net: vxge: fix wrong __VA_ARGS__ usage
[linux-2.6-block.git] / drivers / net / ethernet / marvell / mvneta.c
CommitLineData
c5aff182
TP
1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
0e03f563
JZ
14#include <linux/clk.h>
15#include <linux/cpu.h>
c5aff182 16#include <linux/etherdevice.h>
0e03f563 17#include <linux/if_vlan.h>
c5aff182 18#include <linux/inetdevice.h>
c5aff182 19#include <linux/interrupt.h>
c3f0dd38 20#include <linux/io.h>
0e03f563
JZ
21#include <linux/kernel.h>
22#include <linux/mbus.h>
23#include <linux/module.h>
24#include <linux/netdevice.h>
c5aff182 25#include <linux/of.h>
0e03f563 26#include <linux/of_address.h>
c5aff182
TP
27#include <linux/of_irq.h>
28#include <linux/of_mdio.h>
29#include <linux/of_net.h>
a10c1c81 30#include <linux/phy/phy.h>
c5aff182 31#include <linux/phy.h>
503f9aa9 32#include <linux/phylink.h>
0e03f563
JZ
33#include <linux/platform_device.h>
34#include <linux/skbuff.h>
baa11ebc 35#include <net/hwbm.h>
dc35a10f 36#include "mvneta_bm.h"
0e03f563
JZ
37#include <net/ip.h>
38#include <net/ipv6.h>
39#include <net/tso.h>
568a3fa2 40#include <net/page_pool.h>
0db51da7 41#include <linux/bpf_trace.h>
c5aff182
TP
42
43/* Registers */
44#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
e5bdf689 45#define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
dc35a10f
MW
46#define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
47#define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
48#define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
49#define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
c5aff182
TP
50#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
51#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
52#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
53#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
54#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
55#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
56#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
57#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
58#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
59#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
60#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
61#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
62#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
dc35a10f
MW
63#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
64#define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
65#define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
c5aff182
TP
66#define MVNETA_PORT_RX_RESET 0x1cc0
67#define MVNETA_PORT_RX_DMA_RESET BIT(0)
68#define MVNETA_PHY_ADDR 0x2000
69#define MVNETA_PHY_ADDR_MASK 0x1f
70#define MVNETA_MBUS_RETRY 0x2010
71#define MVNETA_UNIT_INTR_CAUSE 0x2080
72#define MVNETA_UNIT_CONTROL 0x20B0
73#define MVNETA_PHY_POLLING_ENABLE BIT(1)
74#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
75#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
76#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
77#define MVNETA_BASE_ADDR_ENABLE 0x2290
db6ba9a5 78#define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
c5aff182
TP
79#define MVNETA_PORT_CONFIG 0x2400
80#define MVNETA_UNI_PROMISC_MODE BIT(0)
81#define MVNETA_DEF_RXQ(q) ((q) << 1)
82#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
83#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
84#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
85#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
86#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
87#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
88#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
89 MVNETA_DEF_RXQ_ARP(q) | \
90 MVNETA_DEF_RXQ_TCP(q) | \
91 MVNETA_DEF_RXQ_UDP(q) | \
92 MVNETA_DEF_RXQ_BPDU(q) | \
93 MVNETA_TX_UNSET_ERR_SUM | \
94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95#define MVNETA_PORT_CONFIG_EXTEND 0x2404
96#define MVNETA_MAC_ADDR_LOW 0x2414
97#define MVNETA_MAC_ADDR_HIGH 0x2418
98#define MVNETA_SDMA_CONFIG 0x241c
99#define MVNETA_SDMA_BRST_SIZE_16 4
c5aff182
TP
100#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
101#define MVNETA_RX_NO_DATA_SWAP BIT(4)
102#define MVNETA_TX_NO_DATA_SWAP BIT(5)
9ad8fef6 103#define MVNETA_DESC_SWAP BIT(6)
c5aff182
TP
104#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
105#define MVNETA_PORT_STATUS 0x2444
106#define MVNETA_TX_IN_PRGRS BIT(1)
107#define MVNETA_TX_FIFO_EMPTY BIT(8)
108#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
3f1dd4bc 109#define MVNETA_SERDES_CFG 0x24A0
5445eaf3 110#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
3f1dd4bc 111#define MVNETA_QSGMII_SERDES_PROTO 0x0667
c5aff182
TP
112#define MVNETA_TYPE_PRIO 0x24bc
113#define MVNETA_FORCE_UNI BIT(21)
114#define MVNETA_TXQ_CMD_1 0x24e4
115#define MVNETA_TXQ_CMD 0x2448
116#define MVNETA_TXQ_DISABLE_SHIFT 8
117#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
e483911f
AL
118#define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
119#define MVNETA_OVERRUN_FRAME_COUNT 0x2488
898b2970
SS
120#define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
121#define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
c5aff182 122#define MVNETA_ACC_MODE 0x2500
dc35a10f 123#define MVNETA_BM_ADDRESS 0x2504
c5aff182
TP
124#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
125#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
126#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
2dcf75e2 127#define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
50bf8cb6 128#define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
c5aff182 129#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
40ba35e7 130
2dcf75e2
GC
131/* Exception Interrupt Port/Queue Cause register
132 *
133 * Their behavior depend of the mapping done using the PCPX2Q
134 * registers. For a given CPU if the bit associated to a queue is not
135 * set, then for the register a read from this CPU will always return
136 * 0 and a write won't do anything
137 */
40ba35e7 138
c5aff182 139#define MVNETA_INTR_NEW_CAUSE 0x25a0
c5aff182 140#define MVNETA_INTR_NEW_MASK 0x25a4
40ba35e7 141
142/* bits 0..7 = TXQ SENT, one bit per queue.
143 * bits 8..15 = RXQ OCCUP, one bit per queue.
144 * bits 16..23 = RXQ FREE, one bit per queue.
145 * bit 29 = OLD_REG_SUM, see old reg ?
146 * bit 30 = TX_ERR_SUM, one bit for 4 ports
147 * bit 31 = MISC_SUM, one bit for 4 ports
148 */
149#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
150#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
151#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
152#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
898b2970 153#define MVNETA_MISCINTR_INTR_MASK BIT(31)
40ba35e7 154
c5aff182
TP
155#define MVNETA_INTR_OLD_CAUSE 0x25a8
156#define MVNETA_INTR_OLD_MASK 0x25ac
40ba35e7 157
158/* Data Path Port/Queue Cause Register */
c5aff182
TP
159#define MVNETA_INTR_MISC_CAUSE 0x25b0
160#define MVNETA_INTR_MISC_MASK 0x25b4
40ba35e7 161
162#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
163#define MVNETA_CAUSE_LINK_CHANGE BIT(1)
164#define MVNETA_CAUSE_PTP BIT(4)
165
166#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
167#define MVNETA_CAUSE_RX_OVERRUN BIT(8)
168#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
169#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
170#define MVNETA_CAUSE_TX_UNDERUN BIT(11)
171#define MVNETA_CAUSE_PRBS_ERR BIT(12)
172#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
173#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
174
175#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
176#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
177#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
178
179#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
180#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
181#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
182
c5aff182
TP
183#define MVNETA_INTR_ENABLE 0x25b8
184#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
dc1aadf6 185#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
40ba35e7 186
c5aff182
TP
187#define MVNETA_RXQ_CMD 0x2680
188#define MVNETA_RXQ_DISABLE_SHIFT 8
189#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
190#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
191#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
192#define MVNETA_GMAC_CTRL_0 0x2c00
193#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
194#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
22f4bf8a 195#define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
c5aff182
TP
196#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
197#define MVNETA_GMAC_CTRL_2 0x2c08
898b2970 198#define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
a79121d3 199#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
c5aff182
TP
200#define MVNETA_GMAC2_PORT_RGMII BIT(4)
201#define MVNETA_GMAC2_PORT_RESET BIT(6)
202#define MVNETA_GMAC_STATUS 0x2c10
203#define MVNETA_GMAC_LINK_UP BIT(0)
204#define MVNETA_GMAC_SPEED_1000 BIT(1)
205#define MVNETA_GMAC_SPEED_100 BIT(2)
206#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
207#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
208#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
209#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
210#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
503f9aa9
RK
211#define MVNETA_GMAC_AN_COMPLETE BIT(11)
212#define MVNETA_GMAC_SYNC_OK BIT(14)
c5aff182
TP
213#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
214#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
215#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
898b2970 216#define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
22f4bf8a
RK
217#define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
218#define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
c5aff182
TP
219#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
220#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
71408602 221#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
22f4bf8a
RK
222#define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
223#define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
898b2970 224#define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
c5aff182 225#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
71408602 226#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
da58a931
MC
227#define MVNETA_GMAC_CTRL_4 0x2c90
228#define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
e483911f 229#define MVNETA_MIB_COUNTERS_BASE 0x3000
c5aff182
TP
230#define MVNETA_MIB_LATE_COLLISION 0x7c
231#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
232#define MVNETA_DA_FILT_OTH_MCAST 0x3500
233#define MVNETA_DA_FILT_UCAST_BASE 0x3600
234#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
235#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
236#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
237#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
238#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
239#define MVNETA_TXQ_DEC_SENT_SHIFT 16
2a90f7e1 240#define MVNETA_TXQ_DEC_SENT_MASK 0xff
c5aff182
TP
241#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
242#define MVNETA_TXQ_SENT_DESC_SHIFT 16
243#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
244#define MVNETA_PORT_TX_RESET 0x3cf0
245#define MVNETA_PORT_TX_DMA_RESET BIT(0)
246#define MVNETA_TX_MTU 0x3e0c
247#define MVNETA_TX_TOKEN_SIZE 0x3e14
248#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
249#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
250#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
251
6d81f451
RK
252#define MVNETA_LPI_CTRL_0 0x2cc0
253#define MVNETA_LPI_CTRL_1 0x2cc4
254#define MVNETA_LPI_REQUEST_ENABLE BIT(0)
255#define MVNETA_LPI_CTRL_2 0x2cc8
256#define MVNETA_LPI_STATUS 0x2ccc
257
c5aff182
TP
258#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
259
260/* Descriptor ring Macros */
261#define MVNETA_QUEUE_NEXT_DESC(q, index) \
262 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
263
264/* Various constants */
265
266/* Coalescing */
06708f81 267#define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
c5aff182
TP
268#define MVNETA_RX_COAL_PKTS 32
269#define MVNETA_RX_COAL_USEC 100
270
6a20c175 271/* The two bytes Marvell header. Either contains a special value used
c5aff182
TP
272 * by Marvell switches when a specific hardware mode is enabled (not
273 * supported by this driver) or is filled automatically by zeroes on
274 * the RX side. Those two bytes being at the front of the Ethernet
275 * header, they allow to have the IP header aligned on a 4 bytes
276 * boundary automatically: the hardware skips those two bytes on its
277 * own.
278 */
279#define MVNETA_MH_SIZE 2
280
281#define MVNETA_VLAN_TAG_LEN 4
282
9110ee07 283#define MVNETA_TX_CSUM_DEF_SIZE 1600
c5aff182 284#define MVNETA_TX_CSUM_MAX_SIZE 9800
dc35a10f
MW
285#define MVNETA_ACC_MODE_EXT1 1
286#define MVNETA_ACC_MODE_EXT2 2
287
288#define MVNETA_MAX_DECODE_WIN 6
c5aff182
TP
289
290/* Timeout constants */
291#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
292#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
293#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
294
295#define MVNETA_TX_MTU_MAX 0x3ffff
296
9a401dea
GC
297/* The RSS lookup table actually has 256 entries but we do not use
298 * them yet
299 */
300#define MVNETA_RSS_LU_TABLE_SIZE 1
301
c5aff182 302/* Max number of Rx descriptors */
c307e2a8 303#define MVNETA_MAX_RXD 512
c5aff182
TP
304
305/* Max number of Tx descriptors */
c307e2a8 306#define MVNETA_MAX_TXD 1024
c5aff182 307
8eef5f97
EG
308/* Max number of allowed TCP segments for software TSO */
309#define MVNETA_MAX_TSO_SEGS 100
310
311#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
312
c5aff182
TP
313/* descriptor aligned size */
314#define MVNETA_DESC_ALIGNED_SIZE 32
315
8d5047cf
MW
316/* Number of bytes to be taken into account by HW when putting incoming data
317 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
318 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
319 */
320#define MVNETA_RX_PKT_OFFSET_CORRECTION 64
321
c5aff182
TP
322#define MVNETA_RX_PKT_SIZE(mtu) \
323 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
324 ETH_HLEN + ETH_FCS_LEN, \
c66e98c9 325 cache_line_size())
c5aff182 326
44efc78d 327#define MVNETA_SKB_HEADROOM max(XDP_PACKET_HEADROOM, NET_SKB_PAD)
8dc9a088 328#define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
0db51da7 329 MVNETA_SKB_HEADROOM))
8dc9a088
LB
330#define MVNETA_SKB_SIZE(len) (SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
331#define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD)
332
2e3173a3
EG
333#define IS_TSO_HEADER(txq, addr) \
334 ((addr >= txq->tso_hdrs_phys) && \
335 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
336
dc35a10f
MW
337#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
338 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
c5aff182 339
6d81f451
RK
340enum {
341 ETHTOOL_STAT_EEE_WAKEUP,
17a96da6
GC
342 ETHTOOL_STAT_SKB_ALLOC_ERR,
343 ETHTOOL_STAT_REFILL_ERR,
6d81f451
RK
344 ETHTOOL_MAX_STATS,
345};
346
9b0cdefa
RK
347struct mvneta_statistic {
348 unsigned short offset;
349 unsigned short type;
350 const char name[ETH_GSTRING_LEN];
351};
352
353#define T_REG_32 32
354#define T_REG_64 64
6d81f451 355#define T_SW 1
9b0cdefa 356
0db51da7
LB
357#define MVNETA_XDP_PASS BIT(0)
358#define MVNETA_XDP_DROPPED BIT(1)
359#define MVNETA_XDP_TX BIT(2)
360#define MVNETA_XDP_REDIR BIT(3)
361
9b0cdefa
RK
362static const struct mvneta_statistic mvneta_statistics[] = {
363 { 0x3000, T_REG_64, "good_octets_received", },
364 { 0x3010, T_REG_32, "good_frames_received", },
365 { 0x3008, T_REG_32, "bad_octets_received", },
366 { 0x3014, T_REG_32, "bad_frames_received", },
367 { 0x3018, T_REG_32, "broadcast_frames_received", },
368 { 0x301c, T_REG_32, "multicast_frames_received", },
369 { 0x3050, T_REG_32, "unrec_mac_control_received", },
370 { 0x3058, T_REG_32, "good_fc_received", },
371 { 0x305c, T_REG_32, "bad_fc_received", },
372 { 0x3060, T_REG_32, "undersize_received", },
373 { 0x3064, T_REG_32, "fragments_received", },
374 { 0x3068, T_REG_32, "oversize_received", },
375 { 0x306c, T_REG_32, "jabber_received", },
376 { 0x3070, T_REG_32, "mac_receive_error", },
377 { 0x3074, T_REG_32, "bad_crc_event", },
378 { 0x3078, T_REG_32, "collision", },
379 { 0x307c, T_REG_32, "late_collision", },
380 { 0x2484, T_REG_32, "rx_discard", },
381 { 0x2488, T_REG_32, "rx_overrun", },
382 { 0x3020, T_REG_32, "frames_64_octets", },
383 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
384 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
385 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
386 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
387 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
388 { 0x3038, T_REG_64, "good_octets_sent", },
389 { 0x3040, T_REG_32, "good_frames_sent", },
390 { 0x3044, T_REG_32, "excessive_collision", },
391 { 0x3048, T_REG_32, "multicast_frames_sent", },
392 { 0x304c, T_REG_32, "broadcast_frames_sent", },
393 { 0x3054, T_REG_32, "fc_sent", },
394 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
6d81f451 395 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
17a96da6
GC
396 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
397 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
9b0cdefa
RK
398};
399
74c41b04 400struct mvneta_pcpu_stats {
c5aff182 401 struct u64_stats_sync syncp;
74c41b04 402 u64 rx_packets;
403 u64 rx_bytes;
c35947b8
LB
404 u64 rx_dropped;
405 u64 rx_errors;
74c41b04 406 u64 tx_packets;
407 u64 tx_bytes;
c5aff182
TP
408};
409
12bb03b4
MR
410struct mvneta_pcpu_port {
411 /* Pointer to the shared port */
412 struct mvneta_port *pp;
413
414 /* Pointer to the CPU-local NAPI struct */
415 struct napi_struct napi;
416
417 /* Cause of the previous interrupt */
418 u32 cause_rx_tx;
419};
420
c5aff182 421struct mvneta_port {
dc35a10f 422 u8 id;
12bb03b4
MR
423 struct mvneta_pcpu_port __percpu *ports;
424 struct mvneta_pcpu_stats __percpu *stats;
425
c5aff182
TP
426 int pkt_size;
427 void __iomem *base;
428 struct mvneta_rx_queue *rxqs;
429 struct mvneta_tx_queue *txqs;
c5aff182 430 struct net_device *dev;
84a3f4db
SAS
431 struct hlist_node node_online;
432 struct hlist_node node_dead;
90b74c01 433 int rxq_def;
5888511e
GC
434 /* Protect the access to the percpu interrupt registers,
435 * ensuring that the configuration remains coherent.
436 */
437 spinlock_t lock;
120cfa50 438 bool is_stopped;
c5aff182 439
2636ac3c
MW
440 u32 cause_rx_tx;
441 struct napi_struct napi;
442
0db51da7
LB
443 struct bpf_prog *xdp_prog;
444
c5aff182 445 /* Core clock */
189dd626 446 struct clk *clk;
15cc4a4a
JZ
447 /* AXI clock */
448 struct clk *clk_bus;
c5aff182
TP
449 u8 mcast_count[256];
450 u16 tx_ring_size;
451 u16 rx_ring_size;
c5aff182 452
c5aff182 453 phy_interface_t phy_interface;
503f9aa9 454 struct device_node *dn;
b65657fc 455 unsigned int tx_csum_limit;
503f9aa9 456 struct phylink *phylink;
44cc27e4 457 struct phylink_config phylink_config;
a10c1c81 458 struct phy *comphy;
9b0cdefa 459
dc35a10f
MW
460 struct mvneta_bm *bm_priv;
461 struct mvneta_bm_pool *pool_long;
462 struct mvneta_bm_pool *pool_short;
463 int bm_win_id;
464
6d81f451
RK
465 bool eee_enabled;
466 bool eee_active;
467 bool tx_lpi_enabled;
468
9b0cdefa 469 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
9a401dea
GC
470
471 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
2636ac3c
MW
472
473 /* Flags for special SoC configurations */
474 bool neta_armada3700;
8d5047cf 475 u16 rx_offset_correction;
9768b45c 476 const struct mbus_dram_target_info *dram_target_info;
c5aff182
TP
477};
478
6a20c175 479/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
c5aff182
TP
480 * layout of the transmit and reception DMA descriptors, and their
481 * layout is therefore defined by the hardware design
482 */
6083ed44 483
c5aff182
TP
484#define MVNETA_TX_L3_OFF_SHIFT 0
485#define MVNETA_TX_IP_HLEN_SHIFT 8
486#define MVNETA_TX_L4_UDP BIT(16)
487#define MVNETA_TX_L3_IP6 BIT(17)
488#define MVNETA_TXD_IP_CSUM BIT(18)
489#define MVNETA_TXD_Z_PAD BIT(19)
490#define MVNETA_TXD_L_DESC BIT(20)
491#define MVNETA_TXD_F_DESC BIT(21)
492#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
493 MVNETA_TXD_L_DESC | \
494 MVNETA_TXD_F_DESC)
495#define MVNETA_TX_L4_CSUM_FULL BIT(30)
496#define MVNETA_TX_L4_CSUM_NOT BIT(31)
497
c5aff182 498#define MVNETA_RXD_ERR_CRC 0x0
dc35a10f
MW
499#define MVNETA_RXD_BM_POOL_SHIFT 13
500#define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
c5aff182
TP
501#define MVNETA_RXD_ERR_SUMMARY BIT(16)
502#define MVNETA_RXD_ERR_OVERRUN BIT(17)
503#define MVNETA_RXD_ERR_LEN BIT(18)
504#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
505#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
506#define MVNETA_RXD_L3_IP4 BIT(25)
562e2f46
YK
507#define MVNETA_RXD_LAST_DESC BIT(26)
508#define MVNETA_RXD_FIRST_DESC BIT(27)
509#define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
510 MVNETA_RXD_LAST_DESC)
c5aff182
TP
511#define MVNETA_RXD_L4_CSUM_OK BIT(30)
512
9ad8fef6 513#if defined(__LITTLE_ENDIAN)
6083ed44
TP
514struct mvneta_tx_desc {
515 u32 command; /* Options used by HW for packet transmitting.*/
fbd1d524 516 u16 reserved1; /* csum_l4 (for future use) */
6083ed44
TP
517 u16 data_size; /* Data size of transmitted packet in bytes */
518 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
519 u32 reserved2; /* hw_cmd - (for future use, PMT) */
520 u32 reserved3[4]; /* Reserved - (for future use) */
521};
522
523struct mvneta_rx_desc {
524 u32 status; /* Info about received packet */
c5aff182
TP
525 u16 reserved1; /* pnc_info - (for future use, PnC) */
526 u16 data_size; /* Size of received packet in bytes */
6083ed44 527
c5aff182
TP
528 u32 buf_phys_addr; /* Physical address of the buffer */
529 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
6083ed44 530
c5aff182
TP
531 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
532 u16 reserved3; /* prefetch_cmd, for future use */
533 u16 reserved4; /* csum_l4 - (for future use, PnC) */
6083ed44 534
c5aff182
TP
535 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
536 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
537};
9ad8fef6
TP
538#else
539struct mvneta_tx_desc {
540 u16 data_size; /* Data size of transmitted packet in bytes */
fbd1d524 541 u16 reserved1; /* csum_l4 (for future use) */
9ad8fef6
TP
542 u32 command; /* Options used by HW for packet transmitting.*/
543 u32 reserved2; /* hw_cmd - (for future use, PMT) */
544 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
545 u32 reserved3[4]; /* Reserved - (for future use) */
546};
547
548struct mvneta_rx_desc {
549 u16 data_size; /* Size of received packet in bytes */
550 u16 reserved1; /* pnc_info - (for future use, PnC) */
551 u32 status; /* Info about received packet */
552
553 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
554 u32 buf_phys_addr; /* Physical address of the buffer */
555
556 u16 reserved4; /* csum_l4 - (for future use, PnC) */
557 u16 reserved3; /* prefetch_cmd, for future use */
558 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
559
560 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
561 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
562};
563#endif
c5aff182 564
9e58c8b4
LB
565enum mvneta_tx_buf_type {
566 MVNETA_TYPE_SKB,
567 MVNETA_TYPE_XDP_TX,
568 MVNETA_TYPE_XDP_NDO,
569};
570
571struct mvneta_tx_buf {
572 enum mvneta_tx_buf_type type;
573 union {
574 struct xdp_frame *xdpf;
575 struct sk_buff *skb;
576 };
577};
578
c5aff182
TP
579struct mvneta_tx_queue {
580 /* Number of this TX queue, in the range 0-7 */
581 u8 id;
582
583 /* Number of TX DMA descriptors in the descriptor ring */
584 int size;
585
586 /* Number of currently used TX DMA descriptor in the
6a20c175
TP
587 * descriptor ring
588 */
c5aff182 589 int count;
2a90f7e1 590 int pending;
8eef5f97
EG
591 int tx_stop_threshold;
592 int tx_wake_threshold;
c5aff182 593
9e58c8b4
LB
594 /* Array of transmitted buffers */
595 struct mvneta_tx_buf *buf;
c5aff182
TP
596
597 /* Index of last TX DMA descriptor that was inserted */
598 int txq_put_index;
599
600 /* Index of the TX DMA descriptor to be cleaned up */
601 int txq_get_index;
602
603 u32 done_pkts_coal;
604
605 /* Virtual address of the TX DMA descriptors array */
606 struct mvneta_tx_desc *descs;
607
608 /* DMA address of the TX DMA descriptors array */
609 dma_addr_t descs_phys;
610
611 /* Index of the last TX DMA descriptor */
612 int last_desc;
613
614 /* Index of the next TX DMA descriptor to process */
615 int next_desc_to_proc;
2adb719d
EG
616
617 /* DMA buffers for TSO headers */
618 char *tso_hdrs;
619
620 /* DMA address of TSO headers */
621 dma_addr_t tso_hdrs_phys;
50bf8cb6
GC
622
623 /* Affinity mask for CPUs*/
624 cpumask_t affinity_mask;
c5aff182
TP
625};
626
627struct mvneta_rx_queue {
628 /* rx queue number, in the range 0-7 */
629 u8 id;
630
631 /* num of rx descriptors in the rx descriptor ring */
632 int size;
633
c5aff182
TP
634 u32 pkts_coal;
635 u32 time_coal;
636
568a3fa2
LB
637 /* page_pool */
638 struct page_pool *page_pool;
639 struct xdp_rxq_info xdp_rxq;
640
f88bee1c
GC
641 /* Virtual address of the RX buffer */
642 void **buf_virt_addr;
643
c5aff182
TP
644 /* Virtual address of the RX DMA descriptors array */
645 struct mvneta_rx_desc *descs;
646
647 /* DMA address of the RX DMA descriptors array */
648 dma_addr_t descs_phys;
649
650 /* Index of the last RX DMA descriptor */
651 int last_desc;
652
653 /* Index of the next RX DMA descriptor to process */
654 int next_desc_to_proc;
17a96da6 655
562e2f46
YK
656 /* Index of first RX DMA descriptor to refill */
657 int first_to_refill;
658 u32 refill_num;
659
660 /* pointer to uncomplete skb buffer */
661 struct sk_buff *skb;
662 int left_size;
663
17a96da6
GC
664 /* error counters */
665 u32 skb_alloc_err;
666 u32 refill_err;
c5aff182
TP
667};
668
84a3f4db 669static enum cpuhp_state online_hpstate;
edadb7fa
EG
670/* The hardware supports eight (8) rx queues, but we are only allowing
671 * the first one to be used. Therefore, let's just allocate one queue.
