Merge remote-tracking branch 'asoc/topic/core' into asoc-next
[linux-2.6-block.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660 1/****************************************************************************
f7a6d2c4 2 * Driver for Solarflare network controllers and boards
8ceee660 3 * Copyright 2005-2006 Fen Systems Ltd.
f7a6d2c4 4 * Copyright 2005-2013 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
8ceee660 20#include <linux/ethtool.h>
aa6ef27e 21#include <linux/topology.h>
5a0e3ad6 22#include <linux/gfp.h>
626950db 23#include <linux/aer.h>
b28405b0 24#include <linux/interrupt.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
dd40781e 28#include "selftest.h"
7fa8d547 29#include "sriov.h"
8ceee660 30
8880f4ec 31#include "mcdi.h"
fd371e32 32#include "workarounds.h"
8880f4ec 33
c459302d
BH
34/**************************************************************************
35 *
36 * Type name strings
37 *
38 **************************************************************************
39 */
40
41/* Loopback mode names (see LOOPBACK_MODE()) */
42const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 43const char *const efx_loopback_mode_names[] = {
c459302d 44 [LOOPBACK_NONE] = "NONE",
e58f69f4 45 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
46 [LOOPBACK_GMAC] = "GMAC",
47 [LOOPBACK_XGMII] = "XGMII",
48 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
49 [LOOPBACK_XAUI] = "XAUI",
50 [LOOPBACK_GMII] = "GMII",
51 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
52 [LOOPBACK_XGBR] = "XGBR",
53 [LOOPBACK_XFI] = "XFI",
54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
55 [LOOPBACK_GMII_FAR] = "GMII_FAR",
56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
57 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
58 [LOOPBACK_GPHY] = "GPHY",
59 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
60 [LOOPBACK_PCS] = "PCS",
61 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
62 [LOOPBACK_XPORT] = "XPORT",
63 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 64 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 67 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
68 [LOOPBACK_XFI_WS] = "XFI_WS",
69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
71};
72
c459302d 73const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 74const char *const efx_reset_type_names[] = {
626950db
AR
75 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
76 [RESET_TYPE_ALL] = "ALL",
77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
78 [RESET_TYPE_WORLD] = "WORLD",
79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
087e9025 80 [RESET_TYPE_DATAPATH] = "DATAPATH",
e283546c 81 [RESET_TYPE_MC_BIST] = "MC_BIST",
626950db
AR
82 [RESET_TYPE_DISABLE] = "DISABLE",
83 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
84 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
85 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
3de82b91 86 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
626950db
AR
87 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
88 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
e283546c 89 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
c459302d
BH
90};
91
1ab00629
SH
92/* Reset workqueue. If any NIC has a hardware failure then a reset will be
93 * queued onto this work queue. This is not a per-nic work queue, because
94 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95 */
96static struct workqueue_struct *reset_workqueue;
97
74cd60a4
JC
98/* How often and how many times to poll for a reset while waiting for a
99 * BIST that another function started to complete.
100 */
101#define BIST_WAIT_DELAY_MS 100
102#define BIST_WAIT_DELAY_COUNT 100
103
8ceee660
BH
104/**************************************************************************
105 *
106 * Configurable values
107 *
108 *************************************************************************/
109
8ceee660
BH
110/*
111 * Use separate channels for TX and RX events
112 *
28b581ab
NT
113 * Set this to 1 to use separate channels for TX and RX. It allows us
114 * to control interrupt affinity separately for TX and RX.
8ceee660 115 *
28b581ab 116 * This is only used in MSI-X interrupt mode
8ceee660 117 */
b9cc977d
BH
118static bool separate_tx_channels;
119module_param(separate_tx_channels, bool, 0444);
28b581ab
NT
120MODULE_PARM_DESC(separate_tx_channels,
121 "Use separate channels for TX and RX");
8ceee660
BH
122
123/* This is the weight assigned to each of the (per-channel) virtual
124 * NAPI devices.
125 */
126static int napi_weight = 64;
127
128/* This is the time (in jiffies) between invocations of the hardware
626950db
AR
129 * monitor.
130 * On Falcon-based NICs, this will:
e254c274
BH
131 * - Check the on-board hardware monitor;
132 * - Poll the link state and reconfigure the hardware as necessary.
626950db
AR
133 * On Siena-based NICs for power systems with EEH support, this will give EEH a
134 * chance to start.
8ceee660 135 */
d215697f 136static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 137
8ceee660
BH
138/* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
140 *
141 * The default for RX should strike a balance between increasing the
142 * round-trip latency and reducing overhead.
143 */
144static unsigned int rx_irq_mod_usec = 60;
145
146/* Initial interrupt moderation settings. They can be modified after
147 * module load with ethtool.
148 *
149 * This default is chosen to ensure that a 10G link does not go idle
150 * while a TX queue is stopped after it has become full. A queue is
151 * restarted when it drops below half full. The time this takes (assuming
152 * worst case 3 descriptors per packet and 1024 descriptors) is
153 * 512 / 3 * 1.2 = 205 usec.
154 */
155static unsigned int tx_irq_mod_usec = 150;
156
157/* This is the first interrupt mode to try out of:
158 * 0 => MSI-X
159 * 1 => MSI
160 * 2 => legacy
161 */
162static unsigned int interrupt_mode;
163
164/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165 * i.e. the number of CPUs among which we may distribute simultaneous
166 * interrupt handling.
167 *
168 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 169 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
170 */
171static unsigned int rss_cpus;
172module_param(rss_cpus, uint, 0444);
173MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174
b9cc977d
BH
175static bool phy_flash_cfg;
176module_param(phy_flash_cfg, bool, 0644);
84ae48fe
BH
177MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178
e7bed9c8 179static unsigned irq_adapt_low_thresh = 8000;
6fb70fd1
BH
180module_param(irq_adapt_low_thresh, uint, 0644);
181MODULE_PARM_DESC(irq_adapt_low_thresh,
182 "Threshold score for reducing IRQ moderation");
183
e7bed9c8 184static unsigned irq_adapt_high_thresh = 16000;
6fb70fd1
BH
185module_param(irq_adapt_high_thresh, uint, 0644);
186MODULE_PARM_DESC(irq_adapt_high_thresh,
187 "Threshold score for increasing IRQ moderation");
188
62776d03
BH
189static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193module_param(debug, uint, 0);
194MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195
8ceee660
BH
196/**************************************************************************
197 *
198 * Utility functions and prototypes
199 *
200 *************************************************************************/
4642610c 201
261e4d96 202static int efx_soft_enable_interrupts(struct efx_nic *efx);
d8291187 203static void efx_soft_disable_interrupts(struct efx_nic *efx);
7f967c01 204static void efx_remove_channel(struct efx_channel *channel);
4642610c 205static void efx_remove_channels(struct efx_nic *efx);
7f967c01 206static const struct efx_channel_type efx_default_channel_type;
8ceee660 207static void efx_remove_port(struct efx_nic *efx);
7f967c01 208static void efx_init_napi_channel(struct efx_channel *channel);
8ceee660 209static void efx_fini_napi(struct efx_nic *efx);
e8f14992 210static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
211static void efx_fini_struct(struct efx_nic *efx);
212static void efx_start_all(struct efx_nic *efx);
213static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
214
215#define EFX_ASSERT_RESET_SERIALISED(efx) \
216 do { \
f16aeea0 217 if ((efx->state == STATE_READY) || \
626950db 218 (efx->state == STATE_RECOVERY) || \
332c1ce9 219 (efx->state == STATE_DISABLED)) \
8ceee660
BH
220 ASSERT_RTNL(); \
221 } while (0)
222
8b7325b4
BH
223static int efx_check_disabled(struct efx_nic *efx)
224{
626950db 225 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
8b7325b4
BH
226 netif_err(efx, drv, efx->net_dev,
227 "device is disabled due to earlier errors\n");
228 return -EIO;
229 }
230 return 0;
231}
232
8ceee660
BH
233/**************************************************************************
234 *
235 * Event queue processing
236 *
237 *************************************************************************/
238
239/* Process channel's event queue
240 *
241 * This function is responsible for processing the event queue of a
242 * single channel. The caller must guarantee that this function will
243 * never be concurrently called more than once on the same channel,
244 * though different channels may be being processed concurrently.
245 */
fa236e18 246static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 247{
c936835c 248 struct efx_tx_queue *tx_queue;
fa236e18 249 int spent;
8ceee660 250
9f2cb71c 251 if (unlikely(!channel->enabled))
42cbe2d7 252 return 0;
8ceee660 253
c936835c
PD
254 efx_for_each_channel_tx_queue(tx_queue, channel) {
255 tx_queue->pkts_compl = 0;
256 tx_queue->bytes_compl = 0;
257 }
258
fa236e18 259 spent = efx_nic_process_eventq(channel, budget);
d9ab7007
BH
260 if (spent && efx_channel_has_rx_queue(channel)) {
261 struct efx_rx_queue *rx_queue =
262 efx_channel_get_rx_queue(channel);
263
ff734ef4 264 efx_rx_flush_packet(channel);
cce28794 265 efx_fast_push_rx_descriptors(rx_queue, true);
8ceee660
BH
266 }
267
c936835c
PD
268 /* Update BQL */
269 efx_for_each_channel_tx_queue(tx_queue, channel) {
270 if (tx_queue->bytes_compl) {
271 netdev_tx_completed_queue(tx_queue->core_txq,
272 tx_queue->pkts_compl, tx_queue->bytes_compl);
273 }
274 }
275
fa236e18 276 return spent;
8ceee660
BH
277}
278
8ceee660
BH
279/* NAPI poll handler
280 *
281 * NAPI guarantees serialisation of polls of the same device, which
282 * provides the guarantee required by efx_process_channel().
283 */
284static int efx_poll(struct napi_struct *napi, int budget)
285{
286 struct efx_channel *channel =
287 container_of(napi, struct efx_channel, napi_str);
62776d03 288 struct efx_nic *efx = channel->efx;
fa236e18 289 int spent;
8ceee660 290
36763266
AR
291 if (!efx_channel_lock_napi(channel))
292 return budget;
293
62776d03
BH
294 netif_vdbg(efx, intr, efx->net_dev,
295 "channel %d NAPI poll executing on CPU %d\n",
296 channel->channel, raw_smp_processor_id());
8ceee660 297
fa236e18 298 spent = efx_process_channel(channel, budget);
8ceee660 299
fa236e18 300 if (spent < budget) {
9d9a6973 301 if (efx_channel_has_rx_queue(channel) &&
6fb70fd1
BH
302 efx->irq_rx_adaptive &&
303 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
304 if (unlikely(channel->irq_mod_score <
305 irq_adapt_low_thresh)) {
0d86ebd8
BH
306 if (channel->irq_moderation > 1) {
307 channel->irq_moderation -= 1;
ef2b90ee 308 efx->type->push_irq_moderation(channel);
0d86ebd8 309 }
6fb70fd1
BH
310 } else if (unlikely(channel->irq_mod_score >
311 irq_adapt_high_thresh)) {
0d86ebd8
BH
312 if (channel->irq_moderation <
313 efx->irq_rx_moderation) {
314 channel->irq_moderation += 1;
ef2b90ee 315 efx->type->push_irq_moderation(channel);
0d86ebd8 316 }
6fb70fd1 317 }
6fb70fd1
BH
318 channel->irq_count = 0;
319 channel->irq_mod_score = 0;
320 }
321
64d8ad6d
BH
322 efx_filter_rfs_expire(channel);
323
8ceee660 324 /* There is no race here; although napi_disable() will
288379f0 325 * only wait for napi_complete(), this isn't a problem
514bedbc 326 * since efx_nic_eventq_read_ack() will have no effect if
8ceee660
BH
327 * interrupts have already been disabled.
328 */
288379f0 329 napi_complete(napi);
514bedbc 330 efx_nic_eventq_read_ack(channel);
8ceee660
BH
331 }
332
36763266 333 efx_channel_unlock_napi(channel);
fa236e18 334 return spent;
8ceee660
BH
335}
336
8ceee660
BH
337/* Create event queue
338 * Event queue memory allocations are done only once. If the channel
339 * is reset, the memory buffer will be reused; this guards against
340 * errors during channel reset and also simplifies interrupt handling.
341 */
342static int efx_probe_eventq(struct efx_channel *channel)
343{
ecc910f5
SH
344 struct efx_nic *efx = channel->efx;
345 unsigned long entries;
346
86ee5302 347 netif_dbg(efx, probe, efx->net_dev,
62776d03 348 "chan %d create event queue\n", channel->channel);
8ceee660 349
ecc910f5
SH
350 /* Build an event queue with room for one event per tx and rx buffer,
351 * plus some extra for link state events and MCDI completions. */
352 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
353 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
354 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
355
152b6a62 356 return efx_nic_probe_eventq(channel);
8ceee660
BH
357}
358
359/* Prepare channel's event queue */
261e4d96 360static int efx_init_eventq(struct efx_channel *channel)
8ceee660 361{
15acb1ce 362 struct efx_nic *efx = channel->efx;
261e4d96
JC
363 int rc;
364
365 EFX_WARN_ON_PARANOID(channel->eventq_init);
366
15acb1ce 367 netif_dbg(efx, drv, efx->net_dev,
62776d03 368 "chan %d init event queue\n", channel->channel);
8ceee660 369
261e4d96
JC
370 rc = efx_nic_init_eventq(channel);
371 if (rc == 0) {
15acb1ce 372 efx->type->push_irq_moderation(channel);
261e4d96
JC
373 channel->eventq_read_ptr = 0;
374 channel->eventq_init = true;
375 }
376 return rc;
8ceee660
BH
377}
378
9f2cb71c 379/* Enable event queue processing and NAPI */
36763266 380void efx_start_eventq(struct efx_channel *channel)
9f2cb71c
BH
381{
382 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
383 "chan %d start event queue\n", channel->channel);
384
514bedbc 385 /* Make sure the NAPI handler sees the enabled flag set */
9f2cb71c
BH
386 channel->enabled = true;
387 smp_wmb();
388
36763266 389 efx_channel_enable(channel);
9f2cb71c
BH
390 napi_enable(&channel->napi_str);
391 efx_nic_eventq_read_ack(channel);
392}
393
394/* Disable event queue processing and NAPI */
36763266 395void efx_stop_eventq(struct efx_channel *channel)
9f2cb71c
BH
396{
397 if (!channel->enabled)
398 return;
399
400 napi_disable(&channel->napi_str);
36763266
AR
401 while (!efx_channel_disable(channel))
402 usleep_range(1000, 20000);
9f2cb71c
BH
403 channel->enabled = false;
404}
405
8ceee660
BH
406static void efx_fini_eventq(struct efx_channel *channel)
407{
be3fc09c
BH
408 if (!channel->eventq_init)
409 return;
410
62776d03
BH
411 netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 "chan %d fini event queue\n", channel->channel);
8ceee660 413
152b6a62 414 efx_nic_fini_eventq(channel);
be3fc09c 415 channel->eventq_init = false;
8ceee660
BH
416}
417
418static void efx_remove_eventq(struct efx_channel *channel)
419{
62776d03
BH
420 netif_dbg(channel->efx, drv, channel->efx->net_dev,
421 "chan %d remove event queue\n", channel->channel);
8ceee660 422
152b6a62 423 efx_nic_remove_eventq(channel);
8ceee660
BH
424}
425
426/**************************************************************************
427 *
428 * Channel handling
429 *
430 *************************************************************************/
431
7f967c01 432/* Allocate and initialise a channel structure. */
4642610c
BH
433static struct efx_channel *
434efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
435{
436 struct efx_channel *channel;
437 struct efx_rx_queue *rx_queue;
438 struct efx_tx_queue *tx_queue;
439 int j;
440
7f967c01
BH
441 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
442 if (!channel)
443 return NULL;
4642610c 444
7f967c01
BH
445 channel->efx = efx;
446 channel->channel = i;
447 channel->type = &efx_default_channel_type;
4642610c 448
7f967c01
BH
449 for (j = 0; j < EFX_TXQ_TYPES; j++) {
450 tx_queue = &channel->tx_queue[j];
451 tx_queue->efx = efx;
452 tx_queue->queue = i * EFX_TXQ_TYPES + j;
453 tx_queue->channel = channel;
454 }
4642610c 455
7f967c01
BH
456 rx_queue = &channel->rx_queue;
457 rx_queue->efx = efx;
458 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
459 (unsigned long)rx_queue);
4642610c 460
7f967c01
BH
461 return channel;
462}
463
464/* Allocate and initialise a channel structure, copying parameters
465 * (but not resources) from an old channel structure.
