Merge tag 'mfd-for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-block.git] / drivers / net / ethernet / natsemi / natsemi.c
CommitLineData
1da177e4
LT
1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2/*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
b27a16b7 6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
1da177e4
LT
7
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
15
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
20
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
03a8c661 23 [link no longer provides useful info -jgarzik]
1da177e4
LT
24
25
1da177e4
LT
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
1da177e4
LT
28*/
29
1da177e4
LT
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/timer.h>
34#include <linux/errno.h>
35#include <linux/ioport.h>
36#include <linux/slab.h>
37#include <linux/interrupt.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/init.h>
43#include <linux/spinlock.h>
44#include <linux/ethtool.h>
45#include <linux/delay.h>
46#include <linux/rtnetlink.h>
47#include <linux/mii.h>
48#include <linux/crc32.h>
49#include <linux/bitops.h>
b27a16b7 50#include <linux/prefetch.h>
1da177e4
LT
51#include <asm/processor.h> /* Processor type for cache alignment. */
52#include <asm/io.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55
56#define DRV_NAME "natsemi"
d5b20697
AG
57#define DRV_VERSION "2.1"
58#define DRV_RELDATE "Sept 11, 2006"
1da177e4
LT
59
60#define RX_OFFSET 2
61
62/* Updated to recommendations in pci-skeleton v2.03. */
63
64/* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
66
67#define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72static int debug = -1;
73
1da177e4
LT
74static int mtu;
75
76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
f71e1309 78static const int multicast_filter_limit = 100;
1da177e4
LT
79
80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82static int rx_copybreak;
83
1a147809
MB
84static int dspcfg_workaround = 1;
85
1da177e4
LT
86/* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
88 interoperability.
89 The media type is usually passed in 'options[]'.
90*/
91#define MAX_UNITS 8 /* More are supported, limit only on options */
92static int options[MAX_UNITS];
93static int full_duplex[MAX_UNITS];
94
95/* Operational parameters that are set at compile time. */
96
97/* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102#define TX_RING_SIZE 16
103#define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104#define RX_RING_SIZE 32
105
106/* Operational parameters that usually are not changed. */
107/* Time in jiffies before concluding the transmitter is hung. */
108#define TX_TIMEOUT (2*HZ)
109
110#define NATSEMI_HW_TIMEOUT 400
f2cade13 111#define NATSEMI_TIMER_FREQ 5*HZ
1da177e4
LT
112#define NATSEMI_PG0_NREGS 64
113#define NATSEMI_RFDR_NREGS 8
114#define NATSEMI_PG1_NREGS 4
115#define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117#define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118#define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
1da177e4
LT
119
120/* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
123 */
124#define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125#define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126#define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127#define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
128
129/* These identify the driver base version and may not be removed. */
6980cbe4 130static const char version[] =
1da177e4
LT
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
ad361c98
JP
133 " originally by Donald Becker <becker@scyld.com>\n"
134 " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
1da177e4
LT
135
136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138MODULE_LICENSE("GPL");
139
1da177e4
LT
140module_param(mtu, int, 0);
141module_param(debug, int, 0);
142module_param(rx_copybreak, int, 0);
b1f524e3 143module_param(dspcfg_workaround, int, 0);
1da177e4
LT
144module_param_array(options, int, NULL, 0);
145module_param_array(full_duplex, int, NULL, 0);
1da177e4
LT
146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147MODULE_PARM_DESC(debug, "DP8381x default debug level");
6aa20a22 148MODULE_PARM_DESC(rx_copybreak,
1da177e4 149 "DP8381x copy breakpoint for copy-only-tiny-frames");
1a147809 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
6aa20a22 151MODULE_PARM_DESC(options,
1da177e4
LT
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155/*
156 Theory of Operation
157
158I. Board Compatibility
159
160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161It also works with other chips in in the DP83810 series.
162
163II. Board-specific settings
164
165This driver requires the PCI interrupt line to be valid.
166It honors the EEPROM-set values.
167
168III. Driver operation
169
170IIIa. Ring buffers
171
172This driver uses two statically allocated fixed-size descriptor lists
173formed into rings by a branch from the final descriptor to the beginning of
174the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175The NatSemi design uses a 'next descriptor' pointer that the driver forms
176into a list.
177
178IIIb/c. Transmit/Receive Structure
179
180This driver uses a zero-copy receive and transmit scheme.
181The driver allocates full frame size skbuffs for the Rx ring buffers at
182open() time and passes the skb->data field to the chip as receive data
183buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184a fresh skbuff is allocated and the frame is copied to the new skbuff.
185When the incoming frame is larger, the skbuff is passed directly up the
186protocol stack. Buffers consumed this way are replaced by newly allocated
187skbuffs in a later phase of receives.
188
189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190using a full-sized skbuff for small frames vs. the copying costs of larger
191frames. New boards are typically used in generously configured machines
192and the underfilled buffers have negligible impact compared to the benefit of
193a single allocation size, so the default value of zero results in never
194copying packets. When copying is done, the cost is usually mitigated by using
195a combined copy/checksum routine. Copying also preloads the cache, which is
196most useful with small frames.
197
198A subtle aspect of the operation is that unaligned buffers are not permitted
199by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200longword aligned for further processing. On copies frames are put into the
201skbuff at an offset of "+2", 16-byte aligning the IP header.
202
203IIId. Synchronization
204
205Most operations are synchronized on the np->lock irq spinlock, except the
25985edc 206receive and transmit paths which are synchronised using a combination of
6344f052 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
1da177e4
LT
208
209IVb. References
210
211http://www.scyld.com/expert/100mbps.html
212http://www.scyld.com/expert/NWay.html
213Datasheet is available from:
214http://www.national.com/pf/DP/DP83815.html
215
216IVc. Errata
217
218None characterised.
219*/
220
221
222
1da177e4
LT
223/*
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227 */
228#define PHYID_AM79C874 0x0022561b
229
a2b524b2
JG
230enum {
231 MII_MCTRL = 0x15, /* mode control register */
232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
234};
1da177e4 235
6aab4447
MB
236enum {
237 NATSEMI_FLAG_IGNORE_PHY = 0x1,
238};
6aa20a22 239
1da177e4 240/* array of board data directly indexed by pci_tbl[x].driver_data */
aa738adf 241static struct {
1da177e4
LT
242 const char *name;
243 unsigned long flags;
a2b524b2 244 unsigned int eeprom_size;
6980cbe4 245} natsemi_pci_info[] = {
6aab4447 246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
a2b524b2 247 { "NatSemi DP8381[56]", 0, 24 },
1da177e4
LT
248};
249
9baa3c34 250static const struct pci_device_id natsemi_pci_tbl[] = {
6aab4447 251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
36c843d5 252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
a2b524b2 253 { } /* terminate list */
1da177e4
LT
254};
255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257/* Offsets to the device registers.
258 Unlike software-only systems, device drivers interact with complex hardware.
259 It's not useful to define symbolic names for every register bit in the
260 device.
261*/
262enum register_offsets {
263 ChipCmd = 0x00,
264 ChipConfig = 0x04,
265 EECtrl = 0x08,
266 PCIBusCfg = 0x0C,
267 IntrStatus = 0x10,
268 IntrMask = 0x14,
269 IntrEnable = 0x18,
270 IntrHoldoff = 0x1C, /* DP83816 only */
271 TxRingPtr = 0x20,
272 TxConfig = 0x24,
273 RxRingPtr = 0x30,
274 RxConfig = 0x34,
275 ClkRun = 0x3C,
276 WOLCmd = 0x40,
277 PauseCmd = 0x44,
278 RxFilterAddr = 0x48,
279 RxFilterData = 0x4C,
280 BootRomAddr = 0x50,
281 BootRomData = 0x54,
282 SiliconRev = 0x58,
283 StatsCtrl = 0x5C,
284 StatsData = 0x60,
285 RxPktErrs = 0x60,
286 RxMissed = 0x68,
287 RxCRCErrs = 0x64,
288 BasicControl = 0x80,
289 BasicStatus = 0x84,
290 AnegAdv = 0x90,
291 AnegPeer = 0x94,
292 PhyStatus = 0xC0,
293 MIntrCtrl = 0xC4,
294 MIntrStatus = 0xC8,
295 PhyCtrl = 0xE4,
296
297 /* These are from the spec, around page 78... on a separate table.
298 * The meaning of these registers depend on the value of PGSEL. */
299 PGSEL = 0xCC,
300 PMDCSR = 0xE4,
301 TSTDAT = 0xFC,
302 DSPCFG = 0xF4,
303 SDCFG = 0xF8
304};
305/* the values for the 'magic' registers above (PGSEL=1) */
306#define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
307#define TSTDAT_VAL 0x0
308#define DSPCFG_VAL 0x5040
309#define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
310#define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
311#define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
312#define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
313
314/* misc PCI space registers */
315enum pci_register_offsets {
316 PCIPM = 0x44,
317};
318
319enum ChipCmd_bits {
320 ChipReset = 0x100,
321 RxReset = 0x20,
322 TxReset = 0x10,
323 RxOff = 0x08,
324 RxOn = 0x04,
325 TxOff = 0x02,
326 TxOn = 0x01,
327};
328
329enum ChipConfig_bits {
330 CfgPhyDis = 0x200,
331 CfgPhyRst = 0x400,
332 CfgExtPhy = 0x1000,
333 CfgAnegEnable = 0x2000,
334 CfgAneg100 = 0x4000,
335 CfgAnegFull = 0x8000,
336 CfgAnegDone = 0x8000000,
337 CfgFullDuplex = 0x20000000,
338 CfgSpeed100 = 0x40000000,
339 CfgLink = 0x80000000,
340};
341
342enum EECtrl_bits {
343 EE_ShiftClk = 0x04,
344 EE_DataIn = 0x01,
345 EE_ChipSelect = 0x08,
346 EE_DataOut = 0x02,
347 MII_Data = 0x10,
348 MII_Write = 0x20,
349 MII_ShiftClk = 0x40,
350};
351
352enum PCIBusCfg_bits {
353 EepromReload = 0x4,
354};
355
356/* Bits in the interrupt status/mask registers. */
357enum IntrStatus_bits {
358 IntrRxDone = 0x0001,
359 IntrRxIntr = 0x0002,
360 IntrRxErr = 0x0004,
361 IntrRxEarly = 0x0008,
362 IntrRxIdle = 0x0010,
363 IntrRxOverrun = 0x0020,
364 IntrTxDone = 0x0040,
365 IntrTxIntr = 0x0080,
366 IntrTxErr = 0x0100,
367 IntrTxIdle = 0x0200,
368 IntrTxUnderrun = 0x0400,
369 StatsMax = 0x0800,
370 SWInt = 0x1000,
371 WOLPkt = 0x2000,
372 LinkChange = 0x4000,
373 IntrHighBits = 0x8000,
374 RxStatusFIFOOver = 0x10000,
375 IntrPCIErr = 0xf00000,
376 RxResetDone = 0x1000000,
377 TxResetDone = 0x2000000,
378 IntrAbnormalSummary = 0xCD20,
379};
380
381/*
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
389 */
390#define DEFAULT_INTR 0x00f1cd65
391
392enum TxConfig_bits {
393 TxDrthMask = 0x3f,
394 TxFlthMask = 0x3f00,
395 TxMxdmaMask = 0x700000,
396 TxMxdma_512 = 0x0,
397 TxMxdma_4 = 0x100000,
398 TxMxdma_8 = 0x200000,
399 TxMxdma_16 = 0x300000,
400 TxMxdma_32 = 0x400000,
401 TxMxdma_64 = 0x500000,
402 TxMxdma_128 = 0x600000,
403 TxMxdma_256 = 0x700000,
404 TxCollRetry = 0x800000,
405 TxAutoPad = 0x10000000,
406 TxMacLoop = 0x20000000,
407 TxHeartIgn = 0x40000000,
408 TxCarrierIgn = 0x80000000
409};
410
6aa20a22 411/*
1da177e4
LT
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 * when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 * threshold and the drain threshold must be less than 2016 bytes.
