Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / drivers / net / ethernet / samsung / sxgbe / sxgbe_main.c
CommitLineData
1edb9ca6
SR
1/* 10G controller driver for Samsung SoCs
2 *
3 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/clk.h>
16#include <linux/crc32.h>
17#include <linux/dma-mapping.h>
18#include <linux/etherdevice.h>
19#include <linux/ethtool.h>
20#include <linux/if.h>
21#include <linux/if_ether.h>
22#include <linux/if_vlan.h>
23#include <linux/init.h>
24#include <linux/interrupt.h>
25#include <linux/ip.h>
26#include <linux/kernel.h>
27#include <linux/mii.h>
28#include <linux/module.h>
29#include <linux/net_tstamp.h>
30#include <linux/netdevice.h>
31#include <linux/phy.h>
32#include <linux/platform_device.h>
33#include <linux/prefetch.h>
34#include <linux/skbuff.h>
35#include <linux/slab.h>
36#include <linux/tcp.h>
37#include <linux/sxgbe_platform.h>
38
39#include "sxgbe_common.h"
40#include "sxgbe_desc.h"
41#include "sxgbe_dma.h"
42#include "sxgbe_mtl.h"
43#include "sxgbe_reg.h"
44
45#define SXGBE_ALIGN(x) L1_CACHE_ALIGN(x)
46#define JUMBO_LEN 9000
47
48/* Module parameters */
49#define TX_TIMEO 5000
50#define DMA_TX_SIZE 512
51#define DMA_RX_SIZE 1024
52#define TC_DEFAULT 64
53#define DMA_BUFFER_SIZE BUF_SIZE_2KiB
54/* The default timer value as per the sxgbe specification 1 sec(1000 ms) */
55#define SXGBE_DEFAULT_LPI_TIMER 1000
56
57static int debug = -1;
acc18c14
G
58static int eee_timer = SXGBE_DEFAULT_LPI_TIMER;
59
60module_param(eee_timer, int, S_IRUGO | S_IWUSR);
1edb9ca6
SR
61
62module_param(debug, int, S_IRUGO | S_IWUSR);
63static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
64 NETIF_MSG_LINK | NETIF_MSG_IFUP |
65 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
66
67static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id);
68static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id);
69static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id);
70
71#define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
72
acc18c14
G
73#define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
74
75/**
76 * sxgbe_verify_args - verify the driver parameters.
77 * Description: it verifies if some wrong parameter is passed to the driver.
78 * Note that wrong parameters are replaced with the default values.
79 */
80static void sxgbe_verify_args(void)
81{
82 if (unlikely(eee_timer < 0))
83 eee_timer = SXGBE_DEFAULT_LPI_TIMER;
84}
85
86static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv)
87{
88 /* Check and enter in LPI mode */
89 if (!priv->tx_path_in_lpi_mode)
90 priv->hw->mac->set_eee_mode(priv->ioaddr);
91}
92
93void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)
94{
95 /* Exit and disable EEE in case of we are are in LPI state. */
96 priv->hw->mac->reset_eee_mode(priv->ioaddr);
97 del_timer_sync(&priv->eee_ctrl_timer);
98 priv->tx_path_in_lpi_mode = false;
99}
100
101/**
102 * sxgbe_eee_ctrl_timer
103 * @arg : data hook
104 * Description:
105 * If there is no data transfer and if we are not in LPI state,
106 * then MAC Transmitter can be moved to LPI state.
107 */
108static void sxgbe_eee_ctrl_timer(unsigned long arg)
109{
110 struct sxgbe_priv_data *priv = (struct sxgbe_priv_data *)arg;
111
112 sxgbe_enable_eee_mode(priv);
113 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
114}
115
116/**
117 * sxgbe_eee_init
118 * @priv: private device pointer
119 * Description:
120 * If the EEE support has been enabled while configuring the driver,
121 * if the GMAC actually supports the EEE (from the HW cap reg) and the
122 * phy can also manage EEE, so enable the LPI state and start the timer
123 * to verify if the tx path can enter in LPI state.
124 */
125bool sxgbe_eee_init(struct sxgbe_priv_data * const priv)
126{
127 bool ret = false;
128
129 /* MAC core supports the EEE feature. */
130 if (priv->hw_cap.eee) {
131 /* Check if the PHY supports EEE */
132 if (phy_init_eee(priv->phydev, 1))
133 return false;
134
135 priv->eee_active = 1;
12141337
JL
136 setup_timer(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer,
137 (unsigned long)priv);
acc18c14
G
138 priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer);
139 add_timer(&priv->eee_ctrl_timer);
140
141 priv->hw->mac->set_eee_timer(priv->ioaddr,
142 SXGBE_DEFAULT_LPI_TIMER,
143 priv->tx_lpi_timer);
144
145 pr_info("Energy-Efficient Ethernet initialized\n");
146
147 ret = true;
148 }
149
150 return ret;
151}
152
153static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv)
154{
155 /* When the EEE has been already initialised we have to
156 * modify the PLS bit in the LPI ctrl & status reg according
157 * to the PHY link status. For this reason.
158 */
159 if (priv->eee_enabled)
160 priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
161}
162
1edb9ca6
SR
163/**
164 * sxgbe_clk_csr_set - dynamically set the MDC clock
165 * @priv: driver private structure
166 * Description: this is to dynamically set the MDC clock according to the csr
167 * clock input.
168 */
169static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv)
170{
171 u32 clk_rate = clk_get_rate(priv->sxgbe_clk);
172
173 /* assign the proper divider, this will be used during
174 * mdio communication
175 */
176 if (clk_rate < SXGBE_CSR_F_150M)
177 priv->clk_csr = SXGBE_CSR_100_150M;
178 else if (clk_rate <= SXGBE_CSR_F_250M)
179 priv->clk_csr = SXGBE_CSR_150_250M;
180 else if (clk_rate <= SXGBE_CSR_F_300M)
181 priv->clk_csr = SXGBE_CSR_250_300M;
182 else if (clk_rate <= SXGBE_CSR_F_350M)
183 priv->clk_csr = SXGBE_CSR_300_350M;
184 else if (clk_rate <= SXGBE_CSR_F_400M)
185 priv->clk_csr = SXGBE_CSR_350_400M;
186 else if (clk_rate <= SXGBE_CSR_F_500M)
187 priv->clk_csr = SXGBE_CSR_400_500M;
188}
189
190/* minimum number of free TX descriptors required to wake up TX process */
191#define SXGBE_TX_THRESH(x) (x->dma_tx_size/4)
192
193static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize)
194{
195 return queue->dirty_tx + tx_qsize - queue->cur_tx - 1;
196}
197
198/**
199 * sxgbe_adjust_link
200 * @dev: net device structure
201 * Description: it adjusts the link parameters.
202 */
203static void sxgbe_adjust_link(struct net_device *dev)
204{
205 struct sxgbe_priv_data *priv = netdev_priv(dev);
206 struct phy_device *phydev = priv->phydev;
207 u8 new_state = 0;
208 u8 speed = 0xff;
209
210 if (!phydev)
211 return;
212
213 /* SXGBE is not supporting auto-negotiation and
214 * half duplex mode. so, not handling duplex change
215 * in this function. only handling speed and link status
216 */
217 if (phydev->link) {
218 if (phydev->speed != priv->speed) {
219 new_state = 1;
220 switch (phydev->speed) {
221 case SPEED_10000:
222 speed = SXGBE_SPEED_10G;
223 break;
224 case SPEED_2500:
225 speed = SXGBE_SPEED_2_5G;
226 break;
227 case SPEED_1000:
228 speed = SXGBE_SPEED_1G;
229 break;
230 default:
231 netif_err(priv, link, dev,
232 "Speed (%d) not supported\n",
233 phydev->speed);
234 }
235
236 priv->speed = phydev->speed;
237 priv->hw->mac->set_speed(priv->ioaddr, speed);
238 }
239
240 if (!priv->oldlink) {
241 new_state = 1;
242 priv->oldlink = 1;
243 }
244 } else if (priv->oldlink) {
245 new_state = 1;
246 priv->oldlink = 0;
247 priv->speed = SPEED_UNKNOWN;
248 }
249
250 if (new_state & netif_msg_link(priv))
251 phy_print_status(phydev);
acc18c14
G
252
253 /* Alter the MAC settings for EEE */
254 sxgbe_eee_adjust(priv);
1edb9ca6
SR
255}
256
257/**
258 * sxgbe_init_phy - PHY initialization
259 * @dev: net device structure
260 * Description: it initializes the driver's PHY state, and attaches the PHY
261 * to the mac driver.
262 * Return value:
263 * 0 on success
264 */
265static int sxgbe_init_phy(struct net_device *ndev)
266{
267 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
268 char bus_id[MII_BUS_ID_SIZE];
269 struct phy_device *phydev;
270 struct sxgbe_priv_data *priv = netdev_priv(ndev);
271 int phy_iface = priv->plat->interface;
272
273 /* assign default link status */
274 priv->oldlink = 0;
275 priv->speed = SPEED_UNKNOWN;
276 priv->oldduplex = DUPLEX_UNKNOWN;
277
278 if (priv->plat->phy_bus_name)
279 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
280 priv->plat->phy_bus_name, priv->plat->bus_id);
281 else
282 snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x",
283 priv->plat->bus_id);
284
285 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
286 priv->plat->phy_addr);
287 netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt);
288
289 phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface);
290
291 if (IS_ERR(phydev)) {
292 netdev_err(ndev, "Could not attach to PHY\n");
293 return PTR_ERR(phydev);
294 }
295
296 /* Stop Advertising 1000BASE Capability if interface is not GMII */
297 if ((phy_iface == PHY_INTERFACE_MODE_MII) ||
298 (phy_iface == PHY_INTERFACE_MODE_RMII))
299 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
300 SUPPORTED_1000baseT_Full);
301 if (phydev->phy_id == 0) {
302 phy_disconnect(phydev);
303 return -ENODEV;
304 }
305
306 netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
307 __func__, phydev->phy_id, phydev->link);
308
309 /* save phy device in private structure */
310 priv->phydev = phydev;
311
312 return 0;
313}
314
315/**
316 * sxgbe_clear_descriptors: clear descriptors
317 * @priv: driver private structure
318 * Description: this function is called to clear the tx and rx descriptors
319 * in case of both basic and extended descriptors are used.
