Merge branch 'late/dt' into next/dt2
[linux-2.6-block.git] / drivers / net / ethernet / micrel / ks8851.c
CommitLineData
3396c782 1/* drivers/net/ethernet/micrel/ks8851.c
3ba81f3e
BD
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
0dc7d2b3
JP
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
3ba81f3e
BD
14#define DEBUG
15
a6b7a407 16#include <linux/interrupt.h>
3ba81f3e
BD
17#include <linux/module.h>
18#include <linux/kernel.h>
19#include <linux/netdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/ethtool.h>
22#include <linux/cache.h>
23#include <linux/crc32.h>
24#include <linux/mii.h>
51b7b1c3 25#include <linux/eeprom_93cx6.h>
3ba81f3e
BD
26
27#include <linux/spi/spi.h>
28
29#include "ks8851.h"
30
31/**
32 * struct ks8851_rxctrl - KS8851 driver rx control
33 * @mchash: Multicast hash-table data.
34 * @rxcr1: KS_RXCR1 register setting
35 * @rxcr2: KS_RXCR2 register setting
36 *
37 * Representation of the settings needs to control the receive filtering
38 * such as the multicast hash-filter and the receive register settings. This
39 * is used to make the job of working out if the receive settings change and
40 * then issuing the new settings to the worker that will send the necessary
41 * commands.
42 */
43struct ks8851_rxctrl {
44 u16 mchash[4];
45 u16 rxcr1;
46 u16 rxcr2;
47};
48
49/**
50 * union ks8851_tx_hdr - tx header data
51 * @txb: The header as bytes
52 * @txw: The header as 16bit, little-endian words
53 *
54 * A dual representation of the tx header data to allow
55 * access to individual bytes, and to allow 16bit accesses
56 * with 16bit alignment.
57 */
58union ks8851_tx_hdr {
59 u8 txb[6];
60 __le16 txw[3];
61};
62
63/**
64 * struct ks8851_net - KS8851 driver private data
65 * @netdev: The network device we're bound to
66 * @spidev: The spi device we're bound to.
67 * @lock: Lock to ensure that the device is not accessed when busy.
68 * @statelock: Lock on this structure for tx list.
69 * @mii: The MII state information for the mii calls.
70 * @rxctrl: RX settings for @rxctrl_work.
71 * @tx_work: Work queue for tx packets
3ba81f3e
BD
72 * @rxctrl_work: Work queue for updating RX mode and multicast lists
73 * @txq: Queue of packets for transmission.
74 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
75 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
76 * @txh: Space for generating packet TX header in DMA-able data
77 * @rxd: Space for receiving SPI data, in DMA-able space.
78 * @txd: Space for transmitting SPI data, in DMA-able space.
79 * @msg_enable: The message flags controlling driver output (see ethtool).
80 * @fid: Incrementing frame id tag.
81 * @rc_ier: Cached copy of KS_IER.
7d997466 82 * @rc_ccr: Cached copy of KS_CCR.
3ba81f3e 83 * @rc_rxqcr: Cached copy of KS_RXQCR.
7d997466 84 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
51b7b1c3 85 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
3ba81f3e
BD
86 *
87 * The @lock ensures that the chip is protected when certain operations are
88 * in progress. When the read or write packet transfer is in progress, most
89 * of the chip registers are not ccessible until the transfer is finished and
90 * the DMA has been de-asserted.
91 *
92 * The @statelock is used to protect information in the structure which may
93 * need to be accessed via several sources, such as the network driver layer
94 * or one of the work queues.
95 *
96 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
97 * wants to DMA map them, it will not have any problems with data the driver
98 * modifies.
99 */
100struct ks8851_net {
101 struct net_device *netdev;
102 struct spi_device *spidev;
103 struct mutex lock;
104 spinlock_t statelock;
105
106 union ks8851_tx_hdr txh ____cacheline_aligned;
107 u8 rxd[8];
108 u8 txd[8];
109
110 u32 msg_enable ____cacheline_aligned;
111 u16 tx_space;
112 u8 fid;
113
114 u16 rc_ier;
115 u16 rc_rxqcr;
7d997466
SJ
116 u16 rc_ccr;
117 u16 eeprom_size;
3ba81f3e
BD
118
119 struct mii_if_info mii;
120 struct ks8851_rxctrl rxctrl;
121
122 struct work_struct tx_work;
3ba81f3e
BD
123 struct work_struct rxctrl_work;
124
125 struct sk_buff_head txq;
126
127 struct spi_message spi_msg1;
128 struct spi_message spi_msg2;
129 struct spi_transfer spi_xfer1;
130 struct spi_transfer spi_xfer2[2];
51b7b1c3
BD
131
132 struct eeprom_93cx6 eeprom;
3ba81f3e
BD
133};
134
135static int msg_enable;
136
3ba81f3e
BD
137/* shift for byte-enable data */
138#define BYTE_EN(_x) ((_x) << 2)
139
140/* turn register number and byte-enable mask into data for start of packet */
141#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
142
143/* SPI register read/write calls.
144 *
145 * All these calls issue SPI transactions to access the chip's registers. They
146 * all require that the necessary lock is held to prevent accesses when the
25985edc 147 * chip is busy transferring packet data (RX/TX FIFO accesses).
3ba81f3e
BD
148 */
149
150/**
151 * ks8851_wrreg16 - write 16bit register value to chip
152 * @ks: The chip state
153 * @reg: The register address
154 * @val: The value to write
155 *
156 * Issue a write to put the value @val into the register specified in @reg.
157 */
158static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
159{
160 struct spi_transfer *xfer = &ks->spi_xfer1;
161 struct spi_message *msg = &ks->spi_msg1;
162 __le16 txb[2];
163 int ret;
164
165 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
166 txb[1] = cpu_to_le16(val);
167
168 xfer->tx_buf = txb;
169 xfer->rx_buf = NULL;
170 xfer->len = 4;
171
172 ret = spi_sync(ks->spidev, msg);
173 if (ret < 0)
0dc7d2b3 174 netdev_err(ks->netdev, "spi_sync() failed\n");
3ba81f3e
BD
175}
176
160d0fad
BD
177/**
178 * ks8851_wrreg8 - write 8bit register value to chip
179 * @ks: The chip state
180 * @reg: The register address
181 * @val: The value to write
182 *
183 * Issue a write to put the value @val into the register specified in @reg.