672 */
d8936657 673static int rxq_number = 8;
c5aff182
TP
674static int txq_number = 8;
675
676static int rxq_def;
c5aff182 677
f19fadfc 678static int rx_copybreak __read_mostly = 256;
679
dc35a10f
MW
680/* HW BM need that each port be identify by a unique ID */
681static int global_port_id;
682
c5aff182
TP
683#define MVNETA_DRIVER_NAME "mvneta"
684#define MVNETA_DRIVER_VERSION "1.0"
685
686/* Utility/helper methods */
687
688/* Write helper method */
689static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
690{
691 writel(data, pp->base + offset);
692}
693
694/* Read helper method */
695static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
696{
697 return readl(pp->base + offset);
698}
699
700/* Increment txq get counter */
701static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
702{
703 txq->txq_get_index++;
704 if (txq->txq_get_index == txq->size)
705 txq->txq_get_index = 0;
706}
707
708/* Increment txq put counter */
709static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
710{
711 txq->txq_put_index++;
712 if (txq->txq_put_index == txq->size)
713 txq->txq_put_index = 0;
714}
715
716
717/* Clear all MIB counters */
718static void mvneta_mib_counters_clear(struct mvneta_port *pp)
719{
720 int i;
721 u32 dummy;
722
723 /* Perform dummy reads from MIB counters */
724 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
725 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
e483911f
AL
726 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
727 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
c5aff182
TP
728}
729
730/* Get System Network Statistics */
bc1f4470 731static void
2dc0d2b4
BX
732mvneta_get_stats64(struct net_device *dev,
733 struct rtnl_link_stats64 *stats)
c5aff182
TP
734{
735 struct mvneta_port *pp = netdev_priv(dev);
736 unsigned int start;
74c41b04 737 int cpu;
c5aff182 738
74c41b04 739 for_each_possible_cpu(cpu) {
740 struct mvneta_pcpu_stats *cpu_stats;
741 u64 rx_packets;
742 u64 rx_bytes;
c35947b8
LB
743 u64 rx_dropped;
744 u64 rx_errors;
74c41b04 745 u64 tx_packets;
746 u64 tx_bytes;
c5aff182 747
74c41b04 748 cpu_stats = per_cpu_ptr(pp->stats, cpu);
749 do {
57a7744e 750 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
74c41b04 751 rx_packets = cpu_stats->rx_packets;
752 rx_bytes = cpu_stats->rx_bytes;
c35947b8
LB
753 rx_dropped = cpu_stats->rx_dropped;
754 rx_errors = cpu_stats->rx_errors;
74c41b04 755 tx_packets = cpu_stats->tx_packets;
756 tx_bytes = cpu_stats->tx_bytes;
57a7744e 757 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
c5aff182 758
74c41b04 759 stats->rx_packets += rx_packets;
760 stats->rx_bytes += rx_bytes;
c35947b8
LB
761 stats->rx_dropped += rx_dropped;
762 stats->rx_errors += rx_errors;
74c41b04 763 stats->tx_packets += tx_packets;
764 stats->tx_bytes += tx_bytes;
765 }
c5aff182 766
c5aff182 767 stats->tx_dropped = dev->stats.tx_dropped;
c5aff182
TP
768}
769
770/* Rx descriptors helper methods */
771
5428213c 772/* Checks whether the RX descriptor having this status is both the first
773 * and the last descriptor for the RX packet. Each RX packet is currently
c5aff182
TP
774 * received through a single RX descriptor, so not having each RX
775 * descriptor with its first and last bits set is an error
776 */
5428213c 777static int mvneta_rxq_desc_is_first_last(u32 status)
c5aff182 778{
5428213c 779 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
c5aff182
TP
780 MVNETA_RXD_FIRST_LAST_DESC;
781}
782
783/* Add number of descriptors ready to receive new packets */
784static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
785 struct mvneta_rx_queue *rxq,
786 int ndescs)
787{
788 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
6a20c175
TP
789 * be added at once
790 */
c5aff182
TP
791 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
792 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
793 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
794 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
795 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
796 }
797
798 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
799 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
800}
801
802/* Get number of RX descriptors occupied by received packets */
803static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
804 struct mvneta_rx_queue *rxq)
805{
806 u32 val;
807
808 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
809 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
810}
811
6a20c175 812/* Update num of rx desc called upon return from rx path or
c5aff182
TP
813 * from mvneta_rxq_drop_pkts().
814 */
815static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
816 struct mvneta_rx_queue *rxq,
817 int rx_done, int rx_filled)
818{
819 u32 val;
820
821 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
822 val = rx_done |
823 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
824 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
825 return;
826 }
827
828 /* Only 255 descriptors can be added at once */
829 while ((rx_done > 0) || (rx_filled > 0)) {
830 if (rx_done <= 0xff) {
831 val = rx_done;
832 rx_done = 0;
833 } else {
834 val = 0xff;
835 rx_done -= 0xff;
836 }
837 if (rx_filled <= 0xff) {
838 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
839 rx_filled = 0;
840 } else {
841 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
842 rx_filled -= 0xff;
843 }
844 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
845 }
846}
847
848/* Get pointer to next RX descriptor to be processed by SW */
849static struct mvneta_rx_desc *
850mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
851{
852 int rx_desc = rxq->next_desc_to_proc;
853
854 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
34e4179d 855 prefetch(rxq->descs + rxq->next_desc_to_proc);
c5aff182
TP
856 return rxq->descs + rx_desc;
857}
858
859/* Change maximum receive size of the port. */
860static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
861{
862 u32 val;
863
864 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
865 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
866 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
867 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
868 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
869}
870
871
872/* Set rx queue offset */
873static void mvneta_rxq_offset_set(struct mvneta_port *pp,
874 struct mvneta_rx_queue *rxq,
875 int offset)
876{
877 u32 val;
878
879 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
880 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
881
882 /* Offset is in */
883 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
884 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
885}
886
887
888/* Tx descriptors helper methods */
889
890/* Update HW with number of TX descriptors to be sent */
891static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
892 struct mvneta_tx_queue *txq,
893 int pend_desc)
894{
895 u32 val;
896
0d63785c
SG
897 pend_desc += txq->pending;
898
899 /* Only 255 Tx descriptors can be added at once */
900 do {
901 val = min(pend_desc, 255);
902 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
903 pend_desc -= val;
904 } while (pend_desc > 0);
2a90f7e1 905 txq->pending = 0;
c5aff182
TP
906}
907
908/* Get pointer to next TX descriptor to be processed (send) by HW */
909static struct mvneta_tx_desc *
910mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
911{
912 int tx_desc = txq->next_desc_to_proc;
913
914 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
915 return txq->descs + tx_desc;
916}
917
918/* Release the last allocated TX descriptor. Useful to handle DMA
6a20c175
TP
919 * mapping failures in the TX path.
920 */
c5aff182
TP
921static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
922{
923 if (txq->next_desc_to_proc == 0)
924 txq->next_desc_to_proc = txq->last_desc - 1;
925 else
926 txq->next_desc_to_proc--;
927}
928
929/* Set rxq buf size */
930static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
931 struct mvneta_rx_queue *rxq,
932 int buf_size)
933{
934 u32 val;
935
936 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
937
938 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
939 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
940
941 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
942}
943
944/* Disable buffer management (BM) */
945static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
946 struct mvneta_rx_queue *rxq)
947{
948 u32 val;
949
950 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
951 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
952 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
953}
954
dc35a10f
MW
955/* Enable buffer management (BM) */
956static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
957 struct mvneta_rx_queue *rxq)
958{
959 u32 val;
960
961 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
962 val |= MVNETA_RXQ_HW_BUF_ALLOC;
963 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
964}
965
966/* Notify HW about port's assignment of pool for bigger packets */
967static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
968 struct mvneta_rx_queue *rxq)
969{
970 u32 val;
971
972 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
973 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
974 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
975
976 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
977}
978
979/* Notify HW about port's assignment of pool for smaller packets */
980static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
981 struct mvneta_rx_queue *rxq)
982{
983 u32 val;
984
985 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
986 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
987 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
988
989 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
990}
991
992/* Set port's receive buffer size for assigned BM pool */
993static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
994 int buf_size,
995 u8 pool_id)
996{
997 u32 val;
998
999 if (!IS_ALIGNED(buf_size, 8)) {
1000 dev_warn(pp->dev->dev.parent,
1001 "illegal buf_size value %d, round to %d\n",
1002 buf_size, ALIGN(buf_size, 8));
1003 buf_size = ALIGN(buf_size, 8);
1004 }
1005
1006 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1007 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1008 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1009}
1010
1011/* Configure MBUS window in order to enable access BM internal SRAM */
1012static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1013 u8 target, u8 attr)
1014{
1015 u32 win_enable, win_protect;
1016 int i;
1017
1018 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1019
1020 if (pp->bm_win_id < 0) {
1021 /* Find first not occupied window */
1022 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1023 if (win_enable & (1 << i)) {
1024 pp->bm_win_id = i;
1025 break;
1026 }
1027 }
1028 if (i == MVNETA_MAX_DECODE_WIN)
1029 return -ENOMEM;
1030 } else {
1031 i = pp->bm_win_id;
1032 }
1033
1034 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1035 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1036
1037 if (i < 4)
1038 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1039
1040 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1041 (attr << 8) | target);
1042
1043 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1044
1045 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1046 win_protect |= 3 << (2 * i);
1047 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1048
1049 win_enable &= ~(1 << i);
1050 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1051
1052 return 0;
1053}
1054
2636ac3c 1055static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
dc35a10f 1056{
2636ac3c 1057 u32 wsize;
dc35a10f
MW
1058 u8 target, attr;
1059 int err;
1060
1061 /* Get BM window information */
1062 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1063 &target, &attr);
1064 if (err < 0)
1065 return err;
1066
1067 pp->bm_win_id = -1;
1068
1069 /* Open NETA -> BM window */
1070 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1071 target, attr);
1072 if (err < 0) {
1073 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1074 return err;
1075 }
2636ac3c
MW
1076 return 0;
1077}
1078
1079/* Assign and initialize pools for port. In case of fail
1080 * buffer manager will remain disabled for current port.
1081 */
1082static int mvneta_bm_port_init(struct platform_device *pdev,
1083 struct mvneta_port *pp)
1084{
1085 struct device_node *dn = pdev->dev.of_node;
1086 u32 long_pool_id, short_pool_id;
1087
1088 if (!pp->neta_armada3700) {
1089 int ret;
1090
1091 ret = mvneta_bm_port_mbus_init(pp);
1092 if (ret)
1093 return ret;
1094 }
dc35a10f
MW
1095
1096 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1097 netdev_info(pp->dev, "missing long pool id\n");
1098 return -EINVAL;
1099 }
1100
1101 /* Create port's long pool depending on mtu */
1102 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1103 MVNETA_BM_LONG, pp->id,
1104 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1105 if (!pp->pool_long) {
1106 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1107 return -ENOMEM;
1108 }
1109
1110 pp->pool_long->port_map |= 1 << pp->id;
1111
1112 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1113 pp->pool_long->id);
1114
1115 /* If short pool id is not defined, assume using single pool */
1116 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1117 short_pool_id = long_pool_id;
1118
1119 /* Create port's short pool */
1120 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1121 MVNETA_BM_SHORT, pp->id,
1122 MVNETA_BM_SHORT_PKT_SIZE);
1123 if (!pp->pool_short) {
1124 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1125 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1126 return -ENOMEM;
1127 }
1128
1129 if (short_pool_id != long_pool_id) {
1130 pp->pool_short->port_map |= 1 << pp->id;
1131 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1132 pp->pool_short->id);
1133 }
1134
1135 return 0;
1136}
1137
1138/* Update settings of a pool for bigger packets */
1139static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1140{
1141 struct mvneta_bm_pool *bm_pool = pp->pool_long;
baa11ebc 1142 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
dc35a10f
MW
1143 int num;
1144
1145 /* Release all buffers from long pool */
1146 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
baa11ebc 1147 if (hwbm_pool->buf_num) {
dc35a10f
MW
1148 WARN(1, "cannot free all buffers in pool %d\n",
1149 bm_pool->id);
1150 goto bm_mtu_err;
1151 }
1152
1153 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1154 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
baa11ebc
GC
1155 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1156 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
dc35a10f
MW
1157
1158 /* Fill entire long pool */
6dcdd884 1159 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
baa11ebc 1160 if (num != hwbm_pool->size) {
dc35a10f 1161 WARN(1, "pool %d: %d of %d allocated\n",
baa11ebc 1162 bm_pool->id, num, hwbm_pool->size);
dc35a10f
MW
1163 goto bm_mtu_err;
1164 }
1165 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1166
1167 return;
1168
1169bm_mtu_err:
1170 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1171 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1172
1173 pp->bm_priv = NULL;
44efc78d 1174 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
dc35a10f
MW
1175 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1176 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1177}
1178
c5aff182
TP
1179/* Start the Ethernet port RX and TX activity */
1180static void mvneta_port_up(struct mvneta_port *pp)
1181{
1182 int queue;
1183 u32 q_map;
1184
1185 /* Enable all initialized TXs. */
c5aff182
TP
1186 q_map = 0;
1187 for (queue = 0; queue < txq_number; queue++) {
1188 struct mvneta_tx_queue *txq = &pp->txqs[queue];
f95936cc 1189 if (txq->descs)
c5aff182
TP
1190 q_map |= (1 << queue);
1191 }
1192 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1193
e81b5e01 1194 q_map = 0;
c5aff182 1195 /* Enable all initialized RXQs. */
2dcf75e2
GC
1196 for (queue = 0; queue < rxq_number; queue++) {
1197 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1198
f95936cc 1199 if (rxq->descs)
2dcf75e2
GC
1200 q_map |= (1 << queue);
1201 }
1202 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
c5aff182
TP
1203}
1204
1205/* Stop the Ethernet port activity */
1206static void mvneta_port_down(struct mvneta_port *pp)
1207{
1208 u32 val;
1209 int count;
1210
1211 /* Stop Rx port activity. Check port Rx activity. */
1212 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1213
1214 /* Issue stop command for active channels only */
1215 if (val != 0)
1216 mvreg_write(pp, MVNETA_RXQ_CMD,
1217 val << MVNETA_RXQ_DISABLE_SHIFT);
1218
1219 /* Wait for all Rx activity to terminate. */
1220 count = 0;
1221 do {
1222 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1223 netdev_warn(pp->dev,
0838abb3 1224 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
c5aff182
TP
1225 val);
1226 break;
1227 }
1228 mdelay(1);
1229
1230 val = mvreg_read(pp, MVNETA_RXQ_CMD);
a3703fb3 1231 } while (val & MVNETA_RXQ_ENABLE_MASK);
c5aff182
TP
1232
1233 /* Stop Tx port activity. Check port Tx activity. Issue stop
6a20c175
TP
1234 * command for active channels only
1235 */
c5aff182
TP
1236 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1237
1238 if (val != 0)
1239 mvreg_write(pp, MVNETA_TXQ_CMD,
1240 (val << MVNETA_TXQ_DISABLE_SHIFT));
1241
1242 /* Wait for all Tx activity to terminate. */
1243 count = 0;
1244 do {
1245 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1246 netdev_warn(pp->dev,
1247 "TIMEOUT for TX stopped status=0x%08x\n",
1248 val);
1249 break;
1250 }
1251 mdelay(1);
1252
1253 /* Check TX Command reg that all Txqs are stopped */
1254 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1255
a3703fb3 1256 } while (val & MVNETA_TXQ_ENABLE_MASK);
c5aff182
TP
1257
1258 /* Double check to verify that TX FIFO is empty */
1259 count = 0;
1260 do {
1261 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1262 netdev_warn(pp->dev,
0838abb3 1263 "TX FIFO empty timeout status=0x%08x\n",
c5aff182
TP
1264 val);
1265 break;
1266 }
1267 mdelay(1);
1268
1269 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1270 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1271 (val & MVNETA_TX_IN_PRGRS));
1272
1273 udelay(200);
1274}
1275
1276/* Enable the port by setting the port enable bit of the MAC control register */
1277static void mvneta_port_enable(struct mvneta_port *pp)
1278{
1279 u32 val;
1280
1281 /* Enable port */
1282 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1283 val |= MVNETA_GMAC0_PORT_ENABLE;
1284 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1285}
1286
1287/* Disable the port and wait for about 200 usec before retuning */
1288static void mvneta_port_disable(struct mvneta_port *pp)
1289{
1290 u32 val;
1291
1292 /* Reset the Enable bit in the Serial Control Register */
1293 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1294 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1295 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1296
1297 udelay(200);
1298}
1299
1300/* Multicast tables methods */
1301
1302/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1303static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1304{
1305 int offset;
1306 u32 val;
1307
1308 if (queue == -1) {
1309 val = 0;
1310 } else {
1311 val = 0x1 | (queue << 1);
1312 val |= (val << 24) | (val << 16) | (val << 8);
1313 }
1314
1315 for (offset = 0; offset <= 0xc; offset += 4)
1316 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1317}
1318
1319/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1320static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1321{
1322 int offset;
1323 u32 val;
1324
1325 if (queue == -1) {
1326 val = 0;
1327 } else {
1328 val = 0x1 | (queue << 1);
1329 val |= (val << 24) | (val << 16) | (val << 8);
1330 }
1331
1332 for (offset = 0; offset <= 0xfc; offset += 4)
1333 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1334
1335}
1336
1337/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1338static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1339{
1340 int offset;
1341 u32 val;
1342
1343 if (queue == -1) {
1344 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1345 val = 0;
1346 } else {
1347 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1348 val = 0x1 | (queue << 1);
1349 val |= (val << 24) | (val << 16) | (val << 8);
1350 }
1351
1352 for (offset = 0; offset <= 0xfc; offset += 4)
1353 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1354}
1355
db488c10
GC
1356static void mvneta_percpu_unmask_interrupt(void *arg)
1357{
1358 struct mvneta_port *pp = arg;
1359
1360 /* All the queue are unmasked, but actually only the ones
1361 * mapped to this CPU will be unmasked
1362 */
1363 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1364 MVNETA_RX_INTR_MASK_ALL |
1365 MVNETA_TX_INTR_MASK_ALL |
1366 MVNETA_MISCINTR_INTR_MASK);
1367}
1368
1369static void mvneta_percpu_mask_interrupt(void *arg)
1370{
1371 struct mvneta_port *pp = arg;
1372
1373 /* All the queue are masked, but actually only the ones
1374 * mapped to this CPU will be masked
1375 */
1376 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1377 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1378 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1379}
1380
1381static void mvneta_percpu_clear_intr_cause(void *arg)
1382{
1383 struct mvneta_port *pp = arg;
1384
1385 /* All the queue are cleared, but actually only the ones
1386 * mapped to this CPU will be cleared
1387 */
1388 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1389 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1390 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1391}
1392
c5aff182
TP
1393/* This method sets defaults to the NETA port:
1394 * Clears interrupt Cause and Mask registers.
