net: get rid of SET_ETHTOOL_OPS
[linux-block.git] / drivers / net / ethernet / micrel / ks8851.c
CommitLineData
3396c782 1/* drivers/net/ethernet/micrel/ks8851.c
3ba81f3e
BD
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
0dc7d2b3
JP
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
3ba81f3e
BD
14#define DEBUG
15
a6b7a407 16#include <linux/interrupt.h>
3ba81f3e
BD
17#include <linux/module.h>
18#include <linux/kernel.h>
19#include <linux/netdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/ethtool.h>
22#include <linux/cache.h>
23#include <linux/crc32.h>
24#include <linux/mii.h>
51b7b1c3 25#include <linux/eeprom_93cx6.h>
ebf4ad95 26#include <linux/regulator/consumer.h>
3ba81f3e
BD
27
28#include <linux/spi/spi.h>
29
30#include "ks8851.h"
31
32/**
33 * struct ks8851_rxctrl - KS8851 driver rx control
34 * @mchash: Multicast hash-table data.
35 * @rxcr1: KS_RXCR1 register setting
36 * @rxcr2: KS_RXCR2 register setting
37 *
38 * Representation of the settings needs to control the receive filtering
39 * such as the multicast hash-filter and the receive register settings. This
40 * is used to make the job of working out if the receive settings change and
41 * then issuing the new settings to the worker that will send the necessary
42 * commands.
43 */
44struct ks8851_rxctrl {
45 u16 mchash[4];
46 u16 rxcr1;
47 u16 rxcr2;
48};
49
50/**
51 * union ks8851_tx_hdr - tx header data
52 * @txb: The header as bytes
53 * @txw: The header as 16bit, little-endian words
54 *
55 * A dual representation of the tx header data to allow
56 * access to individual bytes, and to allow 16bit accesses
57 * with 16bit alignment.
58 */
59union ks8851_tx_hdr {
60 u8 txb[6];
61 __le16 txw[3];
62};
63
64/**
65 * struct ks8851_net - KS8851 driver private data
66 * @netdev: The network device we're bound to
67 * @spidev: The spi device we're bound to.
68 * @lock: Lock to ensure that the device is not accessed when busy.
69 * @statelock: Lock on this structure for tx list.
70 * @mii: The MII state information for the mii calls.
71 * @rxctrl: RX settings for @rxctrl_work.
72 * @tx_work: Work queue for tx packets
3ba81f3e
BD
73 * @rxctrl_work: Work queue for updating RX mode and multicast lists
74 * @txq: Queue of packets for transmission.
75 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
76 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
77 * @txh: Space for generating packet TX header in DMA-able data
78 * @rxd: Space for receiving SPI data, in DMA-able space.
79 * @txd: Space for transmitting SPI data, in DMA-able space.
80 * @msg_enable: The message flags controlling driver output (see ethtool).
81 * @fid: Incrementing frame id tag.
82 * @rc_ier: Cached copy of KS_IER.
7d997466 83 * @rc_ccr: Cached copy of KS_CCR.
3ba81f3e 84 * @rc_rxqcr: Cached copy of KS_RXQCR.
7d997466 85 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
51b7b1c3 86 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
ebf4ad95 87 * @vdd_reg: Optional regulator supplying the chip
3ba81f3e
BD
88 *
89 * The @lock ensures that the chip is protected when certain operations are
90 * in progress. When the read or write packet transfer is in progress, most
91 * of the chip registers are not ccessible until the transfer is finished and
92 * the DMA has been de-asserted.
93 *
94 * The @statelock is used to protect information in the structure which may
95 * need to be accessed via several sources, such as the network driver layer
96 * or one of the work queues.
97 *
98 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
99 * wants to DMA map them, it will not have any problems with data the driver
100 * modifies.
101 */
102struct ks8851_net {
103 struct net_device *netdev;
104 struct spi_device *spidev;
105 struct mutex lock;
106 spinlock_t statelock;
107
108 union ks8851_tx_hdr txh ____cacheline_aligned;
109 u8 rxd[8];
110 u8 txd[8];
111
112 u32 msg_enable ____cacheline_aligned;
113 u16 tx_space;
114 u8 fid;
115
116 u16 rc_ier;
117 u16 rc_rxqcr;
7d997466
SJ
118 u16 rc_ccr;
119 u16 eeprom_size;
3ba81f3e
BD
120
121 struct mii_if_info mii;
122 struct ks8851_rxctrl rxctrl;
123
124 struct work_struct tx_work;
3ba81f3e
BD
125 struct work_struct rxctrl_work;
126
127 struct sk_buff_head txq;
128
129 struct spi_message spi_msg1;
130 struct spi_message spi_msg2;
131 struct spi_transfer spi_xfer1;
132 struct spi_transfer spi_xfer2[2];
51b7b1c3
BD
133
134 struct eeprom_93cx6 eeprom;
ebf4ad95 135 struct regulator *vdd_reg;
3ba81f3e
BD
136};
137
138static int msg_enable;
139
3ba81f3e
BD
140/* shift for byte-enable data */
141#define BYTE_EN(_x) ((_x) << 2)
142
143/* turn register number and byte-enable mask into data for start of packet */
144#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
145
146/* SPI register read/write calls.
147 *
148 * All these calls issue SPI transactions to access the chip's registers. They
149 * all require that the necessary lock is held to prevent accesses when the
25985edc 150 * chip is busy transferring packet data (RX/TX FIFO accesses).
3ba81f3e
BD
151 */
152
153/**
154 * ks8851_wrreg16 - write 16bit register value to chip
155 * @ks: The chip state
156 * @reg: The register address
157 * @val: The value to write
158 *
159 * Issue a write to put the value @val into the register specified in @reg.
160 */
161static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
162{
163 struct spi_transfer *xfer = &ks->spi_xfer1;
164 struct spi_message *msg = &ks->spi_msg1;
165 __le16 txb[2];
166 int ret;
167
168 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
169 txb[1] = cpu_to_le16(val);
170
171 xfer->tx_buf = txb;
172 xfer->rx_buf = NULL;
173 xfer->len = 4;
174
175 ret = spi_sync(ks->spidev, msg);
176 if (ret < 0)
0dc7d2b3 177 netdev_err(ks->netdev, "spi_sync() failed\n");
3ba81f3e
BD
178}
179
160d0fad
BD
180/**
181 * ks8851_wrreg8 - write 8bit register value to chip
182 * @ks: The chip state
183 * @reg: The register address
184 * @val: The value to write
185 *
186 * Issue a write to put the value @val into the register specified in @reg.