420 *
421 */
422#define TX_FLTH_VAL ((512/32) << 8)
423#define TX_DRTH_VAL_START (64/32)
424#define TX_DRTH_VAL_INC 2
425#define TX_DRTH_VAL_LIMIT (1472/32)
426
427enum RxConfig_bits {
428 RxDrthMask = 0x3e,
429 RxMxdmaMask = 0x700000,
430 RxMxdma_512 = 0x0,
431 RxMxdma_4 = 0x100000,
432 RxMxdma_8 = 0x200000,
433 RxMxdma_16 = 0x300000,
434 RxMxdma_32 = 0x400000,
435 RxMxdma_64 = 0x500000,
436 RxMxdma_128 = 0x600000,
437 RxMxdma_256 = 0x700000,
438 RxAcceptLong = 0x8000000,
439 RxAcceptTx = 0x10000000,
440 RxAcceptRunt = 0x40000000,
441 RxAcceptErr = 0x80000000
442};
443#define RX_DRTH_VAL (128/8)
444
445enum ClkRun_bits {
446 PMEEnable = 0x100,
447 PMEStatus = 0x8000,
448};
449
450enum WolCmd_bits {
451 WakePhy = 0x1,
452 WakeUnicast = 0x2,
453 WakeMulticast = 0x4,
454 WakeBroadcast = 0x8,
455 WakeArp = 0x10,
456 WakePMatch0 = 0x20,
457 WakePMatch1 = 0x40,
458 WakePMatch2 = 0x80,
459 WakePMatch3 = 0x100,
460 WakeMagic = 0x200,
461 WakeMagicSecure = 0x400,
462 SecureHack = 0x100000,
463 WokePhy = 0x400000,
464 WokeUnicast = 0x800000,
465 WokeMulticast = 0x1000000,
466 WokeBroadcast = 0x2000000,
467 WokeArp = 0x4000000,
468 WokePMatch0 = 0x8000000,
469 WokePMatch1 = 0x10000000,
470 WokePMatch2 = 0x20000000,
471 WokePMatch3 = 0x40000000,
472 WokeMagic = 0x80000000,
473 WakeOptsSummary = 0x7ff
474};
475
476enum RxFilterAddr_bits {
477 RFCRAddressMask = 0x3ff,
478 AcceptMulticast = 0x00200000,
479 AcceptMyPhys = 0x08000000,
480 AcceptAllPhys = 0x10000000,
481 AcceptAllMulticast = 0x20000000,
482 AcceptBroadcast = 0x40000000,
483 RxFilterEnable = 0x80000000
484};
485
486enum StatsCtrl_bits {
487 StatsWarn = 0x1,
488 StatsFreeze = 0x2,
489 StatsClear = 0x4,
490 StatsStrobe = 0x8,
491};
492
493enum MIntrCtrl_bits {
494 MICRIntEn = 0x2,
495};
496
497enum PhyCtrl_bits {
498 PhyAddrMask = 0x1f,
499};
500
501#define PHY_ADDR_NONE 32
502#define PHY_ADDR_INTERNAL 1
503
504/* values we might find in the silicon revision register */
505#define SRR_DP83815_C 0x0302
506#define SRR_DP83815_D 0x0403
507#define SRR_DP83816_A4 0x0504
508#define SRR_DP83816_A5 0x0505
509
510/* The Rx and Tx buffer descriptors. */
511/* Note that using only 32 bit fields simplifies conversion to big-endian
512 architectures. */
513struct netdev_desc {
eca1ad82
AV
514 __le32 next_desc;
515 __le32 cmd_status;
516 __le32 addr;
517 __le32 software_use;
1da177e4
LT
518};
519
520/* Bits in network_desc.status */
521enum desc_status_bits {
522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 DescSizeMask=0xfff,
525
526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531 DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 DescRxDest=0x01800000, DescRxLong=0x00400000,
533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 DescRxLoop=0x00020000, DesRxColl=0x00010000,
536};
537
538struct netdev_private {
539 /* Descriptor rings first for alignment */
540 dma_addr_t ring_dma;
541 struct netdev_desc *rx_ring;
542 struct netdev_desc *tx_ring;
543 /* The addresses of receive-in-place skbuffs */
544 struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 dma_addr_t rx_dma[RX_RING_SIZE];
546 /* address of a sent-in-place packet/buffer, for later free() */
547 struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 dma_addr_t tx_dma[TX_RING_SIZE];
bea3348e 549 struct net_device *dev;
d710ce13 550 void __iomem *ioaddr;
bea3348e 551 struct napi_struct napi;
1da177e4
LT
552 /* Media monitoring timer */
553 struct timer_list timer;
554 /* Frequently used values: keep some adjacent for cache effect */
555 struct pci_dev *pci_dev;
556 struct netdev_desc *rx_head_desc;
557 /* Producer/consumer ring indices */
558 unsigned int cur_rx, dirty_rx;
559 unsigned int cur_tx, dirty_tx;
560 /* Based on MTU+slack. */
561 unsigned int rx_buf_sz;
562 int oom;
b27a16b7
MB
563 /* Interrupt status */
564 u32 intr_status;
1da177e4
LT
565 /* Do not touch the nic registers */
566 int hands_off;
68c90166
MB
567 /* Don't pay attention to the reported link state. */
568 int ignore_phy;
1da177e4
LT
569 /* external phy that is used: only valid if dev->if_port != PORT_TP */
570 int mii;
571 int phy_addr_external;
572 unsigned int full_duplex;
573 /* Rx filter */
574 u32 cur_rx_mode;
575 u32 rx_filter[16];
576 /* FIFO and PCI burst thresholds */
577 u32 tx_config, rx_config;
578 /* original contents of ClkRun register */
579 u32 SavedClkRun;
580 /* silicon revision */
581 u32 srr;
582 /* expected DSPCFG value */
583 u16 dspcfg;
1a147809 584 int dspcfg_workaround;
1da177e4
LT
585 /* parms saved in ethtool format */
586 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
587 u8 duplex; /* Duplex, half or full */
588 u8 autoneg; /* Autonegotiation enabled */
589 /* MII transceiver section */
590 u16 advertising;
591 unsigned int iosize;
592 spinlock_t lock;
593 u32 msg_enable;
a8b4cf42
MB
594 /* EEPROM data */
595 int eeprom_size;
1da177e4
LT
596};
597
598static void move_int_phy(struct net_device *dev, int addr);
599static int eeprom_read(void __iomem *ioaddr, int location);
600static int mdio_read(struct net_device *dev, int reg);
601static void mdio_write(struct net_device *dev, int reg, u16 data);
602static void init_phy_fixup(struct net_device *dev);
603static int miiport_read(struct net_device *dev, int phy_id, int reg);
604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605static int find_mii(struct net_device *dev);
606static void natsemi_reset(struct net_device *dev);
607static void natsemi_reload_eeprom(struct net_device *dev);
608static void natsemi_stop_rxtx(struct net_device *dev);
609static int netdev_open(struct net_device *dev);
610static void do_cable_magic(struct net_device *dev);
611static void undo_cable_magic(struct net_device *dev);
612static void check_link(struct net_device *dev);
613static void netdev_timer(unsigned long data);
614static void dump_ring(struct net_device *dev);
ed4cb133 615static void ns_tx_timeout(struct net_device *dev);
1da177e4
LT
616static int alloc_ring(struct net_device *dev);
617static void refill_rx(struct net_device *dev);
618static void init_ring(struct net_device *dev);
619static void drain_tx(struct net_device *dev);
620static void drain_ring(struct net_device *dev);
621static void free_ring(struct net_device *dev);
622static void reinit_ring(struct net_device *dev);
623static void init_registers(struct net_device *dev);
61357325 624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 625static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4 626static void netdev_error(struct net_device *dev, int intr_status);
bea3348e 627static int natsemi_poll(struct napi_struct *napi, int budget);
b27a16b7 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
1da177e4
LT
629static void netdev_tx_done(struct net_device *dev);
630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631#ifdef CONFIG_NET_POLL_CONTROLLER
632static void natsemi_poll_controller(struct net_device *dev);
633#endif
634static void __set_rx_mode(struct net_device *dev);
635static void set_rx_mode(struct net_device *dev);
636static void __get_stats(struct net_device *dev);
637static struct net_device_stats *get_stats(struct net_device *dev);
638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639static int netdev_set_wol(struct net_device *dev, u32 newval);
640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642static int netdev_get_sopass(struct net_device *dev, u8 *data);
643static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645static void enable_wol_mode(struct net_device *dev, int enable_intr);
646static int netdev_close(struct net_device *dev);
647static int netdev_get_regs(struct net_device *dev, u8 *buf);
648static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
7282d491 649static const struct ethtool_ops ethtool_ops;
1da177e4 650
1a147809
MB
651#define NATSEMI_ATTR(_name) \
652static ssize_t natsemi_show_##_name(struct device *dev, \
653 struct device_attribute *attr, char *buf); \
654 static ssize_t natsemi_set_##_name(struct device *dev, \
655 struct device_attribute *attr, \
656 const char *buf, size_t count); \
657 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658
659#define NATSEMI_CREATE_FILE(_dev, _name) \
660 device_create_file(&_dev->dev, &dev_attr_##_name)
661#define NATSEMI_REMOVE_FILE(_dev, _name) \
f6c42865 662 device_remove_file(&_dev->dev, &dev_attr_##_name)
1a147809
MB
663
664NATSEMI_ATTR(dspcfg_workaround);
665
666static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
7d2e3cb7 667 struct device_attribute *attr,
1a147809
MB
668 char *buf)
669{
670 struct netdev_private *np = netdev_priv(to_net_dev(dev));
671
672 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
673}
674
675static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 struct device_attribute *attr,
677 const char *buf, size_t count)
678{
679 struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 int new_setting;
d41f2d17 681 unsigned long flags;
1a147809
MB
682
683 /* Find out the new setting */
684 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685 new_setting = 1;
8e95a202
JP
686 else if (!strncmp("off", buf, count - 1) ||
687 !strncmp("0", buf, count - 1))
1a147809
MB
688 new_setting = 0;
689 else
7d2e3cb7 690 return count;
1a147809
MB
691
692 spin_lock_irqsave(&np->lock, flags);
693
694 np->dspcfg_workaround = new_setting;
695
696 spin_unlock_irqrestore(&np->lock, flags);
697
698 return count;
699}
700
1da177e4
LT
701static inline void __iomem *ns_ioaddr(struct net_device *dev)
702{
d710ce13
FR
703 struct netdev_private *np = netdev_priv(dev);
704
705 return np->ioaddr;
1da177e4
LT
706}
707
b27a16b7
MB
708static inline void natsemi_irq_enable(struct net_device *dev)
709{
710 writel(1, ns_ioaddr(dev) + IntrEnable);
711 readl(ns_ioaddr(dev) + IntrEnable);
712}
713
714static inline void natsemi_irq_disable(struct net_device *dev)
715{
716 writel(0, ns_ioaddr(dev) + IntrEnable);
717 readl(ns_ioaddr(dev) + IntrEnable);
718}
719
1da177e4
LT
720static void move_int_phy(struct net_device *dev, int addr)
721{
722 struct netdev_private *np = netdev_priv(dev);
723 void __iomem *ioaddr = ns_ioaddr(dev);
724 int target = 31;
725
6aa20a22 726 /*
1da177e4
LT
727 * The internal phy is visible on the external mii bus. Therefore we must
728 * move it away before we can send commands to an external phy.
729 * There are two addresses we must avoid:
730 * - the address on the external phy that is used for transmission.
731 * - the address that we want to access. User space can access phys
25985edc 732 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
1da177e4
LT
733 * phy that is used for transmission.
734 */
735
736 if (target == addr)
737 target--;
738 if (target == np->phy_addr_external)
739 target--;
740 writew(target, ioaddr + PhyCtrl);
741 readw(ioaddr + PhyCtrl);
742 udelay(1);
743}
744
6980cbe4 745static void natsemi_init_media(struct net_device *dev)
5a40f09b
JG
746{
747 struct netdev_private *np = netdev_priv(dev);
748 u32 tmp;
749
68c90166
MB
750 if (np->ignore_phy)
751 netif_carrier_on(dev);
752 else
753 netif_carrier_off(dev);
5a40f09b
JG
754
755 /* get the initial settings from hardware */
756 tmp = mdio_read(dev, MII_BMCR);
757 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
758 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
759 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
760 np->advertising= mdio_read(dev, MII_ADVERTISE);
761
8e95a202
JP
762 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
763 netif_msg_probe(np)) {
5a40f09b
JG
764 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
765 "10%s %s duplex.\n",
766 pci_name(np->pci_dev),
767 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
768 "enabled, advertise" : "disabled, force",
769 (np->advertising &
770 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
771 "0" : "",
772 (np->advertising &
773 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
774 "full" : "half");
775 }
776 if (netif_msg_probe(np))
777 printk(KERN_INFO
778 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
779 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
780 np->advertising);
781
782}
783
2b7d0c70
SH
784static const struct net_device_ops natsemi_netdev_ops = {
785 .ndo_open = netdev_open,
786 .ndo_stop = netdev_close,
787 .ndo_start_xmit = start_tx,
788 .ndo_get_stats = get_stats,
afc4b13d 789 .ndo_set_rx_mode = set_rx_mode,
2b7d0c70
SH
790 .ndo_change_mtu = natsemi_change_mtu,
791 .ndo_do_ioctl = netdev_ioctl,
792 .ndo_tx_timeout = ns_tx_timeout,
793 .ndo_set_mac_address = eth_mac_addr,
794 .ndo_validate_addr = eth_validate_addr,
795#ifdef CONFIG_NET_POLL_CONTROLLER
796 .ndo_poll_controller = natsemi_poll_controller,
797#endif
798};
799
1dd06ae8 800static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
801{
802 struct net_device *dev;
803 struct netdev_private *np;
804 int i, option, irq, chip_idx = ent->driver_data;
805 static int find_cnt = -1;
703bb99c
SS
806 resource_size_t iostart;
807 unsigned long iosize;
1da177e4
LT
808 void __iomem *ioaddr;
809 const int pcibar = 1; /* PCI base address register */
810 int prev_eedata;
811 u32 tmp;
812
813/* when built into the kernel, we only print version if device is found */
814#ifndef MODULE
815 static int printed_version;
816 if (!printed_version++)
817 printk(version);
818#endif
819
820 i = pci_enable_device(pdev);
821 if (i) return i;
822
823 /* natsemi has a non-standard PM control register
824 * in PCI config space. Some boards apparently need
825 * to be brought to D0 in this manner.
826 */
827 pci_read_config_dword(pdev, PCIPM, &tmp);
828 if (tmp & PCI_PM_CTRL_STATE_MASK) {
829 /* D0 state, disable PME assertion */
830 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
831 pci_write_config_dword(pdev, PCIPM, newtmp);
832 }
833
834 find_cnt++;
835 iostart = pci_resource_start(pdev, pcibar);
836 iosize = pci_resource_len(pdev, pcibar);
837 irq = pdev->irq;
838
a2b524b2 839 pci_set_master(pdev);
1da177e4
LT
840
841 dev = alloc_etherdev(sizeof (struct netdev_private));
842 if (!dev)
843 return -ENOMEM;
1da177e4
LT
844 SET_NETDEV_DEV(dev, &pdev->dev);
845
846 i = pci_request_regions(pdev, DRV_NAME);
847 if (i)
848 goto err_pci_request_regions;
849
850 ioaddr = ioremap(iostart, iosize);
851 if (!ioaddr) {
852 i = -ENOMEM;
853 goto err_ioremap;
854 }
855
856 /* Work around the dropped serial bit. */
857 prev_eedata = eeprom_read(ioaddr, 6);
858 for (i = 0; i < 3; i++) {
859 int eedata = eeprom_read(ioaddr, i + 7);
860 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
861 dev->dev_addr[i*2+1] = eedata >> 7;
862 prev_eedata = eedata;
863 }
864
1da177e4 865 np = netdev_priv(dev);
d710ce13
FR
866 np->ioaddr = ioaddr;
867
bea3348e 868 netif_napi_add(dev, &np->napi, natsemi_poll, 64);
bbbab5ca 869 np->dev = dev;
1da177e4
LT
870
871 np->pci_dev = pdev;
872 pci_set_drvdata(pdev, dev);
873 np->iosize = iosize;
874 spin_lock_init(&np->lock);
875 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
876 np->hands_off = 0;
b27a16b7 877 np->intr_status = 0;
a2b524b2 878 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
6aab4447
MB
879 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
880 np->ignore_phy = 1;
881 else
882 np->ignore_phy = 0;
1a147809 883 np->dspcfg_workaround = dspcfg_workaround;
1da177e4
LT
884
885 /* Initial port:
68c90166 886 * - If configured to ignore the PHY set up for external.
1da177e4
LT
887 * - If the nic was configured to use an external phy and if find_mii
888 * finds a phy: use external port, first phy that replies.
889 * - Otherwise: internal port.
890 * Note that the phy address for the internal phy doesn't matter:
891 * The address would be used to access a phy over the mii bus, but
892 * the internal phy is accessed through mapped registers.