184 */
185static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
186{
187 struct spi_transfer *xfer = &ks->spi_xfer1;
188 struct spi_message *msg = &ks->spi_msg1;
189 __le16 txb[2];
190 int ret;
191 int bit;
192
193 bit = 1 << (reg & 3);
194
195 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
196 txb[1] = val;
197
198 xfer->tx_buf = txb;
199 xfer->rx_buf = NULL;
200 xfer->len = 3;
201
202 ret = spi_sync(ks->spidev, msg);
203 if (ret < 0)
0dc7d2b3 204 netdev_err(ks->netdev, "spi_sync() failed\n");
160d0fad
BD
205}
206
3ba81f3e
BD
207/**
208 * ks8851_rx_1msg - select whether to use one or two messages for spi read
209 * @ks: The device structure
210 *
211 * Return whether to generate a single message with a tx and rx buffer
212 * supplied to spi_sync(), or alternatively send the tx and rx buffers
213 * as separate messages.
214 *
215 * Depending on the hardware in use, a single message may be more efficient
216 * on interrupts or work done by the driver.
217 *
218 * This currently always returns true until we add some per-device data passed
219 * from the platform code to specify which mode is better.
220 */
221static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
222{
223 return true;
224}
225
226/**
227 * ks8851_rdreg - issue read register command and return the data
228 * @ks: The device state
229 * @op: The register address and byte enables in message format.
230 * @rxb: The RX buffer to return the result into
231 * @rxl: The length of data expected.
232 *
233 * This is the low level read call that issues the necessary spi message(s)
234 * to read data from the register specified in @op.
235 */
236static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
237 u8 *rxb, unsigned rxl)
238{
239 struct spi_transfer *xfer;
240 struct spi_message *msg;
241 __le16 *txb = (__le16 *)ks->txd;
242 u8 *trx = ks->rxd;
243 int ret;
244
245 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
246
247 if (ks8851_rx_1msg(ks)) {
248 msg = &ks->spi_msg1;
249 xfer = &ks->spi_xfer1;
250
251 xfer->tx_buf = txb;
252 xfer->rx_buf = trx;
253 xfer->len = rxl + 2;
254 } else {
255 msg = &ks->spi_msg2;
256 xfer = ks->spi_xfer2;
257
258 xfer->tx_buf = txb;
259 xfer->rx_buf = NULL;
260 xfer->len = 2;
261
262 xfer++;
263 xfer->tx_buf = NULL;
264 xfer->rx_buf = trx;
265 xfer->len = rxl;
266 }
267
268 ret = spi_sync(ks->spidev, msg);
269 if (ret < 0)
0dc7d2b3 270 netdev_err(ks->netdev, "read: spi_sync() failed\n");
3ba81f3e
BD
271 else if (ks8851_rx_1msg(ks))
272 memcpy(rxb, trx + 2, rxl);
273 else
274 memcpy(rxb, trx, rxl);
275}
276
277/**
278 * ks8851_rdreg8 - read 8 bit register from device
279 * @ks: The chip information
280 * @reg: The register address
281 *
282 * Read a 8bit register from the chip, returning the result
283*/
284static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
285{
286 u8 rxb[1];
287
288 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
289 return rxb[0];
290}
291
292/**
293 * ks8851_rdreg16 - read 16 bit register from device
294 * @ks: The chip information
295 * @reg: The register address
296 *
297 * Read a 16bit register from the chip, returning the result
298*/
299static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
300{
301 __le16 rx = 0;
302
303 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
304 return le16_to_cpu(rx);
305}
306
307/**
308 * ks8851_rdreg32 - read 32 bit register from device
309 * @ks: The chip information
310 * @reg: The register address
311 *
312 * Read a 32bit register from the chip.
313 *
314 * Note, this read requires the address be aligned to 4 bytes.
315*/
316static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
317{
318 __le32 rx = 0;
319
320 WARN_ON(reg & 3);
321
322 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
323 return le32_to_cpu(rx);
324}
325
326/**
327 * ks8851_soft_reset - issue one of the soft reset to the device
328 * @ks: The device state.
329 * @op: The bit(s) to set in the GRR
330 *
331 * Issue the relevant soft-reset command to the device's GRR register
332 * specified by @op.
333 *
334 * Note, the delays are in there as a caution to ensure that the reset
335 * has time to take effect and then complete. Since the datasheet does
336 * not currently specify the exact sequence, we have chosen something
337 * that seems to work with our device.
338 */
339static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
340{
341 ks8851_wrreg16(ks, KS_GRR, op);
342 mdelay(1); /* wait a short time to effect reset */
343 ks8851_wrreg16(ks, KS_GRR, 0);
344 mdelay(1); /* wait for condition to clear */
345}
346
32f160d9
TH
347/**
348 * ks8851_set_powermode - set power mode of the device
349 * @ks: The device state
350 * @pwrmode: The power mode value to write to KS_PMECR.
351 *
352 * Change the power mode of the chip.
353 */
354static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
355{
356 unsigned pmecr;
357
358 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
359
360 pmecr = ks8851_rdreg16(ks, KS_PMECR);
361 pmecr &= ~PMECR_PM_MASK;
362 pmecr |= pwrmode;
363
364 ks8851_wrreg16(ks, KS_PMECR, pmecr);
365}
366
3ba81f3e
BD
367/**
368 * ks8851_write_mac_addr - write mac address to device registers
369 * @dev: The network device
370 *
371 * Update the KS8851 MAC address registers from the address in @dev.
372 *
373 * This call assumes that the chip is not running, so there is no need to
374 * shutdown the RXQ process whilst setting this.
375*/
376static int ks8851_write_mac_addr(struct net_device *dev)
377{
378 struct ks8851_net *ks = netdev_priv(dev);
160d0fad 379 int i;
3ba81f3e
BD
380
381 mutex_lock(&ks->lock);
382
32f160d9
TH
383 /*
384 * Wake up chip in case it was powered off when stopped; otherwise,
385 * the first write to the MAC address does not take effect.
386 */
387 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
160d0fad
BD
388 for (i = 0; i < ETH_ALEN; i++)
389 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
32f160d9
TH
390 if (!netif_running(dev))
391 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
3ba81f3e
BD
392
393 mutex_unlock(&ks->lock);
394
395 return 0;
396}
397
a9a8de21
BD
398/**
399 * ks8851_read_mac_addr - read mac address from device registers
400 * @dev: The network device
401 *
402 * Update our copy of the KS8851 MAC address from the registers of @dev.
