qlge: Cleanup atomic queue threshold check.
[linux-2.6-block.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
18c49b91 10#include <linux/bitops.h>
c4e84bde
RM
11#include <linux/types.h>
12#include <linux/module.h>
13#include <linux/list.h>
14#include <linux/pci.h>
15#include <linux/dma-mapping.h>
16#include <linux/pagemap.h>
17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/dmapool.h>
20#include <linux/mempool.h>
21#include <linux/spinlock.h>
22#include <linux/kthread.h>
23#include <linux/interrupt.h>
24#include <linux/errno.h>
25#include <linux/ioport.h>
26#include <linux/in.h>
27#include <linux/ip.h>
28#include <linux/ipv6.h>
29#include <net/ipv6.h>
30#include <linux/tcp.h>
31#include <linux/udp.h>
32#include <linux/if_arp.h>
33#include <linux/if_ether.h>
34#include <linux/netdevice.h>
35#include <linux/etherdevice.h>
36#include <linux/ethtool.h>
18c49b91 37#include <linux/if_vlan.h>
c4e84bde 38#include <linux/skbuff.h>
c4e84bde
RM
39#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
70c71606 42#include <linux/prefetch.h>
b7c6bfb7 43#include <net/ip6_checksum.h>
c4e84bde
RM
44
45#include "qlge.h"
46
47char qlge_driver_name[] = DRV_NAME;
48const char qlge_driver_version[] = DRV_VERSION;
49
50MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51MODULE_DESCRIPTION(DRV_STRING " ");
52MODULE_LICENSE("GPL");
53MODULE_VERSION(DRV_VERSION);
54
55static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57/* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
4974097a
RM
62/* NETIF_MSG_TX_QUEUED | */
63/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
64/* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
84cf7029
SR
67static int debug = -1; /* defaults above */
68module_param(debug, int, 0664);
c4e84bde
RM
69MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71#define MSIX_IRQ 0
72#define MSI_IRQ 1
73#define LEG_IRQ 2
a5a62a1c 74static int qlge_irq_type = MSIX_IRQ;
84cf7029 75module_param(qlge_irq_type, int, 0664);
a5a62a1c 76MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
c4e84bde 77
8aae2600
RM
78static int qlge_mpi_coredump;
79module_param(qlge_mpi_coredump, int, 0);
80MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
d5c1da56
RM
82 "Default is OFF - Do Not allocate memory. ");
83
84static int qlge_force_coredump;
85module_param(qlge_force_coredump, int, 0);
86MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
8aae2600 89
a3aa1884 90static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
b0c2aadf 91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
93 /* required last entry */
94 {0,}
95};
96
97MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
ac409215 99static int ql_wol(struct ql_adapter *qdev);
100static void qlge_set_multicast_list(struct net_device *ndev);
101
c4e84bde
RM
102/* This hardware semaphore causes exclusive access to
103 * resources shared between the NIC driver, MPI firmware,
104 * FCOE firmware and the FC driver.
105 */
106static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107{
108 u32 sem_bits = 0;
109
110 switch (sem_mask) {
111 case SEM_XGMAC0_MASK:
112 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113 break;
114 case SEM_XGMAC1_MASK:
115 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116 break;
117 case SEM_ICB_MASK:
118 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119 break;
120 case SEM_MAC_ADDR_MASK:
121 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122 break;
123 case SEM_FLASH_MASK:
124 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125 break;
126 case SEM_PROBE_MASK:
127 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128 break;
129 case SEM_RT_IDX_MASK:
130 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131 break;
132 case SEM_PROC_REG_MASK:
133 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134 break;
135 default:
ae9540f7 136 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
c4e84bde
RM
137 return -EINVAL;
138 }
139
140 ql_write32(qdev, SEM, sem_bits | sem_mask);
141 return !(ql_read32(qdev, SEM) & sem_bits);
142}
143
144int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145{
0857e9d7 146 unsigned int wait_count = 30;
c4e84bde
RM
147 do {
148 if (!ql_sem_trylock(qdev, sem_mask))
149 return 0;
0857e9d7
RM
150 udelay(100);
151 } while (--wait_count);
c4e84bde
RM
152 return -ETIMEDOUT;
153}
154
155void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156{
157 ql_write32(qdev, SEM, sem_mask);
158 ql_read32(qdev, SEM); /* flush */
159}
160
161/* This function waits for a specific bit to come ready
162 * in a given register. It is used mostly by the initialize
163 * process, but is also used in kernel thread API such as
164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165 */
166int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167{
168 u32 temp;
169 int count = UDELAY_COUNT;
170
171 while (count) {
172 temp = ql_read32(qdev, reg);
173
174 /* check for errors */
175 if (temp & err_bit) {
ae9540f7
JP
176 netif_alert(qdev, probe, qdev->ndev,
177 "register 0x%.08x access error, value = 0x%.08x!.\n",
178 reg, temp);
c4e84bde
RM
179 return -EIO;
180 } else if (temp & bit)
181 return 0;
182 udelay(UDELAY_DELAY);
183 count--;
184 }
ae9540f7
JP
185 netif_alert(qdev, probe, qdev->ndev,
186 "Timed out waiting for reg %x to come ready.\n", reg);
c4e84bde
RM
187 return -ETIMEDOUT;
188}
189
190/* The CFG register is used to download TX and RX control blocks
191 * to the chip. This function waits for an operation to complete.
192 */
193static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194{
195 int count = UDELAY_COUNT;
196 u32 temp;
197
198 while (count) {
199 temp = ql_read32(qdev, CFG);
200 if (temp & CFG_LE)
201 return -EIO;
202 if (!(temp & bit))
203 return 0;
204 udelay(UDELAY_DELAY);
205 count--;
206 }
207 return -ETIMEDOUT;
208}
209
210
211/* Used to issue init control blocks to hw. Maps control block,
212 * sets address, triggers download, waits for completion.
213 */
214int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215 u16 q_id)
216{
217 u64 map;
218 int status = 0;
219 int direction;
220 u32 mask;
221 u32 value;
222
223 direction =
224 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225 PCI_DMA_FROMDEVICE;
226
227 map = pci_map_single(qdev->pdev, ptr, size, direction);
228 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7 229 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
c4e84bde
RM
230 return -ENOMEM;
231 }
232
4322c5be
RM
233 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234 if (status)
235 return status;
236
c4e84bde
RM
237 status = ql_wait_cfg(qdev, bit);
238 if (status) {
ae9540f7
JP
239 netif_err(qdev, ifup, qdev->ndev,
240 "Timed out waiting for CFG to come ready.\n");
c4e84bde
RM
241 goto exit;
242 }
243
c4e84bde
RM
244 ql_write32(qdev, ICB_L, (u32) map);
245 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
246
247 mask = CFG_Q_MASK | (bit << 16);
248 value = bit | (q_id << CFG_Q_SHIFT);
249 ql_write32(qdev, CFG, (mask | value));
250
251 /*
252 * Wait for the bit to clear after signaling hw.
253 */
254 status = ql_wait_cfg(qdev, bit);
255exit:
4322c5be 256 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
257 pci_unmap_single(qdev->pdev, map, size, direction);
258 return status;
259}
260
261/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
262int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263 u32 *value)
264{
265 u32 offset = 0;
266 int status;
267
c4e84bde
RM
268 switch (type) {
269 case MAC_ADDR_TYPE_MULTI_MAC:
270 case MAC_ADDR_TYPE_CAM_MAC:
271 {
272 status =
273 ql_wait_reg_rdy(qdev,
939678f8 274 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
939678f8 282 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 status =
287 ql_wait_reg_rdy(qdev,
939678f8 288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev,
939678f8 296 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 if (type == MAC_ADDR_TYPE_CAM_MAC) {
301 status =
302 ql_wait_reg_rdy(qdev,
939678f8 303 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
304 if (status)
305 goto exit;
306 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307 (index << MAC_ADDR_IDX_SHIFT) | /* index */
308 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309 status =
310 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 311 MAC_ADDR_MR, 0);
c4e84bde
RM
312 if (status)
313 goto exit;
314 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315 }
316 break;
317 }
318 case MAC_ADDR_TYPE_VLAN:
319 case MAC_ADDR_TYPE_MULTI_FLTR:
320 default:
ae9540f7
JP
321 netif_crit(qdev, ifup, qdev->ndev,
322 "Address type %d not yet supported.\n", type);
c4e84bde
RM
323 status = -EPERM;
324 }
325exit:
c4e84bde
RM
326 return status;
327}
328
329/* Set up a MAC, multicast or VLAN address for the
330 * inbound frame matching.
331 */
332static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333 u16 index)
334{
335 u32 offset = 0;
336 int status = 0;
337
c4e84bde
RM
338 switch (type) {
339 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
340 {
341 u32 upper = (addr[0] << 8) | addr[1];
342 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343 (addr[4] << 8) | (addr[5]);
344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351 (index << MAC_ADDR_IDX_SHIFT) |
352 type | MAC_ADDR_E);
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360 (index << MAC_ADDR_IDX_SHIFT) |
361 type | MAC_ADDR_E);
362
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 if (status)
368 goto exit;
369 break;
370 }
c4e84bde
RM
371 case MAC_ADDR_TYPE_CAM_MAC:
372 {
373 u32 cam_output;
374 u32 upper = (addr[0] << 8) | addr[1];
375 u32 lower =
376 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377 (addr[5]);
c4e84bde
RM
378 status =
379 ql_wait_reg_rdy(qdev,
939678f8 380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, lower);
387 status =
388 ql_wait_reg_rdy(qdev,
939678f8 389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 ql_write32(qdev, MAC_ADDR_DATA, upper);
396 status =
397 ql_wait_reg_rdy(qdev,
939678f8 398 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
399 if (status)
400 goto exit;
401 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
402 (index << MAC_ADDR_IDX_SHIFT) | /* index */
403 type); /* type */
404 /* This field should also include the queue id
405 and possibly the function id. Right now we hardcode
406 the route field to NIC core.
407 */
76b26694
RM
408 cam_output = (CAM_OUT_ROUTE_NIC |
409 (qdev->
410 func << CAM_OUT_FUNC_SHIFT) |
411 (0 << CAM_OUT_CQ_ID_SHIFT));
18c49b91 412 if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
76b26694
RM
413 cam_output |= CAM_OUT_RV;
414 /* route to NIC core */
415 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
416 break;
417 }
418 case MAC_ADDR_TYPE_VLAN:
419 {
420 u32 enable_bit = *((u32 *) &addr[0]);
421 /* For VLAN, the addr actually holds a bit that
422 * either enables or disables the vlan id we are
423 * addressing. It's either MAC_ADDR_E on or off.
424 * That's bit-27 we're talking about.
425 */
c4e84bde
RM
426 status =
427 ql_wait_reg_rdy(qdev,
939678f8 428 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
429 if (status)
430 goto exit;
431 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432 (index << MAC_ADDR_IDX_SHIFT) | /* index */
433 type | /* type */
434 enable_bit); /* enable/disable */
435 break;
436 }
437 case MAC_ADDR_TYPE_MULTI_FLTR:
438 default:
ae9540f7
JP
439 netif_crit(qdev, ifup, qdev->ndev,
440 "Address type %d not yet supported.\n", type);
c4e84bde
RM
441 status = -EPERM;
442 }
443exit:
c4e84bde
RM
444 return status;
445}
446
7fab3bfe
RM
447/* Set or clear MAC address in hardware. We sometimes
448 * have to clear it to prevent wrong frame routing
449 * especially in a bonding environment.
450 */
451static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452{
453 int status;
454 char zero_mac_addr[ETH_ALEN];
455 char *addr;
456
457 if (set) {
801e9096 458 addr = &qdev->current_mac_addr[0];
ae9540f7
JP
459 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460 "Set Mac addr %pM\n", addr);
7fab3bfe
RM
461 } else {
462 memset(zero_mac_addr, 0, ETH_ALEN);
463 addr = &zero_mac_addr[0];
ae9540f7
JP
464 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465 "Clearing MAC address\n");
7fab3bfe
RM
466 }
467 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468 if (status)
469 return status;
470 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473 if (status)
ae9540f7
JP
474 netif_err(qdev, ifup, qdev->ndev,
475 "Failed to init mac address.\n");
7fab3bfe
RM
476 return status;
477}
478
6a473308
RM
479void ql_link_on(struct ql_adapter *qdev)
480{
ae9540f7 481 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
6a473308
RM
482 netif_carrier_on(qdev->ndev);
483 ql_set_mac_addr(qdev, 1);
484}
485
486void ql_link_off(struct ql_adapter *qdev)
487{
ae9540f7 488 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
6a473308
RM
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491}
492
c4e84bde
RM
493/* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497{
498 int status = 0;
499
939678f8 500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510exit:
c4e84bde
RM
511 return status;
512}
513
514/* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521{
8587ea35 522 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
523 u32 value = 0;
524
c4e84bde
RM
525 switch (mask) {
526 case RT_IDX_CAM_HIT:
527 {
528 value = RT_IDX_DST_CAM_Q | /* dest */
529 RT_IDX_TYPE_NICQ | /* type */
530 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531 break;
532 }
533 case RT_IDX_VALID: /* Promiscuous Mode frames. */
534 {
535 value = RT_IDX_DST_DFLT_Q | /* dest */
536 RT_IDX_TYPE_NICQ | /* type */
537 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538 break;
539 }
540 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
541 {
542 value = RT_IDX_DST_DFLT_Q | /* dest */
543 RT_IDX_TYPE_NICQ | /* type */
544 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545 break;
546 }
fbc2ac33
RM
547 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548 {
549 value = RT_IDX_DST_DFLT_Q | /* dest */
550 RT_IDX_TYPE_NICQ | /* type */
551 (RT_IDX_IP_CSUM_ERR_SLOT <<
552 RT_IDX_IDX_SHIFT); /* index */
553 break;
554 }
555 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560 RT_IDX_IDX_SHIFT); /* index */
561 break;
562 }
c4e84bde
RM
563 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
571 {
e163d7f2 572 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
577 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
578 {
e163d7f2 579 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582 break;
583 }
584 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
585 {
586 value = RT_IDX_DST_RSS | /* dest */
587 RT_IDX_TYPE_NICQ | /* type */
588 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589 break;
590 }
591 case 0: /* Clear the E-bit on an entry. */
592 {
593 value = RT_IDX_DST_DFLT_Q | /* dest */
594 RT_IDX_TYPE_NICQ | /* type */
595 (index << RT_IDX_IDX_SHIFT);/* index */
596 break;
597 }
598 default:
ae9540f7
JP
599 netif_err(qdev, ifup, qdev->ndev,
600 "Mask type %d not yet supported.\n", mask);
c4e84bde
RM
601 status = -EPERM;
602 goto exit;
603 }
604
605 if (value) {
606 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607 if (status)
608 goto exit;
609 value |= (enable ? RT_IDX_E : 0);
610 ql_write32(qdev, RT_IDX, value);
611 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612 }
613exit:
c4e84bde
RM
614 return status;
615}
616
617static void ql_enable_interrupts(struct ql_adapter *qdev)
618{
619 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620}
621
622static void ql_disable_interrupts(struct ql_adapter *qdev)
623{
624 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625}
626
627/* If we're running with multiple MSI-X vectors then we enable on the fly.
628 * Otherwise, we may have multiple outstanding workers and don't want to
629 * enable until the last one finishes. In this case, the irq_cnt gets
25985edc 630 * incremented every time we queue a worker and decremented every time
c4e84bde
RM
631 * a worker finishes. Once it hits zero we enable the interrupt.
632 */
bb0d215c 633u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 634{
bb0d215c
RM
635 u32 var = 0;
636 unsigned long hw_flags = 0;
637 struct intr_context *ctx = qdev->intr_context + intr;
638
639 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640 /* Always enable if we're MSIX multi interrupts and
641 * it's not the default (zeroeth) interrupt.
642 */
c4e84bde 643 ql_write32(qdev, INTR_EN,
bb0d215c
RM
644 ctx->intr_en_mask);
645 var = ql_read32(qdev, STS);
646 return var;
c4e84bde 647 }
bb0d215c
RM
648
649 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650 if (atomic_dec_and_test(&ctx->irq_cnt)) {
651 ql_write32(qdev, INTR_EN,
652 ctx->intr_en_mask);
653 var = ql_read32(qdev, STS);
654 }
655 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656 return var;
c4e84bde
RM
657}
658
659static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660{
661 u32 var = 0;
bb0d215c 662 struct intr_context *ctx;
c4e84bde 663
bb0d215c
RM
664 /* HW disables for us if we're MSIX multi interrupts and
665 * it's not the default (zeroeth) interrupt.
666 */
667 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668 return 0;
669
670 ctx = qdev->intr_context + intr;
08b1bc8f 671 spin_lock(&qdev->hw_lock);
bb0d215c 672 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 673 ql_write32(qdev, INTR_EN,
bb0d215c 674 ctx->intr_dis_mask);
c4e84bde
RM
675 var = ql_read32(qdev, STS);
676 }
bb0d215c 677 atomic_inc(&ctx->irq_cnt);
08b1bc8f 678 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
679 return var;
680}
681
682static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683{
684 int i;
685 for (i = 0; i < qdev->intr_count; i++) {
686 /* The enable call does a atomic_dec_and_test
687 * and enables only if the result is zero.
688 * So we precharge it here.
689 */
bb0d215c
RM
690 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691 i == 0))
692 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
693 ql_enable_completion_interrupt(qdev, i);
694 }
695
696}
697
b0c2aadf
RM
698static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699{
700 int status, i;
701 u16 csum = 0;
702 __le16 *flash = (__le16 *)&qdev->flash;
703
704 status = strncmp((char *)&qdev->flash, str, 4);
705 if (status) {
ae9540f7 706 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
b0c2aadf
RM
707 return status;
708 }
709
710 for (i = 0; i < size; i++)
711 csum += le16_to_cpu(*flash++);
712
713 if (csum)
ae9540f7
JP
714 netif_err(qdev, ifup, qdev->ndev,
715 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
b0c2aadf
RM
716
717 return csum;
718}
719
26351479 720static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
721{
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733 if (status)
734 goto exit;
26351479
RM
735 /* This data is stored on flash as an array of
736 * __le32. Since ql_read32() returns cpu endian
737 * we need to swap it back.
738 */
739 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
740exit:
741 return status;
742}
743
cdca8d02
RM
744static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745{
746 u32 i, size;
747 int status;
748 __le32 *p = (__le32 *)&qdev->flash;
749 u32 offset;
542512e4 750 u8 mac_addr[6];
cdca8d02
RM
751
752 /* Get flash offset for function and adjust
753 * for dword access.
754 */
e4552f51 755 if (!qdev->port)
cdca8d02
RM
756 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757 else
758 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761 return -ETIMEDOUT;
762
763 size = sizeof(struct flash_params_8000) / sizeof(u32);
764 for (i = 0; i < size; i++, p++) {
765 status = ql_read_flash_word(qdev, i+offset, p);
766 if (status) {
ae9540f7
JP
767 netif_err(qdev, ifup, qdev->ndev,
768 "Error reading flash.\n");
cdca8d02
RM
769 goto exit;
770 }
771 }
772
773 status = ql_validate_flash(qdev,
774 sizeof(struct flash_params_8000) / sizeof(u16),
775 "8000");
776 if (status) {
ae9540f7 777 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
cdca8d02
RM
778 status = -EINVAL;
779 goto exit;
780 }
781
542512e4
RM
782 /* Extract either manufacturer or BOFM modified
783 * MAC address.