320 */
321static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv)
322{
323 int i, j;
324 unsigned int txsize = priv->dma_tx_size;
325 unsigned int rxsize = priv->dma_rx_size;
326
327 /* Clear the Rx/Tx descriptors */
328 for (j = 0; j < SXGBE_RX_QUEUES; j++) {
329 for (i = 0; i < rxsize; i++)
330 priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i],
331 priv->use_riwt, priv->mode,
332 (i == rxsize - 1));
333 }
334
335 for (j = 0; j < SXGBE_TX_QUEUES; j++) {
336 for (i = 0; i < txsize; i++)
337 priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]);
338 }
339}
340
341static int sxgbe_init_rx_buffers(struct net_device *dev,
342 struct sxgbe_rx_norm_desc *p, int i,
343 unsigned int dma_buf_sz,
344 struct sxgbe_rx_queue *rx_ring)
345{
346 struct sxgbe_priv_data *priv = netdev_priv(dev);
347 struct sk_buff *skb;
348
349 skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL);
350 if (!skb)
351 return -ENOMEM;
352
353 rx_ring->rx_skbuff[i] = skb;
354 rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
355 dma_buf_sz, DMA_FROM_DEVICE);
356
357 if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) {
358 netdev_err(dev, "%s: DMA mapping error\n", __func__);
359 dev_kfree_skb_any(skb);
360 return -EINVAL;
361 }
362
363 p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i];
364
365 return 0;
366}
37c85c34
DC
367
368/**
369 * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated
370 * @dev: net device structure
371 * @rx_ring: ring to be freed
372 * @rx_rsize: ring size
373 * Description: this function initializes the DMA RX descriptor
374 */
375static void sxgbe_free_rx_buffers(struct net_device *dev,
376 struct sxgbe_rx_norm_desc *p, int i,
377 unsigned int dma_buf_sz,
378 struct sxgbe_rx_queue *rx_ring)
379{
380 struct sxgbe_priv_data *priv = netdev_priv(dev);
381
382 kfree_skb(rx_ring->rx_skbuff[i]);
383 dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i],
384 dma_buf_sz, DMA_FROM_DEVICE);
385}
386
1edb9ca6
SR
387/**
388 * init_tx_ring - init the TX descriptor ring
389 * @dev: net device structure
390 * @tx_ring: ring to be intialised
391 * @tx_rsize: ring size
392 * Description: this function initializes the DMA TX descriptor
393 */
394static int init_tx_ring(struct device *dev, u8 queue_no,
395 struct sxgbe_tx_queue *tx_ring, int tx_rsize)
396{
397 /* TX ring is not allcoated */
398 if (!tx_ring) {
399 dev_err(dev, "No memory for TX queue of SXGBE\n");
400 return -ENOMEM;
401 }
402
403 /* allocate memory for TX descriptors */
404 tx_ring->dma_tx = dma_zalloc_coherent(dev,
405 tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
406 &tx_ring->dma_tx_phy, GFP_KERNEL);
407 if (!tx_ring->dma_tx)
408 return -ENOMEM;
409
410 /* allocate memory for TX skbuff array */
411 tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize,
412 sizeof(dma_addr_t), GFP_KERNEL);
413 if (!tx_ring->tx_skbuff_dma)
414 goto dmamem_err;
415
416 tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize,
417 sizeof(struct sk_buff *), GFP_KERNEL);
418
419 if (!tx_ring->tx_skbuff)
420 goto dmamem_err;
421
422 /* assign queue number */
423 tx_ring->queue_no = queue_no;
424
425 /* initalise counters */
426 tx_ring->dirty_tx = 0;
427 tx_ring->cur_tx = 0;
428
429 /* initalise TX queue lock */
430 spin_lock_init(&tx_ring->tx_lock);
431
432 return 0;
433
434dmamem_err:
435 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
436 tx_ring->dma_tx, tx_ring->dma_tx_phy);
437 return -ENOMEM;
438}
439
440/**
441 * free_rx_ring - free the RX descriptor ring
442 * @dev: net device structure
443 * @rx_ring: ring to be intialised
444 * @rx_rsize: ring size
445 * Description: this function initializes the DMA RX descriptor
446 */
85da101f
JH
447static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring,
448 int rx_rsize)
1edb9ca6
SR
449{
450 dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
451 rx_ring->dma_rx, rx_ring->dma_rx_phy);
452 kfree(rx_ring->rx_skbuff_dma);
453 kfree(rx_ring->rx_skbuff);
454}
455
456/**
457 * init_rx_ring - init the RX descriptor ring
458 * @dev: net device structure
459 * @rx_ring: ring to be intialised
460 * @rx_rsize: ring size
461 * Description: this function initializes the DMA RX descriptor
462 */
463static int init_rx_ring(struct net_device *dev, u8 queue_no,
464 struct sxgbe_rx_queue *rx_ring, int rx_rsize)
465{
466 struct sxgbe_priv_data *priv = netdev_priv(dev);
467 int desc_index;
468 unsigned int bfsize = 0;
469 unsigned int ret = 0;
470
471 /* Set the max buffer size according to the MTU. */
472 bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);
473
474 netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize);
475
476 /* RX ring is not allcoated */
477 if (rx_ring == NULL) {
478 netdev_err(dev, "No memory for RX queue\n");
37c85c34 479 return -ENOMEM;
1edb9ca6
SR
480 }
481
482 /* assign queue number */
483 rx_ring->queue_no = queue_no;
484
485 /* allocate memory for RX descriptors */
486 rx_ring->dma_rx = dma_zalloc_coherent(priv->device,
487 rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
488 &rx_ring->dma_rx_phy, GFP_KERNEL);
489
490 if (rx_ring->dma_rx == NULL)
37c85c34 491 return -ENOMEM;
1edb9ca6
SR
492
493 /* allocate memory for RX skbuff array */
494 rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize,
495 sizeof(dma_addr_t), GFP_KERNEL);
f7d85556 496 if (!rx_ring->rx_skbuff_dma) {
37c85c34
DC
497 ret = -ENOMEM;
498 goto err_free_dma_rx;
f7d85556 499 }
1edb9ca6
SR
500
501 rx_ring->rx_skbuff = kmalloc_array(rx_rsize,
502 sizeof(struct sk_buff *), GFP_KERNEL);
f7d85556 503 if (!rx_ring->rx_skbuff) {
37c85c34
DC
504 ret = -ENOMEM;
505 goto err_free_skbuff_dma;
f7d85556 506 }
1edb9ca6
SR
507
508 /* initialise the buffers */
509 for (desc_index = 0; desc_index < rx_rsize; desc_index++) {
510 struct sxgbe_rx_norm_desc *p;
511 p = rx_ring->dma_rx + desc_index;
512 ret = sxgbe_init_rx_buffers(dev, p, desc_index,
513 bfsize, rx_ring);
514 if (ret)
37c85c34 515 goto err_free_rx_buffers;
1edb9ca6
SR
516 }
517
518 /* initalise counters */
519 rx_ring->cur_rx = 0;
520 rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize);
521 priv->dma_buf_sz = bfsize;
522
523 return 0;
524
37c85c34
DC
525err_free_rx_buffers:
526 while (--desc_index >= 0) {
527 struct sxgbe_rx_norm_desc *p;
528
529 p = rx_ring->dma_rx + desc_index;
530 sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring);
531 }
532 kfree(rx_ring->rx_skbuff);
533err_free_skbuff_dma:
534 kfree(rx_ring->rx_skbuff_dma);
535err_free_dma_rx:
536 dma_free_coherent(priv->device,
537 rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
538 rx_ring->dma_rx, rx_ring->dma_rx_phy);
539
540 return ret;
1edb9ca6
SR
541}
542/**
543 * free_tx_ring - free the TX descriptor ring
544 * @dev: net device structure
545 * @tx_ring: ring to be intialised
546 * @tx_rsize: ring size
547 * Description: this function initializes the DMA TX descriptor
548 */
85da101f
JH
549static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring,
550 int tx_rsize)
1edb9ca6
SR
551{
552 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
553 tx_ring->dma_tx, tx_ring->dma_tx_phy);
554}
555
556/**
557 * init_dma_desc_rings - init the RX/TX descriptor rings
558 * @dev: net device structure
559 * Description: this function initializes the DMA RX/TX descriptors
560 * and allocates the socket buffers. It suppors the chained and ring
561 * modes.
