1543 /* Count errors and reset or disable the NIC accordingly */
1544 if (efx->int_error_count == 0 ||
1545 time_after(jiffies, efx->int_error_expire)) {
1546 efx->int_error_count = 0;
1547 efx->int_error_expire =
1548 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1549 }
1550 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
62776d03
BH
1551 netif_err(efx, hw, efx->net_dev,
1552 "SYSTEM ERROR - reset scheduled\n");
8e730c15
BH
1553 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1554 } else {
62776d03
BH
1555 netif_err(efx, hw, efx->net_dev,
1556 "SYSTEM ERROR - max number of errors seen."
1557 "NIC will be disabled\n");
8e730c15
BH
1558 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1559 }
63695459 1560
8e730c15
BH
1561 return IRQ_HANDLED;
1562}
1563
1564/* Handle a legacy interrupt
1565 * Acknowledges the interrupt and schedule event queue processing.
1566 */
1567static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1568{
1569 struct efx_nic *efx = dev_id;
1570 efx_oword_t *int_ker = efx->irq_status.addr;
1571 irqreturn_t result = IRQ_NONE;
1572 struct efx_channel *channel;
1573 efx_dword_t reg;
1574 u32 queues;
1575 int syserr;
1576
94dec6a2
BH
1577 /* Could this be ours? If interrupts are disabled then the
1578 * channel state may not be valid.
1579 */
1580 if (!efx->legacy_irq_enabled)
1581 return result;
1582
8e730c15
BH
1583 /* Read the ISR which also ACKs the interrupts */
1584 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1585 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1586
b28405b0
AR
1587 /* Legacy interrupts are disabled too late by the EEH kernel
1588 * code. Disable them earlier.
1589 * If an EEH error occurred, the read will have returned all ones.
1590 */
1591 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1592 !efx->eeh_disabled_legacy_irq) {
1593 disable_irq_nosync(efx->legacy_irq);
1594 efx->eeh_disabled_legacy_irq = true;
1595 }
1596
1646a6f3
BH
1597 /* Handle non-event-queue sources */
1598 if (queues & (1U << efx->irq_level)) {
63695459
SH
1599 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1600 if (unlikely(syserr))
1601 return efx_nic_fatal_interrupt(efx);
1646a6f3 1602 efx->last_irq_cpu = raw_smp_processor_id();
63695459 1603 }
8e730c15 1604
8880f4ec
BH
1605 if (queues != 0) {
1606 if (EFX_WORKAROUND_15783(efx))
1607 efx->irq_zero_count = 0;
1608
1609 /* Schedule processing of any interrupting queues */
1610 efx_for_each_channel(channel, efx) {
1611 if (queues & 1)
1646a6f3 1612 efx_schedule_channel_irq(channel);
8880f4ec 1613 queues >>= 1;
8e730c15 1614 }
8880f4ec
BH
1615 result = IRQ_HANDLED;
1616
41b7e4c3 1617 } else if (EFX_WORKAROUND_15783(efx)) {
8880f4ec
BH
1618 efx_qword_t *event;
1619
41b7e4c3
SH
1620 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1621 * because this might be a shared interrupt. */
1622 if (efx->irq_zero_count++ == 0)
1623 result = IRQ_HANDLED;
1624
1625 /* Ensure we schedule or rearm all event queues */
8880f4ec
BH
1626 efx_for_each_channel(channel, efx) {
1627 event = efx_event(channel, channel->eventq_read_ptr);
1628 if (efx_event_present(event))
1646a6f3 1629 efx_schedule_channel_irq(channel);
41b7e4c3
SH
1630 else
1631 efx_nic_eventq_read_ack(channel);
8880f4ec 1632 }
8e730c15
BH
1633 }
1634
1646a6f3 1635 if (result == IRQ_HANDLED)
62776d03
BH
1636 netif_vdbg(efx, intr, efx->net_dev,
1637 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1638 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
8e730c15
BH
1639
1640 return result;
1641}
1642
1643/* Handle an MSI interrupt
1644 *
1645 * Handle an MSI hardware interrupt. This routine schedules event
1646 * queue processing. No interrupt acknowledgement cycle is necessary.
1647 * Also, we never need to check that the interrupt is for us, since
1648 * MSI interrupts cannot be shared.