187 */
188static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
189{
190 struct spi_transfer *xfer = &ks->spi_xfer1;
191 struct spi_message *msg = &ks->spi_msg1;
192 __le16 txb[2];
193 int ret;
194 int bit;
195
196 bit = 1 << (reg & 3);
197
198 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
199 txb[1] = val;
200
201 xfer->tx_buf = txb;
202 xfer->rx_buf = NULL;
203 xfer->len = 3;
204
205 ret = spi_sync(ks->spidev, msg);
206 if (ret < 0)
0dc7d2b3 207 netdev_err(ks->netdev, "spi_sync() failed\n");
160d0fad
BD
208}
209
3ba81f3e
BD
210/**
211 * ks8851_rx_1msg - select whether to use one or two messages for spi read
212 * @ks: The device structure
213 *
214 * Return whether to generate a single message with a tx and rx buffer
215 * supplied to spi_sync(), or alternatively send the tx and rx buffers
216 * as separate messages.
217 *
218 * Depending on the hardware in use, a single message may be more efficient
219 * on interrupts or work done by the driver.
220 *
221 * This currently always returns true until we add some per-device data passed
222 * from the platform code to specify which mode is better.
223 */
224static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
225{
226 return true;
227}
228
229/**
230 * ks8851_rdreg - issue read register command and return the data
231 * @ks: The device state
232 * @op: The register address and byte enables in message format.
233 * @rxb: The RX buffer to return the result into
234 * @rxl: The length of data expected.
235 *
236 * This is the low level read call that issues the necessary spi message(s)
237 * to read data from the register specified in @op.
238 */
239static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
240 u8 *rxb, unsigned rxl)
241{
242 struct spi_transfer *xfer;
243 struct spi_message *msg;
244 __le16 *txb = (__le16 *)ks->txd;
245 u8 *trx = ks->rxd;
246 int ret;
247
248 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
249
250 if (ks8851_rx_1msg(ks)) {
251 msg = &ks->spi_msg1;
252 xfer = &ks->spi_xfer1;
253
254 xfer->tx_buf = txb;
255 xfer->rx_buf = trx;
256 xfer->len = rxl + 2;
257 } else {
258 msg = &ks->spi_msg2;
259 xfer = ks->spi_xfer2;
260
261 xfer->tx_buf = txb;
262 xfer->rx_buf = NULL;
263 xfer->len = 2;
264
265 xfer++;
266 xfer->tx_buf = NULL;
267 xfer->rx_buf = trx;
268 xfer->len = rxl;
269 }
270
271 ret = spi_sync(ks->spidev, msg);
272 if (ret < 0)
0dc7d2b3 273 netdev_err(ks->netdev, "read: spi_sync() failed\n");
3ba81f3e
BD
274 else if (ks8851_rx_1msg(ks))
275 memcpy(rxb, trx + 2, rxl);
276 else
277 memcpy(rxb, trx, rxl);
278}
279
280/**
281 * ks8851_rdreg8 - read 8 bit register from device
282 * @ks: The chip information
283 * @reg: The register address
284 *
285 * Read a 8bit register from the chip, returning the result
286*/
287static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
288{
289 u8 rxb[1];
290
291 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
292 return rxb[0];
293}
294
295/**
296 * ks8851_rdreg16 - read 16 bit register from device
297 * @ks: The chip information
298 * @reg: The register address
299 *
300 * Read a 16bit register from the chip, returning the result
301*/
302static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
303{
304 __le16 rx = 0;
305
306 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
307 return le16_to_cpu(rx);
308}
309
310/**
311 * ks8851_rdreg32 - read 32 bit register from device
312 * @ks: The chip information
313 * @reg: The register address
314 *
315 * Read a 32bit register from the chip.
316 *
317 * Note, this read requires the address be aligned to 4 bytes.
318*/
319static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
320{
321 __le32 rx = 0;
322
323 WARN_ON(reg & 3);
324
325 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
326 return le32_to_cpu(rx);
327}
328
329/**
330 * ks8851_soft_reset - issue one of the soft reset to the device
331 * @ks: The device state.
332 * @op: The bit(s) to set in the GRR
333 *
334 * Issue the relevant soft-reset command to the device's GRR register
335 * specified by @op.
336 *
337 * Note, the delays are in there as a caution to ensure that the reset
338 * has time to take effect and then complete. Since the datasheet does
339 * not currently specify the exact sequence, we have chosen something
340 * that seems to work with our device.
341 */
342static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
343{
344 ks8851_wrreg16(ks, KS_GRR, op);
345 mdelay(1); /* wait a short time to effect reset */
346 ks8851_wrreg16(ks, KS_GRR, 0);
347 mdelay(1); /* wait for condition to clear */
348}
349
32f160d9
TH
350/**
351 * ks8851_set_powermode - set power mode of the device
352 * @ks: The device state
353 * @pwrmode: The power mode value to write to KS_PMECR.
354 *
355 * Change the power mode of the chip.
356 */
357static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
358{
359 unsigned pmecr;
360
361 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
362
363 pmecr = ks8851_rdreg16(ks, KS_PMECR);
364 pmecr &= ~PMECR_PM_MASK;
365 pmecr |= pwrmode;
366
367 ks8851_wrreg16(ks, KS_PMECR, pmecr);
368}
369
3ba81f3e
BD
370/**
371 * ks8851_write_mac_addr - write mac address to device registers
372 * @dev: The network device
373 *
374 * Update the KS8851 MAC address registers from the address in @dev.
375 *
376 * This call assumes that the chip is not running, so there is no need to
377 * shutdown the RXQ process whilst setting this.
378*/
379static int ks8851_write_mac_addr(struct net_device *dev)
380{
381 struct ks8851_net *ks = netdev_priv(dev);
160d0fad 382 int i;
3ba81f3e
BD
383
384 mutex_lock(&ks->lock);
385
32f160d9
TH
386 /*
387 * Wake up chip in case it was powered off when stopped; otherwise,
388 * the first write to the MAC address does not take effect.
389 */
390 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
160d0fad
BD
391 for (i = 0; i < ETH_ALEN; i++)
392 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
32f160d9
TH
393 if (!netif_running(dev))
394 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
3ba81f3e
BD
395
396 mutex_unlock(&ks->lock);
397
398 return 0;
399}
400
a9a8de21
BD
401/**
402 * ks8851_read_mac_addr - read mac address from device registers
403 * @dev: The network device
404 *
405 * Update our copy of the KS8851 MAC address from the registers of @dev.