893 */
68c90166 894 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
1da177e4
LT
895 dev->if_port = PORT_MII;
896 else
897 dev->if_port = PORT_TP;
898 /* Reset the chip to erase previous misconfiguration. */
899 natsemi_reload_eeprom(dev);
900 natsemi_reset(dev);
901
902 if (dev->if_port != PORT_TP) {
903 np->phy_addr_external = find_mii(dev);
68c90166
MB
904 /* If we're ignoring the PHY it doesn't matter if we can't
905 * find one. */
906 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
1da177e4
LT
907 dev->if_port = PORT_TP;
908 np->phy_addr_external = PHY_ADDR_INTERNAL;
909 }
910 } else {
911 np->phy_addr_external = PHY_ADDR_INTERNAL;
912 }
913
914 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
1da177e4
LT
915 /* The lower four bits are the media type. */
916 if (option) {
917 if (option & 0x200)
918 np->full_duplex = 1;
919 if (option & 15)
920 printk(KERN_INFO
921 "natsemi %s: ignoring user supplied media type %d",
922 pci_name(np->pci_dev), option & 15);
923 }
924 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
925 np->full_duplex = 1;
926
2b7d0c70 927 dev->netdev_ops = &natsemi_netdev_ops;
1da177e4 928 dev->watchdog_timeo = TX_TIMEOUT;
b27a16b7 929
7ad24ea4 930 dev->ethtool_ops = &ethtool_ops;
1da177e4
LT
931
932 if (mtu)
933 dev->mtu = mtu;
934
5a40f09b 935 natsemi_init_media(dev);
1da177e4
LT
936
937 /* save the silicon revision for later querying */
938 np->srr = readl(ioaddr + SiliconRev);
939 if (netif_msg_hw(np))
940 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
941 pci_name(np->pci_dev), np->srr);
942
943 i = register_netdev(dev);
944 if (i)
945 goto err_register_netdev;
52428d91
PST
946 i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
947 if (i)
1a147809
MB
948 goto err_create_file;
949
1da177e4 950 if (netif_msg_drv(np)) {
703bb99c 951 printk(KERN_INFO "natsemi %s: %s at %#08llx "
e174961c 952 "(%s), %pM, IRQ %d",
703bb99c
SS
953 dev->name, natsemi_pci_info[chip_idx].name,
954 (unsigned long long)iostart, pci_name(np->pci_dev),
e174961c 955 dev->dev_addr, irq);
1da177e4
LT
956 if (dev->if_port == PORT_TP)
957 printk(", port TP.\n");
68c90166
MB
958 else if (np->ignore_phy)
959 printk(", port MII, ignoring PHY\n");
1da177e4
LT
960 else
961 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
962 }
963 return 0;
964
1a147809
MB
965 err_create_file:
966 unregister_netdev(dev);
967
1da177e4
LT
968 err_register_netdev:
969 iounmap(ioaddr);
970
971 err_ioremap:
972 pci_release_regions(pdev);
1da177e4
LT
973
974 err_pci_request_regions:
975 free_netdev(dev);
976 return i;
977}
978
979
980/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
981 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
982
983/* Delay between EEPROM clock transitions.
984 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
985 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
986 made udelay() unreliable.
987 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
405bbe9f 988 deprecated.
1da177e4
LT
989*/
990#define eeprom_delay(ee_addr) readl(ee_addr)
991
992#define EE_Write0 (EE_ChipSelect)
993#define EE_Write1 (EE_ChipSelect | EE_DataIn)
994
995/* The EEPROM commands include the alway-set leading bit. */
996enum EEPROM_Cmds {
997 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
998};
999
1000static int eeprom_read(void __iomem *addr, int location)
1001{
1002 int i;
1003 int retval = 0;
1004 void __iomem *ee_addr = addr + EECtrl;
1005 int read_cmd = location | EE_ReadCmd;
1006
1007 writel(EE_Write0, ee_addr);
1008
1009 /* Shift the read command bits out. */
1010 for (i = 10; i >= 0; i--) {
1011 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1012 writel(dataval, ee_addr);
1013 eeprom_delay(ee_addr);
1014 writel(dataval | EE_ShiftClk, ee_addr);
1015 eeprom_delay(ee_addr);
1016 }
1017 writel(EE_ChipSelect, ee_addr);
1018 eeprom_delay(ee_addr);
1019
1020 for (i = 0; i < 16; i++) {
1021 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1022 eeprom_delay(ee_addr);
1023 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1024 writel(EE_ChipSelect, ee_addr);
1025 eeprom_delay(ee_addr);
1026 }
1027
1028 /* Terminate the EEPROM access. */
1029 writel(EE_Write0, ee_addr);
1030 writel(0, ee_addr);
1031 return retval;
1032}
1033
1034/* MII transceiver control section.
1035 * The 83815 series has an internal transceiver, and we present the
1036 * internal management registers as if they were MII connected.
1037 * External Phy registers are referenced through the MII interface.
1038 */
1039
1040/* clock transitions >= 20ns (25MHz)
1041 * One readl should be good to PCI @ 100MHz
1042 */
1043#define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1044
1045static int mii_getbit (struct net_device *dev)
1046{
1047 int data;
1048 void __iomem *ioaddr = ns_ioaddr(dev);
1049
1050 writel(MII_ShiftClk, ioaddr + EECtrl);
1051 data = readl(ioaddr + EECtrl);
1052 writel(0, ioaddr + EECtrl);
1053 mii_delay(ioaddr);
1054 return (data & MII_Data)? 1 : 0;
1055}
1056
1057static void mii_send_bits (struct net_device *dev, u32 data, int len)
1058{
1059 u32 i;
1060 void __iomem *ioaddr = ns_ioaddr(dev);
1061
1062 for (i = (1 << (len-1)); i; i >>= 1)
1063 {
1064 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1065 writel(mdio_val, ioaddr + EECtrl);
1066 mii_delay(ioaddr);
1067 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1068 mii_delay(ioaddr);
1069 }
1070 writel(0, ioaddr + EECtrl);
1071 mii_delay(ioaddr);
1072}
1073
1074static int miiport_read(struct net_device *dev, int phy_id, int reg)
1075{
1076 u32 cmd;
1077 int i;
1078 u32 retval = 0;
1079
1080 /* Ensure sync */
1081 mii_send_bits (dev, 0xffffffff, 32);
1082 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1083 /* ST,OP = 0110'b for read operation */
1084 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1085 mii_send_bits (dev, cmd, 14);
1086 /* Turnaround */
1087 if (mii_getbit (dev))
1088 return 0;
1089 /* Read data */
1090 for (i = 0; i < 16; i++) {
1091 retval <<= 1;
1092 retval |= mii_getbit (dev);
1093 }
1094 /* End cycle */
1095 mii_getbit (dev);
1096 return retval;
1097}
1098
1099static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1100{
1101 u32 cmd;
1102
1103 /* Ensure sync */
1104 mii_send_bits (dev, 0xffffffff, 32);
1105 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1106 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1107 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1108 mii_send_bits (dev, cmd, 32);
1109 /* End cycle */
1110 mii_getbit (dev);
1111}
1112
1113static int mdio_read(struct net_device *dev, int reg)
1114{
1115 struct netdev_private *np = netdev_priv(dev);
1116 void __iomem *ioaddr = ns_ioaddr(dev);
1117
1118 /* The 83815 series has two ports:
1119 * - an internal transceiver
1120 * - an external mii bus
1121 */
1122 if (dev->if_port == PORT_TP)
1123 return readw(ioaddr+BasicControl+(reg<<2));
1124 else
1125 return miiport_read(dev, np->phy_addr_external, reg);
1126}
1127
1128static void mdio_write(struct net_device *dev, int reg, u16 data)
1129{
1130 struct netdev_private *np = netdev_priv(dev);
1131 void __iomem *ioaddr = ns_ioaddr(dev);
1132
1133 /* The 83815 series has an internal transceiver; handle separately */
1134 if (dev->if_port == PORT_TP)
1135 writew(data, ioaddr+BasicControl+(reg<<2));
1136 else
1137 miiport_write(dev, np->phy_addr_external, reg, data);
1138}
1139
1140static void init_phy_fixup(struct net_device *dev)
1141{
1142 struct netdev_private *np = netdev_priv(dev);
1143 void __iomem *ioaddr = ns_ioaddr(dev);
1144 int i;
1145 u32 cfg;
1146 u16 tmp;
1147
1148 /* restore stuff lost when power was out */
1149 tmp = mdio_read(dev, MII_BMCR);
1150 if (np->autoneg == AUTONEG_ENABLE) {
1151 /* renegotiate if something changed */
8e95a202
JP
1152 if ((tmp & BMCR_ANENABLE) == 0 ||
1153 np->advertising != mdio_read(dev, MII_ADVERTISE))
1da177e4
LT
1154 {
1155 /* turn on autonegotiation and force negotiation */
1156 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1157 mdio_write(dev, MII_ADVERTISE, np->advertising);
1158 }
1159 } else {
1160 /* turn off auto negotiation, set speed and duplexity */
1161 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1162 if (np->speed == SPEED_100)
1163 tmp |= BMCR_SPEED100;
1164 if (np->duplex == DUPLEX_FULL)
1165 tmp |= BMCR_FULLDPLX;
6aa20a22 1166 /*
1da177e4
LT
1167 * Note: there is no good way to inform the link partner
1168 * that our capabilities changed. The user has to unplug
1169 * and replug the network cable after some changes, e.g.
1170 * after switching from 10HD, autoneg off to 100 HD,
1171 * autoneg off.
1172 */
1173 }
1174 mdio_write(dev, MII_BMCR, tmp);
1175 readl(ioaddr + ChipConfig);
1176 udelay(1);
1177
1178 /* find out what phy this is */
1179 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1180 + mdio_read(dev, MII_PHYSID2);
1181
1182 /* handle external phys here */
1183 switch (np->mii) {
1184 case PHYID_AM79C874:
1185 /* phy specific configuration for fibre/tp operation */
1186 tmp = mdio_read(dev, MII_MCTRL);
1187 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1188 if (dev->if_port == PORT_FIBRE)
1189 tmp |= MII_FX_SEL;
1190 else
1191 tmp |= MII_EN_SCRM;
1192 mdio_write(dev, MII_MCTRL, tmp);
1193 break;
1194 default:
1195 break;
1196 }
1197 cfg = readl(ioaddr + ChipConfig);
1198 if (cfg & CfgExtPhy)
1199 return;
1200
1201 /* On page 78 of the spec, they recommend some settings for "optimum
1202 performance" to be done in sequence. These settings optimize some
1203 of the 100Mbit autodetection circuitry. They say we only want to
1204 do this for rev C of the chip, but engineers at NSC (Bradley
1205 Kennedy) recommends always setting them. If you don't, you get
1206 errors on some autonegotiations that make the device unusable.
1207
1208 It seems that the DSP needs a few usec to reinitialize after
1209 the start of the phy. Just retry writing these values until they
1210 stick.
1211 */
1212 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1213
1214 int dspcfg;
1215 writew(1, ioaddr + PGSEL);
1216 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1217 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1218 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1219 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1220 writew(np->dspcfg, ioaddr + DSPCFG);
1221 writew(SDCFG_VAL, ioaddr + SDCFG);
1222 writew(0, ioaddr + PGSEL);
1223 readl(ioaddr + ChipConfig);
1224 udelay(10);
1225
1226 writew(1, ioaddr + PGSEL);
1227 dspcfg = readw(ioaddr + DSPCFG);
1228 writew(0, ioaddr + PGSEL);
1229 if (np->dspcfg == dspcfg)
1230 break;
1231 }
1232
1233 if (netif_msg_link(np)) {
1234 if (i==NATSEMI_HW_TIMEOUT) {
1235 printk(KERN_INFO
1236 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1237 dev->name, i*10);
1238 } else {
1239 printk(KERN_INFO
1240 "%s: DSPCFG accepted after %d usec.\n",
1241 dev->name, i*10);
1242 }
1243 }
1244 /*
1245 * Enable PHY Specific event based interrupts. Link state change
1246 * and Auto-Negotiation Completion are among the affected.
1247 * Read the intr status to clear it (needed for wake events).
1248 */
1249 readw(ioaddr + MIntrStatus);
1250 writew(MICRIntEn, ioaddr + MIntrCtrl);
1251}
1252
1253static int switch_port_external(struct net_device *dev)
1254{
1255 struct netdev_private *np = netdev_priv(dev);
1256 void __iomem *ioaddr = ns_ioaddr(dev);
1257 u32 cfg;
1258
1259 cfg = readl(ioaddr + ChipConfig);
1260 if (cfg & CfgExtPhy)
1261 return 0;
1262
1263 if (netif_msg_link(np)) {
1264 printk(KERN_INFO "%s: switching to external transceiver.\n",
1265 dev->name);
1266 }
1267
1268 /* 1) switch back to external phy */
1269 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1270 readl(ioaddr + ChipConfig);
1271 udelay(1);
1272
1273 /* 2) reset the external phy: */
1274 /* resetting the external PHY has been known to cause a hub supplying
1275 * power over Ethernet to kill the power. We don't want to kill
1276 * power to this computer, so we avoid resetting the phy.
1277 */
1278
1279 /* 3) reinit the phy fixup, it got lost during power down. */
1280 move_int_phy(dev, np->phy_addr_external);
1281 init_phy_fixup(dev);
1282
1283 return 1;
1284}
1285
1286static int switch_port_internal(struct net_device *dev)
1287{
1288 struct netdev_private *np = netdev_priv(dev);
1289 void __iomem *ioaddr = ns_ioaddr(dev);
1290 int i;
1291 u32 cfg;
1292 u16 bmcr;
1293
1294 cfg = readl(ioaddr + ChipConfig);
1295 if (!(cfg &CfgExtPhy))
1296 return 0;
1297
1298 if (netif_msg_link(np)) {
1299 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1300 dev->name);
1301 }
1302 /* 1) switch back to internal phy: */
1303 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1304 writel(cfg, ioaddr + ChipConfig);
1305 readl(ioaddr + ChipConfig);
1306 udelay(1);
6aa20a22 1307
1da177e4
LT
1308 /* 2) reset the internal phy: */
1309 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1310 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1311 readl(ioaddr + ChipConfig);
1312 udelay(10);
1313 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1314 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1315 if (!(bmcr & BMCR_RESET))
1316 break;
1317 udelay(10);
1318 }
1319 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1320 printk(KERN_INFO
1321 "%s: phy reset did not complete in %d usec.\n",
1322 dev->name, i*10);
1323 }
1324 /* 3) reinit the phy fixup, it got lost during power down. */
1325 init_phy_fixup(dev);
1326
1327 return 1;
1328}
1329
1330/* Scan for a PHY on the external mii bus.
1331 * There are two tricky points:
1332 * - Do not scan while the internal phy is enabled. The internal phy will
1333 * crash: e.g. reads from the DSPCFG register will return odd values and
1334 * the nasty random phy reset code will reset the nic every few seconds.