403*/
404static void ks8851_read_mac_addr(struct net_device *dev)
405{
406 struct ks8851_net *ks = netdev_priv(dev);
407 int i;
408
409 mutex_lock(&ks->lock);
410
411 for (i = 0; i < ETH_ALEN; i++)
412 dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
413
414 mutex_unlock(&ks->lock);
415}
416
3ba81f3e
BD
417/**
418 * ks8851_init_mac - initialise the mac address
419 * @ks: The device structure
420 *
421 * Get or create the initial mac address for the device and then set that
a9a8de21 422 * into the station address register. If there is an EEPROM present, then
7efd26d0 423 * we try that. If no valid mac address is found we use eth_random_addr()
3ba81f3e 424 * to create a new one.
3ba81f3e
BD
425 */
426static void ks8851_init_mac(struct ks8851_net *ks)
427{
428 struct net_device *dev = ks->netdev;
429
a9a8de21
BD
430 /* first, try reading what we've got already */
431 if (ks->rc_ccr & CCR_EEPROM) {
432 ks8851_read_mac_addr(dev);
433 if (is_valid_ether_addr(dev->dev_addr))
434 return;
435
436 netdev_err(ks->netdev, "invalid mac address read %pM\n",
437 dev->dev_addr);
438 }
439
7ce5d222 440 eth_hw_addr_random(dev);
3ba81f3e
BD
441 ks8851_write_mac_addr(dev);
442}
443
3ba81f3e
BD
444/**
445 * ks8851_rdfifo - read data from the receive fifo
446 * @ks: The device state.
447 * @buff: The buffer address
448 * @len: The length of the data to read
449 *
9ddc5b6f 450 * Issue an RXQ FIFO read command and read the @len amount of data from
3ba81f3e
BD
451 * the FIFO into the buffer specified by @buff.
452 */
453static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
454{
455 struct spi_transfer *xfer = ks->spi_xfer2;
456 struct spi_message *msg = &ks->spi_msg2;
457 u8 txb[1];
458 int ret;
459
0dc7d2b3
JP
460 netif_dbg(ks, rx_status, ks->netdev,
461 "%s: %d@%p\n", __func__, len, buff);
3ba81f3e
BD
462
463 /* set the operation we're issuing */
464 txb[0] = KS_SPIOP_RXFIFO;
465
466 xfer->tx_buf = txb;
467 xfer->rx_buf = NULL;
468 xfer->len = 1;
469
470 xfer++;
471 xfer->rx_buf = buff;
472 xfer->tx_buf = NULL;
473 xfer->len = len;
474
475 ret = spi_sync(ks->spidev, msg);
476 if (ret < 0)
0dc7d2b3 477 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
3ba81f3e
BD
478}
479
480/**
481 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
482 * @ks: The device state
483 * @rxpkt: The data for the received packet
484 *
485 * Dump the initial data from the packet to dev_dbg().
486*/
487static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
488{
0dc7d2b3
JP
489 netdev_dbg(ks->netdev,
490 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
491 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
492 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
493 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
3ba81f3e
BD
494}
495
496/**
497 * ks8851_rx_pkts - receive packets from the host
498 * @ks: The device information.
499 *
500 * This is called from the IRQ work queue when the system detects that there
501 * are packets in the receive queue. Find out how many packets there are and
502 * read them from the FIFO.
503 */
504static void ks8851_rx_pkts(struct ks8851_net *ks)
505{
506 struct sk_buff *skb;
507 unsigned rxfc;
508 unsigned rxlen;
509 unsigned rxstat;
510 u32 rxh;
511 u8 *rxpkt;
512
513 rxfc = ks8851_rdreg8(ks, KS_RXFC);
514
0dc7d2b3
JP
515 netif_dbg(ks, rx_status, ks->netdev,
516 "%s: %d packets\n", __func__, rxfc);
3ba81f3e
BD
517
518 /* Currently we're issuing a read per packet, but we could possibly
519 * improve the code by issuing a single read, getting the receive
520 * header, allocating the packet and then reading the packet data
521 * out in one go.
522 *
523 * This form of operation would require us to hold the SPI bus'
524 * chipselect low during the entie transaction to avoid any
25985edc 525 * reset to the data stream coming from the chip.
3ba81f3e
BD
526 */
527
528 for (; rxfc != 0; rxfc--) {
529 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
530 rxstat = rxh & 0xffff;
14bc435e 531 rxlen = (rxh >> 16) & 0xfff;
3ba81f3e 532
0dc7d2b3
JP
533 netif_dbg(ks, rx_status, ks->netdev,
534 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
3ba81f3e
BD
535
536 /* the length of the packet includes the 32bit CRC */
537
538 /* set dma read address */
539 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
540
541 /* start the packet dma process, and set auto-dequeue rx */
542 ks8851_wrreg16(ks, KS_RXQCR,
543 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
544
972c40b5
ED
545 if (rxlen > 4) {
546 unsigned int rxalign;
547
548 rxlen -= 4;
549 rxalign = ALIGN(rxlen, 4);
550 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
551 if (skb) {
3ba81f3e 552
972c40b5
ED
553 /* 4 bytes of status header + 4 bytes of
554 * garbage: we put them before ethernet
555 * header, so that they are copied,
556 * but ignored.
557 */
3ba81f3e 558
972c40b5 559 rxpkt = skb_put(skb, rxlen) - 8;
3ba81f3e 560
972c40b5 561 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
3ba81f3e 562
972c40b5
ED
563 if (netif_msg_pktdata(ks))
564 ks8851_dbg_dumpkkt(ks, rxpkt);
3ba81f3e 565
972c40b5 566 skb->protocol = eth_type_trans(skb, ks->netdev);
fbcf88b8 567 netif_rx_ni(skb);
3ba81f3e 568
972c40b5
ED
569 ks->netdev->stats.rx_packets++;
570 ks->netdev->stats.rx_bytes += rxlen;
571 }
3ba81f3e
BD
572 }
573
574 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
575 }
576}
577
578/**
656a05c8
FB
579 * ks8851_irq - IRQ handler for dealing with interrupt requests
580 * @irq: IRQ number
581 * @_ks: cookie
3ba81f3e 582 *
656a05c8
FB
583 * This handler is invoked when the IRQ line asserts to find out what happened.
584 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
585 * in thread context.
3ba81f3e
BD
586 *
587 * Read the interrupt status, work out what needs to be done and then clear
588 * any of the interrupts that are not needed.