466 */
467static struct efx_channel *
468efx_copy_channel(const struct efx_channel *old_channel)
469{
470 struct efx_channel *channel;
471 struct efx_rx_queue *rx_queue;
472 struct efx_tx_queue *tx_queue;
473 int j;
4642610c 474
7f967c01
BH
475 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
476 if (!channel)
477 return NULL;
478
479 *channel = *old_channel;
480
481 channel->napi_dev = NULL;
482 memset(&channel->eventq, 0, sizeof(channel->eventq));
4642610c 483
7f967c01
BH
484 for (j = 0; j < EFX_TXQ_TYPES; j++) {
485 tx_queue = &channel->tx_queue[j];
486 if (tx_queue->channel)
4642610c 487 tx_queue->channel = channel;
7f967c01
BH
488 tx_queue->buffer = NULL;
489 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
4642610c
BH
490 }
491
4642610c 492 rx_queue = &channel->rx_queue;
7f967c01
BH
493 rx_queue->buffer = NULL;
494 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
4642610c
BH
495 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
496 (unsigned long)rx_queue);
497
498 return channel;
499}
500
8ceee660
BH
501static int efx_probe_channel(struct efx_channel *channel)
502{
503 struct efx_tx_queue *tx_queue;
504 struct efx_rx_queue *rx_queue;
505 int rc;
506
62776d03
BH
507 netif_dbg(channel->efx, probe, channel->efx->net_dev,
508 "creating channel %d\n", channel->channel);
8ceee660 509
7f967c01
BH
510 rc = channel->type->pre_probe(channel);
511 if (rc)
512 goto fail;
513
8ceee660
BH
514 rc = efx_probe_eventq(channel);
515 if (rc)
7f967c01 516 goto fail;
8ceee660
BH
517
518 efx_for_each_channel_tx_queue(tx_queue, channel) {
519 rc = efx_probe_tx_queue(tx_queue);
520 if (rc)
7f967c01 521 goto fail;
8ceee660
BH
522 }
523
524 efx_for_each_channel_rx_queue(rx_queue, channel) {
525 rc = efx_probe_rx_queue(rx_queue);
526 if (rc)
7f967c01 527 goto fail;
8ceee660
BH
528 }
529
8ceee660
BH
530 return 0;
531
7f967c01
BH
532fail:
533 efx_remove_channel(channel);
8ceee660
BH
534 return rc;
535}
536
7f967c01
BH
537static void
538efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
539{
540 struct efx_nic *efx = channel->efx;
541 const char *type;
542 int number;
543
544 number = channel->channel;
545 if (efx->tx_channel_offset == 0) {
546 type = "";
547 } else if (channel->channel < efx->tx_channel_offset) {
548 type = "-rx";
549 } else {
550 type = "-tx";
551 number -= efx->tx_channel_offset;
552 }
553 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
554}
8ceee660 555
56536e9c
BH
556static void efx_set_channel_names(struct efx_nic *efx)
557{
558 struct efx_channel *channel;
56536e9c 559
7f967c01
BH
560 efx_for_each_channel(channel, efx)
561 channel->type->get_name(channel,
d8291187
BH
562 efx->msi_context[channel->channel].name,
563 sizeof(efx->msi_context[0].name));
56536e9c
BH
564}
565
4642610c
BH
566static int efx_probe_channels(struct efx_nic *efx)
567{
568 struct efx_channel *channel;
569 int rc;
570
571 /* Restart special buffer allocation */
572 efx->next_buffer_table = 0;
573
c92aaff1
BH
574 /* Probe channels in reverse, so that any 'extra' channels
575 * use the start of the buffer table. This allows the traffic
576 * channels to be resized without moving them or wasting the
577 * entries before them.
578 */
579 efx_for_each_channel_rev(channel, efx) {
4642610c
BH
580 rc = efx_probe_channel(channel);
581 if (rc) {
582 netif_err(efx, probe, efx->net_dev,
583 "failed to create channel %d\n",
584 channel->channel);
585 goto fail;
586 }
587 }
588 efx_set_channel_names(efx);
589
590 return 0;
591
592fail:
593 efx_remove_channels(efx);
594 return rc;
595}
596
8ceee660
BH
597/* Channels are shutdown and reinitialised whilst the NIC is running
598 * to propagate configuration changes (mtu, checksum offload), or
599 * to clear hardware error conditions
600 */
9f2cb71c 601static void efx_start_datapath(struct efx_nic *efx)
8ceee660 602{
85740cdf 603 bool old_rx_scatter = efx->rx_scatter;
8ceee660
BH
604 struct efx_tx_queue *tx_queue;
605 struct efx_rx_queue *rx_queue;
606 struct efx_channel *channel;
85740cdf 607 size_t rx_buf_len;
8ceee660 608
f7f13b0b
BH
609 /* Calculate the rx buffer allocation parameters required to
610 * support the current MTU, including padding for header
611 * alignment and overruns.
612 */
43a3739d 613 efx->rx_dma_len = (efx->rx_prefix_size +
272baeeb
BH
614 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
615 efx->type->rx_buffer_padding);
85740cdf 616 rx_buf_len = (sizeof(struct efx_rx_page_state) +
2ec03014 617 efx->rx_ip_align + efx->rx_dma_len);
85740cdf 618 if (rx_buf_len <= PAGE_SIZE) {
e8c68c0a 619 efx->rx_scatter = efx->type->always_rx_scatter;
85740cdf 620 efx->rx_buffer_order = 0;
85740cdf 621 } else if (efx->type->can_rx_scatter) {
950c54df 622 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
85740cdf 623 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
950c54df
BH
624 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
625 EFX_RX_BUF_ALIGNMENT) >
626 PAGE_SIZE);
85740cdf
BH
627 efx->rx_scatter = true;
628 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
629 efx->rx_buffer_order = 0;
85740cdf
BH
630 } else {
631 efx->rx_scatter = false;
632 efx->rx_buffer_order = get_order(rx_buf_len);
85740cdf
BH
633 }
634
1648a23f
DP
635 efx_rx_config_page_split(efx);
636 if (efx->rx_buffer_order)
637 netif_dbg(efx, drv, efx->net_dev,
638 "RX buf len=%u; page order=%u batch=%u\n",
639 efx->rx_dma_len, efx->rx_buffer_order,
640 efx->rx_pages_per_batch);
641 else
642 netif_dbg(efx, drv, efx->net_dev,
643 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
644 efx->rx_dma_len, efx->rx_page_buf_step,
645 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
2768935a 646
e8c68c0a 647 /* RX filters may also have scatter-enabled flags */
85740cdf 648 if (efx->rx_scatter != old_rx_scatter)
add72477 649 efx->type->filter_update_rx_scatter(efx);
8ceee660 650
14bf718f
BH
651 /* We must keep at least one descriptor in a TX ring empty.
652 * We could avoid this when the queue size does not exactly
653 * match the hardware ring size, but it's not that important.
654 * Therefore we stop the queue when one more skb might fill
655 * the ring completely. We wake it when half way back to
656 * empty.
657 */
658 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
659 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
660
8ceee660
BH
661 /* Initialise the channels */
662 efx_for_each_channel(channel, efx) {
3881d8ab 663 efx_for_each_channel_tx_queue(tx_queue, channel) {
bc3c90a2 664 efx_init_tx_queue(tx_queue);
3881d8ab
AR
665 atomic_inc(&efx->active_queues);
666 }
8ceee660 667
9f2cb71c 668 efx_for_each_channel_rx_queue(rx_queue, channel) {
bc3c90a2 669 efx_init_rx_queue(rx_queue);
3881d8ab 670 atomic_inc(&efx->active_queues);
cce28794
JC
671 efx_stop_eventq(channel);
672 efx_fast_push_rx_descriptors(rx_queue, false);
673 efx_start_eventq(channel);
9f2cb71c 674 }
8ceee660 675
85740cdf 676 WARN_ON(channel->rx_pkt_n_frags);
8ceee660 677 }
8ceee660 678
2ea4dc28
AR
679 efx_ptp_start_datapath(efx);
680
9f2cb71c
BH
681 if (netif_device_present(efx->net_dev))
682 netif_tx_wake_all_queues(efx->net_dev);
8ceee660
BH
683}
684
9f2cb71c 685static void efx_stop_datapath(struct efx_nic *efx)
8ceee660
BH
686{
687 struct efx_channel *channel;
688 struct efx_tx_queue *tx_queue;
689 struct efx_rx_queue *rx_queue;
6bc5d3a9 690 int rc;
8ceee660
BH
691
692 EFX_ASSERT_RESET_SERIALISED(efx);
693 BUG_ON(efx->port_enabled);
694
2ea4dc28
AR
695 efx_ptp_stop_datapath(efx);
696
d8aec745
BH
697 /* Stop RX refill */
698 efx_for_each_channel(channel, efx) {
699 efx_for_each_channel_rx_queue(rx_queue, channel)
700 rx_queue->refill_enabled = false;
701 }
702
8ceee660 703 efx_for_each_channel(channel, efx) {
9f2cb71c
BH
704 /* RX packet processing is pipelined, so wait for the
705 * NAPI handler to complete. At least event queue 0
706 * might be kept active by non-data events, so don't
707 * use napi_synchronize() but actually disable NAPI
708 * temporarily.
709 */
710 if (efx_channel_has_rx_queue(channel)) {
711 efx_stop_eventq(channel);
712 efx_start_eventq(channel);
713 }
e42c3d85 714 }
8ceee660 715
e42c3d85
BH
716 rc = efx->type->fini_dmaq(efx);
717 if (rc && EFX_WORKAROUND_7803(efx)) {
718 /* Schedule a reset to recover from the flush failure. The
719 * descriptor caches reference memory we're about to free,
720 * but falcon_reconfigure_mac_wrapper() won't reconnect
721 * the MACs because of the pending reset.
722 */
723 netif_err(efx, drv, efx->net_dev,
724 "Resetting to recover from flush failure\n");
725 efx_schedule_reset(efx, RESET_TYPE_ALL);
726 } else if (rc) {
727 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
728 } else {
729 netif_dbg(efx, drv, efx->net_dev,
730 "successfully flushed all queues\n");
731 }
732
733 efx_for_each_channel(channel, efx) {
8ceee660
BH
734 efx_for_each_channel_rx_queue(rx_queue, channel)
735 efx_fini_rx_queue(rx_queue);
94b274bf 736 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 737 efx_fini_tx_queue(tx_queue);
8ceee660
BH
738 }
739}
740
741static void efx_remove_channel(struct efx_channel *channel)
742{
743 struct efx_tx_queue *tx_queue;
744 struct efx_rx_queue *rx_queue;
745
62776d03
BH
746 netif_dbg(channel->efx, drv, channel->efx->net_dev,
747 "destroy chan %d\n", channel->channel);
8ceee660
BH
748
749 efx_for_each_channel_rx_queue(rx_queue, channel)
750 efx_remove_rx_queue(rx_queue);
94b274bf 751 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
752 efx_remove_tx_queue(tx_queue);
753 efx_remove_eventq(channel);
c31e5f9f 754 channel->type->post_remove(channel);
8ceee660
BH
755}
756
4642610c
BH
757static void efx_remove_channels(struct efx_nic *efx)
758{
759 struct efx_channel *channel;
760
761 efx_for_each_channel(channel, efx)
762 efx_remove_channel(channel);
763}
764
765int
766efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
767{
768 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
769 u32 old_rxq_entries, old_txq_entries;
7f967c01 770 unsigned i, next_buffer_table = 0;
261e4d96 771 int rc, rc2;
8b7325b4
BH
772
773 rc = efx_check_disabled(efx);
774 if (rc)
775 return rc;
7f967c01
BH
776
777 /* Not all channels should be reallocated. We must avoid
778 * reallocating their buffer table entries.
779 */
780 efx_for_each_channel(channel, efx) {
781 struct efx_rx_queue *rx_queue;
782 struct efx_tx_queue *tx_queue;
783
784 if (channel->type->copy)
785 continue;
786 next_buffer_table = max(next_buffer_table,
787 channel->eventq.index +
788 channel->eventq.entries);
789 efx_for_each_channel_rx_queue(rx_queue, channel)
790 next_buffer_table = max(next_buffer_table,
791 rx_queue->rxd.index +
792 rx_queue->rxd.entries);
793 efx_for_each_channel_tx_queue(tx_queue, channel)
794 next_buffer_table = max(next_buffer_table,
795 tx_queue->txd.index +
796 tx_queue->txd.entries);
797 }
4642610c 798
29c69a48 799 efx_device_detach_sync(efx);
4642610c 800 efx_stop_all(efx);
d8291187 801 efx_soft_disable_interrupts(efx);
4642610c 802
7f967c01 803 /* Clone channels (where possible) */
4642610c
BH
804 memset(other_channel, 0, sizeof(other_channel));
805 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
806 channel = efx->channel[i];
807 if (channel->type->copy)
808 channel = channel->type->copy(channel);
4642610c
BH
809 if (!channel) {
810 rc = -ENOMEM;
811 goto out;
812 }
813 other_channel[i] = channel;
814 }
815
816 /* Swap entry counts and channel pointers */
817 old_rxq_entries = efx->rxq_entries;
818 old_txq_entries = efx->txq_entries;
819 efx->rxq_entries = rxq_entries;
820 efx->txq_entries = txq_entries;
821 for (i = 0; i < efx->n_channels; i++) {
822 channel = efx->channel[i];
823 efx->channel[i] = other_channel[i];
824 other_channel[i] = channel;
825 }
826
7f967c01
BH
827 /* Restart buffer table allocation */
828 efx->next_buffer_table = next_buffer_table;
e8f14992 829
e8f14992 830 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
831 channel = efx->channel[i];
832 if (!channel->type->copy)
833 continue;
834 rc = efx_probe_channel(channel);
835 if (rc)
836 goto rollback;
837 efx_init_napi_channel(efx->channel[i]);
e8f14992 838 }
7f967c01 839
4642610c 840out:
7f967c01
BH
841 /* Destroy unused channel structures */
842 for (i = 0; i < efx->n_channels; i++) {
843 channel = other_channel[i];
844 if (channel && channel->type->copy) {
845 efx_fini_napi_channel(channel);
846 efx_remove_channel(channel);
847 kfree(channel);
848 }
849 }
4642610c 850
261e4d96
JC
851 rc2 = efx_soft_enable_interrupts(efx);
852 if (rc2) {
853 rc = rc ? rc : rc2;
854 netif_err(efx, drv, efx->net_dev,
855 "unable to restart interrupts on channel reallocation\n");
856 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
857 } else {
858 efx_start_all(efx);
859 netif_device_attach(efx->net_dev);
860 }
4642610c
BH
861 return rc;
862
863rollback:
864 /* Swap back */
865 efx->rxq_entries = old_rxq_entries;
866 efx->txq_entries = old_txq_entries;
867 for (i = 0; i < efx->n_channels; i++) {
868 channel = efx->channel[i];
869 efx->channel[i] = other_channel[i];
870 other_channel[i] = channel;
871 }
872 goto out;
873}
874
90d683af 875void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 876{
90d683af 877 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
878}
879
7f967c01
BH
880static const struct efx_channel_type efx_default_channel_type = {
881 .pre_probe = efx_channel_dummy_op_int,
c31e5f9f 882 .post_remove = efx_channel_dummy_op_void,
7f967c01
BH
883 .get_name = efx_get_channel_name,
884 .copy = efx_copy_channel,
885 .keep_eventq = false,
886};
887
888int efx_channel_dummy_op_int(struct efx_channel *channel)
889{
890 return 0;
891}
892
c31e5f9f
SH
893void efx_channel_dummy_op_void(struct efx_channel *channel)
894{
895}
896
8ceee660
BH
897/**************************************************************************
898 *
899 * Port handling
900 *
901 **************************************************************************/
902
903/* This ensures that the kernel is kept informed (via
904 * netif_carrier_on/off) of the link status, and also maintains the
905 * link status's stop on the port's TX queue.