784 */
785 if (qdev->flash.flash_params_8000.data_type1 == 2)
786 memcpy(mac_addr,
787 qdev->flash.flash_params_8000.mac_addr1,
788 qdev->ndev->addr_len);
789 else
790 memcpy(mac_addr,
791 qdev->flash.flash_params_8000.mac_addr,
792 qdev->ndev->addr_len);
793
794 if (!is_valid_ether_addr(mac_addr)) {
ae9540f7 795 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
cdca8d02
RM
796 status = -EINVAL;
797 goto exit;
798 }
799
800 memcpy(qdev->ndev->dev_addr,
542512e4 801 mac_addr,
cdca8d02
RM
802 qdev->ndev->addr_len);
803
804exit:
805 ql_sem_unlock(qdev, SEM_FLASH_MASK);
806 return status;
807}
808
b0c2aadf 809static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
810{
811 int i;
812 int status;
26351479 813 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 814 u32 offset = 0;
b0c2aadf 815 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
816
817 /* Second function's parameters follow the first
818 * function's.
819 */
e4552f51 820 if (qdev->port)
b0c2aadf 821 offset = size;
c4e84bde
RM
822
823 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824 return -ETIMEDOUT;
825
b0c2aadf 826 for (i = 0; i < size; i++, p++) {
e78f5fa7 827 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde 828 if (status) {
ae9540f7
JP
829 netif_err(qdev, ifup, qdev->ndev,
830 "Error reading flash.\n");
c4e84bde
RM
831 goto exit;
832 }
833
834 }
b0c2aadf
RM
835
836 status = ql_validate_flash(qdev,
837 sizeof(struct flash_params_8012) / sizeof(u16),
838 "8012");
839 if (status) {
ae9540f7 840 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
b0c2aadf
RM
841 status = -EINVAL;
842 goto exit;
843 }
844
845 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846 status = -EINVAL;
847 goto exit;
848 }
849
850 memcpy(qdev->ndev->dev_addr,
851 qdev->flash.flash_params_8012.mac_addr,
852 qdev->ndev->addr_len);
853
c4e84bde
RM
854exit:
855 ql_sem_unlock(qdev, SEM_FLASH_MASK);
856 return status;
857}
858
859/* xgmac register are located behind the xgmac_addr and xgmac_data
860 * register pair. Each read/write requires us to wait for the ready
861 * bit before reading/writing the data.
862 */
863static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864{
865 int status;
866 /* wait for reg to come ready */
867 status = ql_wait_reg_rdy(qdev,
868 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869 if (status)
870 return status;
871 /* write the data to the data reg */
872 ql_write32(qdev, XGMAC_DATA, data);
873 /* trigger the write */
874 ql_write32(qdev, XGMAC_ADDR, reg);
875 return status;
876}
877
878/* xgmac register are located behind the xgmac_addr and xgmac_data
879 * register pair. Each read/write requires us to wait for the ready
880 * bit before reading/writing the data.
881 */
882int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883{
884 int status = 0;
885 /* wait for reg to come ready */
886 status = ql_wait_reg_rdy(qdev,
887 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888 if (status)
889 goto exit;
890 /* set up for reg read */
891 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892 /* wait for reg to come ready */
893 status = ql_wait_reg_rdy(qdev,
894 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895 if (status)
896 goto exit;
897 /* get the data */
898 *data = ql_read32(qdev, XGMAC_DATA);
899exit:
900 return status;
901}
902
903/* This is used for reading the 64-bit statistics regs. */
904int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905{
906 int status = 0;
907 u32 hi = 0;
908 u32 lo = 0;
909
910 status = ql_read_xgmac_reg(qdev, reg, &lo);
911 if (status)
912 goto exit;
913
914 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915 if (status)
916 goto exit;
917
918 *data = (u64) lo | ((u64) hi << 32);
919
920exit:
921 return status;
922}
923
cdca8d02
RM
924static int ql_8000_port_initialize(struct ql_adapter *qdev)
925{
bcc2cb3b 926 int status;
cfec0cbc
RM
927 /*
928 * Get MPI firmware version for driver banner
929 * and ethool info.
930 */
931 status = ql_mb_about_fw(qdev);
932 if (status)
933 goto exit;
bcc2cb3b
RM
934 status = ql_mb_get_fw_state(qdev);
935 if (status)
936 goto exit;
937 /* Wake up a worker to get/set the TX/RX frame sizes. */
938 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939exit:
940 return status;
cdca8d02
RM
941}
942
c4e84bde
RM
943/* Take the MAC Core out of reset.
944 * Enable statistics counting.
945 * Take the transmitter/receiver out of reset.
946 * This functionality may be done in the MPI firmware at a
947 * later date.
948 */
b0c2aadf 949static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
950{
951 int status = 0;
952 u32 data;
953
954 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955 /* Another function has the semaphore, so
956 * wait for the port init bit to come ready.
957 */
ae9540f7
JP
958 netif_info(qdev, link, qdev->ndev,
959 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
c4e84bde
RM
960 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961 if (status) {
ae9540f7
JP
962 netif_crit(qdev, link, qdev->ndev,
963 "Port initialize timed out.\n");
c4e84bde
RM
964 }
965 return status;
966 }
967
ae9540f7 968 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
c4e84bde
RM
969 /* Set the core reset. */
970 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971 if (status)
972 goto end;
973 data |= GLOBAL_CFG_RESET;
974 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975 if (status)
976 goto end;
977
978 /* Clear the core reset and turn on jumbo for receiver. */
979 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
980 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
981 data |= GLOBAL_CFG_TX_STAT_EN;
982 data |= GLOBAL_CFG_RX_STAT_EN;
983 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984 if (status)
985 goto end;
986
987 /* Enable transmitter, and clear it's reset. */
988 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989 if (status)
990 goto end;
991 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
992 data |= TX_CFG_EN; /* Enable the transmitter. */
993 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994 if (status)
995 goto end;
996
997 /* Enable receiver and clear it's reset. */
998 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999 if (status)
1000 goto end;
1001 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1002 data |= RX_CFG_EN; /* Enable the receiver. */
1003 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004 if (status)
1005 goto end;
1006
1007 /* Turn on jumbo. */
1008 status =
1009 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010 if (status)
1011 goto end;
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014 if (status)
1015 goto end;
1016
1017 /* Signal to the world that the port is enabled. */
1018 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019end:
1020 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021 return status;
1022}
1023
7c734359
RM
1024static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025{
1026 return PAGE_SIZE << qdev->lbq_buf_order;
1027}
1028
c4e84bde 1029/* Get the next large buffer. */
8668ae92 1030static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1031{
1032 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033 rx_ring->lbq_curr_idx++;
1034 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035 rx_ring->lbq_curr_idx = 0;
1036 rx_ring->lbq_free_cnt++;
1037 return lbq_desc;
1038}
1039
7c734359
RM
1040static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041 struct rx_ring *rx_ring)
1042{
1043 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1046 dma_unmap_addr(lbq_desc, mapaddr),
7c734359
RM
1047 rx_ring->lbq_buf_size,
1048 PCI_DMA_FROMDEVICE);
1049
1050 /* If it's the last chunk of our master page then
1051 * we unmap it.
1052 */
1053 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054 == ql_lbq_block_size(qdev))
1055 pci_unmap_page(qdev->pdev,
1056 lbq_desc->p.pg_chunk.map,
1057 ql_lbq_block_size(qdev),
1058 PCI_DMA_FROMDEVICE);
1059 return lbq_desc;
1060}
1061
c4e84bde 1062/* Get the next small buffer. */
8668ae92 1063static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1064{
1065 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066 rx_ring->sbq_curr_idx++;
1067 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068 rx_ring->sbq_curr_idx = 0;
1069 rx_ring->sbq_free_cnt++;
1070 return sbq_desc;
1071}
1072
1073/* Update an rx ring index. */
1074static void ql_update_cq(struct rx_ring *rx_ring)
1075{
1076 rx_ring->cnsmr_idx++;
1077 rx_ring->curr_entry++;
1078 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079 rx_ring->cnsmr_idx = 0;
1080 rx_ring->curr_entry = rx_ring->cq_base;
1081 }
1082}
1083
1084static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085{
1086 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087}
1088
7c734359
RM
1089static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090 struct bq_desc *lbq_desc)
1091{
1092 if (!rx_ring->pg_chunk.page) {
1093 u64 map;
1094 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095 GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
ae9540f7
JP
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
7c734359
RM
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
ae9540f7
JP
1109 netif_err(qdev, drv, qdev->ndev,
1110 "PCI mapping failed.\n");
7c734359
RM
1111 return -ENOMEM;
1112 }
1113 rx_ring->pg_chunk.map = map;
1114 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1115 }
1116
1117 /* Copy the current master pg_chunk info
1118 * to the current descriptor.
1119 */
1120 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1121
1122 /* Adjust the master page chunk for next
1123 * buffer get.
1124 */
1125 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1126 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1127 rx_ring->pg_chunk.page = NULL;
1128 lbq_desc->p.pg_chunk.last_flag = 1;
1129 } else {
1130 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1131 get_page(rx_ring->pg_chunk.page);
1132 lbq_desc->p.pg_chunk.last_flag = 0;
1133 }
1134 return 0;
1135}
c4e84bde
RM
1136/* Process (refill) a large buffer queue. */
1137static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1138{
49f2186d
RM
1139 u32 clean_idx = rx_ring->lbq_clean_idx;
1140 u32 start_idx = clean_idx;
c4e84bde 1141 struct bq_desc *lbq_desc;
c4e84bde
RM
1142 u64 map;
1143 int i;
1144
7c734359 1145 while (rx_ring->lbq_free_cnt > 32) {
81f25d96 1146 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
ae9540f7
JP
1147 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1148 "lbq: try cleaning clean_idx = %d.\n",
1149 clean_idx);
c4e84bde 1150 lbq_desc = &rx_ring->lbq[clean_idx];
7c734359 1151 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
81f25d96 1152 rx_ring->lbq_clean_idx = clean_idx;
ae9540f7 1153 netif_err(qdev, ifup, qdev->ndev,
81f25d96
JK
1154 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1155 i, clean_idx);
ae9540f7
JP
1156 return;
1157 }
7c734359
RM
1158
1159 map = lbq_desc->p.pg_chunk.map +
1160 lbq_desc->p.pg_chunk.offset;
64b9b41d
FT
1161 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1162 dma_unmap_len_set(lbq_desc, maplen,
7c734359 1163 rx_ring->lbq_buf_size);
2c9a0d41 1164 *lbq_desc->addr = cpu_to_le64(map);
7c734359
RM
1165
1166 pci_dma_sync_single_for_device(qdev->pdev, map,
1167 rx_ring->lbq_buf_size,
1168 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1169 clean_idx++;
1170 if (clean_idx == rx_ring->lbq_len)
1171 clean_idx = 0;
1172 }
1173
1174 rx_ring->lbq_clean_idx = clean_idx;
1175 rx_ring->lbq_prod_idx += 16;
1176 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1177 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1178 rx_ring->lbq_free_cnt -= 16;
1179 }
1180
1181 if (start_idx != clean_idx) {
ae9540f7
JP
1182 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183 "lbq: updating prod idx = %d.\n",
1184 rx_ring->lbq_prod_idx);
c4e84bde
RM
1185 ql_write_db_reg(rx_ring->lbq_prod_idx,
1186 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1187 }
1188}
1189
1190/* Process (refill) a small buffer queue. */
1191static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1192{
49f2186d
RM
1193 u32 clean_idx = rx_ring->sbq_clean_idx;
1194 u32 start_idx = clean_idx;
c4e84bde 1195 struct bq_desc *sbq_desc;
c4e84bde
RM
1196 u64 map;
1197 int i;
1198
1199 while (rx_ring->sbq_free_cnt > 16) {
81f25d96 1200 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
c4e84bde 1201 sbq_desc = &rx_ring->sbq[clean_idx];
ae9540f7
JP
1202 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1203 "sbq: try cleaning clean_idx = %d.\n",
1204 clean_idx);
c4e84bde 1205 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1206 netif_printk(qdev, rx_status, KERN_DEBUG,
1207 qdev->ndev,
1208 "sbq: getting new skb for index %d.\n",
1209 sbq_desc->index);
c4e84bde
RM
1210 sbq_desc->p.skb =
1211 netdev_alloc_skb(qdev->ndev,
52e55f3c 1212 SMALL_BUFFER_SIZE);
c4e84bde 1213 if (sbq_desc->p.skb == NULL) {
ae9540f7
JP
1214 netif_err(qdev, probe, qdev->ndev,
1215 "Couldn't get an skb.\n");
c4e84bde
RM
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
52e55f3c
RM
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
c907a35a 1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
ae9540f7
JP
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
c907a35a 1227 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
c907a35a
RM
1230 return;
1231 }
64b9b41d
FT
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
52e55f3c 1234 rx_ring->sbq_buf_size);
2c9a0d41 1235 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
ae9540f7
JP
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
c4e84bde
RM
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1255 }
1256}
1257
1258static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260{
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263}
1264
1265/* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270{
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
ae9540f7
JP
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
c4e84bde
RM
1287 }
1288 pci_unmap_single(qdev->pdev,
64b9b41d 1289 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1290 mapaddr),
64b9b41d 1291 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
ae9540f7
JP
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
c4e84bde 1297 pci_unmap_page(qdev->pdev,
64b9b41d 1298 dma_unmap_addr(&tx_ring_desc->map[i],
c4e84bde 1299 mapaddr),
64b9b41d 1300 dma_unmap_len(&tx_ring_desc->map[i],
c4e84bde
RM
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305}
1306
1307/* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313{
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
ae9540f7
JP
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
c4e84bde
RM
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
ae9540f7
JP
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
c4e84bde
RM
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
64b9b41d
FT
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
c4e84bde
RM
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
ae9540f7
JP
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
c4e84bde
RM
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
64b9b41d 1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
c4e84bde 1394 map);
64b9b41d 1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
c4e84bde
RM
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
9e903e08 1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
5d6bcdfe 1402 DMA_TO_DEVICE);
c4e84bde 1403
5d6bcdfe 1404 err = dma_mapping_error(&qdev->pdev->dev, map);
c4e84bde 1405 if (err) {
ae9540f7
JP
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
c4e84bde
RM
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
9e903e08 1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
64b9b41d
FT
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
9e903e08 1416 skb_frag_size(frag));
c4e84bde
RM
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434}
1435
63526713
RM
1436/* Process an inbound completion from an rx ring. */
1437static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1438 struct rx_ring *rx_ring,
1439 struct ib_mac_iocb_rsp *ib_mac_rsp,
1440 u32 length,
1441 u16 vlan_id)
1442{
1443 struct sk_buff *skb;
1444 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
63526713
RM
1445 struct napi_struct *napi = &rx_ring->napi;
1446
1447 napi->dev = qdev->ndev;
1448
1449 skb = napi_get_frags(napi);
1450 if (!skb) {
ae9540f7
JP
1451 netif_err(qdev, drv, qdev->ndev,
1452 "Couldn't get an skb, exiting.\n");
63526713
RM
1453 rx_ring->rx_dropped++;
1454 put_page(lbq_desc->p.pg_chunk.page);
1455 return;
1456 }
1457 prefetch(lbq_desc->p.pg_chunk.va);
da7ebfd7
IC
1458 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1459 lbq_desc->p.pg_chunk.page,
1460 lbq_desc->p.pg_chunk.offset,
1461 length);
63526713
RM
1462
1463 skb->len += length;
1464 skb->data_len += length;
1465 skb->truesize += length;
1466 skb_shinfo(skb)->nr_frags++;
1467
1468 rx_ring->rx_packets++;
1469 rx_ring->rx_bytes += length;
1470 skb->ip_summed = CHECKSUM_UNNECESSARY;
1471 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1472 if (vlan_id != 0xffff)
1473 __vlan_hwaccel_put_tag(skb, vlan_id);
1474 napi_gro_frags(napi);
63526713
RM
1475}
1476
4f848c0a
RM
1477/* Process an inbound completion from an rx ring. */
1478static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1479 struct rx_ring *rx_ring,
1480 struct ib_mac_iocb_rsp *ib_mac_rsp,
1481 u32 length,
1482 u16 vlan_id)
1483{
1484 struct net_device *ndev = qdev->ndev;
1485 struct sk_buff *skb = NULL;
1486 void *addr;
1487 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1488 struct napi_struct *napi = &rx_ring->napi;
1489
1490 skb = netdev_alloc_skb(ndev, length);
1491 if (!skb) {
ae9540f7
JP
1492 netif_err(qdev, drv, qdev->ndev,
1493 "Couldn't get an skb, need to unwind!.\n");
4f848c0a
RM
1494 rx_ring->rx_dropped++;
1495 put_page(lbq_desc->p.pg_chunk.page);
1496 return;
1497 }
1498
1499 addr = lbq_desc->p.pg_chunk.va;
1500 prefetch(addr);
1501
1502
1503 /* Frame error, so drop the packet. */
1504 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1505 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1506 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
4f848c0a
RM
1507 rx_ring->rx_errors++;
1508 goto err_out;
1509 }
1510
1511 /* The max framesize filter on this chip is set higher than
1512 * MTU since FCoE uses 2k frames.
1513 */
1514 if (skb->len > ndev->mtu + ETH_HLEN) {
ae9540f7
JP
1515 netif_err(qdev, drv, qdev->ndev,
1516 "Segment too small, dropping.\n");
4f848c0a
RM
1517 rx_ring->rx_dropped++;
1518 goto err_out;
1519 }
1520 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
ae9540f7
JP
1521 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1522 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1523 length);
4f848c0a
RM
1524 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1525 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1526 length-ETH_HLEN);
1527 skb->len += length-ETH_HLEN;
1528 skb->data_len += length-ETH_HLEN;
1529 skb->truesize += length-ETH_HLEN;
1530
1531 rx_ring->rx_packets++;
1532 rx_ring->rx_bytes += skb->len;
1533 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1534 skb_checksum_none_assert(skb);
4f848c0a 1535
88230fd5 1536 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1537 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1538 /* TCP frame. */
1539 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1540 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1541 "TCP checksum done!\n");
4f848c0a
RM
1542 skb->ip_summed = CHECKSUM_UNNECESSARY;
1543 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1544 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1545 /* Unfragmented ipv4 UDP frame. */
e02ef331
JK
1546 struct iphdr *iph =
1547 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
4f848c0a
RM
1548 if (!(iph->frag_off &
1549 cpu_to_be16(IP_MF|IP_OFFSET))) {
1550 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1551 netif_printk(qdev, rx_status, KERN_DEBUG,
1552 qdev->ndev,
e02ef331 1553 "UDP checksum done!\n");
4f848c0a
RM
1554 }
1555 }
1556 }
1557
1558 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1559 if (vlan_id != 0xffff)
1560 __vlan_hwaccel_put_tag(skb, vlan_id);
1561 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1562 napi_gro_receive(napi, skb);
1563 else
1564 netif_receive_skb(skb);
4f848c0a
RM
1565 return;
1566err_out:
1567 dev_kfree_skb_any(skb);
1568 put_page(lbq_desc->p.pg_chunk.page);
1569}
1570
1571/* Process an inbound completion from an rx ring. */
1572static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1573 struct rx_ring *rx_ring,
1574 struct ib_mac_iocb_rsp *ib_mac_rsp,
1575 u32 length,
1576 u16 vlan_id)
1577{
1578 struct net_device *ndev = qdev->ndev;
1579 struct sk_buff *skb = NULL;
1580 struct sk_buff *new_skb = NULL;
1581 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1582
1583 skb = sbq_desc->p.skb;
1584 /* Allocate new_skb and copy */
1585 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1586 if (new_skb == NULL) {
ae9540f7
JP
1587 netif_err(qdev, probe, qdev->ndev,
1588 "No skb available, drop the packet.\n");
4f848c0a
RM
1589 rx_ring->rx_dropped++;
1590 return;
1591 }
1592 skb_reserve(new_skb, NET_IP_ALIGN);
1593 memcpy(skb_put(new_skb, length), skb->data, length);
1594 skb = new_skb;
1595
1596 /* Frame error, so drop the packet. */
1597 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1598 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1599 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
4f848c0a
RM
1600 dev_kfree_skb_any(skb);
1601 rx_ring->rx_errors++;
1602 return;
1603 }
1604
1605 /* loopback self test for ethtool */
1606 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1607 ql_check_lb_frame(qdev, skb);
1608 dev_kfree_skb_any(skb);
1609 return;
1610 }
1611
1612 /* The max framesize filter on this chip is set higher than
1613 * MTU since FCoE uses 2k frames.