1395 * Clears all MAC tables.
1396 * Sets defaults to all registers.
1397 * Resets RX and TX descriptor rings.
1398 * Resets PHY.
1399 * This method can be called after mvneta_port_down() to return the port
1400 * settings to defaults.
1401 */
1402static void mvneta_defaults_set(struct mvneta_port *pp)
1403{
1404 int cpu;
1405 int queue;
1406 u32 val;
2dcf75e2 1407 int max_cpu = num_present_cpus();
c5aff182
TP
1408
1409 /* Clear all Cause registers */
db488c10 1410 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
c5aff182
TP
1411
1412 /* Mask all interrupts */
db488c10 1413 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
c5aff182
TP
1414 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1415
1416 /* Enable MBUS Retry bit16 */
1417 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1418
50bf8cb6
GC
1419 /* Set CPU queue access map. CPUs are assigned to the RX and
1420 * TX queues modulo their number. If there is only one TX
1421 * queue then it is assigned to the CPU associated to the
1422 * default RX queue.
6a20c175 1423 */
2dcf75e2
GC
1424 for_each_present_cpu(cpu) {
1425 int rxq_map = 0, txq_map = 0;
50bf8cb6 1426 int rxq, txq;
2636ac3c
MW
1427 if (!pp->neta_armada3700) {
1428 for (rxq = 0; rxq < rxq_number; rxq++)
1429 if ((rxq % max_cpu) == cpu)
1430 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1431
1432 for (txq = 0; txq < txq_number; txq++)
1433 if ((txq % max_cpu) == cpu)
1434 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1435
1436 /* With only one TX queue we configure a special case
1437 * which will allow to get all the irq on a single
1438 * CPU
1439 */
1440 if (txq_number == 1)
1441 txq_map = (cpu == pp->rxq_def) ?
1442 MVNETA_CPU_TXQ_ACCESS(1) : 0;
2dcf75e2 1443
2636ac3c
MW
1444 } else {
1445 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1446 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1447 }
2dcf75e2
GC
1448
1449 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1450 }
c5aff182
TP
1451
1452 /* Reset RX and TX DMAs */
1453 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1454 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1455
1456 /* Disable Legacy WRR, Disable EJP, Release from reset */
1457 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1458 for (queue = 0; queue < txq_number; queue++) {
1459 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1460 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1461 }
1462
1463 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1464 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1465
1466 /* Set Port Acceleration Mode */
dc35a10f
MW
1467 if (pp->bm_priv)
1468 /* HW buffer management + legacy parser */
1469 val = MVNETA_ACC_MODE_EXT2;
1470 else
1471 /* SW buffer management + legacy parser */
1472 val = MVNETA_ACC_MODE_EXT1;
c5aff182
TP
1473 mvreg_write(pp, MVNETA_ACC_MODE, val);
1474
dc35a10f
MW
1475 if (pp->bm_priv)
1476 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1477
c5aff182 1478 /* Update val of portCfg register accordingly with all RxQueue types */
90b74c01 1479 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
c5aff182
TP
1480 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1481
1482 val = 0;
1483 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1484 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1485
1486 /* Build PORT_SDMA_CONFIG_REG */
1487 val = 0;
1488
1489 /* Default burst size */
1490 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1491 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
9ad8fef6 1492 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
c5aff182 1493
9ad8fef6
TP
1494#if defined(__BIG_ENDIAN)
1495 val |= MVNETA_DESC_SWAP;
1496#endif
c5aff182
TP
1497
1498 /* Assign port SDMA configuration */
1499 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1500
71408602
TP
1501 /* Disable PHY polling in hardware, since we're using the
1502 * kernel phylib to do this.
1503 */
1504 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1505 val &= ~MVNETA_PHY_POLLING_ENABLE;
1506 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1507
c5aff182
TP
1508 mvneta_set_ucast_table(pp, -1);
1509 mvneta_set_special_mcast_table(pp, -1);
1510 mvneta_set_other_mcast_table(pp, -1);
1511
1512 /* Set port interrupt enable register - default enable all */
1513 mvreg_write(pp, MVNETA_INTR_ENABLE,
1514 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1515 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
e483911f
AL
1516
1517 mvneta_mib_counters_clear(pp);
c5aff182
TP
1518}
1519
1520/* Set max sizes for tx queues */
1521static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1522
1523{
1524 u32 val, size, mtu;
1525 int queue;
1526
1527 mtu = max_tx_size * 8;
1528 if (mtu > MVNETA_TX_MTU_MAX)
1529 mtu = MVNETA_TX_MTU_MAX;
1530
1531 /* Set MTU */
1532 val = mvreg_read(pp, MVNETA_TX_MTU);
1533 val &= ~MVNETA_TX_MTU_MAX;
1534 val |= mtu;
1535 mvreg_write(pp, MVNETA_TX_MTU, val);
1536
1537 /* TX token size and all TXQs token size must be larger that MTU */
1538 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1539
1540 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1541 if (size < mtu) {
1542 size = mtu;
1543 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1544 val |= size;
1545 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1546 }
1547 for (queue = 0; queue < txq_number; queue++) {
1548 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1549
1550 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1551 if (size < mtu) {
1552 size = mtu;
1553 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1554 val |= size;
1555 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1556 }
1557 }
1558}
1559
1560/* Set unicast address */
1561static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1562 int queue)
1563{
1564 unsigned int unicast_reg;
1565 unsigned int tbl_offset;
1566 unsigned int reg_offset;
1567
1568 /* Locate the Unicast table entry */
1569 last_nibble = (0xf & last_nibble);
1570
1571 /* offset from unicast tbl base */
1572 tbl_offset = (last_nibble / 4) * 4;
1573
1574 /* offset within the above reg */
1575 reg_offset = last_nibble % 4;
1576
1577 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1578
1579 if (queue == -1) {
1580 /* Clear accepts frame bit at specified unicast DA tbl entry */
1581 unicast_reg &= ~(0xff << (8 * reg_offset));
1582 } else {
1583 unicast_reg &= ~(0xff << (8 * reg_offset));
1584 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1585 }
1586
1587 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1588}
1589
1590/* Set mac address */
1591static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1592 int queue)
1593{
1594 unsigned int mac_h;
1595 unsigned int mac_l;
1596
1597 if (queue != -1) {
1598 mac_l = (addr[4] << 8) | (addr[5]);
1599 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1600 (addr[2] << 8) | (addr[3] << 0);
1601
1602 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1603 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1604 }
1605
1606 /* Accept frames of this address */
1607 mvneta_set_ucast_addr(pp, addr[5], queue);
1608}
1609
6a20c175
TP
1610/* Set the number of packets that will be received before RX interrupt
1611 * will be generated by HW.
c5aff182
TP
1612 */
1613static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1614 struct mvneta_rx_queue *rxq, u32 value)
1615{
1616 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1617 value | MVNETA_RXQ_NON_OCCUPIED(0));
c5aff182
TP
1618}
1619
6a20c175
TP
1620/* Set the time delay in usec before RX interrupt will be generated by
1621 * HW.
c5aff182
TP
1622 */
1623static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1624 struct mvneta_rx_queue *rxq, u32 value)
1625{
189dd626
TP
1626 u32 val;
1627 unsigned long clk_rate;
1628
1629 clk_rate = clk_get_rate(pp->clk);
1630 val = (clk_rate / 1000000) * value;
c5aff182
TP
1631
1632 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
c5aff182
TP
1633}
1634
1635/* Set threshold for TX_DONE pkts coalescing */
1636static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1637 struct mvneta_tx_queue *txq, u32 value)
1638{
1639 u32 val;
1640
1641 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1642
1643 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1644 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1645
1646 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
c5aff182
TP
1647}
1648
c5aff182
TP
1649/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1650static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
f88bee1c
GC
1651 u32 phys_addr, void *virt_addr,
1652 struct mvneta_rx_queue *rxq)
c5aff182 1653{
f88bee1c
GC
1654 int i;
1655
c5aff182 1656 rx_desc->buf_phys_addr = phys_addr;
f88bee1c
GC
1657 i = rx_desc - rxq->descs;
1658 rxq->buf_virt_addr[i] = virt_addr;
c5aff182
TP
1659}
1660
1661/* Decrement sent descriptors counter */
1662static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1663 struct mvneta_tx_queue *txq,
1664 int sent_desc)
1665{
1666 u32 val;
1667
1668 /* Only 255 TX descriptors can be updated at once */
1669 while (sent_desc > 0xff) {
1670 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1671 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1672 sent_desc = sent_desc - 0xff;
1673 }
1674
1675 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1676 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1677}
1678
1679/* Get number of TX descriptors already sent by HW */
1680static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1681 struct mvneta_tx_queue *txq)
1682{
1683 u32 val;
1684 int sent_desc;
1685
1686 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1687 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1688 MVNETA_TXQ_SENT_DESC_SHIFT;
1689
1690 return sent_desc;
1691}
1692
6a20c175 1693/* Get number of sent descriptors and decrement counter.
c5aff182
TP
1694 * The number of sent descriptors is returned.
1695 */
1696static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1697 struct mvneta_tx_queue *txq)
1698{
1699 int sent_desc;
1700
1701 /* Get number of sent descriptors */
1702 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1703
1704 /* Decrement sent descriptors counter */
1705 if (sent_desc)
1706 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1707
1708 return sent_desc;
1709}
1710
1711/* Set TXQ descriptors fields relevant for CSUM calculation */
1712static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1713 int ip_hdr_len, int l4_proto)
1714{
1715 u32 command;
1716
1717 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
6a20c175
TP
1718 * G_L4_chk, L4_type; required only for checksum
1719 * calculation
1720 */
c5aff182
TP
1721 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1722 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1723
0a198587 1724 if (l3_proto == htons(ETH_P_IP))
c5aff182
TP
1725 command |= MVNETA_TXD_IP_CSUM;
1726 else
1727 command |= MVNETA_TX_L3_IP6;
1728
1729 if (l4_proto == IPPROTO_TCP)
1730 command |= MVNETA_TX_L4_CSUM_FULL;
1731 else if (l4_proto == IPPROTO_UDP)
1732 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1733 else
1734 command |= MVNETA_TX_L4_CSUM_NOT;
1735
1736 return command;
1737}
1738
1739
1740/* Display more error info */
1741static void mvneta_rx_error(struct mvneta_port *pp,
1742 struct mvneta_rx_desc *rx_desc)
1743{
c35947b8 1744 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
c5aff182
TP
1745 u32 status = rx_desc->status;
1746
c35947b8
LB
1747 /* update per-cpu counter */
1748 u64_stats_update_begin(&stats->syncp);
1749 stats->rx_errors++;
1750 u64_stats_update_end(&stats->syncp);
1751
c5aff182
TP
1752 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1753 case MVNETA_RXD_ERR_CRC:
1754 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1755 status, rx_desc->data_size);
1756 break;
1757 case MVNETA_RXD_ERR_OVERRUN:
1758 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1759 status, rx_desc->data_size);
1760 break;
1761 case MVNETA_RXD_ERR_LEN:
1762 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1763 status, rx_desc->data_size);
1764 break;
1765 case MVNETA_RXD_ERR_RESOURCE:
1766 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1767 status, rx_desc->data_size);
1768 break;
1769 }
1770}
1771
5428213c 1772/* Handle RX checksum offload based on the descriptor's status */
1773static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
c5aff182
TP
1774 struct sk_buff *skb)
1775{
f945cec8
YK
1776 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1777 (status & MVNETA_RXD_L3_IP4) &&
5428213c 1778 (status & MVNETA_RXD_L4_CSUM_OK)) {
c5aff182
TP
1779 skb->csum = 0;
1780 skb->ip_summed = CHECKSUM_UNNECESSARY;
1781 return;
1782 }
1783
1784 skb->ip_summed = CHECKSUM_NONE;
1785}
1786
6c498974 1787/* Return tx queue pointer (find last set bit) according to <cause> returned
1788 * form tx_done reg. <cause> must not be null. The return value is always a
1789 * valid queue for matching the first one found in <cause>.
1790 */
c5aff182
TP
1791static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1792 u32 cause)
1793{
1794 int queue = fls(cause) - 1;
1795
6c498974 1796 return &pp->txqs[queue];
c5aff182
TP
1797}
1798
1799/* Free tx queue skbuffs */
1800static void mvneta_txq_bufs_free(struct mvneta_port *pp,
a29b6235
MW
1801 struct mvneta_tx_queue *txq, int num,
1802 struct netdev_queue *nq)
c5aff182 1803{
a29b6235 1804 unsigned int bytes_compl = 0, pkts_compl = 0;
c5aff182
TP
1805 int i;
1806
1807 for (i = 0; i < num; i++) {
9e58c8b4 1808 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
c5aff182
TP
1809 struct mvneta_tx_desc *tx_desc = txq->descs +
1810 txq->txq_get_index;
a29b6235 1811
c5aff182
TP
1812 mvneta_txq_inc_get(txq);
1813
b0a43db9
LB
1814 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1815 buf->type != MVNETA_TYPE_XDP_TX)
2e3173a3
EG
1816 dma_unmap_single(pp->dev->dev.parent,
1817 tx_desc->buf_phys_addr,
1818 tx_desc->data_size, DMA_TO_DEVICE);
b0a43db9
LB
1819 if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1820 bytes_compl += buf->skb->len;
1821 pkts_compl++;
1822 dev_kfree_skb_any(buf->skb);
1823 } else if (buf->type == MVNETA_TYPE_XDP_TX ||
1824 buf->type == MVNETA_TYPE_XDP_NDO) {
1825 xdp_return_frame(buf->xdpf);
1826 }
c5aff182 1827 }
a29b6235
MW
1828
1829 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
c5aff182
TP
1830}
1831
1832/* Handle end of transmission */
cd713199 1833static void mvneta_txq_done(struct mvneta_port *pp,
c5aff182
TP
1834 struct mvneta_tx_queue *txq)
1835{
1836 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1837 int tx_done;
1838
1839 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
cd713199
AE
1840 if (!tx_done)
1841 return;
1842
a29b6235 1843 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
c5aff182
TP
1844
1845 txq->count -= tx_done;
1846
1847 if (netif_tx_queue_stopped(nq)) {
8eef5f97 1848 if (txq->count <= txq->tx_wake_threshold)
c5aff182
TP
1849 netif_tx_wake_queue(nq);
1850 }
c5aff182
TP
1851}
1852
dc35a10f 1853/* Refill processing for SW buffer management */
7e47fd84 1854/* Allocate page per descriptor */
c5aff182 1855static int mvneta_rx_refill(struct mvneta_port *pp,
f88bee1c 1856 struct mvneta_rx_desc *rx_desc,
7e47fd84
GC
1857 struct mvneta_rx_queue *rxq,
1858 gfp_t gfp_mask)
c5aff182
TP
1859{
1860 dma_addr_t phys_addr;
7e47fd84 1861 struct page *page;
c5aff182 1862
568a3fa2
LB
1863 page = page_pool_alloc_pages(rxq->page_pool,
1864 gfp_mask | __GFP_NOWARN);
7e47fd84 1865 if (!page)
c5aff182
TP
1866 return -ENOMEM;
1867
568a3fa2 1868 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
7e47fd84 1869 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
568a3fa2 1870
c5aff182
TP
1871 return 0;
1872}
1873
1874/* Handle tx checksum */
1875static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1876{
1877 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1878 int ip_hdr_len = 0;
817dbfa5 1879 __be16 l3_proto = vlan_get_protocol(skb);
c5aff182
TP
1880 u8 l4_proto;
1881
817dbfa5 1882 if (l3_proto == htons(ETH_P_IP)) {
c5aff182
TP
1883 struct iphdr *ip4h = ip_hdr(skb);
1884
1885 /* Calculate IPv4 checksum and L4 checksum */
1886 ip_hdr_len = ip4h->ihl;
1887 l4_proto = ip4h->protocol;
817dbfa5 1888 } else if (l3_proto == htons(ETH_P_IPV6)) {
c5aff182
TP
1889 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1890
1891 /* Read l4_protocol from one of IPv6 extra headers */
1892 if (skb_network_header_len(skb) > 0)
1893 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1894 l4_proto = ip6h->nexthdr;
1895 } else
1896 return MVNETA_TX_L4_CSUM_NOT;
1897
1898 return mvneta_txq_desc_csum(skb_network_offset(skb),
817dbfa5 1899 l3_proto, ip_hdr_len, l4_proto);
c5aff182
TP
1900 }
1901
1902 return MVNETA_TX_L4_CSUM_NOT;
1903}
1904
c5aff182
TP
1905/* Drop packets received by the RXQ and free buffers */
1906static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1907 struct mvneta_rx_queue *rxq)
1908{
1909 int rx_done, i;
1910
1911 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
dc35a10f
MW
1912 if (rx_done)
1913 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1914
1915 if (pp->bm_priv) {
1916 for (i = 0; i < rx_done; i++) {
1917 struct mvneta_rx_desc *rx_desc =
1918 mvneta_rxq_next_desc_get(rxq);
1919 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1920 struct mvneta_bm_pool *bm_pool;
1921
1922 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1923 /* Return dropped buffer to the pool */
1924 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1925 rx_desc->buf_phys_addr);
1926 }
1927 return;
1928 }
1929
c5aff182
TP
1930 for (i = 0; i < rxq->size; i++) {
1931 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
f88bee1c 1932 void *data = rxq->buf_virt_addr[i];
562e2f46
YK
1933 if (!data || !(rx_desc->buf_phys_addr))
1934 continue;
c5aff182 1935
568a3fa2 1936 page_pool_put_page(rxq->page_pool, data, false);
c5aff182 1937 }
568a3fa2
LB
1938 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1939 xdp_rxq_info_unreg(&rxq->xdp_rxq);
1940 page_pool_destroy(rxq->page_pool);
1941 rxq->page_pool = NULL;
dc35a10f 1942}
c5aff182 1943
ff519e2a
LB
1944static void
1945mvneta_update_stats(struct mvneta_port *pp, u32 pkts,
1946 u32 len, bool tx)
1947{
1948 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1949
1950 u64_stats_update_begin(&stats->syncp);
1951 if (tx) {
1952 stats->tx_packets += pkts;
1953 stats->tx_bytes += len;
1954 } else {
1955 stats->rx_packets += pkts;
1956 stats->rx_bytes += len;
1957 }
1958 u64_stats_update_end(&stats->syncp);
1959}
1960
562e2f46
YK
1961static inline
1962int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1963{
1964 struct mvneta_rx_desc *rx_desc;
1965 int curr_desc = rxq->first_to_refill;
