sfc: Add support for Solarflare SFC9100 family
[linux-2.6-block.git] / drivers / net / ethernet / sfc / ef10.c
CommitLineData
8127d661
BH
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include "net_driver.h"
11#include "ef10_regs.h"
12#include "io.h"
13#include "mcdi.h"
14#include "mcdi_pcol.h"
15#include "nic.h"
16#include "workarounds.h"
17#include <linux/in.h>
18#include <linux/jhash.h>
19#include <linux/wait.h>
20#include <linux/workqueue.h>
21
22/* Hardware control for EF10 architecture including 'Huntington'. */
23
24#define EFX_EF10_DRVGEN_EV 7
25enum {
26 EFX_EF10_TEST = 1,
27 EFX_EF10_REFILL,
28};
29
30/* The reserved RSS context value */
31#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
32
33/* The filter table(s) are managed by firmware and we have write-only
34 * access. When removing filters we must identify them to the
35 * firmware by a 64-bit handle, but this is too wide for Linux kernel
36 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
37 * be able to tell in advance whether a requested insertion will
38 * replace an existing filter. Therefore we maintain a software hash
39 * table, which should be at least as large as the hardware hash
40 * table.
41 *
42 * Huntington has a single 8K filter table shared between all filter
43 * types and both ports.
44 */
45#define HUNT_FILTER_TBL_ROWS 8192
46
47struct efx_ef10_filter_table {
48/* The RX match field masks supported by this fw & hw, in order of priority */
49 enum efx_filter_match_flags rx_match_flags[
50 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
51 unsigned int rx_match_count;
52
53 struct {
54 unsigned long spec; /* pointer to spec plus flag bits */
55/* BUSY flag indicates that an update is in progress. STACK_OLD is
56 * used to mark and sweep stack-owned MAC filters.
57 */
58#define EFX_EF10_FILTER_FLAG_BUSY 1UL
59#define EFX_EF10_FILTER_FLAG_STACK_OLD 2UL
60#define EFX_EF10_FILTER_FLAGS 3UL
61 u64 handle; /* firmware handle */
62 } *entry;
63 wait_queue_head_t waitq;
64/* Shadow of net_device address lists, guarded by mac_lock */
65#define EFX_EF10_FILTER_STACK_UC_MAX 32
66#define EFX_EF10_FILTER_STACK_MC_MAX 256
67 struct {
68 u8 addr[ETH_ALEN];
69 u16 id;
70 } stack_uc_list[EFX_EF10_FILTER_STACK_UC_MAX],
71 stack_mc_list[EFX_EF10_FILTER_STACK_MC_MAX];
72 int stack_uc_count; /* negative for PROMISC */
73 int stack_mc_count; /* negative for PROMISC/ALLMULTI */
74};
75
76/* An arbitrary search limit for the software hash table */
77#define EFX_EF10_FILTER_SEARCH_LIMIT 200
78
79static void efx_ef10_rx_push_indir_table(struct efx_nic *efx);
80static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
81static void efx_ef10_filter_table_remove(struct efx_nic *efx);
82
83static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
84{
85 efx_dword_t reg;
86
87 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
88 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
89 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
90}
91
92static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
93{
94 return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
95}
96
97static int efx_ef10_init_capabilities(struct efx_nic *efx)
98{
99 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
100 struct efx_ef10_nic_data *nic_data = efx->nic_data;
101 size_t outlen;
102 int rc;
103
104 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
105
106 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
107 outbuf, sizeof(outbuf), &outlen);
108 if (rc)
109 return rc;
110
111 if (outlen >= sizeof(outbuf)) {
112 nic_data->datapath_caps =
113 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
114 if (!(nic_data->datapath_caps &
115 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
116 netif_err(efx, drv, efx->net_dev,
117 "Capabilities don't indicate TSO support.\n");
118 return -ENODEV;
119 }
120 }
121
122 return 0;
123}
124
125static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
126{
127 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
128 int rc;
129
130 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
131 outbuf, sizeof(outbuf), NULL);
132 if (rc)
133 return rc;
134 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
135 return rc > 0 ? rc : -ERANGE;
136}
137
138static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
139{
140 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
141 size_t outlen;
142 int rc;
143
144 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
145
146 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
147 outbuf, sizeof(outbuf), &outlen);
148 if (rc)
149 return rc;
150 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
151 return -EIO;
152
153 memcpy(mac_address,
154 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE), ETH_ALEN);
155 return 0;
156}
157
158static int efx_ef10_probe(struct efx_nic *efx)
159{
160 struct efx_ef10_nic_data *nic_data;
161 int i, rc;
162
163 /* We can have one VI for each 8K region. However we need
164 * multiple TX queues per channel.
165 */
166 efx->max_channels =
167 min_t(unsigned int,
168 EFX_MAX_CHANNELS,
169 resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
170 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
171 BUG_ON(efx->max_channels == 0);
172
173 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
174 if (!nic_data)
175 return -ENOMEM;
176 efx->nic_data = nic_data;
177
178 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
179 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
180 if (rc)
181 goto fail1;
182
183 /* Get the MC's warm boot count. In case it's rebooting right
184 * now, be prepared to retry.
185 */
186 i = 0;
187 for (;;) {
188 rc = efx_ef10_get_warm_boot_count(efx);
189 if (rc >= 0)
190 break;
191 if (++i == 5)
192 goto fail2;
193 ssleep(1);
194 }
195 nic_data->warm_boot_count = rc;
196
197 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
198
199 /* In case we're recovering from a crash (kexec), we want to
200 * cancel any outstanding request by the previous user of this
201 * function. We send a special message using the least
202 * significant bits of the 'high' (doorbell) register.
203 */
204 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
205
206 rc = efx_mcdi_init(efx);
207 if (rc)
208 goto fail2;
209
210 /* Reset (most) configuration for this function */
211 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
212 if (rc)
213 goto fail3;
214
215 /* Enable event logging */
216 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
217 if (rc)
218 goto fail3;
219
220 rc = efx_ef10_init_capabilities(efx);
221 if (rc < 0)
222 goto fail3;
223
224 efx->rx_packet_len_offset =
225 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
226
227 if (!(nic_data->datapath_caps &
228 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
229 netif_err(efx, probe, efx->net_dev,
230 "current firmware does not support an RX prefix\n");
231 rc = -ENODEV;
232 goto fail3;
233 }
234
235 rc = efx_mcdi_port_get_number(efx);
236 if (rc < 0)
237 goto fail3;
238 efx->port_num = rc;
239
240 rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
241 if (rc)
242 goto fail3;
243
244 rc = efx_ef10_get_sysclk_freq(efx);
245 if (rc < 0)
246 goto fail3;
247 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
248
249 /* Check whether firmware supports bug 35388 workaround */
250 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
251 if (rc == 0)
252 nic_data->workaround_35388 = true;
253 else if (rc != -ENOSYS && rc != -ENOENT)
254 goto fail3;
255 netif_dbg(efx, probe, efx->net_dev,
256 "workaround for bug 35388 is %sabled\n",
257 nic_data->workaround_35388 ? "en" : "dis");
258
259 rc = efx_mcdi_mon_probe(efx);
260 if (rc)
261 goto fail3;
262
263 efx_ptp_probe(efx);
264
265 return 0;
266
267fail3:
268 efx_mcdi_fini(efx);
269fail2:
270 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
271fail1:
272 kfree(nic_data);
273 efx->nic_data = NULL;
274 return rc;
275}
276
277static int efx_ef10_free_vis(struct efx_nic *efx)
278{
279 int rc = efx_mcdi_rpc(efx, MC_CMD_FREE_VIS, NULL, 0, NULL, 0, NULL);
280
281 /* -EALREADY means nothing to free, so ignore */
282 if (rc == -EALREADY)
283 rc = 0;
284 return rc;
285}
286
287static void efx_ef10_remove(struct efx_nic *efx)
288{
289 struct efx_ef10_nic_data *nic_data = efx->nic_data;
290 int rc;
291
292 efx_mcdi_mon_remove(efx);
293
294 /* This needs to be after efx_ptp_remove_channel() with no filters */
295 efx_ef10_rx_free_indir_table(efx);
296
297 rc = efx_ef10_free_vis(efx);
298 WARN_ON(rc != 0);
299
300 efx_mcdi_fini(efx);
301 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
302 kfree(nic_data);
303}
304
305static int efx_ef10_alloc_vis(struct efx_nic *efx,
306 unsigned int min_vis, unsigned int max_vis)
307{
308 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
309 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
310 struct efx_ef10_nic_data *nic_data = efx->nic_data;
311 size_t outlen;
312 int rc;
313
314 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
315 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
316 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
317 outbuf, sizeof(outbuf), &outlen);
318 if (rc != 0)
319 return rc;
320
321 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
322 return -EIO;
323
324 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
325 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
326
327 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
328 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
329 return 0;
330}
331
332static int efx_ef10_dimension_resources(struct efx_nic *efx)
333{
334 unsigned int n_vis =
335 max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
336
337 return efx_ef10_alloc_vis(efx, n_vis, n_vis);
338}
339
340static int efx_ef10_init_nic(struct efx_nic *efx)
341{
342 struct efx_ef10_nic_data *nic_data = efx->nic_data;
343 int rc;
344
345 if (nic_data->must_realloc_vis) {
346 /* We cannot let the number of VIs change now */
347 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
348 nic_data->n_allocated_vis);
349 if (rc)
350 return rc;
351 nic_data->must_realloc_vis = false;
352 }
353
354 efx_ef10_rx_push_indir_table(efx);
355 return 0;
356}
357
358static int efx_ef10_map_reset_flags(u32 *flags)
359{
360 enum {
361 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
362 ETH_RESET_SHARED_SHIFT),
363 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
364 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
365 ETH_RESET_PHY | ETH_RESET_MGMT) <<
366 ETH_RESET_SHARED_SHIFT)
367 };
368
369 /* We assume for now that our PCI function is permitted to
370 * reset everything.