1649 */
1650static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1651{
4642610c 1652 struct efx_channel *channel = *(struct efx_channel **)dev_id;
8e730c15
BH
1653 struct efx_nic *efx = channel->efx;
1654 efx_oword_t *int_ker = efx->irq_status.addr;
1655 int syserr;
1656
62776d03
BH
1657 netif_vdbg(efx, intr, efx->net_dev,
1658 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1659 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
8e730c15 1660
1646a6f3
BH
1661 /* Handle non-event-queue sources */
1662 if (channel->channel == efx->irq_level) {
63695459
SH
1663 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1664 if (unlikely(syserr))
1665 return efx_nic_fatal_interrupt(efx);
1646a6f3 1666 efx->last_irq_cpu = raw_smp_processor_id();
63695459 1667 }
8e730c15
BH
1668
1669 /* Schedule processing of the channel */
1646a6f3 1670 efx_schedule_channel_irq(channel);
8e730c15
BH
1671
1672 return IRQ_HANDLED;
1673}
1674
1675
1676/* Setup RSS indirection table.
1677 * This maps from the hash value of the packet to RXQ
1678 */
765c9f46 1679void efx_nic_push_rx_indir_table(struct efx_nic *efx)
8e730c15 1680{
765c9f46 1681 size_t i = 0;
8e730c15
BH
1682 efx_dword_t dword;
1683
1684 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1685 return;
1686
765c9f46
BH
1687 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1688 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1689
1690 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
8e730c15 1691 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
765c9f46 1692 efx->rx_indir_table[i]);
778cdaf6
BH
1693 efx_writed(efx, &dword,
1694 FR_BZ_RX_INDIRECTION_TBL +
1695 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
8e730c15
BH
1696 }
1697}
1698
1699/* Hook interrupt handler(s)
1700 * Try MSI and then legacy interrupts.
1701 */
1702int efx_nic_init_interrupt(struct efx_nic *efx)
1703{
1704 struct efx_channel *channel;
1899c111 1705 unsigned int n_irqs;
8e730c15
BH
1706 int rc;
1707
1708 if (!EFX_INT_MODE_USE_MSI(efx)) {
1709 irq_handler_t handler;
1710 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1711 handler = efx_legacy_interrupt;
1712 else
1713 handler = falcon_legacy_interrupt_a1;
1714
1715 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1716 efx->name, efx);
1717 if (rc) {
62776d03
BH
1718 netif_err(efx, drv, efx->net_dev,
1719 "failed to hook legacy IRQ %d\n",
1720 efx->pci_dev->irq);
8e730c15
BH
1721 goto fail1;
1722 }
1723 return 0;
1724 }
1725
1899c111
BH
1726#ifdef CONFIG_RFS_ACCEL
1727 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1728 efx->net_dev->rx_cpu_rmap =
1729 alloc_irq_cpu_rmap(efx->n_rx_channels);
1730 if (!efx->net_dev->rx_cpu_rmap) {
1731 rc = -ENOMEM;
1732 goto fail1;
1733 }
1734 }
1735#endif
1736
8e730c15 1737 /* Hook MSI or MSI-X interrupt */
1899c111 1738 n_irqs = 0;
8e730c15
BH
1739 efx_for_each_channel(channel, efx) {
1740 rc = request_irq(channel->irq, efx_msi_interrupt,
1741 IRQF_PROBE_SHARED, /* Not shared */
4642610c
BH
1742 efx->channel_name[channel->channel],
1743 &efx->channel[channel->channel]);
8e730c15 1744 if (rc) {
62776d03
BH
1745 netif_err(efx, drv, efx->net_dev,
1746 "failed to hook IRQ %d\n", channel->irq);
8e730c15
BH
1747 goto fail2;
1748 }
1899c111
BH
1749 ++n_irqs;
1750
1751#ifdef CONFIG_RFS_ACCEL
1752 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
1753 channel->channel < efx->n_rx_channels) {
1754 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1755 channel->irq);
1756 if (rc)
1757 goto fail2;
1758 }
1759#endif
8e730c15
BH
1760 }
1761
1762 return 0;
1763
1764 fail2:
1899c111
BH
1765#ifdef CONFIG_RFS_ACCEL
1766 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1767 efx->net_dev->rx_cpu_rmap = NULL;
1768#endif
1769 efx_for_each_channel(channel, efx) {
1770 if (n_irqs-- == 0)
1771 break;
4642610c 1772 free_irq(channel->irq, &efx->channel[channel->channel]);
1899c111 1773 }
8e730c15
BH
1774 fail1:
1775 return rc;
1776}
1777
1778void efx_nic_fini_interrupt(struct efx_nic *efx)
1779{
1780 struct efx_channel *channel;
1781 efx_oword_t reg;
1782
1899c111
BH
1783#ifdef CONFIG_RFS_ACCEL
1784 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1785 efx->net_dev->rx_cpu_rmap = NULL;
1786#endif
1787
8e730c15 1788 /* Disable MSI/MSI-X interrupts */
1899c111
BH
1789 efx_for_each_channel(channel, efx)
1790 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1791
1792 /* ACK legacy interrupt */
1793 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1794 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1795 else
1796 falcon_irq_ack_a1(efx);
1797
1798 /* Disable legacy interrupt */
1799 if (efx->legacy_irq)
1800 free_irq(efx->legacy_irq, efx);
1801}
1802
cd2d5b52
BH
1803/* Looks at available SRAM resources and works out how many queues we
1804 * can support, and where things like descriptor caches should live.
