bpf: rename bpf_compute_data_end into bpf_compute_data_pointers
[linux-2.6-block.git] / drivers / net / ethernet / qlogic / qede / qede_fp.c
CommitLineData
cdda926d
MY
1/* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/netdevice.h>
33#include <linux/etherdevice.h>
34#include <linux/skbuff.h>
a67edbf4 35#include <linux/bpf_trace.h>
cdda926d
MY
36#include <net/udp_tunnel.h>
37#include <linux/ip.h>
38#include <net/ipv6.h>
39#include <net/tcp.h>
40#include <linux/if_ether.h>
41#include <linux/if_vlan.h>
42#include <net/ip6_checksum.h>
4c55215c 43#include "qede_ptp.h"
cdda926d
MY
44
45#include <linux/qed/qed_if.h>
46#include "qede.h"
47/*********************************
48 * Content also used by slowpath *
49 *********************************/
50
e3eef7ee 51int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
cdda926d
MY
52{
53 struct sw_rx_data *sw_rx_data;
54 struct eth_rx_bd *rx_bd;
55 dma_addr_t mapping;
56 struct page *data;
57
e3eef7ee
MY
58 /* In case lazy-allocation is allowed, postpone allocation until the
59 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 * sufficient buffers to guarantee an additional Rx interrupt.
61 */
62 if (allow_lazy && likely(rxq->filled_buffers > 12)) {
63 rxq->filled_buffers--;
64 return 0;
65 }
66
cdda926d
MY
67 data = alloc_pages(GFP_ATOMIC, 0);
68 if (unlikely(!data))
69 return -ENOMEM;
70
71 /* Map the entire page as it would be used
72 * for multiple RX buffer segment size mapping.
73 */
74 mapping = dma_map_page(rxq->dev, data, 0,
75 PAGE_SIZE, rxq->data_direction);
76 if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
77 __free_page(data);
78 return -ENOMEM;
79 }
80
81 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
82 sw_rx_data->page_offset = 0;
83 sw_rx_data->data = data;
84 sw_rx_data->mapping = mapping;
85
86 /* Advance PROD and get BD pointer */
87 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
88 WARN_ON(!rx_bd);
89 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
15ed8a47
MY
90 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
91 rxq->rx_headroom);
cdda926d
MY
92
93 rxq->sw_rx_prod++;
e3eef7ee 94 rxq->filled_buffers++;
cdda926d
MY
95
96 return 0;
97}
98
99/* Unmap the data and free skb */
100int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
101{
5a052d62 102 u16 idx = txq->sw_tx_cons;
cdda926d
MY
103 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
104 struct eth_tx_1st_bd *first_bd;
105 struct eth_tx_bd *tx_data_bd;
106 int bds_consumed = 0;
107 int nbds;
108 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
109 int i, split_bd_len = 0;
110
111 if (unlikely(!skb)) {
112 DP_ERR(edev,
113 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
114 idx, txq->sw_tx_cons, txq->sw_tx_prod);
115 return -1;
116 }
117
118 *len = skb->len;
119
120 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
121
122 bds_consumed++;
123
124 nbds = first_bd->data.nbds;
125
126 if (data_split) {
127 struct eth_tx_bd *split = (struct eth_tx_bd *)
128 qed_chain_consume(&txq->tx_pbl);
129 split_bd_len = BD_UNMAP_LEN(split);
130 bds_consumed++;
131 }
132 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
133 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
134
135 /* Unmap the data of the skb frags */
136 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
137 tx_data_bd = (struct eth_tx_bd *)
138 qed_chain_consume(&txq->tx_pbl);
139 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
140 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
141 }
142
143 while (bds_consumed++ < nbds)
144 qed_chain_consume(&txq->tx_pbl);
145
146 /* Free skb */
147 dev_kfree_skb_any(skb);
148 txq->sw_tx_ring.skbs[idx].skb = NULL;
149 txq->sw_tx_ring.skbs[idx].flags = 0;
150
151 return 0;
152}
153
154/* Unmap the data and free skb when mapping failed during start_xmit */
155static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
156 struct eth_tx_1st_bd *first_bd,
157 int nbd, bool data_split)
158{
5a052d62 159 u16 idx = txq->sw_tx_prod;
cdda926d
MY
160 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
161 struct eth_tx_bd *tx_data_bd;
162 int i, split_bd_len = 0;
163
164 /* Return prod to its position before this skb was handled */
165 qed_chain_set_prod(&txq->tx_pbl,
166 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
167
168 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
169
170 if (data_split) {
171 struct eth_tx_bd *split = (struct eth_tx_bd *)
172 qed_chain_produce(&txq->tx_pbl);
173 split_bd_len = BD_UNMAP_LEN(split);
174 nbd--;
175 }
176
177 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
178 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
179
180 /* Unmap the data of the skb frags */
181 for (i = 0; i < nbd; i++) {
182 tx_data_bd = (struct eth_tx_bd *)
183 qed_chain_produce(&txq->tx_pbl);
184 if (tx_data_bd->nbytes)
185 dma_unmap_page(txq->dev,
186 BD_UNMAP_ADDR(tx_data_bd),
187 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
188 }
189
190 /* Return again prod to its position before this skb was handled */
191 qed_chain_set_prod(&txq->tx_pbl,
192 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
193
194 /* Free skb */
195 dev_kfree_skb_any(skb);
196 txq->sw_tx_ring.skbs[idx].skb = NULL;
197 txq->sw_tx_ring.skbs[idx].flags = 0;
198}
199
200static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
201{
202 u32 rc = XMIT_L4_CSUM;
203 __be16 l3_proto;
204
205 if (skb->ip_summed != CHECKSUM_PARTIAL)
206 return XMIT_PLAIN;
207
208 l3_proto = vlan_get_protocol(skb);
209 if (l3_proto == htons(ETH_P_IPV6) &&
210 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
211 *ipv6_ext = 1;
212
213 if (skb->encapsulation) {
214 rc |= XMIT_ENC;
215 if (skb_is_gso(skb)) {
216 unsigned short gso_type = skb_shinfo(skb)->gso_type;
217
218 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
219 (gso_type & SKB_GSO_GRE_CSUM))
220 rc |= XMIT_ENC_GSO_L4_CSUM;
221
222 rc |= XMIT_LSO;
223 return rc;
224 }
225 }
226
227 if (skb_is_gso(skb))
228 rc |= XMIT_LSO;
229
230 return rc;
231}
232
233static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
234 struct eth_tx_2nd_bd *second_bd,
235 struct eth_tx_3rd_bd *third_bd)
236{
237 u8 l4_proto;
238 u16 bd2_bits1 = 0, bd2_bits2 = 0;
239
240 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
241
242 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
243 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
244 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
245
246 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
247 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
248
249 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
250 l4_proto = ipv6_hdr(skb)->nexthdr;
251 else
252 l4_proto = ip_hdr(skb)->protocol;
253
254 if (l4_proto == IPPROTO_UDP)
255 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
256
257 if (third_bd)
258 third_bd->data.bitfields |=
259 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
260 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
261 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
262
263 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
264 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
265}
266
267static int map_frag_to_bd(struct qede_tx_queue *txq,
268 skb_frag_t *frag, struct eth_tx_bd *bd)
269{
270 dma_addr_t mapping;
271
272 /* Map skb non-linear frag data for DMA */
273 mapping = skb_frag_dma_map(txq->dev, frag, 0,
274 skb_frag_size(frag), DMA_TO_DEVICE);
275 if (unlikely(dma_mapping_error(txq->dev, mapping)))
276 return -ENOMEM;
277
278 /* Setup the data pointer of the frag data */
279 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
280
281 return 0;
282}
283
284static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
285{
286 if (is_encap_pkt)
287 return (skb_inner_transport_header(skb) +
288 inner_tcp_hdrlen(skb) - skb->data);
289 else
290 return (skb_transport_header(skb) +
291 tcp_hdrlen(skb) - skb->data);
292}
293
294/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
295#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
296static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
297{
298 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
299
300 if (xmit_type & XMIT_LSO) {
301 int hlen;
302
303 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
304
305 /* linear payload would require its own BD */
306 if (skb_headlen(skb) > hlen)
307 allowed_frags--;
308 }
309
310 return (skb_shinfo(skb)->nr_frags > allowed_frags);
311}
312#endif
313
314static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
315{
316 /* wmb makes sure that the BDs data is updated before updating the
317 * producer, otherwise FW may read old data from the BDs.