562 */
563static int init_dma_desc_rings(struct net_device *netd)
564{
565 int queue_num, ret;
566 struct sxgbe_priv_data *priv = netdev_priv(netd);
567 int tx_rsize = priv->dma_tx_size;
568 int rx_rsize = priv->dma_rx_size;
569
570 /* Allocate memory for queue structures and TX descs */
571 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
572 ret = init_tx_ring(priv->device, queue_num,
573 priv->txq[queue_num], tx_rsize);
574 if (ret) {
575 dev_err(&netd->dev, "TX DMA ring allocation failed!\n");
576 goto txalloc_err;
577 }
578
579 /* save private pointer in each ring this
580 * pointer is needed during cleaing TX queue
581 */
582 priv->txq[queue_num]->priv_ptr = priv;
583 }
584
585 /* Allocate memory for queue structures and RX descs */
586 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
587 ret = init_rx_ring(netd, queue_num,
588 priv->rxq[queue_num], rx_rsize);
589 if (ret) {
590 netdev_err(netd, "RX DMA ring allocation failed!!\n");
591 goto rxalloc_err;
592 }
593
594 /* save private pointer in each ring this
595 * pointer is needed during cleaing TX queue
596 */
597 priv->rxq[queue_num]->priv_ptr = priv;
598 }
599
600 sxgbe_clear_descriptors(priv);
601
602 return 0;
603
604txalloc_err:
605 while (queue_num--)
606 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
607 return ret;
608
609rxalloc_err:
610 while (queue_num--)
611 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
612 return ret;
613}
614
615static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue)
616{
617 int dma_desc;
618 struct sxgbe_priv_data *priv = txqueue->priv_ptr;
619 int tx_rsize = priv->dma_tx_size;
620
621 for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) {
622 struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc;
623
624 if (txqueue->tx_skbuff_dma[dma_desc])
625 dma_unmap_single(priv->device,
626 txqueue->tx_skbuff_dma[dma_desc],
627 priv->hw->desc->get_tx_len(tdesc),
628 DMA_TO_DEVICE);
629
630 dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]);
631 txqueue->tx_skbuff[dma_desc] = NULL;
632 txqueue->tx_skbuff_dma[dma_desc] = 0;
633 }
634}
635
636
637static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv)
638{
639 int queue_num;
640
641 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
642 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
643 tx_free_ring_skbufs(tqueue);
644 }
645}
646
647static void free_dma_desc_resources(struct sxgbe_priv_data *priv)
648{
649 int queue_num;
650 int tx_rsize = priv->dma_tx_size;
651 int rx_rsize = priv->dma_rx_size;
652
653 /* Release the DMA TX buffers */
654 dma_free_tx_skbufs(priv);
655
656 /* Release the TX ring memory also */
657 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
658 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
659 }
660
661 /* Release the RX ring memory also */
662 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
663 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
664 }
665}
666
667static int txring_mem_alloc(struct sxgbe_priv_data *priv)
668{
669 int queue_num;
670
671 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
672 priv->txq[queue_num] = devm_kmalloc(priv->device,
673 sizeof(struct sxgbe_tx_queue), GFP_KERNEL);
674 if (!priv->txq[queue_num])
675 return -ENOMEM;
676 }
677
678 return 0;
679}
680
681static int rxring_mem_alloc(struct sxgbe_priv_data *priv)
682{
683 int queue_num;
684
685 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
686 priv->rxq[queue_num] = devm_kmalloc(priv->device,
687 sizeof(struct sxgbe_rx_queue), GFP_KERNEL);
688 if (!priv->rxq[queue_num])
689 return -ENOMEM;
690 }
691
692 return 0;
693}
694
695/**
696 * sxgbe_mtl_operation_mode - HW MTL operation mode
697 * @priv: driver private structure
698 * Description: it sets the MTL operation mode: tx/rx MTL thresholds
699 * or Store-And-Forward capability.
700 */
701static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv)
702{
703 int queue_num;
704
705 /* TX/RX threshold control */
706 if (likely(priv->plat->force_sf_dma_mode)) {
707 /* set TC mode for TX QUEUES */
708 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
709 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
710 SXGBE_MTL_SFMODE);
711 priv->tx_tc = SXGBE_MTL_SFMODE;
712
713 /* set TC mode for RX QUEUES */
714 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
715 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
716 SXGBE_MTL_SFMODE);
717 priv->rx_tc = SXGBE_MTL_SFMODE;
718 } else if (unlikely(priv->plat->force_thresh_dma_mode)) {
719 /* set TC mode for TX QUEUES */
720 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
721 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
722 priv->tx_tc);
723 /* set TC mode for RX QUEUES */
724 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
725 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
726 priv->rx_tc);
727 } else {
728 pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__);
729 }
730}
731
732/**
733 * sxgbe_tx_queue_clean:
734 * @priv: driver private structure
735 * Description: it reclaims resources after transmission completes.
736 */
737static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue)
738{
739 struct sxgbe_priv_data *priv = tqueue->priv_ptr;
740 unsigned int tx_rsize = priv->dma_tx_size;
741 struct netdev_queue *dev_txq;
742 u8 queue_no = tqueue->queue_no;
743
744 dev_txq = netdev_get_tx_queue(priv->dev, queue_no);
745
746 spin_lock(&tqueue->tx_lock);
747
748 priv->xstats.tx_clean++;
749 while (tqueue->dirty_tx != tqueue->cur_tx) {
750 unsigned int entry = tqueue->dirty_tx % tx_rsize;
751 struct sk_buff *skb = tqueue->tx_skbuff[entry];
752 struct sxgbe_tx_norm_desc *p;
753
754 p = tqueue->dma_tx + entry;
755
756 /* Check if the descriptor is owned by the DMA. */
757 if (priv->hw->desc->get_tx_owner(p))
758 break;
759
760 if (netif_msg_tx_done(priv))
761 pr_debug("%s: curr %d, dirty %d\n",
762 __func__, tqueue->cur_tx, tqueue->dirty_tx);
763
764 if (likely(tqueue->tx_skbuff_dma[entry])) {
765 dma_unmap_single(priv->device,
766 tqueue->tx_skbuff_dma[entry],
767 priv->hw->desc->get_tx_len(p),
768 DMA_TO_DEVICE);
769 tqueue->tx_skbuff_dma[entry] = 0;
770 }
771
772 if (likely(skb)) {
773 dev_kfree_skb(skb);
774 tqueue->tx_skbuff[entry] = NULL;
775 }
776
777 priv->hw->desc->release_tx_desc(p);
778
779 tqueue->dirty_tx++;
780 }
781
782 /* wake up queue */
783 if (unlikely(netif_tx_queue_stopped(dev_txq) &&
784 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) {
785 netif_tx_lock(priv->dev);
786 if (netif_tx_queue_stopped(dev_txq) &&
787 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv)) {
788 if (netif_msg_tx_done(priv))
789 pr_debug("%s: restart transmit\n", __func__);
790 netif_tx_wake_queue(dev_txq);
791 }
792 netif_tx_unlock(priv->dev);
793 }
794
795 spin_unlock(&tqueue->tx_lock);
796}
797
798/**
799 * sxgbe_tx_clean:
800 * @priv: driver private structure
801 * Description: it reclaims resources after transmission completes.
802 */
acc18c14 803static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)
1edb9ca6
SR
804{
805 u8 queue_num;
806
807 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
808 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
809
810 sxgbe_tx_queue_clean(tqueue);
811 }
acc18c14
G
812
813 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
814 sxgbe_enable_eee_mode(priv);
815 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
816 }
1edb9ca6
SR
817}
818
819/**
820 * sxgbe_restart_tx_queue: irq tx error mng function
821 * @priv: driver private structure
822 * Description: it cleans the descriptors and restarts the transmission
823 * in case of errors.
824 */
825static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num)
826{
827 struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num];
828 struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev,
829 queue_num);
830
831 /* stop the queue */
832 netif_tx_stop_queue(dev_txq);
833
834 /* stop the tx dma */
835 priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num);
836
837 /* free the skbuffs of the ring */
838 tx_free_ring_skbufs(tx_ring);
839
840 /* initalise counters */
841 tx_ring->cur_tx = 0;
842 tx_ring->dirty_tx = 0;
843
844 /* start the tx dma */
845 priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num);
846
847 priv->dev->stats.tx_errors++;
848
849 /* wakeup the queue */
850 netif_tx_wake_queue(dev_txq);
851}
852
853/**
854 * sxgbe_reset_all_tx_queues: irq tx error mng function
855 * @priv: driver private structure
856 * Description: it cleans all the descriptors and
857 * restarts the transmission on all queues in case of errors.
858 */
859static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv)
860{
861 int queue_num;
862
863 /* On TX timeout of net device, resetting of all queues
864 * may not be proper way, revisit this later if needed
865 */
866 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
867 sxgbe_restart_tx_queue(priv, queue_num);
868}
869
870/**
871 * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register.
872 * @priv: driver private structure
873 * Description:
874 * new GMAC chip generations have a new register to indicate the
875 * presence of the optional feature/functions.
876 * This can be also used to override the value passed through the
877 * platform and necessary for old MAC10/100 and GMAC chips.
878 */
879static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)
880{
881 int rval = 0;
882 struct sxgbe_hw_features *features = &priv->hw_cap;
883
884 /* Read First Capability Register CAP[0] */
885 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0);
886 if (rval) {
887 features->pmt_remote_wake_up =
888 SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval);
889 features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval);
890 features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval);
891 features->tx_csum_offload =
892 SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval);
893 features->rx_csum_offload =
894 SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval);
895 features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval);
896 features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval);
897 features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval);
acc18c14 898 features->eee = SXGBE_HW_FEAT_EEE(rval);
1edb9ca6
SR
899 }
900
901 /* Read First Capability Register CAP[1] */
902 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1);
903 if (rval) {
904 features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval);
905 features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
906 features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
907 features->dcb_enable = SXGBE_HW_FEAT_DCB(rval);
908 features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval);
909 features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval);
910 features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval);
911 features->rss_enable = SXGBE_HW_FEAT_RSS(rval);
912 features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval);
913 features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval);
914 }
915
916 /* Read First Capability Register CAP[2] */
917 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2);
918 if (rval) {
919 features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval);
920 features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval);
921 features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval);
922 features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval);
923 features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval);
924 features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval);
925 }
926
927 return rval;
928}
929
930/**
931 * sxgbe_check_ether_addr: check if the MAC addr is valid
932 * @priv: driver private structure
933 * Description:
934 * it is to verify if the MAC address is valid, in case of failures it
935 * generates a random MAC address
936 */
937static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv)
938{
939 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
940 priv->hw->mac->get_umac_addr((void __iomem *)
941 priv->ioaddr,
942 priv->dev->dev_addr, 0);
943 if (!is_valid_ether_addr(priv->dev->dev_addr))
944 eth_hw_addr_random(priv->dev);
945 }
946 dev_info(priv->device, "device MAC address %pM\n",
947 priv->dev->dev_addr);
948}
949
950/**
951 * sxgbe_init_dma_engine: DMA init.