589 */
656a05c8 590static irqreturn_t ks8851_irq(int irq, void *_ks)
3ba81f3e 591{
656a05c8 592 struct ks8851_net *ks = _ks;
3ba81f3e
BD
593 unsigned status;
594 unsigned handled = 0;
595
596 mutex_lock(&ks->lock);
597
598 status = ks8851_rdreg16(ks, KS_ISR);
599
0dc7d2b3
JP
600 netif_dbg(ks, intr, ks->netdev,
601 "%s: status 0x%04x\n", __func__, status);
3ba81f3e 602
062e55e3 603 if (status & IRQ_LCI)
3ba81f3e 604 handled |= IRQ_LCI;
3ba81f3e
BD
605
606 if (status & IRQ_LDI) {
607 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
608 pmecr &= ~PMECR_WKEVT_MASK;
609 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
610
611 handled |= IRQ_LDI;
612 }
613
614 if (status & IRQ_RXPSI)
615 handled |= IRQ_RXPSI;
616
617 if (status & IRQ_TXI) {
618 handled |= IRQ_TXI;
619
620 /* no lock here, tx queue should have been stopped */
621
622 /* update our idea of how much tx space is available to the
623 * system */
624 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
625
0dc7d2b3
JP
626 netif_dbg(ks, intr, ks->netdev,
627 "%s: txspace %d\n", __func__, ks->tx_space);
3ba81f3e
BD
628 }
629
630 if (status & IRQ_RXI)
631 handled |= IRQ_RXI;
632
633 if (status & IRQ_SPIBEI) {
634 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
635 handled |= IRQ_SPIBEI;
636 }
637
638 ks8851_wrreg16(ks, KS_ISR, handled);
639
640 if (status & IRQ_RXI) {
641 /* the datasheet says to disable the rx interrupt during
642 * packet read-out, however we're masking the interrupt
643 * from the device so do not bother masking just the RX
644 * from the device. */
645
646 ks8851_rx_pkts(ks);
647 }
648
649 /* if something stopped the rx process, probably due to wanting
650 * to change the rx settings, then do something about restarting
651 * it. */
652 if (status & IRQ_RXPSI) {
653 struct ks8851_rxctrl *rxc = &ks->rxctrl;
654
655 /* update the multicast hash table */
656 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
657 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
658 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
659 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
660
661 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
662 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
663 }
664
665 mutex_unlock(&ks->lock);
666
062e55e3
SB
667 if (status & IRQ_LCI)
668 mii_check_link(&ks->mii);
669
3ba81f3e
BD
670 if (status & IRQ_TXI)
671 netif_wake_queue(ks->netdev);
672
656a05c8 673 return IRQ_HANDLED;
3ba81f3e
BD
674}
675
676/**
677 * calc_txlen - calculate size of message to send packet
25985edc 678 * @len: Length of data
3ba81f3e
BD
679 *
680 * Returns the size of the TXFIFO message needed to send
681 * this packet.
682 */
683static inline unsigned calc_txlen(unsigned len)
684{
685 return ALIGN(len + 4, 4);
686}
687
688/**
689 * ks8851_wrpkt - write packet to TX FIFO
690 * @ks: The device state.
691 * @txp: The sk_buff to transmit.
692 * @irq: IRQ on completion of the packet.
693 *
694 * Send the @txp to the chip. This means creating the relevant packet header
695 * specifying the length of the packet and the other information the chip
696 * needs, such as IRQ on completion. Send the header and the packet data to
697 * the device.
698 */
699static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
700{
701 struct spi_transfer *xfer = ks->spi_xfer2;
702 struct spi_message *msg = &ks->spi_msg2;
703 unsigned fid = 0;
704 int ret;
705
0dc7d2b3
JP
706 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
707 __func__, txp, txp->len, txp->data, irq);
3ba81f3e
BD
708
709 fid = ks->fid++;
710 fid &= TXFR_TXFID_MASK;
711
712 if (irq)
713 fid |= TXFR_TXIC; /* irq on completion */
714
715 /* start header at txb[1] to align txw entries */
716 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
717 ks->txh.txw[1] = cpu_to_le16(fid);
718 ks->txh.txw[2] = cpu_to_le16(txp->len);
719
720 xfer->tx_buf = &ks->txh.txb[1];
721 xfer->rx_buf = NULL;
722 xfer->len = 5;
723
724 xfer++;
725 xfer->tx_buf = txp->data;
726 xfer->rx_buf = NULL;
727 xfer->len = ALIGN(txp->len, 4);
728
729 ret = spi_sync(ks->spidev, msg);
730 if (ret < 0)
0dc7d2b3 731 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
3ba81f3e
BD
732}
733
734/**
735 * ks8851_done_tx - update and then free skbuff after transmitting
736 * @ks: The device state
737 * @txb: The buffer transmitted
738 */
739static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
740{
741 struct net_device *dev = ks->netdev;
742
743 dev->stats.tx_bytes += txb->len;
744 dev->stats.tx_packets++;
745
746 dev_kfree_skb(txb);
747}
748
749/**
750 * ks8851_tx_work - process tx packet(s)
751 * @work: The work strucutre what was scheduled.
752 *
753 * This is called when a number of packets have been scheduled for
754 * transmission and need to be sent to the device.
755 */
756static void ks8851_tx_work(struct work_struct *work)
757{
758 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
759 struct sk_buff *txb;
3320eae5 760 bool last = skb_queue_empty(&ks->txq);
3ba81f3e
BD
761
762 mutex_lock(&ks->lock);
763
764 while (!last) {
765 txb = skb_dequeue(&ks->txq);
766 last = skb_queue_empty(&ks->txq);
767
761172fb
AA
768 if (txb != NULL) {
769 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
770 ks8851_wrpkt(ks, txb, last);
771 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
772 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
3ba81f3e 773
761172fb
AA
774 ks8851_done_tx(ks, txb);
775 }
3ba81f3e
BD
776 }
777
778 mutex_unlock(&ks->lock);
3ba81f3e
BD
779}
780
781/**
782 * ks8851_net_open - open network device
783 * @dev: The network device being opened.
784 *
785 * Called when the network device is marked active, such as a user executing
786 * 'ifconfig up' on the device.