318 */
319 wmb();
320 barrier();
321 writel(txq->tx_db.raw, txq->doorbell_addr);
322
323 /* mmiowb is needed to synchronize doorbell writes from more than one
324 * processor. It guarantees that the write arrives to the device before
325 * the queue lock is released and another start_xmit is called (possibly
326 * on another CPU). Without this barrier, the next doorbell can bypass
327 * this doorbell. This is applicable to IA64/Altix systems.
328 */
329 mmiowb();
330}
331
332static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
333 struct sw_rx_data *metadata, u16 padding, u16 length)
334{
335 struct qede_tx_queue *txq = fp->xdp_tx;
cdda926d 336 struct eth_tx_1st_bd *first_bd;
5a052d62 337 u16 idx = txq->sw_tx_prod;
48848a06 338 u16 val;
cdda926d
MY
339
340 if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
341 txq->stopped_cnt++;
342 return -ENOMEM;
343 }
344
345 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
346
347 memset(first_bd, 0, sizeof(*first_bd));
348 first_bd->data.bd_flags.bitfields =
349 BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
48848a06
MC
350
351 val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
352 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
353
354 first_bd->data.bitfields |= cpu_to_le16(val);
cdda926d
MY
355 first_bd->data.nbds = 1;
356
357 /* We can safely ignore the offset, as it's 0 for XDP */
358 BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
359
360 /* Synchronize the buffer back to device, as program [probably]
361 * has changed it.
362 */
363 dma_sync_single_for_device(&edev->pdev->dev,
364 metadata->mapping + padding,
365 length, PCI_DMA_TODEVICE);
366
89e1afc4
MY
367 txq->sw_tx_ring.xdp[idx].page = metadata->data;
368 txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
5a052d62 369 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
cdda926d
MY
370
371 /* Mark the fastpath for future XDP doorbell */
372 fp->xdp_xmit = 1;
373
374 return 0;
375}
376
377int qede_txq_has_work(struct qede_tx_queue *txq)
378{
379 u16 hw_bd_cons;
380
381 /* Tell compiler that consumer and producer can change */
382 barrier();
383 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
384 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
385 return 0;
386
387 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
388}
389
390static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
391{
89e1afc4 392 u16 hw_bd_cons, idx;
cdda926d
MY
393
394 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
395 barrier();
396
397 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
89e1afc4 398 qed_chain_consume(&txq->tx_pbl);
5a052d62 399 idx = txq->sw_tx_cons;
cdda926d 400
89e1afc4
MY
401 dma_unmap_page(&edev->pdev->dev,
402 txq->sw_tx_ring.xdp[idx].mapping,
403 PAGE_SIZE, DMA_BIDIRECTIONAL);
404 __free_page(txq->sw_tx_ring.xdp[idx].page);
cdda926d 405
5a052d62 406 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
cdda926d
MY
407 txq->xmit_pkts++;
408 }
409}
410
411static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
412{
413 struct netdev_queue *netdev_txq;
414 u16 hw_bd_cons;
415 unsigned int pkts_compl = 0, bytes_compl = 0;
416 int rc;
417
418 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
419
420 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
421 barrier();
422
423 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
424 int len = 0;
425
426 rc = qede_free_tx_pkt(edev, txq, &len);
427 if (rc) {
428 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
429 hw_bd_cons,
430 qed_chain_get_cons_idx(&txq->tx_pbl));
431 break;
432 }
433
434 bytes_compl += len;
435 pkts_compl++;
5a052d62 436 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
cdda926d
MY
437 txq->xmit_pkts++;
438 }
439
440 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
441
442 /* Need to make the tx_bd_cons update visible to start_xmit()
443 * before checking for netif_tx_queue_stopped(). Without the
444 * memory barrier, there is a small possibility that
445 * start_xmit() will miss it and cause the queue to be stopped
446 * forever.
447 * On the other hand we need an rmb() here to ensure the proper
448 * ordering of bit testing in the following
449 * netif_tx_queue_stopped(txq) call.