952 * @priv: driver private structure
953 * Description:
954 * It inits the DMA invoking the specific SXGBE callback.
955 * Some DMA parameters can be passed from the platform;
956 * in case of these are not passed a default is kept for the MAC or GMAC.
957 */
958static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv)
959{
960 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0;
961 int queue_num;
962
963 if (priv->plat->dma_cfg) {
964 pbl = priv->plat->dma_cfg->pbl;
965 fixed_burst = priv->plat->dma_cfg->fixed_burst;
966 burst_map = priv->plat->dma_cfg->burst_map;
967 }
968
969 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
970 priv->hw->dma->cha_init(priv->ioaddr, queue_num,
971 fixed_burst, pbl,
972 (priv->txq[queue_num])->dma_tx_phy,
973 (priv->rxq[queue_num])->dma_rx_phy,
974 priv->dma_tx_size, priv->dma_rx_size);
975
976 return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map);
977}
978
979/**
980 * sxgbe_init_mtl_engine: MTL init.
981 * @priv: driver private structure
982 * Description:
983 * It inits the MTL invoking the specific SXGBE callback.
984 */
985static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv)
986{
987 int queue_num;
988
989 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
990 priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num,
991 priv->hw_cap.tx_mtl_qsize);
992 priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num);
993 }
994}
995
996/**
997 * sxgbe_disable_mtl_engine: MTL disable.
998 * @priv: driver private structure
999 * Description:
1000 * It disables the MTL queues by invoking the specific SXGBE callback.
1001 */
1002static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv)
1003{
1004 int queue_num;
1005
1006 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
1007 priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num);
1008}
1009
1010
1011/**
1012 * sxgbe_tx_timer: mitigation sw timer for tx.
1013 * @data: data pointer
1014 * Description:
1015 * This is the timer handler to directly invoke the sxgbe_tx_clean.
1016 */
1017static void sxgbe_tx_timer(unsigned long data)
1018{
1019 struct sxgbe_tx_queue *p = (struct sxgbe_tx_queue *)data;
1020 sxgbe_tx_queue_clean(p);
1021}
1022
1023/**
1024 * sxgbe_init_tx_coalesce: init tx mitigation options.
1025 * @priv: driver private structure
1026 * Description:
1027 * This inits the transmit coalesce parameters: i.e. timer rate,
1028 * timer handler and default threshold used for enabling the
1029 * interrupt on completion bit.
1030 */
1031static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv)
1032{
1033 u8 queue_num;
1034
1035 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1036 struct sxgbe_tx_queue *p = priv->txq[queue_num];
1037 p->tx_coal_frames = SXGBE_TX_FRAMES;
1038 p->tx_coal_timer = SXGBE_COAL_TX_TIMER;
12141337
JL
1039 setup_timer(&p->txtimer, sxgbe_tx_timer,
1040 (unsigned long)&priv->txq[queue_num]);
1edb9ca6 1041 p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer);
1edb9ca6
SR
1042 add_timer(&p->txtimer);
1043 }
1044}
1045
1046static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv)
1047{
1048 u8 queue_num;
1049
1050 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1051 struct sxgbe_tx_queue *p = priv->txq[queue_num];
1052 del_timer_sync(&p->txtimer);
1053 }
1054}
1055
1056/**
1057 * sxgbe_open - open entry point of the driver
1058 * @dev : pointer to the device structure.
1059 * Description:
1060 * This function is the open entry point of the driver.
1061 * Return value:
1062 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1063 * file on failure.
1064 */
1065static int sxgbe_open(struct net_device *dev)
1066{
1067 struct sxgbe_priv_data *priv = netdev_priv(dev);
1068 int ret, queue_num;
1069
1070 clk_prepare_enable(priv->sxgbe_clk);
1071
1072 sxgbe_check_ether_addr(priv);
1073
1074 /* Init the phy */
1075 ret = sxgbe_init_phy(dev);
1076 if (ret) {
1077 netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n",
1078 __func__, ret);
1079 goto phy_error;
1080 }
1081
1082 /* Create and initialize the TX/RX descriptors chains. */
1083 priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE);
1084 priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE);
1085 priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE);
1086 priv->tx_tc = TC_DEFAULT;
1087 priv->rx_tc = TC_DEFAULT;
1088 init_dma_desc_rings(dev);
1089
1090 /* DMA initialization and SW reset */
1091 ret = sxgbe_init_dma_engine(priv);
1092 if (ret < 0) {
1093 netdev_err(dev, "%s: DMA initialization failed\n", __func__);
1094 goto init_error;
1095 }
1096
1097 /* MTL initialization */
1098 sxgbe_init_mtl_engine(priv);
1099
1100 /* Copy the MAC addr into the HW */
1101 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1102
1103 /* Initialize the MAC Core */
1104 priv->hw->mac->core_init(priv->ioaddr);
325b94f7
BA
1105 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1106 priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num);
1107 }
1edb9ca6
SR
1108
1109 /* Request the IRQ lines */
1110 ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt,
1111 IRQF_SHARED, dev->name, dev);
1112 if (unlikely(ret < 0)) {
1113 netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1114 __func__, priv->irq, ret);
1115 goto init_error;
1116 }
1117
acc18c14
G
1118 /* If the LPI irq is different from the mac irq
1119 * register a dedicated handler
1120 */
1121 if (priv->lpi_irq != dev->irq) {
1122 ret = devm_request_irq(priv->device, priv->lpi_irq,
1123 sxgbe_common_interrupt,
1124 IRQF_SHARED, dev->name, dev);
1125 if (unlikely(ret < 0)) {
1126 netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1127 __func__, priv->lpi_irq, ret);
1128 goto init_error;
1129 }
1130 }
1131
1edb9ca6
SR
1132 /* Request TX DMA irq lines */
1133 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1134 ret = devm_request_irq(priv->device,
1135 (priv->txq[queue_num])->irq_no,
1136 sxgbe_tx_interrupt, 0,
1137 dev->name, priv->txq[queue_num]);
1138 if (unlikely(ret < 0)) {
1139 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1140 __func__, priv->irq, ret);
1141 goto init_error;
1142 }
1143 }
1144
1145 /* Request RX DMA irq lines */
1146 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1147 ret = devm_request_irq(priv->device,
1148 (priv->rxq[queue_num])->irq_no,
1149 sxgbe_rx_interrupt, 0,
1150 dev->name, priv->rxq[queue_num]);
1151 if (unlikely(ret < 0)) {
1152 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1153 __func__, priv->irq, ret);
1154 goto init_error;
1155 }
1156 }
1157
1158 /* Enable the MAC Rx/Tx */
1159 priv->hw->mac->enable_tx(priv->ioaddr, true);
1160 priv->hw->mac->enable_rx(priv->ioaddr, true);
1161
1162 /* Set the HW DMA mode and the COE */
1163 sxgbe_mtl_operation_mode(priv);
1164
1165 /* Extra statistics */
1166 memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats));
1167
1168 priv->xstats.tx_threshold = priv->tx_tc;
1169 priv->xstats.rx_threshold = priv->rx_tc;
1170
1171 /* Start the ball rolling... */
1172 netdev_dbg(dev, "DMA RX/TX processes started...\n");
1173 priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1174 priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1175
1176 if (priv->phydev)
1177 phy_start(priv->phydev);
1178
1179 /* initalise TX coalesce parameters */
1180 sxgbe_tx_init_coalesce(priv);
1181
1182 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1183 priv->rx_riwt = SXGBE_MAX_DMA_RIWT;
1184 priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT);
1185 }
1186
acc18c14
G
1187 priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER;
1188 priv->eee_enabled = sxgbe_eee_init(priv);
1189
1edb9ca6
SR
1190 napi_enable(&priv->napi);
1191 netif_start_queue(dev);
1192
1193 return 0;
1194
1195init_error:
1196 free_dma_desc_resources(priv);
1197 if (priv->phydev)
1198 phy_disconnect(priv->phydev);
1199phy_error:
1200 clk_disable_unprepare(priv->sxgbe_clk);
1201
1202 return ret;
1203}
1204
1205/**
1206 * sxgbe_release - close entry point of the driver
1207 * @dev : device pointer.
1208 * Description:
1209 * This is the stop entry point of the driver.
1210 */
1211static int sxgbe_release(struct net_device *dev)
1212{
1213 struct sxgbe_priv_data *priv = netdev_priv(dev);
1214
acc18c14
G
1215 if (priv->eee_enabled)
1216 del_timer_sync(&priv->eee_ctrl_timer);
1217
1edb9ca6
SR
1218 /* Stop and disconnect the PHY */
1219 if (priv->phydev) {
1220 phy_stop(priv->phydev);
1221 phy_disconnect(priv->phydev);
1222 priv->phydev = NULL;
1223 }
1224
1225 netif_tx_stop_all_queues(dev);
1226
1227 napi_disable(&priv->napi);
1228
1229 /* delete TX timers */
1230 sxgbe_tx_del_timer(priv);
1231
1232 /* Stop TX/RX DMA and clear the descriptors */
1233 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1234 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1235
1236 /* disable MTL queue */
1237 sxgbe_disable_mtl_engine(priv);
1238
1239 /* Release and free the Rx/Tx resources */
1240 free_dma_desc_resources(priv);
1241
1242 /* Disable the MAC Rx/Tx */
1243 priv->hw->mac->enable_tx(priv->ioaddr, false);
1244 priv->hw->mac->enable_rx(priv->ioaddr, false);
1245
1246 clk_disable_unprepare(priv->sxgbe_clk);
1247
1248 return 0;
1249}
1051125d 1250/* Prepare first Tx descriptor for doing TSO operation */
85da101f
JH
1251static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv,
1252 struct sxgbe_tx_norm_desc *first_desc,
1253 struct sk_buff *skb)
1051125d
VP
1254{
1255 unsigned int total_hdr_len, tcp_hdr_len;
1256
1257 /* Write first Tx descriptor with appropriate value */
1258 tcp_hdr_len = tcp_hdrlen(skb);
1259 total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len;
1260
1261 first_desc->tdes01 = dma_map_single(priv->device, skb->data,
1262 total_hdr_len, DMA_TO_DEVICE);
1263 if (dma_mapping_error(priv->device, first_desc->tdes01))
1264 pr_err("%s: TX dma mapping failed!!\n", __func__);
1265
1266 first_desc->tdes23.tx_rd_des23.first_desc = 1;
1267 priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len,
1268 tcp_hdr_len,
1269 skb->len - total_hdr_len);
1270}
1271
1edb9ca6
SR
1272/**
1273 * sxgbe_xmit: Tx entry point of the driver
1274 * @skb : the socket buffer
1275 * @dev : device pointer
1276 * Description : this is the tx entry point of the driver.