1335 * - The internal phy must be moved around, an external phy could
1336 * have the same address as the internal phy.
1337 */
1338static int find_mii(struct net_device *dev)
1339{
1340 struct netdev_private *np = netdev_priv(dev);
1341 int tmp;
1342 int i;
1343 int did_switch;
1344
1345 /* Switch to external phy */
1346 did_switch = switch_port_external(dev);
6aa20a22 1347
1da177e4
LT
1348 /* Scan the possible phy addresses:
1349 *
1350 * PHY address 0 means that the phy is in isolate mode. Not yet
1351 * supported due to lack of test hardware. User space should
1352 * handle it through ethtool.
1353 */
1354 for (i = 1; i <= 31; i++) {
1355 move_int_phy(dev, i);
1356 tmp = miiport_read(dev, i, MII_BMSR);
1357 if (tmp != 0xffff && tmp != 0x0000) {
1358 /* found something! */
1359 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1360 + mdio_read(dev, MII_PHYSID2);
1361 if (netif_msg_probe(np)) {
1362 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1363 pci_name(np->pci_dev), np->mii, i);
1364 }
1365 break;
1366 }
1367 }
1368 /* And switch back to internal phy: */
1369 if (did_switch)
1370 switch_port_internal(dev);
1371 return i;
1372}
1373
1374/* CFG bits [13:16] [18:23] */
1375#define CFG_RESET_SAVE 0xfde000
1376/* WCSR bits [0:4] [9:10] */
1377#define WCSR_RESET_SAVE 0x61f
1378/* RFCR bits [20] [22] [27:31] */
497888cf 1379#define RFCR_RESET_SAVE 0xf8500000
1da177e4
LT
1380
1381static void natsemi_reset(struct net_device *dev)
1382{
1383 int i;
1384 u32 cfg;
1385 u32 wcsr;
1386 u32 rfcr;
1387 u16 pmatch[3];
1388 u16 sopass[3];
1389 struct netdev_private *np = netdev_priv(dev);
1390 void __iomem *ioaddr = ns_ioaddr(dev);
1391
1392 /*
1393 * Resetting the chip causes some registers to be lost.
1394 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1395 * we save the state that would have been loaded from EEPROM
1396 * on a normal power-up (see the spec EEPROM map). This assumes
1397 * whoever calls this will follow up with init_registers() eventually.
1398 */
1399
1400 /* CFG */
1401 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1402 /* WCSR */
1403 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1404 /* RFCR */
1405 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1406 /* PMATCH */
1407 for (i = 0; i < 3; i++) {
1408 writel(i*2, ioaddr + RxFilterAddr);
1409 pmatch[i] = readw(ioaddr + RxFilterData);
1410 }
1411 /* SOPAS */
1412 for (i = 0; i < 3; i++) {
1413 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1414 sopass[i] = readw(ioaddr + RxFilterData);
1415 }
1416
1417 /* now whack the chip */
1418 writel(ChipReset, ioaddr + ChipCmd);
1419 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1420 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1421 break;
1422 udelay(5);
1423 }
1424 if (i==NATSEMI_HW_TIMEOUT) {
1425 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1426 dev->name, i*5);
1427 } else if (netif_msg_hw(np)) {
1428 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1429 dev->name, i*5);
1430 }
1431
1432 /* restore CFG */
1433 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1434 /* turn on external phy if it was selected */
1435 if (dev->if_port == PORT_TP)
1436 cfg &= ~(CfgExtPhy | CfgPhyDis);
1437 else
1438 cfg |= (CfgExtPhy | CfgPhyDis);
1439 writel(cfg, ioaddr + ChipConfig);
1440 /* restore WCSR */
1441 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1442 writel(wcsr, ioaddr + WOLCmd);
1443 /* read RFCR */
1444 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1445 /* restore PMATCH */
1446 for (i = 0; i < 3; i++) {
1447 writel(i*2, ioaddr + RxFilterAddr);
1448 writew(pmatch[i], ioaddr + RxFilterData);
1449 }
1450 for (i = 0; i < 3; i++) {
1451 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1452 writew(sopass[i], ioaddr + RxFilterData);
1453 }
1454 /* restore RFCR */
1455 writel(rfcr, ioaddr + RxFilterAddr);
1456}
1457
e72fd96e
MB
1458static void reset_rx(struct net_device *dev)
1459{
1460 int i;
1461 struct netdev_private *np = netdev_priv(dev);
1462 void __iomem *ioaddr = ns_ioaddr(dev);
1463
1464 np->intr_status &= ~RxResetDone;
1465
1466 writel(RxReset, ioaddr + ChipCmd);
1467
1468 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1469 np->intr_status |= readl(ioaddr + IntrStatus);
1470 if (np->intr_status & RxResetDone)
1471 break;
1472 udelay(15);
1473 }
1474 if (i==NATSEMI_HW_TIMEOUT) {
1475 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1476 dev->name, i*15);
1477 } else if (netif_msg_hw(np)) {
1478 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1479 dev->name, i*15);
1480 }
1481}
1482
1da177e4
LT
1483static void natsemi_reload_eeprom(struct net_device *dev)
1484{
1485 struct netdev_private *np = netdev_priv(dev);
1486 void __iomem *ioaddr = ns_ioaddr(dev);
1487 int i;
1488
1489 writel(EepromReload, ioaddr + PCIBusCfg);
1490 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1491 udelay(50);
1492 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1493 break;
1494 }
1495 if (i==NATSEMI_HW_TIMEOUT) {
1496 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1497 pci_name(np->pci_dev), i*50);
1498 } else if (netif_msg_hw(np)) {
1499 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1500 pci_name(np->pci_dev), i*50);
1501 }
1502}
1503
1504static void natsemi_stop_rxtx(struct net_device *dev)
1505{
1506 void __iomem * ioaddr = ns_ioaddr(dev);
1507 struct netdev_private *np = netdev_priv(dev);
1508 int i;
1509
1510 writel(RxOff | TxOff, ioaddr + ChipCmd);
1511 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1512 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1513 break;
1514 udelay(5);
1515 }
1516 if (i==NATSEMI_HW_TIMEOUT) {
1517 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1518 dev->name, i*5);
1519 } else if (netif_msg_hw(np)) {
1520 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1521 dev->name, i*5);
1522 }
1523}
1524
1525static int netdev_open(struct net_device *dev)
1526{
1527 struct netdev_private *np = netdev_priv(dev);
1528 void __iomem * ioaddr = ns_ioaddr(dev);
d710ce13 1529 const int irq = np->pci_dev->irq;
1da177e4
LT
1530 int i;
1531
1532 /* Reset the chip, just in case. */
1533 natsemi_reset(dev);
1534
d710ce13 1535 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
1536 if (i) return i;
1537
1538 if (netif_msg_ifup(np))
1539 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
d710ce13 1540 dev->name, irq);
1da177e4
LT
1541 i = alloc_ring(dev);
1542 if (i < 0) {
d710ce13 1543 free_irq(irq, dev);
1da177e4
LT
1544 return i;
1545 }
bea3348e
SH
1546 napi_enable(&np->napi);
1547
1da177e4
LT
1548 init_ring(dev);
1549 spin_lock_irq(&np->lock);
1550 init_registers(dev);
1551 /* now set the MAC address according to dev->dev_addr */
1552 for (i = 0; i < 3; i++) {
1553 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1554
1555 writel(i*2, ioaddr + RxFilterAddr);
1556 writew(mac, ioaddr + RxFilterData);
1557 }
1558 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1559 spin_unlock_irq(&np->lock);
1560
1561 netif_start_queue(dev);
1562
1563 if (netif_msg_ifup(np))
1564 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1565 dev->name, (int)readl(ioaddr + ChipCmd));
1566
1567 /* Set the timer to check for link beat. */
1568 init_timer(&np->timer);
0e5d5442 1569 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1da177e4 1570 np->timer.data = (unsigned long)dev;
c061b18d 1571 np->timer.function = netdev_timer; /* timer handler */
1da177e4
LT
1572 add_timer(&np->timer);
1573
1574 return 0;
1575}
1576
1577static void do_cable_magic(struct net_device *dev)
1578{
1579 struct netdev_private *np = netdev_priv(dev);
1580 void __iomem *ioaddr = ns_ioaddr(dev);
1581
1582 if (dev->if_port != PORT_TP)
1583 return;
1584
1585 if (np->srr >= SRR_DP83816_A5)
1586 return;
1587
1588 /*
1589 * 100 MBit links with short cables can trip an issue with the chip.
1590 * The problem manifests as lots of CRC errors and/or flickering
1591 * activity LED while idle. This process is based on instructions
1592 * from engineers at National.
1593 */
1594 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1595 u16 data;
1596
1597 writew(1, ioaddr + PGSEL);
1598 /*
1599 * coefficient visibility should already be enabled via
1600 * DSPCFG | 0x1000
1601 */
1602 data = readw(ioaddr + TSTDAT) & 0xff;
1603 /*
1604 * the value must be negative, and within certain values
1605 * (these values all come from National)
1606 */
1607 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
ddfce6bb 1608 np = netdev_priv(dev);
1da177e4
LT
1609
1610 /* the bug has been triggered - fix the coefficient */
1611 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1612 /* lock the value */
1613 data = readw(ioaddr + DSPCFG);
1614 np->dspcfg = data | DSPCFG_LOCK;
1615 writew(np->dspcfg, ioaddr + DSPCFG);
1616 }
1617 writew(0, ioaddr + PGSEL);
1618 }
1619}
1620
1621static void undo_cable_magic(struct net_device *dev)
1622{
1623 u16 data;
1624 struct netdev_private *np = netdev_priv(dev);
1625 void __iomem * ioaddr = ns_ioaddr(dev);
1626
1627 if (dev->if_port != PORT_TP)
1628 return;
1629
1630 if (np->srr >= SRR_DP83816_A5)
1631 return;
1632
1633 writew(1, ioaddr + PGSEL);
1634 /* make sure the lock bit is clear */
1635 data = readw(ioaddr + DSPCFG);
1636 np->dspcfg = data & ~DSPCFG_LOCK;
1637 writew(np->dspcfg, ioaddr + DSPCFG);
1638 writew(0, ioaddr + PGSEL);
1639}
1640
1641static void check_link(struct net_device *dev)
1642{
1643 struct netdev_private *np = netdev_priv(dev);
1644 void __iomem * ioaddr = ns_ioaddr(dev);
68c90166 1645 int duplex = np->duplex;
1da177e4 1646 u16 bmsr;
6aa20a22 1647
68c90166
MB
1648 /* If we are ignoring the PHY then don't try reading it. */
1649 if (np->ignore_phy)
1650 goto propagate_state;
1651
1da177e4
LT
1652 /* The link status field is latched: it remains low after a temporary
1653 * link failure until it's read. We need the current link status,
1654 * thus read twice.
1655 */
1656 mdio_read(dev, MII_BMSR);
1657 bmsr = mdio_read(dev, MII_BMSR);
1658
1659 if (!(bmsr & BMSR_LSTATUS)) {
1660 if (netif_carrier_ok(dev)) {
1661 if (netif_msg_link(np))
1662 printk(KERN_NOTICE "%s: link down.\n",
68c90166 1663 dev->name);
1da177e4
LT
1664 netif_carrier_off(dev);
1665 undo_cable_magic(dev);
1666 }
1667 return;
1668 }
1669 if (!netif_carrier_ok(dev)) {
1670 if (netif_msg_link(np))
1671 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1672 netif_carrier_on(dev);
1673 do_cable_magic(dev);
1674 }
1675
1676 duplex = np->full_duplex;
1677 if (!duplex) {
1678 if (bmsr & BMSR_ANEGCOMPLETE) {
1679 int tmp = mii_nway_result(
1680 np->advertising & mdio_read(dev, MII_LPA));
1681 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1682 duplex = 1;
1683 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1684 duplex = 1;
1685 }
1686
68c90166 1687propagate_state:
1da177e4
LT
1688 /* if duplex is set then bit 28 must be set, too */
1689 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1690 if (netif_msg_link(np))
1691 printk(KERN_INFO
1692 "%s: Setting %s-duplex based on negotiated "
1693 "link capability.\n", dev->name,
1694 duplex ? "full" : "half");
1695 if (duplex) {
1696 np->rx_config |= RxAcceptTx;
1697 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1698 } else {
1699 np->rx_config &= ~RxAcceptTx;
1700 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1701 }
1702 writel(np->tx_config, ioaddr + TxConfig);
1703 writel(np->rx_config, ioaddr + RxConfig);
1704 }
1705}
1706
1707static void init_registers(struct net_device *dev)
1708{
1709 struct netdev_private *np = netdev_priv(dev);
1710 void __iomem * ioaddr = ns_ioaddr(dev);
1711
1712 init_phy_fixup(dev);
1713
1714 /* clear any interrupts that are pending, such as wake events */
1715 readl(ioaddr + IntrStatus);
1716
1717 writel(np->ring_dma, ioaddr + RxRingPtr);
1718 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1719 ioaddr + TxRingPtr);
1720
1721 /* Initialize other registers.
1722 * Configure the PCI bus bursts and FIFO thresholds.
1723 * Configure for standard, in-spec Ethernet.
1724 * Start with half-duplex. check_link will update
1725 * to the correct settings.
1726 */
1727
1728 /* DRTH: 2: start tx if 64 bytes are in the fifo
1729 * FLTH: 0x10: refill with next packet if 512 bytes are free
1730 * MXDMA: 0: up to 256 byte bursts.
1731 * MXDMA must be <= FLTH
1732 * ECRETRY=1
1733 * ATP=1
1734 */
1735 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1736 TX_FLTH_VAL | TX_DRTH_VAL_START;
1737 writel(np->tx_config, ioaddr + TxConfig);
1738
1739 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1740 * MXDMA 0: up to 256 byte bursts
1741 */
1742 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1743 /* if receive ring now has bigger buffers than normal, enable jumbo */
1744 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1745 np->rx_config |= RxAcceptLong;
1746
1747 writel(np->rx_config, ioaddr + RxConfig);
1748
1749 /* Disable PME:
1750 * The PME bit is initialized from the EEPROM contents.
1751 * PCI cards probably have PME disabled, but motherboard
1752 * implementations may have PME set to enable WakeOnLan.
1753 * With PME set the chip will scan incoming packets but
1754 * nothing will be written to memory. */
1755 np->SavedClkRun = readl(ioaddr + ClkRun);
1756 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1757 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1758 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1759 dev->name, readl(ioaddr + WOLCmd));
1760 }
1761
1762 check_link(dev);
1763 __set_rx_mode(dev);
1764
1765 /* Enable interrupts by setting the interrupt mask. */
1766 writel(DEFAULT_INTR, ioaddr + IntrMask);
14fdd90e 1767 natsemi_irq_enable(dev);
1da177e4
LT
1768
1769 writel(RxOn | TxOn, ioaddr + ChipCmd);
1770 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1771}
1772
1773/*
1774 * netdev_timer:
1775 * Purpose:
1776 * 1) check for link changes. Usually they are handled by the MII interrupt
1777 * but it doesn't hurt to check twice.