450 */
451 smp_mb();
452
453 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
454 /* Taking tx_lock is needed to prevent reenabling the queue
455 * while it's empty. This could have happen if rx_action() gets
456 * suspended in qede_tx_int() after the condition before
457 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
458 *
459 * stops the queue->sees fresh tx_bd_cons->releases the queue->
460 * sends some packets consuming the whole queue again->
461 * stops the queue
462 */
463
464 __netif_tx_lock(netdev_txq, smp_processor_id());
465
466 if ((netif_tx_queue_stopped(netdev_txq)) &&
467 (edev->state == QEDE_STATE_OPEN) &&
468 (qed_chain_get_elem_left(&txq->tx_pbl)
469 >= (MAX_SKB_FRAGS + 1))) {
470 netif_tx_wake_queue(netdev_txq);
471 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
472 "Wake queue was called\n");
473 }
474
475 __netif_tx_unlock(netdev_txq);
476 }
477
478 return 0;
479}
480
481bool qede_has_rx_work(struct qede_rx_queue *rxq)
482{
483 u16 hw_comp_cons, sw_comp_cons;
484
485 /* Tell compiler that status block fields can change */
486 barrier();
487
488 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
489 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
490
491 return hw_comp_cons != sw_comp_cons;
492}
493
494static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
495{
496 qed_chain_consume(&rxq->rx_bd_ring);
497 rxq->sw_rx_cons++;
498}
499
500/* This function reuses the buffer(from an offset) from
501 * consumer index to producer index in the bd ring
502 */
503static inline void qede_reuse_page(struct qede_rx_queue *rxq,
504 struct sw_rx_data *curr_cons)
505{
506 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
507 struct sw_rx_data *curr_prod;
508 dma_addr_t new_mapping;
509
510 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
511 *curr_prod = *curr_cons;
512
513 new_mapping = curr_prod->mapping + curr_prod->page_offset;
514
515 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
15ed8a47
MY
516 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
517 rxq->rx_headroom);
cdda926d
MY
518
519 rxq->sw_rx_prod++;
520 curr_cons->data = NULL;
521}
522
523/* In case of allocation failures reuse buffers
524 * from consumer index to produce buffers for firmware
525 */
526void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
527{
528 struct sw_rx_data *curr_cons;
529
530 for (; count > 0; count--) {
531 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
532 qede_reuse_page(rxq, curr_cons);
533 qede_rx_bd_ring_consume(rxq);
534 }
535}
536
537static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
538 struct sw_rx_data *curr_cons)
539{
540 /* Move to the next segment in the page */
541 curr_cons->page_offset += rxq->rx_buf_seg_size;
542
543 if (curr_cons->page_offset == PAGE_SIZE) {
e3eef7ee 544 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
cdda926d
MY
545 /* Since we failed to allocate new buffer
546 * current buffer can be used again.
547 */
548 curr_cons->page_offset -= rxq->rx_buf_seg_size;
549
550 return -ENOMEM;
551 }
552
553 dma_unmap_page(rxq->dev, curr_cons->mapping,
554 PAGE_SIZE, rxq->data_direction);
555 } else {
556 /* Increment refcount of the page as we don't want
557 * network stack to take the ownership of the page
558 * which can be recycled multiple times by the driver.
559 */
560 page_ref_inc(curr_cons->data);
561 qede_reuse_page(rxq, curr_cons);
562 }
563
564 return 0;
565}
566
567void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
568{
569 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
570 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
571 struct eth_rx_prod_data rx_prods = {0};
572
573 /* Update producers */
574 rx_prods.bd_prod = cpu_to_le16(bd_prod);
575 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
576
577 /* Make sure that the BD and SGE data is updated before updating the
578 * producers since FW might read the BD/SGE right after the producer
579 * is updated.
580 */
581 wmb();
582
583 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
584 (u32 *)&rx_prods);
585
586 /* mmiowb is needed to synchronize doorbell writes from more than one
587 * processor. It guarantees that the write arrives to the device before
588 * the napi lock is released and another qede_poll is called (possibly
589 * on another CPU). Without this barrier, the next doorbell can bypass
590 * this doorbell. This is applicable to IA64/Altix systems.
591 */
592 mmiowb();
593}
594
595static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
596{
597 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
598 enum rss_hash_type htype;
599 u32 hash = 0;
600
601 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
602 if (htype) {
603 hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
604 (htype == RSS_HASH_TYPE_IPV6)) ?
605 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
606 hash = le32_to_cpu(rss_hash);
607 }
608 skb_set_hash(skb, hash, hash_type);
609}
610
611static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
612{
613 skb_checksum_none_assert(skb);
614
615 if (csum_flag & QEDE_CSUM_UNNECESSARY)
616 skb->ip_summed = CHECKSUM_UNNECESSARY;
617
7ca547bd 618 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
cdda926d 619 skb->csum_level = 1;
7ca547bd
MC
620 skb->encapsulation = 1;
621 }
cdda926d
MY
622}
623
624static inline void qede_skb_receive(struct qede_dev *edev,
625 struct qede_fastpath *fp,
626 struct qede_rx_queue *rxq,
627 struct sk_buff *skb, u16 vlan_tag)
628{
629 if (vlan_tag)
630 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
631
632 napi_gro_receive(&fp->napi, skb);
cdda926d
MY
633}
634
635static void qede_set_gro_params(struct qede_dev *edev,
636 struct sk_buff *skb,
637 struct eth_fast_path_rx_tpa_start_cqe *cqe)
638{
639 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
640
641 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
642 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
643 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
644 else
645 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
646
647 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
648 cqe->header_len;
649}
650
651static int qede_fill_frag_skb(struct qede_dev *edev,
652 struct qede_rx_queue *rxq,
653 u8 tpa_agg_index, u16 len_on_bd)
654{
655 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
656 NUM_RX_BDS_MAX];
657 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
658 struct sk_buff *skb = tpa_info->skb;
659
660 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
661 goto out;
662
663 /* Add one frag and update the appropriate fields in the skb */
664 skb_fill_page_desc(skb, tpa_info->frag_id++,
665 current_bd->data, current_bd->page_offset,
666 len_on_bd);
667
668 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
669 /* Incr page ref count to reuse on allocation failure
670 * so that it doesn't get freed while freeing SKB.
671 */
672 page_ref_inc(current_bd->data);
673 goto out;
674 }
675
676 qed_chain_consume(&rxq->rx_bd_ring);
677 rxq->sw_rx_cons++;
678
679 skb->data_len += len_on_bd;
680 skb->truesize += rxq->rx_buf_seg_size;
681 skb->len += len_on_bd;
682
683 return 0;
684
685out:
686 tpa_info->state = QEDE_AGG_STATE_ERROR;
687 qede_recycle_rx_bd_ring(rxq, 1);
688
689 return -ENOMEM;
690}
691
692static bool qede_tunn_exist(u16 flag)
693{
694 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
695 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
696}
697
698static u8 qede_check_tunn_csum(u16 flag)
699{
700 u16 csum_flag = 0;
701 u8 tcsum = 0;
702
703 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
704 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
705 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
706 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
707
708 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
709 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
710 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
711 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
712 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
713 }
714
715 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
716 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
717 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
718 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
719
720 if (csum_flag & flag)
721 return QEDE_CSUM_ERROR;
722
723 return QEDE_CSUM_UNNECESSARY | tcsum;
724}
725
726static void qede_tpa_start(struct qede_dev *edev,
727 struct qede_rx_queue *rxq,
728 struct eth_fast_path_rx_tpa_start_cqe *cqe)
729{
730 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
731 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
732 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
733 struct sw_rx_data *replace_buf = &tpa_info->buffer;
734 dma_addr_t mapping = tpa_info->buffer_mapping;
735 struct sw_rx_data *sw_rx_data_cons;
736 struct sw_rx_data *sw_rx_data_prod;
737
738 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
739 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
740
741 /* Use pre-allocated replacement buffer - we can't release the agg.