1277 * It programs the chain or the ring and supports oversized frames
1278 * and SG feature.
1279 */
1280static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev)
1281{
1282 unsigned int entry, frag_num;
8f7807ae 1283 int cksum_flag = 0;
1edb9ca6
SR
1284 struct netdev_queue *dev_txq;
1285 unsigned txq_index = skb_get_queue_mapping(skb);
1286 struct sxgbe_priv_data *priv = netdev_priv(dev);
1287 unsigned int tx_rsize = priv->dma_tx_size;
1288 struct sxgbe_tx_queue *tqueue = priv->txq[txq_index];
1289 struct sxgbe_tx_norm_desc *tx_desc, *first_desc;
1051125d 1290 struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL;
1edb9ca6
SR
1291 int nr_frags = skb_shinfo(skb)->nr_frags;
1292 int no_pagedlen = skb_headlen(skb);
1293 int is_jumbo = 0;
1051125d
VP
1294 u16 cur_mss = skb_shinfo(skb)->gso_size;
1295 u32 ctxt_desc_req = 0;
1edb9ca6
SR
1296
1297 /* get the TX queue handle */
1298 dev_txq = netdev_get_tx_queue(dev, txq_index);
1299
1051125d
VP
1300 if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss))
1301 ctxt_desc_req = 1;
1302
df8a39de 1303 if (unlikely(skb_vlan_tag_present(skb) ||
1051125d
VP
1304 ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1305 tqueue->hwts_tx_en)))
1306 ctxt_desc_req = 1;
1307
1edb9ca6
SR
1308 /* get the spinlock */
1309 spin_lock(&tqueue->tx_lock);
1310
acc18c14
G
1311 if (priv->tx_path_in_lpi_mode)
1312 sxgbe_disable_eee_mode(priv);
1313
1edb9ca6
SR
1314 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) {
1315 if (!netif_tx_queue_stopped(dev_txq)) {
1316 netif_tx_stop_queue(dev_txq);
1317 netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n",
1318 __func__, txq_index);
1319 }
1320 /* release the spin lock in case of BUSY */
1321 spin_unlock(&tqueue->tx_lock);
1322 return NETDEV_TX_BUSY;
1323 }
1324
1325 entry = tqueue->cur_tx % tx_rsize;
1326 tx_desc = tqueue->dma_tx + entry;
1327
1328 first_desc = tx_desc;
1051125d
VP
1329 if (ctxt_desc_req)
1330 ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc;
1edb9ca6
SR
1331
1332 /* save the skb address */
1333 tqueue->tx_skbuff[entry] = skb;
1334
1335 if (!is_jumbo) {
1051125d
VP
1336 if (likely(skb_is_gso(skb))) {
1337 /* TSO support */
1338 if (unlikely(tqueue->prev_mss != cur_mss)) {
1339 priv->hw->desc->tx_ctxt_desc_set_mss(
1340 ctxt_desc, cur_mss);
1341 priv->hw->desc->tx_ctxt_desc_set_tcmssv(
1342 ctxt_desc);
1343 priv->hw->desc->tx_ctxt_desc_reset_ostc(
1344 ctxt_desc);
1345 priv->hw->desc->tx_ctxt_desc_set_ctxt(
1346 ctxt_desc);
1347 priv->hw->desc->tx_ctxt_desc_set_owner(
1348 ctxt_desc);
1349
1350 entry = (++tqueue->cur_tx) % tx_rsize;
1351 first_desc = tqueue->dma_tx + entry;
1352
1353 tqueue->prev_mss = cur_mss;
1354 }
1355 sxgbe_tso_prepare(priv, first_desc, skb);
1356 } else {
1357 tx_desc->tdes01 = dma_map_single(priv->device,
1358 skb->data, no_pagedlen, DMA_TO_DEVICE);
1359 if (dma_mapping_error(priv->device, tx_desc->tdes01))
1360 netdev_err(dev, "%s: TX dma mapping failed!!\n",
1361 __func__);
1362
1363 priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen,
8f7807ae 1364 no_pagedlen, cksum_flag);
1051125d 1365 }
1edb9ca6
SR
1366 }
1367
1368 for (frag_num = 0; frag_num < nr_frags; frag_num++) {
1369 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1370 int len = skb_frag_size(frag);
1371
1372 entry = (++tqueue->cur_tx) % tx_rsize;
1373 tx_desc = tqueue->dma_tx + entry;
1374 tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len,
1375 DMA_TO_DEVICE);
1376
1377 tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01;
1378 tqueue->tx_skbuff[entry] = NULL;
1379
1380 /* prepare the descriptor */
1381 priv->hw->desc->prepare_tx_desc(tx_desc, 0, len,
8f7807ae 1382 len, cksum_flag);
1edb9ca6
SR
1383 /* memory barrier to flush descriptor */
1384 wmb();
1385
1386 /* set the owner */
1387 priv->hw->desc->set_tx_owner(tx_desc);
1388 }
1389
1390 /* close the descriptors */
1391 priv->hw->desc->close_tx_desc(tx_desc);
1392
1393 /* memory barrier to flush descriptor */
1394 wmb();
1395
1396 tqueue->tx_count_frames += nr_frags + 1;
1397 if (tqueue->tx_count_frames > tqueue->tx_coal_frames) {
1398 priv->hw->desc->clear_tx_ic(tx_desc);
1399 priv->xstats.tx_reset_ic_bit++;
1400 mod_timer(&tqueue->txtimer,
1401 SXGBE_COAL_TIMER(tqueue->tx_coal_timer));
1402 } else {
1403 tqueue->tx_count_frames = 0;
1404 }
1405
1406 /* set owner for first desc */
1407 priv->hw->desc->set_tx_owner(first_desc);
1408
1409 /* memory barrier to flush descriptor */
1410 wmb();
1411
1412 tqueue->cur_tx++;
1413
1414 /* display current ring */
1415 netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n",
1416 __func__, tqueue->cur_tx % tx_rsize,
1417 tqueue->dirty_tx % tx_rsize, entry,
1418 first_desc, nr_frags);
1419
1420 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) {
1421 netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n",
1422 __func__);
1423 netif_tx_stop_queue(dev_txq);
1424 }
1425
1426 dev->stats.tx_bytes += skb->len;
1427
1428 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1429 tqueue->hwts_tx_en)) {
1430 /* declare that device is doing timestamping */
1431 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1432 priv->hw->desc->tx_enable_tstamp(first_desc);
1433 }
1434
1435 if (!tqueue->hwts_tx_en)
1436 skb_tx_timestamp(skb);
1437
1438 priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index);
1439
1440 spin_unlock(&tqueue->tx_lock);
1441
1442 return NETDEV_TX_OK;
1443}
1444
1445/**
1446 * sxgbe_rx_refill: refill used skb preallocated buffers
1447 * @priv: driver private structure
1448 * Description : this is to reallocate the skb for the reception process
1449 * that is based on zero-copy.
1450 */
1451static void sxgbe_rx_refill(struct sxgbe_priv_data *priv)
1452{
1453 unsigned int rxsize = priv->dma_rx_size;
1454 int bfsize = priv->dma_buf_sz;
1455 u8 qnum = priv->cur_rx_qnum;
1456
1457 for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0;
1458 priv->rxq[qnum]->dirty_rx++) {
1459 unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize;
1460 struct sxgbe_rx_norm_desc *p;
1461
1462 p = priv->rxq[qnum]->dma_rx + entry;
1463
1464 if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) {
1465 struct sk_buff *skb;
1466
1467 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1468
1469 if (unlikely(skb == NULL))
1470 break;
1471
1472 priv->rxq[qnum]->rx_skbuff[entry] = skb;
1473 priv->rxq[qnum]->rx_skbuff_dma[entry] =
1474 dma_map_single(priv->device, skb->data, bfsize,
1475 DMA_FROM_DEVICE);
1476
1477 p->rdes23.rx_rd_des23.buf2_addr =
1478 priv->rxq[qnum]->rx_skbuff_dma[entry];
1479 }
1480
1481 /* Added memory barrier for RX descriptor modification */
1482 wmb();
1483 priv->hw->desc->set_rx_owner(p);
3dc638d1 1484 priv->hw->desc->set_rx_int_on_com(p);
1edb9ca6
SR
1485 /* Added memory barrier for RX descriptor modification */
1486 wmb();
1487 }
1488}
1489
1490/**
1491 * sxgbe_rx: receive the frames from the remote host
1492 * @priv: driver private structure
1493 * @limit: napi bugget.
1494 * Description : this the function called by the napi poll method.
1495 * It gets all the frames inside the ring.
1496 */
1497static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit)
1498{
1499 u8 qnum = priv->cur_rx_qnum;
1500 unsigned int rxsize = priv->dma_rx_size;
1501 unsigned int entry = priv->rxq[qnum]->cur_rx;
1502 unsigned int next_entry = 0;
1503 unsigned int count = 0;
8f7807ae
VP
1504 int checksum;
1505 int status;
1edb9ca6
SR
1506
1507 while (count < limit) {
1508 struct sxgbe_rx_norm_desc *p;
1509 struct sk_buff *skb;
1510 int frame_len;
1511
1512 p = priv->rxq[qnum]->dma_rx + entry;
1513
1514 if (priv->hw->desc->get_rx_owner(p))
1515 break;
1516
1517 count++;
1518
1519 next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize;
1520 prefetch(priv->rxq[qnum]->dma_rx + next_entry);
1521
8f7807ae
VP
1522 /* Read the status of the incoming frame and also get checksum
1523 * value based on whether it is enabled in SXGBE hardware or
1524 * not.