406*/
407static void ks8851_read_mac_addr(struct net_device *dev)
408{
409 struct ks8851_net *ks = netdev_priv(dev);
410 int i;
411
412 mutex_lock(&ks->lock);
413
414 for (i = 0; i < ETH_ALEN; i++)
415 dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
416
417 mutex_unlock(&ks->lock);
418}
419
3ba81f3e
BD
420/**
421 * ks8851_init_mac - initialise the mac address
422 * @ks: The device structure
423 *
424 * Get or create the initial mac address for the device and then set that
a9a8de21 425 * into the station address register. If there is an EEPROM present, then
7efd26d0 426 * we try that. If no valid mac address is found we use eth_random_addr()
3ba81f3e 427 * to create a new one.
3ba81f3e
BD
428 */
429static void ks8851_init_mac(struct ks8851_net *ks)
430{
431 struct net_device *dev = ks->netdev;
432
a9a8de21
BD
433 /* first, try reading what we've got already */
434 if (ks->rc_ccr & CCR_EEPROM) {
435 ks8851_read_mac_addr(dev);
436 if (is_valid_ether_addr(dev->dev_addr))
437 return;
438
439 netdev_err(ks->netdev, "invalid mac address read %pM\n",
440 dev->dev_addr);
441 }
442
7ce5d222 443 eth_hw_addr_random(dev);
3ba81f3e
BD
444 ks8851_write_mac_addr(dev);
445}
446
3ba81f3e
BD
447/**
448 * ks8851_rdfifo - read data from the receive fifo
449 * @ks: The device state.
450 * @buff: The buffer address
451 * @len: The length of the data to read
452 *
9ddc5b6f 453 * Issue an RXQ FIFO read command and read the @len amount of data from
3ba81f3e
BD
454 * the FIFO into the buffer specified by @buff.
455 */
456static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
457{
458 struct spi_transfer *xfer = ks->spi_xfer2;
459 struct spi_message *msg = &ks->spi_msg2;
460 u8 txb[1];
461 int ret;
462
0dc7d2b3
JP
463 netif_dbg(ks, rx_status, ks->netdev,
464 "%s: %d@%p\n", __func__, len, buff);
3ba81f3e
BD
465
466 /* set the operation we're issuing */
467 txb[0] = KS_SPIOP_RXFIFO;
468
469 xfer->tx_buf = txb;
470 xfer->rx_buf = NULL;
471 xfer->len = 1;
472
473 xfer++;
474 xfer->rx_buf = buff;
475 xfer->tx_buf = NULL;
476 xfer->len = len;
477
478 ret = spi_sync(ks->spidev, msg);
479 if (ret < 0)
0dc7d2b3 480 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
3ba81f3e
BD
481}
482
483/**
484 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
485 * @ks: The device state
486 * @rxpkt: The data for the received packet
487 *
488 * Dump the initial data from the packet to dev_dbg().
489*/
490static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
491{
0dc7d2b3
JP
492 netdev_dbg(ks->netdev,
493 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
494 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
495 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
496 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
3ba81f3e
BD
497}
498
499/**
500 * ks8851_rx_pkts - receive packets from the host
501 * @ks: The device information.
502 *
503 * This is called from the IRQ work queue when the system detects that there
504 * are packets in the receive queue. Find out how many packets there are and
505 * read them from the FIFO.
506 */
507static void ks8851_rx_pkts(struct ks8851_net *ks)
508{
509 struct sk_buff *skb;
510 unsigned rxfc;
511 unsigned rxlen;
512 unsigned rxstat;
513 u32 rxh;
514 u8 *rxpkt;
515
516 rxfc = ks8851_rdreg8(ks, KS_RXFC);
517
0dc7d2b3
JP
518 netif_dbg(ks, rx_status, ks->netdev,
519 "%s: %d packets\n", __func__, rxfc);
3ba81f3e
BD
520
521 /* Currently we're issuing a read per packet, but we could possibly
522 * improve the code by issuing a single read, getting the receive
523 * header, allocating the packet and then reading the packet data
524 * out in one go.
525 *
526 * This form of operation would require us to hold the SPI bus'
527 * chipselect low during the entie transaction to avoid any
25985edc 528 * reset to the data stream coming from the chip.
3ba81f3e
BD
529 */
530
531 for (; rxfc != 0; rxfc--) {
532 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
533 rxstat = rxh & 0xffff;
14bc435e 534 rxlen = (rxh >> 16) & 0xfff;
3ba81f3e 535
0dc7d2b3
JP
536 netif_dbg(ks, rx_status, ks->netdev,
537 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
3ba81f3e
BD
538
539 /* the length of the packet includes the 32bit CRC */
540
541 /* set dma read address */
542 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
543
544 /* start the packet dma process, and set auto-dequeue rx */
545 ks8851_wrreg16(ks, KS_RXQCR,
546 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
547
972c40b5
ED
548 if (rxlen > 4) {
549 unsigned int rxalign;
550
551 rxlen -= 4;
552 rxalign = ALIGN(rxlen, 4);
553 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
554 if (skb) {
3ba81f3e 555
972c40b5
ED
556 /* 4 bytes of status header + 4 bytes of
557 * garbage: we put them before ethernet
558 * header, so that they are copied,
559 * but ignored.
560 */
3ba81f3e 561
972c40b5 562 rxpkt = skb_put(skb, rxlen) - 8;
3ba81f3e 563
972c40b5 564 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
3ba81f3e 565
972c40b5
ED
566 if (netif_msg_pktdata(ks))
567 ks8851_dbg_dumpkkt(ks, rxpkt);
3ba81f3e 568
972c40b5 569 skb->protocol = eth_type_trans(skb, ks->netdev);
fbcf88b8 570 netif_rx_ni(skb);
3ba81f3e 571
972c40b5
ED
572 ks->netdev->stats.rx_packets++;
573 ks->netdev->stats.rx_bytes += rxlen;
574 }
3ba81f3e
BD
575 }
576
577 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
578 }
579}
580
581/**
656a05c8
FB
582 * ks8851_irq - IRQ handler for dealing with interrupt requests
583 * @irq: IRQ number
584 * @_ks: cookie
3ba81f3e 585 *
656a05c8
FB
586 * This handler is invoked when the IRQ line asserts to find out what happened.
587 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
588 * in thread context.
3ba81f3e
BD
589 *
590 * Read the interrupt status, work out what needs to be done and then clear
591 * any of the interrupts that are not needed.