1805 *
1806 * SRAM is split up as follows:
1807 * 0 buftbl entries for channels
1808 * efx->vf_buftbl_base buftbl entries for SR-IOV
1809 * efx->rx_dc_base RX descriptor caches
1810 * efx->tx_dc_base TX descriptor caches
1811 */
28e47c49
BH
1812void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1813{
1814 unsigned vi_count, buftbl_min;
1815
1816 /* Account for the buffer table entries backing the datapath channels
1817 * and the descriptor caches for those channels.
1818 */
1819 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1820 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1821 efx->n_channels * EFX_MAX_EVQ_SIZE)
1822 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1823 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1824
cd2d5b52
BH
1825#ifdef CONFIG_SFC_SRIOV
1826 if (efx_sriov_wanted(efx)) {
1827 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1828
1829 efx->vf_buftbl_base = buftbl_min;
1830
1831 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1832 vi_count = max(vi_count, EFX_VI_BASE);
1833 buftbl_free = (sram_lim_qw - buftbl_min -
1834 vi_count * vi_dc_entries);
1835
1836 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1837 efx_vf_size(efx));
1838 vf_limit = min(buftbl_free / entries_per_vf,
1839 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1840
1841 if (efx->vf_count > vf_limit) {
1842 netif_err(efx, probe, efx->net_dev,
1843 "Reducing VF count from from %d to %d\n",
1844 efx->vf_count, vf_limit);
1845 efx->vf_count = vf_limit;
1846 }
1847 vi_count += efx->vf_count * efx_vf_size(efx);
1848 }
1849#endif
1850
28e47c49
BH
1851 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1852 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1853}
1854
8e730c15
BH
1855u32 efx_nic_fpga_ver(struct efx_nic *efx)
1856{
1857 efx_oword_t altera_build;
1858 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1859 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1860}
1861
1862void efx_nic_init_common(struct efx_nic *efx)
1863{
1864 efx_oword_t temp;
1865
1866 /* Set positions of descriptor caches in SRAM. */
28e47c49 1867 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
8e730c15 1868 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
28e47c49 1869 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
8e730c15
BH
1870 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1871
1872 /* Set TX descriptor cache size. */
1873 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1874 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1875 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1876
1877 /* Set RX descriptor cache size. Set low watermark to size-8, as
1878 * this allows most efficient prefetching.
1879 */
1880 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1881 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1882 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1883 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1884 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1885
1886 /* Program INT_KER address */
1887 EFX_POPULATE_OWORD_2(temp,
1888 FRF_AZ_NORM_INT_VEC_DIS_KER,
1889 EFX_INT_MODE_USE_MSI(efx),
1890 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1891 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1892
63695459
SH
1893 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1894 /* Use an interrupt level unused by event queues */
1646a6f3 1895 efx->irq_level = 0x1f;
63695459
SH
1896 else
1897 /* Use a valid MSI-X vector */
1646a6f3 1898 efx->irq_level = 0;
63695459 1899
8e730c15
BH
1900 /* Enable all the genuinely fatal interrupts. (They are still
1901 * masked by the overall interrupt mask, controlled by
1902 * falcon_interrupts()).