906 */
fdaa9aed 907void efx_link_status_changed(struct efx_nic *efx)
8ceee660 908{
eb50c0d6
BH
909 struct efx_link_state *link_state = &efx->link_state;
910
8ceee660
BH
911 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
912 * that no events are triggered between unregister_netdev() and the
913 * driver unloading. A more general condition is that NETDEV_CHANGE
914 * can only be generated between NETDEV_UP and NETDEV_DOWN */
915 if (!netif_running(efx->net_dev))
916 return;
917
eb50c0d6 918 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
919 efx->n_link_state_changes++;
920
eb50c0d6 921 if (link_state->up)
8ceee660
BH
922 netif_carrier_on(efx->net_dev);
923 else
924 netif_carrier_off(efx->net_dev);
925 }
926
927 /* Status message for kernel log */
2aa9ef11 928 if (link_state->up)
62776d03 929 netif_info(efx, link, efx->net_dev,
964e6135 930 "link up at %uMbps %s-duplex (MTU %d)\n",
62776d03 931 link_state->speed, link_state->fd ? "full" : "half",
964e6135 932 efx->net_dev->mtu);
2aa9ef11 933 else
62776d03 934 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
935}
936
d3245b28
BH
937void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
938{
939 efx->link_advertising = advertising;
940 if (advertising) {
941 if (advertising & ADVERTISED_Pause)
942 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
943 else
944 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
945 if (advertising & ADVERTISED_Asym_Pause)
946 efx->wanted_fc ^= EFX_FC_TX;
947 }
948}
949
b5626946 950void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
951{
952 efx->wanted_fc = wanted_fc;
953 if (efx->link_advertising) {
954 if (wanted_fc & EFX_FC_RX)
955 efx->link_advertising |= (ADVERTISED_Pause |
956 ADVERTISED_Asym_Pause);
957 else
958 efx->link_advertising &= ~(ADVERTISED_Pause |
959 ADVERTISED_Asym_Pause);
960 if (wanted_fc & EFX_FC_TX)
961 efx->link_advertising ^= ADVERTISED_Asym_Pause;
962 }
963}
964
115122af
BH
965static void efx_fini_port(struct efx_nic *efx);
966
0d322413
EC
967/* We assume that efx->type->reconfigure_mac will always try to sync RX
968 * filters and therefore needs to read-lock the filter table against freeing
969 */
970void efx_mac_reconfigure(struct efx_nic *efx)
971{
972 down_read(&efx->filter_sem);
973 efx->type->reconfigure_mac(efx);
974 up_read(&efx->filter_sem);
975}
976
d3245b28
BH
977/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
978 * the MAC appropriately. All other PHY configuration changes are pushed
979 * through phy_op->set_settings(), and pushed asynchronously to the MAC
980 * through efx_monitor().
981 *
982 * Callers must hold the mac_lock
983 */
984int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 985{
d3245b28
BH
986 enum efx_phy_mode phy_mode;
987 int rc;
8ceee660 988
d3245b28 989 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 990
d3245b28
BH
991 /* Disable PHY transmit in mac level loopbacks */
992 phy_mode = efx->phy_mode;
177dfcd8
BH
993 if (LOOPBACK_INTERNAL(efx))
994 efx->phy_mode |= PHY_MODE_TX_DISABLED;
995 else
996 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 997
d3245b28 998 rc = efx->type->reconfigure_port(efx);
8ceee660 999
d3245b28
BH
1000 if (rc)
1001 efx->phy_mode = phy_mode;
177dfcd8 1002
d3245b28 1003 return rc;
8ceee660
BH
1004}
1005
1006/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1007 * disabled. */
d3245b28 1008int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 1009{
d3245b28
BH
1010 int rc;
1011
8ceee660
BH
1012 EFX_ASSERT_RESET_SERIALISED(efx);
1013
1014 mutex_lock(&efx->mac_lock);
d3245b28 1015 rc = __efx_reconfigure_port(efx);
8ceee660 1016 mutex_unlock(&efx->mac_lock);
d3245b28
BH
1017
1018 return rc;
8ceee660
BH
1019}
1020
8be4f3e6
BH
1021/* Asynchronous work item for changing MAC promiscuity and multicast
1022 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1023 * MAC directly. */
766ca0fa
BH
1024static void efx_mac_work(struct work_struct *data)
1025{
1026 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1027
1028 mutex_lock(&efx->mac_lock);
30b81cda 1029 if (efx->port_enabled)
0d322413 1030 efx_mac_reconfigure(efx);
766ca0fa
BH
1031 mutex_unlock(&efx->mac_lock);
1032}
1033
8ceee660
BH
1034static int efx_probe_port(struct efx_nic *efx)
1035{
1036 int rc;
1037
62776d03 1038 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 1039
ff3b00a0
SH
1040 if (phy_flash_cfg)
1041 efx->phy_mode = PHY_MODE_SPECIAL;
1042
ef2b90ee
BH
1043 /* Connect up MAC/PHY operations table */
1044 rc = efx->type->probe_port(efx);
8ceee660 1045 if (rc)
e42de262 1046 return rc;
8ceee660 1047
e332bcb3 1048 /* Initialise MAC address to permanent address */
cd84ff4d 1049 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
8ceee660
BH
1050
1051 return 0;
8ceee660
BH
1052}
1053
1054static int efx_init_port(struct efx_nic *efx)
1055{
1056 int rc;
1057
62776d03 1058 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 1059
1dfc5cea
BH
1060 mutex_lock(&efx->mac_lock);
1061
177dfcd8 1062 rc = efx->phy_op->init(efx);
8ceee660 1063 if (rc)
1dfc5cea 1064 goto fail1;
8ceee660 1065
dc8cfa55 1066 efx->port_initialized = true;
1dfc5cea 1067
d3245b28
BH
1068 /* Reconfigure the MAC before creating dma queues (required for
1069 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
0d322413 1070 efx_mac_reconfigure(efx);
d3245b28
BH
1071
1072 /* Ensure the PHY advertises the correct flow control settings */
1073 rc = efx->phy_op->reconfigure(efx);
267d9d73 1074 if (rc && rc != -EPERM)
d3245b28
BH
1075 goto fail2;
1076
1dfc5cea 1077 mutex_unlock(&efx->mac_lock);
8ceee660 1078 return 0;
177dfcd8 1079
1dfc5cea 1080fail2:
177dfcd8 1081 efx->phy_op->fini(efx);
1dfc5cea
BH
1082fail1:
1083 mutex_unlock(&efx->mac_lock);
177dfcd8 1084 return rc;
8ceee660
BH
1085}
1086
8ceee660
BH
1087static void efx_start_port(struct efx_nic *efx)
1088{
62776d03 1089 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
1090 BUG_ON(efx->port_enabled);
1091
1092 mutex_lock(&efx->mac_lock);
dc8cfa55 1093 efx->port_enabled = true;
8be4f3e6 1094
d615c039 1095 /* Ensure MAC ingress/egress is enabled */
0d322413 1096 efx_mac_reconfigure(efx);
8be4f3e6 1097
8ceee660
BH
1098 mutex_unlock(&efx->mac_lock);
1099}
1100
d615c039
BH
1101/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1102 * and the async self-test, wait for them to finish and prevent them
1103 * being scheduled again. This doesn't cover online resets, which
1104 * should only be cancelled when removing the device.
1105 */
8ceee660
BH
1106static void efx_stop_port(struct efx_nic *efx)
1107{
62776d03 1108 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660 1109
d615c039
BH
1110 EFX_ASSERT_RESET_SERIALISED(efx);
1111
8ceee660 1112 mutex_lock(&efx->mac_lock);
dc8cfa55 1113 efx->port_enabled = false;
8ceee660
BH
1114 mutex_unlock(&efx->mac_lock);
1115
1116 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
1117 netif_addr_lock_bh(efx->net_dev);
1118 netif_addr_unlock_bh(efx->net_dev);
d615c039
BH
1119
1120 cancel_delayed_work_sync(&efx->monitor_work);
1121 efx_selftest_async_cancel(efx);
1122 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1123}
1124
1125static void efx_fini_port(struct efx_nic *efx)
1126{
62776d03 1127 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1128
1129 if (!efx->port_initialized)
1130 return;
1131
177dfcd8 1132 efx->phy_op->fini(efx);
dc8cfa55 1133 efx->port_initialized = false;
8ceee660 1134
eb50c0d6 1135 efx->link_state.up = false;
8ceee660
BH
1136 efx_link_status_changed(efx);
1137}
1138
1139static void efx_remove_port(struct efx_nic *efx)
1140{
62776d03 1141 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1142
ef2b90ee 1143 efx->type->remove_port(efx);
8ceee660
BH
1144}
1145
1146/**************************************************************************
1147 *
1148 * NIC handling
1149 *
1150 **************************************************************************/
1151
0bcf4a64
BH
1152static LIST_HEAD(efx_primary_list);
1153static LIST_HEAD(efx_unassociated_list);
1154
1155static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1156{
1157 return left->type == right->type &&
1158 left->vpd_sn && right->vpd_sn &&
1159 !strcmp(left->vpd_sn, right->vpd_sn);
1160}
1161
1162static void efx_associate(struct efx_nic *efx)
1163{
1164 struct efx_nic *other, *next;
1165
1166 if (efx->primary == efx) {
1167 /* Adding primary function; look for secondaries */
1168
1169 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1170 list_add_tail(&efx->node, &efx_primary_list);
1171
1172 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1173 node) {
1174 if (efx_same_controller(efx, other)) {
1175 list_del(&other->node);
1176 netif_dbg(other, probe, other->net_dev,
1177 "moving to secondary list of %s %s\n",
1178 pci_name(efx->pci_dev),
1179 efx->net_dev->name);
1180 list_add_tail(&other->node,
1181 &efx->secondary_list);
1182 other->primary = efx;
1183 }
1184 }
1185 } else {
1186 /* Adding secondary function; look for primary */
1187
1188 list_for_each_entry(other, &efx_primary_list, node) {
1189 if (efx_same_controller(efx, other)) {
1190 netif_dbg(efx, probe, efx->net_dev,
1191 "adding to secondary list of %s %s\n",
1192 pci_name(other->pci_dev),
1193 other->net_dev->name);
1194 list_add_tail(&efx->node,
1195 &other->secondary_list);
1196 efx->primary = other;
1197 return;
1198 }
1199 }
1200
1201 netif_dbg(efx, probe, efx->net_dev,
1202 "adding to unassociated list\n");
1203 list_add_tail(&efx->node, &efx_unassociated_list);
1204 }
1205}
1206
1207static void efx_dissociate(struct efx_nic *efx)
1208{
1209 struct efx_nic *other, *next;
1210
1211 list_del(&efx->node);
1212 efx->primary = NULL;
1213
1214 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1215 list_del(&other->node);
1216 netif_dbg(other, probe, other->net_dev,
1217 "moving to unassociated list\n");
1218 list_add_tail(&other->node, &efx_unassociated_list);
1219 other->primary = NULL;
1220 }
1221}
1222
8ceee660
BH
1223/* This configures the PCI device to enable I/O and DMA. */
1224static int efx_init_io(struct efx_nic *efx)
1225{
1226 struct pci_dev *pci_dev = efx->pci_dev;
1227 dma_addr_t dma_mask = efx->type->max_dma_mask;
b105798f 1228 unsigned int mem_map_size = efx->type->mem_map_size(efx);
02246a7f 1229 int rc, bar;
8ceee660 1230
62776d03 1231 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660 1232
02246a7f
SS
1233 bar = efx->type->mem_bar;
1234
8ceee660
BH
1235 rc = pci_enable_device(pci_dev);
1236 if (rc) {
62776d03
BH
1237 netif_err(efx, probe, efx->net_dev,
1238 "failed to enable PCI device\n");
8ceee660
BH
1239 goto fail1;
1240 }
1241
1242 pci_set_master(pci_dev);
1243
1244 /* Set the PCI DMA mask. Try all possibilities from our
1245 * genuine mask down to 32 bits, because some architectures
1246 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1247 * masks event though they reject 46 bit masks.
1248 */
1249 while (dma_mask > 0x7fffffffUL) {
0e33d870 1250 if (dma_supported(&pci_dev->dev, dma_mask)) {
9663deda 1251 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
e9e01846
BH
1252 if (rc == 0)
1253 break;
1254 }
8ceee660
BH
1255 dma_mask >>= 1;
1256 }
1257 if (rc) {
62776d03
BH
1258 netif_err(efx, probe, efx->net_dev,
1259 "could not find a suitable DMA mask\n");
8ceee660
BH
1260 goto fail2;
1261 }
62776d03
BH
1262 netif_dbg(efx, probe, efx->net_dev,
1263 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660 1264
02246a7f
SS
1265 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1266 rc = pci_request_region(pci_dev, bar, "sfc");
8ceee660 1267 if (rc) {
62776d03
BH
1268 netif_err(efx, probe, efx->net_dev,
1269 "request for memory BAR failed\n");
8ceee660
BH
1270 rc = -EIO;
1271 goto fail3;
1272 }
b105798f 1273 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
8ceee660 1274 if (!efx->membase) {
62776d03
BH
1275 netif_err(efx, probe, efx->net_dev,
1276 "could not map memory BAR at %llx+%x\n",
b105798f 1277 (unsigned long long)efx->membase_phys, mem_map_size);
8ceee660
BH
1278 rc = -ENOMEM;
1279 goto fail4;
1280 }
62776d03
BH
1281 netif_dbg(efx, probe, efx->net_dev,
1282 "memory BAR at %llx+%x (virtual %p)\n",
b105798f
BH
1283 (unsigned long long)efx->membase_phys, mem_map_size,
1284 efx->membase);
8ceee660
BH
1285
1286 return 0;
1287
1288 fail4:
02246a7f 1289 pci_release_region(efx->pci_dev, bar);
8ceee660 1290 fail3:
2c118e0f 1291 efx->membase_phys = 0;
8ceee660
BH
1292 fail2:
1293 pci_disable_device(efx->pci_dev);
1294 fail1:
1295 return rc;
1296}
1297
1298static void efx_fini_io(struct efx_nic *efx)
1299{
02246a7f
SS
1300 int bar;
1301
62776d03 1302 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1303
1304 if (efx->membase) {
1305 iounmap(efx->membase);
1306 efx->membase = NULL;
1307 }
1308
1309 if (efx->membase_phys) {
02246a7f
SS
1310 bar = efx->type->mem_bar;
1311 pci_release_region(efx->pci_dev, bar);
2c118e0f 1312 efx->membase_phys = 0;
8ceee660
BH
1313 }
1314
6598dad2
DP
1315 /* Don't disable bus-mastering if VFs are assigned */
1316 if (!pci_vfs_assigned(efx->pci_dev))
1317 pci_disable_device(efx->pci_dev);
8ceee660
BH
1318}
1319
267c0157
JC
1320void efx_set_default_rx_indir_table(struct efx_nic *efx)
1321{
1322 size_t i;
1323
1324 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1325 efx->rx_indir_table[i] =
1326 ethtool_rxfh_indir_default(i, efx->rss_spread);
8ceee660
BH
1327}
1328
a9a52506 1329static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
46123d04 1330{
cdb08f8f 1331 cpumask_var_t thread_mask;
a16e5b24 1332 unsigned int count;
46123d04 1333 int cpu;
5b874e25 1334
cd2d5b52
BH
1335 if (rss_cpus) {
1336 count = rss_cpus;
1337 } else {
1338 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1339 netif_warn(efx, probe, efx->net_dev,
1340 "RSS disabled due to allocation failure\n");
1341 return 1;
1342 }
46123d04 1343
cd2d5b52
BH
1344 count = 0;
1345 for_each_online_cpu(cpu) {
1346 if (!cpumask_test_cpu(cpu, thread_mask)) {
1347 ++count;
1348 cpumask_or(thread_mask, thread_mask,
06931e62 1349 topology_sibling_cpumask(cpu));
cd2d5b52
BH
1350 }
1351 }
1352
1353 free_cpumask_var(thread_mask);
2f8975fb
RR
1354 }
1355
cd2d5b52
BH
1356 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1357 * table entries that are inaccessible to VFs
1358 */
7fa8d547
SS
1359#ifdef CONFIG_SFC_SRIOV
1360 if (efx->type->sriov_wanted) {
1361 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1362 count > efx_vf_size(efx)) {
1363 netif_warn(efx, probe, efx->net_dev,
1364 "Reducing number of RSS channels from %u to %u for "
1365 "VF support. Increase vf-msix-limit to use more "
1366 "channels on the PF.\n",
1367 count, efx_vf_size(efx));
1368 count = efx_vf_size(efx);
1369 }
46123d04 1370 }
7fa8d547 1371#endif
46123d04
BH
1372
1373 return count;
1374}
1375
1376/* Probe the number and type of interrupts we are able to obtain, and
1377 * the resulting numbers of channels and RX queues.