592 */
656a05c8 593static irqreturn_t ks8851_irq(int irq, void *_ks)
3ba81f3e 594{
656a05c8 595 struct ks8851_net *ks = _ks;
3ba81f3e
BD
596 unsigned status;
597 unsigned handled = 0;
598
599 mutex_lock(&ks->lock);
600
601 status = ks8851_rdreg16(ks, KS_ISR);
602
0dc7d2b3
JP
603 netif_dbg(ks, intr, ks->netdev,
604 "%s: status 0x%04x\n", __func__, status);
3ba81f3e 605
062e55e3 606 if (status & IRQ_LCI)
3ba81f3e 607 handled |= IRQ_LCI;
3ba81f3e
BD
608
609 if (status & IRQ_LDI) {
610 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
611 pmecr &= ~PMECR_WKEVT_MASK;
612 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
613
614 handled |= IRQ_LDI;
615 }
616
617 if (status & IRQ_RXPSI)
618 handled |= IRQ_RXPSI;
619
620 if (status & IRQ_TXI) {
621 handled |= IRQ_TXI;
622
623 /* no lock here, tx queue should have been stopped */
624
625 /* update our idea of how much tx space is available to the
626 * system */
627 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
628
0dc7d2b3
JP
629 netif_dbg(ks, intr, ks->netdev,
630 "%s: txspace %d\n", __func__, ks->tx_space);
3ba81f3e
BD
631 }
632
633 if (status & IRQ_RXI)
634 handled |= IRQ_RXI;
635
636 if (status & IRQ_SPIBEI) {
637 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
638 handled |= IRQ_SPIBEI;
639 }
640
641 ks8851_wrreg16(ks, KS_ISR, handled);
642
643 if (status & IRQ_RXI) {
644 /* the datasheet says to disable the rx interrupt during
645 * packet read-out, however we're masking the interrupt
646 * from the device so do not bother masking just the RX
647 * from the device. */
648
649 ks8851_rx_pkts(ks);
650 }
651
652 /* if something stopped the rx process, probably due to wanting
653 * to change the rx settings, then do something about restarting
654 * it. */
655 if (status & IRQ_RXPSI) {
656 struct ks8851_rxctrl *rxc = &ks->rxctrl;
657
658 /* update the multicast hash table */
659 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
660 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
661 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
662 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
663
664 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
665 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
666 }
667
668 mutex_unlock(&ks->lock);
669
062e55e3
SB
670 if (status & IRQ_LCI)
671 mii_check_link(&ks->mii);
672
3ba81f3e
BD
673 if (status & IRQ_TXI)
674 netif_wake_queue(ks->netdev);
675
656a05c8 676 return IRQ_HANDLED;
3ba81f3e
BD
677}
678
679/**
680 * calc_txlen - calculate size of message to send packet
25985edc 681 * @len: Length of data
3ba81f3e
BD
682 *
683 * Returns the size of the TXFIFO message needed to send
684 * this packet.
685 */
686static inline unsigned calc_txlen(unsigned len)
687{
688 return ALIGN(len + 4, 4);
689}
690
691/**
692 * ks8851_wrpkt - write packet to TX FIFO
693 * @ks: The device state.
694 * @txp: The sk_buff to transmit.
695 * @irq: IRQ on completion of the packet.
696 *
697 * Send the @txp to the chip. This means creating the relevant packet header
698 * specifying the length of the packet and the other information the chip
699 * needs, such as IRQ on completion. Send the header and the packet data to
700 * the device.
701 */
702static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
703{
704 struct spi_transfer *xfer = ks->spi_xfer2;
705 struct spi_message *msg = &ks->spi_msg2;
706 unsigned fid = 0;
707 int ret;
708
0dc7d2b3
JP
709 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
710 __func__, txp, txp->len, txp->data, irq);
3ba81f3e
BD
711
712 fid = ks->fid++;
713 fid &= TXFR_TXFID_MASK;
714
715 if (irq)
716 fid |= TXFR_TXIC; /* irq on completion */
717
718 /* start header at txb[1] to align txw entries */
719 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
720 ks->txh.txw[1] = cpu_to_le16(fid);
721 ks->txh.txw[2] = cpu_to_le16(txp->len);
722
723 xfer->tx_buf = &ks->txh.txb[1];
724 xfer->rx_buf = NULL;
725 xfer->len = 5;
726
727 xfer++;
728 xfer->tx_buf = txp->data;
729 xfer->rx_buf = NULL;
730 xfer->len = ALIGN(txp->len, 4);
731
732 ret = spi_sync(ks->spidev, msg);
733 if (ret < 0)
0dc7d2b3 734 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
3ba81f3e
BD
735}
736
737/**
738 * ks8851_done_tx - update and then free skbuff after transmitting
739 * @ks: The device state
740 * @txb: The buffer transmitted
741 */
742static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
743{
744 struct net_device *dev = ks->netdev;
745
746 dev->stats.tx_bytes += txb->len;
747 dev->stats.tx_packets++;
748
749 dev_kfree_skb(txb);
750}
751
752/**
753 * ks8851_tx_work - process tx packet(s)
754 * @work: The work strucutre what was scheduled.
755 *
756 * This is called when a number of packets have been scheduled for
757 * transmission and need to be sent to the device.
758 */
759static void ks8851_tx_work(struct work_struct *work)
760{
761 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
762 struct sk_buff *txb;
3320eae5 763 bool last = skb_queue_empty(&ks->txq);
3ba81f3e
BD
764
765 mutex_lock(&ks->lock);
766
767 while (!last) {
768 txb = skb_dequeue(&ks->txq);
769 last = skb_queue_empty(&ks->txq);
770
761172fb
AA
771 if (txb != NULL) {
772 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
773 ks8851_wrpkt(ks, txb, last);
774 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
775 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
3ba81f3e 776
761172fb
AA
777 ks8851_done_tx(ks, txb);
778 }
3ba81f3e
BD
779 }
780
781 mutex_unlock(&ks->lock);
3ba81f3e
BD
782}
783
784/**
785 * ks8851_net_open - open network device
786 * @dev: The network device being opened.
787 *
788 * Called when the network device is marked active, such as a user executing
789 * 'ifconfig up' on the device.