1903 *
1904 * Note: All other fatal interrupts are enabled
1905 */
1906 EFX_POPULATE_OWORD_3(temp,
1907 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1908 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1909 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
b17424b0
SH
1910 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1911 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
8e730c15
BH
1912 EFX_INVERT_OWORD(temp);
1913 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1914
765c9f46 1915 efx_nic_push_rx_indir_table(efx);
8e730c15
BH
1916
1917 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1918 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1919 */
1920 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1921 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1922 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1923 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
cd38557d 1924 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
8e730c15
BH
1925 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1926 /* Enable SW_EV to inherit in char driver - assume harmless here */
1927 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1928 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1929 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
286d47ba
BH
1930 /* Disable hardware watchdog which can misfire */
1931 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
8e730c15
BH
1932 /* Squash TX of packets of 16 bytes or less */
1933 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1934 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1935 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
94b274bf
BH
1936
1937 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1938 EFX_POPULATE_OWORD_4(temp,
1939 /* Default values */
1940 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1941 FRF_BZ_TX_PACE_SB_AF, 0xb,
1942 FRF_BZ_TX_PACE_FB_BASE, 0,
1943 /* Allow large pace values in the
1944 * fast bin. */
1945 FRF_BZ_TX_PACE_BIN_TH,
1946 FFE_BZ_TX_PACE_RESERVED);
1947 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1948 }
8e730c15 1949}
5b98c1bf
BH
1950
1951/* Register dump */
1952
1953#define REGISTER_REVISION_A 1
1954#define REGISTER_REVISION_B 2
1955#define REGISTER_REVISION_C 3
1956#define REGISTER_REVISION_Z 3 /* latest revision */
1957
1958struct efx_nic_reg {
1959 u32 offset:24;
1960 u32 min_revision:2, max_revision:2;
1961};
1962
1963#define REGISTER(name, min_rev, max_rev) { \
1964 FR_ ## min_rev ## max_rev ## _ ## name, \
1965 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1966}
1967#define REGISTER_AA(name) REGISTER(name, A, A)
1968#define REGISTER_AB(name) REGISTER(name, A, B)
1969#define REGISTER_AZ(name) REGISTER(name, A, Z)
1970#define REGISTER_BB(name) REGISTER(name, B, B)
1971#define REGISTER_BZ(name) REGISTER(name, B, Z)
1972#define REGISTER_CZ(name) REGISTER(name, C, Z)
1973
1974static const struct efx_nic_reg efx_nic_regs[] = {
1975 REGISTER_AZ(ADR_REGION),
1976 REGISTER_AZ(INT_EN_KER),
1977 REGISTER_BZ(INT_EN_CHAR),
1978 REGISTER_AZ(INT_ADR_KER),
1979 REGISTER_BZ(INT_ADR_CHAR),
1980 /* INT_ACK_KER is WO */
1981 /* INT_ISR0 is RC */
1982 REGISTER_AZ(HW_INIT),
1983 REGISTER_CZ(USR_EV_CFG),
1984 REGISTER_AB(EE_SPI_HCMD),
1985 REGISTER_AB(EE_SPI_HADR),
1986 REGISTER_AB(EE_SPI_HDATA),
1987 REGISTER_AB(EE_BASE_PAGE),
1988 REGISTER_AB(EE_VPD_CFG0),
1989 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1990 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1991 /* PCIE_CORE_INDIRECT is indirect */
1992 REGISTER_AB(NIC_STAT),
1993 REGISTER_AB(GPIO_CTL),
1994 REGISTER_AB(GLB_CTL),
1995 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1996 REGISTER_BZ(DP_CTRL),
1997 REGISTER_AZ(MEM_STAT),
1998 REGISTER_AZ(CS_DEBUG),
1999 REGISTER_AZ(ALTERA_BUILD),
2000 REGISTER_AZ(CSR_SPARE),
2001 REGISTER_AB(PCIE_SD_CTL0123),
2002 REGISTER_AB(PCIE_SD_CTL45),
2003 REGISTER_AB(PCIE_PCS_CTL_STAT),
2004 /* DEBUG_DATA_OUT is not used */
2005 /* DRV_EV is WO */
2006 REGISTER_AZ(EVQ_CTL),
2007 REGISTER_AZ(EVQ_CNT1),