1778 * 2) check for sudden death of the NIC:
1779 * It seems that a reference set for this chip went out with incorrect info,
1780 * and there exist boards that aren't quite right. An unexpected voltage
1781 * drop can cause the PHY to get itself in a weird state (basically reset).
1a147809
MB
1782 * NOTE: this only seems to affect revC chips. The user can disable
1783 * this check via dspcfg_workaround sysfs option.
1da177e4
LT
1784 * 3) check of death of the RX path due to OOM
1785 */
1786static void netdev_timer(unsigned long data)
1787{
1788 struct net_device *dev = (struct net_device *)data;
1789 struct netdev_private *np = netdev_priv(dev);
1790 void __iomem * ioaddr = ns_ioaddr(dev);
f2cade13 1791 int next_tick = NATSEMI_TIMER_FREQ;
d710ce13 1792 const int irq = np->pci_dev->irq;
1da177e4
LT
1793
1794 if (netif_msg_timer(np)) {
1795 /* DO NOT read the IntrStatus register,
1796 * a read clears any pending interrupts.
1797 */
1798 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1799 dev->name);
1800 }
1801
1802 if (dev->if_port == PORT_TP) {
1803 u16 dspcfg;
1804
1805 spin_lock_irq(&np->lock);
1806 /* check for a nasty random phy-reset - use dspcfg as a flag */
1807 writew(1, ioaddr+PGSEL);
1808 dspcfg = readw(ioaddr+DSPCFG);
1809 writew(0, ioaddr+PGSEL);
1a147809 1810 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1da177e4
LT
1811 if (!netif_queue_stopped(dev)) {
1812 spin_unlock_irq(&np->lock);
d0ed4864 1813 if (netif_msg_drv(np))
1da177e4
LT
1814 printk(KERN_NOTICE "%s: possible phy reset: "
1815 "re-initializing\n", dev->name);
d710ce13 1816 disable_irq(irq);
1da177e4
LT
1817 spin_lock_irq(&np->lock);
1818 natsemi_stop_rxtx(dev);
1819 dump_ring(dev);
1820 reinit_ring(dev);
1821 init_registers(dev);
1822 spin_unlock_irq(&np->lock);
d710ce13 1823 enable_irq(irq);
1da177e4
LT
1824 } else {
1825 /* hurry back */
1826 next_tick = HZ;
1827 spin_unlock_irq(&np->lock);
1828 }
1829 } else {
1830 /* init_registers() calls check_link() for the above case */
1831 check_link(dev);
1832 spin_unlock_irq(&np->lock);
1833 }
1834 } else {
1835 spin_lock_irq(&np->lock);
1836 check_link(dev);
1837 spin_unlock_irq(&np->lock);
1838 }
1839 if (np->oom) {
d710ce13 1840 disable_irq(irq);
1da177e4
LT
1841 np->oom = 0;
1842 refill_rx(dev);
d710ce13 1843 enable_irq(irq);
1da177e4
LT
1844 if (!np->oom) {
1845 writel(RxOn, ioaddr + ChipCmd);
1846 } else {
1847 next_tick = 1;
1848 }
1849 }
0e5d5442
MB
1850
1851 if (next_tick > 1)
1852 mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1853 else
1854 mod_timer(&np->timer, jiffies + next_tick);
1da177e4
LT
1855}
1856
1857static void dump_ring(struct net_device *dev)
1858{
1859 struct netdev_private *np = netdev_priv(dev);
1860
1861 if (netif_msg_pktdata(np)) {
1862 int i;
1863 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1864 for (i = 0; i < TX_RING_SIZE; i++) {
1865 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1866 i, np->tx_ring[i].next_desc,
1867 np->tx_ring[i].cmd_status,
1868 np->tx_ring[i].addr);
1869 }
1870 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1871 for (i = 0; i < RX_RING_SIZE; i++) {
1872 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1873 i, np->rx_ring[i].next_desc,
1874 np->rx_ring[i].cmd_status,
1875 np->rx_ring[i].addr);
1876 }
1877 }
1878}
1879
ed4cb133 1880static void ns_tx_timeout(struct net_device *dev)
1da177e4
LT
1881{
1882 struct netdev_private *np = netdev_priv(dev);
1883 void __iomem * ioaddr = ns_ioaddr(dev);
d710ce13 1884 const int irq = np->pci_dev->irq;
1da177e4 1885
d710ce13 1886 disable_irq(irq);
1da177e4
LT
1887 spin_lock_irq(&np->lock);
1888 if (!np->hands_off) {
1889 if (netif_msg_tx_err(np))
1890 printk(KERN_WARNING
1891 "%s: Transmit timed out, status %#08x,"
1892 " resetting...\n",
1893 dev->name, readl(ioaddr + IntrStatus));
1894 dump_ring(dev);
1895
1896 natsemi_reset(dev);
1897 reinit_ring(dev);
1898 init_registers(dev);
1899 } else {
1900 printk(KERN_WARNING
1901 "%s: tx_timeout while in hands_off state?\n",
1902 dev->name);
1903 }
1904 spin_unlock_irq(&np->lock);
d710ce13 1905 enable_irq(irq);
1da177e4 1906
1ae5dc34 1907 dev->trans_start = jiffies; /* prevent tx timeout */
2321e80a 1908 dev->stats.tx_errors++;
1da177e4
LT
1909 netif_wake_queue(dev);
1910}
1911
1912static int alloc_ring(struct net_device *dev)
1913{
1914 struct netdev_private *np = netdev_priv(dev);
1915 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1916 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1917 &np->ring_dma);
1918 if (!np->rx_ring)
1919 return -ENOMEM;
1920 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1921 return 0;
1922}
1923
1924static void refill_rx(struct net_device *dev)
1925{
1926 struct netdev_private *np = netdev_priv(dev);
1927
1928 /* Refill the Rx ring buffers. */
1929 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1930 struct sk_buff *skb;
1931 int entry = np->dirty_rx % RX_RING_SIZE;
1932 if (np->rx_skbuff[entry] == NULL) {
1933 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
c056b734 1934 skb = netdev_alloc_skb(dev, buflen);
1da177e4
LT
1935 np->rx_skbuff[entry] = skb;
1936 if (skb == NULL)
1937 break; /* Better luck next round. */
1da177e4 1938 np->rx_dma[entry] = pci_map_single(np->pci_dev,
689be439 1939 skb->data, buflen, PCI_DMA_FROMDEVICE);
45af5500
AK
1940 if (pci_dma_mapping_error(np->pci_dev,
1941 np->rx_dma[entry])) {
1942 dev_kfree_skb_any(skb);
1943 np->rx_skbuff[entry] = NULL;
1944 break; /* Better luck next round. */
1945 }
1da177e4
LT
1946 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1947 }
1948 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1949 }
1950 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1951 if (netif_msg_rx_err(np))
1952 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1953 np->oom = 1;
1954 }
1955}
1956
1957static void set_bufsize(struct net_device *dev)
1958{
1959 struct netdev_private *np = netdev_priv(dev);
1960 if (dev->mtu <= ETH_DATA_LEN)
1961 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1962 else
1963 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1964}
1965
1966/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1967static void init_ring(struct net_device *dev)
1968{
1969 struct netdev_private *np = netdev_priv(dev);
1970 int i;
1971
1972 /* 1) TX ring */
1973 np->dirty_tx = np->cur_tx = 0;
1974 for (i = 0; i < TX_RING_SIZE; i++) {
1975 np->tx_skbuff[i] = NULL;
1976 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1977 +sizeof(struct netdev_desc)
1978 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1979 np->tx_ring[i].cmd_status = 0;
1980 }
1981
1982 /* 2) RX ring */
1983 np->dirty_rx = 0;
1984 np->cur_rx = RX_RING_SIZE;
1985 np->oom = 0;
1986 set_bufsize(dev);
1987
1988 np->rx_head_desc = &np->rx_ring[0];
1989
25985edc 1990 /* Please be careful before changing this loop - at least gcc-2.95.1
1da177e4
LT
1991 * miscompiles it otherwise.
1992 */
1993 /* Initialize all Rx descriptors. */
1994 for (i = 0; i < RX_RING_SIZE; i++) {
1995 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1996 +sizeof(struct netdev_desc)
1997 *((i+1)%RX_RING_SIZE));
1998 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1999 np->rx_skbuff[i] = NULL;
2000 }
2001 refill_rx(dev);
2002 dump_ring(dev);
2003}
2004
2005static void drain_tx(struct net_device *dev)
2006{
2007 struct netdev_private *np = netdev_priv(dev);
2008 int i;
2009
2010 for (i = 0; i < TX_RING_SIZE; i++) {
2011 if (np->tx_skbuff[i]) {
2012 pci_unmap_single(np->pci_dev,
2013 np->tx_dma[i], np->tx_skbuff[i]->len,
2014 PCI_DMA_TODEVICE);
2015 dev_kfree_skb(np->tx_skbuff[i]);
2321e80a 2016 dev->stats.tx_dropped++;
1da177e4
LT
2017 }
2018 np->tx_skbuff[i] = NULL;
2019 }
2020}
2021
2022static void drain_rx(struct net_device *dev)
2023{
2024 struct netdev_private *np = netdev_priv(dev);
2025 unsigned int buflen = np->rx_buf_sz;
2026 int i;
2027
2028 /* Free all the skbuffs in the Rx queue. */
2029 for (i = 0; i < RX_RING_SIZE; i++) {
2030 np->rx_ring[i].cmd_status = 0;
eca1ad82 2031 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1da177e4 2032 if (np->rx_skbuff[i]) {
ff181774
JC
2033 pci_unmap_single(np->pci_dev, np->rx_dma[i],
2034 buflen + NATSEMI_PADDING,
1da177e4
LT
2035 PCI_DMA_FROMDEVICE);
2036 dev_kfree_skb(np->rx_skbuff[i]);
2037 }
2038 np->rx_skbuff[i] = NULL;
2039 }
2040}
2041
2042static void drain_ring(struct net_device *dev)
2043{
2044 drain_rx(dev);
2045 drain_tx(dev);
2046}
2047
2048static void free_ring(struct net_device *dev)
2049{
2050 struct netdev_private *np = netdev_priv(dev);
2051 pci_free_consistent(np->pci_dev,
2052 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2053 np->rx_ring, np->ring_dma);
2054}
2055
2056static void reinit_rx(struct net_device *dev)
2057{
2058 struct netdev_private *np = netdev_priv(dev);
2059 int i;
2060
2061 /* RX Ring */
2062 np->dirty_rx = 0;
2063 np->cur_rx = RX_RING_SIZE;
2064 np->rx_head_desc = &np->rx_ring[0];
2065 /* Initialize all Rx descriptors. */
2066 for (i = 0; i < RX_RING_SIZE; i++)
2067 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2068
2069 refill_rx(dev);
2070}
2071
2072static void reinit_ring(struct net_device *dev)
2073{
2074 struct netdev_private *np = netdev_priv(dev);
2075 int i;
2076
2077 /* drain TX ring */
2078 drain_tx(dev);
2079 np->dirty_tx = np->cur_tx = 0;
2080 for (i=0;i<TX_RING_SIZE;i++)
2081 np->tx_ring[i].cmd_status = 0;
2082
2083 reinit_rx(dev);
2084}
2085
61357325 2086static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2087{
2088 struct netdev_private *np = netdev_priv(dev);
2089 void __iomem * ioaddr = ns_ioaddr(dev);
2090 unsigned entry;
6006f7f5 2091 unsigned long flags;
1da177e4
LT
2092
2093 /* Note: Ordering is important here, set the field with the
2094 "ownership" bit last, and only then increment cur_tx. */
2095
2096 /* Calculate the next Tx descriptor entry. */
2097 entry = np->cur_tx % TX_RING_SIZE;
2098
2099 np->tx_skbuff[entry] = skb;
2100 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2101 skb->data,skb->len, PCI_DMA_TODEVICE);
45af5500
AK
2102 if (pci_dma_mapping_error(np->pci_dev, np->tx_dma[entry])) {
2103 np->tx_skbuff[entry] = NULL;
2104 dev_kfree_skb_irq(skb);
2105 dev->stats.tx_dropped++;
2106 return NETDEV_TX_OK;
2107 }
1da177e4
LT
2108
2109 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2110
6006f7f5 2111 spin_lock_irqsave(&np->lock, flags);
1da177e4
LT
2112
2113 if (!np->hands_off) {
2114 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2115 /* StrongARM: Explicitly cache flush np->tx_ring and
2116 * skb->data,skb->len. */
2117 wmb();
2118 np->cur_tx++;
2119 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2120 netdev_tx_done(dev);
2121 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2122 netif_stop_queue(dev);
2123 }
2124 /* Wake the potentially-idle transmit channel. */
2125 writel(TxOn, ioaddr + ChipCmd);
2126 } else {
2127 dev_kfree_skb_irq(skb);
2321e80a 2128 dev->stats.tx_dropped++;
1da177e4 2129 }
6006f7f5 2130 spin_unlock_irqrestore(&np->lock, flags);
1da177e4 2131
1da177e4
LT
2132 if (netif_msg_tx_queued(np)) {
2133 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2134 dev->name, np->cur_tx, entry);
2135 }
6ed10654 2136 return NETDEV_TX_OK;
1da177e4
LT
2137}
2138
2139static void netdev_tx_done(struct net_device *dev)
2140{
2141 struct netdev_private *np = netdev_priv(dev);
2142
2143 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2144 int entry = np->dirty_tx % TX_RING_SIZE;
2145 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2146 break;
2147 if (netif_msg_tx_done(np))
2148 printk(KERN_DEBUG
2149 "%s: tx frame #%d finished, status %#08x.\n",
2150 dev->name, np->dirty_tx,
2151 le32_to_cpu(np->tx_ring[entry].cmd_status));
2152 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2321e80a
KV
2153 dev->stats.tx_packets++;
2154 dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
1da177e4
LT
2155 } else { /* Various Tx errors */
2156 int tx_status =
2157 le32_to_cpu(np->tx_ring[entry].cmd_status);
2158 if (tx_status & (DescTxAbort|DescTxExcColl))
2321e80a 2159 dev->stats.tx_aborted_errors++;
1da177e4 2160 if (tx_status & DescTxFIFO)
2321e80a 2161 dev->stats.tx_fifo_errors++;
1da177e4 2162 if (tx_status & DescTxCarrier)
2321e80a 2163 dev->stats.tx_carrier_errors++;
1da177e4 2164 if (tx_status & DescTxOOWCol)
2321e80a
KV
2165 dev->stats.tx_window_errors++;
2166 dev->stats.tx_errors++;
1da177e4
LT
2167 }
2168 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2169 np->tx_skbuff[entry]->len,
2170 PCI_DMA_TODEVICE);
2171 /* Free the original skb. */
2172 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2173 np->tx_skbuff[entry] = NULL;
2174 }
8e95a202
JP
2175 if (netif_queue_stopped(dev) &&
2176 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1da177e4
LT
2177 /* The ring is no longer full, wake queue. */
2178 netif_wake_queue(dev);
2179 }
2180}
2181
b27a16b7
MB
2182/* The interrupt handler doesn't actually handle interrupts itself, it
2183 * schedules a NAPI poll if there is anything to do. */
7d12e780 2184static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
2185{
2186 struct net_device *dev = dev_instance;
2187 struct netdev_private *np = netdev_priv(dev);
2188 void __iomem * ioaddr = ns_ioaddr(dev);
1da177e4 2189
069f8256 2190 /* Reading IntrStatus automatically acknowledges so don't do
2191 * that while interrupts are disabled, (for example, while a
2192 * poll is scheduled). */
2193 if (np->hands_off || !readl(ioaddr + IntrEnable))
1da177e4 2194 return IRQ_NONE;
6aa20a22 2195
b27a16b7 2196 np->intr_status = readl(ioaddr + IntrStatus);
1da177e4 2197
069f8256 2198 if (!np->intr_status)
2199 return IRQ_NONE;
2200
b27a16b7
MB
2201 if (netif_msg_intr(np))
2202 printk(KERN_DEBUG
2203 "%s: Interrupt, status %#08x, mask %#08x.\n",
2204 dev->name, np->intr_status,
2205 readl(ioaddr + IntrMask));
1da177e4 2206
b27a16b7
MB
2207 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2208
288379f0 2209 if (napi_schedule_prep(&np->napi)) {
b27a16b7
MB
2210 /* Disable interrupts and register for poll */
2211 natsemi_irq_disable(dev);
288379f0 2212 __napi_schedule(&np->napi);
069f8256 2213 } else
2214 printk(KERN_WARNING
2215 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2216 dev->name, np->intr_status,
2217 readl(ioaddr + IntrMask));
2218
b27a16b7
MB
2219 return IRQ_HANDLED;
2220}
2221
2222/* This is the NAPI poll routine. As well as the standard RX handling
2223 * it also handles all other interrupts that the chip might raise.