371 */
372
373 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
374 *flags &= ~EF10_RESET_MC;
375 return RESET_TYPE_WORLD;
376 }
377
378 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
379 *flags &= ~EF10_RESET_PORT;
380 return RESET_TYPE_ALL;
381 }
382
383 /* no invisible reset implemented */
384
385 return -EINVAL;
386}
387
388#define EF10_DMA_STAT(ext_name, mcdi_name) \
389 [EF10_STAT_ ## ext_name] = \
390 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
391#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
392 [EF10_STAT_ ## int_name] = \
393 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
394#define EF10_OTHER_STAT(ext_name) \
395 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
396
397static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
398 EF10_DMA_STAT(tx_bytes, TX_BYTES),
399 EF10_DMA_STAT(tx_packets, TX_PKTS),
400 EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
401 EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
402 EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
403 EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
404 EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
405 EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
406 EF10_DMA_STAT(tx_64, TX_64_PKTS),
407 EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
408 EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
409 EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
410 EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
411 EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
412 EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
413 EF10_DMA_STAT(rx_bytes, RX_BYTES),
414 EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
415 EF10_OTHER_STAT(rx_good_bytes),
416 EF10_OTHER_STAT(rx_bad_bytes),
417 EF10_DMA_STAT(rx_packets, RX_PKTS),
418 EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
419 EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
420 EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
421 EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
422 EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
423 EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
424 EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
425 EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
426 EF10_DMA_STAT(rx_64, RX_64_PKTS),
427 EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
428 EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
429 EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
430 EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
431 EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
432 EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
433 EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
434 EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
435 EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
436 EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
437 EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
438 EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
439};
440
441#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \
442 (1ULL << EF10_STAT_tx_packets) | \
443 (1ULL << EF10_STAT_tx_pause) | \
444 (1ULL << EF10_STAT_tx_unicast) | \
445 (1ULL << EF10_STAT_tx_multicast) | \
446 (1ULL << EF10_STAT_tx_broadcast) | \
447 (1ULL << EF10_STAT_rx_bytes) | \
448 (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
449 (1ULL << EF10_STAT_rx_good_bytes) | \
450 (1ULL << EF10_STAT_rx_bad_bytes) | \
451 (1ULL << EF10_STAT_rx_packets) | \
452 (1ULL << EF10_STAT_rx_good) | \
453 (1ULL << EF10_STAT_rx_bad) | \
454 (1ULL << EF10_STAT_rx_pause) | \
455 (1ULL << EF10_STAT_rx_control) | \
456 (1ULL << EF10_STAT_rx_unicast) | \
457 (1ULL << EF10_STAT_rx_multicast) | \
458 (1ULL << EF10_STAT_rx_broadcast) | \
459 (1ULL << EF10_STAT_rx_lt64) | \
460 (1ULL << EF10_STAT_rx_64) | \
461 (1ULL << EF10_STAT_rx_65_to_127) | \
462 (1ULL << EF10_STAT_rx_128_to_255) | \
463 (1ULL << EF10_STAT_rx_256_to_511) | \
464 (1ULL << EF10_STAT_rx_512_to_1023) | \
465 (1ULL << EF10_STAT_rx_1024_to_15xx) | \
466 (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \
467 (1ULL << EF10_STAT_rx_gtjumbo) | \
468 (1ULL << EF10_STAT_rx_bad_gtjumbo) | \
469 (1ULL << EF10_STAT_rx_overflow) | \
470 (1ULL << EF10_STAT_rx_nodesc_drops))
471
472/* These statistics are only provided by the 10G MAC. For a 10G/40G
473 * switchable port we do not expose these because they might not
474 * include all the packets they should.
475 */
476#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \
477 (1ULL << EF10_STAT_tx_lt64) | \
478 (1ULL << EF10_STAT_tx_64) | \
479 (1ULL << EF10_STAT_tx_65_to_127) | \
480 (1ULL << EF10_STAT_tx_128_to_255) | \
481 (1ULL << EF10_STAT_tx_256_to_511) | \
482 (1ULL << EF10_STAT_tx_512_to_1023) | \
483 (1ULL << EF10_STAT_tx_1024_to_15xx) | \
484 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
485
486/* These statistics are only provided by the 40G MAC. For a 10G/40G
487 * switchable port we do expose these because the errors will otherwise
488 * be silent.
489 */
490#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \
491 (1ULL << EF10_STAT_rx_length_error))
492
493#if BITS_PER_LONG == 64
494#define STAT_MASK_BITMAP(bits) (bits)
495#else
496#define STAT_MASK_BITMAP(bits) (bits) & 0xffffffff, (bits) >> 32
497#endif
498
499static const unsigned long *efx_ef10_stat_mask(struct efx_nic *efx)
500{
501 static const unsigned long hunt_40g_stat_mask[] = {
502 STAT_MASK_BITMAP(HUNT_COMMON_STAT_MASK |
503 HUNT_40G_EXTRA_STAT_MASK)
504 };
505 static const unsigned long hunt_10g_only_stat_mask[] = {
506 STAT_MASK_BITMAP(HUNT_COMMON_STAT_MASK |
507 HUNT_10G_ONLY_STAT_MASK)
508 };
509 u32 port_caps = efx_mcdi_phy_get_caps(efx);
510
511 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
512 return hunt_40g_stat_mask;
513 else
514 return hunt_10g_only_stat_mask;
515}
516
517static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
518{
519 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
520 efx_ef10_stat_mask(efx), names);
521}
522
523static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
524{
525 struct efx_ef10_nic_data *nic_data = efx->nic_data;
526 const unsigned long *stats_mask = efx_ef10_stat_mask(efx);
527 __le64 generation_start, generation_end;
528 u64 *stats = nic_data->stats;
529 __le64 *dma_stats;
530
531 dma_stats = efx->stats_buffer.addr;
532 nic_data = efx->nic_data;
533
534 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
535 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
536 return 0;
537 rmb();
538 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, stats_mask,
539 stats, efx->stats_buffer.addr, false);
540 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
541 if (generation_end != generation_start)
542 return -EAGAIN;
543
544 /* Update derived statistics */
545 stats[EF10_STAT_rx_good_bytes] =
546 stats[EF10_STAT_rx_bytes] -
547 stats[EF10_STAT_rx_bytes_minus_good_bytes];
548 efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
549 stats[EF10_STAT_rx_bytes_minus_good_bytes]);
550
551 return 0;
552}
553
554
555static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
556 struct rtnl_link_stats64 *core_stats)
557{
558 const unsigned long *mask = efx_ef10_stat_mask(efx);
559 struct efx_ef10_nic_data *nic_data = efx->nic_data;
560 u64 *stats = nic_data->stats;
561 size_t stats_count = 0, index;
562 int retry;
563
564 /* If we're unlucky enough to read statistics during the DMA, wait
565 * up to 10ms for it to finish (typically takes <500us)
566 */
567 for (retry = 0; retry < 100; ++retry) {
568 if (efx_ef10_try_update_nic_stats(efx) == 0)
569 break;
570 udelay(100);
571 }
572
573 if (full_stats) {
574 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
575 if (efx_ef10_stat_desc[index].name) {
576 *full_stats++ = stats[index];
577 ++stats_count;
578 }
579 }
580 }
581
582 if (core_stats) {
583 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
584 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
585 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
586 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
587 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
588 core_stats->multicast = stats[EF10_STAT_rx_multicast];
589 core_stats->rx_length_errors =
590 stats[EF10_STAT_rx_gtjumbo] +
591 stats[EF10_STAT_rx_length_error];
592 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
593 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
594 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
595 core_stats->rx_errors = (core_stats->rx_length_errors +
596 core_stats->rx_crc_errors +
597 core_stats->rx_frame_errors);
598 }
599
600 return stats_count;
601}
602
603static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
604{
605 struct efx_nic *efx = channel->efx;
606 unsigned int mode, value;
607 efx_dword_t timer_cmd;
608
609 if (channel->irq_moderation) {
610 mode = 3;
611 value = channel->irq_moderation - 1;
612 } else {
613 mode = 0;
614 value = 0;
615 }
616
617 if (EFX_EF10_WORKAROUND_35388(efx)) {
618 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
619 EFE_DD_EVQ_IND_TIMER_FLAGS,
620 ERF_DD_EVQ_IND_TIMER_MODE, mode,
621 ERF_DD_EVQ_IND_TIMER_VAL, value);
622 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
623 channel->channel);
624 } else {
625 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
626 ERF_DZ_TC_TIMER_VAL, value);
627 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
628 channel->channel);
629 }
630}
631
632static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
633{
634 wol->supported = 0;
635 wol->wolopts = 0;
636 memset(&wol->sopass, 0, sizeof(wol->sopass));
637}
638
639static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
640{
641 if (type != 0)
642 return -EINVAL;
643 return 0;
644}
645
646static void efx_ef10_mcdi_request(struct efx_nic *efx,
647 const efx_dword_t *hdr, size_t hdr_len,
648 const efx_dword_t *sdu, size_t sdu_len)
649{
650 struct efx_ef10_nic_data *nic_data = efx->nic_data;
651 u8 *pdu = nic_data->mcdi_buf.addr;
652
653 memcpy(pdu, hdr, hdr_len);
654 memcpy(pdu + hdr_len, sdu, sdu_len);
655 wmb();
656
657 /* The hardware provides 'low' and 'high' (doorbell) registers
658 * for passing the 64-bit address of an MCDI request to
659 * firmware. However the dwords are swapped by firmware. The
660 * least significant bits of the doorbell are then 0 for all
661 * MCDI requests due to alignment.
662 */
663 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
664 ER_DZ_MC_DB_LWRD);
665 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
666 ER_DZ_MC_DB_HWRD);
667}
668
669static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
670{
671 struct efx_ef10_nic_data *nic_data = efx->nic_data;
672 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
673
674 rmb();
675 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
676}
677
678static void
679efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
680 size_t offset, size_t outlen)
681{
682 struct efx_ef10_nic_data *nic_data = efx->nic_data;
683 const u8 *pdu = nic_data->mcdi_buf.addr;
684
685 memcpy(outbuf, pdu + offset, outlen);
686}
687
688static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
689{
690 struct efx_ef10_nic_data *nic_data = efx->nic_data;
691 int rc;
692
693 rc = efx_ef10_get_warm_boot_count(efx);
694 if (rc < 0) {
695 /* The firmware is presumably in the process of
696 * rebooting. However, we are supposed to report each
697 * reboot just once, so we must only do that once we
698 * can read and store the updated warm boot count.
699 */
700 return 0;
701 }
702
703 if (rc == nic_data->warm_boot_count)
704 return 0;
705
706 nic_data->warm_boot_count = rc;
707
708 /* All our allocations have been reset */
709 nic_data->must_realloc_vis = true;
710 nic_data->must_restore_filters = true;
711 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
712
713 return -EIO;
714}
715
716/* Handle an MSI interrupt
717 *
718 * Handle an MSI hardware interrupt. This routine schedules event
719 * queue processing. No interrupt acknowledgement cycle is necessary.
720 * Also, we never need to check that the interrupt is for us, since
721 * MSI interrupts cannot be shared.