1525 */
1526 status = priv->hw->desc->rx_wbstatus(p, &priv->xstats,
1527 &checksum);
1528 if (unlikely(status < 0)) {
1529 entry = next_entry;
1530 continue;
1531 }
1532 if (unlikely(!priv->rxcsum_insertion))
1533 checksum = CHECKSUM_NONE;
1edb9ca6
SR
1534
1535 skb = priv->rxq[qnum]->rx_skbuff[entry];
1536
1537 if (unlikely(!skb))
1538 netdev_err(priv->dev, "rx descriptor is not consistent\n");
1539
1540 prefetch(skb->data - NET_IP_ALIGN);
1541 priv->rxq[qnum]->rx_skbuff[entry] = NULL;
1542
1543 frame_len = priv->hw->desc->get_rx_frame_len(p);
1544
1545 skb_put(skb, frame_len);
1546
8f7807ae
VP
1547 skb->ip_summed = checksum;
1548 if (checksum == CHECKSUM_NONE)
1549 netif_receive_skb(skb);
1550 else
1551 napi_gro_receive(&priv->napi, skb);
1edb9ca6
SR
1552
1553 entry = next_entry;
1554 }
1555
1556 sxgbe_rx_refill(priv);
1557
1558 return count;
1559}
1560
1561/**
1562 * sxgbe_poll - sxgbe poll method (NAPI)
1563 * @napi : pointer to the napi structure.
1564 * @budget : maximum number of packets that the current CPU can receive from
1565 * all interfaces.
1566 * Description :
1567 * To look at the incoming frames and clear the tx resources.
1568 */
1569static int sxgbe_poll(struct napi_struct *napi, int budget)
1570{
1571 struct sxgbe_priv_data *priv = container_of(napi,
1572 struct sxgbe_priv_data, napi);
1573 int work_done = 0;
1574 u8 qnum = priv->cur_rx_qnum;
1575
1576 priv->xstats.napi_poll++;
1577 /* first, clean the tx queues */
1578 sxgbe_tx_all_clean(priv);
1579
1580 work_done = sxgbe_rx(priv, budget);
1581 if (work_done < budget) {
1582 napi_complete(napi);
1583 priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum);
1584 }
1585
1586 return work_done;
1587}
1588
1589/**
1590 * sxgbe_tx_timeout
1591 * @dev : Pointer to net device structure
1592 * Description: this function is called when a packet transmission fails to
1593 * complete within a reasonable time. The driver will mark the error in the
1594 * netdev structure and arrange for the device to be reset to a sane state
1595 * in order to transmit a new packet.
1596 */
1597static void sxgbe_tx_timeout(struct net_device *dev)
1598{
1599 struct sxgbe_priv_data *priv = netdev_priv(dev);
1600
1601 sxgbe_reset_all_tx_queues(priv);
1602}
1603
1604/**
1605 * sxgbe_common_interrupt - main ISR
1606 * @irq: interrupt number.
1607 * @dev_id: to pass the net device pointer.
1608 * Description: this is the main driver interrupt service routine.
1609 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
1610 * interrupts.
1611 */
1612static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id)
1613{
acc18c14
G
1614 struct net_device *netdev = (struct net_device *)dev_id;
1615 struct sxgbe_priv_data *priv = netdev_priv(netdev);
1616 int status;
1617
1618 status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats);
1619 /* For LPI we need to save the tx status */
1620 if (status & TX_ENTRY_LPI_MODE) {
1621 priv->xstats.tx_lpi_entry_n++;
1622 priv->tx_path_in_lpi_mode = true;
1623 }
1624 if (status & TX_EXIT_LPI_MODE) {
1625 priv->xstats.tx_lpi_exit_n++;
1626 priv->tx_path_in_lpi_mode = false;
1627 }
1628 if (status & RX_ENTRY_LPI_MODE)
1629 priv->xstats.rx_lpi_entry_n++;
1630 if (status & RX_EXIT_LPI_MODE)
1631 priv->xstats.rx_lpi_exit_n++;
1632
1edb9ca6
SR
1633 return IRQ_HANDLED;
1634}
1635
1636/**
1637 * sxgbe_tx_interrupt - TX DMA ISR
1638 * @irq: interrupt number.
1639 * @dev_id: to pass the net device pointer.
1640 * Description: this is the tx dma interrupt service routine.
1641 */
1642static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id)
1643{
1644 int status;
1645 struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id;
1646 struct sxgbe_priv_data *priv = txq->priv_ptr;
1647
1648 /* get the channel status */
1649 status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no,
1650 &priv->xstats);
1651 /* check for normal path */
1652 if (likely((status & handle_tx)))
1653 napi_schedule(&priv->napi);
1654
1655 /* check for unrecoverable error */
1656 if (unlikely((status & tx_hard_error)))
1657 sxgbe_restart_tx_queue(priv, txq->queue_no);
1658
1659 /* check for TC configuration change */
1660 if (unlikely((status & tx_bump_tc) &&
1661 (priv->tx_tc != SXGBE_MTL_SFMODE) &&
1662 (priv->tx_tc < 512))) {
1663 /* step of TX TC is 32 till 128, otherwise 64 */
1664 priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64;
1665 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr,
1666 txq->queue_no, priv->tx_tc);
1667 priv->xstats.tx_threshold = priv->tx_tc;
1668 }
1669
1670 return IRQ_HANDLED;
1671}
1672
1673/**
1674 * sxgbe_rx_interrupt - RX DMA ISR
1675 * @irq: interrupt number.
1676 * @dev_id: to pass the net device pointer.
1677 * Description: this is the rx dma interrupt service routine.
1678 */
1679static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id)
1680{
1681 int status;
1682 struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id;
1683 struct sxgbe_priv_data *priv = rxq->priv_ptr;
1684
1685 /* get the channel status */
1686 status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no,
1687 &priv->xstats);
1688
1689 if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) {
1690 priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no);
1691 __napi_schedule(&priv->napi);
1692 }
1693
1694 /* check for TC configuration change */
1695 if (unlikely((status & rx_bump_tc) &&
1696 (priv->rx_tc != SXGBE_MTL_SFMODE) &&
1697 (priv->rx_tc < 128))) {
1698 /* step of TC is 32 */
1699 priv->rx_tc += 32;
1700 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr,
1701 rxq->queue_no, priv->rx_tc);
1702 priv->xstats.rx_threshold = priv->rx_tc;
1703 }
1704
1705 return IRQ_HANDLED;
1706}
1707
1708static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi)
1709{
1710 u64 val = readl(ioaddr + reg_lo);
1711
1712 val |= ((u64)readl(ioaddr + reg_hi)) << 32;
1713
1714 return val;
1715}
1716
1717
1718/* sxgbe_get_stats64 - entry point to see statistical information of device
1719 * @dev : device pointer.
1720 * @stats : pointer to hold all the statistical information of device.
1721 * Description:
1722 * This function is a driver entry point whenever ifconfig command gets
1723 * executed to see device statistics. Statistics are number of
1724 * bytes sent or received, errors occured etc.
1725 * Return value:
1726 * This function returns various statistical information of device.
1727 */
1728static struct rtnl_link_stats64 *sxgbe_get_stats64(struct net_device *dev,
1729 struct rtnl_link_stats64 *stats)
1730{
1731 struct sxgbe_priv_data *priv = netdev_priv(dev);
1732 void __iomem *ioaddr = priv->ioaddr;
1733 u64 count;
1734
1735 spin_lock(&priv->stats_lock);
1736 /* Freeze the counter registers before reading value otherwise it may
1737 * get updated by hardware while we are reading them
1738 */
1739 writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG);
1740
1741 stats->rx_bytes = sxgbe_get_stat64(ioaddr,
1742 SXGBE_MMC_RXOCTETLO_GCNT_REG,
1743 SXGBE_MMC_RXOCTETHI_GCNT_REG);
1744
1745 stats->rx_packets = sxgbe_get_stat64(ioaddr,
1746 SXGBE_MMC_RXFRAMELO_GBCNT_REG,
1747 SXGBE_MMC_RXFRAMEHI_GBCNT_REG);
1748
1749 stats->multicast = sxgbe_get_stat64(ioaddr,
1750 SXGBE_MMC_RXMULTILO_GCNT_REG,
1751 SXGBE_MMC_RXMULTIHI_GCNT_REG);
1752
1753 stats->rx_crc_errors = sxgbe_get_stat64(ioaddr,
1754 SXGBE_MMC_RXCRCERRLO_REG,
1755 SXGBE_MMC_RXCRCERRHI_REG);
1756
1757 stats->rx_length_errors = sxgbe_get_stat64(ioaddr,
1758 SXGBE_MMC_RXLENERRLO_REG,
1759 SXGBE_MMC_RXLENERRHI_REG);
1760
1761 stats->rx_missed_errors = sxgbe_get_stat64(ioaddr,
1762 SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG,
1763 SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG);
1764
1765 stats->tx_bytes = sxgbe_get_stat64(ioaddr,
1766 SXGBE_MMC_TXOCTETLO_GCNT_REG,
1767 SXGBE_MMC_TXOCTETHI_GCNT_REG);
1768
1769 count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG,
1770 SXGBE_MMC_TXFRAMEHI_GBCNT_REG);
1771
1772 stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG,
1773 SXGBE_MMC_TXFRAMEHI_GCNT_REG);
1774 stats->tx_errors = count - stats->tx_errors;
1775 stats->tx_packets = count;
1776 stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG,
1777 SXGBE_MMC_TXUFLWHI_GBCNT_REG);
1778 writel(0, ioaddr + SXGBE_MMC_CTL_REG);
1779 spin_unlock(&priv->stats_lock);
1780
1781 return stats;
1782}
1783
1784/* sxgbe_set_features - entry point to set offload features of the device.