2224 */
bea3348e 2225static int natsemi_poll(struct napi_struct *napi, int budget)
b27a16b7 2226{
bea3348e
SH
2227 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2228 struct net_device *dev = np->dev;
b27a16b7 2229 void __iomem * ioaddr = ns_ioaddr(dev);
b27a16b7
MB
2230 int work_done = 0;
2231
2232 do {
069f8256 2233 if (netif_msg_intr(np))
2234 printk(KERN_DEBUG
2235 "%s: Poll, status %#08x, mask %#08x.\n",
2236 dev->name, np->intr_status,
2237 readl(ioaddr + IntrMask));
2238
d2a90036 2239 /* netdev_rx() may read IntrStatus again if the RX state
2240 * machine falls over so do it first. */
2241 if (np->intr_status &
2242 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2243 IntrRxErr | IntrRxOverrun)) {
bea3348e 2244 netdev_rx(dev, &work_done, budget);
d2a90036 2245 }
2246
b27a16b7
MB
2247 if (np->intr_status &
2248 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
1da177e4
LT
2249 spin_lock(&np->lock);
2250 netdev_tx_done(dev);
2251 spin_unlock(&np->lock);
2252 }
2253
2254 /* Abnormal error summary/uncommon events handlers. */
b27a16b7
MB
2255 if (np->intr_status & IntrAbnormalSummary)
2256 netdev_error(dev, np->intr_status);
6aa20a22 2257
bea3348e
SH
2258 if (work_done >= budget)
2259 return work_done;
b27a16b7
MB
2260
2261 np->intr_status = readl(ioaddr + IntrStatus);
2262 } while (np->intr_status);
1da177e4 2263
288379f0 2264 napi_complete(napi);
b27a16b7
MB
2265
2266 /* Reenable interrupts providing nothing is trying to shut
2267 * the chip down. */
2268 spin_lock(&np->lock);
4ec24119 2269 if (!np->hands_off)
b27a16b7
MB
2270 natsemi_irq_enable(dev);
2271 spin_unlock(&np->lock);
2272
bea3348e 2273 return work_done;
1da177e4
LT
2274}
2275
2276/* This routine is logically part of the interrupt handler, but separated
2277 for clarity and better register allocation. */
b27a16b7 2278static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
1da177e4
LT
2279{
2280 struct netdev_private *np = netdev_priv(dev);
2281 int entry = np->cur_rx % RX_RING_SIZE;
2282 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2283 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2284 unsigned int buflen = np->rx_buf_sz;
2285 void __iomem * ioaddr = ns_ioaddr(dev);
2286
2287 /* If the driver owns the next entry it's a new packet. Send it up. */
2288 while (desc_status < 0) { /* e.g. & DescOwn */
2289 int pkt_len;
2290 if (netif_msg_rx_status(np))
2291 printk(KERN_DEBUG
2292 " netdev_rx() entry %d status was %#08x.\n",
2293 entry, desc_status);
2294 if (--boguscnt < 0)
2295 break;
b27a16b7
MB
2296
2297 if (*work_done >= work_to_do)
2298 break;
2299
2300 (*work_done)++;
2301
1da177e4
LT
2302 pkt_len = (desc_status & DescSizeMask) - 4;
2303 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2304 if (desc_status & DescMore) {
6006f7f5
SS
2305 unsigned long flags;
2306
1da177e4
LT
2307 if (netif_msg_rx_err(np))
2308 printk(KERN_WARNING
2309 "%s: Oversized(?) Ethernet "
2310 "frame spanned multiple "
2311 "buffers, entry %#08x "
2312 "status %#08x.\n", dev->name,
2313 np->cur_rx, desc_status);
2321e80a 2314 dev->stats.rx_length_errors++;
e72fd96e
MB
2315
2316 /* The RX state machine has probably
2317 * locked up beneath us. Follow the
2318 * reset procedure documented in
2319 * AN-1287. */
2320
6006f7f5 2321 spin_lock_irqsave(&np->lock, flags);
e72fd96e
MB
2322 reset_rx(dev);
2323 reinit_rx(dev);
2324 writel(np->ring_dma, ioaddr + RxRingPtr);
2325 check_link(dev);
6006f7f5 2326 spin_unlock_irqrestore(&np->lock, flags);
e72fd96e
MB
2327
2328 /* We'll enable RX on exit from this
2329 * function. */
2330 break;
2331
1da177e4
LT
2332 } else {
2333 /* There was an error. */
2321e80a 2334 dev->stats.rx_errors++;
1da177e4 2335 if (desc_status & (DescRxAbort|DescRxOver))
2321e80a 2336 dev->stats.rx_over_errors++;
1da177e4 2337 if (desc_status & (DescRxLong|DescRxRunt))
2321e80a 2338 dev->stats.rx_length_errors++;
1da177e4 2339 if (desc_status & (DescRxInvalid|DescRxAlign))
2321e80a 2340 dev->stats.rx_frame_errors++;
1da177e4 2341 if (desc_status & DescRxCRC)
2321e80a 2342 dev->stats.rx_crc_errors++;
1da177e4
LT
2343 }
2344 } else if (pkt_len > np->rx_buf_sz) {
2345 /* if this is the tail of a double buffer
2346 * packet, we've already counted the error
2347 * on the first part. Ignore the second half.
2348 */
2349 } else {
2350 struct sk_buff *skb;
2351 /* Omit CRC size. */
2352 /* Check if the packet is long enough to accept
2353 * without copying to a minimally-sized skbuff. */
8e95a202 2354 if (pkt_len < rx_copybreak &&
c056b734 2355 (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
1da177e4
LT
2356 /* 16 byte align the IP header */
2357 skb_reserve(skb, RX_OFFSET);
2358 pci_dma_sync_single_for_cpu(np->pci_dev,
2359 np->rx_dma[entry],
2360 buflen,
2361 PCI_DMA_FROMDEVICE);
8c7b7faa
DM
2362 skb_copy_to_linear_data(skb,
2363 np->rx_skbuff[entry]->data, pkt_len);
1da177e4
LT
2364 skb_put(skb, pkt_len);
2365 pci_dma_sync_single_for_device(np->pci_dev,
2366 np->rx_dma[entry],
2367 buflen,
2368 PCI_DMA_FROMDEVICE);
2369 } else {
2370 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2fb83cd6
FT
2371 buflen + NATSEMI_PADDING,
2372 PCI_DMA_FROMDEVICE);
1da177e4
LT
2373 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2374 np->rx_skbuff[entry] = NULL;
2375 }
2376 skb->protocol = eth_type_trans(skb, dev);
b27a16b7 2377 netif_receive_skb(skb);
2321e80a
KV
2378 dev->stats.rx_packets++;
2379 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
2380 }
2381 entry = (++np->cur_rx) % RX_RING_SIZE;
2382 np->rx_head_desc = &np->rx_ring[entry];
2383 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2384 }
2385 refill_rx(dev);
2386
2387 /* Restart Rx engine if stopped. */
2388 if (np->oom)
2389 mod_timer(&np->timer, jiffies + 1);
2390 else
2391 writel(RxOn, ioaddr + ChipCmd);
2392}
2393
2394static void netdev_error(struct net_device *dev, int intr_status)
2395{
2396 struct netdev_private *np = netdev_priv(dev);
2397 void __iomem * ioaddr = ns_ioaddr(dev);
2398
2399 spin_lock(&np->lock);
2400 if (intr_status & LinkChange) {
2401 u16 lpa = mdio_read(dev, MII_LPA);
8e95a202
JP
2402 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2403 netif_msg_link(np)) {
1da177e4
LT
2404 printk(KERN_INFO
2405 "%s: Autonegotiation advertising"
2406 " %#04x partner %#04x.\n", dev->name,
2407 np->advertising, lpa);
2408 }
2409
2410 /* read MII int status to clear the flag */
2411 readw(ioaddr + MIntrStatus);
2412 check_link(dev);
2413 }
2414 if (intr_status & StatsMax) {
2415 __get_stats(dev);
2416 }
2417 if (intr_status & IntrTxUnderrun) {
2418 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2419 np->tx_config += TX_DRTH_VAL_INC;
2420 if (netif_msg_tx_err(np))
2421 printk(KERN_NOTICE
2422 "%s: increased tx threshold, txcfg %#08x.\n",
2423 dev->name, np->tx_config);
2424 } else {
2425 if (netif_msg_tx_err(np))
2426 printk(KERN_NOTICE
2427 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2428 dev->name, np->tx_config);
2429 }
2430 writel(np->tx_config, ioaddr + TxConfig);
2431 }
2432 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2433 int wol_status = readl(ioaddr + WOLCmd);
2434 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2435 dev->name, wol_status);
2436 }
2437 if (intr_status & RxStatusFIFOOver) {
2438 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2439 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2440 dev->name);
2441 }
2321e80a
KV
2442 dev->stats.rx_fifo_errors++;
2443 dev->stats.rx_errors++;
1da177e4
LT
2444 }
2445 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2446 if (intr_status & IntrPCIErr) {
2447 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2448 intr_status & IntrPCIErr);
2321e80a
KV
2449 dev->stats.tx_fifo_errors++;
2450 dev->stats.tx_errors++;
2451 dev->stats.rx_fifo_errors++;
2452 dev->stats.rx_errors++;
1da177e4
LT
2453 }
2454 spin_unlock(&np->lock);
2455}
2456
2457static void __get_stats(struct net_device *dev)
2458{
2459 void __iomem * ioaddr = ns_ioaddr(dev);
1da177e4
LT
2460
2461 /* The chip only need report frame silently dropped. */
2321e80a
KV
2462 dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2463 dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
1da177e4
LT
2464}
2465
2466static struct net_device_stats *get_stats(struct net_device *dev)
2467{
2468 struct netdev_private *np = netdev_priv(dev);
2469
2470 /* The chip only need report frame silently dropped. */
2471 spin_lock_irq(&np->lock);
2472 if (netif_running(dev) && !np->hands_off)
2473 __get_stats(dev);
2474 spin_unlock_irq(&np->lock);
2475
2321e80a 2476 return &dev->stats;
1da177e4
LT
2477}
2478
2479#ifdef CONFIG_NET_POLL_CONTROLLER
2480static void natsemi_poll_controller(struct net_device *dev)
2481{
d710ce13
FR
2482 struct netdev_private *np = netdev_priv(dev);
2483 const int irq = np->pci_dev->irq;
2484
2485 disable_irq(irq);
2486 intr_handler(irq, dev);
2487 enable_irq(irq);
1da177e4
LT
2488}
2489#endif
2490
2491#define HASH_TABLE 0x200
2492static void __set_rx_mode(struct net_device *dev)
2493{
2494 void __iomem * ioaddr = ns_ioaddr(dev);
2495 struct netdev_private *np = netdev_priv(dev);
2496 u8 mc_filter[64]; /* Multicast hash filter */
2497 u32 rx_mode;
2498
2499 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2500 rx_mode = RxFilterEnable | AcceptBroadcast
2501 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
4cd24eaf 2502 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 2503 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
2504 rx_mode = RxFilterEnable | AcceptBroadcast
2505 | AcceptAllMulticast | AcceptMyPhys;
2506 } else {
22bedad3 2507 struct netdev_hw_addr *ha;
1da177e4 2508 int i;
f9dcbcc9 2509
1da177e4 2510 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
2511 netdev_for_each_mc_addr(ha, dev) {
2512 int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
ddfce6bb 2513 mc_filter[b/8] |= (1 << (b & 0x07));
1da177e4
LT
2514 }
2515 rx_mode = RxFilterEnable | AcceptBroadcast
2516 | AcceptMulticast | AcceptMyPhys;
2517 for (i = 0; i < 64; i += 2) {
760f86d7
HX
2518 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2519 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2520 ioaddr + RxFilterData);
1da177e4
LT
2521 }
2522 }
2523 writel(rx_mode, ioaddr + RxFilterAddr);
2524 np->cur_rx_mode = rx_mode;
2525}
2526
2527static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2528{
2529 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2530 return -EINVAL;
2531
2532 dev->mtu = new_mtu;
2533
2534 /* synchronized against open : rtnl_lock() held by caller */
2535 if (netif_running(dev)) {
2536 struct netdev_private *np = netdev_priv(dev);
2537 void __iomem * ioaddr = ns_ioaddr(dev);
d710ce13 2538 const int irq = np->pci_dev->irq;
1da177e4 2539
d710ce13 2540 disable_irq(irq);
1da177e4
LT
2541 spin_lock(&np->lock);
2542 /* stop engines */
2543 natsemi_stop_rxtx(dev);
2544 /* drain rx queue */
2545 drain_rx(dev);
2546 /* change buffers */
2547 set_bufsize(dev);
2548 reinit_rx(dev);
2549 writel(np->ring_dma, ioaddr + RxRingPtr);
2550 /* restart engines */
2551 writel(RxOn | TxOn, ioaddr + ChipCmd);
2552 spin_unlock(&np->lock);
d710ce13 2553 enable_irq(irq);
1da177e4
LT
2554 }
2555 return 0;
2556}
2557
2558static void set_rx_mode(struct net_device *dev)
2559{
2560 struct netdev_private *np = netdev_priv(dev);
2561 spin_lock_irq(&np->lock);
2562 if (!np->hands_off)
2563 __set_rx_mode(dev);
2564 spin_unlock_irq(&np->lock);
2565}
2566
2567static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2568{
2569 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
2570 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2571 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2572 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