787 */
788static int ks8851_net_open(struct net_device *dev)
789{
790 struct ks8851_net *ks = netdev_priv(dev);
791
792 /* lock the card, even if we may not actually be doing anything
793 * else at the moment */
794 mutex_lock(&ks->lock);
795
0dc7d2b3 796 netif_dbg(ks, ifup, ks->netdev, "opening\n");
3ba81f3e
BD
797
798 /* bring chip out of any power saving mode it was in */
799 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
800
801 /* issue a soft reset to the RX/TX QMU to put it into a known
802 * state. */
803 ks8851_soft_reset(ks, GRR_QMU);
804
805 /* setup transmission parameters */
806
807 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
808 TXCR_TXPE | /* pad to min length */
809 TXCR_TXCRC | /* add CRC */
810 TXCR_TXFCE)); /* enable flow control */
811
812 /* auto-increment tx data, reset tx pointer */
813 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
814
815 /* setup receiver control */
816
817 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
818 RXCR1_RXFCE | /* enable flow control */
819 RXCR1_RXBE | /* broadcast enable */
820 RXCR1_RXUE | /* unicast enable */
821 RXCR1_RXE)); /* enable rx block */
822
823 /* transfer entire frames out in one go */
824 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
825
826 /* set receive counter timeouts */
827 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
828 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
829 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
830
831 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
832 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
833 RXQCR_RXDTTE); /* IRQ on time exceeded */
834
835 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
836
837 /* clear then enable interrupts */
838
839#define STD_IRQ (IRQ_LCI | /* Link Change */ \
840 IRQ_TXI | /* TX done */ \
841 IRQ_RXI | /* RX done */ \
842 IRQ_SPIBEI | /* SPI bus error */ \
843 IRQ_TXPSI | /* TX process stop */ \
844 IRQ_RXPSI) /* RX process stop */
845
846 ks->rc_ier = STD_IRQ;
847 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
848 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
849
850 netif_start_queue(ks->netdev);
851
0dc7d2b3 852 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
3ba81f3e
BD
853
854 mutex_unlock(&ks->lock);
855 return 0;
856}
857
858/**
859 * ks8851_net_stop - close network device
860 * @dev: The device being closed.
861 *
862 * Called to close down a network device which has been active. Cancell any
863 * work, shutdown the RX and TX process and then place the chip into a low
864 * power state whilst it is not being used.
865 */
866static int ks8851_net_stop(struct net_device *dev)
867{
868 struct ks8851_net *ks = netdev_priv(dev);
869
0dc7d2b3 870 netif_info(ks, ifdown, dev, "shutting down\n");
3ba81f3e
BD
871
872 netif_stop_queue(dev);
873
874 mutex_lock(&ks->lock);
c5a99937
SB
875 /* turn off the IRQs and ack any outstanding */
876 ks8851_wrreg16(ks, KS_IER, 0x0000);
877 ks8851_wrreg16(ks, KS_ISR, 0xffff);
878 mutex_unlock(&ks->lock);
3ba81f3e
BD
879
880 /* stop any outstanding work */
3ba81f3e
BD
881 flush_work(&ks->tx_work);
882 flush_work(&ks->rxctrl_work);
883
c5a99937 884 mutex_lock(&ks->lock);
3ba81f3e
BD
885 /* shutdown RX process */
886 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
887
888 /* shutdown TX process */
889 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
890
891 /* set powermode to soft power down to save power */
892 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
c5a99937 893 mutex_unlock(&ks->lock);
3ba81f3e
BD
894
895 /* ensure any queued tx buffers are dumped */
896 while (!skb_queue_empty(&ks->txq)) {
897 struct sk_buff *txb = skb_dequeue(&ks->txq);
898
0dc7d2b3
JP
899 netif_dbg(ks, ifdown, ks->netdev,
900 "%s: freeing txb %p\n", __func__, txb);
3ba81f3e
BD
901
902 dev_kfree_skb(txb);
903 }
904
3ba81f3e
BD
905 return 0;
906}
907
908/**
909 * ks8851_start_xmit - transmit packet
910 * @skb: The buffer to transmit
911 * @dev: The device used to transmit the packet.
912 *
913 * Called by the network layer to transmit the @skb. Queue the packet for
914 * the device and schedule the necessary work to transmit the packet when
915 * it is free.
916 *
917 * We do this to firstly avoid sleeping with the network device locked,
918 * and secondly so we can round up more than one packet to transmit which
919 * means we can try and avoid generating too many transmit done interrupts.
920 */
61357325
SH
921static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
922 struct net_device *dev)
3ba81f3e
BD
923{
924 struct ks8851_net *ks = netdev_priv(dev);
925 unsigned needed = calc_txlen(skb->len);
61357325 926 netdev_tx_t ret = NETDEV_TX_OK;
3ba81f3e 927
0dc7d2b3
JP
928 netif_dbg(ks, tx_queued, ks->netdev,
929 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
3ba81f3e
BD
930
931 spin_lock(&ks->statelock);
932
933 if (needed > ks->tx_space) {
934 netif_stop_queue(dev);
935 ret = NETDEV_TX_BUSY;
936 } else {
937 ks->tx_space -= needed;
938 skb_queue_tail(&ks->txq, skb);
939 }
940
941 spin_unlock(&ks->statelock);
942 schedule_work(&ks->tx_work);
943
944 return ret;
945}
946
947/**
948 * ks8851_rxctrl_work - work handler to change rx mode
949 * @work: The work structure this belongs to.
950 *
951 * Lock the device and issue the necessary changes to the receive mode from
952 * the network device layer. This is done so that we can do this without
953 * having to sleep whilst holding the network device lock.
954 *
955 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
956 * receive parameters are programmed, we issue a write to disable the RXQ and
957 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
958 * complete. The interrupt handler then writes the new values into the chip.