722 */
723static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
724{
725 struct efx_msi_context *context = dev_id;
726 struct efx_nic *efx = context->efx;
727
728 netif_vdbg(efx, intr, efx->net_dev,
729 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
730
731 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
732 /* Note test interrupts */
733 if (context->index == efx->irq_level)
734 efx->last_irq_cpu = raw_smp_processor_id();
735
736 /* Schedule processing of the channel */
737 efx_schedule_channel_irq(efx->channel[context->index]);
738 }
739
740 return IRQ_HANDLED;
741}
742
743static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
744{
745 struct efx_nic *efx = dev_id;
746 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
747 struct efx_channel *channel;
748 efx_dword_t reg;
749 u32 queues;
750
751 /* Read the ISR which also ACKs the interrupts */
752 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
753 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
754
755 if (queues == 0)
756 return IRQ_NONE;
757
758 if (likely(soft_enabled)) {
759 /* Note test interrupts */
760 if (queues & (1U << efx->irq_level))
761 efx->last_irq_cpu = raw_smp_processor_id();
762
763 efx_for_each_channel(channel, efx) {
764 if (queues & 1)
765 efx_schedule_channel_irq(channel);
766 queues >>= 1;
767 }
768 }
769
770 netif_vdbg(efx, intr, efx->net_dev,
771 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
772 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
773
774 return IRQ_HANDLED;
775}
776
777static void efx_ef10_irq_test_generate(struct efx_nic *efx)
778{
779 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
780
781 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
782
783 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
784 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
785 inbuf, sizeof(inbuf), NULL, 0, NULL);
786}
787
788static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
789{
790 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
791 (tx_queue->ptr_mask + 1) *
792 sizeof(efx_qword_t),
793 GFP_KERNEL);
794}
795
796/* This writes to the TX_DESC_WPTR and also pushes data */
797static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
798 const efx_qword_t *txd)
799{
800 unsigned int write_ptr;
801 efx_oword_t reg;
802
803 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
804 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
805 reg.qword[0] = *txd;
806 efx_writeo_page(tx_queue->efx, &reg,
807 ER_DZ_TX_DESC_UPD, tx_queue->queue);
808}
809
810static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
811{
812 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
813 EFX_BUF_SIZE));
814 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
815 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
816 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
817 struct efx_channel *channel = tx_queue->channel;
818 struct efx_nic *efx = tx_queue->efx;
819 size_t inlen, outlen;
820 dma_addr_t dma_addr;
821 efx_qword_t *txd;
822 int rc;
823 int i;
824
825 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
826 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
827 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
828 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
829 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
830 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
831 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
832 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
833 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
834
835 dma_addr = tx_queue->txd.buf.dma_addr;
836
837 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
838 tx_queue->queue, entries, (u64)dma_addr);
839
840 for (i = 0; i < entries; ++i) {
841 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
842 dma_addr += EFX_BUF_SIZE;
843 }
844
845 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
846
847 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
848 outbuf, sizeof(outbuf), &outlen);
849 if (rc)
850 goto fail;
851
852 /* A previous user of this TX queue might have set us up the
853 * bomb by writing a descriptor to the TX push collector but
854 * not the doorbell. (Each collector belongs to a port, not a
855 * queue or function, so cannot easily be reset.) We must
856 * attempt to push a no-op descriptor in its place.
857 */
858 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
859 tx_queue->insert_count = 1;
860 txd = efx_tx_desc(tx_queue, 0);
861 EFX_POPULATE_QWORD_4(*txd,
862 ESF_DZ_TX_DESC_IS_OPT, true,
863 ESF_DZ_TX_OPTION_TYPE,
864 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
865 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
866 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
867 tx_queue->write_count = 1;
868 wmb();
869 efx_ef10_push_tx_desc(tx_queue, txd);
870
871 return;
872
873fail:
874 WARN_ON(true);
875 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
876}
877
878static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
879{
880 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
881 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
882 struct efx_nic *efx = tx_queue->efx;
883 size_t outlen;
884 int rc;
885
886 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
887 tx_queue->queue);
888
889 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
890 outbuf, sizeof(outbuf), &outlen);
891
892 if (rc && rc != -EALREADY)
893 goto fail;
894
895 return;
896
897fail:
898 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
899}
900
901static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
902{
903 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
904}
905
906/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
907static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
908{
909 unsigned int write_ptr;
910 efx_dword_t reg;
911
912 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
913 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
914 efx_writed_page(tx_queue->efx, &reg,
915 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
916}
917
918static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
919{
920 unsigned int old_write_count = tx_queue->write_count;
921 struct efx_tx_buffer *buffer;
922 unsigned int write_ptr;
923 efx_qword_t *txd;
924
925 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
926
927 do {
928 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
929 buffer = &tx_queue->buffer[write_ptr];
930 txd = efx_tx_desc(tx_queue, write_ptr);
931 ++tx_queue->write_count;
932
933 /* Create TX descriptor ring entry */
934 if (buffer->flags & EFX_TX_BUF_OPTION) {
935 *txd = buffer->option;
936 } else {
937 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
938 EFX_POPULATE_QWORD_3(
939 *txd,
940 ESF_DZ_TX_KER_CONT,
941 buffer->flags & EFX_TX_BUF_CONT,
942 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
943 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
944 }
945 } while (tx_queue->write_count != tx_queue->insert_count);
946
947 wmb(); /* Ensure descriptors are written before they are fetched */
948
949 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
950 txd = efx_tx_desc(tx_queue,
951 old_write_count & tx_queue->ptr_mask);
952 efx_ef10_push_tx_desc(tx_queue, txd);
953 ++tx_queue->pushes;
954 } else {
955 efx_ef10_notify_tx_desc(tx_queue);
956 }
957}
958
959static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
960{
961 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
962 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
963 size_t outlen;
964 int rc;
965
966 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
967 EVB_PORT_ID_ASSIGNED);
968 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
969 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
970 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
971 EFX_MAX_CHANNELS);
972
973 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
974 outbuf, sizeof(outbuf), &outlen);
975 if (rc != 0)
976 return rc;
977
978 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
979 return -EIO;
980
981 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
982
983 return 0;
984}
985
986static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
987{
988 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
989 int rc;
990
991 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
992 context);
993
994 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
995 NULL, 0, NULL);
996 WARN_ON(rc != 0);
997}
998
999static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1000{
1001 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1002 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1003 int i, rc;
1004
1005 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1006 context);
1007 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1008 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1009
1010 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1011 MCDI_PTR(tablebuf,
1012 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1013 (u8) efx->rx_indir_table[i];
1014
1015 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1016 sizeof(tablebuf), NULL, 0, NULL);
1017 if (rc != 0)
1018 return rc;
1019
1020 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1021 context);
1022 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1023 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1024 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1025 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1026 efx->rx_hash_key[i];
1027
1028 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1029 sizeof(keybuf), NULL, 0, NULL);
1030}
1031
1032static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1033{
1034 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1035
1036 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1037 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1038 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1039}
1040
1041static void efx_ef10_rx_push_indir_table(struct efx_nic *efx)
1042{
1043 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1044 int rc;
1045
1046 netif_dbg(efx, drv, efx->net_dev, "pushing RX indirection table\n");
1047
1048 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1049 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1050 if (rc != 0)
1051 goto fail;
1052 }
1053
1054 rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1055 if (rc != 0)
1056 goto fail;
1057
1058 return;
1059
1060fail:
1061 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1062}
1063
1064static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1065{
1066 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1067 (rx_queue->ptr_mask + 1) *
1068 sizeof(efx_qword_t),
1069 GFP_KERNEL);
1070}
1071
1072static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1073{
1074 MCDI_DECLARE_BUF(inbuf,
1075 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1076 EFX_BUF_SIZE));
1077 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1078 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1079 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1080 struct efx_nic *efx = rx_queue->efx;
1081 size_t inlen, outlen;
1082 dma_addr_t dma_addr;
1083 int rc;
1084 int i;
1085
1086 rx_queue->scatter_n = 0;
1087 rx_queue->scatter_len = 0;
1088
1089 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1090 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1091 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1092 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1093 efx_rx_queue_index(rx_queue));
1094 MCDI_POPULATE_DWORD_1(inbuf, INIT_RXQ_IN_FLAGS,
1095 INIT_RXQ_IN_FLAG_PREFIX, 1);
1096 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1097 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1098
1099 dma_addr = rx_queue->rxd.buf.dma_addr;
1100
1101 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1102 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1103
1104 for (i = 0; i < entries; ++i) {
1105 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1106 dma_addr += EFX_BUF_SIZE;
1107 }
1108
1109 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1110
1111 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1112 outbuf, sizeof(outbuf), &outlen);
1113 if (rc)
1114 goto fail;
1115
1116 return;
1117
1118fail:
1119 WARN_ON(true);
1120 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1121}
1122
1123static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1124{
1125 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1126 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1127 struct efx_nic *efx = rx_queue->efx;
1128 size_t outlen;
1129 int rc;
1130
1131 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1132 efx_rx_queue_index(rx_queue));
1133
1134 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1135 outbuf, sizeof(outbuf), &outlen);
1136
1137 if (rc && rc != -EALREADY)
1138 goto fail;
1139
1140 return;
1141
1142fail:
1143 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1144}
1145
1146static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1147{
1148 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1149}
1150
1151/* This creates an entry in the RX descriptor queue */
1152static inline void
1153efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1154{
1155 struct efx_rx_buffer *rx_buf;
1156 efx_qword_t *rxd;
1157
1158 rxd = efx_rx_desc(rx_queue, index);
1159 rx_buf = efx_rx_buffer(rx_queue, index);
1160 EFX_POPULATE_QWORD_2(*rxd,
1161 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1162 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1163}
1164
1165static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1166{
1167 struct efx_nic *efx = rx_queue->efx;
1168 unsigned int write_count;
1169 efx_dword_t reg;
1170
1171 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1172 write_count = rx_queue->added_count & ~7;
1173 if (rx_queue->notified_count == write_count)
1174 return;
1175
1176 do
1177 efx_ef10_build_rx_desc(
1178 rx_queue,
1179 rx_queue->notified_count & rx_queue->ptr_mask);
1180 while (++rx_queue->notified_count != write_count);
1181
1182 wmb();
1183 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1184 write_count & rx_queue->ptr_mask);
1185 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1186 efx_rx_queue_index(rx_queue));
1187}
1188
1189static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1190
1191static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1192{
1193 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1194 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1195 efx_qword_t event;
1196
1197 EFX_POPULATE_QWORD_2(event,
1198 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1199 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1200
1201 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1202
1203 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1204 * already swapped the data to little-endian order.