1614 */
1615 if (skb->len > ndev->mtu + ETH_HLEN) {
1616 dev_kfree_skb_any(skb);
1617 rx_ring->rx_dropped++;
1618 return;
1619 }
1620
1621 prefetch(skb->data);
4f848c0a 1622 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1623 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1624 "%s Multicast.\n",
1625 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1626 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1627 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1628 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1629 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1630 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
4f848c0a
RM
1631 }
1632 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
ae9540f7
JP
1633 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1634 "Promiscuous Packet.\n");
4f848c0a
RM
1635
1636 rx_ring->rx_packets++;
1637 rx_ring->rx_bytes += skb->len;
1638 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1639 skb_checksum_none_assert(skb);
4f848c0a
RM
1640
1641 /* If rx checksum is on, and there are no
1642 * csum or frame errors.
1643 */
88230fd5 1644 if ((ndev->features & NETIF_F_RXCSUM) &&
4f848c0a
RM
1645 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1646 /* TCP frame. */
1647 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1648 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1649 "TCP checksum done!\n");
4f848c0a
RM
1650 skb->ip_summed = CHECKSUM_UNNECESSARY;
1651 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1652 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1653 /* Unfragmented ipv4 UDP frame. */
1654 struct iphdr *iph = (struct iphdr *) skb->data;
1655 if (!(iph->frag_off &
6d29b1ef 1656 ntohs(IP_MF|IP_OFFSET))) {
4f848c0a 1657 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1658 netif_printk(qdev, rx_status, KERN_DEBUG,
1659 qdev->ndev,
e02ef331 1660 "UDP checksum done!\n");
4f848c0a
RM
1661 }
1662 }
1663 }
1664
1665 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1666 if (vlan_id != 0xffff)
1667 __vlan_hwaccel_put_tag(skb, vlan_id);
1668 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1669 napi_gro_receive(&rx_ring->napi, skb);
1670 else
1671 netif_receive_skb(skb);
4f848c0a
RM
1672}
1673
8668ae92 1674static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1675{
1676 void *temp_addr = skb->data;
1677
1678 /* Undo the skb_reserve(skb,32) we did before
1679 * giving to hardware, and realign data on
1680 * a 2-byte boundary.
1681 */
1682 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1683 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1684 skb_copy_to_linear_data(skb, temp_addr,
1685 (unsigned int)len);
1686}
1687
1688/*
1689 * This function builds an skb for the given inbound
1690 * completion. It will be rewritten for readability in the near
1691 * future, but for not it works well.
1692 */
1693static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1694 struct rx_ring *rx_ring,
1695 struct ib_mac_iocb_rsp *ib_mac_rsp)
1696{
1697 struct bq_desc *lbq_desc;
1698 struct bq_desc *sbq_desc;
1699 struct sk_buff *skb = NULL;
1700 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1701 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1702
1703 /*
1704 * Handle the header buffer if present.
1705 */
1706 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1707 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1708 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1709 "Header of %d bytes in small buffer.\n", hdr_len);
c4e84bde
RM
1710 /*
1711 * Headers fit nicely into a small buffer.
1712 */
1713 sbq_desc = ql_get_curr_sbuf(rx_ring);
1714 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1715 dma_unmap_addr(sbq_desc, mapaddr),
1716 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1717 PCI_DMA_FROMDEVICE);
1718 skb = sbq_desc->p.skb;
1719 ql_realign_skb(skb, hdr_len);
1720 skb_put(skb, hdr_len);
1721 sbq_desc->p.skb = NULL;
1722 }
1723
1724 /*
1725 * Handle the data buffer(s).
1726 */
1727 if (unlikely(!length)) { /* Is there data too? */
ae9540f7
JP
1728 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1729 "No Data buffer in this packet.\n");
c4e84bde
RM
1730 return skb;
1731 }
1732
1733 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1734 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1735 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1736 "Headers in small, data of %d bytes in small, combine them.\n",
1737 length);
c4e84bde
RM
1738 /*
1739 * Data is less than small buffer size so it's
1740 * stuffed in a small buffer.
1741 * For this case we append the data
1742 * from the "data" small buffer to the "header" small
1743 * buffer.
1744 */
1745 sbq_desc = ql_get_curr_sbuf(rx_ring);
1746 pci_dma_sync_single_for_cpu(qdev->pdev,
64b9b41d 1747 dma_unmap_addr
c4e84bde 1748 (sbq_desc, mapaddr),
64b9b41d 1749 dma_unmap_len
c4e84bde
RM
1750 (sbq_desc, maplen),
1751 PCI_DMA_FROMDEVICE);
1752 memcpy(skb_put(skb, length),
1753 sbq_desc->p.skb->data, length);
1754 pci_dma_sync_single_for_device(qdev->pdev,
64b9b41d 1755 dma_unmap_addr
c4e84bde
RM
1756 (sbq_desc,
1757 mapaddr),
64b9b41d 1758 dma_unmap_len
c4e84bde
RM
1759 (sbq_desc,
1760 maplen),
1761 PCI_DMA_FROMDEVICE);
1762 } else {
ae9540f7
JP
1763 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1764 "%d bytes in a single small buffer.\n",
1765 length);
c4e84bde
RM
1766 sbq_desc = ql_get_curr_sbuf(rx_ring);
1767 skb = sbq_desc->p.skb;
1768 ql_realign_skb(skb, length);
1769 skb_put(skb, length);
1770 pci_unmap_single(qdev->pdev,
64b9b41d 1771 dma_unmap_addr(sbq_desc,
c4e84bde 1772 mapaddr),
64b9b41d 1773 dma_unmap_len(sbq_desc,
c4e84bde
RM
1774 maplen),
1775 PCI_DMA_FROMDEVICE);
1776 sbq_desc->p.skb = NULL;
1777 }
1778 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1779 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
ae9540f7
JP
1780 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1781 "Header in small, %d bytes in large. Chain large to small!\n",
1782 length);
c4e84bde
RM
1783 /*
1784 * The data is in a single large buffer. We
1785 * chain it to the header buffer's skb and let
1786 * it rip.
1787 */
7c734359 1788 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
ae9540f7
JP
1789 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1790 "Chaining page at offset = %d, for %d bytes to skb.\n",
1791 lbq_desc->p.pg_chunk.offset, length);
7c734359
RM
1792 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1793 lbq_desc->p.pg_chunk.offset,
1794 length);
c4e84bde
RM
1795 skb->len += length;
1796 skb->data_len += length;
1797 skb->truesize += length;
c4e84bde
RM
1798 } else {
1799 /*
1800 * The headers and data are in a single large buffer. We
1801 * copy it to a new skb and let it go. This can happen with
1802 * jumbo mtu on a non-TCP/UDP frame.
1803 */
7c734359 1804 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
c4e84bde
RM
1805 skb = netdev_alloc_skb(qdev->ndev, length);
1806 if (skb == NULL) {
ae9540f7
JP
1807 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1808 "No skb available, drop the packet.\n");
c4e84bde
RM
1809 return NULL;
1810 }
4055c7d4 1811 pci_unmap_page(qdev->pdev,
64b9b41d 1812 dma_unmap_addr(lbq_desc,
4055c7d4 1813 mapaddr),
64b9b41d 1814 dma_unmap_len(lbq_desc, maplen),
4055c7d4 1815 PCI_DMA_FROMDEVICE);
c4e84bde 1816 skb_reserve(skb, NET_IP_ALIGN);
ae9540f7
JP
1817 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1818 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1819 length);
7c734359
RM
1820 skb_fill_page_desc(skb, 0,
1821 lbq_desc->p.pg_chunk.page,
1822 lbq_desc->p.pg_chunk.offset,
1823 length);
c4e84bde
RM
1824 skb->len += length;
1825 skb->data_len += length;
1826 skb->truesize += length;
1827 length -= length;
c4e84bde
RM
1828 __pskb_pull_tail(skb,
1829 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1830 VLAN_ETH_HLEN : ETH_HLEN);
1831 }
1832 } else {
1833 /*
1834 * The data is in a chain of large buffers
1835 * pointed to by a small buffer. We loop
1836 * thru and chain them to the our small header
1837 * buffer's skb.
1838 * frags: There are 18 max frags and our small
1839 * buffer will hold 32 of them. The thing is,
1840 * we'll use 3 max for our 9000 byte jumbo
1841 * frames. If the MTU goes up we could
1842 * eventually be in trouble.
1843 */
7c734359 1844 int size, i = 0;
c4e84bde
RM
1845 sbq_desc = ql_get_curr_sbuf(rx_ring);
1846 pci_unmap_single(qdev->pdev,
64b9b41d
FT
1847 dma_unmap_addr(sbq_desc, mapaddr),
1848 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
1849 PCI_DMA_FROMDEVICE);
1850 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1851 /*
1852 * This is an non TCP/UDP IP frame, so
1853 * the headers aren't split into a small
1854 * buffer. We have to use the small buffer
1855 * that contains our sg list as our skb to
1856 * send upstairs. Copy the sg list here to
1857 * a local buffer and use it to find the
1858 * pages to chain.
1859 */
ae9540f7
JP
1860 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1861 "%d bytes of headers & data in chain of large.\n",
1862 length);
c4e84bde 1863 skb = sbq_desc->p.skb;
c4e84bde
RM
1864 sbq_desc->p.skb = NULL;
1865 skb_reserve(skb, NET_IP_ALIGN);
c4e84bde
RM
1866 }
1867 while (length > 0) {
7c734359
RM
1868 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1869 size = (length < rx_ring->lbq_buf_size) ? length :
1870 rx_ring->lbq_buf_size;
c4e84bde 1871
ae9540f7
JP
1872 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1873 "Adding page %d to skb for %d bytes.\n",
1874 i, size);
7c734359
RM
1875 skb_fill_page_desc(skb, i,
1876 lbq_desc->p.pg_chunk.page,
1877 lbq_desc->p.pg_chunk.offset,
1878 size);
c4e84bde
RM
1879 skb->len += size;
1880 skb->data_len += size;
1881 skb->truesize += size;
1882 length -= size;
c4e84bde
RM
1883 i++;
1884 }
1885 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1886 VLAN_ETH_HLEN : ETH_HLEN);
1887 }
1888 return skb;
1889}
1890
1891/* Process an inbound completion from an rx ring. */
4f848c0a 1892static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
c4e84bde 1893 struct rx_ring *rx_ring,
4f848c0a
RM
1894 struct ib_mac_iocb_rsp *ib_mac_rsp,
1895 u16 vlan_id)
c4e84bde
RM
1896{
1897 struct net_device *ndev = qdev->ndev;
1898 struct sk_buff *skb = NULL;
1899
1900 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1901
1902 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1903 if (unlikely(!skb)) {
ae9540f7
JP
1904 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1905 "No skb available, drop packet.\n");
885ee398 1906 rx_ring->rx_dropped++;
c4e84bde
RM
1907 return;
1908 }
1909
a32959cd
RM
1910 /* Frame error, so drop the packet. */
1911 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
3b11d36e 1912 netif_info(qdev, drv, qdev->ndev,
ae9540f7 1913 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
a32959cd 1914 dev_kfree_skb_any(skb);
885ee398 1915 rx_ring->rx_errors++;
a32959cd
RM
1916 return;
1917 }
ec33a491
RM
1918
1919 /* The max framesize filter on this chip is set higher than
1920 * MTU since FCoE uses 2k frames.
1921 */
1922 if (skb->len > ndev->mtu + ETH_HLEN) {
1923 dev_kfree_skb_any(skb);
885ee398 1924 rx_ring->rx_dropped++;
ec33a491
RM
1925 return;
1926 }
1927
9dfbbaa6
RM
1928 /* loopback self test for ethtool */
1929 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1930 ql_check_lb_frame(qdev, skb);
1931 dev_kfree_skb_any(skb);
1932 return;
1933 }
1934
c4e84bde 1935 prefetch(skb->data);
c4e84bde 1936 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
ae9540f7
JP
1937 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1938 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1939 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1940 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1941 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1942 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1943 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
885ee398 1944 rx_ring->rx_multicast++;
c4e84bde
RM
1945 }
1946 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
ae9540f7
JP
1947 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1948 "Promiscuous Packet.\n");
c4e84bde 1949 }
d555f592 1950
d555f592 1951 skb->protocol = eth_type_trans(skb, ndev);
bc8acf2c 1952 skb_checksum_none_assert(skb);
d555f592
RM
1953
1954 /* If rx checksum is on, and there are no
1955 * csum or frame errors.
1956 */
88230fd5 1957 if ((ndev->features & NETIF_F_RXCSUM) &&
d555f592
RM
1958 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1959 /* TCP frame. */
1960 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
ae9540f7
JP
1961 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1962 "TCP checksum done!\n");
d555f592
RM
1963 skb->ip_summed = CHECKSUM_UNNECESSARY;
1964 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1965 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1966 /* Unfragmented ipv4 UDP frame. */
1967 struct iphdr *iph = (struct iphdr *) skb->data;
1968 if (!(iph->frag_off &
6d29b1ef 1969 ntohs(IP_MF|IP_OFFSET))) {
d555f592 1970 skb->ip_summed = CHECKSUM_UNNECESSARY;
ae9540f7
JP
1971 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1972 "TCP checksum done!\n");
d555f592
RM
1973 }
1974 }
c4e84bde 1975 }
d555f592 1976
885ee398
RM
1977 rx_ring->rx_packets++;
1978 rx_ring->rx_bytes += skb->len;
b2014ff8 1979 skb_record_rx_queue(skb, rx_ring->cq_id);
18c49b91
JP
1980 if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
1981 __vlan_hwaccel_put_tag(skb, vlan_id);
1982 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1983 napi_gro_receive(&rx_ring->napi, skb);
1984 else
1985 netif_receive_skb(skb);
c4e84bde
RM
1986}
1987
4f848c0a
RM
1988/* Process an inbound completion from an rx ring. */
1989static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
1990 struct rx_ring *rx_ring,
1991 struct ib_mac_iocb_rsp *ib_mac_rsp)
1992{
1993 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1994 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1995 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
1996 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
1997
1998 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1999
2000 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2001 /* The data and headers are split into
2002 * separate buffers.
2003 */
2004 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2005 vlan_id);
2006 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2007 /* The data fit in a single small buffer.
2008 * Allocate a new skb, copy the data and
2009 * return the buffer to the free pool.
2010 */
2011 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2012 length, vlan_id);
63526713
RM
2013 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2014 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2015 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2016 /* TCP packet in a page chunk that's been checksummed.
2017 * Tack it on to our GRO skb and let it go.
2018 */
2019 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2020 length, vlan_id);
4f848c0a
RM
2021 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2022 /* Non-TCP packet in a page chunk. Allocate an
2023 * skb, tack it on frags, and send it up.
2024 */
2025 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2026 length, vlan_id);
2027 } else {
c0c56955
RM
2028 /* Non-TCP/UDP large frames that span multiple buffers
2029 * can be processed corrrectly by the split frame logic.
2030 */
2031 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2032 vlan_id);
4f848c0a
RM
2033 }
2034
2035 return (unsigned long)length;
2036}
2037
c4e84bde
RM
2038/* Process an outbound completion from an rx ring. */
2039static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2040 struct ob_mac_iocb_rsp *mac_rsp)
2041{
2042 struct tx_ring *tx_ring;
2043 struct tx_ring_desc *tx_ring_desc;
2044
2045 QL_DUMP_OB_MAC_RSP(mac_rsp);
2046 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2047 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2048 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
885ee398
RM
2049 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2050 tx_ring->tx_packets++;
c4e84bde
RM
2051 dev_kfree_skb(tx_ring_desc->skb);
2052 tx_ring_desc->skb = NULL;
2053
2054 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2055 OB_MAC_IOCB_RSP_S |
2056 OB_MAC_IOCB_RSP_L |
2057 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2058 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
ae9540f7
JP
2059 netif_warn(qdev, tx_done, qdev->ndev,
2060 "Total descriptor length did not match transfer length.\n");
c4e84bde
RM
2061 }
2062 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
ae9540f7
JP
2063 netif_warn(qdev, tx_done, qdev->ndev,
2064 "Frame too short to be valid, not sent.\n");
c4e84bde
RM
2065 }
2066 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
ae9540f7
JP
2067 netif_warn(qdev, tx_done, qdev->ndev,
2068 "Frame too long, but sent anyway.\n");
c4e84bde
RM
2069 }
2070 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
ae9540f7
JP
2071 netif_warn(qdev, tx_done, qdev->ndev,
2072 "PCI backplane error. Frame not sent.\n");
c4e84bde
RM
2073 }
2074 }
2075 atomic_inc(&tx_ring->tx_count);
2076}
2077
2078/* Fire up a handler to reset the MPI processor. */
2079void ql_queue_fw_error(struct ql_adapter *qdev)
2080{
6a473308 2081 ql_link_off(qdev);
c4e84bde
RM
2082 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2083}
2084
2085void ql_queue_asic_error(struct ql_adapter *qdev)
2086{
6a473308 2087 ql_link_off(qdev);
c4e84bde 2088 ql_disable_interrupts(qdev);
6497b607
RM
2089 /* Clear adapter up bit to signal the recovery
2090 * process that it shouldn't kill the reset worker
2091 * thread
2092 */
2093 clear_bit(QL_ADAPTER_UP, &qdev->flags);
da92b393
JK
2094 /* Set asic recovery bit to indicate reset process that we are
2095 * in fatal error recovery process rather than normal close
2096 */
2097 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
c4e84bde
RM
2098 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2099}
2100
2101static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2102 struct ib_ae_iocb_rsp *ib_ae_rsp)
2103{
2104 switch (ib_ae_rsp->event) {
2105 case MGMT_ERR_EVENT:
ae9540f7
JP
2106 netif_err(qdev, rx_err, qdev->ndev,
2107 "Management Processor Fatal Error.\n");
c4e84bde
RM
2108 ql_queue_fw_error(qdev);
2109 return;
2110
2111 case CAM_LOOKUP_ERR_EVENT:
5069ee55
JK
2112 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2113 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
c4e84bde
RM
2114 ql_queue_asic_error(qdev);
2115 return;
2116
2117 case SOFT_ECC_ERROR_EVENT:
5069ee55 2118 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
c4e84bde
RM
2119 ql_queue_asic_error(qdev);
2120 break;
2121
2122 case PCI_ERR_ANON_BUF_RD:
5069ee55
JK
2123 netdev_err(qdev->ndev, "PCI error occurred when reading "
2124 "anonymous buffers from rx_ring %d.\n",
2125 ib_ae_rsp->q_id);
c4e84bde
RM
2126 ql_queue_asic_error(qdev);
2127 break;
2128
2129 default:
ae9540f7
JP
2130 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2131 ib_ae_rsp->event);
c4e84bde
RM
2132 ql_queue_asic_error(qdev);
2133 break;
2134 }
2135}
2136
2137static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2138{
2139 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2140 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2141 struct ob_mac_iocb_rsp *net_rsp = NULL;
2142 int count = 0;
2143
1e213303 2144 struct tx_ring *tx_ring;
c4e84bde
RM
2145 /* While there are entries in the completion queue. */
2146 while (prod != rx_ring->cnsmr_idx) {
2147
ae9540f7
JP
2148 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2149 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2150 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2151
2152 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2153 rmb();
2154 switch (net_rsp->opcode) {
2155
2156 case OPCODE_OB_MAC_TSO_IOCB:
2157 case OPCODE_OB_MAC_IOCB:
2158 ql_process_mac_tx_intr(qdev, net_rsp);
2159 break;
2160 default:
ae9540f7
JP
2161 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2162 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2163 net_rsp->opcode);
c4e84bde
RM
2164 }
2165 count++;
2166 ql_update_cq(rx_ring);
ba7cd3ba 2167 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde 2168 }
4da79504
DC
2169 if (!net_rsp)
2170 return 0;
c4e84bde 2171 ql_write_cq_idx(rx_ring);
1e213303 2172 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
4da79504 2173 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
d0de7309 2174 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
c4e84bde
RM
2175 /*
2176 * The queue got stopped because the tx_ring was full.