742 * start until its over and we don't want to risk allocation failing
743 * here, so re-allocate when aggregation will be over.
744 */
745 sw_rx_data_prod->mapping = replace_buf->mapping;
746
747 sw_rx_data_prod->data = replace_buf->data;
748 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
749 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
750 sw_rx_data_prod->page_offset = replace_buf->page_offset;
751
752 rxq->sw_rx_prod++;
753
754 /* move partial skb from cons to pool (don't unmap yet)
755 * save mapping, incase we drop the packet later on.
756 */
757 tpa_info->buffer = *sw_rx_data_cons;
758 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
759 le32_to_cpu(rx_bd_cons->addr.lo));
760
761 tpa_info->buffer_mapping = mapping;
762 rxq->sw_rx_cons++;
763
764 /* set tpa state to start only if we are able to allocate skb
765 * for this aggregation, otherwise mark as error and aggregation will
766 * be dropped
767 */
768 tpa_info->skb = netdev_alloc_skb(edev->ndev,
769 le16_to_cpu(cqe->len_on_first_bd));
770 if (unlikely(!tpa_info->skb)) {
771 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
772 tpa_info->state = QEDE_AGG_STATE_ERROR;
773 goto cons_buf;
774 }
775
776 /* Start filling in the aggregation info */
777 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
778 tpa_info->frag_id = 0;
779 tpa_info->state = QEDE_AGG_STATE_START;
780
781 /* Store some information from first CQE */
782 tpa_info->start_cqe_placement_offset = cqe->placement_offset;
783 tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
784 if ((le16_to_cpu(cqe->pars_flags.flags) >>
785 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
786 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
787 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
788 else
789 tpa_info->vlan_tag = 0;
790
791 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
792
793 /* This is needed in order to enable forwarding support */
794 qede_set_gro_params(edev, tpa_info->skb, cqe);
795
796cons_buf: /* We still need to handle bd_len_list to consume buffers */
797 if (likely(cqe->ext_bd_len_list[0]))
798 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
799 le16_to_cpu(cqe->ext_bd_len_list[0]));
800
801 if (unlikely(cqe->ext_bd_len_list[1])) {
802 DP_ERR(edev,
803 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
804 tpa_info->state = QEDE_AGG_STATE_ERROR;
805 }
806}
807
808#ifdef CONFIG_INET
809static void qede_gro_ip_csum(struct sk_buff *skb)
810{
811 const struct iphdr *iph = ip_hdr(skb);
812 struct tcphdr *th;
813
814 skb_set_transport_header(skb, sizeof(struct iphdr));
815 th = tcp_hdr(skb);
816
817 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
818 iph->saddr, iph->daddr, 0);
819
820 tcp_gro_complete(skb);
821}
822
823static void qede_gro_ipv6_csum(struct sk_buff *skb)
824{
825 struct ipv6hdr *iph = ipv6_hdr(skb);
826 struct tcphdr *th;
827
828 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
829 th = tcp_hdr(skb);
830
831 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
832 &iph->saddr, &iph->daddr, 0);
833 tcp_gro_complete(skb);
834}
835#endif
836
837static void qede_gro_receive(struct qede_dev *edev,
838 struct qede_fastpath *fp,
839 struct sk_buff *skb,
840 u16 vlan_tag)
841{
842 /* FW can send a single MTU sized packet from gro flow
843 * due to aggregation timeout/last segment etc. which
844 * is not expected to be a gro packet. If a skb has zero
845 * frags then simply push it in the stack as non gso skb.
846 */
847 if (unlikely(!skb->data_len)) {
848 skb_shinfo(skb)->gso_type = 0;
849 skb_shinfo(skb)->gso_size = 0;
850 goto send_skb;
851 }
852
853#ifdef CONFIG_INET
854 if (skb_shinfo(skb)->gso_size) {
855 skb_reset_network_header(skb);
856
857 switch (skb->protocol) {
858 case htons(ETH_P_IP):
859 qede_gro_ip_csum(skb);
860 break;
861 case htons(ETH_P_IPV6):
862 qede_gro_ipv6_csum(skb);
863 break;
864 default:
865 DP_ERR(edev,
866 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
867 ntohs(skb->protocol));
868 }
869 }
870#endif
871
872send_skb:
873 skb_record_rx_queue(skb, fp->rxq->rxq_id);
874 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
875}
876
877static inline void qede_tpa_cont(struct qede_dev *edev,
878 struct qede_rx_queue *rxq,
879 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
880{
881 int i;
882
883 for (i = 0; cqe->len_list[i]; i++)
884 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
885 le16_to_cpu(cqe->len_list[i]));
886
887 if (unlikely(i > 1))
888 DP_ERR(edev,
889 "Strange - TPA cont with more than a single len_list entry\n");
890}
891
10a0176e
MY
892static int qede_tpa_end(struct qede_dev *edev,
893 struct qede_fastpath *fp,
894 struct eth_fast_path_rx_tpa_end_cqe *cqe)
cdda926d
MY
895{
896 struct qede_rx_queue *rxq = fp->rxq;
897 struct qede_agg_info *tpa_info;
898 struct sk_buff *skb;
899 int i;
900
901 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
902 skb = tpa_info->skb;
903
904 for (i = 0; cqe->len_list[i]; i++)
905 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
906 le16_to_cpu(cqe->len_list[i]));
907 if (unlikely(i > 1))
908 DP_ERR(edev,
909 "Strange - TPA emd with more than a single len_list entry\n");
910
911 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
912 goto err;
913
914 /* Sanity */
915 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
916 DP_ERR(edev,
917 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
918 cqe->num_of_bds, tpa_info->frag_id);
919 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
920 DP_ERR(edev,
921 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
922 le16_to_cpu(cqe->total_packet_len), skb->len);
923
924 memcpy(skb->data,
925 page_address(tpa_info->buffer.data) +
926 tpa_info->start_cqe_placement_offset +
927 tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
928
929 /* Finalize the SKB */
930 skb->protocol = eth_type_trans(skb, edev->ndev);
931 skb->ip_summed = CHECKSUM_UNNECESSARY;
932
933 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
934 * to skb_shinfo(skb)->gso_segs
935 */
936 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
937
938 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
939
940 tpa_info->state = QEDE_AGG_STATE_NONE;
941
10a0176e 942 return 1;
cdda926d
MY
943err:
944 tpa_info->state = QEDE_AGG_STATE_NONE;
945 dev_kfree_skb_any(tpa_info->skb);