1205 */
1206 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1207 sizeof(efx_qword_t));
1208
1209 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1210 inbuf, sizeof(inbuf), 0,
1211 efx_ef10_rx_defer_refill_complete, 0);
1212}
1213
1214static void
1215efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1216 int rc, efx_dword_t *outbuf,
1217 size_t outlen_actual)
1218{
1219 /* nothing to do */
1220}
1221
1222static int efx_ef10_ev_probe(struct efx_channel *channel)
1223{
1224 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1225 (channel->eventq_mask + 1) *
1226 sizeof(efx_qword_t),
1227 GFP_KERNEL);
1228}
1229
1230static int efx_ef10_ev_init(struct efx_channel *channel)
1231{
1232 MCDI_DECLARE_BUF(inbuf,
1233 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1234 EFX_BUF_SIZE));
1235 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1236 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1237 struct efx_nic *efx = channel->efx;
1238 struct efx_ef10_nic_data *nic_data;
1239 bool supports_rx_merge;
1240 size_t inlen, outlen;
1241 dma_addr_t dma_addr;
1242 int rc;
1243 int i;
1244
1245 nic_data = efx->nic_data;
1246 supports_rx_merge =
1247 !!(nic_data->datapath_caps &
1248 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1249
1250 /* Fill event queue with all ones (i.e. empty events) */
1251 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1252
1253 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1254 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1255 /* INIT_EVQ expects index in vector table, not absolute */
1256 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1257 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1258 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1259 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1260 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1261 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1262 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1263 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1264 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1265 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1266 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1267 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1268 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1269
1270 dma_addr = channel->eventq.buf.dma_addr;
1271 for (i = 0; i < entries; ++i) {
1272 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1273 dma_addr += EFX_BUF_SIZE;
1274 }
1275
1276 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1277
1278 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1279 outbuf, sizeof(outbuf), &outlen);
1280 if (rc)
1281 goto fail;
1282
1283 /* IRQ return is ignored */
1284
1285 return 0;
1286
1287fail:
1288 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1289 return rc;
1290}
1291
1292static void efx_ef10_ev_fini(struct efx_channel *channel)
1293{
1294 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1295 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1296 struct efx_nic *efx = channel->efx;
1297 size_t outlen;
1298 int rc;
1299
1300 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1301
1302 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1303 outbuf, sizeof(outbuf), &outlen);
1304
1305 if (rc && rc != -EALREADY)
1306 goto fail;
1307
1308 return;
1309
1310fail:
1311 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1312}
1313
1314static void efx_ef10_ev_remove(struct efx_channel *channel)
1315{
1316 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1317}
1318
1319static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1320 unsigned int rx_queue_label)
1321{
1322 struct efx_nic *efx = rx_queue->efx;
1323
1324 netif_info(efx, hw, efx->net_dev,
1325 "rx event arrived on queue %d labeled as queue %u\n",
1326 efx_rx_queue_index(rx_queue), rx_queue_label);
1327
1328 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1329}
1330
1331static void
1332efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1333 unsigned int actual, unsigned int expected)
1334{
1335 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1336 struct efx_nic *efx = rx_queue->efx;
1337
1338 netif_info(efx, hw, efx->net_dev,
1339 "dropped %d events (index=%d expected=%d)\n",
1340 dropped, actual, expected);
1341
1342 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1343}
1344
1345/* partially received RX was aborted. clean up. */
1346static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1347{
1348 unsigned int rx_desc_ptr;
1349
1350 WARN_ON(rx_queue->scatter_n == 0);
1351
1352 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1353 "scattered RX aborted (dropping %u buffers)\n",
1354 rx_queue->scatter_n);
1355
1356 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1357
1358 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1359 0, EFX_RX_PKT_DISCARD);
1360
1361 rx_queue->removed_count += rx_queue->scatter_n;
1362 rx_queue->scatter_n = 0;
1363 rx_queue->scatter_len = 0;
1364 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1365}
1366
1367static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1368 const efx_qword_t *event)
1369{
1370 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1371 unsigned int n_descs, n_packets, i;
1372 struct efx_nic *efx = channel->efx;
1373 struct efx_rx_queue *rx_queue;
1374 bool rx_cont;
1375 u16 flags = 0;
1376
1377 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1378 return 0;
1379
1380 /* Basic packet information */
1381 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1382 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1383 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1384 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1385 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1386
1387 WARN_ON(EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT));
1388
1389 rx_queue = efx_channel_get_rx_queue(channel);
1390
1391 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1392 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1393
1394 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1395 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1396
1397 if (n_descs != rx_queue->scatter_n + 1) {
1398 /* detect rx abort */
1399 if (unlikely(n_descs == rx_queue->scatter_n)) {
1400 WARN_ON(rx_bytes != 0);
1401 efx_ef10_handle_rx_abort(rx_queue);
1402 return 0;
1403 }
1404
1405 if (unlikely(rx_queue->scatter_n != 0)) {
1406 /* Scattered packet completions cannot be
1407 * merged, so something has gone wrong.
1408 */
1409 efx_ef10_handle_rx_bad_lbits(
1410 rx_queue, next_ptr_lbits,
1411 (rx_queue->removed_count +
1412 rx_queue->scatter_n + 1) &
1413 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1414 return 0;
1415 }
1416
1417 /* Merged completion for multiple non-scattered packets */
1418 rx_queue->scatter_n = 1;
1419 rx_queue->scatter_len = 0;
1420 n_packets = n_descs;
1421 ++channel->n_rx_merge_events;
1422 channel->n_rx_merge_packets += n_packets;
1423 flags |= EFX_RX_PKT_PREFIX_LEN;
1424 } else {
1425 ++rx_queue->scatter_n;
1426 rx_queue->scatter_len += rx_bytes;
1427 if (rx_cont)
1428 return 0;
1429 n_packets = 1;
1430 }
1431
1432 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1433 flags |= EFX_RX_PKT_DISCARD;
1434
1435 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1436 channel->n_rx_ip_hdr_chksum_err += n_packets;
1437 } else if (unlikely(EFX_QWORD_FIELD(*event,
1438 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1439 channel->n_rx_tcp_udp_chksum_err += n_packets;
1440 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1441 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1442 flags |= EFX_RX_PKT_CSUMMED;
1443 }
1444
1445 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1446 flags |= EFX_RX_PKT_TCP;
1447
1448 channel->irq_mod_score += 2 * n_packets;
1449
1450 /* Handle received packet(s) */
1451 for (i = 0; i < n_packets; i++) {
1452 efx_rx_packet(rx_queue,
1453 rx_queue->removed_count & rx_queue->ptr_mask,
1454 rx_queue->scatter_n, rx_queue->scatter_len,
1455 flags);
1456 rx_queue->removed_count += rx_queue->scatter_n;
1457 }
1458
1459 rx_queue->scatter_n = 0;
1460 rx_queue->scatter_len = 0;
1461
1462 return n_packets;
1463}
1464
1465static int
1466efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1467{
1468 struct efx_nic *efx = channel->efx;
1469 struct efx_tx_queue *tx_queue;
1470 unsigned int tx_ev_desc_ptr;
1471 unsigned int tx_ev_q_label;
1472 int tx_descs = 0;
1473
1474 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1475 return 0;
1476
1477 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1478 return 0;
1479
1480 /* Transmit completion */
1481 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1482 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1483 tx_queue = efx_channel_get_tx_queue(channel,
1484 tx_ev_q_label % EFX_TXQ_TYPES);
1485 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1486 tx_queue->ptr_mask);
1487 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1488
1489 return tx_descs;
1490}
1491
1492static void
1493efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1494{
1495 struct efx_nic *efx = channel->efx;
1496 int subcode;
1497
1498 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1499
1500 switch (subcode) {
1501 case ESE_DZ_DRV_TIMER_EV:
1502 case ESE_DZ_DRV_WAKE_UP_EV:
1503 break;
1504 case ESE_DZ_DRV_START_UP_EV:
1505 /* event queue init complete. ok. */
1506 break;
1507 default:
1508 netif_err(efx, hw, efx->net_dev,
1509 "channel %d unknown driver event type %d"
1510 " (data " EFX_QWORD_FMT ")\n",
1511 channel->channel, subcode,
1512 EFX_QWORD_VAL(*event));
1513
1514 }
1515}
1516
1517static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1518 efx_qword_t *event)
1519{
1520 struct efx_nic *efx = channel->efx;
1521 u32 subcode;
1522
1523 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1524
1525 switch (subcode) {
1526 case EFX_EF10_TEST:
1527 channel->event_test_cpu = raw_smp_processor_id();
1528 break;
1529 case EFX_EF10_REFILL:
1530 /* The queue must be empty, so we won't receive any rx
1531 * events, so efx_process_channel() won't refill the
1532 * queue. Refill it here
1533 */
1534 efx_fast_push_rx_descriptors(&channel->rx_queue);
1535 break;
1536 default:
1537 netif_err(efx, hw, efx->net_dev,
1538 "channel %d unknown driver event type %u"
1539 " (data " EFX_QWORD_FMT ")\n",
1540 channel->channel, (unsigned) subcode,
1541 EFX_QWORD_VAL(*event));
1542 }
1543}
1544
1545static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1546{
1547 struct efx_nic *efx = channel->efx;
1548 efx_qword_t event, *p_event;
1549 unsigned int read_ptr;
1550 int ev_code;
1551 int tx_descs = 0;
1552 int spent = 0;
1553
1554 read_ptr = channel->eventq_read_ptr;
1555
1556 for (;;) {
1557 p_event = efx_event(channel, read_ptr);
1558 event = *p_event;
1559
1560 if (!efx_event_present(&event))
1561 break;
1562
1563 EFX_SET_QWORD(*p_event);
1564
1565 ++read_ptr;
1566
1567 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1568
1569 netif_vdbg(efx, drv, efx->net_dev,
1570 "processing event on %d " EFX_QWORD_FMT "\n",
1571 channel->channel, EFX_QWORD_VAL(event));
1572
1573 switch (ev_code) {
1574 case ESE_DZ_EV_CODE_MCDI_EV:
1575 efx_mcdi_process_event(channel, &event);
1576 break;
1577 case ESE_DZ_EV_CODE_RX_EV:
1578 spent += efx_ef10_handle_rx_event(channel, &event);
1579 if (spent >= quota) {
1580 /* XXX can we split a merged event to
1581 * avoid going over-quota?
1582 */
1583 spent = quota;
1584 goto out;
1585 }
1586 break;
1587 case ESE_DZ_EV_CODE_TX_EV:
1588 tx_descs += efx_ef10_handle_tx_event(channel, &event);
1589 if (tx_descs > efx->txq_entries) {
1590 spent = quota;
1591 goto out;
1592 } else if (++spent == quota) {
1593 goto out;
1594 }
1595 break;
1596 case ESE_DZ_EV_CODE_DRIVER_EV:
1597 efx_ef10_handle_driver_event(channel, &event);
1598 if (++spent == quota)
1599 goto out;
1600 break;
1601 case EFX_EF10_DRVGEN_EV:
1602 efx_ef10_handle_driver_generated_event(channel, &event);
1603 break;
1604 default:
1605 netif_err(efx, hw, efx->net_dev,
1606 "channel %d unknown event type %d"
1607 " (data " EFX_QWORD_FMT ")\n",
1608 channel->channel, ev_code,
1609 EFX_QWORD_VAL(event));
1610 }
1611 }
1612
1613out:
1614 channel->eventq_read_ptr = read_ptr;
1615 return spent;
1616}
1617
1618static void efx_ef10_ev_read_ack(struct efx_channel *channel)
1619{
1620 struct efx_nic *efx = channel->efx;
1621 efx_dword_t rptr;
1622
1623 if (EFX_EF10_WORKAROUND_35388(efx)) {
1624 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
1625 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
1626 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
1627 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
1628
1629 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
1630 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
1631 ERF_DD_EVQ_IND_RPTR,
1632 (channel->eventq_read_ptr &
1633 channel->eventq_mask) >>
1634 ERF_DD_EVQ_IND_RPTR_WIDTH);
1635 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
1636 channel->channel);
1637 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
1638 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
1639 ERF_DD_EVQ_IND_RPTR,
1640 channel->eventq_read_ptr &
1641 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
1642 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
1643 channel->channel);
1644 } else {
1645 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
1646 channel->eventq_read_ptr &
1647 channel->eventq_mask);
1648 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
1649 }
1650}
1651
1652static void efx_ef10_ev_test_generate(struct efx_channel *channel)
1653{
1654 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1655 struct efx_nic *efx = channel->efx;
1656 efx_qword_t event;
1657 int rc;
1658
1659 EFX_POPULATE_QWORD_2(event,
1660 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1661 ESF_DZ_EV_DATA, EFX_EF10_TEST);
1662
1663 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1664
1665 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1666 * already swapped the data to little-endian order.