2177 * Wake it up, because it's now at least 25% empty.
2178 */
1e213303 2179 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
2180 }
2181
2182 return count;
2183}
2184
2185static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2186{
2187 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 2188 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2189 struct ql_net_rsp_iocb *net_rsp;
2190 int count = 0;
2191
2192 /* While there are entries in the completion queue. */
2193 while (prod != rx_ring->cnsmr_idx) {
2194
ae9540f7
JP
2195 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2196 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2197 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
c4e84bde
RM
2198
2199 net_rsp = rx_ring->curr_entry;
2200 rmb();
2201 switch (net_rsp->opcode) {
2202 case OPCODE_IB_MAC_IOCB:
2203 ql_process_mac_rx_intr(qdev, rx_ring,
2204 (struct ib_mac_iocb_rsp *)
2205 net_rsp);
2206 break;
2207
2208 case OPCODE_IB_AE_IOCB:
2209 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2210 net_rsp);
2211 break;
2212 default:
ae9540f7
JP
2213 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2214 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2215 net_rsp->opcode);
2216 break;
c4e84bde
RM
2217 }
2218 count++;
2219 ql_update_cq(rx_ring);
ba7cd3ba 2220 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
2221 if (count == budget)
2222 break;
2223 }
2224 ql_update_buffer_queues(qdev, rx_ring);
2225 ql_write_cq_idx(rx_ring);
2226 return count;
2227}
2228
2229static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2230{
2231 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2232 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
2233 struct rx_ring *trx_ring;
2234 int i, work_done = 0;
2235 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde 2236
ae9540f7
JP
2237 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2238 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
c4e84bde 2239
39aa8165
RM
2240 /* Service the TX rings first. They start
2241 * right after the RSS rings. */
2242 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2243 trx_ring = &qdev->rx_ring[i];
2244 /* If this TX completion ring belongs to this vector and
2245 * it's not empty then service it.
2246 */
2247 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2248 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2249 trx_ring->cnsmr_idx)) {
ae9540f7
JP
2250 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2251 "%s: Servicing TX completion ring %d.\n",
2252 __func__, trx_ring->cq_id);
39aa8165
RM
2253 ql_clean_outbound_rx_ring(trx_ring);
2254 }
2255 }
2256
2257 /*
2258 * Now service the RSS ring if it's active.
2259 */
2260 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2261 rx_ring->cnsmr_idx) {
ae9540f7
JP
2262 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2263 "%s: Servicing RX completion ring %d.\n",
2264 __func__, rx_ring->cq_id);
39aa8165
RM
2265 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2266 }
2267
c4e84bde 2268 if (work_done < budget) {
22bdd4f5 2269 napi_complete(napi);
c4e84bde
RM
2270 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2271 }
2272 return work_done;
2273}
2274
c8f44aff 2275static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
c4e84bde
RM
2276{
2277 struct ql_adapter *qdev = netdev_priv(ndev);
2278
18c49b91 2279 if (features & NETIF_F_HW_VLAN_RX) {
c4e84bde 2280 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
18c49b91 2281 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
c4e84bde 2282 } else {
c4e84bde
RM
2283 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2284 }
2285}
2286
c8f44aff
MM
2287static netdev_features_t qlge_fix_features(struct net_device *ndev,
2288 netdev_features_t features)
18c49b91
JP
2289{
2290 /*
2291 * Since there is no support for separate rx/tx vlan accel
2292 * enable/disable make sure tx flag is always in same state as rx.
2293 */
2294 if (features & NETIF_F_HW_VLAN_RX)
2295 features |= NETIF_F_HW_VLAN_TX;
2296 else
2297 features &= ~NETIF_F_HW_VLAN_TX;
2298
2299 return features;
2300}
2301
c8f44aff
MM
2302static int qlge_set_features(struct net_device *ndev,
2303 netdev_features_t features)
18c49b91 2304{
c8f44aff 2305 netdev_features_t changed = ndev->features ^ features;
18c49b91
JP
2306
2307 if (changed & NETIF_F_HW_VLAN_RX)
2308 qlge_vlan_mode(ndev, features);
2309
2310 return 0;
2311}
2312
8e586137 2313static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
c4e84bde 2314{
c4e84bde 2315 u32 enable_bit = MAC_ADDR_E;
8e586137 2316 int err;
c4e84bde 2317
8e586137
JP
2318 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2319 MAC_ADDR_TYPE_VLAN, vid);
2320 if (err)
ae9540f7
JP
2321 netif_err(qdev, ifup, qdev->ndev,
2322 "Failed to init vlan address.\n");
8e586137 2323 return err;
c4e84bde
RM
2324}
2325
8e586137 2326static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
c4e84bde
RM
2327{
2328 struct ql_adapter *qdev = netdev_priv(ndev);
cc288f54 2329 int status;
8e586137 2330 int err;
cc288f54
RM
2331
2332 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2333 if (status)
8e586137 2334 return status;
c4e84bde 2335
8e586137 2336 err = __qlge_vlan_rx_add_vid(qdev, vid);
18c49b91
JP
2337 set_bit(vid, qdev->active_vlans);
2338
2339 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2340
2341 return err;
18c49b91
JP
2342}
2343
8e586137 2344static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
18c49b91
JP
2345{
2346 u32 enable_bit = 0;
8e586137 2347 int err;
18c49b91 2348
8e586137
JP
2349 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2350 MAC_ADDR_TYPE_VLAN, vid);
2351 if (err)
ae9540f7
JP
2352 netif_err(qdev, ifup, qdev->ndev,
2353 "Failed to clear vlan address.\n");
8e586137 2354 return err;
18c49b91
JP
2355}
2356
8e586137 2357static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
18c49b91
JP
2358{
2359 struct ql_adapter *qdev = netdev_priv(ndev);
2360 int status;
8e586137 2361 int err;
c4e84bde 2362
18c49b91
JP
2363 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2364 if (status)
8e586137 2365 return status;
18c49b91 2366
8e586137 2367 err = __qlge_vlan_rx_kill_vid(qdev, vid);
18c49b91
JP
2368 clear_bit(vid, qdev->active_vlans);
2369
2370 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
8e586137
JP
2371
2372 return err;
c4e84bde
RM
2373}
2374
c1b60092
RM
2375static void qlge_restore_vlan(struct ql_adapter *qdev)
2376{
18c49b91
JP
2377 int status;
2378 u16 vid;
2379
2380 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2381 if (status)
2382 return;
2383
2384 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2385 __qlge_vlan_rx_add_vid(qdev, vid);
2386
2387 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c1b60092
RM
2388}
2389
c4e84bde
RM
2390/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2391static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2392{
2393 struct rx_ring *rx_ring = dev_id;
288379f0 2394 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2395 return IRQ_HANDLED;
2396}
2397
c4e84bde
RM
2398/* This handles a fatal error, MPI activity, and the default
2399 * rx_ring in an MSI-X multiple vector environment.
2400 * In MSI/Legacy environment it also process the rest of
2401 * the rx_rings.
2402 */
2403static irqreturn_t qlge_isr(int irq, void *dev_id)
2404{
2405 struct rx_ring *rx_ring = dev_id;
2406 struct ql_adapter *qdev = rx_ring->qdev;
2407 struct intr_context *intr_context = &qdev->intr_context[0];
2408 u32 var;
c4e84bde
RM
2409 int work_done = 0;
2410
bb0d215c
RM
2411 spin_lock(&qdev->hw_lock);
2412 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
ae9540f7
JP
2413 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2414 "Shared Interrupt, Not ours!\n");
bb0d215c
RM
2415 spin_unlock(&qdev->hw_lock);
2416 return IRQ_NONE;
c4e84bde 2417 }
bb0d215c 2418 spin_unlock(&qdev->hw_lock);
c4e84bde 2419
bb0d215c 2420 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2421
2422 /*
2423 * Check for fatal error.
2424 */
2425 if (var & STS_FE) {
2426 ql_queue_asic_error(qdev);
5069ee55 2427 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
c4e84bde 2428 var = ql_read32(qdev, ERR_STS);
5069ee55
JK
2429 netdev_err(qdev->ndev, "Resetting chip. "
2430 "Error Status Register = 0x%x\n", var);
c4e84bde
RM
2431 return IRQ_HANDLED;
2432 }
2433
2434 /*
2435 * Check MPI processor activity.
2436 */
5ee22a5a
RM
2437 if ((var & STS_PI) &&
2438 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2439 /*
2440 * We've got an async event or mailbox completion.
2441 * Handle it and clear the source of the interrupt.
2442 */
ae9540f7
JP
2443 netif_err(qdev, intr, qdev->ndev,
2444 "Got MPI processor interrupt.\n");
c4e84bde 2445 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2446 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2447 queue_delayed_work_on(smp_processor_id(),
2448 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2449 work_done++;
2450 }
2451
2452 /*
39aa8165
RM
2453 * Get the bit-mask that shows the active queues for this
2454 * pass. Compare it to the queues that this irq services
2455 * and call napi if there's a match.
c4e84bde 2456 */
39aa8165
RM
2457 var = ql_read32(qdev, ISR1);
2458 if (var & intr_context->irq_mask) {
ae9540f7
JP
2459 netif_info(qdev, intr, qdev->ndev,
2460 "Waking handler for rx_ring[0].\n");
39aa8165 2461 ql_disable_completion_interrupt(qdev, intr_context->intr);
32a5b2a0
RM
2462 napi_schedule(&rx_ring->napi);
2463 work_done++;
2464 }
bb0d215c 2465 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2466 return work_done ? IRQ_HANDLED : IRQ_NONE;
2467}
2468
2469static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2470{
2471
2472 if (skb_is_gso(skb)) {
2473 int err;
2474 if (skb_header_cloned(skb)) {
2475 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2476 if (err)
2477 return err;
2478 }
2479
2480 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2481 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2482 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2483 mac_iocb_ptr->total_hdrs_len =
2484 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2485 mac_iocb_ptr->net_trans_offset =
2486 cpu_to_le16(skb_network_offset(skb) |
2487 skb_transport_offset(skb)
2488 << OB_MAC_TRANSPORT_HDR_SHIFT);
2489 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2490 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2491 if (likely(skb->protocol == htons(ETH_P_IP))) {
2492 struct iphdr *iph = ip_hdr(skb);
2493 iph->check = 0;
2494 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2495 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2496 iph->daddr, 0,
2497 IPPROTO_TCP,
2498 0);
2499 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2500 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2501 tcp_hdr(skb)->check =
2502 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2503 &ipv6_hdr(skb)->daddr,
2504 0, IPPROTO_TCP, 0);
2505 }
2506 return 1;
2507 }
2508 return 0;
2509}
2510
2511static void ql_hw_csum_setup(struct sk_buff *skb,
2512 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2513{
2514 int len;
2515 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2516 __sum16 *check;
c4e84bde
RM
2517 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2518 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2519 mac_iocb_ptr->net_trans_offset =
2520 cpu_to_le16(skb_network_offset(skb) |
2521 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2522
2523 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2524 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2525 if (likely(iph->protocol == IPPROTO_TCP)) {
2526 check = &(tcp_hdr(skb)->check);
2527 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2528 mac_iocb_ptr->total_hdrs_len =
2529 cpu_to_le16(skb_transport_offset(skb) +
2530 (tcp_hdr(skb)->doff << 2));
2531 } else {
2532 check = &(udp_hdr(skb)->check);
2533 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2534 mac_iocb_ptr->total_hdrs_len =
2535 cpu_to_le16(skb_transport_offset(skb) +
2536 sizeof(struct udphdr));
2537 }
2538 *check = ~csum_tcpudp_magic(iph->saddr,
2539 iph->daddr, len, iph->protocol, 0);
2540}
2541
61357325 2542static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2543{
2544 struct tx_ring_desc *tx_ring_desc;
2545 struct ob_mac_iocb_req *mac_iocb_ptr;
2546 struct ql_adapter *qdev = netdev_priv(ndev);
2547 int tso;
2548 struct tx_ring *tx_ring;
1e213303 2549 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2550
2551 tx_ring = &qdev->tx_ring[tx_ring_idx];
2552
74c50b4b
RM
2553 if (skb_padto(skb, ETH_ZLEN))
2554 return NETDEV_TX_OK;
2555
c4e84bde 2556 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
ae9540f7 2557 netif_info(qdev, tx_queued, qdev->ndev,
41812db8 2558 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
ae9540f7 2559 __func__, tx_ring_idx);
1e213303 2560 netif_stop_subqueue(ndev, tx_ring->wq_id);
885ee398 2561 tx_ring->tx_errors++;
c4e84bde
RM
2562 return NETDEV_TX_BUSY;
2563 }
2564 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2565 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2566 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2567
2568 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2569 mac_iocb_ptr->tid = tx_ring_desc->index;
2570 /* We use the upper 32-bits to store the tx queue for this IO.
2571 * When we get the completion we can use it to establish the context.
2572 */
2573 mac_iocb_ptr->txq_idx = tx_ring_idx;
2574 tx_ring_desc->skb = skb;
2575
2576 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2577
eab6d18d 2578 if (vlan_tx_tag_present(skb)) {
ae9540f7
JP
2579 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2580 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
c4e84bde
RM
2581 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2582 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2583 }
2584 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2585 if (tso < 0) {
2586 dev_kfree_skb_any(skb);
2587 return NETDEV_TX_OK;
2588 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2589 ql_hw_csum_setup(skb,
2590 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2591 }
0d979f74
RM
2592 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2593 NETDEV_TX_OK) {
ae9540f7
JP
2594 netif_err(qdev, tx_queued, qdev->ndev,
2595 "Could not map the segments.\n");
885ee398 2596 tx_ring->tx_errors++;
0d979f74
RM
2597 return NETDEV_TX_BUSY;
2598 }
c4e84bde
RM
2599 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2600 tx_ring->prod_idx++;
2601 if (tx_ring->prod_idx == tx_ring->wq_len)
2602 tx_ring->prod_idx = 0;
2603 wmb();
2604
2605 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
ae9540f7
JP
2606 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2607 "tx queued, slot %d, len %d\n",
2608 tx_ring->prod_idx, skb->len);
c4e84bde
RM
2609
2610 atomic_dec(&tx_ring->tx_count);
41812db8
JK
2611
2612 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2613 netif_stop_subqueue(ndev, tx_ring->wq_id);
2614 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2615 /*
2616 * The queue got stopped because the tx_ring was full.
2617 * Wake it up, because it's now at least 25% empty.