1966 int i;
1967
1968 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1969 rx_desc = rxq->descs + curr_desc;
1970 if (!(rx_desc->buf_phys_addr)) {
1971 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1972 pr_err("Can't refill queue %d. Done %d from %d\n",
1973 rxq->id, i, rxq->refill_num);
1974 rxq->refill_err++;
1975 break;
1976 }
1977 }
1978 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1979 }
1980 rxq->refill_num -= i;
1981 rxq->first_to_refill = curr_desc;
1982
1983 return i;
1984}
1985
b0a43db9
LB
1986static int
1987mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
1988 struct xdp_frame *xdpf, bool dma_map)
1989{
1990 struct mvneta_tx_desc *tx_desc;
1991 struct mvneta_tx_buf *buf;
1992 dma_addr_t dma_addr;
1993
1994 if (txq->count >= txq->tx_stop_threshold)
1995 return MVNETA_XDP_DROPPED;
1996
1997 tx_desc = mvneta_txq_next_desc_get(txq);
1998
1999 buf = &txq->buf[txq->txq_put_index];
2000 if (dma_map) {
2001 /* ndo_xdp_xmit */
2002 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2003 xdpf->len, DMA_TO_DEVICE);
2004 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2005 mvneta_txq_desc_put(txq);
2006 return MVNETA_XDP_DROPPED;
2007 }
2008 buf->type = MVNETA_TYPE_XDP_NDO;
2009 } else {
2010 struct page *page = virt_to_page(xdpf->data);
2011
2012 dma_addr = page_pool_get_dma_addr(page) +
2013 sizeof(*xdpf) + xdpf->headroom;
2014 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2015 xdpf->len, DMA_BIDIRECTIONAL);
2016 buf->type = MVNETA_TYPE_XDP_TX;
2017 }
2018 buf->xdpf = xdpf;
2019
2020 tx_desc->command = MVNETA_TXD_FLZ_DESC;
2021 tx_desc->buf_phys_addr = dma_addr;
2022 tx_desc->data_size = xdpf->len;
2023
2024 mvneta_update_stats(pp, 1, xdpf->len, true);
2025 mvneta_txq_inc_put(txq);
2026 txq->pending++;
2027 txq->count++;
2028
2029 return MVNETA_XDP_TX;
2030}
2031
2032static int
2033mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2034{
2035 struct mvneta_tx_queue *txq;
2036 struct netdev_queue *nq;
2037 struct xdp_frame *xdpf;
2038 int cpu;
2039 u32 ret;
2040
2041 xdpf = convert_to_xdp_frame(xdp);
2042 if (unlikely(!xdpf))
2043 return MVNETA_XDP_DROPPED;
2044
2045 cpu = smp_processor_id();
2046 txq = &pp->txqs[cpu % txq_number];
2047 nq = netdev_get_tx_queue(pp->dev, txq->id);
2048
2049 __netif_tx_lock(nq, cpu);
2050 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2051 if (ret == MVNETA_XDP_TX)
2052 mvneta_txq_pend_desc_add(pp, txq, 0);
2053 __netif_tx_unlock(nq);
2054
2055 return ret;
2056}
2057
2058static int
2059mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2060 struct xdp_frame **frames, u32 flags)
2061{
2062 struct mvneta_port *pp = netdev_priv(dev);
2063 int cpu = smp_processor_id();
2064 struct mvneta_tx_queue *txq;
2065 struct netdev_queue *nq;
2066 int i, drops = 0;
2067 u32 ret;
2068
2069 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2070 return -EINVAL;
2071
2072 txq = &pp->txqs[cpu % txq_number];
2073 nq = netdev_get_tx_queue(pp->dev, txq->id);
2074
2075 __netif_tx_lock(nq, cpu);
2076 for (i = 0; i < num_frame; i++) {
2077 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2078 if (ret != MVNETA_XDP_TX) {
2079 xdp_return_frame_rx_napi(frames[i]);
2080 drops++;
2081 }
2082 }
2083
2084 if (unlikely(flags & XDP_XMIT_FLUSH))
2085 mvneta_txq_pend_desc_add(pp, txq, 0);
2086 __netif_tx_unlock(nq);
2087
2088 return num_frame - drops;
2089}
2090
0db51da7
LB
2091static int
2092mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2093 struct bpf_prog *prog, struct xdp_buff *xdp)
2094{
8c4df83f
LB
2095 unsigned int len;
2096 u32 ret, act;
2097
2098 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2099 act = bpf_prog_run_xdp(prog, xdp);
0db51da7
LB
2100
2101 switch (act) {
2102 case XDP_PASS:
2103 ret = MVNETA_XDP_PASS;
2104 break;
2105 case XDP_REDIRECT: {
2106 int err;
2107
2108 err = xdp_do_redirect(pp->dev, xdp, prog);
2109 if (err) {
2110 ret = MVNETA_XDP_DROPPED;
07e13edb 2111 __page_pool_put_page(rxq->page_pool,
8c4df83f
LB
2112 virt_to_head_page(xdp->data),
2113 len, true);
0db51da7
LB
2114 } else {
2115 ret = MVNETA_XDP_REDIR;
2116 }
2117 break;
2118 }
b0a43db9
LB
2119 case XDP_TX:
2120 ret = mvneta_xdp_xmit_back(pp, xdp);
2121 if (ret != MVNETA_XDP_TX)
07e13edb 2122 __page_pool_put_page(rxq->page_pool,
8c4df83f
LB
2123 virt_to_head_page(xdp->data),
2124 len, true);
b0a43db9 2125 break;
0db51da7
LB
2126 default:
2127 bpf_warn_invalid_xdp_action(act);
2128 /* fall through */
2129 case XDP_ABORTED:
2130 trace_xdp_exception(pp->dev, prog, act);
2131 /* fall through */
2132 case XDP_DROP:
07e13edb
LB
2133 __page_pool_put_page(rxq->page_pool,
2134 virt_to_head_page(xdp->data),
8c4df83f 2135 len, true);
0db51da7
LB
2136 ret = MVNETA_XDP_DROPPED;
2137 break;
2138 }
2139
2140 return ret;
2141}
2142
8dc9a088
LB
2143static int
2144mvneta_swbm_rx_frame(struct mvneta_port *pp,
2145 struct mvneta_rx_desc *rx_desc,
2146 struct mvneta_rx_queue *rxq,
0db51da7
LB
2147 struct xdp_buff *xdp,
2148 struct bpf_prog *xdp_prog,
2149 struct page *page, u32 *xdp_ret)
8dc9a088
LB
2150{
2151 unsigned char *data = page_address(page);
2152 int data_len = -MVNETA_MH_SIZE, len;
2153 struct net_device *dev = pp->dev;
2154 enum dma_data_direction dma_dir;
2155
2156 if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2157 len = MVNETA_MAX_RX_BUF_SIZE;
2158 data_len += len;
2159 } else {
2160 len = rx_desc->data_size;
2161 data_len += len - ETH_FCS_LEN;
2162 }
2163
2164 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2165 dma_sync_single_for_cpu(dev->dev.parent,
2166 rx_desc->buf_phys_addr,
2167 len, dma_dir);
2168
fa383f6b
LB
2169 /* Prefetch header */
2170 prefetch(data);
2171
0db51da7 2172 xdp->data_hard_start = data;
b37fa92e 2173 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
0db51da7
LB
2174 xdp->data_end = xdp->data + data_len;
2175 xdp_set_data_meta_invalid(xdp);
2176
2177 if (xdp_prog) {
2178 u32 ret;
2179
2180 ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp);
2181 if (ret != MVNETA_XDP_PASS) {
2182 mvneta_update_stats(pp, 1,
2183 xdp->data_end - xdp->data,
2184 false);
2185 rx_desc->buf_phys_addr = 0;
2186 *xdp_ret |= ret;
2187 return ret;
2188 }
2189 }
2190
2191 rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
8dc9a088 2192 if (unlikely(!rxq->skb)) {
c35947b8
LB
2193 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2194
2195 netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id);
8dc9a088 2196 rxq->skb_alloc_err++;
c35947b8
LB
2197
2198 u64_stats_update_begin(&stats->syncp);
2199 stats->rx_dropped++;
2200 u64_stats_update_end(&stats->syncp);
2201
8dc9a088
LB
2202 return -ENOMEM;
2203 }
2204 page_pool_release_page(rxq->page_pool, page);
2205
0db51da7
LB
2206 skb_reserve(rxq->skb,
2207 xdp->data - xdp->data_hard_start);
2208 skb_put(rxq->skb, xdp->data_end - xdp->data);
8dc9a088
LB
2209 mvneta_rx_csum(pp, rx_desc->status, rxq->skb);
2210
2211 rxq->left_size = rx_desc->data_size - len;
2212 rx_desc->buf_phys_addr = 0;
2213
2214 return 0;
2215}
2216
2217static void
2218mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2219 struct mvneta_rx_desc *rx_desc,
2220 struct mvneta_rx_queue *rxq,
2221 struct page *page)
2222{
2223 struct net_device *dev = pp->dev;
2224 enum dma_data_direction dma_dir;
2225 int data_len, len;
2226
2227 if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) {
2228 len = MVNETA_MAX_RX_BUF_SIZE;
2229 data_len = len;
2230 } else {
2231 len = rxq->left_size;
2232 data_len = len - ETH_FCS_LEN;
2233 }
2234 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2235 dma_sync_single_for_cpu(dev->dev.parent,
2236 rx_desc->buf_phys_addr,
2237 len, dma_dir);
2238 if (data_len > 0) {
2239 /* refill descriptor with new buffer later */
2240 skb_add_rx_frag(rxq->skb,
2241 skb_shinfo(rxq->skb)->nr_frags,
b37fa92e 2242 page, pp->rx_offset_correction, data_len,
8dc9a088
LB
2243 PAGE_SIZE);
2244 }
2245 page_pool_release_page(rxq->page_pool, page);
2246 rx_desc->buf_phys_addr = 0;
2247 rxq->left_size -= len;
2248}
2249
dc35a10f 2250/* Main rx processing when using software buffer management */
7a86f05f 2251static int mvneta_rx_swbm(struct napi_struct *napi,
562e2f46 2252 struct mvneta_port *pp, int budget,
dc35a10f
MW
2253 struct mvneta_rx_queue *rxq)
2254{
8dc9a088 2255 int rcvd_pkts = 0, rcvd_bytes = 0, rx_proc = 0;
dc35a10f 2256 struct net_device *dev = pp->dev;
0db51da7
LB
2257 struct bpf_prog *xdp_prog;
2258 struct xdp_buff xdp_buf;
8dc9a088 2259 int rx_todo, refill;
0db51da7 2260 u32 xdp_ret = 0;
dc35a10f
MW
2261
2262 /* Get number of received packets */
562e2f46 2263 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
dc35a10f 2264
0db51da7
LB
2265 rcu_read_lock();
2266 xdp_prog = READ_ONCE(pp->xdp_prog);
2267 xdp_buf.rxq = &rxq->xdp_rxq;
2268
dc35a10f 2269 /* Fairness NAPI loop */
8dc9a088 2270 while (rx_proc < budget && rx_proc < rx_todo) {
dc35a10f 2271 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
8dc9a088 2272 u32 rx_status, index;
7e47fd84 2273 struct page *page;
dc35a10f 2274
f88bee1c 2275 index = rx_desc - rxq->descs;
7e47fd84 2276 page = (struct page *)rxq->buf_virt_addr[index];
dc35a10f 2277
562e2f46
YK
2278 rx_status = rx_desc->status;
2279 rx_proc++;
2280 rxq->refill_num++;
2281
2282 if (rx_status & MVNETA_RXD_FIRST_DESC) {
8dc9a088
LB
2283 int err;
2284
562e2f46
YK
2285 /* Check errors only for FIRST descriptor */
2286 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2287 mvneta_rx_error(pp, rx_desc);
562e2f46
YK
2288 /* leave the descriptor untouched */
2289 continue;
2290 }
dc35a10f 2291
0db51da7
LB
2292 err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2293 xdp_prog, page, &xdp_ret);
8dc9a088 2294 if (err)
562e2f46 2295 continue;
562e2f46 2296 } else {
562e2f46
YK
2297 if (unlikely(!rxq->skb)) {
2298 pr_debug("no skb for rx_status 0x%x\n",
2299 rx_status);
2300 continue;
2301 }
8dc9a088 2302 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page);
562e2f46 2303 } /* Middle or Last descriptor */
dc35a10f 2304
562e2f46
YK
2305 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2306 /* no last descriptor this time */
dc35a10f 2307 continue;
dc35a10f 2308
562e2f46
YK
2309 if (rxq->left_size) {
2310 pr_err("get last desc, but left_size (%d) != 0\n",
2311 rxq->left_size);
2312 dev_kfree_skb_any(rxq->skb);
2313 rxq->left_size = 0;
2314 rxq->skb = NULL;
2315 continue;
dc35a10f 2316 }
dc35a10f 2317 rcvd_pkts++;
562e2f46 2318 rcvd_bytes += rxq->skb->len;
dc35a10f
MW
2319
2320 /* Linux processing */
562e2f46 2321 rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
dc35a10f 2322
d28118e3 2323 napi_gro_receive(napi, rxq->skb);
dc35a10f 2324
562e2f46
YK
2325 /* clean uncomplete skb pointer in queue */
2326 rxq->skb = NULL;
dc35a10f 2327 }
0db51da7
LB
2328 rcu_read_unlock();
2329
2330 if (xdp_ret & MVNETA_XDP_REDIR)
2331 xdp_do_flush_map();
dc35a10f 2332
ff519e2a
LB
2333 if (rcvd_pkts)
2334 mvneta_update_stats(pp, rcvd_pkts, rcvd_bytes, false);
dc35a10f 2335
562e2f46
YK
2336 /* return some buffers to hardware queue, one at a time is too slow */
2337 refill = mvneta_rx_refill_queue(pp, rxq);
2338
dc35a10f 2339 /* Update rxq management counters */
562e2f46 2340 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
dc35a10f 2341
562e2f46 2342 return rcvd_pkts;
c5aff182
TP
2343}
2344
dc35a10f 2345/* Main rx processing when using hardware buffer management */
7a86f05f
AL
2346static int mvneta_rx_hwbm(struct napi_struct *napi,
2347 struct mvneta_port *pp, int rx_todo,
dc35a10f 2348 struct mvneta_rx_queue *rxq)
c5aff182
TP
2349{
2350 struct net_device *dev = pp->dev;
a84e3289 2351 int rx_done;
dc4277dd 2352 u32 rcvd_pkts = 0;
2353 u32 rcvd_bytes = 0;
c5aff182
TP
2354
2355 /* Get number of received packets */
2356 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2357
2358 if (rx_todo > rx_done)
2359 rx_todo = rx_done;
2360
2361 rx_done = 0;
c5aff182
TP
2362
2363 /* Fairness NAPI loop */
2364 while (rx_done < rx_todo) {
2365 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
dc35a10f 2366 struct mvneta_bm_pool *bm_pool = NULL;
c5aff182 2367 struct sk_buff *skb;
8ec2cd48 2368 unsigned char *data;
daf158d0 2369 dma_addr_t phys_addr;
dc35a10f 2370 u32 rx_status, frag_size;
c5aff182 2371 int rx_bytes, err;
dc35a10f 2372 u8 pool_id;
c5aff182 2373
c5aff182 2374 rx_done++;
c5aff182 2375 rx_status = rx_desc->status;
f19fadfc 2376 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
f88bee1c 2377 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
daf158d0 2378 phys_addr = rx_desc->buf_phys_addr;
dc35a10f
MW
2379 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2380 bm_pool = &pp->bm_priv->bm_pools[pool_id];
c5aff182 2381
5428213c 2382 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
f19fadfc 2383 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
dc35a10f
MW
2384err_drop_frame_ret_pool:
2385 /* Return the buffer to the pool */
2386 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2387 rx_desc->buf_phys_addr);
2388err_drop_frame:
c5aff182 2389 mvneta_rx_error(pp, rx_desc);
8ec2cd48 2390 /* leave the descriptor untouched */
c5aff182
TP
2391 continue;
2392 }
2393
f19fadfc 2394 if (rx_bytes <= rx_copybreak) {
2395 /* better copy a small frame and not unmap the DMA region */
2396 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2397 if (unlikely(!skb))
dc35a10f 2398 goto err_drop_frame_ret_pool;
f19fadfc 2399
a8fef9ba 2400 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
f19fadfc 2401 rx_desc->buf_phys_addr,
2402 MVNETA_MH_SIZE + NET_SKB_PAD,
2403 rx_bytes,
2404 DMA_FROM_DEVICE);
59ae1d12
JB
2405 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2406 rx_bytes);
f19fadfc 2407
2408 skb->protocol = eth_type_trans(skb, dev);
2409 mvneta_rx_csum(pp, rx_status, skb);
7a86f05f 2410 napi_gro_receive(napi, skb);
f19fadfc 2411
2412 rcvd_pkts++;
2413 rcvd_bytes += rx_bytes;
2414
dc35a10f
MW
2415 /* Return the buffer to the pool */
2416 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2417 rx_desc->buf_phys_addr);
2418
f19fadfc 2419 /* leave the descriptor and buffer untouched */
2420 continue;
2421 }
2422
a84e3289 2423 /* Refill processing */
baa11ebc 2424 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
a84e3289
SG
2425 if (err) {
2426 netdev_err(dev, "Linux processing - Can't refill\n");
17a96da6 2427 rxq->refill_err++;
dc35a10f 2428 goto err_drop_frame_ret_pool;
a84e3289
SG
2429 }
2430
baa11ebc 2431 frag_size = bm_pool->hwbm_pool.frag_size;
dc35a10f
MW
2432
2433 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
f19fadfc 2434
26c17a17
MW
2435 /* After refill old buffer has to be unmapped regardless
2436 * the skb is successfully built or not.
2437 */
dc35a10f
MW
2438 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2439 bm_pool->buf_size, DMA_FROM_DEVICE);
26c17a17
MW
2440 if (!skb)
2441 goto err_drop_frame;
2442
dc4277dd 2443 rcvd_pkts++;
2444 rcvd_bytes += rx_bytes;
c5aff182
TP
2445
2446 /* Linux processing */
8ec2cd48 2447 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
c5aff182
TP
2448 skb_put(skb, rx_bytes);
2449
2450 skb->protocol = eth_type_trans(skb, dev);
2451
5428213c 2452 mvneta_rx_csum(pp, rx_status, skb);
c5aff182 2453
7a86f05f 2454 napi_gro_receive(napi, skb);
c5aff182
TP
2455 }
2456
ff519e2a
LB
2457 if (rcvd_pkts)
2458 mvneta_update_stats(pp, rcvd_pkts, rcvd_bytes, false);
dc4277dd 2459
c5aff182 2460 /* Update rxq management counters */
a84e3289 2461 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
c5aff182
TP
2462
2463 return rx_done;
2464}
2465
2adb719d
EG
2466static inline void
2467mvneta_tso_put_hdr(struct sk_buff *skb,
2468 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2469{
2adb719d 2470 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
9e58c8b4
LB
2471 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2472 struct mvneta_tx_desc *tx_desc;
2adb719d 2473
2adb719d
EG
2474 tx_desc = mvneta_txq_next_desc_get(txq);
2475 tx_desc->data_size = hdr_len;
2476 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2477 tx_desc->command |= MVNETA_TXD_F_DESC;
2478 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2479 txq->txq_put_index * TSO_HEADER_SIZE;
9e58c8b4
LB
2480 buf->type = MVNETA_TYPE_SKB;
2481 buf->skb = NULL;
2482
2adb719d
EG
2483 mvneta_txq_inc_put(txq);
2484}
2485
2486static inline int
2487mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2488 struct sk_buff *skb, char *data, int size,
2489 bool last_tcp, bool is_last)
2490{
9e58c8b4 2491 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2adb719d
EG
2492 struct mvneta_tx_desc *tx_desc;
2493
2494 tx_desc = mvneta_txq_next_desc_get(txq);
2495 tx_desc->data_size = size;
2496 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2497 size, DMA_TO_DEVICE);
2498 if (unlikely(dma_mapping_error(dev->dev.parent,
2499 tx_desc->buf_phys_addr))) {
2500 mvneta_txq_desc_put(txq);
2501 return -ENOMEM;
2502 }
2503
2504 tx_desc->command = 0;
9e58c8b4
LB
2505 buf->type = MVNETA_TYPE_SKB;
2506 buf->skb = NULL;
2adb719d
EG
2507
2508 if (last_tcp) {
2509 /* last descriptor in the TCP packet */
2510 tx_desc->command = MVNETA_TXD_L_DESC;
2511
2512 /* last descriptor in SKB */
2513 if (is_last)
9e58c8b4 2514 buf->skb = skb;
2adb719d
EG
2515 }
2516 mvneta_txq_inc_put(txq);
2517 return 0;
2518}
2519
2520static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2521 struct mvneta_tx_queue *txq)
2522{
2523 int total_len, data_left;
2524 int desc_count = 0;
2525 struct mvneta_port *pp = netdev_priv(dev);
2526 struct tso_t tso;
2527 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2528 int i;
2529
2530 /* Count needed descriptors */
2531 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2532 return 0;
2533
2534 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2535 pr_info("*** Is this even possible???!?!?\n");
2536 return 0;
2537 }
2538
2539 /* Initialize the TSO handler, and prepare the first payload */
2540 tso_start(skb, &tso);
2541
2542 total_len = skb->len - hdr_len;
2543 while (total_len > 0) {
2544 char *hdr;
2545
2546 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2547 total_len -= data_left;
2548 desc_count++;
2549
2550 /* prepare packet headers: MAC + IP + TCP */
2551 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2552 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2553
2554 mvneta_tso_put_hdr(skb, pp, txq);
2555
2556 while (data_left > 0) {
2557 int size;
2558 desc_count++;
2559
2560 size = min_t(int, tso.size, data_left);
2561
2562 if (mvneta_tso_put_data(dev, txq, skb,
2563 tso.data, size,
2564 size == data_left,
2565 total_len == 0))
2566 goto err_release;
2567 data_left -= size;
2568
2569 tso_build_data(skb, &tso, size);
2570 }
2571 }
2572
2573 return desc_count;
2574
2575err_release:
2576 /* Release all used data descriptors; header descriptors must not
2577 * be DMA-unmapped.