1667 */
1668 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1669 sizeof(efx_qword_t));
1670
1671 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
1672 NULL, 0, NULL);
1673 if (rc != 0)
1674 goto fail;
1675
1676 return;
1677
1678fail:
1679 WARN_ON(true);
1680 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1681}
1682
1683void efx_ef10_handle_drain_event(struct efx_nic *efx)
1684{
1685 if (atomic_dec_and_test(&efx->active_queues))
1686 wake_up(&efx->flush_wq);
1687
1688 WARN_ON(atomic_read(&efx->active_queues) < 0);
1689}
1690
1691static int efx_ef10_fini_dmaq(struct efx_nic *efx)
1692{
1693 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1694 struct efx_channel *channel;
1695 struct efx_tx_queue *tx_queue;
1696 struct efx_rx_queue *rx_queue;
1697 int pending;
1698
1699 /* If the MC has just rebooted, the TX/RX queues will have already been
1700 * torn down, but efx->active_queues needs to be set to zero.
1701 */
1702 if (nic_data->must_realloc_vis) {
1703 atomic_set(&efx->active_queues, 0);
1704 return 0;
1705 }
1706
1707 /* Do not attempt to write to the NIC during EEH recovery */
1708 if (efx->state != STATE_RECOVERY) {
1709 efx_for_each_channel(channel, efx) {
1710 efx_for_each_channel_rx_queue(rx_queue, channel)
1711 efx_ef10_rx_fini(rx_queue);
1712 efx_for_each_channel_tx_queue(tx_queue, channel)
1713 efx_ef10_tx_fini(tx_queue);
1714 }
1715
1716 wait_event_timeout(efx->flush_wq,
1717 atomic_read(&efx->active_queues) == 0,
1718 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
1719 pending = atomic_read(&efx->active_queues);
1720 if (pending) {
1721 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
1722 pending);
1723 return -ETIMEDOUT;
1724 }
1725 }
1726
1727 return 0;
1728}
1729
1730static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
1731 const struct efx_filter_spec *right)
1732{
1733 if ((left->match_flags ^ right->match_flags) |
1734 ((left->flags ^ right->flags) &
1735 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
1736 return false;
1737
1738 return memcmp(&left->outer_vid, &right->outer_vid,
1739 sizeof(struct efx_filter_spec) -
1740 offsetof(struct efx_filter_spec, outer_vid)) == 0;
1741}
1742
1743static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
1744{
1745 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
1746 return jhash2((const u32 *)&spec->outer_vid,
1747 (sizeof(struct efx_filter_spec) -
1748 offsetof(struct efx_filter_spec, outer_vid)) / 4,
1749 0);
1750 /* XXX should we randomise the initval? */
1751}
1752
1753/* Decide whether a filter should be exclusive or else should allow
1754 * delivery to additional recipients. Currently we decide that
1755 * filters for specific local unicast MAC and IP addresses are
1756 * exclusive.
1757 */
1758static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
1759{
1760 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
1761 !is_multicast_ether_addr(spec->loc_mac))
1762 return true;
1763
1764 if ((spec->match_flags &
1765 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
1766 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
1767 if (spec->ether_type == htons(ETH_P_IP) &&
1768 !ipv4_is_multicast(spec->loc_host[0]))
1769 return true;
1770 if (spec->ether_type == htons(ETH_P_IPV6) &&
1771 ((const u8 *)spec->loc_host)[0] != 0xff)
1772 return true;
1773 }
1774
1775 return false;
1776}
1777
1778static struct efx_filter_spec *
1779efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
1780 unsigned int filter_idx)
1781{
1782 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
1783 ~EFX_EF10_FILTER_FLAGS);
1784}
1785
1786static unsigned int
1787efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
1788 unsigned int filter_idx)
1789{
1790 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
1791}
1792
1793static void
1794efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
1795 unsigned int filter_idx,
1796 const struct efx_filter_spec *spec,
1797 unsigned int flags)
1798{
1799 table->entry[filter_idx].spec = (unsigned long)spec | flags;
1800}
1801
1802static void efx_ef10_filter_push_prep(struct efx_nic *efx,
1803 const struct efx_filter_spec *spec,
1804 efx_dword_t *inbuf, u64 handle,
1805 bool replacing)
1806{
1807 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1808
1809 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
1810
1811 if (replacing) {
1812 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
1813 MC_CMD_FILTER_OP_IN_OP_REPLACE);
1814 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
1815 } else {
1816 u32 match_fields = 0;
1817
1818 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
1819 efx_ef10_filter_is_exclusive(spec) ?
1820 MC_CMD_FILTER_OP_IN_OP_INSERT :
1821 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
1822
1823 /* Convert match flags and values. Unlike almost
1824 * everything else in MCDI, these fields are in
1825 * network byte order.
1826 */
1827 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
1828 match_fields |=
1829 is_multicast_ether_addr(spec->loc_mac) ?
1830 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
1831 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
1832#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
1833 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
1834 match_fields |= \
1835 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
1836 mcdi_field ## _LBN; \
1837 BUILD_BUG_ON( \
1838 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
1839 sizeof(spec->gen_field)); \
1840 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
1841 &spec->gen_field, sizeof(spec->gen_field)); \
1842 }
1843 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
1844 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
1845 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
1846 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
1847 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
1848 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
1849 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
1850 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
1851 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
1852 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
1853#undef COPY_FIELD
1854 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
1855 match_fields);
1856 }
1857
1858 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1859 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
1860 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
1861 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
1862 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
1863 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
1864 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
1865 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, spec->dmaq_id);
1866 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
1867 (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
1868 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
1869 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
1870 if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
1871 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
1872 spec->rss_context !=
1873 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
1874 spec->rss_context : nic_data->rx_rss_context);
1875}
1876
1877static int efx_ef10_filter_push(struct efx_nic *efx,
1878 const struct efx_filter_spec *spec,
1879 u64 *handle, bool replacing)
1880{
1881 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
1882 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
1883 int rc;
1884
1885 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
1886 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
1887 outbuf, sizeof(outbuf), NULL);
1888 if (rc == 0)
1889 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
1890 return rc;
1891}
1892
1893static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
1894 enum efx_filter_match_flags match_flags)
1895{
1896 unsigned int match_pri;
1897
1898 for (match_pri = 0;
1899 match_pri < table->rx_match_count;
1900 match_pri++)
1901 if (table->rx_match_flags[match_pri] == match_flags)
1902 return match_pri;
1903
1904 return -EPROTONOSUPPORT;
1905}
1906
1907static s32 efx_ef10_filter_insert(struct efx_nic *efx,
1908 struct efx_filter_spec *spec,
1909 bool replace_equal)
1910{
1911 struct efx_ef10_filter_table *table = efx->filter_state;
1912 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
1913 struct efx_filter_spec *saved_spec;
1914 unsigned int match_pri, hash;
1915 unsigned int priv_flags;
1916 bool replacing = false;
1917 int ins_index = -1;
1918 DEFINE_WAIT(wait);
1919 bool is_mc_recip;
1920 s32 rc;
1921
1922 /* For now, only support RX filters */
1923 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
1924 EFX_FILTER_FLAG_RX)
1925 return -EINVAL;
1926
1927 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
1928 if (rc < 0)
1929 return rc;
1930 match_pri = rc;
1931
1932 hash = efx_ef10_filter_hash(spec);
1933 is_mc_recip = efx_filter_is_mc_recipient(spec);
1934 if (is_mc_recip)
1935 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
1936
1937 /* Find any existing filters with the same match tuple or
1938 * else a free slot to insert at. If any of them are busy,
1939 * we have to wait and retry.
1940 */
1941 for (;;) {
1942 unsigned int depth = 1;
1943 unsigned int i;
1944
1945 spin_lock_bh(&efx->filter_lock);
1946
1947 for (;;) {
1948 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
1949 saved_spec = efx_ef10_filter_entry_spec(table, i);
1950
1951 if (!saved_spec) {
1952 if (ins_index < 0)
1953 ins_index = i;
1954 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
1955 if (table->entry[i].spec &
1956 EFX_EF10_FILTER_FLAG_BUSY)
1957 break;
1958 if (spec->priority < saved_spec->priority &&
1959 !(saved_spec->priority ==
1960 EFX_FILTER_PRI_REQUIRED &&
1961 saved_spec->flags &
1962 EFX_FILTER_FLAG_RX_STACK)) {
1963 rc = -EPERM;
1964 goto out_unlock;
1965 }
1966 if (!is_mc_recip) {
1967 /* This is the only one */
1968 if (spec->priority ==
1969 saved_spec->priority &&
1970 !replace_equal) {
1971 rc = -EEXIST;
1972 goto out_unlock;
1973 }
1974 ins_index = i;
1975 goto found;
1976 } else if (spec->priority >
1977 saved_spec->priority ||
1978 (spec->priority ==
1979 saved_spec->priority &&
1980 replace_equal)) {
1981 if (ins_index < 0)
1982 ins_index = i;
1983 else
1984 __set_bit(depth, mc_rem_map);
1985 }
1986 }
1987
1988 /* Once we reach the maximum search depth, use
1989 * the first suitable slot or return -EBUSY if
1990 * there was none
1991 */
1992 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
1993 if (ins_index < 0) {
1994 rc = -EBUSY;
1995 goto out_unlock;
1996 }
1997 goto found;
1998 }
1999
2000 ++depth;
2001 }
2002
2003 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2004 spin_unlock_bh(&efx->filter_lock);
2005 schedule();
2006 }
2007
2008found:
2009 /* Create a software table entry if necessary, and mark it
2010 * busy. We might yet fail to insert, but any attempt to
2011 * insert a conflicting filter while we're waiting for the
2012 * firmware must find the busy entry.