959 */
960static void ks8851_rxctrl_work(struct work_struct *work)
961{
962 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
963
964 mutex_lock(&ks->lock);
965
966 /* need to shutdown RXQ before modifying filter parameters */
967 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
968
969 mutex_unlock(&ks->lock);
970}
971
972static void ks8851_set_rx_mode(struct net_device *dev)
973{
974 struct ks8851_net *ks = netdev_priv(dev);
975 struct ks8851_rxctrl rxctrl;
976
977 memset(&rxctrl, 0, sizeof(rxctrl));
978
979 if (dev->flags & IFF_PROMISC) {
980 /* interface to receive everything */
981
982 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
983 } else if (dev->flags & IFF_ALLMULTI) {
984 /* accept all multicast packets */
985
986 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
987 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
4cd24eaf 988 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
22bedad3 989 struct netdev_hw_addr *ha;
3ba81f3e 990 u32 crc;
3ba81f3e
BD
991
992 /* accept some multicast */
993
22bedad3
JP
994 netdev_for_each_mc_addr(ha, dev) {
995 crc = ether_crc(ETH_ALEN, ha->addr);
3ba81f3e
BD
996 crc >>= (32 - 6); /* get top six bits */
997
998 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
3ba81f3e
BD
999 }
1000
b6a71bfa 1001 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
3ba81f3e
BD
1002 } else {
1003 /* just accept broadcast / unicast */
1004 rxctrl.rxcr1 = RXCR1_RXPAFMA;
1005 }
1006
1007 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1008 RXCR1_RXBE | /* broadcast enable */
1009 RXCR1_RXE | /* RX process enable */
1010 RXCR1_RXFCE); /* enable flow control */
1011
1012 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1013
1014 /* schedule work to do the actual set of the data if needed */
1015
1016 spin_lock(&ks->statelock);
1017
1018 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1019 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1020 schedule_work(&ks->rxctrl_work);
1021 }
1022
1023 spin_unlock(&ks->statelock);
1024}
1025
1026static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1027{
1028 struct sockaddr *sa = addr;
1029
1030 if (netif_running(dev))
1031 return -EBUSY;
1032
1033 if (!is_valid_ether_addr(sa->sa_data))
1034 return -EADDRNOTAVAIL;
1035
1036 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1037 return ks8851_write_mac_addr(dev);
1038}
1039
1040static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1041{
1042 struct ks8851_net *ks = netdev_priv(dev);
1043
1044 if (!netif_running(dev))
1045 return -EINVAL;
1046
1047 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1048}
1049
1050static const struct net_device_ops ks8851_netdev_ops = {
1051 .ndo_open = ks8851_net_open,
1052 .ndo_stop = ks8851_net_stop,
1053 .ndo_do_ioctl = ks8851_net_ioctl,
1054 .ndo_start_xmit = ks8851_start_xmit,
1055 .ndo_set_mac_address = ks8851_set_mac_address,
1056 .ndo_set_rx_mode = ks8851_set_rx_mode,
1057 .ndo_change_mtu = eth_change_mtu,
1058 .ndo_validate_addr = eth_validate_addr,
1059};
1060
1061/* ethtool support */
1062
1063static void ks8851_get_drvinfo(struct net_device *dev,
1064 struct ethtool_drvinfo *di)
1065{
1066 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1067 strlcpy(di->version, "1.00", sizeof(di->version));
1068 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1069}
1070
1071static u32 ks8851_get_msglevel(struct net_device *dev)
1072{
1073 struct ks8851_net *ks = netdev_priv(dev);
1074 return ks->msg_enable;
1075}
1076
1077static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1078{
1079 struct ks8851_net *ks = netdev_priv(dev);
1080 ks->msg_enable = to;
1081}
1082
1083static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1084{
1085 struct ks8851_net *ks = netdev_priv(dev);
1086 return mii_ethtool_gset(&ks->mii, cmd);
1087}
1088
1089static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1090{
1091 struct ks8851_net *ks = netdev_priv(dev);
1092 return mii_ethtool_sset(&ks->mii, cmd);
1093}
1094
1095static u32 ks8851_get_link(struct net_device *dev)
1096{
1097 struct ks8851_net *ks = netdev_priv(dev);
1098 return mii_link_ok(&ks->mii);
1099}
1100
1101static int ks8851_nway_reset(struct net_device *dev)
1102{
1103 struct ks8851_net *ks = netdev_priv(dev);
1104 return mii_nway_restart(&ks->mii);
1105}
1106
51b7b1c3 1107/* EEPROM support */
a84afa40 1108
51b7b1c3 1109static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
a84afa40 1110{
51b7b1c3
BD
1111 struct ks8851_net *ks = ee->data;
1112 unsigned val;
a84afa40 1113
51b7b1c3 1114 val = ks8851_rdreg16(ks, KS_EEPCR);
a84afa40 1115
51b7b1c3
BD
1116 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1117 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1118 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1119}
a84afa40 1120
51b7b1c3
BD
1121static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1122{
1123 struct ks8851_net *ks = ee->data;
1124 unsigned val = EEPCR_EESA; /* default - eeprom access on */
1125
1126 if (ee->drive_data)
1127 val |= EEPCR_EESRWA;
1128 if (ee->reg_data_in)
1129 val |= EEPCR_EEDO;
1130 if (ee->reg_data_clock)
1131 val |= EEPCR_EESCK;
1132 if (ee->reg_chip_select)
1133 val |= EEPCR_EECS;
1134
1135 ks8851_wrreg16(ks, KS_EEPCR, val);
1136}
a84afa40 1137
51b7b1c3
BD
1138/**
1139 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1140 * @ks: The network device state.
1141 *
1142 * Check for the presence of an EEPROM, and then activate software access
1143 * to the device.