946 tpa_info->skb = NULL;
10a0176e 947 return 0;
cdda926d
MY
948}
949
950static u8 qede_check_notunn_csum(u16 flag)
951{
952 u16 csum_flag = 0;
953 u8 csum = 0;
954
955 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
956 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
957 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
958 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
959 csum = QEDE_CSUM_UNNECESSARY;
960 }
961
962 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
963 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
964
965 if (csum_flag & flag)
966 return QEDE_CSUM_ERROR;
967
968 return csum;
969}
970
971static u8 qede_check_csum(u16 flag)
972{
973 if (!qede_tunn_exist(flag))
974 return qede_check_notunn_csum(flag);
975 else
976 return qede_check_tunn_csum(flag);
977}
978
979static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
980 u16 flag)
981{
982 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
983
984 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
985 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
986 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
987 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
988 return true;
989
990 return false;
991}
992
993/* Return true iff packet is to be passed to stack */
994static bool qede_rx_xdp(struct qede_dev *edev,
995 struct qede_fastpath *fp,
996 struct qede_rx_queue *rxq,
997 struct bpf_prog *prog,
998 struct sw_rx_data *bd,
15ed8a47 999 struct eth_fast_path_rx_reg_cqe *cqe,
059eeb07 1000 u16 *data_offset, u16 *len)
cdda926d 1001{
cdda926d
MY
1002 struct xdp_buff xdp;
1003 enum xdp_action act;
1004
059eeb07
MY
1005 xdp.data_hard_start = page_address(bd->data);
1006 xdp.data = xdp.data_hard_start + *data_offset;
1007 xdp.data_end = xdp.data + *len;
cdda926d
MY
1008
1009 /* Queues always have a full reset currently, so for the time
1010 * being until there's atomic program replace just mark read
1011 * side for map helpers.
1012 */
1013 rcu_read_lock();
1014 act = bpf_prog_run_xdp(prog, &xdp);
1015 rcu_read_unlock();
1016
059eeb07
MY
1017 /* Recalculate, as XDP might have changed the headers */
1018 *data_offset = xdp.data - xdp.data_hard_start;
1019 *len = xdp.data_end - xdp.data;
1020
cdda926d
MY
1021 if (act == XDP_PASS)
1022 return true;
1023
1024 /* Count number of packets not to be passed to stack */
1025 rxq->xdp_no_pass++;
1026
1027 switch (act) {
1028 case XDP_TX:
1029 /* We need the replacement buffer before transmit. */
e3eef7ee 1030 if (qede_alloc_rx_buffer(rxq, true)) {
cdda926d 1031 qede_recycle_rx_bd_ring(rxq, 1);
a67edbf4 1032 trace_xdp_exception(edev->ndev, prog, act);
cdda926d
MY
1033 return false;
1034 }
1035
1036 /* Now if there's a transmission problem, we'd still have to
1037 * throw current buffer, as replacement was already allocated.
1038 */
059eeb07 1039 if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
cdda926d
MY
1040 dma_unmap_page(rxq->dev, bd->mapping,
1041 PAGE_SIZE, DMA_BIDIRECTIONAL);
1042 __free_page(bd->data);
a67edbf4 1043 trace_xdp_exception(edev->ndev, prog, act);
cdda926d
MY
1044 }
1045
1046 /* Regardless, we've consumed an Rx BD */
1047 qede_rx_bd_ring_consume(rxq);
1048 return false;
1049
1050 default:
1051 bpf_warn_invalid_xdp_action(act);
1052 case XDP_ABORTED:
a67edbf4 1053 trace_xdp_exception(edev->ndev, prog, act);
cdda926d
MY
1054 case XDP_DROP:
1055 qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1056 }
1057
1058 return false;
1059}
1060
1061static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
1062 struct qede_rx_queue *rxq,
1063 struct sw_rx_data *bd, u16 len,
1064 u16 pad)
1065{
15ed8a47 1066 unsigned int offset = bd->page_offset + pad;
cdda926d
MY
1067 struct skb_frag_struct *frag;
1068 struct page *page = bd->data;
1069 unsigned int pull_len;
1070 struct sk_buff *skb;
1071 unsigned char *va;
1072
1073 /* Allocate a new SKB with a sufficient large header len */
1074 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1075 if (unlikely(!skb))
1076 return NULL;
1077
1078 /* Copy data into SKB - if it's small, we can simply copy it and
1079 * re-use the already allcoated & mapped memory.
1080 */
1081 if (len + pad <= edev->rx_copybreak) {
59ae1d12 1082 skb_put_data(skb, page_address(page) + offset, len);
cdda926d
MY
1083 qede_reuse_page(rxq, bd);
1084 goto out;
1085 }
1086
1087 frag = &skb_shinfo(skb)->frags[0];
1088
1089 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
15ed8a47 1090 page, offset, len, rxq->rx_buf_seg_size);
cdda926d
MY
1091
1092 va = skb_frag_address(frag);
1093 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1094
1095 /* Align the pull_len to optimize memcpy */
1096 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1097
1098 /* Correct the skb & frag sizes offset after the pull */
1099 skb_frag_size_sub(frag, pull_len);
1100 frag->page_offset += pull_len;
1101 skb->data_len -= pull_len;
1102 skb->tail += pull_len;
1103
1104 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
1105 /* Incr page ref count to reuse on allocation failure so
1106 * that it doesn't get freed while freeing SKB [as its
1107 * already mapped there].
1108 */
1109 page_ref_inc(page);
1110 dev_kfree_skb_any(skb);
1111 return NULL;
1112 }
1113
1114out:
1115 /* We've consumed the first BD and prepared an SKB */
1116 qede_rx_bd_ring_consume(rxq);
1117 return skb;
1118}
1119
1120static int qede_rx_build_jumbo(struct qede_dev *edev,
1121 struct qede_rx_queue *rxq,
1122 struct sk_buff *skb,
1123 struct eth_fast_path_rx_reg_cqe *cqe,
1124 u16 first_bd_len)
1125{
1126 u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1127 struct sw_rx_data *bd;
1128 u16 bd_cons_idx;
1129 u8 num_frags;
1130
1131 pkt_len -= first_bd_len;
1132
1133 /* We've already used one BD for the SKB. Now take care of the rest */
1134 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1135 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1136 pkt_len;
1137
1138 if (unlikely(!cur_size)) {
1139 DP_ERR(edev,
1140 "Still got %d BDs for mapping jumbo, but length became 0\n",
1141 num_frags);
1142 goto out;
1143 }
1144
1145 /* We need a replacement buffer for each BD */
e3eef7ee 1146 if (unlikely(qede_alloc_rx_buffer(rxq, true)))
cdda926d
MY
1147 goto out;
1148
1149 /* Now that we've allocated the replacement buffer,
1150 * we can safely consume the next BD and map it to the SKB.