2618 */
2619 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2620 }
c4e84bde
RM
2621 return NETDEV_TX_OK;
2622}
2623
9dfbbaa6 2624
c4e84bde
RM
2625static void ql_free_shadow_space(struct ql_adapter *qdev)
2626{
2627 if (qdev->rx_ring_shadow_reg_area) {
2628 pci_free_consistent(qdev->pdev,
2629 PAGE_SIZE,
2630 qdev->rx_ring_shadow_reg_area,
2631 qdev->rx_ring_shadow_reg_dma);
2632 qdev->rx_ring_shadow_reg_area = NULL;
2633 }
2634 if (qdev->tx_ring_shadow_reg_area) {
2635 pci_free_consistent(qdev->pdev,
2636 PAGE_SIZE,
2637 qdev->tx_ring_shadow_reg_area,
2638 qdev->tx_ring_shadow_reg_dma);
2639 qdev->tx_ring_shadow_reg_area = NULL;
2640 }
2641}
2642
2643static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2644{
2645 qdev->rx_ring_shadow_reg_area =
2646 pci_alloc_consistent(qdev->pdev,
2647 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2648 if (qdev->rx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2649 netif_err(qdev, ifup, qdev->ndev,
2650 "Allocation of RX shadow space failed.\n");
c4e84bde
RM
2651 return -ENOMEM;
2652 }
b25215d0 2653 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2654 qdev->tx_ring_shadow_reg_area =
2655 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2656 &qdev->tx_ring_shadow_reg_dma);
2657 if (qdev->tx_ring_shadow_reg_area == NULL) {
ae9540f7
JP
2658 netif_err(qdev, ifup, qdev->ndev,
2659 "Allocation of TX shadow space failed.\n");
c4e84bde
RM
2660 goto err_wqp_sh_area;
2661 }
b25215d0 2662 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2663 return 0;
2664
2665err_wqp_sh_area:
2666 pci_free_consistent(qdev->pdev,
2667 PAGE_SIZE,
2668 qdev->rx_ring_shadow_reg_area,
2669 qdev->rx_ring_shadow_reg_dma);
2670 return -ENOMEM;
2671}
2672
2673static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2674{
2675 struct tx_ring_desc *tx_ring_desc;
2676 int i;
2677 struct ob_mac_iocb_req *mac_iocb_ptr;
2678
2679 mac_iocb_ptr = tx_ring->wq_base;
2680 tx_ring_desc = tx_ring->q;
2681 for (i = 0; i < tx_ring->wq_len; i++) {
2682 tx_ring_desc->index = i;
2683 tx_ring_desc->skb = NULL;
2684 tx_ring_desc->queue_entry = mac_iocb_ptr;
2685 mac_iocb_ptr++;
2686 tx_ring_desc++;
2687 }
2688 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
c4e84bde
RM
2689}
2690
2691static void ql_free_tx_resources(struct ql_adapter *qdev,
2692 struct tx_ring *tx_ring)
2693{
2694 if (tx_ring->wq_base) {
2695 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2696 tx_ring->wq_base, tx_ring->wq_base_dma);
2697 tx_ring->wq_base = NULL;
2698 }
2699 kfree(tx_ring->q);
2700 tx_ring->q = NULL;
2701}
2702
2703static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2704 struct tx_ring *tx_ring)
2705{
2706 tx_ring->wq_base =
2707 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2708 &tx_ring->wq_base_dma);
2709
8e95a202
JP
2710 if ((tx_ring->wq_base == NULL) ||
2711 tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
ae9540f7 2712 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
c4e84bde
RM
2713 return -ENOMEM;
2714 }
2715 tx_ring->q =
2716 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2717 if (tx_ring->q == NULL)
2718 goto err;
2719
2720 return 0;
2721err:
2722 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2723 tx_ring->wq_base, tx_ring->wq_base_dma);
2724 return -ENOMEM;
2725}
2726
8668ae92 2727static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde 2728{
c4e84bde
RM
2729 struct bq_desc *lbq_desc;
2730
7c734359
RM
2731 uint32_t curr_idx, clean_idx;
2732
2733 curr_idx = rx_ring->lbq_curr_idx;
2734 clean_idx = rx_ring->lbq_clean_idx;
2735 while (curr_idx != clean_idx) {
2736 lbq_desc = &rx_ring->lbq[curr_idx];
2737
2738 if (lbq_desc->p.pg_chunk.last_flag) {
c4e84bde 2739 pci_unmap_page(qdev->pdev,
7c734359
RM
2740 lbq_desc->p.pg_chunk.map,
2741 ql_lbq_block_size(qdev),
c4e84bde 2742 PCI_DMA_FROMDEVICE);
7c734359 2743 lbq_desc->p.pg_chunk.last_flag = 0;
c4e84bde 2744 }
7c734359
RM
2745
2746 put_page(lbq_desc->p.pg_chunk.page);
2747 lbq_desc->p.pg_chunk.page = NULL;
2748
2749 if (++curr_idx == rx_ring->lbq_len)
2750 curr_idx = 0;
2751
c4e84bde
RM
2752 }
2753}
2754
8668ae92 2755static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2756{
2757 int i;
2758 struct bq_desc *sbq_desc;
2759
2760 for (i = 0; i < rx_ring->sbq_len; i++) {
2761 sbq_desc = &rx_ring->sbq[i];
2762 if (sbq_desc == NULL) {
ae9540f7
JP
2763 netif_err(qdev, ifup, qdev->ndev,
2764 "sbq_desc %d is NULL.\n", i);
c4e84bde
RM
2765 return;
2766 }
2767 if (sbq_desc->p.skb) {
2768 pci_unmap_single(qdev->pdev,
64b9b41d
FT
2769 dma_unmap_addr(sbq_desc, mapaddr),
2770 dma_unmap_len(sbq_desc, maplen),
c4e84bde
RM
2771 PCI_DMA_FROMDEVICE);
2772 dev_kfree_skb(sbq_desc->p.skb);
2773 sbq_desc->p.skb = NULL;
2774 }
c4e84bde
RM
2775 }
2776}
2777
4545a3f2
RM
2778/* Free all large and small rx buffers associated
2779 * with the completion queues for this device.
2780 */
2781static void ql_free_rx_buffers(struct ql_adapter *qdev)
2782{
2783 int i;
2784 struct rx_ring *rx_ring;
2785
2786 for (i = 0; i < qdev->rx_ring_count; i++) {
2787 rx_ring = &qdev->rx_ring[i];
2788 if (rx_ring->lbq)
2789 ql_free_lbq_buffers(qdev, rx_ring);
2790 if (rx_ring->sbq)
2791 ql_free_sbq_buffers(qdev, rx_ring);
2792 }
2793}
2794
2795static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2796{
2797 struct rx_ring *rx_ring;
2798 int i;
2799
2800 for (i = 0; i < qdev->rx_ring_count; i++) {
2801 rx_ring = &qdev->rx_ring[i];
2802 if (rx_ring->type != TX_Q)
2803 ql_update_buffer_queues(qdev, rx_ring);
2804 }
2805}
2806
2807static void ql_init_lbq_ring(struct ql_adapter *qdev,
2808 struct rx_ring *rx_ring)
2809{
2810 int i;
2811 struct bq_desc *lbq_desc;
2812 __le64 *bq = rx_ring->lbq_base;
2813
2814 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2815 for (i = 0; i < rx_ring->lbq_len; i++) {
2816 lbq_desc = &rx_ring->lbq[i];
2817 memset(lbq_desc, 0, sizeof(*lbq_desc));
2818 lbq_desc->index = i;
2819 lbq_desc->addr = bq;
2820 bq++;
2821 }
2822}
2823
2824static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2825 struct rx_ring *rx_ring)
2826{
2827 int i;
2828 struct bq_desc *sbq_desc;
2c9a0d41 2829 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2830
4545a3f2 2831 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2832 for (i = 0; i < rx_ring->sbq_len; i++) {
2833 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2834 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2835 sbq_desc->index = i;
2c9a0d41 2836 sbq_desc->addr = bq;
c4e84bde
RM
2837 bq++;
2838 }
c4e84bde
RM
2839}
2840
2841static void ql_free_rx_resources(struct ql_adapter *qdev,
2842 struct rx_ring *rx_ring)
2843{
c4e84bde
RM
2844 /* Free the small buffer queue. */
2845 if (rx_ring->sbq_base) {
2846 pci_free_consistent(qdev->pdev,
2847 rx_ring->sbq_size,
2848 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2849 rx_ring->sbq_base = NULL;
2850 }
2851
2852 /* Free the small buffer queue control blocks. */
2853 kfree(rx_ring->sbq);
2854 rx_ring->sbq = NULL;
2855
2856 /* Free the large buffer queue. */
2857 if (rx_ring->lbq_base) {
2858 pci_free_consistent(qdev->pdev,
2859 rx_ring->lbq_size,
2860 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2861 rx_ring->lbq_base = NULL;
2862 }
2863
2864 /* Free the large buffer queue control blocks. */
2865 kfree(rx_ring->lbq);
2866 rx_ring->lbq = NULL;
2867
2868 /* Free the rx queue. */
2869 if (rx_ring->cq_base) {
2870 pci_free_consistent(qdev->pdev,
2871 rx_ring->cq_size,
2872 rx_ring->cq_base, rx_ring->cq_base_dma);
2873 rx_ring->cq_base = NULL;
2874 }
2875}
2876
2877/* Allocate queues and buffers for this completions queue based
2878 * on the values in the parameter structure. */
2879static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2880 struct rx_ring *rx_ring)
2881{
2882
2883 /*
2884 * Allocate the completion queue for this rx_ring.
2885 */
2886 rx_ring->cq_base =
2887 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2888 &rx_ring->cq_base_dma);
2889
2890 if (rx_ring->cq_base == NULL) {
ae9540f7 2891 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
c4e84bde
RM
2892 return -ENOMEM;
2893 }
2894
2895 if (rx_ring->sbq_len) {
2896 /*
2897 * Allocate small buffer queue.
2898 */
2899 rx_ring->sbq_base =
2900 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2901 &rx_ring->sbq_base_dma);
2902
2903 if (rx_ring->sbq_base == NULL) {
ae9540f7
JP
2904 netif_err(qdev, ifup, qdev->ndev,
2905 "Small buffer queue allocation failed.\n");
c4e84bde
RM
2906 goto err_mem;
2907 }
2908
2909 /*
2910 * Allocate small buffer queue control blocks.
2911 */
2912 rx_ring->sbq =
2913 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2914 GFP_KERNEL);
2915 if (rx_ring->sbq == NULL) {
ae9540f7
JP
2916 netif_err(qdev, ifup, qdev->ndev,
2917 "Small buffer queue control block allocation failed.\n");
c4e84bde
RM
2918 goto err_mem;
2919 }
2920
4545a3f2 2921 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2922 }
2923
2924 if (rx_ring->lbq_len) {
2925 /*
2926 * Allocate large buffer queue.
2927 */
2928 rx_ring->lbq_base =
2929 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2930 &rx_ring->lbq_base_dma);
2931
2932 if (rx_ring->lbq_base == NULL) {
ae9540f7
JP
2933 netif_err(qdev, ifup, qdev->ndev,
2934 "Large buffer queue allocation failed.\n");
c4e84bde
RM
2935 goto err_mem;
2936 }
2937 /*
2938 * Allocate large buffer queue control blocks.
2939 */
2940 rx_ring->lbq =
2941 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2942 GFP_KERNEL);
2943 if (rx_ring->lbq == NULL) {
ae9540f7
JP
2944 netif_err(qdev, ifup, qdev->ndev,
2945 "Large buffer queue control block allocation failed.\n");
c4e84bde
RM
2946 goto err_mem;
2947 }
2948
4545a3f2 2949 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2950 }
2951
2952 return 0;
2953
2954err_mem:
2955 ql_free_rx_resources(qdev, rx_ring);
2956 return -ENOMEM;
2957}
2958
2959static void ql_tx_ring_clean(struct ql_adapter *qdev)
2960{
2961 struct tx_ring *tx_ring;
2962 struct tx_ring_desc *tx_ring_desc;
2963 int i, j;
2964
2965 /*
2966 * Loop through all queues and free
2967 * any resources.
2968 */
2969 for (j = 0; j < qdev->tx_ring_count; j++) {
2970 tx_ring = &qdev->tx_ring[j];
2971 for (i = 0; i < tx_ring->wq_len; i++) {
2972 tx_ring_desc = &tx_ring->q[i];
2973 if (tx_ring_desc && tx_ring_desc->skb) {
ae9540f7
JP
2974 netif_err(qdev, ifdown, qdev->ndev,
2975 "Freeing lost SKB %p, from queue %d, index %d.\n",
2976 tx_ring_desc->skb, j,
2977 tx_ring_desc->index);
c4e84bde
RM
2978 ql_unmap_send(qdev, tx_ring_desc,
2979 tx_ring_desc->map_cnt);
2980 dev_kfree_skb(tx_ring_desc->skb);
2981 tx_ring_desc->skb = NULL;
2982 }
2983 }
2984 }
2985}
2986
c4e84bde
RM
2987static void ql_free_mem_resources(struct ql_adapter *qdev)
2988{
2989 int i;
2990
2991 for (i = 0; i < qdev->tx_ring_count; i++)
2992 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2993 for (i = 0; i < qdev->rx_ring_count; i++)
2994 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2995 ql_free_shadow_space(qdev);
2996}
2997
2998static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2999{
3000 int i;
3001
3002 /* Allocate space for our shadow registers and such. */
3003 if (ql_alloc_shadow_space(qdev))
3004 return -ENOMEM;
3005
3006 for (i = 0; i < qdev->rx_ring_count; i++) {
3007 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
ae9540f7
JP
3008 netif_err(qdev, ifup, qdev->ndev,
3009 "RX resource allocation failed.\n");
c4e84bde
RM
3010 goto err_mem;
3011 }
3012 }
3013 /* Allocate tx queue resources */
3014 for (i = 0; i < qdev->tx_ring_count; i++) {
3015 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
ae9540f7
JP
3016 netif_err(qdev, ifup, qdev->ndev,
3017 "TX resource allocation failed.\n");
c4e84bde
RM
3018 goto err_mem;
3019 }
3020 }
3021 return 0;
3022
3023err_mem:
3024 ql_free_mem_resources(qdev);
3025 return -ENOMEM;
3026}
3027
3028/* Set up the rx ring control block and pass it to the chip.
3029 * The control block is defined as
3030 * "Completion Queue Initialization Control Block", or cqicb.
3031 */
3032static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3033{
3034 struct cqicb *cqicb = &rx_ring->cqicb;
3035 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 3036 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 3037 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 3038 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
3039 void __iomem *doorbell_area =
3040 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3041 int err = 0;
3042 u16 bq_len;
d4a4aba6 3043 u64 tmp;
b8facca0
RM
3044 __le64 *base_indirect_ptr;
3045 int page_entries;
c4e84bde
RM
3046
3047 /* Set up the shadow registers for this ring. */
3048 rx_ring->prod_idx_sh_reg = shadow_reg;
3049 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
7c734359 3050 *rx_ring->prod_idx_sh_reg = 0;
c4e84bde
RM
3051 shadow_reg += sizeof(u64);
3052 shadow_reg_dma += sizeof(u64);
3053 rx_ring->lbq_base_indirect = shadow_reg;
3054 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
3055 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3056 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
3057 rx_ring->sbq_base_indirect = shadow_reg;
3058 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3059
3060 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 3061 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3062 rx_ring->cnsmr_idx = 0;
3063 rx_ring->curr_entry = rx_ring->cq_base;
3064
3065 /* PCI doorbell mem area + 0x04 for valid register */
3066 rx_ring->valid_db_reg = doorbell_area + 0x04;
3067
3068 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 3069 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
3070
3071 /* PCI doorbell mem area + 0x1c */
8668ae92 3072 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
3073
3074 memset((void *)cqicb, 0, sizeof(struct cqicb));
3075 cqicb->msix_vect = rx_ring->irq;
3076
459caf5a
RM
3077 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3078 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 3079
97345524 3080 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 3081
97345524 3082 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
3083
3084 /*
3085 * Set up the control block load flags.
3086 */
3087 cqicb->flags = FLAGS_LC | /* Load queue base address */
3088 FLAGS_LV | /* Load MSI-X vector */
3089 FLAGS_LI; /* Load irq delay values */
3090 if (rx_ring->lbq_len) {
3091 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 3092 tmp = (u64)rx_ring->lbq_base_dma;
43d620c8 3093 base_indirect_ptr = rx_ring->lbq_base_indirect;
b8facca0
RM
3094 page_entries = 0;
3095 do {
3096 *base_indirect_ptr = cpu_to_le64(tmp);
3097 tmp += DB_PAGE_SIZE;
3098 base_indirect_ptr++;
3099 page_entries++;
3100 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
3101 cqicb->lbq_addr =
3102 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
3103 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3104 (u16) rx_ring->lbq_buf_size;
3105 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3106 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3107 (u16) rx_ring->lbq_len;
c4e84bde 3108 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 3109 rx_ring->lbq_prod_idx = 0;
c4e84bde 3110 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
3111 rx_ring->lbq_clean_idx = 0;
3112 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
3113 }
3114 if (rx_ring->sbq_len) {
3115 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 3116 tmp = (u64)rx_ring->sbq_base_dma;
43d620c8 3117 base_indirect_ptr = rx_ring->sbq_base_indirect;
b8facca0
RM
3118 page_entries = 0;
3119 do {
3120 *base_indirect_ptr = cpu_to_le64(tmp);
3121 tmp += DB_PAGE_SIZE;
3122 base_indirect_ptr++;
3123 page_entries++;
3124 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
3125 cqicb->sbq_addr =
3126 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 3127 cqicb->sbq_buf_size =
52e55f3c 3128 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
459caf5a
RM
3129 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3130 (u16) rx_ring->sbq_len;
c4e84bde 3131 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 3132 rx_ring->sbq_prod_idx = 0;
c4e84bde 3133 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
3134 rx_ring->sbq_clean_idx = 0;
3135 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
3136 }
3137 switch (rx_ring->type) {
3138 case TX_Q:
c4e84bde
RM
3139 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3140 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3141 break;
c4e84bde
RM
3142 case RX_Q:
3143 /* Inbound completion handling rx_rings run in
3144 * separate NAPI contexts.
3145 */
3146 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3147 64);
3148 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3149 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3150 break;
3151 default:
ae9540f7
JP
3152 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3153 "Invalid rx_ring->type = %d.\n", rx_ring->type);
c4e84bde 3154 }
c4e84bde
RM
3155 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3156 CFG_LCQ, rx_ring->cq_id);
3157 if (err) {
ae9540f7 3158 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
c4e84bde
RM
3159 return err;
3160 }
c4e84bde
RM
3161 return err;
3162}
3163
3164static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3165{
3166 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3167 void __iomem *doorbell_area =
3168 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3169 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3170 (tx_ring->wq_id * sizeof(u64));
3171 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3172 (tx_ring->wq_id * sizeof(u64));
3173 int err = 0;
3174
3175 /*
3176 * Assign doorbell registers for this tx_ring.
3177 */
3178 /* TX PCI doorbell mem area for tx producer index */
8668ae92 3179 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
3180 tx_ring->prod_idx = 0;
3181 /* TX PCI doorbell mem area + 0x04 */
3182 tx_ring->valid_db_reg = doorbell_area + 0x04;
3183
3184 /*
3185 * Assign shadow registers for this tx_ring.
3186 */
3187 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3188 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3189
3190 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3191 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3192 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3193 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3194 wqicb->rid = 0;
97345524 3195 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 3196
97345524 3197 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
3198
3199 ql_init_tx_ring(qdev, tx_ring);
3200
e332471c 3201 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
3202 (u16) tx_ring->wq_id);
3203 if (err) {
ae9540f7 3204 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
c4e84bde
RM
3205 return err;
3206 }
c4e84bde
RM
3207 return err;
3208}
3209
3210static void ql_disable_msix(struct ql_adapter *qdev)
3211{
3212 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3213 pci_disable_msix(qdev->pdev);
3214 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3215 kfree(qdev->msi_x_entry);
3216 qdev->msi_x_entry = NULL;
3217 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3218 pci_disable_msi(qdev->pdev);
3219 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3220 }
3221}
3222
a4ab6137
RM
3223/* We start by trying to get the number of vectors
3224 * stored in qdev->intr_count. If we don't get that
3225 * many then we reduce the count and try again.
3226 */
c4e84bde
RM
3227static void ql_enable_msix(struct ql_adapter *qdev)
3228{
a4ab6137 3229 int i, err;
c4e84bde 3230
c4e84bde 3231 /* Get the MSIX vectors. */
a5a62a1c 3232 if (qlge_irq_type == MSIX_IRQ) {
c4e84bde
RM
3233 /* Try to alloc space for the msix struct,
3234 * if it fails then go to MSI/legacy.
3235 */
a4ab6137 3236 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
3237 sizeof(struct msix_entry),
3238 GFP_KERNEL);
3239 if (!qdev->msi_x_entry) {
a5a62a1c 3240 qlge_irq_type = MSI_IRQ;
c4e84bde
RM
3241 goto msi;
3242 }
3243
a4ab6137 3244 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
3245 qdev->msi_x_entry[i].entry = i;
3246
a4ab6137
RM
3247 /* Loop to get our vectors. We start with
3248 * what we want and settle for what we get.