2013 */
2014 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2015 if (saved_spec) {
2016 if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
2017 /* Just make sure it won't be removed */
2018 saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
2019 table->entry[ins_index].spec &=
2020 ~EFX_EF10_FILTER_FLAG_STACK_OLD;
2021 rc = ins_index;
2022 goto out_unlock;
2023 }
2024 replacing = true;
2025 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2026 } else {
2027 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2028 if (!saved_spec) {
2029 rc = -ENOMEM;
2030 goto out_unlock;
2031 }
2032 *saved_spec = *spec;
2033 priv_flags = 0;
2034 }
2035 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2036 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2037
2038 /* Mark lower-priority multicast recipients busy prior to removal */
2039 if (is_mc_recip) {
2040 unsigned int depth, i;
2041
2042 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2043 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2044 if (test_bit(depth, mc_rem_map))
2045 table->entry[i].spec |=
2046 EFX_EF10_FILTER_FLAG_BUSY;
2047 }
2048 }
2049
2050 spin_unlock_bh(&efx->filter_lock);
2051
2052 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2053 replacing);
2054
2055 /* Finalise the software table entry */
2056 spin_lock_bh(&efx->filter_lock);
2057 if (rc == 0) {
2058 if (replacing) {
2059 /* Update the fields that may differ */
2060 saved_spec->priority = spec->priority;
2061 saved_spec->flags &= EFX_FILTER_FLAG_RX_STACK;
2062 saved_spec->flags |= spec->flags;
2063 saved_spec->rss_context = spec->rss_context;
2064 saved_spec->dmaq_id = spec->dmaq_id;
2065 }
2066 } else if (!replacing) {
2067 kfree(saved_spec);
2068 saved_spec = NULL;
2069 }
2070 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2071
2072 /* Remove and finalise entries for lower-priority multicast
2073 * recipients
2074 */
2075 if (is_mc_recip) {
2076 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2077 unsigned int depth, i;
2078
2079 memset(inbuf, 0, sizeof(inbuf));
2080
2081 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2082 if (!test_bit(depth, mc_rem_map))
2083 continue;
2084
2085 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2086 saved_spec = efx_ef10_filter_entry_spec(table, i);
2087 priv_flags = efx_ef10_filter_entry_flags(table, i);
2088
2089 if (rc == 0) {
2090 spin_unlock_bh(&efx->filter_lock);
2091 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2092 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2093 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2094 table->entry[i].handle);
2095 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2096 inbuf, sizeof(inbuf),
2097 NULL, 0, NULL);
2098 spin_lock_bh(&efx->filter_lock);
2099 }
2100
2101 if (rc == 0) {
2102 kfree(saved_spec);
2103 saved_spec = NULL;
2104 priv_flags = 0;
2105 } else {
2106 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2107 }
2108 efx_ef10_filter_set_entry(table, i, saved_spec,
2109 priv_flags);
2110 }
2111 }
2112
2113 /* If successful, return the inserted filter ID */
2114 if (rc == 0)
2115 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2116
2117 wake_up_all(&table->waitq);
2118out_unlock:
2119 spin_unlock_bh(&efx->filter_lock);
2120 finish_wait(&table->waitq, &wait);
2121 return rc;
2122}
2123
2124void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2125{
2126 /* no need to do anything here on EF10 */
2127}
2128
2129/* Remove a filter.
2130 * If !stack_requested, remove by ID
2131 * If stack_requested, remove by index
2132 * Filter ID may come from userland and must be range-checked.
2133 */
2134static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2135 enum efx_filter_priority priority,
2136 u32 filter_id, bool stack_requested)
2137{
2138 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2139 struct efx_ef10_filter_table *table = efx->filter_state;
2140 MCDI_DECLARE_BUF(inbuf,
2141 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2142 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2143 struct efx_filter_spec *spec;
2144 DEFINE_WAIT(wait);
2145 int rc;
2146
2147 /* Find the software table entry and mark it busy. Don't
2148 * remove it yet; any attempt to update while we're waiting
2149 * for the firmware must find the busy entry.
2150 */
2151 for (;;) {
2152 spin_lock_bh(&efx->filter_lock);
2153 if (!(table->entry[filter_idx].spec &
2154 EFX_EF10_FILTER_FLAG_BUSY))
2155 break;
2156 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2157 spin_unlock_bh(&efx->filter_lock);
2158 schedule();
2159 }
2160 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2161 if (!spec || spec->priority > priority ||
2162 (!stack_requested &&
2163 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2164 filter_id / HUNT_FILTER_TBL_ROWS)) {
2165 rc = -ENOENT;
2166 goto out_unlock;
2167 }
2168 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2169 spin_unlock_bh(&efx->filter_lock);
2170
2171 if (spec->flags & EFX_FILTER_FLAG_RX_STACK && !stack_requested) {
2172 /* Reset steering of a stack-owned filter */
2173
2174 struct efx_filter_spec new_spec = *spec;
2175
2176 new_spec.priority = EFX_FILTER_PRI_REQUIRED;
2177 new_spec.flags = (EFX_FILTER_FLAG_RX |
2178 EFX_FILTER_FLAG_RX_RSS |
2179 EFX_FILTER_FLAG_RX_STACK);
2180 new_spec.dmaq_id = 0;
2181 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2182 rc = efx_ef10_filter_push(efx, &new_spec,
2183 &table->entry[filter_idx].handle,
2184 true);
2185
2186 spin_lock_bh(&efx->filter_lock);
2187 if (rc == 0)
2188 *spec = new_spec;
2189 } else {
2190 /* Really remove the filter */
2191
2192 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2193 efx_ef10_filter_is_exclusive(spec) ?
2194 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2195 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2196 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2197 table->entry[filter_idx].handle);
2198 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2199 inbuf, sizeof(inbuf), NULL, 0, NULL);
2200
2201 spin_lock_bh(&efx->filter_lock);
2202 if (rc == 0) {
2203 kfree(spec);
2204 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2205 }
2206 }
2207 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2208 wake_up_all(&table->waitq);
2209out_unlock:
2210 spin_unlock_bh(&efx->filter_lock);
2211 finish_wait(&table->waitq, &wait);
2212 return rc;
2213}
2214
2215static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2216 enum efx_filter_priority priority,
2217 u32 filter_id)
2218{
2219 return efx_ef10_filter_remove_internal(efx, priority, filter_id, false);
2220}
2221
2222static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2223 enum efx_filter_priority priority,
2224 u32 filter_id, struct efx_filter_spec *spec)
2225{
2226 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2227 struct efx_ef10_filter_table *table = efx->filter_state;
2228 const struct efx_filter_spec *saved_spec;
2229 int rc;
2230
2231 spin_lock_bh(&efx->filter_lock);
2232 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2233 if (saved_spec && saved_spec->priority == priority &&
2234 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2235 filter_id / HUNT_FILTER_TBL_ROWS) {
2236 *spec = *saved_spec;
2237 rc = 0;
2238 } else {
2239 rc = -ENOENT;
2240 }
2241 spin_unlock_bh(&efx->filter_lock);
2242 return rc;
2243}
2244
2245static void efx_ef10_filter_clear_rx(struct efx_nic *efx,
2246 enum efx_filter_priority priority)
2247{
2248 /* TODO */
2249}
2250
2251static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2252 enum efx_filter_priority priority)
2253{
2254 struct efx_ef10_filter_table *table = efx->filter_state;
2255 unsigned int filter_idx;
2256 s32 count = 0;
2257
2258 spin_lock_bh(&efx->filter_lock);
2259 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2260 if (table->entry[filter_idx].spec &&
2261 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2262 priority)
2263 ++count;
2264 }
2265 spin_unlock_bh(&efx->filter_lock);
2266 return count;
2267}
2268
2269static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2270{
2271 struct efx_ef10_filter_table *table = efx->filter_state;
2272
2273 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2274}
2275
2276static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2277 enum efx_filter_priority priority,
2278 u32 *buf, u32 size)
2279{
2280 struct efx_ef10_filter_table *table = efx->filter_state;
2281 struct efx_filter_spec *spec;
2282 unsigned int filter_idx;
2283 s32 count = 0;
2284
2285 spin_lock_bh(&efx->filter_lock);
2286 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2287 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2288 if (spec && spec->priority == priority) {
2289 if (count == size) {
2290 count = -EMSGSIZE;
2291 break;
2292 }
2293 buf[count++] = (efx_ef10_filter_rx_match_pri(
2294 table, spec->match_flags) *
2295 HUNT_FILTER_TBL_ROWS +
2296 filter_idx);
2297 }
2298 }
2299 spin_unlock_bh(&efx->filter_lock);
2300 return count;
2301}
2302
2303#ifdef CONFIG_RFS_ACCEL
2304
2305static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2306
2307static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2308 struct efx_filter_spec *spec)
2309{
2310 struct efx_ef10_filter_table *table = efx->filter_state;
2311 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2312 struct efx_filter_spec *saved_spec;
2313 unsigned int hash, i, depth = 1;
2314 bool replacing = false;
2315 int ins_index = -1;
2316 u64 cookie;
2317 s32 rc;
2318
2319 /* Must be an RX filter without RSS and not for a multicast
2320 * destination address (RFS only works for connected sockets).
2321 * These restrictions allow us to pass only a tiny amount of
2322 * data through to the completion function.
2323 */
2324 EFX_WARN_ON_PARANOID(spec->flags !=
2325 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2326 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2327 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2328
2329 hash = efx_ef10_filter_hash(spec);
2330
2331 spin_lock_bh(&efx->filter_lock);
2332
2333 /* Find any existing filter with the same match tuple or else
2334 * a free slot to insert at. If an existing filter is busy,
2335 * we have to give up.
2336 */
2337 for (;;) {
2338 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2339 saved_spec = efx_ef10_filter_entry_spec(table, i);
2340
2341 if (!saved_spec) {
2342 if (ins_index < 0)
2343 ins_index = i;
2344 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2345 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2346 rc = -EBUSY;
2347 goto fail_unlock;
2348 }
2349 EFX_WARN_ON_PARANOID(saved_spec->flags &
2350 EFX_FILTER_FLAG_RX_STACK);
2351 if (spec->priority < saved_spec->priority) {
2352 rc = -EPERM;
2353 goto fail_unlock;
2354 }
2355 ins_index = i;
2356 break;
2357 }
2358
2359 /* Once we reach the maximum search depth, use the
2360 * first suitable slot or return -EBUSY if there was
2361 * none
2362 */
2363 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2364 if (ins_index < 0) {
2365 rc = -EBUSY;
2366 goto fail_unlock;
2367 }
2368 break;
2369 }
2370
2371 ++depth;
2372 }
2373
2374 /* Create a software table entry if necessary, and mark it
2375 * busy. We might yet fail to insert, but any attempt to
2376 * insert a conflicting filter while we're waiting for the
2377 * firmware must find the busy entry.