1151 */
1152 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1153 bd = &rxq->sw_rx_ring[bd_cons_idx];
1154 qede_rx_bd_ring_consume(rxq);
1155
1156 dma_unmap_page(rxq->dev, bd->mapping,
1157 PAGE_SIZE, DMA_FROM_DEVICE);
1158
1159 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1160 bd->data, 0, cur_size);
1161
1162 skb->truesize += PAGE_SIZE;
1163 skb->data_len += cur_size;
1164 skb->len += cur_size;
1165 pkt_len -= cur_size;
1166 }
1167
1168 if (unlikely(pkt_len))
1169 DP_ERR(edev,
1170 "Mapped all BDs of jumbo, but still have %d bytes\n",
1171 pkt_len);
1172
1173out:
1174 return num_frags;
1175}
1176
1177static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1178 struct qede_fastpath *fp,
1179 struct qede_rx_queue *rxq,
1180 union eth_rx_cqe *cqe,
1181 enum eth_rx_cqe_type type)
1182{
1183 switch (type) {
1184 case ETH_RX_CQE_TYPE_TPA_START:
1185 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1186 return 0;
1187 case ETH_RX_CQE_TYPE_TPA_CONT:
1188 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1189 return 0;
1190 case ETH_RX_CQE_TYPE_TPA_END:
10a0176e 1191 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
cdda926d
MY
1192 default:
1193 return 0;
1194 }
1195}
1196
1197static int qede_rx_process_cqe(struct qede_dev *edev,
1198 struct qede_fastpath *fp,
1199 struct qede_rx_queue *rxq)
1200{
1201 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1202 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1203 u16 len, pad, bd_cons_idx, parse_flag;
1204 enum eth_rx_cqe_type cqe_type;
1205 union eth_rx_cqe *cqe;
1206 struct sw_rx_data *bd;
1207 struct sk_buff *skb;
1208 __le16 flags;
1209 u8 csum_flag;
1210
1211 /* Get the CQE from the completion ring */
1212 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1213 cqe_type = cqe->fast_path_regular.type;
1214
1215 /* Process an unlikely slowpath event */
1216 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1217 struct eth_slow_path_rx_cqe *sp_cqe;
1218
1219 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1220 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1221 return 0;
1222 }
1223
1224 /* Handle TPA cqes */
1225 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1226 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1227
1228 /* Get the data from the SW ring; Consume it only after it's evident
1229 * we wouldn't recycle it.
1230 */
1231 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1232 bd = &rxq->sw_rx_ring[bd_cons_idx];
1233
1234 fp_cqe = &cqe->fast_path_regular;
1235 len = le16_to_cpu(fp_cqe->len_on_first_bd);
15ed8a47 1236 pad = fp_cqe->placement_offset + rxq->rx_headroom;
cdda926d
MY
1237
1238 /* Run eBPF program if one is attached */
1239 if (xdp_prog)
059eeb07
MY
1240 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1241 &pad, &len))
10a0176e 1242 return 0;
cdda926d
MY
1243
1244 /* If this is an error packet then drop it */
1245 flags = cqe->fast_path_regular.pars_flags.flags;
1246 parse_flag = le16_to_cpu(flags);
1247
1248 csum_flag = qede_check_csum(parse_flag);
1249 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1250 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) {
1251 rxq->rx_ip_frags++;
1252 } else {
1253 DP_NOTICE(edev,
1254 "CQE has error, flags = %x, dropping incoming packet\n",
1255 parse_flag);
1256 rxq->rx_hw_errors++;
1257 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1258 return 0;
1259 }
1260 }
1261
1262 /* Basic validation passed; Need to prepare an SKB. This would also
1263 * guarantee to finally consume the first BD upon success.
1264 */
1265 skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
1266 if (!skb) {
1267 rxq->rx_alloc_errors++;
1268 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1269 return 0;
1270 }
1271
1272 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1273 * by a single cqe.
1274 */
1275 if (fp_cqe->bd_num > 1) {
1276 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1277 fp_cqe, len);
1278
1279 if (unlikely(unmapped_frags > 0)) {
1280 qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1281 dev_kfree_skb_any(skb);
1282 return 0;
1283 }
1284 }
1285
1286 /* The SKB contains all the data. Now prepare meta-magic */
1287 skb->protocol = eth_type_trans(skb, edev->ndev);
1288 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1289 qede_set_skb_csum(skb, csum_flag);
1290 skb_record_rx_queue(skb, rxq->rxq_id);
4c55215c 1291 qede_ptp_record_rx_ts(edev, cqe, skb);
cdda926d
MY
1292
1293 /* SKB is prepared - pass it to stack */
1294 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1295
1296 return 1;
1297}
1298
1299static int qede_rx_int(struct qede_fastpath *fp, int budget)
1300{
1301 struct qede_rx_queue *rxq = fp->rxq;
1302 struct qede_dev *edev = fp->edev;
10a0176e 1303 int work_done = 0, rcv_pkts = 0;
cdda926d 1304 u16 hw_comp_cons, sw_comp_cons;
cdda926d
MY
1305
1306 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1307 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1308
1309 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1310 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1311 * read before it is written by FW, then FW writes CQE and SB, and then
1312 * the CPU reads the hw_comp_cons, it will use an old CQE.
1313 */
1314 rmb();
1315
1316 /* Loop to complete all indicated BDs */
1317 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
10a0176e 1318 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
cdda926d
MY
1319 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1320 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1321 work_done++;
1322 }
1323
10a0176e
MY
1324 rxq->rcv_pkts += rcv_pkts;
1325
e3eef7ee
MY
1326 /* Allocate replacement buffers */
1327 while (rxq->num_rx_buffers - rxq->filled_buffers)
1328 if (qede_alloc_rx_buffer(rxq, false))
1329 break;
1330
cdda926d
MY
1331 /* Update producers */
1332 qede_update_rx_prod(edev, rxq);
1333
1334 return work_done;
1335}
1336
1337static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1338{
1339 qed_sb_update_sb_idx(fp->sb_info);
1340
1341 /* *_has_*_work() reads the status block, thus we need to ensure that
1342 * status block indices have been actually read (qed_sb_update_sb_idx)
1343 * prior to this check (*_has_*_work) so that we won't write the
1344 * "newer" value of the status block to HW (if there was a DMA right
1345 * after qede_has_rx_work and if there is no rmb, the memory reading
1346 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1347 * In this case there will never be another interrupt until there is
1348 * another update of the status block, while there is still unhandled
1349 * work.