2573}
2574
2575static int get_regs_len(struct net_device *dev)
2576{
2577 return NATSEMI_REGS_SIZE;
2578}
2579
2580static int get_eeprom_len(struct net_device *dev)
2581{
a8b4cf42
MB
2582 struct netdev_private *np = netdev_priv(dev);
2583 return np->eeprom_size;
1da177e4
LT
2584}
2585
2586static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2587{
2588 struct netdev_private *np = netdev_priv(dev);
2589 spin_lock_irq(&np->lock);
2590 netdev_get_ecmd(dev, ecmd);
2591 spin_unlock_irq(&np->lock);
2592 return 0;
2593}
2594
2595static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2596{
2597 struct netdev_private *np = netdev_priv(dev);
2598 int res;
2599 spin_lock_irq(&np->lock);
2600 res = netdev_set_ecmd(dev, ecmd);
2601 spin_unlock_irq(&np->lock);
2602 return res;
2603}
2604
2605static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2606{
2607 struct netdev_private *np = netdev_priv(dev);
2608 spin_lock_irq(&np->lock);
2609 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2610 netdev_get_sopass(dev, wol->sopass);
2611 spin_unlock_irq(&np->lock);
2612}
2613
2614static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2615{
2616 struct netdev_private *np = netdev_priv(dev);
2617 int res;
2618 spin_lock_irq(&np->lock);
2619 netdev_set_wol(dev, wol->wolopts);
2620 res = netdev_set_sopass(dev, wol->sopass);
2621 spin_unlock_irq(&np->lock);
2622 return res;
2623}
2624
2625static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2626{
2627 struct netdev_private *np = netdev_priv(dev);
2628 regs->version = NATSEMI_REGS_VER;
2629 spin_lock_irq(&np->lock);
2630 netdev_get_regs(dev, buf);
2631 spin_unlock_irq(&np->lock);
2632}
2633
2634static u32 get_msglevel(struct net_device *dev)
2635{
2636 struct netdev_private *np = netdev_priv(dev);
2637 return np->msg_enable;
2638}
2639
2640static void set_msglevel(struct net_device *dev, u32 val)
2641{
2642 struct netdev_private *np = netdev_priv(dev);
2643 np->msg_enable = val;
2644}
2645
2646static int nway_reset(struct net_device *dev)
2647{
2648 int tmp;
2649 int r = -EINVAL;
2650 /* if autoneg is off, it's an error */
2651 tmp = mdio_read(dev, MII_BMCR);
2652 if (tmp & BMCR_ANENABLE) {
2653 tmp |= (BMCR_ANRESTART);
2654 mdio_write(dev, MII_BMCR, tmp);
2655 r = 0;
2656 }
2657 return r;
2658}
2659
2660static u32 get_link(struct net_device *dev)
2661{
2662 /* LSTATUS is latched low until a read - so read twice */
2663 mdio_read(dev, MII_BMSR);
2664 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2665}
2666
2667static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2668{
2669 struct netdev_private *np = netdev_priv(dev);
a8b4cf42 2670 u8 *eebuf;
1da177e4
LT
2671 int res;
2672
a8b4cf42
MB
2673 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2674 if (!eebuf)
2675 return -ENOMEM;
2676
1da177e4
LT
2677 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2678 spin_lock_irq(&np->lock);
2679 res = netdev_get_eeprom(dev, eebuf);
2680 spin_unlock_irq(&np->lock);
2681 if (!res)
2682 memcpy(data, eebuf+eeprom->offset, eeprom->len);
a8b4cf42 2683 kfree(eebuf);
1da177e4
LT
2684 return res;
2685}
2686
7282d491 2687static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
2688 .get_drvinfo = get_drvinfo,
2689 .get_regs_len = get_regs_len,
2690 .get_eeprom_len = get_eeprom_len,
2691 .get_settings = get_settings,
2692 .set_settings = set_settings,
2693 .get_wol = get_wol,
2694 .set_wol = set_wol,
2695 .get_regs = get_regs,
2696 .get_msglevel = get_msglevel,
2697 .set_msglevel = set_msglevel,
2698 .nway_reset = nway_reset,
2699 .get_link = get_link,
2700 .get_eeprom = get_eeprom,
2701};
2702
2703static int netdev_set_wol(struct net_device *dev, u32 newval)
2704{
2705 struct netdev_private *np = netdev_priv(dev);
2706 void __iomem * ioaddr = ns_ioaddr(dev);
2707 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2708
2709 /* translate to bitmasks this chip understands */
2710 if (newval & WAKE_PHY)
2711 data |= WakePhy;
2712 if (newval & WAKE_UCAST)
2713 data |= WakeUnicast;
2714 if (newval & WAKE_MCAST)
2715 data |= WakeMulticast;
2716 if (newval & WAKE_BCAST)
2717 data |= WakeBroadcast;
2718 if (newval & WAKE_ARP)
2719 data |= WakeArp;
2720 if (newval & WAKE_MAGIC)
2721 data |= WakeMagic;
2722 if (np->srr >= SRR_DP83815_D) {
2723 if (newval & WAKE_MAGICSECURE) {
2724 data |= WakeMagicSecure;
2725 }
2726 }
2727
2728 writel(data, ioaddr + WOLCmd);
2729
2730 return 0;
2731}
2732
2733static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2734{
2735 struct netdev_private *np = netdev_priv(dev);
2736 void __iomem * ioaddr = ns_ioaddr(dev);
2737 u32 regval = readl(ioaddr + WOLCmd);
2738
2739 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2740 | WAKE_ARP | WAKE_MAGIC);
2741
2742 if (np->srr >= SRR_DP83815_D) {
2743 /* SOPASS works on revD and higher */
2744 *supported |= WAKE_MAGICSECURE;
2745 }
2746 *cur = 0;
2747
2748 /* translate from chip bitmasks */
2749 if (regval & WakePhy)
2750 *cur |= WAKE_PHY;
2751 if (regval & WakeUnicast)
2752 *cur |= WAKE_UCAST;
2753 if (regval & WakeMulticast)
2754 *cur |= WAKE_MCAST;
2755 if (regval & WakeBroadcast)
2756 *cur |= WAKE_BCAST;
2757 if (regval & WakeArp)
2758 *cur |= WAKE_ARP;
2759 if (regval & WakeMagic)
2760 *cur |= WAKE_MAGIC;
2761 if (regval & WakeMagicSecure) {
2762 /* this can be on in revC, but it's broken */
2763 *cur |= WAKE_MAGICSECURE;
2764 }
2765
2766 return 0;
2767}
2768
2769static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2770{
2771 struct netdev_private *np = netdev_priv(dev);
2772 void __iomem * ioaddr = ns_ioaddr(dev);
2773 u16 *sval = (u16 *)newval;
2774 u32 addr;
2775
2776 if (np->srr < SRR_DP83815_D) {
2777 return 0;
2778 }
2779
2780 /* enable writing to these registers by disabling the RX filter */
2781 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2782 addr &= ~RxFilterEnable;
2783 writel(addr, ioaddr + RxFilterAddr);
2784
2785 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2786 writel(addr | 0xa, ioaddr + RxFilterAddr);
2787 writew(sval[0], ioaddr + RxFilterData);
2788
2789 writel(addr | 0xc, ioaddr + RxFilterAddr);
2790 writew(sval[1], ioaddr + RxFilterData);
2791
2792 writel(addr | 0xe, ioaddr + RxFilterAddr);
2793 writew(sval[2], ioaddr + RxFilterData);
2794
2795 /* re-enable the RX filter */
2796 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2797
2798 return 0;
2799}
2800
2801static int netdev_get_sopass(struct net_device *dev, u8 *data)
2802{
2803 struct netdev_private *np = netdev_priv(dev);
2804 void __iomem * ioaddr = ns_ioaddr(dev);
2805 u16 *sval = (u16 *)data;
2806 u32 addr;
2807
2808 if (np->srr < SRR_DP83815_D) {
2809 sval[0] = sval[1] = sval[2] = 0;
2810 return 0;
2811 }
2812
2813 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2814 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2815
2816 writel(addr | 0xa, ioaddr + RxFilterAddr);
2817 sval[0] = readw(ioaddr + RxFilterData);
2818
2819 writel(addr | 0xc, ioaddr + RxFilterAddr);
2820 sval[1] = readw(ioaddr + RxFilterData);
2821
2822 writel(addr | 0xe, ioaddr + RxFilterAddr);
2823 sval[2] = readw(ioaddr + RxFilterData);
2824
2825 writel(addr, ioaddr + RxFilterAddr);
2826
2827 return 0;
2828}
2829
2830static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2831{
2832 struct netdev_private *np = netdev_priv(dev);
2833 u32 tmp;
2834
2835 ecmd->port = dev->if_port;
70739497 2836 ethtool_cmd_speed_set(ecmd, np->speed);
1da177e4
LT
2837 ecmd->duplex = np->duplex;
2838 ecmd->autoneg = np->autoneg;
2839 ecmd->advertising = 0;
2840 if (np->advertising & ADVERTISE_10HALF)
2841 ecmd->advertising |= ADVERTISED_10baseT_Half;
2842 if (np->advertising & ADVERTISE_10FULL)
2843 ecmd->advertising |= ADVERTISED_10baseT_Full;
2844 if (np->advertising & ADVERTISE_100HALF)
2845 ecmd->advertising |= ADVERTISED_100baseT_Half;
2846 if (np->advertising & ADVERTISE_100FULL)
2847 ecmd->advertising |= ADVERTISED_100baseT_Full;
2848 ecmd->supported = (SUPPORTED_Autoneg |
2849 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2850 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2851 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2852 ecmd->phy_address = np->phy_addr_external;
2853 /*
2854 * We intentionally report the phy address of the external
2855 * phy, even if the internal phy is used. This is necessary
2856 * to work around a deficiency of the ethtool interface:
2857 * It's only possible to query the settings of the active
6aa20a22 2858 * port. Therefore
1da177e4
LT
2859 * # ethtool -s ethX port mii
2860 * actually sends an ioctl to switch to port mii with the
2861 * settings that are used for the current active port.
2862 * If we would report a different phy address in this
2863 * command, then
2864 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2865 * would unintentionally change the phy address.
2866 *
2867 * Fortunately the phy address doesn't matter with the
2868 * internal phy...
2869 */
2870
2871 /* set information based on active port type */
2872 switch (ecmd->port) {
2873 default:
2874 case PORT_TP:
2875 ecmd->advertising |= ADVERTISED_TP;
2876 ecmd->transceiver = XCVR_INTERNAL;
2877 break;
2878 case PORT_MII:
2879 ecmd->advertising |= ADVERTISED_MII;
2880 ecmd->transceiver = XCVR_EXTERNAL;
2881 break;
2882 case PORT_FIBRE:
2883 ecmd->advertising |= ADVERTISED_FIBRE;
2884 ecmd->transceiver = XCVR_EXTERNAL;
2885 break;
2886 }
2887
2888 /* if autonegotiation is on, try to return the active speed/duplex */
2889 if (ecmd->autoneg == AUTONEG_ENABLE) {
2890 ecmd->advertising |= ADVERTISED_Autoneg;
2891 tmp = mii_nway_result(
2892 np->advertising & mdio_read(dev, MII_LPA));
2893 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
70739497 2894 ethtool_cmd_speed_set(ecmd, SPEED_100);
1da177e4 2895 else
70739497 2896 ethtool_cmd_speed_set(ecmd, SPEED_10);
1da177e4
LT
2897 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2898 ecmd->duplex = DUPLEX_FULL;
2899 else
2900 ecmd->duplex = DUPLEX_HALF;
2901 }
2902
2903 /* ignore maxtxpkt, maxrxpkt for now */
2904
2905 return 0;
2906}
2907
2908static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2909{
2910 struct netdev_private *np = netdev_priv(dev);
2911
2912 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2913 return -EINVAL;
2914 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2915 return -EINVAL;
2916 if (ecmd->autoneg == AUTONEG_ENABLE) {
2917 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2918 ADVERTISED_10baseT_Full |
2919 ADVERTISED_100baseT_Half |
2920 ADVERTISED_100baseT_Full)) == 0) {
2921 return -EINVAL;
2922 }
2923 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
25db0338
DD
2924 u32 speed = ethtool_cmd_speed(ecmd);
2925 if (speed != SPEED_10 && speed != SPEED_100)
1da177e4
LT
2926 return -EINVAL;
2927 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2928 return -EINVAL;
2929 } else {
2930 return -EINVAL;
2931 }
2932
68c90166
MB
2933 /*
2934 * If we're ignoring the PHY then autoneg and the internal
7c9d440e 2935 * transceiver are really not going to work so don't let the
68c90166
MB
2936 * user select them.
2937 */
2938 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2939 ecmd->port == PORT_TP))
2940 return -EINVAL;
2941
1da177e4
LT
2942 /*
2943 * maxtxpkt, maxrxpkt: ignored for now.
2944 *
2945 * transceiver:
2946 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2947 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2948 * selects based on ecmd->port.
2949 *
2950 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2951 * phys that are connected to the mii bus. It's used to apply fibre
2952 * specific updates.