3249 */
3250 do {
3251 err = pci_enable_msix(qdev->pdev,
3252 qdev->msi_x_entry, qdev->intr_count);
3253 if (err > 0)
3254 qdev->intr_count = err;
3255 } while (err > 0);
3256
3257 if (err < 0) {
c4e84bde
RM
3258 kfree(qdev->msi_x_entry);
3259 qdev->msi_x_entry = NULL;
ae9540f7
JP
3260 netif_warn(qdev, ifup, qdev->ndev,
3261 "MSI-X Enable failed, trying MSI.\n");
a4ab6137 3262 qdev->intr_count = 1;
a5a62a1c 3263 qlge_irq_type = MSI_IRQ;
a4ab6137
RM
3264 } else if (err == 0) {
3265 set_bit(QL_MSIX_ENABLED, &qdev->flags);
ae9540f7
JP
3266 netif_info(qdev, ifup, qdev->ndev,
3267 "MSI-X Enabled, got %d vectors.\n",
3268 qdev->intr_count);
a4ab6137 3269 return;
c4e84bde
RM
3270 }
3271 }
3272msi:
a4ab6137 3273 qdev->intr_count = 1;
a5a62a1c 3274 if (qlge_irq_type == MSI_IRQ) {
c4e84bde
RM
3275 if (!pci_enable_msi(qdev->pdev)) {
3276 set_bit(QL_MSI_ENABLED, &qdev->flags);
ae9540f7
JP
3277 netif_info(qdev, ifup, qdev->ndev,
3278 "Running with MSI interrupts.\n");
c4e84bde
RM
3279 return;
3280 }
3281 }
a5a62a1c 3282 qlge_irq_type = LEG_IRQ;
ae9540f7
JP
3283 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3284 "Running with legacy interrupts.\n");
c4e84bde
RM
3285}
3286
39aa8165
RM
3287/* Each vector services 1 RSS ring and and 1 or more
3288 * TX completion rings. This function loops through
3289 * the TX completion rings and assigns the vector that
3290 * will service it. An example would be if there are
3291 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3292 * This would mean that vector 0 would service RSS ring 0
25985edc 3293 * and TX completion rings 0,1,2 and 3. Vector 1 would
39aa8165
RM
3294 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3295 */
3296static void ql_set_tx_vect(struct ql_adapter *qdev)
3297{
3298 int i, j, vect;
3299 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3300
3301 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3302 /* Assign irq vectors to TX rx_rings.*/
3303 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3304 i < qdev->rx_ring_count; i++) {
3305 if (j == tx_rings_per_vector) {
3306 vect++;
3307 j = 0;
3308 }
3309 qdev->rx_ring[i].irq = vect;
3310 j++;
3311 }
3312 } else {
3313 /* For single vector all rings have an irq
3314 * of zero.
3315 */
3316 for (i = 0; i < qdev->rx_ring_count; i++)
3317 qdev->rx_ring[i].irq = 0;
3318 }
3319}
3320
3321/* Set the interrupt mask for this vector. Each vector
3322 * will service 1 RSS ring and 1 or more TX completion
3323 * rings. This function sets up a bit mask per vector
3324 * that indicates which rings it services.
3325 */
3326static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3327{
3328 int j, vect = ctx->intr;
3329 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3330
3331 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3332 /* Add the RSS ring serviced by this vector
3333 * to the mask.
3334 */
3335 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3336 /* Add the TX ring(s) serviced by this vector
3337 * to the mask. */
3338 for (j = 0; j < tx_rings_per_vector; j++) {
3339 ctx->irq_mask |=
3340 (1 << qdev->rx_ring[qdev->rss_ring_count +
3341 (vect * tx_rings_per_vector) + j].cq_id);
3342 }
3343 } else {
3344 /* For single vector we just shift each queue's
3345 * ID into the mask.
3346 */
3347 for (j = 0; j < qdev->rx_ring_count; j++)
3348 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3349 }
3350}
3351
c4e84bde
RM
3352/*
3353 * Here we build the intr_context structures based on
3354 * our rx_ring count and intr vector count.
3355 * The intr_context structure is used to hook each vector
3356 * to possibly different handlers.
3357 */
3358static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3359{
3360 int i = 0;
3361 struct intr_context *intr_context = &qdev->intr_context[0];
3362
c4e84bde
RM
3363 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3364 /* Each rx_ring has it's
3365 * own intr_context since we have separate
3366 * vectors for each queue.
c4e84bde
RM
3367 */
3368 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3369 qdev->rx_ring[i].irq = i;
3370 intr_context->intr = i;
3371 intr_context->qdev = qdev;
39aa8165
RM
3372 /* Set up this vector's bit-mask that indicates
3373 * which queues it services.
3374 */
3375 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
3376 /*
3377 * We set up each vectors enable/disable/read bits so
3378 * there's no bit/mask calculations in the critical path.
3379 */
3380 intr_context->intr_en_mask =
3381 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3382 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3383 | i;
3384 intr_context->intr_dis_mask =
3385 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3386 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3387 INTR_EN_IHD | i;
3388 intr_context->intr_read_mask =
3389 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3390 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3391 i;
39aa8165
RM
3392 if (i == 0) {
3393 /* The first vector/queue handles
3394 * broadcast/multicast, fatal errors,
3395 * and firmware events. This in addition
3396 * to normal inbound NAPI processing.
c4e84bde 3397 */
39aa8165 3398 intr_context->handler = qlge_isr;
b2014ff8
RM
3399 sprintf(intr_context->name, "%s-rx-%d",
3400 qdev->ndev->name, i);
3401 } else {
c4e84bde 3402 /*
39aa8165 3403 * Inbound queues handle unicast frames only.
c4e84bde 3404 */
39aa8165
RM
3405 intr_context->handler = qlge_msix_rx_isr;
3406 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 3407 qdev->ndev->name, i);
c4e84bde
RM
3408 }
3409 }
3410 } else {
3411 /*
3412 * All rx_rings use the same intr_context since
3413 * there is only one vector.
3414 */
3415 intr_context->intr = 0;
3416 intr_context->qdev = qdev;
3417 /*
3418 * We set up each vectors enable/disable/read bits so
3419 * there's no bit/mask calculations in the critical path.
3420 */
3421 intr_context->intr_en_mask =
3422 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3423 intr_context->intr_dis_mask =
3424 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3425 INTR_EN_TYPE_DISABLE;
3426 intr_context->intr_read_mask =
3427 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3428 /*
3429 * Single interrupt means one handler for all rings.
3430 */
3431 intr_context->handler = qlge_isr;
3432 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3433 /* Set up this vector's bit-mask that indicates
3434 * which queues it services. In this case there is
3435 * a single vector so it will service all RSS and
3436 * TX completion rings.
3437 */
3438 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3439 }
39aa8165
RM
3440 /* Tell the TX completion rings which MSIx vector
3441 * they will be using.
3442 */
3443 ql_set_tx_vect(qdev);
c4e84bde
RM
3444}
3445
3446static void ql_free_irq(struct ql_adapter *qdev)
3447{
3448 int i;
3449 struct intr_context *intr_context = &qdev->intr_context[0];
3450
3451 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3452 if (intr_context->hooked) {
3453 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3454 free_irq(qdev->msi_x_entry[i].vector,
3455 &qdev->rx_ring[i]);
c4e84bde
RM
3456 } else {
3457 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
c4e84bde
RM
3458 }
3459 }
3460 }
3461 ql_disable_msix(qdev);
3462}
3463
3464static int ql_request_irq(struct ql_adapter *qdev)
3465{
3466 int i;
3467 int status = 0;
3468 struct pci_dev *pdev = qdev->pdev;
3469 struct intr_context *intr_context = &qdev->intr_context[0];
3470
3471 ql_resolve_queues_to_irqs(qdev);
3472
3473 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3474 atomic_set(&intr_context->irq_cnt, 0);
3475 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3476 status = request_irq(qdev->msi_x_entry[i].vector,
3477 intr_context->handler,
3478 0,
3479 intr_context->name,
3480 &qdev->rx_ring[i]);
3481 if (status) {
ae9540f7
JP
3482 netif_err(qdev, ifup, qdev->ndev,
3483 "Failed request for MSIX interrupt %d.\n",
3484 i);
c4e84bde 3485 goto err_irq;
c4e84bde
RM
3486 }
3487 } else {
ae9540f7
JP
3488 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3489 "trying msi or legacy interrupts.\n");
3490 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3491 "%s: irq = %d.\n", __func__, pdev->irq);
3492 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3493 "%s: context->name = %s.\n", __func__,
3494 intr_context->name);
3495 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3496 "%s: dev_id = 0x%p.\n", __func__,
3497 &qdev->rx_ring[0]);
c4e84bde
RM
3498 status =
3499 request_irq(pdev->irq, qlge_isr,
3500 test_bit(QL_MSI_ENABLED,
3501 &qdev->
3502 flags) ? 0 : IRQF_SHARED,
3503 intr_context->name, &qdev->rx_ring[0]);
3504 if (status)
3505 goto err_irq;
3506
ae9540f7
JP
3507 netif_err(qdev, ifup, qdev->ndev,
3508 "Hooked intr %d, queue type %s, with name %s.\n",
3509 i,
3510 qdev->rx_ring[0].type == DEFAULT_Q ?
3511 "DEFAULT_Q" :
3512 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3513 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3514 intr_context->name);
c4e84bde
RM
3515 }
3516 intr_context->hooked = 1;
3517 }
3518 return status;
3519err_irq:
ae9540f7 3520 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
c4e84bde
RM
3521 ql_free_irq(qdev);
3522 return status;
3523}
3524
3525static int ql_start_rss(struct ql_adapter *qdev)
3526{
215faf9c
JP
3527 static const u8 init_hash_seed[] = {
3528 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3529 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3530 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3531 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3532 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3533 };
c4e84bde
RM
3534 struct ricb *ricb = &qdev->ricb;
3535 int status = 0;
3536 int i;
3537 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3538
e332471c 3539 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3540
b2014ff8 3541 ricb->base_cq = RSS_L4K;
c4e84bde 3542 ricb->flags =
541ae28c
RM
3543 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3544 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3545
3546 /*
3547 * Fill out the Indirection Table.
3548 */
541ae28c
RM
3549 for (i = 0; i < 1024; i++)
3550 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3551
541ae28c
RM
3552 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3553 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3554
e332471c 3555 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde 3556 if (status) {
ae9540f7 3557 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
c4e84bde
RM
3558 return status;
3559 }
c4e84bde
RM
3560 return status;
3561}
3562
a5f59dc9 3563static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3564{
a5f59dc9 3565 int i, status = 0;
c4e84bde 3566
8587ea35
RM
3567 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3568 if (status)
3569 return status;
c4e84bde
RM
3570 /* Clear all the entries in the routing table. */
3571 for (i = 0; i < 16; i++) {
3572 status = ql_set_routing_reg(qdev, i, 0, 0);
3573 if (status) {
ae9540f7
JP
3574 netif_err(qdev, ifup, qdev->ndev,
3575 "Failed to init routing register for CAM packets.\n");
a5f59dc9 3576 break;
c4e84bde
RM
3577 }
3578 }
a5f59dc9
RM
3579 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3580 return status;
3581}
3582
3583/* Initialize the frame-to-queue routing. */
3584static int ql_route_initialize(struct ql_adapter *qdev)
3585{
3586 int status = 0;
3587
fd21cf52
RM
3588 /* Clear all the entries in the routing table. */
3589 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3590 if (status)
3591 return status;
3592
fd21cf52 3593 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3594 if (status)
fd21cf52 3595 return status;
c4e84bde 3596
fbc2ac33
RM
3597 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3598 RT_IDX_IP_CSUM_ERR, 1);
3599 if (status) {
3600 netif_err(qdev, ifup, qdev->ndev,
3601 "Failed to init routing register "
3602 "for IP CSUM error packets.\n");
3603 goto exit;
3604 }
3605 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3606 RT_IDX_TU_CSUM_ERR, 1);
c4e84bde 3607 if (status) {
ae9540f7 3608 netif_err(qdev, ifup, qdev->ndev,
fbc2ac33
RM
3609 "Failed to init routing register "
3610 "for TCP/UDP CSUM error packets.\n");
8587ea35 3611 goto exit;
c4e84bde
RM
3612 }
3613 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3614 if (status) {
ae9540f7
JP
3615 netif_err(qdev, ifup, qdev->ndev,
3616 "Failed to init routing register for broadcast packets.\n");
8587ea35 3617 goto exit;
c4e84bde
RM
3618 }
3619 /* If we have more than one inbound queue, then turn on RSS in the
3620 * routing block.
3621 */
3622 if (qdev->rss_ring_count > 1) {
3623 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3624 RT_IDX_RSS_MATCH, 1);
3625 if (status) {
ae9540f7
JP
3626 netif_err(qdev, ifup, qdev->ndev,
3627 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3628 goto exit;
c4e84bde
RM
3629 }
3630 }
3631
3632 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3633 RT_IDX_CAM_HIT, 1);
8587ea35 3634 if (status)
ae9540f7
JP
3635 netif_err(qdev, ifup, qdev->ndev,
3636 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3637exit:
3638 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3639 return status;
3640}
3641
2ee1e272 3642int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3643{
7fab3bfe 3644 int status, set;
bb58b5b6 3645
7fab3bfe
RM
3646 /* If check if the link is up and use to
3647 * determine if we are setting or clearing
3648 * the MAC address in the CAM.
3649 */
3650 set = ql_read32(qdev, STS);
3651 set &= qdev->port_link_up;
3652 status = ql_set_mac_addr(qdev, set);
bb58b5b6 3653 if (status) {
ae9540f7 3654 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
bb58b5b6
RM
3655 return status;
3656 }
3657
3658 status = ql_route_initialize(qdev);
3659 if (status)
ae9540f7 3660 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
bb58b5b6
RM
3661
3662 return status;
3663}
3664
c4e84bde
RM
3665static int ql_adapter_initialize(struct ql_adapter *qdev)
3666{
3667 u32 value, mask;
3668 int i;
3669 int status = 0;
3670
3671 /*
3672 * Set up the System register to halt on errors.
3673 */
3674 value = SYS_EFE | SYS_FAE;
3675 mask = value << 16;
3676 ql_write32(qdev, SYS, mask | value);
3677
c9cf0a04
RM
3678 /* Set the default queue, and VLAN behavior. */
3679 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3680 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3681 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3682
3683 /* Set the MPI interrupt to enabled. */
3684 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3685
3686 /* Enable the function, set pagesize, enable error checking. */
3687 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
572c526f
RM
3688 FSC_EC | FSC_VM_PAGE_4K;
3689 value |= SPLT_SETTING;
c4e84bde
RM
3690
3691 /* Set/clear header splitting. */
3692 mask = FSC_VM_PAGESIZE_MASK |
3693 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3694 ql_write32(qdev, FSC, mask | value);
3695
572c526f 3696 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
c4e84bde 3697
a3b71939
RM
3698 /* Set RX packet routing to use port/pci function on which the
3699 * packet arrived on in addition to usual frame routing.
3700 * This is helpful on bonding where both interfaces can have
3701 * the same MAC address.
3702 */
3703 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
bc083ce9
RM
3704 /* Reroute all packets to our Interface.
3705 * They may have been routed to MPI firmware
3706 * due to WOL.
3707 */
3708 value = ql_read32(qdev, MGMT_RCV_CFG);
3709 value &= ~MGMT_RCV_CFG_RM;
3710 mask = 0xffff0000;
3711
3712 /* Sticky reg needs clearing due to WOL. */
3713 ql_write32(qdev, MGMT_RCV_CFG, mask);
3714 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3715
3716 /* Default WOL is enable on Mezz cards */
3717 if (qdev->pdev->subsystem_device == 0x0068 ||
3718 qdev->pdev->subsystem_device == 0x0180)
3719 qdev->wol = WAKE_MAGIC;
a3b71939 3720
c4e84bde
RM
3721 /* Start up the rx queues. */
3722 for (i = 0; i < qdev->rx_ring_count; i++) {
3723 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3724 if (status) {
ae9540f7
JP
3725 netif_err(qdev, ifup, qdev->ndev,
3726 "Failed to start rx ring[%d].\n", i);
c4e84bde
RM
3727 return status;
3728 }
3729 }
3730
3731 /* If there is more than one inbound completion queue
3732 * then download a RICB to configure RSS.
3733 */
3734 if (qdev->rss_ring_count > 1) {
3735 status = ql_start_rss(qdev);
3736 if (status) {
ae9540f7 3737 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
c4e84bde
RM
3738 return status;
3739 }
3740 }
3741
3742 /* Start up the tx queues. */
3743 for (i = 0; i < qdev->tx_ring_count; i++) {
3744 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3745 if (status) {
ae9540f7
JP
3746 netif_err(qdev, ifup, qdev->ndev,
3747 "Failed to start tx ring[%d].\n", i);
c4e84bde
RM
3748 return status;
3749 }
3750 }
3751
b0c2aadf
RM
3752 /* Initialize the port and set the max framesize. */
3753 status = qdev->nic_ops->port_initialize(qdev);
80928860 3754 if (status)
ae9540f7 3755 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
c4e84bde 3756
bb58b5b6
RM
3757 /* Set up the MAC address and frame routing filter. */
3758 status = ql_cam_route_initialize(qdev);
c4e84bde 3759 if (status) {
ae9540f7
JP
3760 netif_err(qdev, ifup, qdev->ndev,
3761 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3762 return status;
3763 }
3764
3765 /* Start NAPI for the RSS queues. */
19257f5a 3766 for (i = 0; i < qdev->rss_ring_count; i++)
c4e84bde 3767 napi_enable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3768
3769 return status;
3770}
3771
3772/* Issue soft reset to chip. */
3773static int ql_adapter_reset(struct ql_adapter *qdev)
3774{
3775 u32 value;
c4e84bde 3776 int status = 0;
a5f59dc9 3777 unsigned long end_jiffies;
c4e84bde 3778
a5f59dc9
RM
3779 /* Clear all the entries in the routing table. */
3780 status = ql_clear_routing_entries(qdev);
3781 if (status) {
ae9540f7 3782 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
a5f59dc9
RM
3783 return status;
3784 }
3785
3786 end_jiffies = jiffies +
3787 max((unsigned long)1, usecs_to_jiffies(30));
84087f4d 3788
da92b393
JK
3789 /* Check if bit is set then skip the mailbox command and
3790 * clear the bit, else we are in normal reset process.
3791 */
3792 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3793 /* Stop management traffic. */
3794 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3795
3796 /* Wait for the NIC and MGMNT FIFOs to empty. */
3797 ql_wait_fifo_empty(qdev);
3798 } else
3799 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
84087f4d 3800
c4e84bde 3801 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3802
c4e84bde
RM
3803 do {
3804 value = ql_read32(qdev, RST_FO);
3805 if ((value & RST_FO_FR) == 0)
3806 break;
a75ee7f1
RM
3807 cpu_relax();
3808 } while (time_before(jiffies, end_jiffies));
c4e84bde 3809
c4e84bde 3810 if (value & RST_FO_FR) {
ae9540f7
JP
3811 netif_err(qdev, ifdown, qdev->ndev,
3812 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3813 status = -ETIMEDOUT;
c4e84bde
RM
3814 }
3815
84087f4d
RM
3816 /* Resume management traffic. */
3817 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
c4e84bde
RM
3818 return status;
3819}
3820
3821static void ql_display_dev_info(struct net_device *ndev)
3822{
b16fed0a 3823 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 3824
ae9540f7
JP
3825 netif_info(qdev, probe, qdev->ndev,
3826 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3827 "XG Roll = %d, XG Rev = %d.\n",
3828 qdev->func,
3829 qdev->port,
3830 qdev->chip_rev_id & 0x0000000f,
3831 qdev->chip_rev_id >> 4 & 0x0000000f,
3832 qdev->chip_rev_id >> 8 & 0x0000000f,
3833 qdev->chip_rev_id >> 12 & 0x0000000f);
3834 netif_info(qdev, probe, qdev->ndev,
3835 "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3836}
3837
ac409215 3838static int ql_wol(struct ql_adapter *qdev)
bc083ce9
RM
3839{
3840 int status = 0;
3841 u32 wol = MB_WOL_DISABLE;
3842
3843 /* The CAM is still intact after a reset, but if we
3844 * are doing WOL, then we may need to program the
3845 * routing regs. We would also need to issue the mailbox
3846 * commands to instruct the MPI what to do per the ethtool
3847 * settings.