2578 */
2579 for (i = desc_count - 1; i >= 0; i--) {
2580 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2e3173a3 2581 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2adb719d
EG
2582 dma_unmap_single(pp->dev->dev.parent,
2583 tx_desc->buf_phys_addr,
2584 tx_desc->data_size,
2585 DMA_TO_DEVICE);
2586 mvneta_txq_desc_put(txq);
2587 }
2588 return 0;
2589}
2590
c5aff182
TP
2591/* Handle tx fragmentation processing */
2592static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2593 struct mvneta_tx_queue *txq)
2594{
2595 struct mvneta_tx_desc *tx_desc;
3d4ea02f 2596 int i, nr_frags = skb_shinfo(skb)->nr_frags;
c5aff182 2597
3d4ea02f 2598 for (i = 0; i < nr_frags; i++) {
9e58c8b4 2599 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
c5aff182 2600 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
d7840976 2601 void *addr = skb_frag_address(frag);
c5aff182
TP
2602
2603 tx_desc = mvneta_txq_next_desc_get(txq);
d7840976 2604 tx_desc->data_size = skb_frag_size(frag);
c5aff182
TP
2605
2606 tx_desc->buf_phys_addr =
2607 dma_map_single(pp->dev->dev.parent, addr,
2608 tx_desc->data_size, DMA_TO_DEVICE);
2609
2610 if (dma_mapping_error(pp->dev->dev.parent,
2611 tx_desc->buf_phys_addr)) {
2612 mvneta_txq_desc_put(txq);
2613 goto error;
2614 }
2615
3d4ea02f 2616 if (i == nr_frags - 1) {
c5aff182
TP
2617 /* Last descriptor */
2618 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
9e58c8b4 2619 buf->skb = skb;
c5aff182
TP
2620 } else {
2621 /* Descriptor in the middle: Not First, Not Last */
2622 tx_desc->command = 0;
9e58c8b4 2623 buf->skb = NULL;
c5aff182 2624 }
9e58c8b4 2625 buf->type = MVNETA_TYPE_SKB;
3d4ea02f 2626 mvneta_txq_inc_put(txq);
c5aff182
TP
2627 }
2628
2629 return 0;
2630
2631error:
2632 /* Release all descriptors that were used to map fragments of
6a20c175
TP
2633 * this packet, as well as the corresponding DMA mappings
2634 */
c5aff182
TP
2635 for (i = i - 1; i >= 0; i--) {
2636 tx_desc = txq->descs + i;
2637 dma_unmap_single(pp->dev->dev.parent,
2638 tx_desc->buf_phys_addr,
2639 tx_desc->data_size,
2640 DMA_TO_DEVICE);
2641 mvneta_txq_desc_put(txq);
2642 }
2643
2644 return -ENOMEM;
2645}
2646
2647/* Main tx processing */
f03508ce 2648static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
c5aff182
TP
2649{
2650 struct mvneta_port *pp = netdev_priv(dev);
ee40a116
WT
2651 u16 txq_id = skb_get_queue_mapping(skb);
2652 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
9e58c8b4 2653 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
c5aff182 2654 struct mvneta_tx_desc *tx_desc;
5f478b41 2655 int len = skb->len;
c5aff182
TP
2656 int frags = 0;
2657 u32 tx_cmd;
2658
2659 if (!netif_running(dev))
2660 goto out;
2661
2adb719d
EG
2662 if (skb_is_gso(skb)) {
2663 frags = mvneta_tx_tso(skb, dev, txq);
2664 goto out;
2665 }
2666
c5aff182 2667 frags = skb_shinfo(skb)->nr_frags + 1;
c5aff182
TP
2668
2669 /* Get a descriptor for the first part of the packet */
2670 tx_desc = mvneta_txq_next_desc_get(txq);
2671
2672 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2673
2674 tx_desc->data_size = skb_headlen(skb);
2675
2676 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2677 tx_desc->data_size,
2678 DMA_TO_DEVICE);
2679 if (unlikely(dma_mapping_error(dev->dev.parent,
2680 tx_desc->buf_phys_addr))) {
2681 mvneta_txq_desc_put(txq);
2682 frags = 0;
2683 goto out;
2684 }
2685
9e58c8b4 2686 buf->type = MVNETA_TYPE_SKB;
c5aff182
TP
2687 if (frags == 1) {
2688 /* First and Last descriptor */
2689 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2690 tx_desc->command = tx_cmd;
9e58c8b4 2691 buf->skb = skb;
c5aff182
TP
2692 mvneta_txq_inc_put(txq);
2693 } else {
2694 /* First but not Last */
2695 tx_cmd |= MVNETA_TXD_F_DESC;
9e58c8b4 2696 buf->skb = NULL;
c5aff182
TP
2697 mvneta_txq_inc_put(txq);
2698 tx_desc->command = tx_cmd;
2699 /* Continue with other skb fragments */
2700 if (mvneta_tx_frag_process(pp, skb, txq)) {
2701 dma_unmap_single(dev->dev.parent,
2702 tx_desc->buf_phys_addr,
2703 tx_desc->data_size,
2704 DMA_TO_DEVICE);
2705 mvneta_txq_desc_put(txq);
2706 frags = 0;
2707 goto out;
2708 }
2709 }
2710
c5aff182
TP
2711out:
2712 if (frags > 0) {
e19d2dda
EG
2713 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2714
a29b6235
MW
2715 netdev_tx_sent_queue(nq, len);
2716
e19d2dda 2717 txq->count += frags;
8eef5f97 2718 if (txq->count >= txq->tx_stop_threshold)
e19d2dda 2719 netif_tx_stop_queue(nq);
c5aff182 2720
6b16f9ee 2721 if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2a90f7e1
SG
2722 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2723 mvneta_txq_pend_desc_add(pp, txq, frags);
2724 else
2725 txq->pending += frags;
2726
ff519e2a 2727 mvneta_update_stats(pp, 1, len, true);
c5aff182
TP
2728 } else {
2729 dev->stats.tx_dropped++;
2730 dev_kfree_skb_any(skb);
2731 }
2732
c5aff182
TP
2733 return NETDEV_TX_OK;
2734}
2735
2736
2737/* Free tx resources, when resetting a port */
2738static void mvneta_txq_done_force(struct mvneta_port *pp,
2739 struct mvneta_tx_queue *txq)
2740
2741{
a29b6235 2742 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
c5aff182
TP
2743 int tx_done = txq->count;
2744
a29b6235 2745 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
c5aff182
TP
2746
2747 /* reset txq */
2748 txq->count = 0;
2749 txq->txq_put_index = 0;
2750 txq->txq_get_index = 0;
2751}
2752
6c498974 2753/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2754 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2755 */
0713a86a 2756static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
c5aff182
TP
2757{
2758 struct mvneta_tx_queue *txq;
c5aff182 2759 struct netdev_queue *nq;
bd9f1ee3 2760 int cpu = smp_processor_id();
c5aff182 2761
6c498974 2762 while (cause_tx_done) {
c5aff182 2763 txq = mvneta_tx_done_policy(pp, cause_tx_done);
c5aff182
TP
2764
2765 nq = netdev_get_tx_queue(pp->dev, txq->id);
bd9f1ee3 2766 __netif_tx_lock(nq, cpu);
c5aff182 2767
0713a86a
AE
2768 if (txq->count)
2769 mvneta_txq_done(pp, txq);
c5aff182
TP
2770
2771 __netif_tx_unlock(nq);
2772 cause_tx_done &= ~((1 << txq->id));
2773 }
c5aff182
TP
2774}
2775
6a20c175 2776/* Compute crc8 of the specified address, using a unique algorithm ,
c5aff182
TP
2777 * according to hw spec, different than generic crc8 algorithm
2778 */
2779static int mvneta_addr_crc(unsigned char *addr)
2780{
2781 int crc = 0;
2782 int i;
2783
2784 for (i = 0; i < ETH_ALEN; i++) {
2785 int j;
2786
2787 crc = (crc ^ addr[i]) << 8;
2788 for (j = 7; j >= 0; j--) {
2789 if (crc & (0x100 << j))
2790 crc ^= 0x107 << j;
2791 }
2792 }
2793
2794 return crc;
2795}
2796
2797/* This method controls the net device special MAC multicast support.
2798 * The Special Multicast Table for MAC addresses supports MAC of the form
2799 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2800 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2801 * Table entries in the DA-Filter table. This method set the Special
2802 * Multicast Table appropriate entry.
2803 */
2804static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2805 unsigned char last_byte,
2806 int queue)
2807{
2808 unsigned int smc_table_reg;
2809 unsigned int tbl_offset;
2810 unsigned int reg_offset;
2811
2812 /* Register offset from SMC table base */
2813 tbl_offset = (last_byte / 4);
2814 /* Entry offset within the above reg */
2815 reg_offset = last_byte % 4;
2816
2817 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2818 + tbl_offset * 4));
2819
2820 if (queue == -1)
2821 smc_table_reg &= ~(0xff << (8 * reg_offset));
2822 else {
2823 smc_table_reg &= ~(0xff << (8 * reg_offset));
2824 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2825 }
2826
2827 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2828 smc_table_reg);
2829}
2830
2831/* This method controls the network device Other MAC multicast support.
2832 * The Other Multicast Table is used for multicast of another type.
2833 * A CRC-8 is used as an index to the Other Multicast Table entries
2834 * in the DA-Filter table.
2835 * The method gets the CRC-8 value from the calling routine and
2836 * sets the Other Multicast Table appropriate entry according to the
2837 * specified CRC-8 .
2838 */
2839static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2840 unsigned char crc8,
2841 int queue)
2842{
2843 unsigned int omc_table_reg;
2844 unsigned int tbl_offset;
2845 unsigned int reg_offset;
2846
2847 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2848 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2849
2850 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2851
2852 if (queue == -1) {
2853 /* Clear accepts frame bit at specified Other DA table entry */
2854 omc_table_reg &= ~(0xff << (8 * reg_offset));
2855 } else {
2856 omc_table_reg &= ~(0xff << (8 * reg_offset));
2857 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2858 }
2859
2860 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2861}
2862
2863/* The network device supports multicast using two tables:
2864 * 1) Special Multicast Table for MAC addresses of the form
2865 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2866 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2867 * Table entries in the DA-Filter table.
2868 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2869 * is used as an index to the Other Multicast Table entries in the
2870 * DA-Filter table.
2871 */
2872static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2873 int queue)
2874{
2875 unsigned char crc_result = 0;
2876
2877 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2878 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2879 return 0;
2880 }
2881
2882 crc_result = mvneta_addr_crc(p_addr);
2883 if (queue == -1) {
2884 if (pp->mcast_count[crc_result] == 0) {
2885 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2886 crc_result);
2887 return -EINVAL;
2888 }
2889
2890 pp->mcast_count[crc_result]--;
2891 if (pp->mcast_count[crc_result] != 0) {
2892 netdev_info(pp->dev,
2893 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2894 pp->mcast_count[crc_result], crc_result);
2895 return -EINVAL;
2896 }
2897 } else
2898 pp->mcast_count[crc_result]++;
2899
2900 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2901
2902 return 0;
2903}
2904
2905/* Configure Fitering mode of Ethernet port */
2906static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2907 int is_promisc)
2908{
2909 u32 port_cfg_reg, val;
2910
2911 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2912
2913 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2914
2915 /* Set / Clear UPM bit in port configuration register */
2916 if (is_promisc) {
2917 /* Accept all Unicast addresses */
2918 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2919 val |= MVNETA_FORCE_UNI;
2920 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2921 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2922 } else {
2923 /* Reject all Unicast addresses */
2924 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2925 val &= ~MVNETA_FORCE_UNI;
2926 }
2927
2928 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2929 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2930}
2931
2932/* register unicast and multicast addresses */
2933static void mvneta_set_rx_mode(struct net_device *dev)
2934{
2935 struct mvneta_port *pp = netdev_priv(dev);
2936 struct netdev_hw_addr *ha;
2937
2938 if (dev->flags & IFF_PROMISC) {
2939 /* Accept all: Multicast + Unicast */
2940 mvneta_rx_unicast_promisc_set(pp, 1);
90b74c01
GC
2941 mvneta_set_ucast_table(pp, pp->rxq_def);
2942 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2943 mvneta_set_other_mcast_table(pp, pp->rxq_def);
c5aff182
TP
2944 } else {
2945 /* Accept single Unicast */
2946 mvneta_rx_unicast_promisc_set(pp, 0);
2947 mvneta_set_ucast_table(pp, -1);
90b74c01 2948 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
c5aff182
TP
2949
2950 if (dev->flags & IFF_ALLMULTI) {
2951 /* Accept all multicast */
90b74c01
GC
2952 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2953 mvneta_set_other_mcast_table(pp, pp->rxq_def);
c5aff182
TP
2954 } else {
2955 /* Accept only initialized multicast */
2956 mvneta_set_special_mcast_table(pp, -1);
2957 mvneta_set_other_mcast_table(pp, -1);
2958
2959 if (!netdev_mc_empty(dev)) {
2960 netdev_for_each_mc_addr(ha, dev) {
2961 mvneta_mcast_addr_set(pp, ha->addr,
90b74c01 2962 pp->rxq_def);
c5aff182
TP
2963 }
2964 }
2965 }
2966 }
2967}
2968
2969/* Interrupt handling - the callback for request_irq() */
2970static irqreturn_t mvneta_isr(int irq, void *dev_id)
2636ac3c
MW
2971{
2972 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2973
2974 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2975 napi_schedule(&pp->napi);
2976
2977 return IRQ_HANDLED;
2978}
2979
2980/* Interrupt handling - the callback for request_percpu_irq() */
2981static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
c5aff182 2982{
12bb03b4 2983 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
c5aff182 2984
12bb03b4 2985 disable_percpu_irq(port->pp->dev->irq);
12bb03b4 2986 napi_schedule(&port->napi);
c5aff182
TP
2987
2988 return IRQ_HANDLED;
2989}
2990
503f9aa9 2991static void mvneta_link_change(struct mvneta_port *pp)
898b2970 2992{
898b2970
SS
2993 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2994
503f9aa9 2995 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
898b2970
SS
2996}
2997
c5aff182
TP
2998/* NAPI handler
2999 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3000 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3001 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3002 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3003 * Each CPU has its own causeRxTx register
3004 */
3005static int mvneta_poll(struct napi_struct *napi, int budget)
3006{
3007 int rx_done = 0;
3008 u32 cause_rx_tx;
2dcf75e2 3009 int rx_queue;
c5aff182 3010 struct mvneta_port *pp = netdev_priv(napi->dev);
12bb03b4 3011 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
c5aff182
TP
3012
3013 if (!netif_running(pp->dev)) {
2636ac3c 3014 napi_complete(napi);
c5aff182
TP
3015 return rx_done;
3016 }
3017
3018 /* Read cause register */
898b2970
SS
3019 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3020 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3021 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3022
3023 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
503f9aa9
RK
3024
3025 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
856b2cc5 3026 MVNETA_CAUSE_LINK_CHANGE))
503f9aa9 3027 mvneta_link_change(pp);
898b2970 3028 }
71f6d1b3 3029
3030 /* Release Tx descriptors */
3031 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
0713a86a 3032 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
71f6d1b3 3033 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3034 }
c5aff182 3035
6a20c175 3036 /* For the case where the last mvneta_poll did not process all
c5aff182
TP
3037 * RX packets
3038 */
2dcf75e2
GC
3039 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3040
2636ac3c
MW
3041 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3042 port->cause_rx_tx;
2dcf75e2
GC
3043
3044 if (rx_queue) {
3045 rx_queue = rx_queue - 1;
dc35a10f 3046 if (pp->bm_priv)
7a86f05f
AL
3047 rx_done = mvneta_rx_hwbm(napi, pp, budget,
3048 &pp->rxqs[rx_queue]);
dc35a10f 3049 else
7a86f05f
AL
3050 rx_done = mvneta_rx_swbm(napi, pp, budget,
3051 &pp->rxqs[rx_queue]);
2dcf75e2
GC
3052 }
3053
6ad20165 3054 if (rx_done < budget) {
c5aff182 3055 cause_rx_tx = 0;
6ad20165 3056 napi_complete_done(napi, rx_done);
2636ac3c
MW
3057
3058 if (pp->neta_armada3700) {
3059 unsigned long flags;
3060
3061 local_irq_save(flags);
3062 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3063 MVNETA_RX_INTR_MASK(rxq_number) |
3064 MVNETA_TX_INTR_MASK(txq_number) |
3065 MVNETA_MISCINTR_INTR_MASK);
3066 local_irq_restore(flags);
3067 } else {
3068 enable_percpu_irq(pp->dev->irq, 0);
3069 }
c5aff182
TP
3070 }
3071
2636ac3c
MW
3072 if (pp->neta_armada3700)
3073 pp->cause_rx_tx = cause_rx_tx;
3074 else
3075 port->cause_rx_tx = cause_rx_tx;
3076
c5aff182
TP
3077 return rx_done;
3078}
3079
568a3fa2
LB
3080static int mvneta_create_page_pool(struct mvneta_port *pp,
3081 struct mvneta_rx_queue *rxq, int size)
3082{
0db51da7 3083 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
568a3fa2
LB
3084 struct page_pool_params pp_params = {
3085 .order = 0,
07e13edb 3086 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
568a3fa2 3087 .pool_size = size,
1657adcc 3088 .nid = NUMA_NO_NODE,
568a3fa2 3089 .dev = pp->dev->dev.parent,
0db51da7 3090 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
07e13edb
LB
3091 .offset = pp->rx_offset_correction,
3092 .max_len = MVNETA_MAX_RX_BUF_SIZE,
568a3fa2
LB
3093 };
3094 int err;
3095
3096 rxq->page_pool = page_pool_create(&pp_params);
3097 if (IS_ERR(rxq->page_pool)) {
3098 err = PTR_ERR(rxq->page_pool);
3099 rxq->page_pool = NULL;
3100 return err;
3101 }
3102
3103 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3104 if (err < 0)
3105 goto err_free_pp;
3106
3107 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3108 rxq->page_pool);
3109 if (err)
3110 goto err_unregister_rxq;
3111
3112 return 0;
3113
3114err_unregister_rxq:
3115 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3116err_free_pp:
3117 page_pool_destroy(rxq->page_pool);
3118 rxq->page_pool = NULL;
3119 return err;
3120}
3121
c5aff182
TP
3122/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3123static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3124 int num)
3125{
568a3fa2
LB
3126 int i, err;
3127
3128 err = mvneta_create_page_pool(pp, rxq, num);
3129 if (err < 0)
3130 return err;
c5aff182
TP
3131
3132 for (i = 0; i < num; i++) {
a1a65ab1 3133 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
7e47fd84
GC
3134 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3135 GFP_KERNEL) != 0) {
3136 netdev_err(pp->dev,
3137 "%s:rxq %d, %d of %d buffs filled\n",
3138 __func__, rxq->id, i, num);
c5aff182
TP
3139 break;
3140 }
c5aff182
TP
3141 }
3142
3143 /* Add this number of RX descriptors as non occupied (ready to
6a20c175
TP
3144 * get packets)
3145 */
c5aff182
TP
3146 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3147
3148 return i;
3149}
3150
3151/* Free all packets pending transmit from all TXQs and reset TX port */
3152static void mvneta_tx_reset(struct mvneta_port *pp)
3153{
3154 int queue;
3155
9672850b 3156 /* free the skb's in the tx ring */
c5aff182
TP
3157 for (queue = 0; queue < txq_number; queue++)
3158 mvneta_txq_done_force(pp, &pp->txqs[queue]);
3159
3160 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3161 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3162}
3163
3164static void mvneta_rx_reset(struct mvneta_port *pp)
3165{
3166 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3167 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3168}
3169
3170/* Rx/Tx queue initialization/cleanup methods */
3171
4a188a63
JZ
3172static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3173 struct mvneta_rx_queue *rxq)
c5aff182
TP
3174{
3175 rxq->size = pp->rx_ring_size;
3176
3177 /* Allocate memory for RX descriptors */
3178 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3179 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3180 &rxq->descs_phys, GFP_KERNEL);
f95936cc 3181 if (!rxq->descs)
c5aff182 3182 return -ENOMEM;
c5aff182 3183
c5aff182
TP
3184 rxq->last_desc = rxq->size - 1;
3185
4a188a63
JZ
3186 return 0;
3187}
3188
3189static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3190 struct mvneta_rx_queue *rxq)
3191{
c5aff182
TP
3192 /* Set Rx descriptors queue starting address */
3193 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3194 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3195
c5aff182
TP
3196 /* Set coalescing pkts and time */
3197 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3198 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3199
dc35a10f 3200 if (!pp->bm_priv) {
562e2f46
YK
3201 /* Set Offset */
3202 mvneta_rxq_offset_set(pp, rxq, 0);
e735fd55 3203 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
8dc9a088 3204 MVNETA_MAX_RX_BUF_SIZE :
e735fd55 3205 MVNETA_RX_BUF_SIZE(pp->pkt_size));
dc35a10f 3206 mvneta_rxq_bm_disable(pp, rxq);
e9f64999 3207 mvneta_rxq_fill(pp, rxq, rxq->size);
dc35a10f 3208 } else {
562e2f46
YK
3209 /* Set Offset */
3210 mvneta_rxq_offset_set(pp, rxq,
3211 NET_SKB_PAD - pp->rx_offset_correction);
3212
dc35a10f 3213 mvneta_rxq_bm_enable(pp, rxq);
562e2f46 3214 /* Fill RXQ with buffers from RX pool */
dc35a10f
MW
3215 mvneta_rxq_long_pool_set(pp, rxq);
3216 mvneta_rxq_short_pool_set(pp, rxq);
e9f64999 3217 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
dc35a10f 3218 }
4a188a63
JZ
3219}
3220
3221/* Create a specified RX queue */
3222static int mvneta_rxq_init(struct mvneta_port *pp,
3223 struct mvneta_rx_queue *rxq)
3224
3225{
3226 int ret;
3227
3228 ret = mvneta_rxq_sw_init(pp, rxq);
3229 if (ret < 0)
3230 return ret;
3231
3232 mvneta_rxq_hw_init(pp, rxq);
dc35a10f 3233
c5aff182
TP
3234 return 0;
3235}
3236
3237/* Cleanup Rx queue */
3238static void mvneta_rxq_deinit(struct mvneta_port *pp,
3239 struct mvneta_rx_queue *rxq)
3240{
3241 mvneta_rxq_drop_pkts(pp, rxq);
3242
562e2f46
YK
3243 if (rxq->skb)
3244 dev_kfree_skb_any(rxq->skb);
3245
c5aff182
TP
3246 if (rxq->descs)
3247 dma_free_coherent(pp->dev->dev.parent,
3248 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3249 rxq->descs,
3250 rxq->descs_phys);
3251
3252 rxq->descs = NULL;
3253 rxq->last_desc = 0;
3254 rxq->next_desc_to_proc = 0;
3255 rxq->descs_phys = 0;
562e2f46
YK
3256 rxq->first_to_refill = 0;
3257 rxq->refill_num = 0;
3258 rxq->skb = NULL;
3259 rxq->left_size = 0;
c5aff182
TP
3260}
3261
4a188a63
JZ
3262static int mvneta_txq_sw_init(struct mvneta_port *pp,
3263 struct mvneta_tx_queue *txq)
c5aff182 3264{
50bf8cb6
GC
3265 int cpu;
3266
c5aff182
TP
3267 txq->size = pp->tx_ring_size;
3268
8eef5f97
EG
3269 /* A queue must always have room for at least one skb.
3270 * Therefore, stop the queue when the free entries reaches
3271 * the maximum number of descriptors per skb.