1350 */
1351 rmb();
1352
1353 if (likely(fp->type & QEDE_FASTPATH_RX))
1354 if (qede_has_rx_work(fp->rxq))
1355 return true;
1356
1357 if (fp->type & QEDE_FASTPATH_XDP)
1358 if (qede_txq_has_work(fp->xdp_tx))
1359 return true;
1360
1361 if (likely(fp->type & QEDE_FASTPATH_TX))
1362 if (qede_txq_has_work(fp->txq))
1363 return true;
1364
1365 return false;
1366}
1367
1368/*********************
1369 * NDO & API related *
1370 *********************/
1371int qede_poll(struct napi_struct *napi, int budget)
1372{
1373 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1374 napi);
1375 struct qede_dev *edev = fp->edev;
1376 int rx_work_done = 0;
1377
1378 if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
1379 qede_tx_int(edev, fp->txq);
1380
1381 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1382 qede_xdp_tx_int(edev, fp->xdp_tx);
1383
1384 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1385 qede_has_rx_work(fp->rxq)) ?
1386 qede_rx_int(fp, budget) : 0;
1387 if (rx_work_done < budget) {
1388 if (!qede_poll_is_more_work(fp)) {
6ad20165 1389 napi_complete_done(napi, rx_work_done);
cdda926d
MY
1390
1391 /* Update and reenable interrupts */
1392 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1393 } else {
1394 rx_work_done = budget;
1395 }
1396 }
1397
1398 if (fp->xdp_xmit) {
1399 u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1400
1401 fp->xdp_xmit = 0;
1402 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1403 qede_update_tx_producer(fp->xdp_tx);
1404 }
1405
1406 return rx_work_done;
1407}
1408
1409irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1410{
1411 struct qede_fastpath *fp = fp_cookie;
1412
1413 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1414
1415 napi_schedule_irqoff(&fp->napi);
1416 return IRQ_HANDLED;
1417}
1418
1419/* Main transmit function */
1420netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1421{
1422 struct qede_dev *edev = netdev_priv(ndev);
1423 struct netdev_queue *netdev_txq;
1424 struct qede_tx_queue *txq;
1425 struct eth_tx_1st_bd *first_bd;
1426 struct eth_tx_2nd_bd *second_bd = NULL;
1427 struct eth_tx_3rd_bd *third_bd = NULL;
1428 struct eth_tx_bd *tx_data_bd = NULL;
48848a06 1429 u16 txq_index, val = 0;
cdda926d
MY
1430 u8 nbd = 0;
1431 dma_addr_t mapping;
1432 int rc, frag_idx = 0, ipv6_ext = 0;
1433 u8 xmit_type;
1434 u16 idx;
1435 u16 hlen;
1436 bool data_split = false;
1437
1438 /* Get tx-queue context and netdev index */
1439 txq_index = skb_get_queue_mapping(skb);
1440 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
1441 txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
1442 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1443
1444 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1445
1446 xmit_type = qede_xmit_type(skb, &ipv6_ext);
1447
1448#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1449 if (qede_pkt_req_lin(skb, xmit_type)) {
1450 if (skb_linearize(skb)) {
1451 DP_NOTICE(edev,
1452 "SKB linearization failed - silently dropping this SKB\n");
1453 dev_kfree_skb_any(skb);
1454 return NETDEV_TX_OK;
1455 }
1456 }
1457#endif
1458
1459 /* Fill the entry in the SW ring and the BDs in the FW ring */
5a052d62 1460 idx = txq->sw_tx_prod;
cdda926d
MY
1461 txq->sw_tx_ring.skbs[idx].skb = skb;
1462 first_bd = (struct eth_tx_1st_bd *)
1463 qed_chain_produce(&txq->tx_pbl);
1464 memset(first_bd, 0, sizeof(*first_bd));
1465 first_bd->data.bd_flags.bitfields =
1466 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1467
4c55215c
SRK
1468 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1469 qede_ptp_tx_ts(edev, skb);
1470
cdda926d
MY
1471 /* Map skb linear data for DMA and set in the first BD */
1472 mapping = dma_map_single(txq->dev, skb->data,
1473 skb_headlen(skb), DMA_TO_DEVICE);
1474 if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1475 DP_NOTICE(edev, "SKB mapping failed\n");
1476 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1477 qede_update_tx_producer(txq);
1478 return NETDEV_TX_OK;
1479 }
1480 nbd++;
1481 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1482
1483 /* In case there is IPv6 with extension headers or LSO we need 2nd and
1484 * 3rd BDs.
1485 */
1486 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1487 second_bd = (struct eth_tx_2nd_bd *)
1488 qed_chain_produce(&txq->tx_pbl);
1489 memset(second_bd, 0, sizeof(*second_bd));
1490
1491 nbd++;
1492 third_bd = (struct eth_tx_3rd_bd *)
1493 qed_chain_produce(&txq->tx_pbl);
1494 memset(third_bd, 0, sizeof(*third_bd));
1495
1496 nbd++;
1497 /* We need to fill in additional data in second_bd... */
1498 tx_data_bd = (struct eth_tx_bd *)second_bd;
1499 }
1500
1501 if (skb_vlan_tag_present(skb)) {
1502 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1503 first_bd->data.bd_flags.bitfields |=
1504 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1505 }
1506
1507 /* Fill the parsing flags & params according to the requested offload */
1508 if (xmit_type & XMIT_L4_CSUM) {
1509 /* We don't re-calculate IP checksum as it is already done by
1510 * the upper stack
1511 */
1512 first_bd->data.bd_flags.bitfields |=
1513 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1514
1515 if (xmit_type & XMIT_ENC) {
1516 first_bd->data.bd_flags.bitfields |=
1517 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
48848a06
MC
1518
1519 val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
cdda926d
MY
1520 }
1521
1522 /* Legacy FW had flipped behavior in regard to this bit -
1523 * I.e., needed to set to prevent FW from touching encapsulated
1524 * packets when it didn't need to.