3848 */
3849
3850 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3851 WAKE_MCAST | WAKE_BCAST)) {
ae9540f7 3852 netif_err(qdev, ifdown, qdev->ndev,
fd9071ec 3853 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
ae9540f7 3854 qdev->wol);
bc083ce9
RM
3855 return -EINVAL;
3856 }
3857
3858 if (qdev->wol & WAKE_MAGIC) {
3859 status = ql_mb_wol_set_magic(qdev, 1);
3860 if (status) {
ae9540f7
JP
3861 netif_err(qdev, ifdown, qdev->ndev,
3862 "Failed to set magic packet on %s.\n",
3863 qdev->ndev->name);
bc083ce9
RM
3864 return status;
3865 } else
ae9540f7
JP
3866 netif_info(qdev, drv, qdev->ndev,
3867 "Enabled magic packet successfully on %s.\n",
3868 qdev->ndev->name);
bc083ce9
RM
3869
3870 wol |= MB_WOL_MAGIC_PKT;
3871 }
3872
3873 if (qdev->wol) {
bc083ce9
RM
3874 wol |= MB_WOL_MODE_ON;
3875 status = ql_mb_wol_mode(qdev, wol);
ae9540f7
JP
3876 netif_err(qdev, drv, qdev->ndev,
3877 "WOL %s (wol code 0x%x) on %s\n",
318ae2ed 3878 (status == 0) ? "Successfully set" : "Failed",
ae9540f7 3879 wol, qdev->ndev->name);
bc083ce9
RM
3880 }
3881
3882 return status;
3883}
3884
c5dadddb 3885static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
c4e84bde 3886{
c4e84bde 3887
6497b607
RM
3888 /* Don't kill the reset worker thread if we
3889 * are in the process of recovery.
3890 */
3891 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3892 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3893 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3894 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3895 cancel_delayed_work_sync(&qdev->mpi_idc_work);
8aae2600 3896 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
bcc2cb3b 3897 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c5dadddb
BL
3898}
3899
3900static int ql_adapter_down(struct ql_adapter *qdev)
3901{
3902 int i, status = 0;
3903
3904 ql_link_off(qdev);
3905
3906 ql_cancel_all_work_sync(qdev);
c4e84bde 3907
39aa8165
RM
3908 for (i = 0; i < qdev->rss_ring_count; i++)
3909 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3910
3911 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3912
3913 ql_disable_interrupts(qdev);
3914
3915 ql_tx_ring_clean(qdev);
3916
6b318cb3
RM
3917 /* Call netif_napi_del() from common point.
3918 */
b2014ff8 3919 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3920 netif_napi_del(&qdev->rx_ring[i].napi);
3921
c4e84bde
RM
3922 status = ql_adapter_reset(qdev);
3923 if (status)
ae9540f7
JP
3924 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3925 qdev->func);
fe5f0980
BL
3926 ql_free_rx_buffers(qdev);
3927
c4e84bde
RM
3928 return status;
3929}
3930
3931static int ql_adapter_up(struct ql_adapter *qdev)
3932{
3933 int err = 0;
3934
c4e84bde
RM
3935 err = ql_adapter_initialize(qdev);
3936 if (err) {
ae9540f7 3937 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
c4e84bde
RM
3938 goto err_init;
3939 }
c4e84bde 3940 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3941 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3942 /* If the port is initialized and the
3943 * link is up the turn on the carrier.
3944 */
3945 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3946 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3947 ql_link_on(qdev);
f2c05004
RM
3948 /* Restore rx mode. */
3949 clear_bit(QL_ALLMULTI, &qdev->flags);
3950 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3951 qlge_set_multicast_list(qdev->ndev);
3952
c1b60092
RM
3953 /* Restore vlan setting. */
3954 qlge_restore_vlan(qdev);
3955
c4e84bde
RM
3956 ql_enable_interrupts(qdev);
3957 ql_enable_all_completion_interrupts(qdev);
1e213303 3958 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3959
3960 return 0;
3961err_init:
3962 ql_adapter_reset(qdev);
3963 return err;
3964}
3965
c4e84bde
RM
3966static void ql_release_adapter_resources(struct ql_adapter *qdev)
3967{
3968 ql_free_mem_resources(qdev);
3969 ql_free_irq(qdev);
3970}
3971
3972static int ql_get_adapter_resources(struct ql_adapter *qdev)
3973{
3974 int status = 0;
3975
3976 if (ql_alloc_mem_resources(qdev)) {
ae9540f7 3977 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
c4e84bde
RM
3978 return -ENOMEM;
3979 }
3980 status = ql_request_irq(qdev);
c4e84bde
RM
3981 return status;
3982}
3983
3984static int qlge_close(struct net_device *ndev)
3985{
3986 struct ql_adapter *qdev = netdev_priv(ndev);
3987
4bbd1a19
RM
3988 /* If we hit pci_channel_io_perm_failure
3989 * failure condition, then we already
3990 * brought the adapter down.
3991 */
3992 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
ae9540f7 3993 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4bbd1a19
RM
3994 clear_bit(QL_EEH_FATAL, &qdev->flags);
3995 return 0;
3996 }
3997
c4e84bde
RM
3998 /*
3999 * Wait for device to recover from a reset.
4000 * (Rarely happens, but possible.)
4001 */
4002 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4003 msleep(1);
4004 ql_adapter_down(qdev);
4005 ql_release_adapter_resources(qdev);
c4e84bde
RM
4006 return 0;
4007}
4008
4009static int ql_configure_rings(struct ql_adapter *qdev)
4010{
4011 int i;
4012 struct rx_ring *rx_ring;
4013 struct tx_ring *tx_ring;
a4ab6137 4014 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
7c734359
RM
4015 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4016 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4017
4018 qdev->lbq_buf_order = get_order(lbq_buf_len);
a4ab6137
RM
4019
4020 /* In a perfect world we have one RSS ring for each CPU
4021 * and each has it's own vector. To do that we ask for
4022 * cpu_cnt vectors. ql_enable_msix() will adjust the
4023 * vector count to what we actually get. We then
4024 * allocate an RSS ring for each.
4025 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 4026 */
a4ab6137
RM
4027 qdev->intr_count = cpu_cnt;
4028 ql_enable_msix(qdev);
4029 /* Adjust the RSS ring count to the actual vector count. */
4030 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 4031 qdev->tx_ring_count = cpu_cnt;
b2014ff8 4032 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 4033
c4e84bde
RM
4034 for (i = 0; i < qdev->tx_ring_count; i++) {
4035 tx_ring = &qdev->tx_ring[i];
e332471c 4036 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
4037 tx_ring->qdev = qdev;
4038 tx_ring->wq_id = i;
4039 tx_ring->wq_len = qdev->tx_ring_size;
4040 tx_ring->wq_size =
4041 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4042
4043 /*
4044 * The completion queue ID for the tx rings start
39aa8165 4045 * immediately after the rss rings.
c4e84bde 4046 */
39aa8165 4047 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
4048 }
4049
4050 for (i = 0; i < qdev->rx_ring_count; i++) {
4051 rx_ring = &qdev->rx_ring[i];
e332471c 4052 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
4053 rx_ring->qdev = qdev;
4054 rx_ring->cq_id = i;
4055 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 4056 if (i < qdev->rss_ring_count) {
39aa8165
RM
4057 /*
4058 * Inbound (RSS) queues.
4059 */
c4e84bde
RM
4060 rx_ring->cq_len = qdev->rx_ring_size;
4061 rx_ring->cq_size =
4062 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4063 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4064 rx_ring->lbq_size =
2c9a0d41 4065 rx_ring->lbq_len * sizeof(__le64);
7c734359 4066 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
c4e84bde
RM
4067 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4068 rx_ring->sbq_size =
2c9a0d41 4069 rx_ring->sbq_len * sizeof(__le64);
52e55f3c 4070 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
b2014ff8
RM
4071 rx_ring->type = RX_Q;
4072 } else {
c4e84bde
RM
4073 /*
4074 * Outbound queue handles outbound completions only.
4075 */
4076 /* outbound cq is same size as tx_ring it services. */
4077 rx_ring->cq_len = qdev->tx_ring_size;
4078 rx_ring->cq_size =
4079 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4080 rx_ring->lbq_len = 0;
4081 rx_ring->lbq_size = 0;
4082 rx_ring->lbq_buf_size = 0;
4083 rx_ring->sbq_len = 0;
4084 rx_ring->sbq_size = 0;
4085 rx_ring->sbq_buf_size = 0;
4086 rx_ring->type = TX_Q;
c4e84bde
RM
4087 }
4088 }
4089 return 0;
4090}
4091
4092static int qlge_open(struct net_device *ndev)
4093{
4094 int err = 0;
4095 struct ql_adapter *qdev = netdev_priv(ndev);
4096
74e12435
RM
4097 err = ql_adapter_reset(qdev);
4098 if (err)
4099 return err;
4100
c4e84bde
RM
4101 err = ql_configure_rings(qdev);
4102 if (err)
4103 return err;
4104
4105 err = ql_get_adapter_resources(qdev);
4106 if (err)
4107 goto error_up;
4108
4109 err = ql_adapter_up(qdev);
4110 if (err)
4111 goto error_up;
4112
4113 return err;
4114
4115error_up:
4116 ql_release_adapter_resources(qdev);
c4e84bde
RM
4117 return err;
4118}
4119
7c734359
RM
4120static int ql_change_rx_buffers(struct ql_adapter *qdev)
4121{
4122 struct rx_ring *rx_ring;
4123 int i, status;
4124 u32 lbq_buf_len;
4125
25985edc 4126 /* Wait for an outstanding reset to complete. */
7c734359
RM
4127 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4128 int i = 3;
4129 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
ae9540f7
JP
4130 netif_err(qdev, ifup, qdev->ndev,
4131 "Waiting for adapter UP...\n");
7c734359
RM
4132 ssleep(1);
4133 }
4134
4135 if (!i) {
ae9540f7
JP
4136 netif_err(qdev, ifup, qdev->ndev,
4137 "Timed out waiting for adapter UP\n");
7c734359
RM
4138 return -ETIMEDOUT;
4139 }
4140 }
4141
4142 status = ql_adapter_down(qdev);
4143 if (status)
4144 goto error;
4145
4146 /* Get the new rx buffer size. */
4147 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4148 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4149 qdev->lbq_buf_order = get_order(lbq_buf_len);
4150
4151 for (i = 0; i < qdev->rss_ring_count; i++) {
4152 rx_ring = &qdev->rx_ring[i];
4153 /* Set the new size. */
4154 rx_ring->lbq_buf_size = lbq_buf_len;
4155 }
4156
4157 status = ql_adapter_up(qdev);
4158 if (status)
4159 goto error;
4160
4161 return status;
4162error:
ae9540f7
JP
4163 netif_alert(qdev, ifup, qdev->ndev,
4164 "Driver up/down cycle failed, closing device.\n");
7c734359
RM
4165 set_bit(QL_ADAPTER_UP, &qdev->flags);
4166 dev_close(qdev->ndev);
4167 return status;
4168}
4169
c4e84bde
RM
4170static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4171{
4172 struct ql_adapter *qdev = netdev_priv(ndev);
7c734359 4173 int status;
c4e84bde
RM
4174
4175 if (ndev->mtu == 1500 && new_mtu == 9000) {
ae9540f7 4176 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
c4e84bde 4177 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
ae9540f7 4178 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
c4e84bde
RM
4179 } else
4180 return -EINVAL;
7c734359
RM
4181
4182 queue_delayed_work(qdev->workqueue,
4183 &qdev->mpi_port_cfg_work, 3*HZ);
4184
746079da
BL
4185 ndev->mtu = new_mtu;
4186
7c734359 4187 if (!netif_running(qdev->ndev)) {
7c734359
RM
4188 return 0;
4189 }
4190
7c734359
RM
4191 status = ql_change_rx_buffers(qdev);
4192 if (status) {
ae9540f7
JP
4193 netif_err(qdev, ifup, qdev->ndev,
4194 "Changing MTU failed.\n");
7c734359
RM
4195 }
4196
4197 return status;
c4e84bde
RM
4198}
4199
4200static struct net_device_stats *qlge_get_stats(struct net_device
4201 *ndev)
4202{
885ee398
RM
4203 struct ql_adapter *qdev = netdev_priv(ndev);
4204 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4205 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4206 unsigned long pkts, mcast, dropped, errors, bytes;
4207 int i;
4208
4209 /* Get RX stats. */
4210 pkts = mcast = dropped = errors = bytes = 0;
4211 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4212 pkts += rx_ring->rx_packets;
4213 bytes += rx_ring->rx_bytes;
4214 dropped += rx_ring->rx_dropped;
4215 errors += rx_ring->rx_errors;
4216 mcast += rx_ring->rx_multicast;
4217 }
4218 ndev->stats.rx_packets = pkts;
4219 ndev->stats.rx_bytes = bytes;
4220 ndev->stats.rx_dropped = dropped;
4221 ndev->stats.rx_errors = errors;
4222 ndev->stats.multicast = mcast;
4223
4224 /* Get TX stats. */
4225 pkts = errors = bytes = 0;
4226 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4227 pkts += tx_ring->tx_packets;
4228 bytes += tx_ring->tx_bytes;
4229 errors += tx_ring->tx_errors;
4230 }
4231 ndev->stats.tx_packets = pkts;
4232 ndev->stats.tx_bytes = bytes;
4233 ndev->stats.tx_errors = errors;
bcc90f55 4234 return &ndev->stats;
c4e84bde
RM
4235}
4236
ac409215 4237static void qlge_set_multicast_list(struct net_device *ndev)
c4e84bde 4238{
b16fed0a 4239 struct ql_adapter *qdev = netdev_priv(ndev);
22bedad3 4240 struct netdev_hw_addr *ha;
cc288f54 4241 int i, status;
c4e84bde 4242
cc288f54
RM
4243 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4244 if (status)
4245 return;
c4e84bde
RM
4246 /*
4247 * Set or clear promiscuous mode if a
4248 * transition is taking place.
4249 */
4250 if (ndev->flags & IFF_PROMISC) {
4251 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4252 if (ql_set_routing_reg
4253 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
ae9540f7 4254 netif_err(qdev, hw, qdev->ndev,
25985edc 4255 "Failed to set promiscuous mode.\n");
c4e84bde
RM
4256 } else {
4257 set_bit(QL_PROMISCUOUS, &qdev->flags);
4258 }
4259 }
4260 } else {
4261 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4262 if (ql_set_routing_reg
4263 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
ae9540f7 4264 netif_err(qdev, hw, qdev->ndev,
25985edc 4265 "Failed to clear promiscuous mode.\n");
c4e84bde
RM
4266 } else {
4267 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4268 }
4269 }
4270 }
4271
4272 /*
4273 * Set or clear all multicast mode if a
4274 * transition is taking place.
4275 */
4276 if ((ndev->flags & IFF_ALLMULTI) ||
4cd24eaf 4277 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
c4e84bde
RM
4278 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4279 if (ql_set_routing_reg
4280 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
ae9540f7
JP
4281 netif_err(qdev, hw, qdev->ndev,
4282 "Failed to set all-multi mode.\n");
c4e84bde
RM
4283 } else {
4284 set_bit(QL_ALLMULTI, &qdev->flags);
4285 }
4286 }
4287 } else {
4288 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4289 if (ql_set_routing_reg
4290 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
ae9540f7
JP
4291 netif_err(qdev, hw, qdev->ndev,
4292 "Failed to clear all-multi mode.\n");
c4e84bde
RM
4293 } else {
4294 clear_bit(QL_ALLMULTI, &qdev->flags);
4295 }
4296 }
4297 }
4298
4cd24eaf 4299 if (!netdev_mc_empty(ndev)) {
cc288f54
RM
4300 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4301 if (status)
4302 goto exit;
f9dcbcc9 4303 i = 0;
22bedad3
JP
4304 netdev_for_each_mc_addr(ha, ndev) {
4305 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
c4e84bde 4306 MAC_ADDR_TYPE_MULTI_MAC, i)) {
ae9540f7
JP
4307 netif_err(qdev, hw, qdev->ndev,
4308 "Failed to loadmulticast address.\n");
cc288f54 4309 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4310 goto exit;
4311 }
f9dcbcc9
JP
4312 i++;
4313 }
cc288f54 4314 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
4315 if (ql_set_routing_reg
4316 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
ae9540f7
JP
4317 netif_err(qdev, hw, qdev->ndev,
4318 "Failed to set multicast match mode.\n");
c4e84bde
RM
4319 } else {
4320 set_bit(QL_ALLMULTI, &qdev->flags);
4321 }
4322 }
4323exit:
8587ea35 4324 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
4325}
4326
4327static int qlge_set_mac_address(struct net_device *ndev, void *p)
4328{
b16fed0a 4329 struct ql_adapter *qdev = netdev_priv(ndev);
c4e84bde 4330 struct sockaddr *addr = p;
cc288f54 4331 int status;
c4e84bde 4332
c4e84bde
RM
4333 if (!is_valid_ether_addr(addr->sa_data))
4334 return -EADDRNOTAVAIL;
4335 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
801e9096
RM
4336 /* Update local copy of current mac address. */
4337 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde 4338
cc288f54
RM
4339 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4340 if (status)
4341 return status;
cc288f54
RM
4342 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4343 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54 4344 if (status)
ae9540f7 4345 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
cc288f54
RM
4346 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4347 return status;
c4e84bde
RM
4348}
4349
4350static void qlge_tx_timeout(struct net_device *ndev)
4351{
b16fed0a 4352 struct ql_adapter *qdev = netdev_priv(ndev);
6497b607 4353 ql_queue_asic_error(qdev);
c4e84bde
RM
4354}
4355
4356static void ql_asic_reset_work(struct work_struct *work)
4357{
4358 struct ql_adapter *qdev =
4359 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 4360 int status;
f2c0d8df 4361 rtnl_lock();
db98812f
RM
4362 status = ql_adapter_down(qdev);
4363 if (status)
4364 goto error;
4365
4366 status = ql_adapter_up(qdev);
4367 if (status)
4368 goto error;
2cd6dbaa
RM
4369
4370 /* Restore rx mode. */
4371 clear_bit(QL_ALLMULTI, &qdev->flags);
4372 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4373 qlge_set_multicast_list(qdev->ndev);
4374
f2c0d8df 4375 rtnl_unlock();
db98812f
RM
4376 return;
4377error:
ae9540f7
JP
4378 netif_alert(qdev, ifup, qdev->ndev,
4379 "Driver up/down cycle failed, closing device\n");
f2c0d8df 4380
db98812f
RM
4381 set_bit(QL_ADAPTER_UP, &qdev->flags);
4382 dev_close(qdev->ndev);
4383 rtnl_unlock();
c4e84bde
RM
4384}
4385
ef9c7ab4 4386static const struct nic_operations qla8012_nic_ops = {
b0c2aadf
RM
4387 .get_flash = ql_get_8012_flash_params,
4388 .port_initialize = ql_8012_port_initialize,
4389};
4390
ef9c7ab4 4391static const struct nic_operations qla8000_nic_ops = {
cdca8d02
RM
4392 .get_flash = ql_get_8000_flash_params,
4393 .port_initialize = ql_8000_port_initialize,
4394};
4395
e4552f51
RM
4396/* Find the pcie function number for the other NIC
4397 * on this chip. Since both NIC functions share a
4398 * common firmware we have the lowest enabled function
4399 * do any common work. Examples would be resetting
4400 * after a fatal firmware error, or doing a firmware
4401 * coredump.