1144 */
1145static int ks8851_eeprom_claim(struct ks8851_net *ks)
1146{
1147 if (!(ks->rc_ccr & CCR_EEPROM))
1148 return -ENOENT;
a84afa40 1149
51b7b1c3 1150 mutex_lock(&ks->lock);
a84afa40 1151
51b7b1c3
BD
1152 /* start with clock low, cs high */
1153 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1154 return 0;
1155}
a84afa40 1156
51b7b1c3
BD
1157/**
1158 * ks8851_eeprom_release - release the EEPROM interface
1159 * @ks: The device state
1160 *
1161 * Release the software access to the device EEPROM
1162 */
1163static void ks8851_eeprom_release(struct ks8851_net *ks)
1164{
1165 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
a84afa40 1166
51b7b1c3
BD
1167 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1168 mutex_unlock(&ks->lock);
a84afa40
SJ
1169}
1170
51b7b1c3
BD
1171#define KS_EEPROM_MAGIC (0x00008851)
1172
a84afa40 1173static int ks8851_set_eeprom(struct net_device *dev,
51b7b1c3 1174 struct ethtool_eeprom *ee, u8 *data)
a84afa40
SJ
1175{
1176 struct ks8851_net *ks = netdev_priv(dev);
51b7b1c3
BD
1177 int offset = ee->offset;
1178 int len = ee->len;
1179 u16 tmp;
1180
1181 /* currently only support byte writing */
1182 if (len != 1)
a84afa40
SJ
1183 return -EINVAL;
1184
51b7b1c3
BD
1185 if (ee->magic != KS_EEPROM_MAGIC)
1186 return -EINVAL;
a84afa40 1187
51b7b1c3
BD
1188 if (ks8851_eeprom_claim(ks))
1189 return -ENOENT;
1190
1191 eeprom_93cx6_wren(&ks->eeprom, true);
1192
1193 /* ethtool currently only supports writing bytes, which means
1194 * we have to read/modify/write our 16bit EEPROMs */
a84afa40 1195
51b7b1c3 1196 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
a84afa40 1197
51b7b1c3
BD
1198 if (offset & 1) {
1199 tmp &= 0xff;
1200 tmp |= *data << 8;
1201 } else {
1202 tmp &= 0xff00;
1203 tmp |= *data;
a84afa40 1204 }
a84afa40 1205
51b7b1c3
BD
1206 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1207 eeprom_93cx6_wren(&ks->eeprom, false);
1208
1209 ks8851_eeprom_release(ks);
1210
1211 return 0;
1212}
a84afa40 1213
51b7b1c3
BD
1214static int ks8851_get_eeprom(struct net_device *dev,
1215 struct ethtool_eeprom *ee, u8 *data)
1216{
1217 struct ks8851_net *ks = netdev_priv(dev);
1218 int offset = ee->offset;
1219 int len = ee->len;
a84afa40 1220
51b7b1c3
BD
1221 /* must be 2 byte aligned */
1222 if (len & 1 || offset & 1)
1223 return -EINVAL;
a84afa40 1224
51b7b1c3
BD
1225 if (ks8851_eeprom_claim(ks))
1226 return -ENOENT;
a84afa40 1227
51b7b1c3 1228 ee->magic = KS_EEPROM_MAGIC;
a84afa40 1229
51b7b1c3
BD
1230 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1231 ks8851_eeprom_release(ks);
a84afa40 1232
51b7b1c3
BD
1233 return 0;
1234}
a84afa40 1235
51b7b1c3
BD
1236static int ks8851_get_eeprom_len(struct net_device *dev)
1237{
1238 struct ks8851_net *ks = netdev_priv(dev);
1239
1240 /* currently, we assume it is an 93C46 attached, so return 128 */
1241 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
a84afa40
SJ
1242}
1243
3ba81f3e
BD
1244static const struct ethtool_ops ks8851_ethtool_ops = {
1245 .get_drvinfo = ks8851_get_drvinfo,
1246 .get_msglevel = ks8851_get_msglevel,
1247 .set_msglevel = ks8851_set_msglevel,
1248 .get_settings = ks8851_get_settings,
1249 .set_settings = ks8851_set_settings,
1250 .get_link = ks8851_get_link,
1251 .nway_reset = ks8851_nway_reset,
a84afa40
SJ
1252 .get_eeprom_len = ks8851_get_eeprom_len,
1253 .get_eeprom = ks8851_get_eeprom,
1254 .set_eeprom = ks8851_set_eeprom,
3ba81f3e
BD
1255};
1256
1257/* MII interface controls */
1258
1259/**
1260 * ks8851_phy_reg - convert MII register into a KS8851 register
1261 * @reg: MII register number.
1262 *
1263 * Return the KS8851 register number for the corresponding MII PHY register
1264 * if possible. Return zero if the MII register has no direct mapping to the
1265 * KS8851 register set.
1266 */
1267static int ks8851_phy_reg(int reg)
1268{
1269 switch (reg) {
1270 case MII_BMCR:
1271 return KS_P1MBCR;
1272 case MII_BMSR:
1273 return KS_P1MBSR;
1274 case MII_PHYSID1:
1275 return KS_PHY1ILR;
1276 case MII_PHYSID2:
1277 return KS_PHY1IHR;
1278 case MII_ADVERTISE:
1279 return KS_P1ANAR;
1280 case MII_LPA:
1281 return KS_P1ANLPR;
1282 }
1283
1284 return 0x0;
1285}
1286
1287/**
1288 * ks8851_phy_read - MII interface PHY register read.
1289 * @dev: The network device the PHY is on.
1290 * @phy_addr: Address of PHY (ignored as we only have one)
1291 * @reg: The register to read.
1292 *
1293 * This call reads data from the PHY register specified in @reg. Since the
25985edc 1294 * device does not support all the MII registers, the non-existent values
3ba81f3e
BD
1295 * are always returned as zero.
1296 *
1297 * We return zero for unsupported registers as the MII code does not check
1298 * the value returned for any error status, and simply returns it to the
1299 * caller. The mii-tool that the driver was tested with takes any -ve error
1300 * as real PHY capabilities, thus displaying incorrect data to the user.
1301 */
1302static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1303{
1304 struct ks8851_net *ks = netdev_priv(dev);
1305 int ksreg;
1306 int result;
1307
1308 ksreg = ks8851_phy_reg(reg);
1309 if (!ksreg)
1310 return 0x0; /* no error return allowed, so use zero */
1311
1312 mutex_lock(&ks->lock);
1313 result = ks8851_rdreg16(ks, ksreg);
1314 mutex_unlock(&ks->lock);
1315
1316 return result;
1317}
1318
1319static void ks8851_phy_write(struct net_device *dev,
1320 int phy, int reg, int value)
1321{
1322 struct ks8851_net *ks = netdev_priv(dev);
1323 int ksreg;
1324
1325 ksreg = ks8851_phy_reg(reg);
1326 if (ksreg) {
1327 mutex_lock(&ks->lock);
1328 ks8851_wrreg16(ks, ksreg, value);
1329 mutex_unlock(&ks->lock);
1330 }
1331}
1332
1333/**
1334 * ks8851_read_selftest - read the selftest memory info.
1335 * @ks: The device state
1336 *
1337 * Read and check the TX/RX memory selftest information.