1785 * @dev : device pointer.
1786 * @features : features which are required to be set.
1787 * Description:
1788 * This function is a driver entry point and called by Linux kernel whenever
1789 * any device features are set or reset by user.
1790 * Return value:
1791 * This function returns 0 after setting or resetting device features.
1792 */
1793static int sxgbe_set_features(struct net_device *dev,
1794 netdev_features_t features)
1795{
1796 struct sxgbe_priv_data *priv = netdev_priv(dev);
1797 netdev_features_t changed = dev->features ^ features;
1edb9ca6
SR
1798
1799 if (changed & NETIF_F_RXCSUM) {
8f7807ae
VP
1800 if (features & NETIF_F_RXCSUM) {
1801 priv->hw->mac->enable_rx_csum(priv->ioaddr);
1802 priv->rxcsum_insertion = true;
1803 } else {
1804 priv->hw->mac->disable_rx_csum(priv->ioaddr);
1805 priv->rxcsum_insertion = false;
1806 }
1edb9ca6
SR
1807 }
1808
1809 return 0;
1810}
1811
1812/* sxgbe_change_mtu - entry point to change MTU size for the device.
1813 * @dev : device pointer.
1814 * @new_mtu : the new MTU size for the device.
1815 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1816 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1817 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1818 * Return value:
1819 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1820 * file on failure.
1821 */
1822static int sxgbe_change_mtu(struct net_device *dev, int new_mtu)
1823{
1824 /* RFC 791, page 25, "Every internet module must be able to forward
1825 * a datagram of 68 octets without further fragmentation."
1826 */
1827 if (new_mtu < MIN_MTU || (new_mtu > MAX_MTU)) {
1828 netdev_err(dev, "invalid MTU, MTU should be in between %d and %d\n",
1829 MIN_MTU, MAX_MTU);
1830 return -EINVAL;
1831 }
1832
1833 /* Return if the buffer sizes will not change */
1834 if (dev->mtu == new_mtu)
1835 return 0;
1836
1837 dev->mtu = new_mtu;
1838
1839 if (!netif_running(dev))
1840 return 0;
1841
1842 /* Recevice ring buffer size is needed to be set based on MTU. If MTU is
1843 * changed then reinitilisation of the receive ring buffers need to be
1844 * done. Hence bring interface down and bring interface back up
1845 */
1846 sxgbe_release(dev);
1847 return sxgbe_open(dev);
1848}
1849
1850static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr,
1851 unsigned int reg_n)
1852{
1853 unsigned long data;
1854
1855 data = (addr[5] << 8) | addr[4];
1856 /* For MAC Addr registers se have to set the Address Enable (AE)
1857 * bit that has no effect on the High Reg 0 where the bit 31 (MO)
1858 * is RO.
1859 */
1860 writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n));
1861 data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
1862 writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n));
1863}
1864
1865/**
1866 * sxgbe_set_rx_mode - entry point for setting different receive mode of
1867 * a device. unicast, multicast addressing
1868 * @dev : pointer to the device structure
1869 * Description:
1870 * This function is a driver entry point which gets called by the kernel
1871 * whenever different receive mode like unicast, multicast and promiscuous
1872 * must be enabled/disabled.
1873 * Return value:
1874 * void.
1875 */
1876static void sxgbe_set_rx_mode(struct net_device *dev)
1877{
1878 struct sxgbe_priv_data *priv = netdev_priv(dev);
1879 void __iomem *ioaddr = (void __iomem *)priv->ioaddr;
1880 unsigned int value = 0;
1881 u32 mc_filter[2];
1882 struct netdev_hw_addr *ha;
1883 int reg = 1;
1884
1885 netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n",
1886 __func__, netdev_mc_count(dev), netdev_uc_count(dev));
1887
1888 if (dev->flags & IFF_PROMISC) {
1889 value = SXGBE_FRAME_FILTER_PR;
1890
1891 } else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) ||
1892 (dev->flags & IFF_ALLMULTI)) {
1893 value = SXGBE_FRAME_FILTER_PM; /* pass all multi */
1894 writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH);
1895 writel(0xffffffff, ioaddr + SXGBE_HASH_LOW);
1896
1897 } else if (!netdev_mc_empty(dev)) {
1898 /* Hash filter for multicast */
1899 value = SXGBE_FRAME_FILTER_HMC;
1900
1901 memset(mc_filter, 0, sizeof(mc_filter));
1902 netdev_for_each_mc_addr(ha, dev) {
1903 /* The upper 6 bits of the calculated CRC are used to
1904 * index the contens of the hash table
1905 */
1906 int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26;
1907
1908 /* The most significant bit determines the register to
1909 * use (H/L) while the other 5 bits determine the bit
1910 * within the register.
1911 */
1912 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1913 }
1914 writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW);
1915 writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH);
1916 }
1917
1918 /* Handle multiple unicast addresses (perfect filtering) */
1919 if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES)
1920 /* Switch to promiscuous mode if more than 16 addrs
1921 * are required
1922 */
1923 value |= SXGBE_FRAME_FILTER_PR;
1924 else {
1925 netdev_for_each_uc_addr(ha, dev) {
1926 sxgbe_set_umac_addr(ioaddr, ha->addr, reg);
1927 reg++;
1928 }
1929 }
1930#ifdef FRAME_FILTER_DEBUG
1931 /* Enable Receive all mode (to debug filtering_fail errors) */
1932 value |= SXGBE_FRAME_FILTER_RA;
1933#endif
1934 writel(value, ioaddr + SXGBE_FRAME_FILTER);
1935
1936 netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n",
1937 readl(ioaddr + SXGBE_FRAME_FILTER),
1938 readl(ioaddr + SXGBE_HASH_HIGH),
1939 readl(ioaddr + SXGBE_HASH_LOW));
1940}
1941
1edb9ca6
SR
1942#ifdef CONFIG_NET_POLL_CONTROLLER
1943/**
1944 * sxgbe_poll_controller - entry point for polling receive by device
1945 * @dev : pointer to the device structure
1946 * Description:
1947 * This function is used by NETCONSOLE and other diagnostic tools
1948 * to allow network I/O with interrupts disabled.
1949 * Return value:
1950 * Void.
1951 */
1952static void sxgbe_poll_controller(struct net_device *dev)
1953{
1954 struct sxgbe_priv_data *priv = netdev_priv(dev);
1955
1956 disable_irq(priv->irq);
1957 sxgbe_rx_interrupt(priv->irq, dev);
1958 enable_irq(priv->irq);
1959}
1960#endif
1961
1962/* sxgbe_ioctl - Entry point for the Ioctl
1963 * @dev: Device pointer.
1964 * @rq: An IOCTL specefic structure, that can contain a pointer to
1965 * a proprietary structure used to pass information to the driver.
1966 * @cmd: IOCTL command
1967 * Description:
1968 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
1969 */
1970static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1971{
1972 struct sxgbe_priv_data *priv = netdev_priv(dev);
1973 int ret = -EOPNOTSUPP;
1974
1975 if (!netif_running(dev))
1976 return -EINVAL;
1977
1978 switch (cmd) {
1979 case SIOCGMIIPHY:
1980 case SIOCGMIIREG:
1981 case SIOCSMIIREG:
1982 if (!priv->phydev)
1983 return -EINVAL;
1984 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1985 break;
1986 default:
1987 break;
1988 }
1989
1990 return ret;
1991}
1992
1993static const struct net_device_ops sxgbe_netdev_ops = {
1994 .ndo_open = sxgbe_open,
1995 .ndo_start_xmit = sxgbe_xmit,
1996 .ndo_stop = sxgbe_release,
1997 .ndo_get_stats64 = sxgbe_get_stats64,
1998 .ndo_change_mtu = sxgbe_change_mtu,
1999 .ndo_set_features = sxgbe_set_features,
2000 .ndo_set_rx_mode = sxgbe_set_rx_mode,
2001 .ndo_tx_timeout = sxgbe_tx_timeout,
2002 .ndo_do_ioctl = sxgbe_ioctl,
1edb9ca6
SR
2003#ifdef CONFIG_NET_POLL_CONTROLLER
2004 .ndo_poll_controller = sxgbe_poll_controller,
2005#endif
2006 .ndo_set_mac_address = eth_mac_addr,
2007};
2008
2009/* Get the hardware ops */
40b92cad 2010static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)
1edb9ca6
SR
2011{
2012 ops_ptr->mac = sxgbe_get_core_ops();
2013 ops_ptr->desc = sxgbe_get_desc_ops();
2014 ops_ptr->dma = sxgbe_get_dma_ops();
2015 ops_ptr->mtl = sxgbe_get_mtl_ops();
2016
2017 /* set the MDIO communication Address/Data regisers */
2018 ops_ptr->mii.addr = SXGBE_MDIO_SCMD_ADD_REG;
2019 ops_ptr->mii.data = SXGBE_MDIO_SCMD_DATA_REG;
2020
2021 /* Assigning the default link settings
2022 * no SXGBE defined default values to be set in registers,
2023 * so assigning as 0 for port and duplex
2024 */
2025 ops_ptr->link.port = 0;
2026 ops_ptr->link.duplex = 0;
2027 ops_ptr->link.speed = SXGBE_SPEED_10G;
2028}
2029
2030/**
2031 * sxgbe_hw_init - Init the GMAC device
2032 * @priv: driver private structure
2033 * Description: this function checks the HW capability
2034 * (if supported) and sets the driver's features.