790 */
791static int ks8851_net_open(struct net_device *dev)
792{
793 struct ks8851_net *ks = netdev_priv(dev);
794
795 /* lock the card, even if we may not actually be doing anything
796 * else at the moment */
797 mutex_lock(&ks->lock);
798
0dc7d2b3 799 netif_dbg(ks, ifup, ks->netdev, "opening\n");
3ba81f3e
BD
800
801 /* bring chip out of any power saving mode it was in */
802 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
803
804 /* issue a soft reset to the RX/TX QMU to put it into a known
805 * state. */
806 ks8851_soft_reset(ks, GRR_QMU);
807
808 /* setup transmission parameters */
809
810 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
811 TXCR_TXPE | /* pad to min length */
812 TXCR_TXCRC | /* add CRC */
813 TXCR_TXFCE)); /* enable flow control */
814
815 /* auto-increment tx data, reset tx pointer */
816 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
817
818 /* setup receiver control */
819
820 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
821 RXCR1_RXFCE | /* enable flow control */
822 RXCR1_RXBE | /* broadcast enable */
823 RXCR1_RXUE | /* unicast enable */
824 RXCR1_RXE)); /* enable rx block */
825
826 /* transfer entire frames out in one go */
827 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
828
829 /* set receive counter timeouts */
830 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
831 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
832 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
833
834 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
835 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
836 RXQCR_RXDTTE); /* IRQ on time exceeded */
837
838 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
839
840 /* clear then enable interrupts */
841
842#define STD_IRQ (IRQ_LCI | /* Link Change */ \
843 IRQ_TXI | /* TX done */ \
844 IRQ_RXI | /* RX done */ \
845 IRQ_SPIBEI | /* SPI bus error */ \
846 IRQ_TXPSI | /* TX process stop */ \
847 IRQ_RXPSI) /* RX process stop */
848
849 ks->rc_ier = STD_IRQ;
850 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
851 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
852
853 netif_start_queue(ks->netdev);
854
0dc7d2b3 855 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
3ba81f3e
BD
856
857 mutex_unlock(&ks->lock);
858 return 0;
859}
860
861/**
862 * ks8851_net_stop - close network device
863 * @dev: The device being closed.
864 *
865 * Called to close down a network device which has been active. Cancell any
866 * work, shutdown the RX and TX process and then place the chip into a low
867 * power state whilst it is not being used.
868 */
869static int ks8851_net_stop(struct net_device *dev)
870{
871 struct ks8851_net *ks = netdev_priv(dev);
872
0dc7d2b3 873 netif_info(ks, ifdown, dev, "shutting down\n");
3ba81f3e
BD
874
875 netif_stop_queue(dev);
876
877 mutex_lock(&ks->lock);
c5a99937
SB
878 /* turn off the IRQs and ack any outstanding */
879 ks8851_wrreg16(ks, KS_IER, 0x0000);
880 ks8851_wrreg16(ks, KS_ISR, 0xffff);
881 mutex_unlock(&ks->lock);
3ba81f3e
BD
882
883 /* stop any outstanding work */
3ba81f3e
BD
884 flush_work(&ks->tx_work);
885 flush_work(&ks->rxctrl_work);
886
c5a99937 887 mutex_lock(&ks->lock);
3ba81f3e
BD
888 /* shutdown RX process */
889 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
890
891 /* shutdown TX process */
892 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
893
894 /* set powermode to soft power down to save power */
895 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
c5a99937 896 mutex_unlock(&ks->lock);
3ba81f3e
BD
897
898 /* ensure any queued tx buffers are dumped */
899 while (!skb_queue_empty(&ks->txq)) {
900 struct sk_buff *txb = skb_dequeue(&ks->txq);
901
0dc7d2b3
JP
902 netif_dbg(ks, ifdown, ks->netdev,
903 "%s: freeing txb %p\n", __func__, txb);
3ba81f3e
BD
904
905 dev_kfree_skb(txb);
906 }
907
3ba81f3e
BD
908 return 0;
909}
910
911/**
912 * ks8851_start_xmit - transmit packet
913 * @skb: The buffer to transmit
914 * @dev: The device used to transmit the packet.
915 *
916 * Called by the network layer to transmit the @skb. Queue the packet for
917 * the device and schedule the necessary work to transmit the packet when
918 * it is free.
919 *
920 * We do this to firstly avoid sleeping with the network device locked,
921 * and secondly so we can round up more than one packet to transmit which
922 * means we can try and avoid generating too many transmit done interrupts.
923 */
61357325
SH
924static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
925 struct net_device *dev)
3ba81f3e
BD
926{
927 struct ks8851_net *ks = netdev_priv(dev);
928 unsigned needed = calc_txlen(skb->len);
61357325 929 netdev_tx_t ret = NETDEV_TX_OK;
3ba81f3e 930
0dc7d2b3
JP
931 netif_dbg(ks, tx_queued, ks->netdev,
932 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
3ba81f3e
BD
933
934 spin_lock(&ks->statelock);
935
936 if (needed > ks->tx_space) {
937 netif_stop_queue(dev);
938 ret = NETDEV_TX_BUSY;
939 } else {
940 ks->tx_space -= needed;
941 skb_queue_tail(&ks->txq, skb);
942 }
943
944 spin_unlock(&ks->statelock);
945 schedule_work(&ks->tx_work);
946
947 return ret;
948}
949
950/**
951 * ks8851_rxctrl_work - work handler to change rx mode
952 * @work: The work structure this belongs to.
953 *
954 * Lock the device and issue the necessary changes to the receive mode from
955 * the network device layer. This is done so that we can do this without
956 * having to sleep whilst holding the network device lock.
957 *
958 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
959 * receive parameters are programmed, we issue a write to disable the RXQ and
960 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
961 * complete. The interrupt handler then writes the new values into the chip.