1338 */
1339static int ks8851_read_selftest(struct ks8851_net *ks)
1340{
1341 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1342 int ret = 0;
1343 unsigned rd;
1344
1345 rd = ks8851_rdreg16(ks, KS_MBIR);
1346
1347 if ((rd & both_done) != both_done) {
0dc7d2b3 1348 netdev_warn(ks->netdev, "Memory selftest not finished\n");
3ba81f3e
BD
1349 return 0;
1350 }
1351
1352 if (rd & MBIR_TXMBFA) {
0dc7d2b3 1353 netdev_err(ks->netdev, "TX memory selftest fail\n");
3ba81f3e
BD
1354 ret |= 1;
1355 }
1356
1357 if (rd & MBIR_RXMBFA) {
0dc7d2b3 1358 netdev_err(ks->netdev, "RX memory selftest fail\n");
3ba81f3e
BD
1359 ret |= 2;
1360 }
1361
1362 return 0;
1363}
1364
1365/* driver bus management functions */
1366
1d5439b9
AA
1367#ifdef CONFIG_PM
1368static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
1369{
1370 struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1371 struct net_device *dev = ks->netdev;
1372
1373 if (netif_running(dev)) {
1374 netif_device_detach(dev);
1375 ks8851_net_stop(dev);
1376 }
1377
1378 return 0;
1379}
1380
1381static int ks8851_resume(struct spi_device *spi)
1382{
1383 struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1384 struct net_device *dev = ks->netdev;
1385
1386 if (netif_running(dev)) {
1387 ks8851_net_open(dev);
1388 netif_device_attach(dev);
1389 }
1390
1391 return 0;
1392}
1393#else
1394#define ks8851_suspend NULL
1395#define ks8851_resume NULL
1396#endif
1397
654b8c5c 1398static int ks8851_probe(struct spi_device *spi)
3ba81f3e
BD
1399{
1400 struct net_device *ndev;
1401 struct ks8851_net *ks;
1402 int ret;
51c61a28 1403 unsigned cider;
3ba81f3e
BD
1404
1405 ndev = alloc_etherdev(sizeof(struct ks8851_net));
41de8d4c 1406 if (!ndev)
3ba81f3e 1407 return -ENOMEM;
3ba81f3e
BD
1408
1409 spi->bits_per_word = 8;
1410
1411 ks = netdev_priv(ndev);
1412
1413 ks->netdev = ndev;
1414 ks->spidev = spi;
1415 ks->tx_space = 6144;
1416
1417 mutex_init(&ks->lock);
1418 spin_lock_init(&ks->statelock);
1419
1420 INIT_WORK(&ks->tx_work, ks8851_tx_work);
3ba81f3e
BD
1421 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1422
1423 /* initialise pre-made spi transfer messages */
1424
1425 spi_message_init(&ks->spi_msg1);
1426 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1427
1428 spi_message_init(&ks->spi_msg2);
1429 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1430 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1431
51b7b1c3
BD
1432 /* setup EEPROM state */
1433
1434 ks->eeprom.data = ks;
1435 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1436 ks->eeprom.register_read = ks8851_eeprom_regread;
1437 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1438
3ba81f3e
BD
1439 /* setup mii state */
1440 ks->mii.dev = ndev;
1441 ks->mii.phy_id = 1,
1442 ks->mii.phy_id_mask = 1;
1443 ks->mii.reg_num_mask = 0xf;
1444 ks->mii.mdio_read = ks8851_phy_read;
1445 ks->mii.mdio_write = ks8851_phy_write;
1446
1447 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1448
1449 /* set the default message enable */
1450 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1451 NETIF_MSG_PROBE |
1452 NETIF_MSG_LINK));
1453
1454 skb_queue_head_init(&ks->txq);
1455
1456 SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1457 SET_NETDEV_DEV(ndev, &spi->dev);
1458
1459 dev_set_drvdata(&spi->dev, ks);
1460
1461 ndev->if_port = IF_PORT_100BASET;
1462 ndev->netdev_ops = &ks8851_netdev_ops;
1463 ndev->irq = spi->irq;
1464
57dada68
BD
1465 /* issue a global soft reset to reset the device. */
1466 ks8851_soft_reset(ks, GRR_GSR);
1467
3ba81f3e 1468 /* simple check for a valid chip being connected to the bus */
51c61a28
MR
1469 cider = ks8851_rdreg16(ks, KS_CIDER);
1470 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
3ba81f3e
BD
1471 dev_err(&spi->dev, "failed to read device ID\n");
1472 ret = -ENODEV;
1473 goto err_id;
1474 }
1475
7d997466
SJ
1476 /* cache the contents of the CCR register for EEPROM, etc. */
1477 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1478
1479 if (ks->rc_ccr & CCR_EEPROM)
1480 ks->eeprom_size = 128;
1481 else
1482 ks->eeprom_size = 0;
1483
3ba81f3e
BD
1484 ks8851_read_selftest(ks);
1485 ks8851_init_mac(ks);
1486
656a05c8
FB
1487 ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1488 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1489 ndev->name, ks);
3ba81f3e
BD
1490 if (ret < 0) {
1491 dev_err(&spi->dev, "failed to get irq\n");
1492 goto err_irq;
1493 }
1494
1495 ret = register_netdev(ndev);
1496 if (ret) {
1497 dev_err(&spi->dev, "failed to register network device\n");
1498 goto err_netdev;
1499 }
1500
a9a8de21 1501 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
51c61a28 1502 CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
a9a8de21 1503 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
3ba81f3e
BD
1504
1505 return 0;
1506
1507
1508err_netdev:
e8195b24 1509 free_irq(ndev->irq, ks);
3ba81f3e
BD
1510
1511err_id:
1512err_irq:
1513 free_netdev(ndev);
1514 return ret;
1515}
1516
654b8c5c 1517static int ks8851_remove(struct spi_device *spi)
3ba81f3e
BD
1518{
1519 struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1520
1521 if (netif_msg_drv(priv))
0dc7d2b3 1522 dev_info(&spi->dev, "remove\n");
3ba81f3e
BD
1523
1524 unregister_netdev(priv->netdev);
1525 free_irq(spi->irq, priv);
1526 free_netdev(priv->netdev);
1527
1528 return 0;
1529}
1530
1531static struct spi_driver ks8851_driver = {
1532 .driver = {
1533 .name = "ks8851",
1534 .owner = THIS_MODULE,
1535 },
1536 .probe = ks8851_probe,
654b8c5c 1537 .remove = ks8851_remove,
1d5439b9
AA
1538 .suspend = ks8851_suspend,
1539 .resume = ks8851_resume,
3ba81f3e
BD
1540};
1541
1542static int __init ks8851_init(void)
1543{
1544 return spi_register_driver(&ks8851_driver);
1545}
1546
1547static void __exit ks8851_exit(void)
1548{
1549 spi_unregister_driver(&ks8851_driver);
1550}
1551
1552module_init(ks8851_init);
1553module_exit(ks8851_exit);
1554
1555MODULE_DESCRIPTION("KS8851 Network driver");
1556MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1557MODULE_LICENSE("GPL");
1558
1559module_param_named(message, msg_enable, int, 0);
1560MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
e0626e38 1561MODULE_ALIAS("spi:ks8851");