2035 */
2405e8f6 2036static int sxgbe_hw_init(struct sxgbe_priv_data * const priv)
1edb9ca6
SR
2037{
2038 u32 ctrl_ids;
2039
2040 priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL);
2405e8f6
BA
2041 if(!priv->hw)
2042 return -ENOMEM;
1edb9ca6
SR
2043
2044 /* get the hardware ops */
2045 sxgbe_get_ops(priv->hw);
2046
2047 /* get the controller id */
2048 ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr);
2049 priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16;
2050 priv->hw->ctrl_id = (ctrl_ids & 0x000000ff);
2051 pr_info("user ID: 0x%x, Controller ID: 0x%x\n",
2052 priv->hw->ctrl_uid, priv->hw->ctrl_id);
2053
2054 /* get the H/W features */
2055 if (!sxgbe_get_hw_features(priv))
2056 pr_info("Hardware features not found\n");
2057
2058 if (priv->hw_cap.tx_csum_offload)
2059 pr_info("TX Checksum offload supported\n");
2060
2061 if (priv->hw_cap.rx_csum_offload)
2062 pr_info("RX Checksum offload supported\n");
2405e8f6
BA
2063
2064 return 0;
1edb9ca6
SR
2065}
2066
0a0347b1
BA
2067static int sxgbe_sw_reset(void __iomem *addr)
2068{
2069 int retry_count = 10;
2070
2071 writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG);
2072 while (retry_count--) {
2073 if (!(readl(addr + SXGBE_DMA_MODE_REG) &
2074 SXGBE_DMA_SOFT_RESET))
2075 break;
2076 mdelay(10);
2077 }
2078
2079 if (retry_count < 0)
2080 return -EBUSY;
2081
2082 return 0;
2083}
2084
1edb9ca6
SR
2085/**
2086 * sxgbe_drv_probe
2087 * @device: device pointer
2088 * @plat_dat: platform data pointer
2089 * @addr: iobase memory address
2090 * Description: this is the main probe function used to
2091 * call the alloc_etherdev, allocate the priv structure.
2092 */
2093struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device,
2094 struct sxgbe_plat_data *plat_dat,
2095 void __iomem *addr)
2096{
2097 struct sxgbe_priv_data *priv;
2098 struct net_device *ndev;
2099 int ret;
1051125d 2100 u8 queue_num;
1edb9ca6
SR
2101
2102 ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data),
2103 SXGBE_TX_QUEUES, SXGBE_RX_QUEUES);
2104 if (!ndev)
2105 return NULL;
2106
2107 SET_NETDEV_DEV(ndev, device);
2108
2109 priv = netdev_priv(ndev);
2110 priv->device = device;
2111 priv->dev = ndev;
2112
2113 sxgbe_set_ethtool_ops(ndev);
2114 priv->plat = plat_dat;
2115 priv->ioaddr = addr;
2116
0a0347b1
BA
2117 ret = sxgbe_sw_reset(priv->ioaddr);
2118 if (ret)
2119 goto error_free_netdev;
2120
acc18c14
G
2121 /* Verify driver arguments */
2122 sxgbe_verify_args();
2123
1edb9ca6 2124 /* Init MAC and get the capabilities */
2405e8f6
BA
2125 ret = sxgbe_hw_init(priv);
2126 if (ret)
2127 goto error_free_netdev;
1edb9ca6
SR
2128
2129 /* allocate memory resources for Descriptor rings */
2130 ret = txring_mem_alloc(priv);
2131 if (ret)
d9bd6461 2132 goto error_free_hw;
1edb9ca6
SR
2133
2134 ret = rxring_mem_alloc(priv);
2135 if (ret)
d9bd6461 2136 goto error_free_hw;
1edb9ca6
SR
2137
2138 ndev->netdev_ops = &sxgbe_netdev_ops;
2139
1051125d
VP
2140 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2141 NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 |
2142 NETIF_F_GRO;
1edb9ca6
SR
2143 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2144 ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO);
2145
2146 /* assign filtering support */
2147 ndev->priv_flags |= IFF_UNICAST_FLT;
2148
2149 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2150
1051125d
VP
2151 /* Enable TCP segmentation offload for all DMA channels */
2152 if (priv->hw_cap.tcpseg_offload) {
2153 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
2154 priv->hw->dma->enable_tso(priv->ioaddr, queue_num);
2155 }
2156 }
2157
8f7807ae
VP
2158 /* Enable Rx checksum offload */
2159 if (priv->hw_cap.rx_csum_offload) {
2160 priv->hw->mac->enable_rx_csum(priv->ioaddr);
2161 priv->rxcsum_insertion = true;
2162 }
2163
25f72a74
VP
2164 /* Initialise pause frame settings */
2165 priv->rx_pause = 1;
2166 priv->tx_pause = 1;
2167
1edb9ca6
SR
2168 /* Rx Watchdog is available, enable depend on platform data */
2169 if (!priv->plat->riwt_off) {
2170 priv->use_riwt = 1;
2171 pr_info("Enable RX Mitigation via HW Watchdog Timer\n");
2172 }
2173
2174 netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64);
2175
2176 spin_lock_init(&priv->stats_lock);
2177
2178 priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME);
2179 if (IS_ERR(priv->sxgbe_clk)) {
2180 netdev_warn(ndev, "%s: warning: cannot get CSR clock\n",
2181 __func__);
d9bd6461 2182 goto error_napi_del;
1edb9ca6
SR
2183 }
2184
2185 /* If a specific clk_csr value is passed from the platform
2186 * this means that the CSR Clock Range selection cannot be
2187 * changed at run-time and it is fixed. Viceversa the driver'll try to
2188 * set the MDC clock dynamically according to the csr actual
2189 * clock input.
2190 */
2191 if (!priv->plat->clk_csr)
2192 sxgbe_clk_csr_set(priv);
2193 else
2194 priv->clk_csr = priv->plat->clk_csr;
2195
2196 /* MDIO bus Registration */
2197 ret = sxgbe_mdio_register(ndev);
2198 if (ret < 0) {
2199 netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n",
2200 __func__, priv->plat->bus_id);
d9bd6461 2201 goto error_clk_put;
1edb9ca6
SR
2202 }
2203
2204 ret = register_netdev(ndev);
2205 if (ret) {
2206 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
d9bd6461 2207 goto error_mdio_unregister;
1edb9ca6
SR
2208 }
2209
2210 sxgbe_check_ether_addr(priv);
2211
2212 return priv;
2213
d9bd6461 2214error_mdio_unregister:
2215 sxgbe_mdio_unregister(ndev);
2216error_clk_put:
1edb9ca6 2217 clk_put(priv->sxgbe_clk);
d9bd6461 2218error_napi_del:
1edb9ca6 2219 netif_napi_del(&priv->napi);
d9bd6461 2220error_free_hw:
2221 kfree(priv->hw);
1edb9ca6
SR
2222error_free_netdev:
2223 free_netdev(ndev);
2224
2225 return NULL;
2226}
2227
2228/**
2229 * sxgbe_drv_remove
2230 * @ndev: net device pointer
2231 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2232 * changes the link status, releases the DMA descriptor rings.
2233 */
2234int sxgbe_drv_remove(struct net_device *ndev)
2235{
2236 struct sxgbe_priv_data *priv = netdev_priv(ndev);
325b94f7 2237 u8 queue_num;
1edb9ca6
SR
2238
2239 netdev_info(ndev, "%s: removing driver\n", __func__);
2240
325b94f7
BA
2241 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
2242 priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num);
2243 }
2244
1edb9ca6
SR
2245 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
2246 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
2247
2248 priv->hw->mac->enable_tx(priv->ioaddr, false);
2249 priv->hw->mac->enable_rx(priv->ioaddr, false);
2250
d9bd6461 2251 unregister_netdev(ndev);
1edb9ca6
SR
2252
2253 sxgbe_mdio_unregister(ndev);
2254
d9bd6461 2255 clk_put(priv->sxgbe_clk);
2256
2257 netif_napi_del(&priv->napi);
2258
2259 kfree(priv->hw);
1edb9ca6
SR
2260
2261 free_netdev(ndev);
2262
2263 return 0;
2264}
2265
2266#ifdef CONFIG_PM
2267int sxgbe_suspend(struct net_device *ndev)
2268{
2269 return 0;
2270}
2271
2272int sxgbe_resume(struct net_device *ndev)
2273{
2274 return 0;
2275}
2276
2277int sxgbe_freeze(struct net_device *ndev)
2278{
2279 return -ENOSYS;
2280}
2281
2282int sxgbe_restore(struct net_device *ndev)
2283{
2284 return -ENOSYS;
2285}
2286#endif /* CONFIG_PM */
2287
2288/* Driver is configured as Platform driver */
2289static int __init sxgbe_init(void)
2290{
2291 int ret;
2292
2293 ret = sxgbe_register_platform();
2294 if (ret)
2295 goto err;
2296 return 0;
2297err:
2298 pr_err("driver registration failed\n");
2299 return ret;
2300}
2301
2302static void __exit sxgbe_exit(void)
2303{
2304 sxgbe_unregister_platform();
2305}
2306
2307module_init(sxgbe_init);
2308module_exit(sxgbe_exit);
2309
2310#ifndef MODULE
2311static int __init sxgbe_cmdline_opt(char *str)
2312{
acc18c14
G
2313 char *opt;
2314
2315 if (!str || !*str)
2316 return -EINVAL;
2317 while ((opt = strsep(&str, ",")) != NULL) {
2318 if (!strncmp(opt, "eee_timer:", 6)) {
2319 if (kstrtoint(opt + 10, 0, &eee_timer))
2320 goto err;
2321 }
2322 }
1edb9ca6 2323 return 0;
acc18c14
G
2324
2325err:
2326 pr_err("%s: ERROR broken module parameter conversion\n", __func__);
2327 return -EINVAL;
1edb9ca6
SR
2328}
2329
2330__setup("sxgbeeth=", sxgbe_cmdline_opt);
2331#endif /* MODULE */
2332
2333
2334
2335MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver");
2336
2337MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
acc18c14 2338MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value");
1edb9ca6
SR
2339
2340MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>");
2341MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>");
2342MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>");
2343MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>");
2344
2345MODULE_LICENSE("GPL");