1378 */
64d8ad6d 1379static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1380{
7f967c01
BH
1381 unsigned int extra_channels = 0;
1382 unsigned int i, j;
a16e5b24 1383 int rc;
8ceee660 1384
7f967c01
BH
1385 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1386 if (efx->extra_channel_type[i])
1387 ++extra_channels;
1388
8ceee660 1389 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1390 struct msix_entry xentries[EFX_MAX_CHANNELS];
a16e5b24 1391 unsigned int n_channels;
aa6ef27e 1392
a9a52506 1393 n_channels = efx_wanted_parallelism(efx);
a4900ac9
BH
1394 if (separate_tx_channels)
1395 n_channels *= 2;
7f967c01 1396 n_channels += extra_channels;
b105798f 1397 n_channels = min(n_channels, efx->max_channels);
8ceee660 1398
a4900ac9 1399 for (i = 0; i < n_channels; i++)
8ceee660 1400 xentries[i].entry = i;
184603d8
AG
1401 rc = pci_enable_msix_range(efx->pci_dev,
1402 xentries, 1, n_channels);
1403 if (rc < 0) {
1404 /* Fall back to single channel MSI */
1405 efx->interrupt_mode = EFX_INT_MODE_MSI;
1406 netif_err(efx, drv, efx->net_dev,
1407 "could not enable MSI-X\n");
1408 } else if (rc < n_channels) {
62776d03
BH
1409 netif_err(efx, drv, efx->net_dev,
1410 "WARNING: Insufficient MSI-X vectors"
a16e5b24 1411 " available (%d < %u).\n", rc, n_channels);
62776d03
BH
1412 netif_err(efx, drv, efx->net_dev,
1413 "WARNING: Performance may be reduced.\n");
a4900ac9 1414 n_channels = rc;
8ceee660
BH
1415 }
1416
184603d8 1417 if (rc > 0) {
a4900ac9 1418 efx->n_channels = n_channels;
7f967c01
BH
1419 if (n_channels > extra_channels)
1420 n_channels -= extra_channels;
a4900ac9 1421 if (separate_tx_channels) {
7f967c01
BH
1422 efx->n_tx_channels = max(n_channels / 2, 1U);
1423 efx->n_rx_channels = max(n_channels -
1424 efx->n_tx_channels,
1425 1U);
a4900ac9 1426 } else {
7f967c01
BH
1427 efx->n_tx_channels = n_channels;
1428 efx->n_rx_channels = n_channels;
a4900ac9 1429 }
7f967c01 1430 for (i = 0; i < efx->n_channels; i++)
f7d12cdc
BH
1431 efx_get_channel(efx, i)->irq =
1432 xentries[i].vector;
8ceee660
BH
1433 }
1434 }
1435
1436 /* Try single interrupt MSI */
1437 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1438 efx->n_channels = 1;
a4900ac9
BH
1439 efx->n_rx_channels = 1;
1440 efx->n_tx_channels = 1;
8ceee660
BH
1441 rc = pci_enable_msi(efx->pci_dev);
1442 if (rc == 0) {
f7d12cdc 1443 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1444 } else {
62776d03
BH
1445 netif_err(efx, drv, efx->net_dev,
1446 "could not enable MSI\n");
8ceee660
BH
1447 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1448 }
1449 }
1450
1451 /* Assume legacy interrupts */
1452 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1453 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1454 efx->n_rx_channels = 1;
1455 efx->n_tx_channels = 1;
8ceee660
BH
1456 efx->legacy_irq = efx->pci_dev->irq;
1457 }
64d8ad6d 1458
7f967c01
BH
1459 /* Assign extra channels if possible */
1460 j = efx->n_channels;
1461 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1462 if (!efx->extra_channel_type[i])
1463 continue;
1464 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1465 efx->n_channels <= extra_channels) {
1466 efx->extra_channel_type[i]->handle_no_channel(efx);
1467 } else {
1468 --j;
1469 efx_get_channel(efx, j)->type =
1470 efx->extra_channel_type[i];
1471 }
1472 }
1473
cd2d5b52 1474 /* RSS might be usable on VFs even if it is disabled on the PF */
7fa8d547
SS
1475#ifdef CONFIG_SFC_SRIOV
1476 if (efx->type->sriov_wanted) {
1477 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1478 !efx->type->sriov_wanted(efx)) ?
1479 efx->n_rx_channels : efx_vf_size(efx));
1480 return 0;
1481 }
1482#endif
1483 efx->rss_spread = efx->n_rx_channels;
cd2d5b52 1484
64d8ad6d 1485 return 0;
8ceee660
BH
1486}
1487
261e4d96 1488static int efx_soft_enable_interrupts(struct efx_nic *efx)
9f2cb71c 1489{
261e4d96
JC
1490 struct efx_channel *channel, *end_channel;
1491 int rc;
9f2cb71c 1492
8b7325b4
BH
1493 BUG_ON(efx->state == STATE_DISABLED);
1494
d8291187
BH
1495 efx->irq_soft_enabled = true;
1496 smp_wmb();
9f2cb71c
BH
1497
1498 efx_for_each_channel(channel, efx) {
261e4d96
JC
1499 if (!channel->type->keep_eventq) {
1500 rc = efx_init_eventq(channel);
1501 if (rc)
1502 goto fail;
1503 }
9f2cb71c
BH
1504 efx_start_eventq(channel);
1505 }
1506
1507 efx_mcdi_mode_event(efx);
261e4d96
JC
1508
1509 return 0;
1510fail:
1511 end_channel = channel;
1512 efx_for_each_channel(channel, efx) {
1513 if (channel == end_channel)
1514 break;
1515 efx_stop_eventq(channel);
1516 if (!channel->type->keep_eventq)
1517 efx_fini_eventq(channel);
1518 }
1519
1520 return rc;
9f2cb71c
BH
1521}
1522
d8291187 1523static void efx_soft_disable_interrupts(struct efx_nic *efx)
9f2cb71c
BH
1524{
1525 struct efx_channel *channel;
1526
8b7325b4
BH
1527 if (efx->state == STATE_DISABLED)
1528 return;
1529
9f2cb71c
BH
1530 efx_mcdi_mode_poll(efx);
1531
d8291187
BH
1532 efx->irq_soft_enabled = false;
1533 smp_wmb();
1534
1535 if (efx->legacy_irq)
9f2cb71c 1536 synchronize_irq(efx->legacy_irq);
9f2cb71c
BH
1537
1538 efx_for_each_channel(channel, efx) {
1539 if (channel->irq)
1540 synchronize_irq(channel->irq);
1541
1542 efx_stop_eventq(channel);
d8291187 1543 if (!channel->type->keep_eventq)
7f967c01 1544 efx_fini_eventq(channel);
9f2cb71c 1545 }
cade715f
BH
1546
1547 /* Flush the asynchronous MCDI request queue */
1548 efx_mcdi_flush_async(efx);
9f2cb71c
BH
1549}
1550
261e4d96 1551static int efx_enable_interrupts(struct efx_nic *efx)
d8291187 1552{
261e4d96
JC
1553 struct efx_channel *channel, *end_channel;
1554 int rc;
d8291187
BH
1555
1556 BUG_ON(efx->state == STATE_DISABLED);
1557
1558 if (efx->eeh_disabled_legacy_irq) {
1559 enable_irq(efx->legacy_irq);
1560 efx->eeh_disabled_legacy_irq = false;
1561 }
1562
86094f7f 1563 efx->type->irq_enable_master(efx);
d8291187
BH
1564
1565 efx_for_each_channel(channel, efx) {
261e4d96
JC
1566 if (channel->type->keep_eventq) {
1567 rc = efx_init_eventq(channel);
1568 if (rc)
1569 goto fail;
1570 }
1571 }
1572
1573 rc = efx_soft_enable_interrupts(efx);
1574 if (rc)
1575 goto fail;
1576
1577 return 0;
1578
1579fail:
1580 end_channel = channel;
1581 efx_for_each_channel(channel, efx) {
1582 if (channel == end_channel)
1583 break;
d8291187 1584 if (channel->type->keep_eventq)
261e4d96 1585 efx_fini_eventq(channel);
d8291187
BH
1586 }
1587
261e4d96
JC
1588 efx->type->irq_disable_non_ev(efx);
1589
1590 return rc;
d8291187
BH
1591}
1592
1593static void efx_disable_interrupts(struct efx_nic *efx)
1594{
1595 struct efx_channel *channel;
1596
1597 efx_soft_disable_interrupts(efx);
1598
1599 efx_for_each_channel(channel, efx) {
1600 if (channel->type->keep_eventq)
1601 efx_fini_eventq(channel);
1602 }
1603
86094f7f 1604 efx->type->irq_disable_non_ev(efx);
d8291187
BH
1605}
1606
8ceee660
BH
1607static void efx_remove_interrupts(struct efx_nic *efx)
1608{
1609 struct efx_channel *channel;
1610
1611 /* Remove MSI/MSI-X interrupts */
64ee3120 1612 efx_for_each_channel(channel, efx)
8ceee660
BH
1613 channel->irq = 0;
1614 pci_disable_msi(efx->pci_dev);
1615 pci_disable_msix(efx->pci_dev);
1616
1617 /* Remove legacy interrupt */
1618 efx->legacy_irq = 0;
1619}
1620
8831da7b 1621static void efx_set_channels(struct efx_nic *efx)
8ceee660 1622{
602a5322
BH
1623 struct efx_channel *channel;
1624 struct efx_tx_queue *tx_queue;
1625
97653431 1626 efx->tx_channel_offset =
a4900ac9 1627 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322 1628
79d68b37
SH
1629 /* We need to mark which channels really have RX and TX
1630 * queues, and adjust the TX queue numbers if we have separate
602a5322
BH
1631 * RX-only and TX-only channels.
1632 */
1633 efx_for_each_channel(channel, efx) {
79d68b37
SH
1634 if (channel->channel < efx->n_rx_channels)
1635 channel->rx_queue.core_index = channel->channel;
1636 else
1637 channel->rx_queue.core_index = -1;
1638
602a5322
BH
1639 efx_for_each_channel_tx_queue(tx_queue, channel)
1640 tx_queue->queue -= (efx->tx_channel_offset *
1641 EFX_TXQ_TYPES);
1642 }
8ceee660
BH
1643}
1644
1645static int efx_probe_nic(struct efx_nic *efx)
1646{
1647 int rc;
1648
62776d03 1649 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1650
1651 /* Carry out hardware-type specific initialisation */
ef2b90ee 1652 rc = efx->type->probe(efx);
8ceee660
BH
1653 if (rc)
1654 return rc;
1655
a4900ac9 1656 /* Determine the number of channels and queues by trying to hook
8ceee660 1657 * in MSI-X interrupts. */
64d8ad6d
BH
1658 rc = efx_probe_interrupts(efx);
1659 if (rc)
c15eed22 1660 goto fail1;
8ceee660 1661
52ad762b
DP
1662 efx_set_channels(efx);
1663
c15eed22
BH
1664 rc = efx->type->dimension_resources(efx);
1665 if (rc)
1666 goto fail2;
28e47c49 1667
5d3a6fca 1668 if (efx->n_channels > 1)
267c0157
JC
1669 netdev_rss_key_fill(&efx->rx_hash_key,
1670 sizeof(efx->rx_hash_key));
1671 efx_set_default_rx_indir_table(efx);
5d3a6fca 1672
c4f4adc7
BH
1673 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1674 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1675
1676 /* Initialise the interrupt moderation settings */
9e393b30
BH
1677 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1678 true);
8ceee660
BH
1679
1680 return 0;
64d8ad6d 1681
c15eed22
BH
1682fail2:
1683 efx_remove_interrupts(efx);
1684fail1:
64d8ad6d
BH
1685 efx->type->remove(efx);
1686 return rc;
8ceee660
BH
1687}
1688
1689static void efx_remove_nic(struct efx_nic *efx)
1690{
62776d03 1691 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1692
1693 efx_remove_interrupts(efx);
ef2b90ee 1694 efx->type->remove(efx);
8ceee660
BH
1695}
1696
add72477
BH
1697static int efx_probe_filters(struct efx_nic *efx)
1698{
1699 int rc;
1700
1701 spin_lock_init(&efx->filter_lock);
0d322413
EC
1702 init_rwsem(&efx->filter_sem);
1703 down_write(&efx->filter_sem);
add72477
BH
1704 rc = efx->type->filter_table_probe(efx);
1705 if (rc)
0d322413 1706 goto out_unlock;
add72477
BH
1707
1708#ifdef CONFIG_RFS_ACCEL
1709 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1710 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1711 sizeof(*efx->rps_flow_id),
1712 GFP_KERNEL);
1713 if (!efx->rps_flow_id) {
1714 efx->type->filter_table_remove(efx);
0d322413
EC
1715 rc = -ENOMEM;
1716 goto out_unlock;
add72477
BH
1717 }
1718 }
1719#endif
0d322413
EC
1720out_unlock:
1721 up_write(&efx->filter_sem);
1722 return rc;
add72477
BH
1723}
1724
1725static void efx_remove_filters(struct efx_nic *efx)
1726{
1727#ifdef CONFIG_RFS_ACCEL
1728 kfree(efx->rps_flow_id);
1729#endif
0d322413 1730 down_write(&efx->filter_sem);
add72477 1731 efx->type->filter_table_remove(efx);
0d322413 1732 up_write(&efx->filter_sem);
add72477
BH
1733}
1734
1735static void efx_restore_filters(struct efx_nic *efx)
1736{
0d322413 1737 down_read(&efx->filter_sem);
add72477 1738 efx->type->filter_table_restore(efx);
0d322413 1739 up_read(&efx->filter_sem);
add72477
BH
1740}
1741
8ceee660
BH
1742/**************************************************************************
1743 *
1744 * NIC startup/shutdown
1745 *
1746 *************************************************************************/
1747
1748static int efx_probe_all(struct efx_nic *efx)
1749{
8ceee660
BH
1750 int rc;
1751
8ceee660
BH
1752 rc = efx_probe_nic(efx);
1753 if (rc) {
62776d03 1754 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1755 goto fail1;
1756 }
1757
8ceee660
BH
1758 rc = efx_probe_port(efx);
1759 if (rc) {
62776d03 1760 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1761 goto fail2;
1762 }
1763
7e6d06f0
BH
1764 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1765 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1766 rc = -EINVAL;
1767 goto fail3;
1768 }
ecc910f5 1769 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
8ceee660 1770
6d8aaaf6
DP
1771#ifdef CONFIG_SFC_SRIOV
1772 rc = efx->type->vswitching_probe(efx);
1773 if (rc) /* not fatal; the PF will still work fine */
1774 netif_warn(efx, probe, efx->net_dev,
1775 "failed to setup vswitching rc=%d;"
1776 " VFs may not function\n", rc);
1777#endif
1778
64eebcfd
BH
1779 rc = efx_probe_filters(efx);
1780 if (rc) {
1781 netif_err(efx, probe, efx->net_dev,
1782 "failed to create filter tables\n");
6d8aaaf6 1783 goto fail4;
64eebcfd
BH
1784 }
1785
7f967c01
BH
1786 rc = efx_probe_channels(efx);
1787 if (rc)
6d8aaaf6 1788 goto fail5;
7f967c01 1789
8ceee660
BH
1790 return 0;
1791
6d8aaaf6 1792 fail5:
7f967c01 1793 efx_remove_filters(efx);
6d8aaaf6
DP
1794 fail4:
1795#ifdef CONFIG_SFC_SRIOV
1796 efx->type->vswitching_remove(efx);
1797#endif
8ceee660 1798 fail3:
8ceee660
BH
1799 efx_remove_port(efx);
1800 fail2:
1801 efx_remove_nic(efx);
1802 fail1:
1803 return rc;
1804}
1805
8b7325b4
BH
1806/* If the interface is supposed to be running but is not, start
1807 * the hardware and software data path, regular activity for the port
1808 * (MAC statistics, link polling, etc.) and schedule the port to be
1809 * reconfigured. Interrupts must already be enabled. This function
1810 * is safe to call multiple times, so long as the NIC is not disabled.