4402 */
4403static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4404{
4405 int status = 0;
4406 u32 temp;
4407 u32 nic_func1, nic_func2;
4408
4409 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4410 &temp);
4411 if (status)
4412 return status;
4413
4414 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4415 MPI_TEST_NIC_FUNC_MASK);
4416 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4417 MPI_TEST_NIC_FUNC_MASK);
4418
4419 if (qdev->func == nic_func1)
4420 qdev->alt_func = nic_func2;
4421 else if (qdev->func == nic_func2)
4422 qdev->alt_func = nic_func1;
4423 else
4424 status = -EIO;
4425
4426 return status;
4427}
b0c2aadf 4428
e4552f51 4429static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 4430{
e4552f51 4431 int status;
c4e84bde
RM
4432 qdev->func =
4433 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
4434 if (qdev->func > 3)
4435 return -EIO;
4436
4437 status = ql_get_alt_pcie_func(qdev);
4438 if (status)
4439 return status;
4440
4441 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4442 if (qdev->port) {
c4e84bde
RM
4443 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4444 qdev->port_link_up = STS_PL1;
4445 qdev->port_init = STS_PI1;
4446 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4447 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4448 } else {
4449 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4450 qdev->port_link_up = STS_PL0;
4451 qdev->port_init = STS_PI0;
4452 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4453 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4454 }
4455 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
4456 qdev->device_id = qdev->pdev->device;
4457 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4458 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
4459 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4460 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 4461 return status;
c4e84bde
RM
4462}
4463
4464static void ql_release_all(struct pci_dev *pdev)
4465{
4466 struct net_device *ndev = pci_get_drvdata(pdev);
4467 struct ql_adapter *qdev = netdev_priv(ndev);
4468
4469 if (qdev->workqueue) {
4470 destroy_workqueue(qdev->workqueue);
4471 qdev->workqueue = NULL;
4472 }
39aa8165 4473
c4e84bde 4474 if (qdev->reg_base)
8668ae92 4475 iounmap(qdev->reg_base);
c4e84bde
RM
4476 if (qdev->doorbell_area)
4477 iounmap(qdev->doorbell_area);
8aae2600 4478 vfree(qdev->mpi_coredump);
c4e84bde
RM
4479 pci_release_regions(pdev);
4480 pci_set_drvdata(pdev, NULL);
4481}
4482
4483static int __devinit ql_init_device(struct pci_dev *pdev,
4484 struct net_device *ndev, int cards_found)
4485{
4486 struct ql_adapter *qdev = netdev_priv(ndev);
1d1023d0 4487 int err = 0;
c4e84bde 4488
e332471c 4489 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
4490 err = pci_enable_device(pdev);
4491 if (err) {
4492 dev_err(&pdev->dev, "PCI device enable failed.\n");
4493 return err;
4494 }
4495
ebd6e774
RM
4496 qdev->ndev = ndev;
4497 qdev->pdev = pdev;
4498 pci_set_drvdata(pdev, ndev);
c4e84bde 4499
bc9167f3
RM
4500 /* Set PCIe read request size */
4501 err = pcie_set_readrq(pdev, 4096);
4502 if (err) {
4503 dev_err(&pdev->dev, "Set readrq failed.\n");
4f9a91c8 4504 goto err_out1;
bc9167f3
RM
4505 }
4506
c4e84bde
RM
4507 err = pci_request_regions(pdev, DRV_NAME);
4508 if (err) {
4509 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 4510 return err;
c4e84bde
RM
4511 }
4512
4513 pci_set_master(pdev);
6a35528a 4514 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 4515 set_bit(QL_DMA64, &qdev->flags);
6a35528a 4516 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 4517 } else {
284901a9 4518 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 4519 if (!err)
284901a9 4520 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
4521 }
4522
4523 if (err) {
4524 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4f9a91c8 4525 goto err_out2;
c4e84bde
RM
4526 }
4527
73475339
RM
4528 /* Set PCIe reset type for EEH to fundamental. */
4529 pdev->needs_freset = 1;
6d190c6e 4530 pci_save_state(pdev);
c4e84bde
RM
4531 qdev->reg_base =
4532 ioremap_nocache(pci_resource_start(pdev, 1),
4533 pci_resource_len(pdev, 1));
4534 if (!qdev->reg_base) {
4535 dev_err(&pdev->dev, "Register mapping failed.\n");
4536 err = -ENOMEM;
4f9a91c8 4537 goto err_out2;
c4e84bde
RM
4538 }
4539
4540 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4541 qdev->doorbell_area =
4542 ioremap_nocache(pci_resource_start(pdev, 3),
4543 pci_resource_len(pdev, 3));
4544 if (!qdev->doorbell_area) {
4545 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4546 err = -ENOMEM;
4f9a91c8 4547 goto err_out2;
c4e84bde
RM
4548 }
4549
e4552f51
RM
4550 err = ql_get_board_info(qdev);
4551 if (err) {
4552 dev_err(&pdev->dev, "Register access failed.\n");
4553 err = -EIO;
4f9a91c8 4554 goto err_out2;
e4552f51 4555 }
c4e84bde
RM
4556 qdev->msg_enable = netif_msg_init(debug, default_msg);
4557 spin_lock_init(&qdev->hw_lock);
4558 spin_lock_init(&qdev->stats_lock);
4559
8aae2600
RM
4560 if (qlge_mpi_coredump) {
4561 qdev->mpi_coredump =
4562 vmalloc(sizeof(struct ql_mpi_coredump));
4563 if (qdev->mpi_coredump == NULL) {
4564 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4565 err = -ENOMEM;
ce96bc86 4566 goto err_out2;
8aae2600 4567 }
d5c1da56
RM
4568 if (qlge_force_coredump)
4569 set_bit(QL_FRC_COREDUMP, &qdev->flags);
8aae2600 4570 }
c4e84bde 4571 /* make sure the EEPROM is good */
b0c2aadf 4572 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
4573 if (err) {
4574 dev_err(&pdev->dev, "Invalid FLASH.\n");
4f9a91c8 4575 goto err_out2;
c4e84bde
RM
4576 }
4577
c4e84bde 4578 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
801e9096
RM
4579 /* Keep local copy of current mac address. */
4580 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
c4e84bde
RM
4581
4582 /* Set up the default ring sizes. */
4583 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4584 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4585
4586 /* Set up the coalescing parameters. */
4587 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4588 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4589 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4590 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4591
4592 /*
4593 * Set up the operating parameters.
4594 */
c4e84bde
RM
4595 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4596 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4597 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4598 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 4599 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 4600 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
8aae2600 4601 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
bcc2cb3b 4602 init_completion(&qdev->ide_completion);
4d7b6b5d 4603 mutex_init(&qdev->mpi_mutex);
c4e84bde
RM
4604
4605 if (!cards_found) {
4606 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4607 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4608 DRV_NAME, DRV_VERSION);
4609 }
4610 return 0;
4f9a91c8 4611err_out2:
c4e84bde 4612 ql_release_all(pdev);
4f9a91c8 4613err_out1:
c4e84bde
RM
4614 pci_disable_device(pdev);
4615 return err;
4616}
4617
25ed7849
SH
4618static const struct net_device_ops qlge_netdev_ops = {
4619 .ndo_open = qlge_open,
4620 .ndo_stop = qlge_close,
4621 .ndo_start_xmit = qlge_send,
4622 .ndo_change_mtu = qlge_change_mtu,
4623 .ndo_get_stats = qlge_get_stats,
afc4b13d 4624 .ndo_set_rx_mode = qlge_set_multicast_list,
25ed7849
SH
4625 .ndo_set_mac_address = qlge_set_mac_address,
4626 .ndo_validate_addr = eth_validate_addr,
4627 .ndo_tx_timeout = qlge_tx_timeout,
18c49b91
JP
4628 .ndo_fix_features = qlge_fix_features,
4629 .ndo_set_features = qlge_set_features,
01e6b953
RM
4630 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4631 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
25ed7849
SH
4632};
4633
15c052fc
RM
4634static void ql_timer(unsigned long data)
4635{
4636 struct ql_adapter *qdev = (struct ql_adapter *)data;
4637 u32 var = 0;
4638
4639 var = ql_read32(qdev, STS);
4640 if (pci_channel_offline(qdev->pdev)) {
ae9540f7 4641 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
15c052fc
RM
4642 return;
4643 }
4644
72046d84 4645 mod_timer(&qdev->timer, jiffies + (5*HZ));
15c052fc
RM
4646}
4647
c4e84bde
RM
4648static int __devinit qlge_probe(struct pci_dev *pdev,
4649 const struct pci_device_id *pci_entry)
4650{
4651 struct net_device *ndev = NULL;
4652 struct ql_adapter *qdev = NULL;
4653 static int cards_found = 0;
4654 int err = 0;
4655
1e213303 4656 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
9eb8738d 4657 min(MAX_CPUS, netif_get_num_default_rss_queues()));
c4e84bde
RM
4658 if (!ndev)
4659 return -ENOMEM;
4660
4661 err = ql_init_device(pdev, ndev, cards_found);
4662 if (err < 0) {
4663 free_netdev(ndev);
4664 return err;
4665 }
4666
4667 qdev = netdev_priv(ndev);
4668 SET_NETDEV_DEV(ndev, &pdev->dev);
88230fd5
MM
4669 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4670 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4671 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4672 ndev->features = ndev->hw_features |
4673 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
c4e84bde
RM
4674
4675 if (test_bit(QL_DMA64, &qdev->flags))
4676 ndev->features |= NETIF_F_HIGHDMA;
4677
4678 /*
4679 * Set up net_device structure.
4680 */
4681 ndev->tx_queue_len = qdev->tx_ring_size;
4682 ndev->irq = pdev->irq;
25ed7849
SH
4683
4684 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4685 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4686 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4687
c4e84bde
RM
4688 err = register_netdev(ndev);
4689 if (err) {
4690 dev_err(&pdev->dev, "net device registration failed.\n");
4691 ql_release_all(pdev);
4692 pci_disable_device(pdev);
4693 return err;
4694 }
15c052fc
RM
4695 /* Start up the timer to trigger EEH if
4696 * the bus goes dead
4697 */
4698 init_timer_deferrable(&qdev->timer);
4699 qdev->timer.data = (unsigned long)qdev;
4700 qdev->timer.function = ql_timer;
4701 qdev->timer.expires = jiffies + (5*HZ);
4702 add_timer(&qdev->timer);
6a473308 4703 ql_link_off(qdev);
c4e84bde 4704 ql_display_dev_info(ndev);
9dfbbaa6 4705 atomic_set(&qdev->lb_count, 0);
c4e84bde
RM
4706 cards_found++;
4707 return 0;
4708}
4709
9dfbbaa6
RM
4710netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4711{
4712 return qlge_send(skb, ndev);
4713}
4714
4715int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4716{
4717 return ql_clean_inbound_rx_ring(rx_ring, budget);
4718}
4719
c4e84bde
RM
4720static void __devexit qlge_remove(struct pci_dev *pdev)
4721{
4722 struct net_device *ndev = pci_get_drvdata(pdev);
15c052fc
RM
4723 struct ql_adapter *qdev = netdev_priv(ndev);
4724 del_timer_sync(&qdev->timer);
c5dadddb 4725 ql_cancel_all_work_sync(qdev);
c4e84bde
RM
4726 unregister_netdev(ndev);
4727 ql_release_all(pdev);
4728 pci_disable_device(pdev);
4729 free_netdev(ndev);
4730}
4731
6d190c6e
RM
4732/* Clean up resources without touching hardware. */
4733static void ql_eeh_close(struct net_device *ndev)
4734{
4735 int i;
4736 struct ql_adapter *qdev = netdev_priv(ndev);
4737
4738 if (netif_carrier_ok(ndev)) {
4739 netif_carrier_off(ndev);
4740 netif_stop_queue(ndev);
4741 }
4742
7ae80abd
BL
4743 /* Disabling the timer */
4744 del_timer_sync(&qdev->timer);
c5dadddb 4745 ql_cancel_all_work_sync(qdev);
6d190c6e
RM
4746
4747 for (i = 0; i < qdev->rss_ring_count; i++)
4748 netif_napi_del(&qdev->rx_ring[i].napi);
4749
4750 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4751 ql_tx_ring_clean(qdev);
4752 ql_free_rx_buffers(qdev);
4753 ql_release_adapter_resources(qdev);
4754}
4755
c4e84bde
RM
4756/*
4757 * This callback is called by the PCI subsystem whenever
4758 * a PCI bus error is detected.
4759 */
4760static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4761 enum pci_channel_state state)
4762{
4763 struct net_device *ndev = pci_get_drvdata(pdev);
4bbd1a19 4764 struct ql_adapter *qdev = netdev_priv(ndev);
fbc663ce 4765
6d190c6e
RM
4766 switch (state) {
4767 case pci_channel_io_normal:
4768 return PCI_ERS_RESULT_CAN_RECOVER;
4769 case pci_channel_io_frozen:
4770 netif_device_detach(ndev);
4771 if (netif_running(ndev))
4772 ql_eeh_close(ndev);
4773 pci_disable_device(pdev);
4774 return PCI_ERS_RESULT_NEED_RESET;
4775 case pci_channel_io_perm_failure:
4776 dev_err(&pdev->dev,
4777 "%s: pci_channel_io_perm_failure.\n", __func__);
4bbd1a19
RM
4778 ql_eeh_close(ndev);
4779 set_bit(QL_EEH_FATAL, &qdev->flags);
fbc663ce 4780 return PCI_ERS_RESULT_DISCONNECT;
6d190c6e 4781 }
c4e84bde
RM
4782
4783 /* Request a slot reset. */
4784 return PCI_ERS_RESULT_NEED_RESET;
4785}
4786
4787/*
4788 * This callback is called after the PCI buss has been reset.
4789 * Basically, this tries to restart the card from scratch.
4790 * This is a shortened version of the device probe/discovery code,
4791 * it resembles the first-half of the () routine.
4792 */
4793static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4794{
4795 struct net_device *ndev = pci_get_drvdata(pdev);
4796 struct ql_adapter *qdev = netdev_priv(ndev);
4797
6d190c6e
RM
4798 pdev->error_state = pci_channel_io_normal;
4799
4800 pci_restore_state(pdev);
c4e84bde 4801 if (pci_enable_device(pdev)) {
ae9540f7
JP
4802 netif_err(qdev, ifup, qdev->ndev,
4803 "Cannot re-enable PCI device after reset.\n");
c4e84bde
RM
4804 return PCI_ERS_RESULT_DISCONNECT;
4805 }
c4e84bde 4806 pci_set_master(pdev);
a112fd4c
RM
4807
4808 if (ql_adapter_reset(qdev)) {
ae9540f7 4809 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4bbd1a19 4810 set_bit(QL_EEH_FATAL, &qdev->flags);
a112fd4c
RM
4811 return PCI_ERS_RESULT_DISCONNECT;
4812 }
4813
c4e84bde
RM
4814 return PCI_ERS_RESULT_RECOVERED;
4815}
4816
4817static void qlge_io_resume(struct pci_dev *pdev)
4818{
4819 struct net_device *ndev = pci_get_drvdata(pdev);
4820 struct ql_adapter *qdev = netdev_priv(ndev);
6d190c6e 4821 int err = 0;
c4e84bde 4822
c4e84bde 4823 if (netif_running(ndev)) {
6d190c6e
RM
4824 err = qlge_open(ndev);
4825 if (err) {
ae9540f7
JP
4826 netif_err(qdev, ifup, qdev->ndev,
4827 "Device initialization failed after reset.\n");
c4e84bde
RM
4828 return;
4829 }
6d190c6e 4830 } else {
ae9540f7
JP
4831 netif_err(qdev, ifup, qdev->ndev,
4832 "Device was not running prior to EEH.\n");
c4e84bde 4833 }
72046d84 4834 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4835 netif_device_attach(ndev);
4836}
4837
4838static struct pci_error_handlers qlge_err_handler = {
4839 .error_detected = qlge_io_error_detected,
4840 .slot_reset = qlge_io_slot_reset,
4841 .resume = qlge_io_resume,
4842};
4843
4844static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4845{
4846 struct net_device *ndev = pci_get_drvdata(pdev);
4847 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4848 int err;
c4e84bde
RM
4849
4850 netif_device_detach(ndev);
15c052fc 4851 del_timer_sync(&qdev->timer);
c4e84bde
RM
4852
4853 if (netif_running(ndev)) {
4854 err = ql_adapter_down(qdev);
4855 if (!err)
4856 return err;
4857 }
4858
bc083ce9 4859 ql_wol(qdev);
c4e84bde
RM
4860 err = pci_save_state(pdev);
4861 if (err)
4862 return err;
4863
4864 pci_disable_device(pdev);
4865
4866 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4867
4868 return 0;
4869}
4870
04da2cf9 4871#ifdef CONFIG_PM
c4e84bde
RM
4872static int qlge_resume(struct pci_dev *pdev)
4873{
4874 struct net_device *ndev = pci_get_drvdata(pdev);
4875 struct ql_adapter *qdev = netdev_priv(ndev);
4876 int err;
4877
4878 pci_set_power_state(pdev, PCI_D0);
4879 pci_restore_state(pdev);
4880 err = pci_enable_device(pdev);
4881 if (err) {
ae9540f7 4882 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
c4e84bde
RM
4883 return err;
4884 }
4885 pci_set_master(pdev);
4886
4887 pci_enable_wake(pdev, PCI_D3hot, 0);
4888 pci_enable_wake(pdev, PCI_D3cold, 0);
4889
4890 if (netif_running(ndev)) {
4891 err = ql_adapter_up(qdev);
4892 if (err)
4893 return err;
4894 }
4895
72046d84 4896 mod_timer(&qdev->timer, jiffies + (5*HZ));
c4e84bde
RM
4897 netif_device_attach(ndev);
4898
4899 return 0;
4900}
04da2cf9 4901#endif /* CONFIG_PM */
c4e84bde
RM
4902
4903static void qlge_shutdown(struct pci_dev *pdev)
4904{
4905 qlge_suspend(pdev, PMSG_SUSPEND);
4906}
4907
4908static struct pci_driver qlge_driver = {
4909 .name = DRV_NAME,
4910 .id_table = qlge_pci_tbl,
4911 .probe = qlge_probe,
4912 .remove = __devexit_p(qlge_remove),
4913#ifdef CONFIG_PM
4914 .suspend = qlge_suspend,
4915 .resume = qlge_resume,
4916#endif
4917 .shutdown = qlge_shutdown,
4918 .err_handler = &qlge_err_handler
4919};
4920
4921static int __init qlge_init_module(void)
4922{
4923 return pci_register_driver(&qlge_driver);
4924}
4925
4926static void __exit qlge_exit(void)
4927{
4928 pci_unregister_driver(&qlge_driver);
4929}
4930
4931module_init(qlge_init_module);
4932module_exit(qlge_exit);