962 */
963static void ks8851_rxctrl_work(struct work_struct *work)
964{
965 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
966
967 mutex_lock(&ks->lock);
968
969 /* need to shutdown RXQ before modifying filter parameters */
970 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
971
972 mutex_unlock(&ks->lock);
973}
974
975static void ks8851_set_rx_mode(struct net_device *dev)
976{
977 struct ks8851_net *ks = netdev_priv(dev);
978 struct ks8851_rxctrl rxctrl;
979
980 memset(&rxctrl, 0, sizeof(rxctrl));
981
982 if (dev->flags & IFF_PROMISC) {
983 /* interface to receive everything */
984
985 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
986 } else if (dev->flags & IFF_ALLMULTI) {
987 /* accept all multicast packets */
988
989 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
990 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
4cd24eaf 991 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
22bedad3 992 struct netdev_hw_addr *ha;
3ba81f3e 993 u32 crc;
3ba81f3e
BD
994
995 /* accept some multicast */
996
22bedad3
JP
997 netdev_for_each_mc_addr(ha, dev) {
998 crc = ether_crc(ETH_ALEN, ha->addr);
3ba81f3e
BD
999 crc >>= (32 - 6); /* get top six bits */
1000
1001 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
3ba81f3e
BD
1002 }
1003
b6a71bfa 1004 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
3ba81f3e
BD
1005 } else {
1006 /* just accept broadcast / unicast */
1007 rxctrl.rxcr1 = RXCR1_RXPAFMA;
1008 }
1009
1010 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1011 RXCR1_RXBE | /* broadcast enable */
1012 RXCR1_RXE | /* RX process enable */
1013 RXCR1_RXFCE); /* enable flow control */
1014
1015 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1016
1017 /* schedule work to do the actual set of the data if needed */
1018
1019 spin_lock(&ks->statelock);
1020
1021 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1022 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1023 schedule_work(&ks->rxctrl_work);
1024 }
1025
1026 spin_unlock(&ks->statelock);
1027}
1028
1029static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1030{
1031 struct sockaddr *sa = addr;
1032
1033 if (netif_running(dev))
1034 return -EBUSY;
1035
1036 if (!is_valid_ether_addr(sa->sa_data))
1037 return -EADDRNOTAVAIL;
1038
1039 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1040 return ks8851_write_mac_addr(dev);
1041}
1042
1043static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1044{
1045 struct ks8851_net *ks = netdev_priv(dev);
1046
1047 if (!netif_running(dev))
1048 return -EINVAL;
1049
1050 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1051}
1052
1053static const struct net_device_ops ks8851_netdev_ops = {
1054 .ndo_open = ks8851_net_open,
1055 .ndo_stop = ks8851_net_stop,
1056 .ndo_do_ioctl = ks8851_net_ioctl,
1057 .ndo_start_xmit = ks8851_start_xmit,
1058 .ndo_set_mac_address = ks8851_set_mac_address,
1059 .ndo_set_rx_mode = ks8851_set_rx_mode,
1060 .ndo_change_mtu = eth_change_mtu,
1061 .ndo_validate_addr = eth_validate_addr,
1062};
1063
1064/* ethtool support */
1065
1066static void ks8851_get_drvinfo(struct net_device *dev,
1067 struct ethtool_drvinfo *di)
1068{
1069 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1070 strlcpy(di->version, "1.00", sizeof(di->version));
1071 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1072}
1073
1074static u32 ks8851_get_msglevel(struct net_device *dev)
1075{
1076 struct ks8851_net *ks = netdev_priv(dev);
1077 return ks->msg_enable;
1078}
1079
1080static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1081{
1082 struct ks8851_net *ks = netdev_priv(dev);
1083 ks->msg_enable = to;
1084}
1085
1086static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1087{
1088 struct ks8851_net *ks = netdev_priv(dev);
1089 return mii_ethtool_gset(&ks->mii, cmd);
1090}
1091
1092static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1093{
1094 struct ks8851_net *ks = netdev_priv(dev);
1095 return mii_ethtool_sset(&ks->mii, cmd);
1096}
1097
1098static u32 ks8851_get_link(struct net_device *dev)
1099{
1100 struct ks8851_net *ks = netdev_priv(dev);
1101 return mii_link_ok(&ks->mii);
1102}
1103
1104static int ks8851_nway_reset(struct net_device *dev)
1105{
1106 struct ks8851_net *ks = netdev_priv(dev);
1107 return mii_nway_restart(&ks->mii);
1108}
1109
51b7b1c3 1110/* EEPROM support */
a84afa40 1111
51b7b1c3 1112static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
a84afa40 1113{
51b7b1c3
BD
1114 struct ks8851_net *ks = ee->data;
1115 unsigned val;
a84afa40 1116
51b7b1c3 1117 val = ks8851_rdreg16(ks, KS_EEPCR);
a84afa40 1118
51b7b1c3
BD
1119 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1120 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1121 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1122}
a84afa40 1123
51b7b1c3
BD
1124static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1125{
1126 struct ks8851_net *ks = ee->data;
1127 unsigned val = EEPCR_EESA; /* default - eeprom access on */
1128
1129 if (ee->drive_data)
1130 val |= EEPCR_EESRWA;
1131 if (ee->reg_data_in)
1132 val |= EEPCR_EEDO;
1133 if (ee->reg_data_clock)
1134 val |= EEPCR_EESCK;
1135 if (ee->reg_chip_select)
1136 val |= EEPCR_EECS;
1137
1138 ks8851_wrreg16(ks, KS_EEPCR, val);
1139}
a84afa40 1140
51b7b1c3
BD
1141/**
1142 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1143 * @ks: The network device state.
1144 *
1145 * Check for the presence of an EEPROM, and then activate software access
1146 * to the device.
1147 */
1148static int ks8851_eeprom_claim(struct ks8851_net *ks)
1149{
1150 if (!(ks->rc_ccr & CCR_EEPROM))
1151 return -ENOENT;
a84afa40 1152
51b7b1c3 1153 mutex_lock(&ks->lock);
a84afa40 1154
51b7b1c3
BD
1155 /* start with clock low, cs high */
1156 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1157 return 0;
1158}
a84afa40 1159
51b7b1c3
BD
1160/**
1161 * ks8851_eeprom_release - release the EEPROM interface
1162 * @ks: The device state
1163 *
1164 * Release the software access to the device EEPROM
1165 */
1166static void ks8851_eeprom_release(struct ks8851_net *ks)
1167{
1168 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
a84afa40 1169
51b7b1c3
BD
1170 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1171 mutex_unlock(&ks->lock);
a84afa40
SJ
1172}
1173
51b7b1c3
BD
1174#define KS_EEPROM_MAGIC (0x00008851)
1175
a84afa40 1176static int ks8851_set_eeprom(struct net_device *dev,
51b7b1c3 1177 struct ethtool_eeprom *ee, u8 *data)
a84afa40
SJ
1178{
1179 struct ks8851_net *ks = netdev_priv(dev);
51b7b1c3
BD
1180 int offset = ee->offset;
1181 int len = ee->len;
1182 u16 tmp;
1183
1184 /* currently only support byte writing */
1185 if (len != 1)
a84afa40
SJ
1186 return -EINVAL;
1187
51b7b1c3
BD
1188 if (ee->magic != KS_EEPROM_MAGIC)
1189 return -EINVAL;
a84afa40 1190
51b7b1c3
BD
1191 if (ks8851_eeprom_claim(ks))
1192 return -ENOENT;
1193
1194 eeprom_93cx6_wren(&ks->eeprom, true);
1195
1196 /* ethtool currently only supports writing bytes, which means
1197 * we have to read/modify/write our 16bit EEPROMs */
a84afa40 1198
51b7b1c3 1199 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
a84afa40 1200
51b7b1c3
BD
1201 if (offset & 1) {
1202 tmp &= 0xff;
1203 tmp |= *data << 8;
1204 } else {
1205 tmp &= 0xff00;
1206 tmp |= *data;
a84afa40 1207 }
a84afa40 1208
51b7b1c3
BD
1209 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1210 eeprom_93cx6_wren(&ks->eeprom, false);
1211
1212 ks8851_eeprom_release(ks);
1213
1214 return 0;
1215}
a84afa40 1216
51b7b1c3
BD
1217static int ks8851_get_eeprom(struct net_device *dev,
1218 struct ethtool_eeprom *ee, u8 *data)
1219{
1220 struct ks8851_net *ks = netdev_priv(dev);
1221 int offset = ee->offset;
1222 int len = ee->len;
a84afa40 1223
51b7b1c3
BD
1224 /* must be 2 byte aligned */
1225 if (len & 1 || offset & 1)
1226 return -EINVAL;
a84afa40 1227
51b7b1c3
BD
1228 if (ks8851_eeprom_claim(ks))
1229 return -ENOENT;
a84afa40 1230
51b7b1c3 1231 ee->magic = KS_EEPROM_MAGIC;
a84afa40 1232
51b7b1c3
BD
1233 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1234 ks8851_eeprom_release(ks);
a84afa40 1235
51b7b1c3
BD
1236 return 0;
1237}
a84afa40 1238
51b7b1c3
BD
1239static int ks8851_get_eeprom_len(struct net_device *dev)
1240{
1241 struct ks8851_net *ks = netdev_priv(dev);
1242
1243 /* currently, we assume it is an 93C46 attached, so return 128 */
1244 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
a84afa40
SJ
1245}
1246
3ba81f3e
BD
1247static const struct ethtool_ops ks8851_ethtool_ops = {
1248 .get_drvinfo = ks8851_get_drvinfo,
1249 .get_msglevel = ks8851_get_msglevel,
1250 .set_msglevel = ks8851_set_msglevel,
1251 .get_settings = ks8851_get_settings,
1252 .set_settings = ks8851_set_settings,
1253 .get_link = ks8851_get_link,
1254 .nway_reset = ks8851_nway_reset,
a84afa40
SJ
1255 .get_eeprom_len = ks8851_get_eeprom_len,
1256 .get_eeprom = ks8851_get_eeprom,
1257 .set_eeprom = ks8851_set_eeprom,
3ba81f3e
BD
1258};
1259
1260/* MII interface controls */
1261
1262/**
1263 * ks8851_phy_reg - convert MII register into a KS8851 register
1264 * @reg: MII register number.