2378 */
2379 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2380 if (saved_spec) {
2381 replacing = true;
2382 } else {
2383 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2384 if (!saved_spec) {
2385 rc = -ENOMEM;
2386 goto fail_unlock;
2387 }
2388 *saved_spec = *spec;
2389 }
2390 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2391 EFX_EF10_FILTER_FLAG_BUSY);
2392
2393 spin_unlock_bh(&efx->filter_lock);
2394
2395 /* Pack up the variables needed on completion */
2396 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2397
2398 efx_ef10_filter_push_prep(efx, spec, inbuf,
2399 table->entry[ins_index].handle, replacing);
2400 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2401 MC_CMD_FILTER_OP_OUT_LEN,
2402 efx_ef10_filter_rfs_insert_complete, cookie);
2403
2404 return ins_index;
2405
2406fail_unlock:
2407 spin_unlock_bh(&efx->filter_lock);
2408 return rc;
2409}
2410
2411static void
2412efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2413 int rc, efx_dword_t *outbuf,
2414 size_t outlen_actual)
2415{
2416 struct efx_ef10_filter_table *table = efx->filter_state;
2417 unsigned int ins_index, dmaq_id;
2418 struct efx_filter_spec *spec;
2419 bool replacing;
2420
2421 /* Unpack the cookie */
2422 replacing = cookie >> 31;
2423 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2424 dmaq_id = cookie & 0xffff;
2425
2426 spin_lock_bh(&efx->filter_lock);
2427 spec = efx_ef10_filter_entry_spec(table, ins_index);
2428 if (rc == 0) {
2429 table->entry[ins_index].handle =
2430 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2431 if (replacing)
2432 spec->dmaq_id = dmaq_id;
2433 } else if (!replacing) {
2434 kfree(spec);
2435 spec = NULL;
2436 }
2437 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2438 spin_unlock_bh(&efx->filter_lock);
2439
2440 wake_up_all(&table->waitq);
2441}
2442
2443static void
2444efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2445 unsigned long filter_idx,
2446 int rc, efx_dword_t *outbuf,
2447 size_t outlen_actual);
2448
2449static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2450 unsigned int filter_idx)
2451{
2452 struct efx_ef10_filter_table *table = efx->filter_state;
2453 struct efx_filter_spec *spec =
2454 efx_ef10_filter_entry_spec(table, filter_idx);
2455 MCDI_DECLARE_BUF(inbuf,
2456 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2457 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2458
2459 if (!spec ||
2460 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2461 spec->priority != EFX_FILTER_PRI_HINT ||
2462 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2463 flow_id, filter_idx))
2464 return false;
2465
2466 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2467 MC_CMD_FILTER_OP_IN_OP_REMOVE);
2468 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2469 table->entry[filter_idx].handle);
2470 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2471 efx_ef10_filter_rfs_expire_complete, filter_idx))
2472 return false;
2473
2474 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2475 return true;
2476}
2477
2478static void
2479efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2480 unsigned long filter_idx,
2481 int rc, efx_dword_t *outbuf,
2482 size_t outlen_actual)
2483{
2484 struct efx_ef10_filter_table *table = efx->filter_state;
2485 struct efx_filter_spec *spec =
2486 efx_ef10_filter_entry_spec(table, filter_idx);
2487
2488 spin_lock_bh(&efx->filter_lock);
2489 if (rc == 0) {
2490 kfree(spec);
2491 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2492 }
2493 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2494 wake_up_all(&table->waitq);
2495 spin_unlock_bh(&efx->filter_lock);
2496}
2497
2498#endif /* CONFIG_RFS_ACCEL */
2499
2500static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2501{
2502 int match_flags = 0;
2503
2504#define MAP_FLAG(gen_flag, mcdi_field) { \
2505 u32 old_mcdi_flags = mcdi_flags; \
2506 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2507 mcdi_field ## _LBN); \
2508 if (mcdi_flags != old_mcdi_flags) \
2509 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
2510 }
2511 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2512 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2513 MAP_FLAG(REM_HOST, SRC_IP);
2514 MAP_FLAG(LOC_HOST, DST_IP);
2515 MAP_FLAG(REM_MAC, SRC_MAC);
2516 MAP_FLAG(REM_PORT, SRC_PORT);
2517 MAP_FLAG(LOC_MAC, DST_MAC);
2518 MAP_FLAG(LOC_PORT, DST_PORT);
2519 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2520 MAP_FLAG(INNER_VID, INNER_VLAN);
2521 MAP_FLAG(OUTER_VID, OUTER_VLAN);
2522 MAP_FLAG(IP_PROTO, IP_PROTO);
2523#undef MAP_FLAG
2524
2525 /* Did we map them all? */
2526 if (mcdi_flags)
2527 return -EINVAL;
2528
2529 return match_flags;
2530}
2531
2532static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2533{
2534 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2535 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2536 unsigned int pd_match_pri, pd_match_count;
2537 struct efx_ef10_filter_table *table;
2538 size_t outlen;
2539 int rc;
2540
2541 table = kzalloc(sizeof(*table), GFP_KERNEL);
2542 if (!table)
2543 return -ENOMEM;
2544
2545 /* Find out which RX filter types are supported, and their priorities */
2546 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
2547 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
2548 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
2549 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
2550 &outlen);
2551 if (rc)
2552 goto fail;
2553 pd_match_count = MCDI_VAR_ARRAY_LEN(
2554 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
2555 table->rx_match_count = 0;
2556
2557 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
2558 u32 mcdi_flags =
2559 MCDI_ARRAY_DWORD(
2560 outbuf,
2561 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
2562 pd_match_pri);
2563 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
2564 if (rc < 0) {
2565 netif_dbg(efx, probe, efx->net_dev,
2566 "%s: fw flags %#x pri %u not supported in driver\n",
2567 __func__, mcdi_flags, pd_match_pri);
2568 } else {
2569 netif_dbg(efx, probe, efx->net_dev,
2570 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
2571 __func__, mcdi_flags, pd_match_pri,
2572 rc, table->rx_match_count);
2573 table->rx_match_flags[table->rx_match_count++] = rc;
2574 }
2575 }
2576
2577 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
2578 if (!table->entry) {
2579 rc = -ENOMEM;
2580 goto fail;
2581 }
2582
2583 efx->filter_state = table;
2584 init_waitqueue_head(&table->waitq);
2585 return 0;
2586
2587fail:
2588 kfree(table);
2589 return rc;
2590}
2591
2592static void efx_ef10_filter_table_restore(struct efx_nic *efx)
2593{
2594 struct efx_ef10_filter_table *table = efx->filter_state;
2595 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2596 struct efx_filter_spec *spec;
2597 unsigned int filter_idx;
2598 bool failed = false;
2599 int rc;
2600
2601 if (!nic_data->must_restore_filters)
2602 return;
2603
2604 spin_lock_bh(&efx->filter_lock);
2605
2606 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2607 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2608 if (!spec)
2609 continue;
2610
2611 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2612 spin_unlock_bh(&efx->filter_lock);
2613
2614 rc = efx_ef10_filter_push(efx, spec,
2615 &table->entry[filter_idx].handle,
2616 false);
2617 if (rc)
2618 failed = true;
2619
2620 spin_lock_bh(&efx->filter_lock);
2621 if (rc) {
2622 kfree(spec);
2623 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2624 } else {
2625 table->entry[filter_idx].spec &=
2626 ~EFX_EF10_FILTER_FLAG_BUSY;
2627 }
2628 }
2629
2630 spin_unlock_bh(&efx->filter_lock);
2631
2632 if (failed)
2633 netif_err(efx, hw, efx->net_dev,
2634 "unable to restore all filters\n");
2635 else
2636 nic_data->must_restore_filters = false;
2637}
2638
2639static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2640{
2641 struct efx_ef10_filter_table *table = efx->filter_state;
2642 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2643 struct efx_filter_spec *spec;
2644 unsigned int filter_idx;
2645 int rc;
2646
2647 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2648 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2649 if (!spec)
2650 continue;
2651
2652 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2653 efx_ef10_filter_is_exclusive(spec) ?
2654 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2655 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2656 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2657 table->entry[filter_idx].handle);
2658 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2659 NULL, 0, NULL);
2660
2661 WARN_ON(rc != 0);
2662 kfree(spec);
2663 }
2664
2665 vfree(table->entry);
2666 kfree(table);
2667}
2668
2669static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
2670{
2671 struct efx_ef10_filter_table *table = efx->filter_state;
2672 struct net_device *net_dev = efx->net_dev;
2673 struct efx_filter_spec spec;
2674 bool remove_failed = false;
2675 struct netdev_hw_addr *uc;
2676 struct netdev_hw_addr *mc;
2677 unsigned int filter_idx;
2678 int i, n, rc;
2679
2680 if (!efx_dev_registered(efx))
2681 return;
2682
2683 /* Mark old filters that may need to be removed */
2684 spin_lock_bh(&efx->filter_lock);
2685 n = table->stack_uc_count < 0 ? 1 : table->stack_uc_count;
2686 for (i = 0; i < n; i++) {
2687 filter_idx = table->stack_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
2688 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
2689 }
2690 n = table->stack_mc_count < 0 ? 1 : table->stack_mc_count;
2691 for (i = 0; i < n; i++) {
2692 filter_idx = table->stack_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
2693 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
2694 }
2695 spin_unlock_bh(&efx->filter_lock);
2696
2697 /* Copy/convert the address lists; add the primary station
2698 * address and broadcast address
2699 */
2700 netif_addr_lock_bh(net_dev);
2701 if (net_dev->flags & IFF_PROMISC ||
2702 netdev_uc_count(net_dev) >= EFX_EF10_FILTER_STACK_UC_MAX) {
2703 table->stack_uc_count = -1;
2704 } else {
2705 table->stack_uc_count = 1 + netdev_uc_count(net_dev);
2706 memcpy(table->stack_uc_list[0].addr, net_dev->dev_addr,
2707 ETH_ALEN);
2708 i = 1;
2709 netdev_for_each_uc_addr(uc, net_dev) {
2710 memcpy(table->stack_uc_list[i].addr,
2711 uc->addr, ETH_ALEN);
2712 i++;
2713 }
2714 }
2715 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
2716 netdev_mc_count(net_dev) >= EFX_EF10_FILTER_STACK_MC_MAX) {
2717 table->stack_mc_count = -1;
2718 } else {
2719 table->stack_mc_count = 1 + netdev_mc_count(net_dev);
2720 eth_broadcast_addr(table->stack_mc_list[0].addr);
2721 i = 1;
2722 netdev_for_each_mc_addr(mc, net_dev) {
2723 memcpy(table->stack_mc_list[i].addr,
2724 mc->addr, ETH_ALEN);
2725 i++;
2726 }
2727 }
2728 netif_addr_unlock_bh(net_dev);
2729
2730 /* Insert/renew unicast filters */
2731 if (table->stack_uc_count >= 0) {
2732 for (i = 0; i < table->stack_uc_count; i++) {
2733 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2734 EFX_FILTER_FLAG_RX_RSS |
2735 EFX_FILTER_FLAG_RX_STACK,
2736 0);
2737 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
2738 table->stack_uc_list[i].addr);
2739 rc = efx_ef10_filter_insert(efx, &spec, true);
2740 if (rc < 0) {
2741 /* Fall back to unicast-promisc */
2742 while (i--)
2743 efx_ef10_filter_remove_safe(
2744 efx, EFX_FILTER_PRI_REQUIRED,
2745 table->stack_uc_list[i].id);
2746 table->stack_uc_count = -1;
2747 break;
2748 }
2749 table->stack_uc_list[i].id = rc;
2750 }
2751 }
2752 if (table->stack_uc_count < 0) {
2753 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2754 EFX_FILTER_FLAG_RX_RSS |
2755 EFX_FILTER_FLAG_RX_STACK,
2756 0);
2757 efx_filter_set_uc_def(&spec);
2758 rc = efx_ef10_filter_insert(efx, &spec, true);
2759 if (rc < 0) {
2760 WARN_ON(1);
2761 table->stack_uc_count = 0;
2762 } else {
2763 table->stack_uc_list[0].id = rc;
2764 }
2765 }
2766
2767 /* Insert/renew multicast filters */
2768 if (table->stack_mc_count >= 0) {
2769 for (i = 0; i < table->stack_mc_count; i++) {
2770 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2771 EFX_FILTER_FLAG_RX_RSS |
2772 EFX_FILTER_FLAG_RX_STACK,
2773 0);
2774 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
2775 table->stack_mc_list[i].addr);
2776 rc = efx_ef10_filter_insert(efx, &spec, true);
2777 if (rc < 0) {
2778 /* Fall back to multicast-promisc */
2779 while (i--)
2780 efx_ef10_filter_remove_safe(
2781 efx, EFX_FILTER_PRI_REQUIRED,
2782 table->stack_mc_list[i].id);
2783 table->stack_mc_count = -1;
2784 break;
2785 }
2786 table->stack_mc_list[i].id = rc;
2787 }
2788 }
2789 if (table->stack_mc_count < 0) {
2790 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2791 EFX_FILTER_FLAG_RX_RSS |
2792 EFX_FILTER_FLAG_RX_STACK,
2793 0);
2794 efx_filter_set_mc_def(&spec);
2795 rc = efx_ef10_filter_insert(efx, &spec, true);
2796 if (rc < 0) {
2797 WARN_ON(1);
2798 table->stack_mc_count = 0;
2799 } else {
2800 table->stack_mc_list[0].id = rc;
2801 }
2802 }
2803
2804 /* Remove filters that weren't renewed. Since nothing else
2805 * changes the STACK_OLD flag or removes these filters, we
2806 * don't need to hold the filter_lock while scanning for
2807 * these filters.