3272 */
3273 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3274 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3275
c5aff182
TP
3276 /* Allocate memory for TX descriptors */
3277 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3278 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3279 &txq->descs_phys, GFP_KERNEL);
f95936cc 3280 if (!txq->descs)
c5aff182 3281 return -ENOMEM;
c5aff182 3282
c5aff182
TP
3283 txq->last_desc = txq->size - 1;
3284
9e58c8b4
LB
3285 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3286 if (!txq->buf) {
c5aff182
TP
3287 dma_free_coherent(pp->dev->dev.parent,
3288 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3289 txq->descs, txq->descs_phys);
3290 return -ENOMEM;
3291 }
2adb719d
EG
3292
3293 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3294 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3295 txq->size * TSO_HEADER_SIZE,
3296 &txq->tso_hdrs_phys, GFP_KERNEL);
f95936cc 3297 if (!txq->tso_hdrs) {
9e58c8b4 3298 kfree(txq->buf);
2adb719d
EG
3299 dma_free_coherent(pp->dev->dev.parent,
3300 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3301 txq->descs, txq->descs_phys);
3302 return -ENOMEM;
3303 }
c5aff182 3304
50bf8cb6
GC
3305 /* Setup XPS mapping */
3306 if (txq_number > 1)
3307 cpu = txq->id % num_present_cpus();
3308 else
3309 cpu = pp->rxq_def % num_present_cpus();
3310 cpumask_set_cpu(cpu, &txq->affinity_mask);
3311 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3312
c5aff182
TP
3313 return 0;
3314}
3315
4a188a63
JZ
3316static void mvneta_txq_hw_init(struct mvneta_port *pp,
3317 struct mvneta_tx_queue *txq)
3318{
3319 /* Set maximum bandwidth for enabled TXQs */
3320 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3321 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3322
3323 /* Set Tx descriptors queue starting address */
3324 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3325 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3326
3327 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3328}
3329
3330/* Create and initialize a tx queue */
3331static int mvneta_txq_init(struct mvneta_port *pp,
3332 struct mvneta_tx_queue *txq)
3333{
3334 int ret;
3335
3336 ret = mvneta_txq_sw_init(pp, txq);
3337 if (ret < 0)
3338 return ret;
3339
3340 mvneta_txq_hw_init(pp, txq);
3341
3342 return 0;
3343}
3344
c5aff182 3345/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
4a188a63
JZ
3346static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3347 struct mvneta_tx_queue *txq)
c5aff182 3348{
a29b6235
MW
3349 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3350
9e58c8b4 3351 kfree(txq->buf);
c5aff182 3352
2adb719d
EG
3353 if (txq->tso_hdrs)
3354 dma_free_coherent(pp->dev->dev.parent,
3355 txq->size * TSO_HEADER_SIZE,
3356 txq->tso_hdrs, txq->tso_hdrs_phys);
c5aff182
TP
3357 if (txq->descs)
3358 dma_free_coherent(pp->dev->dev.parent,
3359 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3360 txq->descs, txq->descs_phys);
3361
a29b6235
MW
3362 netdev_tx_reset_queue(nq);
3363
c5aff182
TP
3364 txq->descs = NULL;
3365 txq->last_desc = 0;
3366 txq->next_desc_to_proc = 0;
3367 txq->descs_phys = 0;
4a188a63 3368}
c5aff182 3369
4a188a63
JZ
3370static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3371 struct mvneta_tx_queue *txq)
3372{
c5aff182
TP
3373 /* Set minimum bandwidth for disabled TXQs */
3374 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3375 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3376
3377 /* Set Tx descriptors queue starting address and size */
3378 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3379 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3380}
3381
4a188a63
JZ
3382static void mvneta_txq_deinit(struct mvneta_port *pp,
3383 struct mvneta_tx_queue *txq)
3384{
3385 mvneta_txq_sw_deinit(pp, txq);
3386 mvneta_txq_hw_deinit(pp, txq);
3387}
3388
c5aff182
TP
3389/* Cleanup all Tx queues */
3390static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3391{
3392 int queue;
3393
3394 for (queue = 0; queue < txq_number; queue++)
3395 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3396}
3397
3398/* Cleanup all Rx queues */
3399static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3400{
2dcf75e2
GC
3401 int queue;
3402
ca5902a6 3403 for (queue = 0; queue < rxq_number; queue++)
2dcf75e2 3404 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
c5aff182
TP
3405}
3406
3407
3408/* Init all Rx queues */
3409static int mvneta_setup_rxqs(struct mvneta_port *pp)
3410{
2dcf75e2
GC
3411 int queue;
3412
3413 for (queue = 0; queue < rxq_number; queue++) {
3414 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3415
3416 if (err) {
3417 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3418 __func__, queue);
3419 mvneta_cleanup_rxqs(pp);
3420 return err;
3421 }
c5aff182
TP
3422 }
3423
3424 return 0;
3425}
3426
3427/* Init all tx queues */
3428static int mvneta_setup_txqs(struct mvneta_port *pp)
3429{
3430 int queue;
3431
3432 for (queue = 0; queue < txq_number; queue++) {
3433 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3434 if (err) {
3435 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3436 __func__, queue);
3437 mvneta_cleanup_txqs(pp);
3438 return err;
3439 }
3440 }
3441
3442 return 0;
3443}
3444
031b922b
MB
3445static int mvneta_comphy_init(struct mvneta_port *pp)
3446{
3447 int ret;
3448
3449 if (!pp->comphy)
3450 return 0;
3451
3452 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3453 pp->phy_interface);
3454 if (ret)
3455 return ret;
3456
3457 return phy_power_on(pp->comphy);
3458}
3459
c5aff182
TP
3460static void mvneta_start_dev(struct mvneta_port *pp)
3461{
6b125d63 3462 int cpu;
12bb03b4 3463
031b922b 3464 WARN_ON(mvneta_comphy_init(pp));
a10c1c81 3465
c5aff182
TP
3466 mvneta_max_rx_size_set(pp, pp->pkt_size);
3467 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3468
3469 /* start the Rx/Tx activity */
3470 mvneta_port_enable(pp);
3471
2636ac3c
MW
3472 if (!pp->neta_armada3700) {
3473 /* Enable polling on the port */
3474 for_each_online_cpu(cpu) {
3475 struct mvneta_pcpu_port *port =
3476 per_cpu_ptr(pp->ports, cpu);
12bb03b4 3477
2636ac3c
MW
3478 napi_enable(&port->napi);
3479 }
3480 } else {
3481 napi_enable(&pp->napi);
12bb03b4 3482 }
c5aff182 3483
2dcf75e2 3484 /* Unmask interrupts. It has to be done from each CPU */
6b125d63
GC
3485 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3486
898b2970
SS
3487 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3488 MVNETA_CAUSE_PHY_STATUS_CHANGE |
856b2cc5 3489 MVNETA_CAUSE_LINK_CHANGE);
c5aff182 3490
503f9aa9 3491 phylink_start(pp->phylink);
c5aff182
TP
3492 netif_tx_start_all_queues(pp->dev);
3493}
3494
3495static void mvneta_stop_dev(struct mvneta_port *pp)
3496{
12bb03b4
MR
3497 unsigned int cpu;
3498
503f9aa9 3499 phylink_stop(pp->phylink);
c5aff182 3500
2636ac3c
MW
3501 if (!pp->neta_armada3700) {
3502 for_each_online_cpu(cpu) {
3503 struct mvneta_pcpu_port *port =
3504 per_cpu_ptr(pp->ports, cpu);
12bb03b4 3505
2636ac3c
MW
3506 napi_disable(&port->napi);
3507 }
3508 } else {
3509 napi_disable(&pp->napi);
12bb03b4 3510 }
c5aff182
TP
3511
3512 netif_carrier_off(pp->dev);
3513
3514 mvneta_port_down(pp);
3515 netif_tx_stop_all_queues(pp->dev);
3516
3517 /* Stop the port activity */
3518 mvneta_port_disable(pp);
3519
3520 /* Clear all ethernet port interrupts */
db488c10 3521 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
c5aff182
TP
3522
3523 /* Mask all ethernet port interrupts */
db488c10 3524 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
c5aff182
TP
3525
3526 mvneta_tx_reset(pp);
3527 mvneta_rx_reset(pp);
a10c1c81
RK
3528
3529 WARN_ON(phy_power_off(pp->comphy));
c5aff182
TP
3530}
3531
db5dd0db
MW
3532static void mvneta_percpu_enable(void *arg)
3533{
3534 struct mvneta_port *pp = arg;
3535
3536 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3537}
3538
3539static void mvneta_percpu_disable(void *arg)
3540{
3541 struct mvneta_port *pp = arg;
3542
3543 disable_percpu_irq(pp->dev->irq);
3544}
3545
c5aff182
TP
3546/* Change the device mtu */
3547static int mvneta_change_mtu(struct net_device *dev, int mtu)
3548{
3549 struct mvneta_port *pp = netdev_priv(dev);
3550 int ret;
3551
5777987e
JW
3552 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3553 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3554 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3555 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3556 }
c5aff182 3557
0db51da7
LB
3558 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3559 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3560 return -EINVAL;
3561 }
3562
c5aff182
TP
3563 dev->mtu = mtu;
3564
b65657fc 3565 if (!netif_running(dev)) {
dc35a10f
MW
3566 if (pp->bm_priv)
3567 mvneta_bm_update_mtu(pp, mtu);
3568
b65657fc 3569 netdev_update_features(dev);
c5aff182 3570 return 0;
b65657fc 3571 }
c5aff182 3572
6a20c175 3573 /* The interface is running, so we have to force a
a92dbd96 3574 * reallocation of the queues
c5aff182
TP
3575 */
3576 mvneta_stop_dev(pp);
db5dd0db 3577 on_each_cpu(mvneta_percpu_disable, pp, true);
c5aff182
TP
3578
3579 mvneta_cleanup_txqs(pp);
3580 mvneta_cleanup_rxqs(pp);
3581
dc35a10f
MW
3582 if (pp->bm_priv)
3583 mvneta_bm_update_mtu(pp, mtu);
3584
a92dbd96 3585 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
c5aff182
TP
3586
3587 ret = mvneta_setup_rxqs(pp);
3588 if (ret) {
a92dbd96 3589 netdev_err(dev, "unable to setup rxqs after MTU change\n");
c5aff182
TP
3590 return ret;
3591 }
3592
a92dbd96
EG
3593 ret = mvneta_setup_txqs(pp);
3594 if (ret) {
3595 netdev_err(dev, "unable to setup txqs after MTU change\n");
3596 return ret;
3597 }
c5aff182 3598
db5dd0db 3599 on_each_cpu(mvneta_percpu_enable, pp, true);
c5aff182 3600 mvneta_start_dev(pp);
c5aff182 3601
b65657fc
SG
3602 netdev_update_features(dev);
3603
c5aff182
TP
3604 return 0;
3605}
3606
b65657fc
SG
3607static netdev_features_t mvneta_fix_features(struct net_device *dev,
3608 netdev_features_t features)
3609{
3610 struct mvneta_port *pp = netdev_priv(dev);
3611
3612 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3613 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3614 netdev_info(dev,
3615 "Disable IP checksum for MTU greater than %dB\n",
3616 pp->tx_csum_limit);
3617 }
3618
3619 return features;
3620}
3621
8cc3e439
TP
3622/* Get mac address */
3623static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3624{
3625 u32 mac_addr_l, mac_addr_h;
3626
3627 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3628 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3629 addr[0] = (mac_addr_h >> 24) & 0xFF;
3630 addr[1] = (mac_addr_h >> 16) & 0xFF;
3631 addr[2] = (mac_addr_h >> 8) & 0xFF;
3632 addr[3] = mac_addr_h & 0xFF;
3633 addr[4] = (mac_addr_l >> 8) & 0xFF;
3634 addr[5] = mac_addr_l & 0xFF;
3635}
3636
c5aff182
TP
3637/* Handle setting mac address */
3638static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3639{
3640 struct mvneta_port *pp = netdev_priv(dev);
e68de360
EG
3641 struct sockaddr *sockaddr = addr;
3642 int ret;
c5aff182 3643
e68de360
EG
3644 ret = eth_prepare_mac_addr_change(dev, addr);
3645 if (ret < 0)
3646 return ret;
c5aff182
TP
3647 /* Remove previous address table entry */
3648 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3649
3650 /* Set new addr in hw */
90b74c01 3651 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
c5aff182 3652
e68de360 3653 eth_commit_mac_addr_change(dev, addr);
c5aff182
TP
3654 return 0;
3655}
3656
44cc27e4
IC
3657static void mvneta_validate(struct phylink_config *config,
3658 unsigned long *supported,
503f9aa9
RK
3659 struct phylink_link_state *state)
3660{
44cc27e4 3661 struct net_device *ndev = to_net_dev(config->dev);
a10c1c81 3662 struct mvneta_port *pp = netdev_priv(ndev);
503f9aa9
RK
3663 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3664
22f4bf8a 3665 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
503f9aa9
RK
3666 if (state->interface != PHY_INTERFACE_MODE_NA &&
3667 state->interface != PHY_INTERFACE_MODE_QSGMII &&
3668 state->interface != PHY_INTERFACE_MODE_SGMII &&
22f4bf8a 3669 !phy_interface_mode_is_8023z(state->interface) &&
503f9aa9
RK
3670 !phy_interface_mode_is_rgmii(state->interface)) {
3671 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3672 return;
3673 }
3674
3675 /* Allow all the expected bits */
3676 phylink_set(mask, Autoneg);
3677 phylink_set_port_modes(mask);
3678
4932a918
RK
3679 /* Asymmetric pause is unsupported */
3680 phylink_set(mask, Pause);
da58a931 3681
83e65df6 3682 /* Half-duplex at speeds higher than 100Mbit is unsupported */
a10c1c81
RK
3683 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3684 phylink_set(mask, 1000baseT_Full);
3685 phylink_set(mask, 1000baseX_Full);
3686 }
3687 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
eda3d1b0 3688 phylink_set(mask, 2500baseT_Full);
a10c1c81
RK
3689 phylink_set(mask, 2500baseX_Full);
3690 }
22f4bf8a
RK
3691
3692 if (!phy_interface_mode_is_8023z(state->interface)) {
3693 /* 10M and 100M are only supported in non-802.3z mode */
3694 phylink_set(mask, 10baseT_Half);
3695 phylink_set(mask, 10baseT_Full);
3696 phylink_set(mask, 100baseT_Half);
3697 phylink_set(mask, 100baseT_Full);
3698 }
503f9aa9
RK
3699
3700 bitmap_and(supported, supported, mask,
3701 __ETHTOOL_LINK_MODE_MASK_NBITS);
3702 bitmap_and(state->advertising, state->advertising, mask,
3703 __ETHTOOL_LINK_MODE_MASK_NBITS);
a10c1c81
RK
3704
3705 /* We can only operate at 2500BaseX or 1000BaseX. If requested
3706 * to advertise both, only report advertising at 2500BaseX.
3707 */
3708 phylink_helper_basex_speed(state);
503f9aa9
RK
3709}
3710
d46b7e4f
RK
3711static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3712 struct phylink_link_state *state)
c5aff182 3713{
44cc27e4 3714 struct net_device *ndev = to_net_dev(config->dev);
c5aff182 3715 struct mvneta_port *pp = netdev_priv(ndev);
503f9aa9 3716 u32 gmac_stat;
c5aff182 3717
503f9aa9 3718 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
c5aff182 3719
503f9aa9 3720 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
a10c1c81
RK
3721 state->speed =
3722 state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3723 SPEED_2500 : SPEED_1000;
503f9aa9
RK
3724 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3725 state->speed = SPEED_100;
3726 else
3727 state->speed = SPEED_10;
c5aff182 3728
503f9aa9
RK
3729 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3730 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3731 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
c5aff182 3732
503f9aa9 3733 state->pause = 0;
4932a918
RK
3734 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3735 state->pause |= MLO_PAUSE_RX;
3736 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3737 state->pause |= MLO_PAUSE_TX;
503f9aa9
RK
3738}
3739
44cc27e4 3740static void mvneta_mac_an_restart(struct phylink_config *config)
22f4bf8a 3741{
44cc27e4 3742 struct net_device *ndev = to_net_dev(config->dev);
22f4bf8a
RK
3743 struct mvneta_port *pp = netdev_priv(ndev);
3744 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3745
3746 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3747 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3748 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3749 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3750}
3751
44cc27e4
IC
3752static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3753 const struct phylink_link_state *state)
503f9aa9 3754{
44cc27e4 3755 struct net_device *ndev = to_net_dev(config->dev);
503f9aa9 3756 struct mvneta_port *pp = netdev_priv(ndev);
22f4bf8a 3757 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
503f9aa9 3758 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
da58a931 3759 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
503f9aa9
RK
3760 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3761 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3762
22f4bf8a 3763 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
32699954
RK
3764 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3765 MVNETA_GMAC2_PORT_RESET);
da58a931 3766 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
503f9aa9
RK
3767 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3768 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3769 MVNETA_GMAC_INBAND_RESTART_AN |
3770 MVNETA_GMAC_CONFIG_MII_SPEED |
3771 MVNETA_GMAC_CONFIG_GMII_SPEED |
3772 MVNETA_GMAC_AN_SPEED_EN |
22f4bf8a
RK
3773 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3774 MVNETA_GMAC_CONFIG_FLOW_CTRL |
503f9aa9
RK
3775 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3776 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3777 MVNETA_GMAC_AN_DUPLEX_EN);
3778
32699954
RK
3779 /* Even though it might look weird, when we're configured in
3780 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3781 */
3782 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3783
3784 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
22f4bf8a
RK
3785 state->interface == PHY_INTERFACE_MODE_SGMII ||
3786 phy_interface_mode_is_8023z(state->interface))
32699954
RK
3787 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3788
4932a918
RK
3789 if (phylink_test(state->advertising, Pause))
3790 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3791 if (state->pause & MLO_PAUSE_TXRX_MASK)
3792 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3793
503f9aa9
RK
3794 if (!phylink_autoneg_inband(mode)) {
3795 /* Phy or fixed speed */
3796 if (state->duplex)
3797 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3798
da58a931 3799 if (state->speed == SPEED_1000 || state->speed == SPEED_2500)
503f9aa9
RK
3800 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3801 else if (state->speed == SPEED_100)
3802 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
22f4bf8a 3803 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
503f9aa9
RK
3804 /* SGMII mode receives the state from the PHY */
3805 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3806 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3807 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3808 MVNETA_GMAC_FORCE_LINK_PASS)) |
3809 MVNETA_GMAC_INBAND_AN_ENABLE |
3810 MVNETA_GMAC_AN_SPEED_EN |
3811 MVNETA_GMAC_AN_DUPLEX_EN;
22f4bf8a
RK
3812 } else {
3813 /* 802.3z negotiation - only 1000base-X */
3814 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3815 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3816 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3817 MVNETA_GMAC_FORCE_LINK_PASS)) |
3818 MVNETA_GMAC_INBAND_AN_ENABLE |
3819 MVNETA_GMAC_CONFIG_GMII_SPEED |
3820 /* The MAC only supports FD mode */
3821 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4932a918
RK
3822
3823 if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3824 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
503f9aa9 3825 }
c5aff182 3826
503f9aa9
RK
3827 /* Armada 370 documentation says we can only change the port mode
3828 * and in-band enable when the link is down, so force it down
3829 * while making these changes. We also do this for GMAC_CTRL2 */
22f4bf8a
RK
3830 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3831 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
503f9aa9
RK
3832 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3833 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3834 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3835 MVNETA_GMAC_FORCE_LINK_DOWN);
fc548b99 3836 }
503f9aa9 3837
a10c1c81 3838
da58a931
MC
3839 /* When at 2.5G, the link partner can send frames with shortened
3840 * preambles.
3841 */
3842 if (state->speed == SPEED_2500)
3843 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3844
031b922b 3845 if (pp->comphy && pp->phy_interface != state->interface &&
a10c1c81
RK
3846 (state->interface == PHY_INTERFACE_MODE_SGMII ||
3847 state->interface == PHY_INTERFACE_MODE_1000BASEX ||
031b922b
MB
3848 state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3849 pp->phy_interface = state->interface;
3850
3851 WARN_ON(phy_power_off(pp->comphy));
3852 WARN_ON(mvneta_comphy_init(pp));
3853 }
a10c1c81 3854
22f4bf8a
RK
3855 if (new_ctrl0 != gmac_ctrl0)
3856 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
503f9aa9
RK
3857 if (new_ctrl2 != gmac_ctrl2)
3858 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
da58a931
MC
3859 if (new_ctrl4 != gmac_ctrl4)
3860 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
503f9aa9
RK
3861 if (new_clk != gmac_clk)
3862 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3863 if (new_an != gmac_an)
3864 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
32699954
RK
3865
3866 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3867 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3868 MVNETA_GMAC2_PORT_RESET) != 0)
3869 continue;
3870 }
fc548b99 3871}
c5aff182 3872
6d81f451
RK
3873static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3874{
3875 u32 lpi_ctl1;
3876
3877 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3878 if (enable)
3879 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3880 else
3881 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3882 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3883}
3884
44cc27e4
IC
3885static void mvneta_mac_link_down(struct phylink_config *config,
3886 unsigned int mode, phy_interface_t interface)
fc548b99 3887{
44cc27e4 3888 struct net_device *ndev = to_net_dev(config->dev);
fc548b99
RK
3889 struct mvneta_port *pp = netdev_priv(ndev);
3890 u32 val;
3891
503f9aa9
RK
3892 mvneta_port_down(pp);
3893
3894 if (!phylink_autoneg_inband(mode)) {
fc548b99
RK
3895 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3896 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3897 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3898 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3899 }
6d81f451
RK
3900
3901 pp->eee_active = false;
3902 mvneta_set_eee(pp, false);
fc548b99
RK
3903}
3904
44cc27e4 3905static void mvneta_mac_link_up(struct phylink_config *config, unsigned int mode,
c6ab3008 3906 phy_interface_t interface,
503f9aa9 3907 struct phy_device *phy)
fc548b99 3908{
44cc27e4 3909 struct net_device *ndev = to_net_dev(config->dev);
fc548b99
RK
3910 struct mvneta_port *pp = netdev_priv(ndev);
3911 u32 val;
3912
503f9aa9 3913 if (!phylink_autoneg_inband(mode)) {
fc548b99
RK
3914 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3915 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3916 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3917 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
c5aff182
TP
3918 }
3919
fc548b99 3920 mvneta_port_up(pp);
6d81f451
RK
3921
3922 if (phy && pp->eee_enabled) {
3923 pp->eee_active = phy_init_eee(phy, 0) >= 0;
3924 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3925 }
fc548b99
RK
3926}
3927
503f9aa9
RK
3928static const struct phylink_mac_ops mvneta_phylink_ops = {
3929 .validate = mvneta_validate,
d46b7e4f 3930 .mac_pcs_get_state = mvneta_mac_pcs_get_state,
22f4bf8a 3931 .mac_an_restart = mvneta_mac_an_restart,
503f9aa9
RK
3932 .mac_config = mvneta_mac_config,
3933 .mac_link_down = mvneta_mac_link_down,
3934 .mac_link_up = mvneta_mac_link_up,
3935};
c5aff182
TP
3936
3937static int mvneta_mdio_probe(struct mvneta_port *pp)
3938{
82960fff 3939 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
503f9aa9 3940 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
c5aff182 3941
503f9aa9
RK
3942 if (err)
3943 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
c5aff182 3944
503f9aa9 3945 phylink_ethtool_get_wol(pp->phylink, &wol);
82960fff
JZ
3946 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3947
503f9aa9 3948 return err;
c5aff182
TP
3949}
3950
3951static void mvneta_mdio_remove(struct mvneta_port *pp)
3952{
503f9aa9 3953 phylink_disconnect_phy(pp->phylink);
c5aff182
TP
3954}
3955
120cfa50
GC
3956/* Electing a CPU must be done in an atomic way: it should be done
3957 * after or before the removal/insertion of a CPU and this function is
3958 * not reentrant.
3959 */
f8642885
MR
3960static void mvneta_percpu_elect(struct mvneta_port *pp)
3961{
cad5d847
GC
3962 int elected_cpu = 0, max_cpu, cpu, i = 0;
3963
3964 /* Use the cpu associated to the rxq when it is online, in all
3965 * the other cases, use the cpu 0 which can't be offline.
3966 */
3967 if (cpu_online(pp->rxq_def))
3968 elected_cpu = pp->rxq_def;
f8642885 3969
2dcf75e2 3970 max_cpu = num_present_cpus();
f8642885
MR
3971
3972 for_each_online_cpu(cpu) {
2dcf75e2
GC
3973 int rxq_map = 0, txq_map = 0;
3974 int rxq;
3975
3976 for (rxq = 0; rxq < rxq_number; rxq++)
3977 if ((rxq % max_cpu) == cpu)
3978 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3979
cad5d847 3980 if (cpu == elected_cpu)
50bf8cb6
GC
3981 /* Map the default receive queue queue to the
3982 * elected CPU
f8642885 3983 */
2dcf75e2 3984 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
50bf8cb6
GC
3985
3986 /* We update the TX queue map only if we have one
3987 * queue. In this case we associate the TX queue to
3988 * the CPU bound to the default RX queue
3989 */
3990 if (txq_number == 1)
cad5d847 3991 txq_map = (cpu == elected_cpu) ?