1265 *
1266 * Return the KS8851 register number for the corresponding MII PHY register
1267 * if possible. Return zero if the MII register has no direct mapping to the
1268 * KS8851 register set.
1269 */
1270static int ks8851_phy_reg(int reg)
1271{
1272 switch (reg) {
1273 case MII_BMCR:
1274 return KS_P1MBCR;
1275 case MII_BMSR:
1276 return KS_P1MBSR;
1277 case MII_PHYSID1:
1278 return KS_PHY1ILR;
1279 case MII_PHYSID2:
1280 return KS_PHY1IHR;
1281 case MII_ADVERTISE:
1282 return KS_P1ANAR;
1283 case MII_LPA:
1284 return KS_P1ANLPR;
1285 }
1286
1287 return 0x0;
1288}
1289
1290/**
1291 * ks8851_phy_read - MII interface PHY register read.
1292 * @dev: The network device the PHY is on.
1293 * @phy_addr: Address of PHY (ignored as we only have one)
1294 * @reg: The register to read.
1295 *
1296 * This call reads data from the PHY register specified in @reg. Since the
25985edc 1297 * device does not support all the MII registers, the non-existent values
3ba81f3e
BD
1298 * are always returned as zero.
1299 *
1300 * We return zero for unsupported registers as the MII code does not check
1301 * the value returned for any error status, and simply returns it to the
1302 * caller. The mii-tool that the driver was tested with takes any -ve error
1303 * as real PHY capabilities, thus displaying incorrect data to the user.
1304 */
1305static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1306{
1307 struct ks8851_net *ks = netdev_priv(dev);
1308 int ksreg;
1309 int result;
1310
1311 ksreg = ks8851_phy_reg(reg);
1312 if (!ksreg)
1313 return 0x0; /* no error return allowed, so use zero */
1314
1315 mutex_lock(&ks->lock);
1316 result = ks8851_rdreg16(ks, ksreg);
1317 mutex_unlock(&ks->lock);
1318
1319 return result;
1320}
1321
1322static void ks8851_phy_write(struct net_device *dev,
1323 int phy, int reg, int value)
1324{
1325 struct ks8851_net *ks = netdev_priv(dev);
1326 int ksreg;
1327
1328 ksreg = ks8851_phy_reg(reg);
1329 if (ksreg) {
1330 mutex_lock(&ks->lock);
1331 ks8851_wrreg16(ks, ksreg, value);
1332 mutex_unlock(&ks->lock);
1333 }
1334}
1335
1336/**
1337 * ks8851_read_selftest - read the selftest memory info.
1338 * @ks: The device state
1339 *
1340 * Read and check the TX/RX memory selftest information.
1341 */
1342static int ks8851_read_selftest(struct ks8851_net *ks)
1343{
1344 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1345 int ret = 0;
1346 unsigned rd;
1347
1348 rd = ks8851_rdreg16(ks, KS_MBIR);
1349
1350 if ((rd & both_done) != both_done) {
0dc7d2b3 1351 netdev_warn(ks->netdev, "Memory selftest not finished\n");
3ba81f3e
BD
1352 return 0;
1353 }
1354
1355 if (rd & MBIR_TXMBFA) {
0dc7d2b3 1356 netdev_err(ks->netdev, "TX memory selftest fail\n");
3ba81f3e
BD
1357 ret |= 1;
1358 }
1359
1360 if (rd & MBIR_RXMBFA) {
0dc7d2b3 1361 netdev_err(ks->netdev, "RX memory selftest fail\n");
3ba81f3e
BD
1362 ret |= 2;
1363 }
1364
1365 return 0;
1366}
1367
1368/* driver bus management functions */
1369
d5b40921
LPC
1370#ifdef CONFIG_PM_SLEEP
1371
1372static int ks8851_suspend(struct device *dev)
1d5439b9 1373{
d5b40921
LPC
1374 struct ks8851_net *ks = dev_get_drvdata(dev);
1375 struct net_device *netdev = ks->netdev;
1d5439b9 1376
d5b40921
LPC
1377 if (netif_running(netdev)) {
1378 netif_device_detach(netdev);
1379 ks8851_net_stop(netdev);
1d5439b9
AA
1380 }
1381
1382 return 0;
1383}
1384
d5b40921 1385static int ks8851_resume(struct device *dev)
1d5439b9 1386{
d5b40921
LPC
1387 struct ks8851_net *ks = dev_get_drvdata(dev);
1388 struct net_device *netdev = ks->netdev;
1d5439b9 1389
d5b40921
LPC
1390 if (netif_running(netdev)) {
1391 ks8851_net_open(netdev);
1392 netif_device_attach(netdev);
1d5439b9
AA
1393 }
1394
1395 return 0;
1396}
8ac2b3c0 1397#endif
d5b40921
LPC
1398
1399static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1d5439b9 1400
654b8c5c 1401static int ks8851_probe(struct spi_device *spi)
3ba81f3e
BD
1402{
1403 struct net_device *ndev;
1404 struct ks8851_net *ks;
1405 int ret;
51c61a28 1406 unsigned cider;
3ba81f3e
BD
1407
1408 ndev = alloc_etherdev(sizeof(struct ks8851_net));
41de8d4c 1409 if (!ndev)
3ba81f3e 1410 return -ENOMEM;
3ba81f3e
BD
1411
1412 spi->bits_per_word = 8;
1413
1414 ks = netdev_priv(ndev);
1415
1416 ks->netdev = ndev;
1417 ks->spidev = spi;
1418 ks->tx_space = 6144;
1419
ebf4ad95
NM
1420 ks->vdd_reg = regulator_get_optional(&spi->dev, "vdd");
1421 if (IS_ERR(ks->vdd_reg)) {
1422 ret = PTR_ERR(ks->vdd_reg);
1423 if (ret == -EPROBE_DEFER)
1424 goto err_reg;
1425 } else {
1426 ret = regulator_enable(ks->vdd_reg);