1811 * Requires the RTNL lock.
9f2cb71c 1812 */
8ceee660
BH
1813static void efx_start_all(struct efx_nic *efx)
1814{
8ceee660 1815 EFX_ASSERT_RESET_SERIALISED(efx);
8b7325b4 1816 BUG_ON(efx->state == STATE_DISABLED);
8ceee660
BH
1817
1818 /* Check that it is appropriate to restart the interface. All
1819 * of these flags are safe to read under just the rtnl lock */
e283546c
EC
1820 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1821 efx->reset_pending)
8ceee660
BH
1822 return;
1823
8ceee660 1824 efx_start_port(efx);
9f2cb71c 1825 efx_start_datapath(efx);
8880f4ec 1826
626950db
AR
1827 /* Start the hardware monitor if there is one */
1828 if (efx->type->monitor != NULL)
8ceee660
BH
1829 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1830 efx_monitor_interval);
626950db
AR
1831
1832 /* If link state detection is normally event-driven, we have
1833 * to poll now because we could have missed a change
1834 */
1835 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
78c1f0a0
SH
1836 mutex_lock(&efx->mac_lock);
1837 if (efx->phy_op->poll(efx))
1838 efx_link_status_changed(efx);
1839 mutex_unlock(&efx->mac_lock);
1840 }
55edc6e6 1841
ef2b90ee 1842 efx->type->start_stats(efx);
f8f3b5ae
JC
1843 efx->type->pull_stats(efx);
1844 spin_lock_bh(&efx->stats_lock);
1845 efx->type->update_stats(efx, NULL, NULL);
1846 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1847}
1848
8b7325b4
BH
1849/* Quiesce the hardware and software data path, and regular activity
1850 * for the port without bringing the link down. Safe to call multiple
1851 * times with the NIC in almost any state, but interrupts should be
1852 * enabled. Requires the RTNL lock.
1853 */
8ceee660
BH
1854static void efx_stop_all(struct efx_nic *efx)
1855{
8ceee660
BH
1856 EFX_ASSERT_RESET_SERIALISED(efx);
1857
1858 /* port_enabled can be read safely under the rtnl lock */
1859 if (!efx->port_enabled)
1860 return;
1861
f8f3b5ae
JC
1862 /* update stats before we go down so we can accurately count
1863 * rx_nodesc_drops
1864 */
1865 efx->type->pull_stats(efx);
1866 spin_lock_bh(&efx->stats_lock);
1867 efx->type->update_stats(efx, NULL, NULL);
1868 spin_unlock_bh(&efx->stats_lock);
ef2b90ee 1869 efx->type->stop_stats(efx);
8ceee660
BH
1870 efx_stop_port(efx);
1871
29c69a48
BH
1872 /* Stop the kernel transmit interface. This is only valid if
1873 * the device is stopped or detached; otherwise the watchdog
1874 * may fire immediately.
1875 */
1876 WARN_ON(netif_running(efx->net_dev) &&
1877 netif_device_present(efx->net_dev));
9f2cb71c
BH
1878 netif_tx_disable(efx->net_dev);
1879
1880 efx_stop_datapath(efx);
8ceee660
BH
1881}
1882
1883static void efx_remove_all(struct efx_nic *efx)
1884{
4642610c 1885 efx_remove_channels(efx);
7f967c01 1886 efx_remove_filters(efx);
6d8aaaf6
DP
1887#ifdef CONFIG_SFC_SRIOV
1888 efx->type->vswitching_remove(efx);
1889#endif
8ceee660
BH
1890 efx_remove_port(efx);
1891 efx_remove_nic(efx);
1892}
1893
8ceee660
BH
1894/**************************************************************************
1895 *
1896 * Interrupt moderation
1897 *
1898 **************************************************************************/
1899
cc180b69 1900static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1901{
b548f976
BH
1902 if (usecs == 0)
1903 return 0;
cc180b69 1904 if (usecs * 1000 < quantum_ns)
0d86ebd8 1905 return 1; /* never round down to 0 */
cc180b69 1906 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1907}
1908
8ceee660 1909/* Set interrupt moderation parameters */
9e393b30
BH
1910int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1911 unsigned int rx_usecs, bool rx_adaptive,
1912 bool rx_may_override_tx)
8ceee660 1913{
f7d12cdc 1914 struct efx_channel *channel;
cc180b69
BH
1915 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1916 efx->timer_quantum_ns,
1917 1000);
1918 unsigned int tx_ticks;
1919 unsigned int rx_ticks;
8ceee660
BH
1920
1921 EFX_ASSERT_RESET_SERIALISED(efx);
1922
cc180b69 1923 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1924 return -EINVAL;
1925
cc180b69
BH
1926 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1927 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1928
9e393b30
BH
1929 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1930 !rx_may_override_tx) {
1931 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1932 "RX and TX IRQ moderation must be equal\n");
1933 return -EINVAL;
1934 }
1935
6fb70fd1 1936 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1937 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1938 efx_for_each_channel(channel, efx) {
525da907 1939 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1940 channel->irq_moderation = rx_ticks;
525da907 1941 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1942 channel->irq_moderation = tx_ticks;
1943 }
9e393b30
BH
1944
1945 return 0;
8ceee660
BH
1946}
1947
a0c4faf5
BH
1948void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1949 unsigned int *rx_usecs, bool *rx_adaptive)
1950{
cc180b69
BH
1951 /* We must round up when converting ticks to microseconds
1952 * because we round down when converting the other way.
1953 */
1954
a0c4faf5 1955 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1956 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1957 efx->timer_quantum_ns,
1958 1000);
a0c4faf5
BH
1959
1960 /* If channels are shared between RX and TX, so is IRQ
1961 * moderation. Otherwise, IRQ moderation is the same for all
1962 * TX channels and is not adaptive.
1963 */
1964 if (efx->tx_channel_offset == 0)
1965 *tx_usecs = *rx_usecs;
1966 else
cc180b69 1967 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1968 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1969 efx->timer_quantum_ns,
1970 1000);
a0c4faf5
BH
1971}
1972
8ceee660
BH
1973/**************************************************************************
1974 *
1975 * Hardware monitor
1976 *
1977 **************************************************************************/
1978
e254c274 1979/* Run periodically off the general workqueue */
8ceee660
BH
1980static void efx_monitor(struct work_struct *data)
1981{
1982 struct efx_nic *efx = container_of(data, struct efx_nic,
1983 monitor_work.work);
8ceee660 1984
62776d03
BH
1985 netif_vdbg(efx, timer, efx->net_dev,
1986 "hardware monitor executing on CPU %d\n",
1987 raw_smp_processor_id());
ef2b90ee 1988 BUG_ON(efx->type->monitor == NULL);
8ceee660 1989
8ceee660
BH
1990 /* If the mac_lock is already held then it is likely a port
1991 * reconfiguration is already in place, which will likely do
e254c274
BH
1992 * most of the work of monitor() anyway. */
1993 if (mutex_trylock(&efx->mac_lock)) {
1994 if (efx->port_enabled)
1995 efx->type->monitor(efx);
1996 mutex_unlock(&efx->mac_lock);
1997 }
8ceee660 1998
8ceee660
BH
1999 queue_delayed_work(efx->workqueue, &efx->monitor_work,
2000 efx_monitor_interval);
2001}
2002
2003/**************************************************************************
2004 *
2005 * ioctls
2006 *
2007 *************************************************************************/
2008
2009/* Net device ioctl
2010 * Context: process, rtnl_lock() held.
2011 */
2012static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2013{
767e468c 2014 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 2015 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660 2016
7c236c43 2017 if (cmd == SIOCSHWTSTAMP)
433dc9b3
BH
2018 return efx_ptp_set_ts_config(efx, ifr);
2019 if (cmd == SIOCGHWTSTAMP)
2020 return efx_ptp_get_ts_config(efx, ifr);
7c236c43 2021
68e7f45e
BH
2022 /* Convert phy_id from older PRTAD/DEVAD format */
2023 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2024 (data->phy_id & 0xfc00) == 0x0400)
2025 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2026
2027 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
2028}
2029
2030/**************************************************************************
2031 *
2032 * NAPI interface
2033 *
2034 **************************************************************************/
2035
7f967c01
BH
2036static void efx_init_napi_channel(struct efx_channel *channel)
2037{
2038 struct efx_nic *efx = channel->efx;
2039
2040 channel->napi_dev = efx->net_dev;
2041 netif_napi_add(channel->napi_dev, &channel->napi_str,
2042 efx_poll, napi_weight);
36763266
AR
2043 napi_hash_add(&channel->napi_str);
2044 efx_channel_init_lock(channel);
7f967c01
BH
2045}
2046
e8f14992 2047static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
2048{
2049 struct efx_channel *channel;
8ceee660 2050
7f967c01
BH
2051 efx_for_each_channel(channel, efx)
2052 efx_init_napi_channel(channel);
e8f14992
BH
2053}
2054
2055static void efx_fini_napi_channel(struct efx_channel *channel)
2056{
36763266 2057 if (channel->napi_dev) {
e8f14992 2058 netif_napi_del(&channel->napi_str);
36763266
AR
2059 napi_hash_del(&channel->napi_str);
2060 }
e8f14992 2061 channel->napi_dev = NULL;
8ceee660
BH
2062}
2063
2064static void efx_fini_napi(struct efx_nic *efx)
2065{
2066 struct efx_channel *channel;
2067
e8f14992
BH
2068 efx_for_each_channel(channel, efx)
2069 efx_fini_napi_channel(channel);
8ceee660
BH
2070}
2071
2072/**************************************************************************
2073 *
2074 * Kernel netpoll interface
2075 *
2076 *************************************************************************/
2077
2078#ifdef CONFIG_NET_POLL_CONTROLLER
2079
2080/* Although in the common case interrupts will be disabled, this is not
2081 * guaranteed. However, all our work happens inside the NAPI callback,
2082 * so no locking is required.
2083 */
2084static void efx_netpoll(struct net_device *net_dev)
2085{
767e468c 2086 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
2087 struct efx_channel *channel;
2088
64ee3120 2089 efx_for_each_channel(channel, efx)
8ceee660
BH
2090 efx_schedule_channel(channel);
2091}
2092
2093#endif
2094
36763266
AR
2095#ifdef CONFIG_NET_RX_BUSY_POLL
2096static int efx_busy_poll(struct napi_struct *napi)
2097{
2098 struct efx_channel *channel =
2099 container_of(napi, struct efx_channel, napi_str);
2100 struct efx_nic *efx = channel->efx;
2101 int budget = 4;
2102 int old_rx_packets, rx_packets;
2103
2104 if (!netif_running(efx->net_dev))
2105 return LL_FLUSH_FAILED;
2106
2107 if (!efx_channel_lock_poll(channel))
2108 return LL_FLUSH_BUSY;
2109
2110 old_rx_packets = channel->rx_queue.rx_packets;
2111 efx_process_channel(channel, budget);
2112
2113 rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2114
2115 /* There is no race condition with NAPI here.
2116 * NAPI will automatically be rescheduled if it yielded during busy
2117 * polling, because it was not able to take the lock and thus returned
2118 * the full budget.
2119 */
2120 efx_channel_unlock_poll(channel);
2121
2122 return rx_packets;
2123}
2124#endif
2125
8ceee660
BH
2126/**************************************************************************
2127 *
2128 * Kernel net device interface
2129 *
2130 *************************************************************************/
2131
2132/* Context: process, rtnl_lock() held. */
e340be92 2133int efx_net_open(struct net_device *net_dev)
8ceee660 2134{
767e468c 2135 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4
BH
2136 int rc;
2137
62776d03
BH
2138 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2139 raw_smp_processor_id());
8ceee660 2140
8b7325b4
BH
2141 rc = efx_check_disabled(efx);
2142 if (rc)
2143 return rc;
f8b87c17
BH
2144 if (efx->phy_mode & PHY_MODE_SPECIAL)
2145 return -EBUSY;
8880f4ec
BH
2146 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2147 return -EIO;
f8b87c17 2148
78c1f0a0
SH
2149 /* Notify the kernel of the link state polled during driver load,
2150 * before the monitor starts running */
2151 efx_link_status_changed(efx);
2152
8ceee660 2153 efx_start_all(efx);
dd40781e 2154 efx_selftest_async_start(efx);
8ceee660
BH
2155 return 0;
2156}
2157
2158/* Context: process, rtnl_lock() held.
2159 * Note that the kernel will ignore our return code; this method
2160 * should really be a void.