50bf8cb6
GC
3992 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3993 else
3994 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3995 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3996
2dcf75e2
GC
3997 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3998
3999 /* Update the interrupt mask on each CPU according the
4000 * new mapping
4001 */
4002 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4003 pp, true);
f8642885 4004 i++;
2dcf75e2 4005
f8642885
MR
4006 }
4007};
4008
84a3f4db 4009static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
f8642885 4010{
84a3f4db
SAS
4011 int other_cpu;
4012 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4013 node_online);
f8642885
MR
4014 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4015
f8642885 4016
84a3f4db
SAS
4017 spin_lock(&pp->lock);
4018 /*
4019 * Configuring the driver for a new CPU while the driver is
4020 * stopping is racy, so just avoid it.
4021 */
4022 if (pp->is_stopped) {
4023 spin_unlock(&pp->lock);
4024 return 0;
4025 }
4026 netif_tx_stop_all_queues(pp->dev);
f8642885 4027
84a3f4db
SAS
4028 /*
4029 * We have to synchronise on tha napi of each CPU except the one
4030 * just being woken up
4031 */
4032 for_each_online_cpu(other_cpu) {
4033 if (other_cpu != cpu) {
4034 struct mvneta_pcpu_port *other_port =
4035 per_cpu_ptr(pp->ports, other_cpu);
4036
4037 napi_synchronize(&other_port->napi);
f8642885 4038 }
84a3f4db 4039 }
f8642885 4040
84a3f4db
SAS
4041 /* Mask all ethernet port interrupts */
4042 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4043 napi_enable(&port->napi);
f8642885 4044
84a3f4db
SAS
4045 /*
4046 * Enable per-CPU interrupts on the CPU that is
4047 * brought up.
4048 */
4049 mvneta_percpu_enable(pp);
2dcf75e2 4050
84a3f4db
SAS
4051 /*
4052 * Enable per-CPU interrupt on the one CPU we care
4053 * about.
4054 */
4055 mvneta_percpu_elect(pp);
2dcf75e2 4056
84a3f4db
SAS
4057 /* Unmask all ethernet port interrupts */
4058 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4059 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4060 MVNETA_CAUSE_PHY_STATUS_CHANGE |
856b2cc5 4061 MVNETA_CAUSE_LINK_CHANGE);
84a3f4db
SAS
4062 netif_tx_start_all_queues(pp->dev);
4063 spin_unlock(&pp->lock);
4064 return 0;
4065}
f8642885 4066
84a3f4db
SAS
4067static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4068{
4069 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4070 node_online);
4071 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
f8642885 4072
84a3f4db
SAS
4073 /*
4074 * Thanks to this lock we are sure that any pending cpu election is
4075 * done.
4076 */
4077 spin_lock(&pp->lock);
4078 /* Mask all ethernet port interrupts */
4079 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4080 spin_unlock(&pp->lock);
f8642885 4081
84a3f4db
SAS
4082 napi_synchronize(&port->napi);
4083 napi_disable(&port->napi);
4084 /* Disable per-CPU interrupts on the CPU that is brought down. */
4085 mvneta_percpu_disable(pp);
4086 return 0;
4087}
4088
4089static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4090{
4091 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4092 node_dead);
4093
4094 /* Check if a new CPU must be elected now this on is down */
4095 spin_lock(&pp->lock);
4096 mvneta_percpu_elect(pp);
4097 spin_unlock(&pp->lock);
4098 /* Unmask all ethernet port interrupts */
4099 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4100 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4101 MVNETA_CAUSE_PHY_STATUS_CHANGE |
856b2cc5 4102 MVNETA_CAUSE_LINK_CHANGE);
84a3f4db
SAS
4103 netif_tx_start_all_queues(pp->dev);
4104 return 0;
f8642885
MR
4105}
4106
c5aff182
TP
4107static int mvneta_open(struct net_device *dev)
4108{
4109 struct mvneta_port *pp = netdev_priv(dev);
6b125d63 4110 int ret;
c5aff182 4111
c5aff182
TP
4112 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4113
4114 ret = mvneta_setup_rxqs(pp);
4115 if (ret)
4116 return ret;
4117
4118 ret = mvneta_setup_txqs(pp);
4119 if (ret)
4120 goto err_cleanup_rxqs;
4121
4122 /* Connect to port interrupt line */
2636ac3c
MW
4123 if (pp->neta_armada3700)
4124 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4125 dev->name, pp);
4126 else
4127 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4128 dev->name, pp->ports);
c5aff182
TP
4129 if (ret) {
4130 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4131 goto err_cleanup_txqs;
4132 }
4133
2636ac3c
MW
4134 if (!pp->neta_armada3700) {
4135 /* Enable per-CPU interrupt on all the CPU to handle our RX
4136 * queue interrupts
4137 */
4138 on_each_cpu(mvneta_percpu_enable, pp, true);
2dcf75e2 4139
2636ac3c
MW
4140 pp->is_stopped = false;
4141 /* Register a CPU notifier to handle the case where our CPU
4142 * might be taken offline.
4143 */
4144 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4145 &pp->node_online);
4146 if (ret)
4147 goto err_free_irq;
84a3f4db 4148
2636ac3c
MW
4149 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4150 &pp->node_dead);
4151 if (ret)
4152 goto err_free_online_hp;
4153 }
f8642885 4154
c5aff182
TP
4155 ret = mvneta_mdio_probe(pp);
4156 if (ret < 0) {
4157 netdev_err(dev, "cannot probe MDIO bus\n");
84a3f4db 4158 goto err_free_dead_hp;
c5aff182
TP
4159 }
4160
4161 mvneta_start_dev(pp);
4162
4163 return 0;
4164
84a3f4db 4165err_free_dead_hp:
2636ac3c
MW
4166 if (!pp->neta_armada3700)
4167 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4168 &pp->node_dead);
84a3f4db 4169err_free_online_hp:
2636ac3c
MW
4170 if (!pp->neta_armada3700)
4171 cpuhp_state_remove_instance_nocalls(online_hpstate,
4172 &pp->node_online);
c5aff182 4173err_free_irq:
2636ac3c
MW
4174 if (pp->neta_armada3700) {
4175 free_irq(pp->dev->irq, pp);
4176 } else {
4177 on_each_cpu(mvneta_percpu_disable, pp, true);
4178 free_percpu_irq(pp->dev->irq, pp->ports);
4179 }
c5aff182
TP
4180err_cleanup_txqs:
4181 mvneta_cleanup_txqs(pp);
4182err_cleanup_rxqs:
4183 mvneta_cleanup_rxqs(pp);
4184 return ret;
4185}
4186
4187/* Stop the port, free port interrupt line */
4188static int mvneta_stop(struct net_device *dev)
4189{
4190 struct mvneta_port *pp = netdev_priv(dev);
4191
2636ac3c
MW
4192 if (!pp->neta_armada3700) {
4193 /* Inform that we are stopping so we don't want to setup the
4194 * driver for new CPUs in the notifiers. The code of the
4195 * notifier for CPU online is protected by the same spinlock,
4196 * so when we get the lock, the notifer work is done.
4197 */
4198 spin_lock(&pp->lock);
4199 pp->is_stopped = true;
4200 spin_unlock(&pp->lock);
1c2722a9 4201
2636ac3c
MW
4202 mvneta_stop_dev(pp);
4203 mvneta_mdio_remove(pp);
84a3f4db 4204
d26aac2d
DC
4205 cpuhp_state_remove_instance_nocalls(online_hpstate,
4206 &pp->node_online);
4207 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4208 &pp->node_dead);
2636ac3c
MW
4209 on_each_cpu(mvneta_percpu_disable, pp, true);
4210 free_percpu_irq(dev->irq, pp->ports);
4211 } else {
4212 mvneta_stop_dev(pp);
4213 mvneta_mdio_remove(pp);
4214 free_irq(dev->irq, pp);
4215 }
4216
c5aff182
TP
4217 mvneta_cleanup_rxqs(pp);
4218 mvneta_cleanup_txqs(pp);
c5aff182
TP
4219
4220 return 0;
4221}
4222
15f59456
TP
4223static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4224{
503f9aa9 4225 struct mvneta_port *pp = netdev_priv(dev);
15f59456 4226
503f9aa9 4227 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
15f59456
TP
4228}
4229
0db51da7
LB
4230static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4231 struct netlink_ext_ack *extack)
4232{
4233 bool need_update, running = netif_running(dev);
4234 struct mvneta_port *pp = netdev_priv(dev);
4235 struct bpf_prog *old_prog;
4236
4237 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4238 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4239 return -EOPNOTSUPP;
79572c98
SA
4240 }
4241
4242 if (pp->bm_priv) {
4243 NL_SET_ERR_MSG_MOD(extack,
4244 "Hardware Buffer Management not supported on XDP");
4245 return -EOPNOTSUPP;
0db51da7
LB
4246 }
4247
4248 need_update = !!pp->xdp_prog != !!prog;
4249 if (running && need_update)
4250 mvneta_stop(dev);
4251
4252 old_prog = xchg(&pp->xdp_prog, prog);
4253 if (old_prog)
4254 bpf_prog_put(old_prog);
4255
4256 if (running && need_update)
4257 return mvneta_open(dev);
4258
4259 return 0;
4260}
4261
4262static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4263{
4264 struct mvneta_port *pp = netdev_priv(dev);
4265
4266 switch (xdp->command) {
4267 case XDP_SETUP_PROG:
4268 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4269 case XDP_QUERY_PROG:
4270 xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0;
4271 return 0;
4272 default:
4273 return -EINVAL;
4274 }
4275}
4276
c5aff182
TP
4277/* Ethtool methods */
4278
013ad40d 4279/* Set link ksettings (phy address, speed) for ethtools */
2dc0d2b4
BX
4280static int
4281mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4282 const struct ethtool_link_ksettings *cmd)
c5aff182 4283{
013ad40d 4284 struct mvneta_port *pp = netdev_priv(ndev);
0c0744fc 4285
503f9aa9
RK
4286 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4287}
0c0744fc 4288
503f9aa9
RK
4289/* Get link ksettings for ethtools */
4290static int
4291mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4292 struct ethtool_link_ksettings *cmd)
4293{
4294 struct mvneta_port *pp = netdev_priv(ndev);
0c0744fc 4295
503f9aa9
RK
4296 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4297}
0c0744fc 4298
503f9aa9
RK
4299static int mvneta_ethtool_nway_reset(struct net_device *dev)
4300{
4301 struct mvneta_port *pp = netdev_priv(dev);
0c0744fc 4302
503f9aa9 4303 return phylink_ethtool_nway_reset(pp->phylink);
c5aff182
TP
4304}
4305
4306/* Set interrupt coalescing for ethtools */
4307static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4308 struct ethtool_coalesce *c)
4309{
4310 struct mvneta_port *pp = netdev_priv(dev);
4311 int queue;
4312
4313 for (queue = 0; queue < rxq_number; queue++) {
4314 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4315 rxq->time_coal = c->rx_coalesce_usecs;
4316 rxq->pkts_coal = c->rx_max_coalesced_frames;
4317 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4318 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4319 }
4320
4321 for (queue = 0; queue < txq_number; queue++) {
4322 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4323 txq->done_pkts_coal = c->tx_max_coalesced_frames;
4324 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4325 }
4326
4327 return 0;
4328}
4329
4330/* get coalescing for ethtools */
4331static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4332 struct ethtool_coalesce *c)
4333{
4334 struct mvneta_port *pp = netdev_priv(dev);
4335
4336 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
4337 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
4338
4339 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
4340 return 0;
4341}
4342
4343
4344static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4345 struct ethtool_drvinfo *drvinfo)
4346{
4347 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4348 sizeof(drvinfo->driver));
4349 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4350 sizeof(drvinfo->version));
4351 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4352 sizeof(drvinfo->bus_info));
4353}
4354
4355
4356static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4357 struct ethtool_ringparam *ring)
4358{
4359 struct mvneta_port *pp = netdev_priv(netdev);
4360
4361 ring->rx_max_pending = MVNETA_MAX_RXD;
4362 ring->tx_max_pending = MVNETA_MAX_TXD;
4363 ring->rx_pending = pp->rx_ring_size;
4364 ring->tx_pending = pp->tx_ring_size;
4365}
4366
4367static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4368 struct ethtool_ringparam *ring)
4369{
4370 struct mvneta_port *pp = netdev_priv(dev);
4371
4372 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4373 return -EINVAL;
4374 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4375 ring->rx_pending : MVNETA_MAX_RXD;
8eef5f97
EG
4376
4377 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4378 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4379 if (pp->tx_ring_size != ring->tx_pending)
4380 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4381 pp->tx_ring_size, ring->tx_pending);
c5aff182
TP
4382
4383 if (netif_running(dev)) {
4384 mvneta_stop(dev);
4385 if (mvneta_open(dev)) {
4386 netdev_err(dev,
4387 "error on opening device after ring param change\n");
4388 return -ENOMEM;
4389 }
4390 }
4391
4392 return 0;
4393}
4394
4932a918
RK
4395static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4396 struct ethtool_pauseparam *pause)
4397{
4398 struct mvneta_port *pp = netdev_priv(dev);
4399
4400 phylink_ethtool_get_pauseparam(pp->phylink, pause);
4401}
4402
4403static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4404 struct ethtool_pauseparam *pause)
4405{
4406 struct mvneta_port *pp = netdev_priv(dev);
4407
4408 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4409}
4410
9b0cdefa
RK
4411static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4412 u8 *data)
4413{
4414 if (sset == ETH_SS_STATS) {
4415 int i;
4416
4417 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4418 memcpy(data + i * ETH_GSTRING_LEN,
4419 mvneta_statistics[i].name, ETH_GSTRING_LEN);
4420 }
4421}
4422
4423static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4424{
4425 const struct mvneta_statistic *s;
4426 void __iomem *base = pp->base;
6d81f451
RK
4427 u32 high, low;
4428 u64 val;
9b0cdefa
RK
4429 int i;
4430
4431 for (i = 0, s = mvneta_statistics;
4432 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4433 s++, i++) {
6d81f451
RK
4434 val = 0;
4435
9b0cdefa
RK
4436 switch (s->type) {
4437 case T_REG_32:
4438 val = readl_relaxed(base + s->offset);
4439 break;
4440 case T_REG_64:
4441 /* Docs say to read low 32-bit then high */
4442 low = readl_relaxed(base + s->offset);
4443 high = readl_relaxed(base + s->offset + 4);
6d81f451
RK
4444 val = (u64)high << 32 | low;
4445 break;
4446 case T_SW:
4447 switch (s->offset) {
4448 case ETHTOOL_STAT_EEE_WAKEUP:
4449 val = phylink_get_eee_err(pp->phylink);
4450 break;
17a96da6
GC
4451 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4452 val = pp->rxqs[0].skb_alloc_err;
4453 break;
4454 case ETHTOOL_STAT_REFILL_ERR:
4455 val = pp->rxqs[0].refill_err;
4456 break;
6d81f451 4457 }
9b0cdefa
RK
4458 break;
4459 }
6d81f451
RK
4460
4461 pp->ethtool_stats[i] += val;
9b0cdefa
RK
4462 }
4463}
4464
4465static void mvneta_ethtool_get_stats(struct net_device *dev,
4466 struct ethtool_stats *stats, u64 *data)
4467{
4468 struct mvneta_port *pp = netdev_priv(dev);
4469 int i;
4470
4471 mvneta_ethtool_update_stats(pp);
4472
4473 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4474 *data++ = pp->ethtool_stats[i];
4475}
4476
4477static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4478{
4479 if (sset == ETH_SS_STATS)
4480 return ARRAY_SIZE(mvneta_statistics);
4481 return -EOPNOTSUPP;
4482}
4483
9a401dea
GC
4484static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4485{
4486 return MVNETA_RSS_LU_TABLE_SIZE;
4487}
4488
4489static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4490 struct ethtool_rxnfc *info,
4491 u32 *rules __always_unused)
4492{
4493 switch (info->cmd) {
4494 case ETHTOOL_GRXRINGS:
4495 info->data = rxq_number;
4496 return 0;
4497 case ETHTOOL_GRXFH:
4498 return -EOPNOTSUPP;
4499 default:
4500 return -EOPNOTSUPP;
4501 }
4502}
4503
4504static int mvneta_config_rss(struct mvneta_port *pp)
4505{
4506 int cpu;
4507 u32 val;
4508
4509 netif_tx_stop_all_queues(pp->dev);
4510
6b125d63 4511 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
9a401dea 4512
0f5c6c30
JZ
4513 if (!pp->neta_armada3700) {
4514 /* We have to synchronise on the napi of each CPU */
4515 for_each_online_cpu(cpu) {
4516 struct mvneta_pcpu_port *pcpu_port =
4517 per_cpu_ptr(pp->ports, cpu);
9a401dea 4518
0f5c6c30
JZ
4519 napi_synchronize(&pcpu_port->napi);
4520 napi_disable(&pcpu_port->napi);
4521 }
4522 } else {
4523 napi_synchronize(&pp->napi);
4524 napi_disable(&pp->napi);
9a401dea
GC
4525 }
4526
4527 pp->rxq_def = pp->indir[0];
4528
4529 /* Update unicast mapping */
4530 mvneta_set_rx_mode(pp->dev);
4531
4532 /* Update val of portCfg register accordingly with all RxQueue types */
4533 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4534 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4535
4536 /* Update the elected CPU matching the new rxq_def */
120cfa50 4537 spin_lock(&pp->lock);
9a401dea 4538 mvneta_percpu_elect(pp);
120cfa50 4539 spin_unlock(&pp->lock);
9a401dea 4540
0f5c6c30
JZ
4541 if (!pp->neta_armada3700) {
4542 /* We have to synchronise on the napi of each CPU */
4543 for_each_online_cpu(cpu) {
4544 struct mvneta_pcpu_port *pcpu_port =
4545 per_cpu_ptr(pp->ports, cpu);
9a401dea 4546
0f5c6c30
JZ
4547 napi_enable(&pcpu_port->napi);
4548 }
4549 } else {
4550 napi_enable(&pp->napi);
9a401dea
GC
4551 }
4552
4553 netif_tx_start_all_queues(pp->dev);
4554
4555 return 0;
4556}
4557
4558static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4559 const u8 *key, const u8 hfunc)
4560{
4561 struct mvneta_port *pp = netdev_priv(dev);
2636ac3c
MW
4562
4563 /* Current code for Armada 3700 doesn't support RSS features yet */
4564 if (pp->neta_armada3700)
4565 return -EOPNOTSUPP;
4566
9a401dea
GC
4567 /* We require at least one supported parameter to be changed
4568 * and no change in any of the unsupported parameters
4569 */
4570 if (key ||
4571 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4572 return -EOPNOTSUPP;
4573
4574 if (!indir)
4575 return 0;
4576
4577 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4578
4579 return mvneta_config_rss(pp);
4580}
4581
4582static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4583 u8 *hfunc)
4584{
4585 struct mvneta_port *pp = netdev_priv(dev);
4586
2636ac3c
MW
4587 /* Current code for Armada 3700 doesn't support RSS features yet */
4588 if (pp->neta_armada3700)
4589 return -EOPNOTSUPP;
4590
9a401dea
GC
4591 if (hfunc)
4592 *hfunc = ETH_RSS_HASH_TOP;
4593
4594 if (!indir)
4595 return 0;
4596
4597 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4598
4599 return 0;
4600}
4601
b60a00f9
JH
4602static void mvneta_ethtool_get_wol(struct net_device *dev,
4603 struct ethtool_wolinfo *wol)
4604{
503f9aa9 4605 struct mvneta_port *pp = netdev_priv(dev);
b60a00f9 4606
503f9aa9 4607 phylink_ethtool_get_wol(pp->phylink, wol);
b60a00f9
JH
4608}
4609
4610static int mvneta_ethtool_set_wol(struct net_device *dev,
4611 struct ethtool_wolinfo *wol)
4612{
503f9aa9 4613 struct mvneta_port *pp = netdev_priv(dev);
82960fff
JZ
4614 int ret;
4615
503f9aa9 4616 ret = phylink_ethtool_set_wol(pp->phylink, wol);
82960fff
JZ
4617 if (!ret)
4618 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4619
4620 return ret;
b60a00f9
JH
4621}
4622
6d81f451
RK
4623static int mvneta_ethtool_get_eee(struct net_device *dev,
4624 struct ethtool_eee *eee)
4625{
4626 struct mvneta_port *pp = netdev_priv(dev);
4627 u32 lpi_ctl0;
4628
4629 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4630
4631 eee->eee_enabled = pp->eee_enabled;
4632 eee->eee_active = pp->eee_active;
4633 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4634 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4635
4636 return phylink_ethtool_get_eee(pp->phylink, eee);
4637}
4638
4639static int mvneta_ethtool_set_eee(struct net_device *dev,
4640 struct ethtool_eee *eee)
4641{
4642 struct mvneta_port *pp = netdev_priv(dev);
4643 u32 lpi_ctl0;
4644
4645 /* The Armada 37x documents do not give limits for this other than
4646 * it being an 8-bit register. */
e4a3e9ff 4647 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
6d81f451
RK
4648 return -EINVAL;
4649
4650 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4651 lpi_ctl0 &= ~(0xff << 8);
4652 lpi_ctl0 |= eee->tx_lpi_timer << 8;
4653 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4654
4655 pp->eee_enabled = eee->eee_enabled;
4656 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4657
4658 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4659
4660 return phylink_ethtool_set_eee(pp->phylink, eee);
4661}
4662
c5aff182
TP
4663static const struct net_device_ops mvneta_netdev_ops = {
4664 .ndo_open = mvneta_open,
4665 .ndo_stop = mvneta_stop,
4666 .ndo_start_xmit = mvneta_tx,
4667 .ndo_set_rx_mode = mvneta_set_rx_mode,
4668 .ndo_set_mac_address = mvneta_set_mac_addr,
4669 .ndo_change_mtu = mvneta_change_mtu,
b65657fc 4670 .ndo_fix_features = mvneta_fix_features,
c5aff182 4671 .ndo_get_stats64 = mvneta_get_stats64,
15f59456 4672 .ndo_do_ioctl = mvneta_ioctl,
0db51da7 4673 .ndo_bpf = mvneta_xdp,
b0a43db9 4674 .ndo_xdp_xmit = mvneta_xdp_xmit,
c5aff182
TP
4675};
4676
4581be42 4677static const struct ethtool_ops mvneta_eth_tool_ops = {
503f9aa9 4678 .nway_reset = mvneta_ethtool_nway_reset,
c5aff182 4679 .get_link = ethtool_op_get_link,
c5aff182
TP
4680 .set_coalesce = mvneta_ethtool_set_coalesce,
4681 .get_coalesce = mvneta_ethtool_get_coalesce,
4682 .get_drvinfo = mvneta_ethtool_get_drvinfo,
4683 .get_ringparam = mvneta_ethtool_get_ringparam,
4684 .set_ringparam = mvneta_ethtool_set_ringparam,
4932a918
RK
4685 .get_pauseparam = mvneta_ethtool_get_pauseparam,
4686 .set_pauseparam = mvneta_ethtool_set_pauseparam,
9b0cdefa
RK
4687 .get_strings = mvneta_ethtool_get_strings,
4688 .get_ethtool_stats = mvneta_ethtool_get_stats,
4689 .get_sset_count = mvneta_ethtool_get_sset_count,
9a401dea
GC
4690 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4691 .get_rxnfc = mvneta_ethtool_get_rxnfc,
4692 .get_rxfh = mvneta_ethtool_get_rxfh,
4693 .set_rxfh = mvneta_ethtool_set_rxfh,
503f9aa9 4694 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
013ad40d 4695 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
b60a00f9
JH
4696 .get_wol = mvneta_ethtool_get_wol,
4697 .set_wol = mvneta_ethtool_set_wol,
6d81f451
RK
4698 .get_eee = mvneta_ethtool_get_eee,
4699 .set_eee = mvneta_ethtool_set_eee,
c5aff182
TP
4700};
4701
4702/* Initialize hw */
9672850b 4703static int mvneta_init(struct device *dev, struct mvneta_port *pp)
c5aff182
TP
4704{
4705 int queue;
4706
4707 /* Disable port */
4708 mvneta_port_disable(pp);
4709
4710 /* Set port default values */
4711 mvneta_defaults_set(pp);
4712
5d6312ed 4713 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
c5aff182
TP
4714 if (!pp->txqs)
4715 return -ENOMEM;
4716
4717 /* Initialize TX descriptor rings */
4718 for (queue = 0; queue < txq_number; queue++) {
4719 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4720 txq->id = queue;
4721 txq->size = pp->tx_ring_size;
4722 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4723 }
4724
5d6312ed 4725 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
9672850b 4726 if (!pp->rxqs)
c5aff182 4727 return -ENOMEM;
c5aff182
TP
4728
4729 /* Create Rx descriptor rings */
4730 for (queue = 0; queue < rxq_number; queue++) {
4731 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4732 rxq->id = queue;
4733 rxq->size = pp->rx_ring_size;
4734 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4735 rxq->time_coal = MVNETA_RX_COAL_USEC;
29110630
ME
4736 rxq->buf_virt_addr
4737 = devm_kmalloc_array(pp->dev->dev.parent,
4738 rxq->size,
4739 sizeof(*rxq->buf_virt_addr),
4740 GFP_KERNEL);
f88bee1c
GC
4741 if (!rxq->buf_virt_addr)
4742 return -ENOMEM;
c5aff182
TP
4743 }
4744
4745 return 0;
4746}
4747
c5aff182 4748/* platform glue : initialize decoding windows */
03ce758e
GK
4749static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4750 const struct mbus_dram_target_info *dram)
c5aff182
TP
4751{
4752 u32 win_enable;
4753 u32 win_protect;
4754 int i;
4755
4756 for (i = 0; i < 6; i++) {
4757 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4758 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4759
4760 if (i < 4)
4761 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4762 }
4763
4764 win_enable = 0x3f;
4765 win_protect = 0;
4766
2636ac3c
MW
4767 if (dram) {
4768 for (i = 0; i < dram->num_cs; i++) {
4769 const struct mbus_dram_window *cs = dram->cs + i;
4770
4771 mvreg_write(pp, MVNETA_WIN_BASE(i),
4772 (cs->base & 0xffff0000) |
4773 (cs->mbus_attr << 8) |
4774 dram->mbus_dram_target_id);
c5aff182 4775
2636ac3c
MW
4776 mvreg_write(pp, MVNETA_WIN_SIZE(i),
4777 (cs->size - 1) & 0xffff0000);
c5aff182 4778
2636ac3c
MW
4779 win_enable &= ~(1 << i);
4780 win_protect |= 3 << (2 * i);
4781 }
4782 } else {
4783 /* For Armada3700 open default 4GB Mbus window, leaving
4784 * arbitration of target/attribute to a different layer
4785 * of configuration.