2953 */
2954
2955 /* WHEW! now lets bang some bits */
2956
2957 /* save the parms */
2958 dev->if_port = ecmd->port;
2959 np->autoneg = ecmd->autoneg;
2960 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2961 if (np->autoneg == AUTONEG_ENABLE) {
2962 /* advertise only what has been requested */
2963 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2964 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2965 np->advertising |= ADVERTISE_10HALF;
2966 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2967 np->advertising |= ADVERTISE_10FULL;
2968 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2969 np->advertising |= ADVERTISE_100HALF;
2970 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2971 np->advertising |= ADVERTISE_100FULL;
2972 } else {
25db0338 2973 np->speed = ethtool_cmd_speed(ecmd);
1da177e4
LT
2974 np->duplex = ecmd->duplex;
2975 /* user overriding the initial full duplex parm? */
2976 if (np->duplex == DUPLEX_HALF)
2977 np->full_duplex = 0;
2978 }
2979
2980 /* get the right phy enabled */
2981 if (ecmd->port == PORT_TP)
2982 switch_port_internal(dev);
2983 else
2984 switch_port_external(dev);
2985
2986 /* set parms and see how this affected our link status */
2987 init_phy_fixup(dev);
2988 check_link(dev);
2989 return 0;
2990}
2991
2992static int netdev_get_regs(struct net_device *dev, u8 *buf)
2993{
2994 int i;
2995 int j;
2996 u32 rfcr;
2997 u32 *rbuf = (u32 *)buf;
2998 void __iomem * ioaddr = ns_ioaddr(dev);
2999
3000 /* read non-mii page 0 of registers */
3001 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3002 rbuf[i] = readl(ioaddr + i*4);
3003 }
3004
3005 /* read current mii registers */
3006 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3007 rbuf[i] = mdio_read(dev, i & 0x1f);
3008
3009 /* read only the 'magic' registers from page 1 */
3010 writew(1, ioaddr + PGSEL);
3011 rbuf[i++] = readw(ioaddr + PMDCSR);
3012 rbuf[i++] = readw(ioaddr + TSTDAT);
3013 rbuf[i++] = readw(ioaddr + DSPCFG);
3014 rbuf[i++] = readw(ioaddr + SDCFG);
3015 writew(0, ioaddr + PGSEL);
3016
3017 /* read RFCR indexed registers */
3018 rfcr = readl(ioaddr + RxFilterAddr);
3019 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3020 writel(j*2, ioaddr + RxFilterAddr);
3021 rbuf[i++] = readw(ioaddr + RxFilterData);
3022 }
3023 writel(rfcr, ioaddr + RxFilterAddr);
3024
3025 /* the interrupt status is clear-on-read - see if we missed any */
3026 if (rbuf[4] & rbuf[5]) {
3027 printk(KERN_WARNING
3028 "%s: shoot, we dropped an interrupt (%#08x)\n",
3029 dev->name, rbuf[4] & rbuf[5]);
3030 }
3031
3032 return 0;
3033}
3034
3035#define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3036 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3037 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3038 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3039 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3040 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3041 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3042 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3043
3044static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3045{
3046 int i;
3047 u16 *ebuf = (u16 *)buf;
3048 void __iomem * ioaddr = ns_ioaddr(dev);
a8b4cf42 3049 struct netdev_private *np = netdev_priv(dev);
1da177e4
LT
3050
3051 /* eeprom_read reads 16 bits, and indexes by 16 bits */
a8b4cf42 3052 for (i = 0; i < np->eeprom_size/2; i++) {
1da177e4
LT
3053 ebuf[i] = eeprom_read(ioaddr, i);
3054 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3055 * reads it back "sanely". So we swap it back here in order to
3056 * present it to userland as it is stored. */
3057 ebuf[i] = SWAP_BITS(ebuf[i]);
3058 }
3059 return 0;
3060}
3061
3062static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3063{
3064 struct mii_ioctl_data *data = if_mii(rq);
3065 struct netdev_private *np = netdev_priv(dev);
3066
3067 switch(cmd) {
3068 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1da177e4
LT
3069 data->phy_id = np->phy_addr_external;
3070 /* Fall Through */
3071
3072 case SIOCGMIIREG: /* Read MII PHY register. */
1da177e4
LT
3073 /* The phy_id is not enough to uniquely identify
3074 * the intended target. Therefore the command is sent to
3075 * the given mii on the current port.
3076 */
3077 if (dev->if_port == PORT_TP) {
3078 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3079 data->val_out = mdio_read(dev,
3080 data->reg_num & 0x1f);
3081 else
3082 data->val_out = 0;
3083 } else {
3084 move_int_phy(dev, data->phy_id & 0x1f);
3085 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3086 data->reg_num & 0x1f);
3087 }
3088 return 0;
3089
3090 case SIOCSMIIREG: /* Write MII PHY register. */
1da177e4
LT
3091 if (dev->if_port == PORT_TP) {
3092 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3093 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3094 np->advertising = data->val_in;
3095 mdio_write(dev, data->reg_num & 0x1f,
3096 data->val_in);
3097 }
3098 } else {
3099 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3100 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3101 np->advertising = data->val_in;
3102 }
3103 move_int_phy(dev, data->phy_id & 0x1f);
3104 miiport_write(dev, data->phy_id & 0x1f,
3105 data->reg_num & 0x1f,
3106 data->val_in);
3107 }
3108 return 0;
3109 default:
3110 return -EOPNOTSUPP;
3111 }
3112}
3113
3114static void enable_wol_mode(struct net_device *dev, int enable_intr)
3115{
3116 void __iomem * ioaddr = ns_ioaddr(dev);
3117 struct netdev_private *np = netdev_priv(dev);
3118
3119 if (netif_msg_wol(np))
3120 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3121 dev->name);
3122
3123 /* For WOL we must restart the rx process in silent mode.
3124 * Write NULL to the RxRingPtr. Only possible if
3125 * rx process is stopped
3126 */
3127 writel(0, ioaddr + RxRingPtr);
3128
3129 /* read WoL status to clear */
3130 readl(ioaddr + WOLCmd);
3131
3132 /* PME on, clear status */
3133 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3134
3135 /* and restart the rx process */
3136 writel(RxOn, ioaddr + ChipCmd);
3137
3138 if (enable_intr) {
3139 /* enable the WOL interrupt.
3140 * Could be used to send a netlink message.
3141 */
3142 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
14fdd90e 3143 natsemi_irq_enable(dev);
1da177e4
LT
3144 }
3145}
3146
3147static int netdev_close(struct net_device *dev)
3148{
3149 void __iomem * ioaddr = ns_ioaddr(dev);
3150 struct netdev_private *np = netdev_priv(dev);
d710ce13 3151 const int irq = np->pci_dev->irq;
1da177e4
LT
3152
3153 if (netif_msg_ifdown(np))
3154 printk(KERN_DEBUG
3155 "%s: Shutting down ethercard, status was %#04x.\n",
3156 dev->name, (int)readl(ioaddr + ChipCmd));
3157 if (netif_msg_pktdata(np))
3158 printk(KERN_DEBUG
3159 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3160 dev->name, np->cur_tx, np->dirty_tx,
3161 np->cur_rx, np->dirty_rx);
3162
bea3348e
SH
3163 napi_disable(&np->napi);
3164
1da177e4
LT
3165 /*
3166 * FIXME: what if someone tries to close a device
3167 * that is suspended?
3168 * Should we reenable the nic to switch to
3169 * the final WOL settings?
3170 */
3171
3172 del_timer_sync(&np->timer);
d710ce13 3173 disable_irq(irq);
1da177e4 3174 spin_lock_irq(&np->lock);
b27a16b7 3175 natsemi_irq_disable(dev);
1da177e4
LT
3176 np->hands_off = 1;
3177 spin_unlock_irq(&np->lock);
d710ce13 3178 enable_irq(irq);
1da177e4 3179
d710ce13 3180 free_irq(irq, dev);
1da177e4
LT
3181
3182 /* Interrupt disabled, interrupt handler released,
3183 * queue stopped, timer deleted, rtnl_lock held
3184 * All async codepaths that access the driver are disabled.
3185 */
3186 spin_lock_irq(&np->lock);
3187 np->hands_off = 0;
3188 readl(ioaddr + IntrMask);
3189 readw(ioaddr + MIntrStatus);
3190
3191 /* Freeze Stats */
3192 writel(StatsFreeze, ioaddr + StatsCtrl);
3193
3194 /* Stop the chip's Tx and Rx processes. */
3195 natsemi_stop_rxtx(dev);
3196
3197 __get_stats(dev);
3198 spin_unlock_irq(&np->lock);
3199
3200 /* clear the carrier last - an interrupt could reenable it otherwise */
3201 netif_carrier_off(dev);
3202 netif_stop_queue(dev);
3203
3204 dump_ring(dev);
3205 drain_ring(dev);
3206 free_ring(dev);
3207
3208 {
3209 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3210 if (wol) {
3211 /* restart the NIC in WOL mode.
3212 * The nic must be stopped for this.
3213 */
3214 enable_wol_mode(dev, 0);
3215 } else {
3216 /* Restore PME enable bit unmolested */
3217 writel(np->SavedClkRun, ioaddr + ClkRun);
3218 }
3219 }
3220 return 0;
3221}
3222
3223
6980cbe4 3224static void natsemi_remove1(struct pci_dev *pdev)
1da177e4
LT
3225{
3226 struct net_device *dev = pci_get_drvdata(pdev);
3227 void __iomem * ioaddr = ns_ioaddr(dev);
3228
1a147809 3229 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
1da177e4
LT
3230 unregister_netdev (dev);
3231 pci_release_regions (pdev);
3232 iounmap(ioaddr);
3233 free_netdev (dev);
1da177e4
LT
3234}
3235
3236#ifdef CONFIG_PM
3237
3238/*
3239 * The ns83815 chip doesn't have explicit RxStop bits.
3240 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3241 * of the nic, thus this function must be very careful:
3242 *
3243 * suspend/resume synchronization:
3244 * entry points:
3245 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
ed4cb133 3246 * start_tx, ns_tx_timeout
1da177e4
LT
3247 *
3248 * No function accesses the hardware without checking np->hands_off.
3249 * the check occurs under spin_lock_irq(&np->lock);
3250 * exceptions:
3251 * * netdev_ioctl: noncritical access.
3252 * * netdev_open: cannot happen due to the device_detach
3253 * * netdev_close: doesn't hurt.
3254 * * netdev_timer: timer stopped by natsemi_suspend.
3255 * * intr_handler: doesn't acquire the spinlock. suspend calls
3256 * disable_irq() to enforce synchronization.
b27a16b7
MB
3257 * * natsemi_poll: checks before reenabling interrupts. suspend
3258 * sets hands_off, disables interrupts and then waits with
bea3348e 3259 * napi_disable().
1da177e4
LT
3260 *
3261 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3262 */
3263
3264static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3265{
3266 struct net_device *dev = pci_get_drvdata (pdev);
3267 struct netdev_private *np = netdev_priv(dev);
3268 void __iomem * ioaddr = ns_ioaddr(dev);
3269
3270 rtnl_lock();
3271 if (netif_running (dev)) {
d710ce13
FR
3272 const int irq = np->pci_dev->irq;
3273
1da177e4
LT
3274 del_timer_sync(&np->timer);
3275
d710ce13 3276 disable_irq(irq);
1da177e4
LT
3277 spin_lock_irq(&np->lock);
3278
14fdd90e 3279 natsemi_irq_disable(dev);
1da177e4
LT
3280 np->hands_off = 1;
3281 natsemi_stop_rxtx(dev);
3282 netif_stop_queue(dev);
3283
3284 spin_unlock_irq(&np->lock);
d710ce13 3285 enable_irq(irq);
1da177e4 3286
bea3348e 3287 napi_disable(&np->napi);
b27a16b7 3288
1da177e4
LT
3289 /* Update the error counts. */
3290 __get_stats(dev);
3291
3292 /* pci_power_off(pdev, -1); */
3293 drain_ring(dev);
3294 {
3295 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3296 /* Restore PME enable bit */
3297 if (wol) {
3298 /* restart the NIC in WOL mode.
3299 * The nic must be stopped for this.
3300 * FIXME: use the WOL interrupt
3301 */
3302 enable_wol_mode(dev, 0);
3303 } else {
3304 /* Restore PME enable bit unmolested */
3305 writel(np->SavedClkRun, ioaddr + ClkRun);
3306 }
3307 }
3308 }
3309 netif_device_detach(dev);
3310 rtnl_unlock();
3311 return 0;
3312}
3313
3314
3315static int natsemi_resume (struct pci_dev *pdev)
3316{
3317 struct net_device *dev = pci_get_drvdata (pdev);
3318 struct netdev_private *np = netdev_priv(dev);
a8a935da 3319 int ret = 0;
1da177e4
LT
3320
3321 rtnl_lock();
3322 if (netif_device_present(dev))
3323 goto out;
3324 if (netif_running(dev)) {
d710ce13
FR
3325 const int irq = np->pci_dev->irq;
3326
1da177e4 3327 BUG_ON(!np->hands_off);
a8a935da
MB
3328 ret = pci_enable_device(pdev);
3329 if (ret < 0) {
3330 dev_err(&pdev->dev,
3331 "pci_enable_device() failed: %d\n", ret);
3332 goto out;
3333 }
1da177e4
LT
3334 /* pci_power_on(pdev); */
3335
bea3348e
SH
3336 napi_enable(&np->napi);
3337
1da177e4
LT
3338 natsemi_reset(dev);
3339 init_ring(dev);
d710ce13 3340 disable_irq(irq);
1da177e4
LT
3341 spin_lock_irq(&np->lock);
3342 np->hands_off = 0;
3343 init_registers(dev);
3344 netif_device_attach(dev);
3345 spin_unlock_irq(&np->lock);
d710ce13 3346 enable_irq(irq);
1da177e4 3347
0e5d5442 3348 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
1da177e4
LT
3349 }
3350 netif_device_attach(dev);
3351out:
3352 rtnl_unlock();
a8a935da 3353 return ret;
1da177e4
LT
3354}
3355
3356#endif /* CONFIG_PM */
3357
3358static struct pci_driver natsemi_driver = {
3359 .name = DRV_NAME,
3360 .id_table = natsemi_pci_tbl,
3361 .probe = natsemi_probe1,
6980cbe4 3362 .remove = natsemi_remove1,
1da177e4
LT
3363#ifdef CONFIG_PM
3364 .suspend = natsemi_suspend,
3365 .resume = natsemi_resume,
3366#endif
3367};
3368
3369static int __init natsemi_init_mod (void)
3370{
3371/* when a module, this is printed whether or not devices are found in probe */
3372#ifdef MODULE
3373 printk(version);
3374#endif
3375
29917620 3376 return pci_register_driver(&natsemi_driver);
1da177e4
LT
3377}
3378
3379static void __exit natsemi_exit_mod (void)
3380{
3381 pci_unregister_driver (&natsemi_driver);
3382}
3383
3384module_init(natsemi_init_mod);
3385module_exit(natsemi_exit_mod);
3386