2808 */
2809 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2810 if (ACCESS_ONCE(table->entry[i].spec) &
2811 EFX_EF10_FILTER_FLAG_STACK_OLD) {
2812 if (efx_ef10_filter_remove_internal(efx,
2813 EFX_FILTER_PRI_REQUIRED,
2814 i, true) < 0)
2815 remove_failed = true;
2816 }
2817 }
2818 WARN_ON(remove_failed);
2819}
2820
2821static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
2822{
2823 efx_ef10_filter_sync_rx_mode(efx);
2824
2825 return efx_mcdi_set_mac(efx);
2826}
2827
2828#ifdef CONFIG_SFC_MTD
2829
2830struct efx_ef10_nvram_type_info {
2831 u16 type, type_mask;
2832 u8 port;
2833 const char *name;
2834};
2835
2836static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
2837 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
2838 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
2839 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
2840 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
2841 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
2842 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
2843 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
2844 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
2845 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
2846 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
2847};
2848
2849static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
2850 struct efx_mcdi_mtd_partition *part,
2851 unsigned int type)
2852{
2853 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
2854 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
2855 const struct efx_ef10_nvram_type_info *info;
2856 size_t size, erase_size, outlen;
2857 bool protected;
2858 int rc;
2859
2860 for (info = efx_ef10_nvram_types; ; info++) {
2861 if (info ==
2862 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
2863 return -ENODEV;
2864 if ((type & ~info->type_mask) == info->type)
2865 break;
2866 }
2867 if (info->port != efx_port_num(efx))
2868 return -ENODEV;
2869
2870 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
2871 if (rc)
2872 return rc;
2873 if (protected)
2874 return -ENODEV; /* hide it */
2875
2876 part->nvram_type = type;
2877
2878 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
2879 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
2880 outbuf, sizeof(outbuf), &outlen);
2881 if (rc)
2882 return rc;
2883 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
2884 return -EIO;
2885 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
2886 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
2887 part->fw_subtype = MCDI_DWORD(outbuf,
2888 NVRAM_METADATA_OUT_SUBTYPE);
2889
2890 part->common.dev_type_name = "EF10 NVRAM manager";
2891 part->common.type_name = info->name;
2892
2893 part->common.mtd.type = MTD_NORFLASH;
2894 part->common.mtd.flags = MTD_CAP_NORFLASH;
2895 part->common.mtd.size = size;
2896 part->common.mtd.erasesize = erase_size;
2897
2898 return 0;
2899}
2900
2901static int efx_ef10_mtd_probe(struct efx_nic *efx)
2902{
2903 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
2904 struct efx_mcdi_mtd_partition *parts;
2905 size_t outlen, n_parts_total, i, n_parts;
2906 unsigned int type;
2907 int rc;
2908
2909 ASSERT_RTNL();
2910
2911 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
2912 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
2913 outbuf, sizeof(outbuf), &outlen);
2914 if (rc)
2915 return rc;
2916 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
2917 return -EIO;
2918
2919 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
2920 if (n_parts_total >
2921 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
2922 return -EIO;
2923
2924 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
2925 if (!parts)
2926 return -ENOMEM;
2927
2928 n_parts = 0;
2929 for (i = 0; i < n_parts_total; i++) {
2930 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
2931 i);
2932 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
2933 if (rc == 0)
2934 n_parts++;
2935 else if (rc != -ENODEV)
2936 goto fail;
2937 }
2938
2939 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
2940fail:
2941 if (rc)
2942 kfree(parts);
2943 return rc;
2944}
2945
2946#endif /* CONFIG_SFC_MTD */
2947
2948static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
2949{
2950 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
2951}
2952
2953const struct efx_nic_type efx_hunt_a0_nic_type = {
2954 .mem_map_size = efx_ef10_mem_map_size,
2955 .probe = efx_ef10_probe,
2956 .remove = efx_ef10_remove,
2957 .dimension_resources = efx_ef10_dimension_resources,
2958 .init = efx_ef10_init_nic,
2959 .fini = efx_port_dummy_op_void,
2960 .map_reset_reason = efx_mcdi_map_reset_reason,
2961 .map_reset_flags = efx_ef10_map_reset_flags,
2962 .reset = efx_mcdi_reset,
2963 .probe_port = efx_mcdi_port_probe,
2964 .remove_port = efx_mcdi_port_remove,
2965 .fini_dmaq = efx_ef10_fini_dmaq,
2966 .describe_stats = efx_ef10_describe_stats,
2967 .update_stats = efx_ef10_update_stats,
2968 .start_stats = efx_mcdi_mac_start_stats,
2969 .stop_stats = efx_mcdi_mac_stop_stats,
2970 .set_id_led = efx_mcdi_set_id_led,
2971 .push_irq_moderation = efx_ef10_push_irq_moderation,
2972 .reconfigure_mac = efx_ef10_mac_reconfigure,
2973 .check_mac_fault = efx_mcdi_mac_check_fault,
2974 .reconfigure_port = efx_mcdi_port_reconfigure,
2975 .get_wol = efx_ef10_get_wol,
2976 .set_wol = efx_ef10_set_wol,
2977 .resume_wol = efx_port_dummy_op_void,
2978 /* TODO: test_chip */
2979 .test_nvram = efx_mcdi_nvram_test_all,
2980 .mcdi_request = efx_ef10_mcdi_request,
2981 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
2982 .mcdi_read_response = efx_ef10_mcdi_read_response,
2983 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
2984 .irq_enable_master = efx_port_dummy_op_void,
2985 .irq_test_generate = efx_ef10_irq_test_generate,
2986 .irq_disable_non_ev = efx_port_dummy_op_void,
2987 .irq_handle_msi = efx_ef10_msi_interrupt,
2988 .irq_handle_legacy = efx_ef10_legacy_interrupt,
2989 .tx_probe = efx_ef10_tx_probe,
2990 .tx_init = efx_ef10_tx_init,
2991 .tx_remove = efx_ef10_tx_remove,
2992 .tx_write = efx_ef10_tx_write,
2993 .rx_push_indir_table = efx_ef10_rx_push_indir_table,
2994 .rx_probe = efx_ef10_rx_probe,
2995 .rx_init = efx_ef10_rx_init,
2996 .rx_remove = efx_ef10_rx_remove,
2997 .rx_write = efx_ef10_rx_write,
2998 .rx_defer_refill = efx_ef10_rx_defer_refill,
2999 .ev_probe = efx_ef10_ev_probe,
3000 .ev_init = efx_ef10_ev_init,
3001 .ev_fini = efx_ef10_ev_fini,
3002 .ev_remove = efx_ef10_ev_remove,
3003 .ev_process = efx_ef10_ev_process,
3004 .ev_read_ack = efx_ef10_ev_read_ack,
3005 .ev_test_generate = efx_ef10_ev_test_generate,
3006 .filter_table_probe = efx_ef10_filter_table_probe,
3007 .filter_table_restore = efx_ef10_filter_table_restore,
3008 .filter_table_remove = efx_ef10_filter_table_remove,
3009 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3010 .filter_insert = efx_ef10_filter_insert,
3011 .filter_remove_safe = efx_ef10_filter_remove_safe,
3012 .filter_get_safe = efx_ef10_filter_get_safe,
3013 .filter_clear_rx = efx_ef10_filter_clear_rx,
3014 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3015 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3016 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3017#ifdef CONFIG_RFS_ACCEL
3018 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3019 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3020#endif
3021#ifdef CONFIG_SFC_MTD
3022 .mtd_probe = efx_ef10_mtd_probe,
3023 .mtd_rename = efx_mcdi_mtd_rename,
3024 .mtd_read = efx_mcdi_mtd_read,
3025 .mtd_erase = efx_mcdi_mtd_erase,
3026 .mtd_write = efx_mcdi_mtd_write,
3027 .mtd_sync = efx_mcdi_mtd_sync,
3028#endif
3029 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3030
3031 .revision = EFX_REV_HUNT_A0,
3032 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3033 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3034 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3035 .can_rx_scatter = true,
3036 .always_rx_scatter = true,
3037 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3038 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3039 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3040 NETIF_F_RXHASH | NETIF_F_NTUPLE),
3041 .mcdi_max_ver = 2,
3042 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3043};