2161 */
e340be92 2162int efx_net_stop(struct net_device *net_dev)
8ceee660 2163{
767e468c 2164 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2165
62776d03
BH
2166 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2167 raw_smp_processor_id());
8ceee660 2168
8b7325b4
BH
2169 /* Stop the device and flush all the channels */
2170 efx_stop_all(efx);
8ceee660
BH
2171
2172 return 0;
2173}
2174
5b9e207c 2175/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2aa9ef11
BH
2176static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2177 struct rtnl_link_stats64 *stats)
8ceee660 2178{
767e468c 2179 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2180
55edc6e6 2181 spin_lock_bh(&efx->stats_lock);
cd0ecc9a 2182 efx->type->update_stats(efx, NULL, stats);
1cb34522
BH
2183 spin_unlock_bh(&efx->stats_lock);
2184
8ceee660
BH
2185 return stats;
2186}
2187
2188/* Context: netif_tx_lock held, BHs disabled. */
2189static void efx_watchdog(struct net_device *net_dev)
2190{
767e468c 2191 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2192
62776d03
BH
2193 netif_err(efx, tx_err, efx->net_dev,
2194 "TX stuck with port_enabled=%d: resetting channels\n",
2195 efx->port_enabled);
8ceee660 2196
739bb23d 2197 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
2198}
2199
2200
2201/* Context: process, rtnl_lock() held. */
2202static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2203{
767e468c 2204 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4 2205 int rc;
8ceee660 2206
8b7325b4
BH
2207 rc = efx_check_disabled(efx);
2208 if (rc)
2209 return rc;
8ceee660
BH
2210 if (new_mtu > EFX_MAX_MTU)
2211 return -EINVAL;
2212
62776d03 2213 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660 2214
29c69a48
BH
2215 efx_device_detach_sync(efx);
2216 efx_stop_all(efx);
2217
d3245b28 2218 mutex_lock(&efx->mac_lock);
8ceee660 2219 net_dev->mtu = new_mtu;
0d322413 2220 efx_mac_reconfigure(efx);
d3245b28
BH
2221 mutex_unlock(&efx->mac_lock);
2222
8ceee660 2223 efx_start_all(efx);
29c69a48 2224 netif_device_attach(efx->net_dev);
6c8eef4a 2225 return 0;
8ceee660
BH
2226}
2227
2228static int efx_set_mac_address(struct net_device *net_dev, void *data)
2229{
767e468c 2230 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2231 struct sockaddr *addr = data;
e0b3ae30 2232 u8 *new_addr = addr->sa_data;
cfc77c2f
SS
2233 u8 old_addr[6];
2234 int rc;
8ceee660 2235
8ceee660 2236 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
2237 netif_err(efx, drv, efx->net_dev,
2238 "invalid ethernet MAC address requested: %pM\n",
2239 new_addr);
504f9b5a 2240 return -EADDRNOTAVAIL;
8ceee660
BH
2241 }
2242
cfc77c2f
SS
2243 /* save old address */
2244 ether_addr_copy(old_addr, net_dev->dev_addr);
cd84ff4d 2245 ether_addr_copy(net_dev->dev_addr, new_addr);
910c8789
SS
2246 if (efx->type->set_mac_address) {
2247 rc = efx->type->set_mac_address(efx);
cfc77c2f
SS
2248 if (rc) {
2249 ether_addr_copy(net_dev->dev_addr, old_addr);
2250 return rc;
2251 }
2252 }
8ceee660
BH
2253
2254 /* Reconfigure the MAC */
d3245b28 2255 mutex_lock(&efx->mac_lock);
0d322413 2256 efx_mac_reconfigure(efx);
d3245b28 2257 mutex_unlock(&efx->mac_lock);
8ceee660
BH
2258
2259 return 0;
2260}
2261
a816f75a 2262/* Context: netif_addr_lock held, BHs disabled. */
0fca8c97 2263static void efx_set_rx_mode(struct net_device *net_dev)
8ceee660 2264{
767e468c 2265 struct efx_nic *efx = netdev_priv(net_dev);
a816f75a 2266
8be4f3e6
BH
2267 if (efx->port_enabled)
2268 queue_work(efx->workqueue, &efx->mac_work);
2269 /* Otherwise efx_start_port() will do this */
8ceee660
BH
2270}
2271
c8f44aff 2272static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
2273{
2274 struct efx_nic *efx = netdev_priv(net_dev);
2275
2276 /* If disabling RX n-tuple filtering, clear existing filters */
2277 if (net_dev->features & ~data & NETIF_F_NTUPLE)
fbd79120 2278 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
abfe9039
BH
2279
2280 return 0;
2281}
2282
7fa8d547 2283static const struct net_device_ops efx_netdev_ops = {
c3ecb9f3
SH
2284 .ndo_open = efx_net_open,
2285 .ndo_stop = efx_net_stop,
4472702e 2286 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
2287 .ndo_tx_timeout = efx_watchdog,
2288 .ndo_start_xmit = efx_hard_start_xmit,
2289 .ndo_validate_addr = eth_validate_addr,
2290 .ndo_do_ioctl = efx_ioctl,
2291 .ndo_change_mtu = efx_change_mtu,
2292 .ndo_set_mac_address = efx_set_mac_address,
0fca8c97 2293 .ndo_set_rx_mode = efx_set_rx_mode,
abfe9039 2294 .ndo_set_features = efx_set_features,
cd2d5b52 2295#ifdef CONFIG_SFC_SRIOV
7fa8d547
SS
2296 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2297 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2298 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2299 .ndo_get_vf_config = efx_sriov_get_vf_config,
4392dc69 2300 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
1d051e00 2301 .ndo_get_phys_port_id = efx_sriov_get_phys_port_id,
cd2d5b52 2302#endif
c3ecb9f3
SH
2303#ifdef CONFIG_NET_POLL_CONTROLLER
2304 .ndo_poll_controller = efx_netpoll,
2305#endif
94b274bf 2306 .ndo_setup_tc = efx_setup_tc,
36763266
AR
2307#ifdef CONFIG_NET_RX_BUSY_POLL
2308 .ndo_busy_poll = efx_busy_poll,
2309#endif
64d8ad6d
BH
2310#ifdef CONFIG_RFS_ACCEL
2311 .ndo_rx_flow_steer = efx_filter_rfs,
2312#endif
c3ecb9f3
SH
2313};
2314
7dde596e
BH
2315static void efx_update_name(struct efx_nic *efx)
2316{
2317 strcpy(efx->name, efx->net_dev->name);
2318 efx_mtd_rename(efx);
2319 efx_set_channel_names(efx);
2320}
2321
8ceee660
BH
2322static int efx_netdev_event(struct notifier_block *this,
2323 unsigned long event, void *ptr)
2324{
351638e7 2325 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
8ceee660 2326
7fa8d547 2327 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
7dde596e
BH
2328 event == NETDEV_CHANGENAME)
2329 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
2330
2331 return NOTIFY_DONE;
2332}
2333
2334static struct notifier_block efx_netdev_notifier = {
2335 .notifier_call = efx_netdev_event,
2336};
2337
06d5e193
BH
2338static ssize_t
2339show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2340{
2341 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2342 return sprintf(buf, "%d\n", efx->phy_type);
2343}
776fbcc9 2344static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
06d5e193 2345
e7fef9b4
EC
2346#ifdef CONFIG_SFC_MCDI_LOGGING
2347static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2348 char *buf)
2349{
2350 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2351 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2352
2353 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2354}
2355static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2356 const char *buf, size_t count)
2357{
2358 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2359 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2360 bool enable = count > 0 && *buf != '0';
2361
2362 mcdi->logging_enabled = enable;
2363 return count;
2364}
2365static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2366#endif
2367
8ceee660
BH
2368static int efx_register_netdev(struct efx_nic *efx)
2369{
2370 struct net_device *net_dev = efx->net_dev;
c04bfc6b 2371 struct efx_channel *channel;
8ceee660
BH
2372 int rc;
2373
2374 net_dev->watchdog_timeo = 5 * HZ;
2375 net_dev->irq = efx->pci_dev->irq;
7fa8d547
SS
2376 net_dev->netdev_ops = &efx_netdev_ops;
2377 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
8127d661 2378 net_dev->priv_flags |= IFF_UNICAST_FLT;
7ad24ea4 2379 net_dev->ethtool_ops = &efx_ethtool_ops;
7e6d06f0 2380 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
8ceee660 2381
7dde596e 2382 rtnl_lock();
aed0628d 2383
7153f623
BH
2384 /* Enable resets to be scheduled and check whether any were
2385 * already requested. If so, the NIC is probably hosed so we
2386 * abort.
2387 */
2388 efx->state = STATE_READY;
2389 smp_mb(); /* ensure we change state before checking reset_pending */
2390 if (efx->reset_pending) {
2391 netif_err(efx, probe, efx->net_dev,
2392 "aborting probe due to scheduled reset\n");
2393 rc = -EIO;
2394 goto fail_locked;
2395 }
2396
aed0628d
BH
2397 rc = dev_alloc_name(net_dev, net_dev->name);
2398 if (rc < 0)
2399 goto fail_locked;
7dde596e 2400 efx_update_name(efx);
aed0628d 2401
8f8b3d51
BH
2402 /* Always start with carrier off; PHY events will detect the link */
2403 netif_carrier_off(net_dev);
2404
aed0628d
BH
2405 rc = register_netdevice(net_dev);
2406 if (rc)
2407 goto fail_locked;
2408
c04bfc6b
BH
2409 efx_for_each_channel(channel, efx) {
2410 struct efx_tx_queue *tx_queue;
60031fcc
BH
2411 efx_for_each_channel_tx_queue(tx_queue, channel)
2412 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
2413 }
2414
0bcf4a64
BH
2415 efx_associate(efx);
2416
7dde596e 2417 rtnl_unlock();
8ceee660 2418
06d5e193
BH
2419 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2420 if (rc) {
62776d03
BH
2421 netif_err(efx, drv, efx->net_dev,
2422 "failed to init net dev attributes\n");
06d5e193
BH
2423 goto fail_registered;
2424 }
e7fef9b4
EC
2425#ifdef CONFIG_SFC_MCDI_LOGGING
2426 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2427 if (rc) {
2428 netif_err(efx, drv, efx->net_dev,
2429 "failed to init net dev attributes\n");
2430 goto fail_attr_mcdi_logging;
2431 }
2432#endif
06d5e193 2433
8ceee660 2434 return 0;
06d5e193 2435
e7fef9b4
EC
2436#ifdef CONFIG_SFC_MCDI_LOGGING
2437fail_attr_mcdi_logging:
2438 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2439#endif
7153f623
BH
2440fail_registered:
2441 rtnl_lock();
0bcf4a64 2442 efx_dissociate(efx);
7153f623 2443 unregister_netdevice(net_dev);
aed0628d 2444fail_locked:
7153f623 2445 efx->state = STATE_UNINIT;
aed0628d 2446 rtnl_unlock();
62776d03 2447 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d 2448 return rc;
8ceee660
BH
2449}
2450
2451static void efx_unregister_netdev(struct efx_nic *efx)
2452{
8ceee660
BH
2453 if (!efx->net_dev)
2454 return;
2455
767e468c 2456 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660 2457
e7fef9b4
EC
2458 if (efx_dev_registered(efx)) {
2459 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2460#ifdef CONFIG_SFC_MCDI_LOGGING
2461 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2462#endif
2463 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2464 unregister_netdev(efx->net_dev);
2465 }
8ceee660
BH
2466}
2467
2468/**************************************************************************
2469 *
2470 * Device reset and suspend
2471 *
2472 **************************************************************************/
2473
2467ca46
BH
2474/* Tears down the entire software state and most of the hardware state
2475 * before reset. */
d3245b28 2476void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2477{
8ceee660
BH
2478 EFX_ASSERT_RESET_SERIALISED(efx);
2479
e283546c
EC
2480 if (method == RESET_TYPE_MCDI_TIMEOUT)
2481 efx->type->prepare_flr(efx);
2482
2467ca46 2483 efx_stop_all(efx);
d8291187 2484 efx_disable_interrupts(efx);
5642ceef
BH
2485
2486 mutex_lock(&efx->mac_lock);
087e9025
JC
2487 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2488 method != RESET_TYPE_DATAPATH)
4b988280 2489 efx->phy_op->fini(efx);
ef2b90ee 2490 efx->type->fini(efx);
8ceee660
BH
2491}
2492
2467ca46
BH
2493/* This function will always ensure that the locks acquired in
2494 * efx_reset_down() are released. A failure return code indicates
2495 * that we were unable to reinitialise the hardware, and the
2496 * driver should be disabled. If ok is false, then the rx and tx
2497 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2498int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2499{
2500 int rc;
2501
2467ca46 2502 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2503
e283546c
EC
2504 if (method == RESET_TYPE_MCDI_TIMEOUT)
2505 efx->type->finish_flr(efx);
2506
2507 /* Ensure that SRAM is initialised even if we're disabling the device */
ef2b90ee 2508 rc = efx->type->init(efx);
8ceee660 2509 if (rc) {
62776d03 2510 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2511 goto fail;
8ceee660
BH
2512 }
2513
eb9f6744
BH
2514 if (!ok)
2515 goto fail;
2516
087e9025
JC
2517 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2518 method != RESET_TYPE_DATAPATH) {
eb9f6744
BH
2519 rc = efx->phy_op->init(efx);
2520 if (rc)
2521 goto fail;
267d9d73
EC
2522 rc = efx->phy_op->reconfigure(efx);
2523 if (rc && rc != -EPERM)
62776d03
BH
2524 netif_err(efx, drv, efx->net_dev,
2525 "could not restore PHY settings\n");
4b988280
SH
2526 }
2527
261e4d96
JC
2528 rc = efx_enable_interrupts(efx);
2529 if (rc)
2530 goto fail;
6d8aaaf6
DP
2531
2532#ifdef CONFIG_SFC_SRIOV
2533 rc = efx->type->vswitching_restore(efx);
2534 if (rc) /* not fatal; the PF will still work fine */
2535 netif_warn(efx, probe, efx->net_dev,
2536 "failed to restore vswitching rc=%d;"
2537 " VFs may not function\n", rc);
2538#endif
2539
0d322413 2540 down_read(&efx->filter_sem);
64eebcfd 2541 efx_restore_filters(efx);
0d322413 2542 up_read(&efx->filter_sem);
7fa8d547
SS
2543 if (efx->type->sriov_reset)
2544 efx->type->sriov_reset(efx);
eb9f6744 2545
eb9f6744
BH
2546 mutex_unlock(&efx->mac_lock);
2547
2548 efx_start_all(efx);
2549
2550 return 0;
2551
2552fail:
2553 efx->port_initialized = false;
2467ca46
BH
2554
2555 mutex_unlock(&efx->mac_lock);
2556
8ceee660
BH
2557 return rc;
2558}
2559
eb9f6744
BH
2560/* Reset the NIC using the specified method. Note that the reset may
2561 * fail, in which case the card will be left in an unusable state.
8ceee660 2562 *
eb9f6744 2563 * Caller must hold the rtnl_lock.
8ceee660 2564 */
eb9f6744 2565int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2566{
eb9f6744
BH
2567 int rc, rc2;
2568 bool disabled;
8ceee660 2569
62776d03
BH
2570 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2571 RESET_TYPE(method));
8ceee660 2572
c2f3b8e3 2573 efx_device_detach_sync(efx);
d3245b28 2574 efx_reset_down(efx, method);
8ceee660 2575
ef2b90ee 2576 rc = efx->type->reset(efx, method);
8ceee660 2577 if (rc) {
62776d03 2578 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2579 goto out;
8ceee660
BH
2580 }
2581
a7d529ae
BH
2582 /* Clear flags for the scopes we covered. We assume the NIC and
2583 * driver are now quiescent so that there is no race here.