4786 */
4787 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4788 win_enable &= ~BIT(0);
4789 win_protect = 3;
c5aff182
TP
4790 }
4791
4792 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
db6ba9a5 4793 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
c5aff182
TP
4794}
4795
4796/* Power up the port */
3f1dd4bc 4797static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
c5aff182 4798{
c5aff182
TP
4799 /* MAC Cause register should be cleared */
4800 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4801
32699954 4802 if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
3f1dd4bc 4803 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
22f4bf8a 4804 else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
a10c1c81 4805 phy_interface_mode_is_8023z(phy_mode))
3f1dd4bc 4806 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
32699954 4807 else if (!phy_interface_mode_is_rgmii(phy_mode))
3f1dd4bc 4808 return -EINVAL;
3f1dd4bc
TP
4809
4810 return 0;
c5aff182
TP
4811}
4812
4813/* Device initialization routine */
03ce758e 4814static int mvneta_probe(struct platform_device *pdev)
c5aff182 4815{
c5aff182 4816 struct device_node *dn = pdev->dev.of_node;
dc35a10f 4817 struct device_node *bm_node;
c5aff182
TP
4818 struct mvneta_port *pp;
4819 struct net_device *dev;
503f9aa9 4820 struct phylink *phylink;
a10c1c81 4821 struct phy *comphy;
8cc3e439
TP
4822 const char *dt_mac_addr;
4823 char hw_mac_addr[ETH_ALEN];
0c65b2b9 4824 phy_interface_t phy_mode;
8cc3e439 4825 const char *mac_from;
9110ee07 4826 int tx_csum_limit;
c5aff182 4827 int err;
12bb03b4 4828 int cpu;
c5aff182 4829
a3ddd94f
RP
4830 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
4831 txq_number, rxq_number);
c5aff182
TP
4832 if (!dev)
4833 return -ENOMEM;
4834
4835 dev->irq = irq_of_parse_and_map(dn, 0);
a3ddd94f
RP
4836 if (dev->irq == 0)
4837 return -EINVAL;
c5aff182 4838
0c65b2b9
AL
4839 err = of_get_phy_mode(dn, &phy_mode);
4840 if (err) {
c5aff182 4841 dev_err(&pdev->dev, "incorrect phy-mode\n");
503f9aa9
RK
4842 goto err_free_irq;
4843 }
4844
a10c1c81
RK
4845 comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
4846 if (comphy == ERR_PTR(-EPROBE_DEFER)) {
4847 err = -EPROBE_DEFER;
4848 goto err_free_irq;
4849 } else if (IS_ERR(comphy)) {
4850 comphy = NULL;
4851 }
4852
44cc27e4
IC
4853 pp = netdev_priv(dev);
4854 spin_lock_init(&pp->lock);
4855
4856 pp->phylink_config.dev = &dev->dev;
4857 pp->phylink_config.type = PHYLINK_NETDEV;
4858
4859 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
4860 phy_mode, &mvneta_phylink_ops);
503f9aa9
RK
4861 if (IS_ERR(phylink)) {
4862 err = PTR_ERR(phylink);
4863 goto err_free_irq;
c5aff182
TP
4864 }
4865
c5aff182
TP
4866 dev->tx_queue_len = MVNETA_MAX_TXD;
4867 dev->watchdog_timeo = 5 * HZ;
4868 dev->netdev_ops = &mvneta_netdev_ops;
4869
7ad24ea4 4870 dev->ethtool_ops = &mvneta_eth_tool_ops;
c5aff182 4871
503f9aa9 4872 pp->phylink = phylink;
a10c1c81 4873 pp->comphy = comphy;
c5aff182 4874 pp->phy_interface = phy_mode;
503f9aa9 4875 pp->dn = dn;
c5aff182 4876
90b74c01 4877 pp->rxq_def = rxq_def;
9a401dea
GC
4878 pp->indir[0] = rxq_def;
4879
2636ac3c
MW
4880 /* Get special SoC configurations */
4881 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4882 pp->neta_armada3700 = true;
4883
2804ba4e
JZ
4884 pp->clk = devm_clk_get(&pdev->dev, "core");
4885 if (IS_ERR(pp->clk))
4886 pp->clk = devm_clk_get(&pdev->dev, NULL);
189dd626
TP
4887 if (IS_ERR(pp->clk)) {
4888 err = PTR_ERR(pp->clk);
503f9aa9 4889 goto err_free_phylink;
189dd626
TP
4890 }
4891
4892 clk_prepare_enable(pp->clk);
4893
15cc4a4a
JZ
4894 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4895 if (!IS_ERR(pp->clk_bus))
4896 clk_prepare_enable(pp->clk_bus);
4897
00c33afb 4898 pp->base = devm_platform_ioremap_resource(pdev, 0);
c3f0dd38
TP
4899 if (IS_ERR(pp->base)) {
4900 err = PTR_ERR(pp->base);
5445eaf3
APR
4901 goto err_clk;
4902 }
4903
12bb03b4
MR
4904 /* Alloc per-cpu port structure */
4905 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4906 if (!pp->ports) {
4907 err = -ENOMEM;
4908 goto err_clk;
4909 }
4910
74c41b04 4911 /* Alloc per-cpu stats */
1c213bd2 4912 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
74c41b04 4913 if (!pp->stats) {
4914 err = -ENOMEM;
12bb03b4 4915 goto err_free_ports;
74c41b04 4916 }
4917
8cc3e439 4918 dt_mac_addr = of_get_mac_address(dn);
a51645f7 4919 if (!IS_ERR(dt_mac_addr)) {
8cc3e439 4920 mac_from = "device tree";
2d2924af 4921 ether_addr_copy(dev->dev_addr, dt_mac_addr);
8cc3e439
TP
4922 } else {
4923 mvneta_get_mac_addr(pp, hw_mac_addr);
4924 if (is_valid_ether_addr(hw_mac_addr)) {
4925 mac_from = "hardware";
4926 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4927 } else {
4928 mac_from = "random";
4929 eth_hw_addr_random(dev);
4930 }
4931 }
4932
9110ee07
MW
4933 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4934 if (tx_csum_limit < 0 ||
4935 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4936 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4937 dev_info(&pdev->dev,
4938 "Wrong TX csum limit in DT, set to %dB\n",
4939 MVNETA_TX_CSUM_DEF_SIZE);
4940 }
4941 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4942 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4943 } else {
4944 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4945 }
4946
4947 pp->tx_csum_limit = tx_csum_limit;
b65657fc 4948
9768b45c 4949 pp->dram_target_info = mv_mbus_dram_info();
2636ac3c
MW
4950 /* Armada3700 requires setting default configuration of Mbus
4951 * windows, however without using filled mbus_dram_target_info
4952 * structure.
4953 */
9768b45c
JL
4954 if (pp->dram_target_info || pp->neta_armada3700)
4955 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
dc35a10f 4956
c5aff182
TP
4957 pp->tx_ring_size = MVNETA_MAX_TXD;
4958 pp->rx_ring_size = MVNETA_MAX_RXD;
4959
4960 pp->dev = dev;
4961 SET_NETDEV_DEV(dev, &pdev->dev);
4962
dc35a10f
MW
4963 pp->id = global_port_id++;
4964
4965 /* Obtain access to BM resources if enabled and already initialized */
4966 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
965cbbec
GC
4967 if (bm_node) {
4968 pp->bm_priv = mvneta_bm_get(bm_node);
4969 if (pp->bm_priv) {
4970 err = mvneta_bm_port_init(pdev, pp);
4971 if (err < 0) {
4972 dev_info(&pdev->dev,
4973 "use SW buffer management\n");
4974 mvneta_bm_put(pp->bm_priv);
4975 pp->bm_priv = NULL;
4976 }
dc35a10f 4977 }
562e2f46
YK
4978 /* Set RX packet offset correction for platforms, whose
4979 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4980 * platforms and 0B for 32-bit ones.
4981 */
4982 pp->rx_offset_correction = max(0,
4983 NET_SKB_PAD -
4984 MVNETA_RX_PKT_OFFSET_CORRECTION);
dc35a10f 4985 }
d4e4da00 4986 of_node_put(bm_node);
dc35a10f 4987
44efc78d
LB
4988 /* sw buffer management */
4989 if (!pp->bm_priv)
4990 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
4991
9672850b
EG
4992 err = mvneta_init(&pdev->dev, pp);
4993 if (err < 0)
dc35a10f 4994 goto err_netdev;
3f1dd4bc
TP
4995
4996 err = mvneta_port_power_up(pp, phy_mode);
4997 if (err < 0) {
4998 dev_err(&pdev->dev, "can't power up port\n");
dc35a10f 4999 goto err_netdev;
3f1dd4bc 5000 }
c5aff182 5001
2636ac3c
MW
5002 /* Armada3700 network controller does not support per-cpu
5003 * operation, so only single NAPI should be initialized.
5004 */
5005 if (pp->neta_armada3700) {
5006 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5007 } else {
5008 for_each_present_cpu(cpu) {
5009 struct mvneta_pcpu_port *port =
5010 per_cpu_ptr(pp->ports, cpu);
12bb03b4 5011
2636ac3c
MW
5012 netif_napi_add(dev, &port->napi, mvneta_poll,
5013 NAPI_POLL_WEIGHT);
5014 port->pp = pp;
5015 }
12bb03b4 5016 }
c5aff182 5017
7772988a
JZ
5018 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5019 NETIF_F_TSO | NETIF_F_RXCSUM;
01ef26ca
EG
5020 dev->hw_features |= dev->features;
5021 dev->vlan_features |= dev->features;
97db8afa 5022 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
8eef5f97 5023 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
b50b72de 5024
5777987e
JW
5025 /* MTU range: 68 - 9676 */
5026 dev->min_mtu = ETH_MIN_MTU;
5027 /* 9676 == 9700 - 20 and rounding to 8 */
5028 dev->max_mtu = 9676;
5029
c5aff182
TP
5030 err = register_netdev(dev);
5031 if (err < 0) {
5032 dev_err(&pdev->dev, "failed to register\n");
d484e06e 5033 goto err_netdev;
c5aff182
TP
5034 }
5035
8cc3e439
TP
5036 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5037 dev->dev_addr);
c5aff182
TP
5038
5039 platform_set_drvdata(pdev, pp->dev);
5040
5041 return 0;
5042
dc35a10f 5043err_netdev:
dc35a10f
MW
5044 if (pp->bm_priv) {
5045 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5046 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5047 1 << pp->id);
965cbbec 5048 mvneta_bm_put(pp->bm_priv);
dc35a10f 5049 }
74c41b04 5050 free_percpu(pp->stats);
12bb03b4
MR
5051err_free_ports:
5052 free_percpu(pp->ports);
5445eaf3 5053err_clk:
15cc4a4a 5054 clk_disable_unprepare(pp->clk_bus);
5445eaf3 5055 clk_disable_unprepare(pp->clk);
503f9aa9
RK
5056err_free_phylink:
5057 if (pp->phylink)
5058 phylink_destroy(pp->phylink);
c5aff182
TP
5059err_free_irq:
5060 irq_dispose_mapping(dev->irq);
c5aff182
TP
5061 return err;
5062}
5063
5064/* Device removal routine */
03ce758e 5065static int mvneta_remove(struct platform_device *pdev)
c5aff182
TP
5066{
5067 struct net_device *dev = platform_get_drvdata(pdev);
5068 struct mvneta_port *pp = netdev_priv(dev);
5069
5070 unregister_netdev(dev);
15cc4a4a 5071 clk_disable_unprepare(pp->clk_bus);
189dd626 5072 clk_disable_unprepare(pp->clk);
12bb03b4 5073 free_percpu(pp->ports);
74c41b04 5074 free_percpu(pp->stats);
c5aff182 5075 irq_dispose_mapping(dev->irq);
503f9aa9 5076 phylink_destroy(pp->phylink);
c5aff182 5077
dc35a10f
MW
5078 if (pp->bm_priv) {
5079 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5080 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5081 1 << pp->id);
965cbbec 5082 mvneta_bm_put(pp->bm_priv);
dc35a10f
MW
5083 }
5084
c5aff182
TP
5085 return 0;
5086}
5087
9768b45c
JL
5088#ifdef CONFIG_PM_SLEEP
5089static int mvneta_suspend(struct device *device)
5090{
1799cdd2 5091 int queue;
9768b45c
JL
5092 struct net_device *dev = dev_get_drvdata(device);
5093 struct mvneta_port *pp = netdev_priv(dev);
5094
1799cdd2
JZ
5095 if (!netif_running(dev))
5096 goto clean_exit;
5097
5098 if (!pp->neta_armada3700) {
5099 spin_lock(&pp->lock);
5100 pp->is_stopped = true;
5101 spin_unlock(&pp->lock);
5102
5103 cpuhp_state_remove_instance_nocalls(online_hpstate,
5104 &pp->node_online);
5105 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5106 &pp->node_dead);
5107 }
5108
3b8bc674 5109 rtnl_lock();
1799cdd2 5110 mvneta_stop_dev(pp);
3b8bc674 5111 rtnl_unlock();
1799cdd2
JZ
5112
5113 for (queue = 0; queue < rxq_number; queue++) {
5114 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5115
5116 mvneta_rxq_drop_pkts(pp, rxq);
5117 }
5118
5119 for (queue = 0; queue < txq_number; queue++) {
5120 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5121
5122 mvneta_txq_hw_deinit(pp, txq);
5123 }
5124
5125clean_exit:
9768b45c
JL
5126 netif_device_detach(dev);
5127 clk_disable_unprepare(pp->clk_bus);
5128 clk_disable_unprepare(pp->clk);
1799cdd2 5129
9768b45c
JL
5130 return 0;
5131}
5132
5133static int mvneta_resume(struct device *device)
5134{
5135 struct platform_device *pdev = to_platform_device(device);
5136 struct net_device *dev = dev_get_drvdata(device);
5137 struct mvneta_port *pp = netdev_priv(dev);
1799cdd2 5138 int err, queue;
9768b45c
JL
5139
5140 clk_prepare_enable(pp->clk);
5141 if (!IS_ERR(pp->clk_bus))
5142 clk_prepare_enable(pp->clk_bus);
5143 if (pp->dram_target_info || pp->neta_armada3700)
5144 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5145 if (pp->bm_priv) {
5146 err = mvneta_bm_port_init(pdev, pp);
5147 if (err < 0) {
5148 dev_info(&pdev->dev, "use SW buffer management\n");
44efc78d 5149 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
9768b45c
JL
5150 pp->bm_priv = NULL;
5151 }
5152 }
5153 mvneta_defaults_set(pp);
5154 err = mvneta_port_power_up(pp, pp->phy_interface);
5155 if (err < 0) {
5156 dev_err(device, "can't power up port\n");
5157 return err;
5158 }
5159
9768b45c 5160 netif_device_attach(dev);
1799cdd2
JZ
5161
5162 if (!netif_running(dev))
5163 return 0;
5164
5165 for (queue = 0; queue < rxq_number; queue++) {
5166 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5167
5168 rxq->next_desc_to_proc = 0;
5169 mvneta_rxq_hw_init(pp, rxq);
5170 }
5171
5172 for (queue = 0; queue < txq_number; queue++) {
5173 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5174
5175 txq->next_desc_to_proc = 0;
5176 mvneta_txq_hw_init(pp, txq);
d6956ac8 5177 }
1799cdd2
JZ
5178
5179 if (!pp->neta_armada3700) {
5180 spin_lock(&pp->lock);
5181 pp->is_stopped = false;
5182 spin_unlock(&pp->lock);
5183 cpuhp_state_add_instance_nocalls(online_hpstate,
5184 &pp->node_online);
5185 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5186 &pp->node_dead);
5187 }
5188
5189 rtnl_lock();
5190 mvneta_start_dev(pp);
3b8bc674 5191 rtnl_unlock();
1799cdd2 5192 mvneta_set_rx_mode(dev);
d6956ac8 5193
9768b45c
JL
5194 return 0;
5195}
5196#endif
5197
5198static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5199
c5aff182
TP
5200static const struct of_device_id mvneta_match[] = {
5201 { .compatible = "marvell,armada-370-neta" },
f522a975 5202 { .compatible = "marvell,armada-xp-neta" },
2636ac3c 5203 { .compatible = "marvell,armada-3700-neta" },
c5aff182
TP
5204 { }
5205};
5206MODULE_DEVICE_TABLE(of, mvneta_match);
5207
5208static struct platform_driver mvneta_driver = {
5209 .probe = mvneta_probe,
03ce758e 5210 .remove = mvneta_remove,
c5aff182
TP
5211 .driver = {
5212 .name = MVNETA_DRIVER_NAME,
5213 .of_match_table = mvneta_match,
9768b45c 5214 .pm = &mvneta_pm_ops,
c5aff182
TP
5215 },
5216};
5217
84a3f4db
SAS
5218static int __init mvneta_driver_init(void)
5219{
5220 int ret;
5221
5222 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
5223 mvneta_cpu_online,
5224 mvneta_cpu_down_prepare);
5225 if (ret < 0)
5226 goto out;
5227 online_hpstate = ret;
5228 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5229 NULL, mvneta_cpu_dead);
5230 if (ret)
5231 goto err_dead;
5232
5233 ret = platform_driver_register(&mvneta_driver);
5234 if (ret)
5235 goto err;
5236 return 0;
5237
5238err:
5239 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5240err_dead:
5241 cpuhp_remove_multi_state(online_hpstate);
5242out:
5243 return ret;
5244}
5245module_init(mvneta_driver_init);
5246
5247static void __exit mvneta_driver_exit(void)
5248{
5249 platform_driver_unregister(&mvneta_driver);
5250 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5251 cpuhp_remove_multi_state(online_hpstate);
5252}
5253module_exit(mvneta_driver_exit);
c5aff182
TP
5254
5255MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5256MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5257MODULE_LICENSE("GPL");
5258
d3757ba4
JP
5259module_param(rxq_number, int, 0444);
5260module_param(txq_number, int, 0444);
c5aff182 5261
d3757ba4
JP
5262module_param(rxq_def, int, 0444);
5263module_param(rx_copybreak, int, 0644);