1427 if (ret) {
1428 dev_err(&spi->dev, "regulator enable fail: %d\n",
1429 ret);
1430 goto err_reg_en;
1431 }
1432 }
1433
1434
3ba81f3e
BD
1435 mutex_init(&ks->lock);
1436 spin_lock_init(&ks->statelock);
1437
1438 INIT_WORK(&ks->tx_work, ks8851_tx_work);
3ba81f3e
BD
1439 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1440
1441 /* initialise pre-made spi transfer messages */
1442
1443 spi_message_init(&ks->spi_msg1);
1444 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1445
1446 spi_message_init(&ks->spi_msg2);
1447 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1448 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1449
51b7b1c3
BD
1450 /* setup EEPROM state */
1451
1452 ks->eeprom.data = ks;
1453 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1454 ks->eeprom.register_read = ks8851_eeprom_regread;
1455 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1456
3ba81f3e
BD
1457 /* setup mii state */
1458 ks->mii.dev = ndev;
1459 ks->mii.phy_id = 1,
1460 ks->mii.phy_id_mask = 1;
1461 ks->mii.reg_num_mask = 0xf;
1462 ks->mii.mdio_read = ks8851_phy_read;
1463 ks->mii.mdio_write = ks8851_phy_write;
1464
1465 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1466
1467 /* set the default message enable */
1468 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1469 NETIF_MSG_PROBE |
1470 NETIF_MSG_LINK));
1471
1472 skb_queue_head_init(&ks->txq);
1473
7ad24ea4 1474 ndev->ethtool_ops = &ks8851_ethtool_ops;
3ba81f3e
BD
1475 SET_NETDEV_DEV(ndev, &spi->dev);
1476
8f996607 1477 spi_set_drvdata(spi, ks);
3ba81f3e
BD
1478
1479 ndev->if_port = IF_PORT_100BASET;
1480 ndev->netdev_ops = &ks8851_netdev_ops;
1481 ndev->irq = spi->irq;
1482
57dada68
BD
1483 /* issue a global soft reset to reset the device. */
1484 ks8851_soft_reset(ks, GRR_GSR);
1485
3ba81f3e 1486 /* simple check for a valid chip being connected to the bus */
51c61a28
MR
1487 cider = ks8851_rdreg16(ks, KS_CIDER);
1488 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
3ba81f3e
BD
1489 dev_err(&spi->dev, "failed to read device ID\n");
1490 ret = -ENODEV;
1491 goto err_id;
1492 }
1493
7d997466
SJ
1494 /* cache the contents of the CCR register for EEPROM, etc. */
1495 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1496
1497 if (ks->rc_ccr & CCR_EEPROM)
1498 ks->eeprom_size = 128;
1499 else
1500 ks->eeprom_size = 0;
1501
3ba81f3e
BD
1502 ks8851_read_selftest(ks);
1503 ks8851_init_mac(ks);
1504
656a05c8
FB
1505 ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1506 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1507 ndev->name, ks);
3ba81f3e
BD
1508 if (ret < 0) {
1509 dev_err(&spi->dev, "failed to get irq\n");
1510 goto err_irq;
1511 }
1512
1513 ret = register_netdev(ndev);
1514 if (ret) {
1515 dev_err(&spi->dev, "failed to register network device\n");
1516 goto err_netdev;
1517 }
1518
a9a8de21 1519 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
51c61a28 1520 CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
a9a8de21 1521 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
3ba81f3e
BD
1522
1523 return 0;
1524
1525
1526err_netdev:
e8195b24 1527 free_irq(ndev->irq, ks);
3ba81f3e 1528
3ba81f3e 1529err_irq:
ebf4ad95
NM
1530err_id:
1531 if (!IS_ERR(ks->vdd_reg))
1532 regulator_disable(ks->vdd_reg);
1533err_reg_en:
1534 if (!IS_ERR(ks->vdd_reg))
1535 regulator_put(ks->vdd_reg);
1536err_reg:
3ba81f3e
BD
1537 free_netdev(ndev);
1538 return ret;
1539}
1540
654b8c5c 1541static int ks8851_remove(struct spi_device *spi)
3ba81f3e 1542{
8f996607 1543 struct ks8851_net *priv = spi_get_drvdata(spi);
3ba81f3e
BD
1544
1545 if (netif_msg_drv(priv))
0dc7d2b3 1546 dev_info(&spi->dev, "remove\n");
3ba81f3e
BD
1547
1548 unregister_netdev(priv->netdev);
1549 free_irq(spi->irq, priv);
ebf4ad95
NM
1550 if (!IS_ERR(priv->vdd_reg)) {
1551 regulator_disable(priv->vdd_reg);
1552 regulator_put(priv->vdd_reg);
1553 }
3ba81f3e
BD
1554 free_netdev(priv->netdev);
1555
1556 return 0;
1557}
1558
1559static struct spi_driver ks8851_driver = {
1560 .driver = {
1561 .name = "ks8851",
1562 .owner = THIS_MODULE,
8ac2b3c0 1563 .pm = &ks8851_pm_ops,
3ba81f3e
BD
1564 },
1565 .probe = ks8851_probe,
654b8c5c 1566 .remove = ks8851_remove,
3ba81f3e 1567};
0582ce92 1568module_spi_driver(ks8851_driver);
3ba81f3e
BD
1569
1570MODULE_DESCRIPTION("KS8851 Network driver");
1571MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1572MODULE_LICENSE("GPL");
1573
1574module_param_named(message, msg_enable, int, 0);
1575MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
e0626e38 1576MODULE_ALIAS("spi:ks8851");