2584 */
e283546c
EC
2585 if (method < RESET_TYPE_MAX_METHOD)
2586 efx->reset_pending &= -(1 << (method + 1));
2587 else /* it doesn't fit into the well-ordered scope hierarchy */
2588 __clear_bit(method, &efx->reset_pending);
8ceee660
BH
2589
2590 /* Reinitialise bus-mastering, which may have been turned off before
2591 * the reset was scheduled. This is still appropriate, even in the
2592 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2593 * can respond to requests. */
2594 pci_set_master(efx->pci_dev);
2595
eb9f6744 2596out:
8ceee660 2597 /* Leave device stopped if necessary */
626950db
AR
2598 disabled = rc ||
2599 method == RESET_TYPE_DISABLE ||
2600 method == RESET_TYPE_RECOVER_OR_DISABLE;
eb9f6744
BH
2601 rc2 = efx_reset_up(efx, method, !disabled);
2602 if (rc2) {
2603 disabled = true;
2604 if (!rc)
2605 rc = rc2;
8ceee660
BH
2606 }
2607
eb9f6744 2608 if (disabled) {
f49a4589 2609 dev_close(efx->net_dev);
62776d03 2610 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2611 efx->state = STATE_DISABLED;
f4bd954e 2612 } else {
62776d03 2613 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2614 netif_device_attach(efx->net_dev);
f4bd954e 2615 }
8ceee660
BH
2616 return rc;
2617}
2618
626950db
AR
2619/* Try recovery mechanisms.
2620 * For now only EEH is supported.
2621 * Returns 0 if the recovery mechanisms are unsuccessful.
2622 * Returns a non-zero value otherwise.
2623 */
b28405b0 2624int efx_try_recovery(struct efx_nic *efx)
626950db
AR
2625{
2626#ifdef CONFIG_EEH
2627 /* A PCI error can occur and not be seen by EEH because nothing
2628 * happens on the PCI bus. In this case the driver may fail and
2629 * schedule a 'recover or reset', leading to this recovery handler.
2630 * Manually call the eeh failure check function.
2631 */
12a89dba 2632 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
626950db
AR
2633 if (eeh_dev_check_failure(eehdev)) {
2634 /* The EEH mechanisms will handle the error and reset the
2635 * device if necessary.
2636 */
2637 return 1;
2638 }
2639#endif
2640 return 0;
2641}
2642
74cd60a4
JC
2643static void efx_wait_for_bist_end(struct efx_nic *efx)
2644{
2645 int i;
2646
2647 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2648 if (efx_mcdi_poll_reboot(efx))
2649 goto out;
2650 msleep(BIST_WAIT_DELAY_MS);
2651 }
2652
2653 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2654out:
2655 /* Either way unset the BIST flag. If we found no reboot we probably
2656 * won't recover, but we should try.
2657 */
2658 efx->mc_bist_for_other_fn = false;
2659}
2660
8ceee660
BH
2661/* The worker thread exists so that code that cannot sleep can
2662 * schedule a reset for later.
2663 */
2664static void efx_reset_work(struct work_struct *data)
2665{
eb9f6744 2666 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
626950db
AR
2667 unsigned long pending;
2668 enum reset_type method;
2669
2670 pending = ACCESS_ONCE(efx->reset_pending);
2671 method = fls(pending) - 1;
2672
74cd60a4
JC
2673 if (method == RESET_TYPE_MC_BIST)
2674 efx_wait_for_bist_end(efx);
2675
626950db
AR
2676 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2677 method == RESET_TYPE_RECOVER_OR_ALL) &&
2678 efx_try_recovery(efx))
2679 return;
8ceee660 2680
a7d529ae 2681 if (!pending)
319ba649
SH
2682 return;
2683
eb9f6744 2684 rtnl_lock();
7153f623
BH
2685
2686 /* We checked the state in efx_schedule_reset() but it may
2687 * have changed by now. Now that we have the RTNL lock,
2688 * it cannot change again.
2689 */
2690 if (efx->state == STATE_READY)
626950db 2691 (void)efx_reset(efx, method);
7153f623 2692
eb9f6744 2693 rtnl_unlock();
8ceee660
BH
2694}
2695
2696void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2697{
2698 enum reset_type method;
2699
626950db
AR
2700 if (efx->state == STATE_RECOVERY) {
2701 netif_dbg(efx, drv, efx->net_dev,
2702 "recovering: skip scheduling %s reset\n",
2703 RESET_TYPE(type));
2704 return;
2705 }
2706
8ceee660
BH
2707 switch (type) {
2708 case RESET_TYPE_INVISIBLE:
2709 case RESET_TYPE_ALL:
626950db 2710 case RESET_TYPE_RECOVER_OR_ALL:
8ceee660
BH
2711 case RESET_TYPE_WORLD:
2712 case RESET_TYPE_DISABLE:
626950db 2713 case RESET_TYPE_RECOVER_OR_DISABLE:
087e9025 2714 case RESET_TYPE_DATAPATH:
74cd60a4 2715 case RESET_TYPE_MC_BIST:
e283546c 2716 case RESET_TYPE_MCDI_TIMEOUT:
8ceee660 2717 method = type;
0e2a9c7c
BH
2718 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2719 RESET_TYPE(method));
8ceee660 2720 break;
8ceee660 2721 default:
0e2a9c7c 2722 method = efx->type->map_reset_reason(type);
62776d03
BH
2723 netif_dbg(efx, drv, efx->net_dev,
2724 "scheduling %s reset for %s\n",
2725 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2726 break;
2727 }
8ceee660 2728
a7d529ae 2729 set_bit(method, &efx->reset_pending);
7153f623
BH
2730 smp_mb(); /* ensure we change reset_pending before checking state */
2731
2732 /* If we're not READY then just leave the flags set as the cue
2733 * to abort probing or reschedule the reset later.
2734 */
2735 if (ACCESS_ONCE(efx->state) != STATE_READY)
2736 return;
8ceee660 2737
8880f4ec
BH
2738 /* efx_process_channel() will no longer read events once a
2739 * reset is scheduled. So switch back to poll'd MCDI completions. */
2740 efx_mcdi_mode_poll(efx);
2741
1ab00629 2742 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2743}
2744
2745/**************************************************************************
2746 *
2747 * List of NICs we support
2748 *
2749 **************************************************************************/
2750
2751/* PCI device ID table */
9baa3c34 2752static const struct pci_device_id efx_pci_table[] = {
937383a5
BH
2753 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2754 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2755 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2756 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2757 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2758 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2759 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2760 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2761 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2762 .driver_data = (unsigned long) &siena_a0_nic_type},
8127d661
BH
2763 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2764 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
6f7f8aa6
SS
2765 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
2766 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
3b06a00e
MW
2767 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
2768 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
8ceee660
BH
2769 {0} /* end of list */
2770};
2771
2772/**************************************************************************
2773 *
3759433d 2774 * Dummy PHY/MAC operations
8ceee660 2775 *
01aad7b6 2776 * Can be used for some unimplemented operations
8ceee660
BH
2777 * Needed so all function pointers are valid and do not have to be tested
2778 * before use
2779 *
2780 **************************************************************************/
2781int efx_port_dummy_op_int(struct efx_nic *efx)
2782{
2783 return 0;
2784}
2785void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2786
2787static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2788{
2789 return false;
2790}
8ceee660 2791
6c8c2513 2792static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2793 .init = efx_port_dummy_op_int,
d3245b28 2794 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2795 .poll = efx_port_dummy_op_poll,
8ceee660 2796 .fini = efx_port_dummy_op_void,
8ceee660
BH
2797};
2798
8ceee660
BH
2799/**************************************************************************
2800 *
2801 * Data housekeeping
2802 *
2803 **************************************************************************/
2804
2805/* This zeroes out and then fills in the invariants in a struct
2806 * efx_nic (including all sub-structures).
2807 */
adeb15aa 2808static int efx_init_struct(struct efx_nic *efx,
8ceee660
BH
2809 struct pci_dev *pci_dev, struct net_device *net_dev)
2810{
4642610c 2811 int i;
8ceee660
BH
2812
2813 /* Initialise common structures */
0bcf4a64
BH
2814 INIT_LIST_HEAD(&efx->node);
2815 INIT_LIST_HEAD(&efx->secondary_list);
8ceee660 2816 spin_lock_init(&efx->biu_lock);
76884835
BH
2817#ifdef CONFIG_SFC_MTD
2818 INIT_LIST_HEAD(&efx->mtd_list);
2819#endif
8ceee660
BH
2820 INIT_WORK(&efx->reset_work, efx_reset_work);
2821 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
dd40781e 2822 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
8ceee660 2823 efx->pci_dev = pci_dev;
62776d03 2824 efx->msg_enable = debug;
f16aeea0 2825 efx->state = STATE_UNINIT;
8ceee660 2826 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2827
2828 efx->net_dev = net_dev;
43a3739d 2829 efx->rx_prefix_size = efx->type->rx_prefix_size;
2ec03014
AR
2830 efx->rx_ip_align =
2831 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
43a3739d
JC
2832 efx->rx_packet_hash_offset =
2833 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
bd9a265d
JC
2834 efx->rx_packet_ts_offset =
2835 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
8ceee660
BH
2836 spin_lock_init(&efx->stats_lock);
2837 mutex_init(&efx->mac_lock);
2838 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2839 efx->mdio.dev = net_dev;
766ca0fa 2840 INIT_WORK(&efx->mac_work, efx_mac_work);
9f2cb71c 2841 init_waitqueue_head(&efx->flush_wq);
8ceee660
BH
2842
2843 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2844 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2845 if (!efx->channel[i])
2846 goto fail;
d8291187
BH
2847 efx->msi_context[i].efx = efx;
2848 efx->msi_context[i].index = i;
8ceee660
BH
2849 }
2850
8ceee660
BH
2851 /* Higher numbered interrupt modes are less capable! */
2852 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2853 interrupt_mode);
2854
6977dc63
BH
2855 /* Would be good to use the net_dev name, but we're too early */
2856 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2857 pci_name(pci_dev));
2858 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2859 if (!efx->workqueue)
4642610c 2860 goto fail;
8d9853d9 2861
8ceee660 2862 return 0;
4642610c
BH
2863
2864fail:
2865 efx_fini_struct(efx);
2866 return -ENOMEM;
8ceee660
BH
2867}
2868
2869static void efx_fini_struct(struct efx_nic *efx)
2870{
8313aca3
BH
2871 int i;
2872
2873 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2874 kfree(efx->channel[i]);
2875
ef215e64
BH
2876 kfree(efx->vpd_sn);
2877
8ceee660
BH
2878 if (efx->workqueue) {
2879 destroy_workqueue(efx->workqueue);
2880 efx->workqueue = NULL;
2881 }
2882}
2883
e4d112e4
EC
2884void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2885{
2886 u64 n_rx_nodesc_trunc = 0;
2887 struct efx_channel *channel;
2888
2889 efx_for_each_channel(channel, efx)
2890 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2891 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2892 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2893}
2894
8ceee660
BH
2895/**************************************************************************
2896 *
2897 * PCI interface
2898 *
2899 **************************************************************************/
2900
2901/* Main body of final NIC shutdown code
2902 * This is called only at module unload (or hotplug removal).
2903 */
2904static void efx_pci_remove_main(struct efx_nic *efx)
2905{
7153f623
BH
2906 /* Flush reset_work. It can no longer be scheduled since we
2907 * are not READY.
2908 */
2909 BUG_ON(efx->state == STATE_READY);
2910 cancel_work_sync(&efx->reset_work);
2911
d8291187 2912 efx_disable_interrupts(efx);
152b6a62 2913 efx_nic_fini_interrupt(efx);
8ceee660 2914 efx_fini_port(efx);
ef2b90ee 2915 efx->type->fini(efx);
8ceee660
BH
2916 efx_fini_napi(efx);
2917 efx_remove_all(efx);
2918}
2919
2920/* Final NIC shutdown
2a3fc311
DP
2921 * This is called only at module unload (or hotplug removal). A PF can call
2922 * this on its VFs to ensure they are unbound first.
8ceee660
BH
2923 */
2924static void efx_pci_remove(struct pci_dev *pci_dev)
2925{
2926 struct efx_nic *efx;
2927
2928 efx = pci_get_drvdata(pci_dev);
2929 if (!efx)
2930 return;
2931
2932 /* Mark the NIC as fini, then stop the interface */
2933 rtnl_lock();
0bcf4a64 2934 efx_dissociate(efx);
8ceee660 2935 dev_close(efx->net_dev);
d8291187 2936 efx_disable_interrupts(efx);
ea6bb99e 2937 efx->state = STATE_UNINIT;
8ceee660
BH
2938 rtnl_unlock();
2939
7fa8d547
SS
2940 if (efx->type->sriov_fini)
2941 efx->type->sriov_fini(efx);
2942
8ceee660
BH
2943 efx_unregister_netdev(efx);
2944
7dde596e
BH
2945 efx_mtd_remove(efx);
2946
8ceee660
BH
2947 efx_pci_remove_main(efx);
2948
8ceee660 2949 efx_fini_io(efx);
62776d03 2950 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660 2951
8ceee660
BH
2952 efx_fini_struct(efx);
2953 free_netdev(efx->net_dev);
626950db
AR
2954
2955 pci_disable_pcie_error_reporting(pci_dev);
8ceee660
BH
2956};
2957
460eeaa0
BH
2958/* NIC VPD information
2959 * Called during probe to display the part number of the
2960 * installed NIC. VPD is potentially very large but this should
2961 * always appear within the first 512 bytes.
2962 */
2963#define SFC_VPD_LEN 512
ef215e64 2964static void efx_probe_vpd_strings(struct efx_nic *efx)
460eeaa0
BH
2965{
2966 struct pci_dev *dev = efx->pci_dev;
2967 char vpd_data[SFC_VPD_LEN];
2968 ssize_t vpd_size;
ef215e64 2969 int ro_start, ro_size, i, j;
460eeaa0
BH
2970
2971 /* Get the vpd data from the device */
2972 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2973 if (vpd_size <= 0) {
2974 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2975 return;
2976 }
2977
2978 /* Get the Read only section */
ef215e64
BH
2979 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2980 if (ro_start < 0) {
460eeaa0
BH
2981 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2982 return;
2983 }
2984
ef215e64
BH
2985 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2986 j = ro_size;
2987 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
460eeaa0
BH
2988 if (i + j > vpd_size)
2989 j = vpd_size - i;
2990
2991 /* Get the Part number */
2992 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2993 if (i < 0) {
2994 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2995 return;
2996 }
2997
2998 j = pci_vpd_info_field_size(&vpd_data[i]);
2999 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3000 if (i + j > vpd_size) {
3001 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3002 return;
3003 }
3004
3005 netif_info(efx, drv, efx->net_dev,
3006 "Part Number : %.*s\n", j, &vpd_data[i]);
ef215e64
BH
3007
3008 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3009 j = ro_size;
3010 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3011 if (i < 0) {
3012 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3013 return;
3014 }
3015
3016 j = pci_vpd_info_field_size(&vpd_data[i]);
3017 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3018 if (i + j > vpd_size) {
3019 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3020 return;
3021 }
3022
3023 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3024 if (!efx->vpd_sn)
3025 return;
3026
3027 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
460eeaa0
BH
3028}
3029
3030
8ceee660
BH
3031/* Main body of NIC initialisation
3032 * This is called at module load (or hotplug insertion, theoretically).