2008 REGISTER_AZ(EVQ_CNT2),
2009 REGISTER_AZ(BUF_TBL_CFG),
2010 REGISTER_AZ(SRM_RX_DC_CFG),
2011 REGISTER_AZ(SRM_TX_DC_CFG),
2012 REGISTER_AZ(SRM_CFG),
2013 /* BUF_TBL_UPD is WO */
2014 REGISTER_AZ(SRM_UPD_EVQ),
2015 REGISTER_AZ(SRAM_PARITY),
2016 REGISTER_AZ(RX_CFG),
2017 REGISTER_BZ(RX_FILTER_CTL),
2018 /* RX_FLUSH_DESCQ is WO */
2019 REGISTER_AZ(RX_DC_CFG),
2020 REGISTER_AZ(RX_DC_PF_WM),
2021 REGISTER_BZ(RX_RSS_TKEY),
2022 /* RX_NODESC_DROP is RC */
2023 REGISTER_AA(RX_SELF_RST),
2024 /* RX_DEBUG, RX_PUSH_DROP are not used */
2025 REGISTER_CZ(RX_RSS_IPV6_REG1),
2026 REGISTER_CZ(RX_RSS_IPV6_REG2),
2027 REGISTER_CZ(RX_RSS_IPV6_REG3),
2028 /* TX_FLUSH_DESCQ is WO */
2029 REGISTER_AZ(TX_DC_CFG),
2030 REGISTER_AA(TX_CHKSM_CFG),
2031 REGISTER_AZ(TX_CFG),
2032 /* TX_PUSH_DROP is not used */
2033 REGISTER_AZ(TX_RESERVED),
2034 REGISTER_BZ(TX_PACE),
2035 /* TX_PACE_DROP_QID is RC */
2036 REGISTER_BB(TX_VLAN),
2037 REGISTER_BZ(TX_IPFIL_PORTEN),
2038 REGISTER_AB(MD_TXD),
2039 REGISTER_AB(MD_RXD),
2040 REGISTER_AB(MD_CS),
2041 REGISTER_AB(MD_PHY_ADR),
2042 REGISTER_AB(MD_ID),
2043 /* MD_STAT is RC */
2044 REGISTER_AB(MAC_STAT_DMA),
2045 REGISTER_AB(MAC_CTRL),
2046 REGISTER_BB(GEN_MODE),
2047 REGISTER_AB(MAC_MC_HASH_REG0),
2048 REGISTER_AB(MAC_MC_HASH_REG1),
2049 REGISTER_AB(GM_CFG1),
2050 REGISTER_AB(GM_CFG2),
2051 /* GM_IPG and GM_HD are not used */
2052 REGISTER_AB(GM_MAX_FLEN),
2053 /* GM_TEST is not used */
2054 REGISTER_AB(GM_ADR1),
2055 REGISTER_AB(GM_ADR2),
2056 REGISTER_AB(GMF_CFG0),
2057 REGISTER_AB(GMF_CFG1),
2058 REGISTER_AB(GMF_CFG2),
2059 REGISTER_AB(GMF_CFG3),
2060 REGISTER_AB(GMF_CFG4),
2061 REGISTER_AB(GMF_CFG5),
2062 REGISTER_BB(TX_SRC_MAC_CTL),
2063 REGISTER_AB(XM_ADR_LO),
2064 REGISTER_AB(XM_ADR_HI),
2065 REGISTER_AB(XM_GLB_CFG),
2066 REGISTER_AB(XM_TX_CFG),
2067 REGISTER_AB(XM_RX_CFG),
2068 REGISTER_AB(XM_MGT_INT_MASK),
2069 REGISTER_AB(XM_FC),
2070 REGISTER_AB(XM_PAUSE_TIME),
2071 REGISTER_AB(XM_TX_PARAM),
2072 REGISTER_AB(XM_RX_PARAM),
2073 /* XM_MGT_INT_MSK (note no 'A') is RC */
2074 REGISTER_AB(XX_PWR_RST),
2075 REGISTER_AB(XX_SD_CTL),
2076 REGISTER_AB(XX_TXDRV_CTL),
2077 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
2078 /* XX_CORE_STAT is partly RC */
2079};
2080
2081struct efx_nic_reg_table {
2082 u32 offset:24;
2083 u32 min_revision:2, max_revision:2;
2084 u32 step:6, rows:21;
2085};
2086
2087#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
2088 offset, \
2089 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
2090 step, rows \
2091}
9c636baf 2092#define REGISTER_TABLE(name, min_rev, max_rev) \
5b98c1bf
BH
2093 REGISTER_TABLE_DIMENSIONS( \
2094 name, FR_ ## min_rev ## max_rev ## _ ## name, \
2095 min_rev, max_rev, \
2096 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
2097 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
2098#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
2099#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
2100#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
2101#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
2102#define REGISTER_TABLE_BB_CZ(name) \
2103 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
2104 FR_BZ_ ## name ## _STEP, \
2105 FR_BB_ ## name ## _ROWS), \
2106 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
2107 FR_BZ_ ## name ## _STEP, \
2108 FR_CZ_ ## name ## _ROWS)
2109#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2110
2111static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2112 /* DRIVER is not used */
2113 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2114 REGISTER_TABLE_BB(TX_IPFIL_TBL),
2115 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2116 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2117 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2118 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2119 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2120 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2121 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
75abc51c 2122 /* We can't reasonably read all of the buffer table (up to 8MB!).