1525 */
1526 if (unlikely(txq->is_legacy))
48848a06 1527 val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
cdda926d
MY
1528
1529 /* If the packet is IPv6 with extension header, indicate that
1530 * to FW and pass few params, since the device cracker doesn't
1531 * support parsing IPv6 with extension header/s.
1532 */
1533 if (unlikely(ipv6_ext))
1534 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1535 }
1536
1537 if (xmit_type & XMIT_LSO) {
1538 first_bd->data.bd_flags.bitfields |=
1539 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1540 third_bd->data.lso_mss =
1541 cpu_to_le16(skb_shinfo(skb)->gso_size);
1542
1543 if (unlikely(xmit_type & XMIT_ENC)) {
1544 first_bd->data.bd_flags.bitfields |=
1545 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1546
1547 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1548 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1549
1550 first_bd->data.bd_flags.bitfields |= 1 << tmp;
1551 }
1552 hlen = qede_get_skb_hlen(skb, true);
1553 } else {
1554 first_bd->data.bd_flags.bitfields |=
1555 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1556 hlen = qede_get_skb_hlen(skb, false);
1557 }
1558
1559 /* @@@TBD - if will not be removed need to check */
1560 third_bd->data.bitfields |=
1561 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1562
1563 /* Make life easier for FW guys who can't deal with header and
1564 * data on same BD. If we need to split, use the second bd...
1565 */
1566 if (unlikely(skb_headlen(skb) > hlen)) {
1567 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1568 "TSO split header size is %d (%x:%x)\n",
1569 first_bd->nbytes, first_bd->addr.hi,
1570 first_bd->addr.lo);
1571
1572 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1573 le32_to_cpu(first_bd->addr.lo)) +
1574 hlen;
1575
1576 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1577 le16_to_cpu(first_bd->nbytes) -
1578 hlen);
1579
1580 /* this marks the BD as one that has no
1581 * individual mapping
1582 */
1583 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1584
1585 first_bd->nbytes = cpu_to_le16(hlen);
1586
1587 tx_data_bd = (struct eth_tx_bd *)third_bd;
1588 data_split = true;
1589 }
1590 } else {
48848a06
MC
1591 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1592 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
cdda926d
MY
1593 }
1594
48848a06
MC
1595 first_bd->data.bitfields = cpu_to_le16(val);
1596
cdda926d
MY
1597 /* Handle fragmented skb */
1598 /* special handle for frags inside 2nd and 3rd bds.. */
1599 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1600 rc = map_frag_to_bd(txq,
1601 &skb_shinfo(skb)->frags[frag_idx],
1602 tx_data_bd);
1603 if (rc) {
1604 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1605 qede_update_tx_producer(txq);
1606 return NETDEV_TX_OK;
1607 }
1608
1609 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1610 tx_data_bd = (struct eth_tx_bd *)third_bd;
1611 else
1612 tx_data_bd = NULL;
1613
1614 frag_idx++;
1615 }
1616
1617 /* map last frags into 4th, 5th .... */
1618 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1619 tx_data_bd = (struct eth_tx_bd *)
1620 qed_chain_produce(&txq->tx_pbl);
1621
1622 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1623
1624 rc = map_frag_to_bd(txq,
1625 &skb_shinfo(skb)->frags[frag_idx],
1626 tx_data_bd);
1627 if (rc) {
1628 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1629 qede_update_tx_producer(txq);
1630 return NETDEV_TX_OK;
1631 }
1632 }
1633
1634 /* update the first BD with the actual num BDs */
1635 first_bd->data.nbds = nbd;
1636
1637 netdev_tx_sent_queue(netdev_txq, skb->len);
1638
1639 skb_tx_timestamp(skb);
1640
1641 /* Advance packet producer only before sending the packet since mapping
1642 * of pages may fail.
1643 */
5a052d62 1644 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
cdda926d
MY
1645
1646 /* 'next page' entries are counted in the producer value */
1647 txq->tx_db.data.bd_prod =
1648 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1649
1650 if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
1651 qede_update_tx_producer(txq);
1652
1653 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1654 < (MAX_SKB_FRAGS + 1))) {
1655 if (skb->xmit_more)
1656 qede_update_tx_producer(txq);
1657
1658 netif_tx_stop_queue(netdev_txq);
1659 txq->stopped_cnt++;
1660 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1661 "Stop queue was called\n");
1662 /* paired memory barrier is in qede_tx_int(), we have to keep
1663 * ordering of set_bit() in netif_tx_stop_queue() and read of
1664 * fp->bd_tx_cons
1665 */
1666 smp_mb();
1667
1668 if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1669 (MAX_SKB_FRAGS + 1)) &&
1670 (edev->state == QEDE_STATE_OPEN)) {
1671 netif_tx_wake_queue(netdev_txq);
1672 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1673 "Wake queue was called\n");
1674 }
1675 }
1676
1677 return NETDEV_TX_OK;
1678}
1679
1680/* 8B udp header + 8B base tunnel header + 32B option length */
1681#define QEDE_MAX_TUN_HDR_LEN 48
1682
1683netdev_features_t qede_features_check(struct sk_buff *skb,
1684 struct net_device *dev,
1685 netdev_features_t features)
1686{
1687 if (skb->encapsulation) {
1688 u8 l4_proto = 0;
1689
1690 switch (vlan_get_protocol(skb)) {
1691 case htons(ETH_P_IP):
1692 l4_proto = ip_hdr(skb)->protocol;
1693 break;
1694 case htons(ETH_P_IPV6):
1695 l4_proto = ipv6_hdr(skb)->nexthdr;
1696 break;
1697 default:
1698 return features;
1699 }
1700
1701 /* Disable offloads for geneve tunnels, as HW can't parse
369bfd4e
CM
1702 * the geneve header which has option length greater than 32b
1703 * and disable offloads for the ports which are not offloaded.
cdda926d 1704 */
369bfd4e
CM
1705 if (l4_proto == IPPROTO_UDP) {
1706 struct qede_dev *edev = netdev_priv(dev);
1707 u16 hdrlen, vxln_port, gnv_port;
1708
1709 hdrlen = QEDE_MAX_TUN_HDR_LEN;
1710 vxln_port = edev->vxlan_dst_port;
1711 gnv_port = edev->geneve_dst_port;
1712
1713 if ((skb_inner_mac_header(skb) -
1714 skb_transport_header(skb)) > hdrlen ||
1715 (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1716 ntohs(udp_hdr(skb)->dest) != gnv_port))
1717 return features & ~(NETIF_F_CSUM_MASK |
1718 NETIF_F_GSO_MASK);
1719 }
cdda926d
MY
1720 }
1721
1722 return features;
1723}