3033 */
3034static int efx_pci_probe_main(struct efx_nic *efx)
3035{
3036 int rc;
3037
3038 /* Do start-of-day initialisation */
3039 rc = efx_probe_all(efx);
3040 if (rc)
3041 goto fail1;
3042
e8f14992 3043 efx_init_napi(efx);
8ceee660 3044
ef2b90ee 3045 rc = efx->type->init(efx);
8ceee660 3046 if (rc) {
62776d03
BH
3047 netif_err(efx, probe, efx->net_dev,
3048 "failed to initialise NIC\n");
278c0621 3049 goto fail3;
8ceee660
BH
3050 }
3051
3052 rc = efx_init_port(efx);
3053 if (rc) {
62776d03
BH
3054 netif_err(efx, probe, efx->net_dev,
3055 "failed to initialise port\n");
278c0621 3056 goto fail4;
8ceee660
BH
3057 }
3058
152b6a62 3059 rc = efx_nic_init_interrupt(efx);
8ceee660 3060 if (rc)
278c0621 3061 goto fail5;
261e4d96
JC
3062 rc = efx_enable_interrupts(efx);
3063 if (rc)
3064 goto fail6;
8ceee660
BH
3065
3066 return 0;
3067
261e4d96
JC
3068 fail6:
3069 efx_nic_fini_interrupt(efx);
278c0621 3070 fail5:
8ceee660 3071 efx_fini_port(efx);
8ceee660 3072 fail4:
ef2b90ee 3073 efx->type->fini(efx);
8ceee660
BH
3074 fail3:
3075 efx_fini_napi(efx);
8ceee660
BH
3076 efx_remove_all(efx);
3077 fail1:
3078 return rc;
3079}
3080
3081/* NIC initialisation
3082 *
3083 * This is called at module load (or hotplug insertion,
73ba7b68 3084 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
3085 * sets up and registers the network devices with the kernel and hooks
3086 * the interrupt service routine. It does not prepare the device for
3087 * transmission; this is left to the first time one of the network
3088 * interfaces is brought up (i.e. efx_net_open).
3089 */
87d1fc11 3090static int efx_pci_probe(struct pci_dev *pci_dev,
1dd06ae8 3091 const struct pci_device_id *entry)
8ceee660 3092{
8ceee660
BH
3093 struct net_device *net_dev;
3094 struct efx_nic *efx;
fadac6aa 3095 int rc;
8ceee660
BH
3096
3097 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
3098 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3099 EFX_MAX_RX_QUEUES);
8ceee660
BH
3100 if (!net_dev)
3101 return -ENOMEM;
adeb15aa
BH
3102 efx = netdev_priv(net_dev);
3103 efx->type = (const struct efx_nic_type *) entry->driver_data;
3104 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
97bc5415 3105 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 3106 NETIF_F_RXCSUM);
adeb15aa 3107 if (efx->type->offload_features & NETIF_F_V6_CSUM)
738a8f4b 3108 net_dev->features |= NETIF_F_TSO6;
28506563
BH
3109 /* Mask for features that also apply to VLAN devices */
3110 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
3111 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3112 NETIF_F_RXCSUM);
3113 /* All offloads can be toggled */
3114 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
8ceee660 3115 pci_set_drvdata(pci_dev, efx);
62776d03 3116 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
adeb15aa 3117 rc = efx_init_struct(efx, pci_dev, net_dev);
8ceee660
BH
3118 if (rc)
3119 goto fail1;
3120
62776d03 3121 netif_info(efx, probe, efx->net_dev,
ff79c8ac 3122 "Solarflare NIC detected\n");
8ceee660 3123
6f7f8aa6
SS
3124 if (!efx->type->is_vf)
3125 efx_probe_vpd_strings(efx);
460eeaa0 3126
8ceee660
BH
3127 /* Set up basic I/O (BAR mappings etc) */
3128 rc = efx_init_io(efx);
3129 if (rc)
3130 goto fail2;
3131
fadac6aa 3132 rc = efx_pci_probe_main(efx);
fadac6aa
BH
3133 if (rc)
3134 goto fail3;
8ceee660 3135
8ceee660
BH
3136 rc = efx_register_netdev(efx);
3137 if (rc)
fadac6aa 3138 goto fail4;
8ceee660 3139
7fa8d547
SS
3140 if (efx->type->sriov_init) {
3141 rc = efx->type->sriov_init(efx);
3142 if (rc)
3143 netif_err(efx, probe, efx->net_dev,
3144 "SR-IOV can't be enabled rc %d\n", rc);
3145 }
cd2d5b52 3146
62776d03 3147 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5 3148
7c43161c 3149 /* Try to create MTDs, but allow this to fail */
a5211bb5 3150 rtnl_lock();
7c43161c 3151 rc = efx_mtd_probe(efx);
a5211bb5 3152 rtnl_unlock();
7c43161c
BH
3153 if (rc)
3154 netif_warn(efx, probe, efx->net_dev,
3155 "failed to create MTDs (%d)\n", rc);
3156
626950db
AR
3157 rc = pci_enable_pcie_error_reporting(pci_dev);
3158 if (rc && rc != -EINVAL)
3159 netif_warn(efx, probe, efx->net_dev,
3160 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3161
8ceee660
BH
3162 return 0;
3163
8ceee660 3164 fail4:
fadac6aa 3165 efx_pci_remove_main(efx);
8ceee660
BH
3166 fail3:
3167 efx_fini_io(efx);
3168 fail2:
3169 efx_fini_struct(efx);
3170 fail1:
5e2a911c 3171 WARN_ON(rc > 0);
62776d03 3172 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
3173 free_netdev(net_dev);
3174 return rc;
3175}
3176
834e23dd
SS
3177/* efx_pci_sriov_configure returns the actual number of Virtual Functions
3178 * enabled on success
3179 */
3180#ifdef CONFIG_SFC_SRIOV
3181static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3182{
3183 int rc;
3184 struct efx_nic *efx = pci_get_drvdata(dev);
3185
3186 if (efx->type->sriov_configure) {
3187 rc = efx->type->sriov_configure(efx, num_vfs);
3188 if (rc)
3189 return rc;
3190 else
3191 return num_vfs;
3192 } else
3193 return -EOPNOTSUPP;
3194}
3195#endif
3196
89c758fa
BH
3197static int efx_pm_freeze(struct device *dev)
3198{
3199 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3200
61da026d
BH
3201 rtnl_lock();
3202
6032fb56
BH
3203 if (efx->state != STATE_DISABLED) {
3204 efx->state = STATE_UNINIT;
89c758fa 3205
c2f3b8e3 3206 efx_device_detach_sync(efx);
89c758fa 3207
6032fb56 3208 efx_stop_all(efx);
d8291187 3209 efx_disable_interrupts(efx);
6032fb56 3210 }
89c758fa 3211
61da026d
BH
3212 rtnl_unlock();
3213
89c758fa
BH
3214 return 0;
3215}
3216
3217static int efx_pm_thaw(struct device *dev)
3218{
261e4d96 3219 int rc;
89c758fa
BH
3220 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3221
61da026d
BH
3222 rtnl_lock();
3223
6032fb56 3224 if (efx->state != STATE_DISABLED) {
261e4d96
JC
3225 rc = efx_enable_interrupts(efx);
3226 if (rc)
3227 goto fail;
89c758fa 3228
6032fb56
BH
3229 mutex_lock(&efx->mac_lock);
3230 efx->phy_op->reconfigure(efx);
3231 mutex_unlock(&efx->mac_lock);
89c758fa 3232
6032fb56 3233 efx_start_all(efx);
89c758fa 3234
6032fb56 3235 netif_device_attach(efx->net_dev);
89c758fa 3236
6032fb56 3237 efx->state = STATE_READY;
89c758fa 3238
6032fb56
BH
3239 efx->type->resume_wol(efx);
3240 }
89c758fa 3241
61da026d
BH
3242 rtnl_unlock();
3243
319ba649
SH
3244 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3245 queue_work(reset_workqueue, &efx->reset_work);
3246
89c758fa 3247 return 0;
261e4d96
JC
3248
3249fail:
3250 rtnl_unlock();
3251
3252 return rc;
89c758fa
BH
3253}
3254
3255static int efx_pm_poweroff(struct device *dev)
3256{
3257 struct pci_dev *pci_dev = to_pci_dev(dev);
3258 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3259
3260 efx->type->fini(efx);
3261
a7d529ae 3262 efx->reset_pending = 0;
89c758fa
BH
3263
3264 pci_save_state(pci_dev);
3265 return pci_set_power_state(pci_dev, PCI_D3hot);
3266}
3267
3268/* Used for both resume and restore */
3269static int efx_pm_resume(struct device *dev)
3270{
3271 struct pci_dev *pci_dev = to_pci_dev(dev);
3272 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3273 int rc;
3274
3275 rc = pci_set_power_state(pci_dev, PCI_D0);
3276 if (rc)
3277 return rc;
3278 pci_restore_state(pci_dev);
3279 rc = pci_enable_device(pci_dev);
3280 if (rc)
3281 return rc;
3282 pci_set_master(efx->pci_dev);
3283 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3284 if (rc)
3285 return rc;
3286 rc = efx->type->init(efx);
3287 if (rc)
3288 return rc;
261e4d96
JC
3289 rc = efx_pm_thaw(dev);
3290 return rc;
89c758fa
BH
3291}
3292
3293static int efx_pm_suspend(struct device *dev)
3294{
3295 int rc;
3296
3297 efx_pm_freeze(dev);
3298 rc = efx_pm_poweroff(dev);
3299 if (rc)
3300 efx_pm_resume(dev);
3301 return rc;
3302}
3303
18e83e4c 3304static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
3305 .suspend = efx_pm_suspend,
3306 .resume = efx_pm_resume,
3307 .freeze = efx_pm_freeze,
3308 .thaw = efx_pm_thaw,
3309 .poweroff = efx_pm_poweroff,
3310 .restore = efx_pm_resume,
3311};
3312
626950db
AR
3313/* A PCI error affecting this device was detected.
3314 * At this point MMIO and DMA may be disabled.
3315 * Stop the software path and request a slot reset.
3316 */
debd0034 3317static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3318 enum pci_channel_state state)
626950db
AR
3319{
3320 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3321 struct efx_nic *efx = pci_get_drvdata(pdev);
3322
3323 if (state == pci_channel_io_perm_failure)
3324 return PCI_ERS_RESULT_DISCONNECT;
3325
3326 rtnl_lock();
3327
3328 if (efx->state != STATE_DISABLED) {
3329 efx->state = STATE_RECOVERY;
3330 efx->reset_pending = 0;
3331
3332 efx_device_detach_sync(efx);
3333
3334 efx_stop_all(efx);
d8291187 3335 efx_disable_interrupts(efx);
626950db
AR
3336
3337 status = PCI_ERS_RESULT_NEED_RESET;
3338 } else {
3339 /* If the interface is disabled we don't want to do anything
3340 * with it.
3341 */
3342 status = PCI_ERS_RESULT_RECOVERED;
3343 }
3344
3345 rtnl_unlock();
3346
3347 pci_disable_device(pdev);
3348
3349 return status;
3350}
3351
dbedd44e 3352/* Fake a successful reset, which will be performed later in efx_io_resume. */
debd0034 3353static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
626950db
AR
3354{
3355 struct efx_nic *efx = pci_get_drvdata(pdev);
3356 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3357 int rc;
3358
3359 if (pci_enable_device(pdev)) {
3360 netif_err(efx, hw, efx->net_dev,
3361 "Cannot re-enable PCI device after reset.\n");
3362 status = PCI_ERS_RESULT_DISCONNECT;
3363 }
3364
3365 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3366 if (rc) {
3367 netif_err(efx, hw, efx->net_dev,
3368 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3369 /* Non-fatal error. Continue. */
3370 }
3371
3372 return status;
3373}
3374
3375/* Perform the actual reset and resume I/O operations. */
3376static void efx_io_resume(struct pci_dev *pdev)
3377{
3378 struct efx_nic *efx = pci_get_drvdata(pdev);
3379 int rc;
3380
3381 rtnl_lock();
3382
3383 if (efx->state == STATE_DISABLED)
3384 goto out;
3385
3386 rc = efx_reset(efx, RESET_TYPE_ALL);
3387 if (rc) {
3388 netif_err(efx, hw, efx->net_dev,
3389 "efx_reset failed after PCI error (%d)\n", rc);
3390 } else {
3391 efx->state = STATE_READY;
3392 netif_dbg(efx, hw, efx->net_dev,
3393 "Done resetting and resuming IO after PCI error.\n");
3394 }
3395
3396out:
3397 rtnl_unlock();
3398}
3399
3400/* For simplicity and reliability, we always require a slot reset and try to
3401 * reset the hardware when a pci error affecting the device is detected.
3402 * We leave both the link_reset and mmio_enabled callback unimplemented:
3403 * with our request for slot reset the mmio_enabled callback will never be
3404 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3405 */
3406static struct pci_error_handlers efx_err_handlers = {
3407 .error_detected = efx_io_error_detected,
3408 .slot_reset = efx_io_slot_reset,
3409 .resume = efx_io_resume,
3410};
3411
8ceee660 3412static struct pci_driver efx_pci_driver = {
c5d5f5fd 3413 .name = KBUILD_MODNAME,
8ceee660
BH
3414 .id_table = efx_pci_table,
3415 .probe = efx_pci_probe,
3416 .remove = efx_pci_remove,
89c758fa 3417 .driver.pm = &efx_pm_ops,
626950db 3418 .err_handler = &efx_err_handlers,
834e23dd
SS
3419#ifdef CONFIG_SFC_SRIOV
3420 .sriov_configure = efx_pci_sriov_configure,
3421#endif
8ceee660
BH
3422};
3423
3424/**************************************************************************
3425 *
3426 * Kernel module interface
3427 *
3428 *************************************************************************/
3429
3430module_param(interrupt_mode, uint, 0444);
3431MODULE_PARM_DESC(interrupt_mode,
3432 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3433
3434static int __init efx_init_module(void)
3435{
3436 int rc;
3437
3438 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3439
3440 rc = register_netdevice_notifier(&efx_netdev_notifier);
3441 if (rc)
3442 goto err_notifier;
3443
7fa8d547 3444#ifdef CONFIG_SFC_SRIOV
cd2d5b52
BH
3445 rc = efx_init_sriov();
3446 if (rc)
3447 goto err_sriov;
7fa8d547 3448#endif
cd2d5b52 3449
1ab00629
SH
3450 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3451 if (!reset_workqueue) {
3452 rc = -ENOMEM;
3453 goto err_reset;
3454 }
8ceee660
BH
3455
3456 rc = pci_register_driver(&efx_pci_driver);
3457 if (rc < 0)
3458 goto err_pci;
3459
3460 return 0;
3461
3462 err_pci:
1ab00629
SH
3463 destroy_workqueue(reset_workqueue);
3464 err_reset:
7fa8d547 3465#ifdef CONFIG_SFC_SRIOV
cd2d5b52
BH
3466 efx_fini_sriov();
3467 err_sriov:
7fa8d547 3468#endif
8ceee660
BH
3469 unregister_netdevice_notifier(&efx_netdev_notifier);
3470 err_notifier:
3471 return rc;
3472}
3473
3474static void __exit efx_exit_module(void)
3475{
3476 printk(KERN_INFO "Solarflare NET driver unloading\n");
3477
3478 pci_unregister_driver(&efx_pci_driver);
1ab00629 3479 destroy_workqueue(reset_workqueue);
7fa8d547 3480#ifdef CONFIG_SFC_SRIOV
cd2d5b52 3481 efx_fini_sriov();
7fa8d547 3482#endif
8ceee660
BH
3483 unregister_netdevice_notifier(&efx_netdev_notifier);
3484
3485}
3486
3487module_init(efx_init_module);
3488module_exit(efx_exit_module);
3489
906bb26c
BH
3490MODULE_AUTHOR("Solarflare Communications and "
3491 "Michael Brown <mbrown@fensystems.co.uk>");
6a350fdb 3492MODULE_DESCRIPTION("Solarflare network driver");
8ceee660
BH
3493MODULE_LICENSE("GPL");
3494MODULE_DEVICE_TABLE(pci, efx_pci_table);