5b98c1bf
BH
2123 * However this driver will only use a few entries. Reading
2124 * 1K entries allows for some expansion of queue count and
2125 * size before we need to change the version. */
2126 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2127 A, A, 8, 1024),
2128 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2129 B, Z, 8, 1024),
5b98c1bf
BH
2130 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2131 REGISTER_TABLE_BB_CZ(TIMER_TBL),
2132 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2133 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2134 /* TX_FILTER_TBL0 is huge and not used by this driver */
2135 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2136 REGISTER_TABLE_CZ(MC_TREG_SMEM),
2137 /* MSIX_PBA_TABLE is not mapped */
2138 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
75abc51c 2139 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
5b98c1bf
BH
2140};
2141
2142size_t efx_nic_get_regs_len(struct efx_nic *efx)
2143{
2144 const struct efx_nic_reg *reg;
2145 const struct efx_nic_reg_table *table;
2146 size_t len = 0;
2147
2148 for (reg = efx_nic_regs;
2149 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2150 reg++)
2151 if (efx->type->revision >= reg->min_revision &&
2152 efx->type->revision <= reg->max_revision)
2153 len += sizeof(efx_oword_t);
2154
2155 for (table = efx_nic_reg_tables;
2156 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2157 table++)
2158 if (efx->type->revision >= table->min_revision &&
2159 efx->type->revision <= table->max_revision)
2160 len += table->rows * min_t(size_t, table->step, 16);
2161
2162 return len;
2163}
2164
2165void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2166{
2167 const struct efx_nic_reg *reg;
2168 const struct efx_nic_reg_table *table;
2169
2170 for (reg = efx_nic_regs;
2171 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2172 reg++) {
2173 if (efx->type->revision >= reg->min_revision &&
2174 efx->type->revision <= reg->max_revision) {
2175 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2176 buf += sizeof(efx_oword_t);
2177 }
2178 }
2179
2180 for (table = efx_nic_reg_tables;
2181 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2182 table++) {
2183 size_t size, i;
2184
2185 if (!(efx->type->revision >= table->min_revision &&
2186 efx->type->revision <= table->max_revision))
2187 continue;
2188
2189 size = min_t(size_t, table->step, 16);
2190
2191 for (i = 0; i < table->rows; i++) {
2192 switch (table->step) {
778cdaf6
BH
2193 case 4: /* 32-bit SRAM */
2194 efx_readd(efx, buf, table->offset + 4 * i);
5b98c1bf
BH
2195 break;
2196 case 8: /* 64-bit SRAM */
2197 efx_sram_readq(efx,
2198 efx->membase + table->offset,
2199 buf, i);
2200 break;
778cdaf6 2201 case 16: /* 128-bit-readable register */
5b98c1bf
BH
2202 efx_reado_table(efx, buf, table->offset, i);
2203 break;
2204 case 32: /* 128-bit register, interleaved */
2205 efx_reado_table(efx, buf, table->offset, 2 * i);
2206 break;
2207 default:
2208 WARN_ON(1);
2209 return;
2210 }
2211 buf += size;
2212 }
2213 }
2214}