Merge tag 'iwlwifi-next-for-kalle-2016-03-09_2' of https://git.kernel.org/pub/scm...
[linux-2.6-block.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_ptp.c
CommitLineData
3a6a4eda
JK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
a9763f3c 4 Copyright(c) 1999 - 2015 Intel Corporation.
3a6a4eda
JK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
b89aae71 23 Linux NICS <linux.nics@intel.com>
3a6a4eda
JK
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28#include "ixgbe.h"
1d1a79b5 29#include <linux/ptp_classify.h>
a9763f3c 30#include <linux/clocksource.h>
3a6a4eda
JK
31
32/*
33 * The 82599 and the X540 do not have true 64bit nanosecond scale
34 * counter registers. Instead, SYSTIME is defined by a fixed point
35 * system which allows the user to define the scale counter increment
36 * value at every level change of the oscillator driving the SYSTIME
37 * value. For both devices the TIMINCA:IV field defines this
38 * increment. On the X540 device, 31 bits are provided. However on the
39 * 82599 only provides 24 bits. The time unit is determined by the
40 * clock frequency of the oscillator in combination with the TIMINCA
41 * register. When these devices link at 10Gb the oscillator has a
42 * period of 6.4ns. In order to convert the scale counter into
43 * nanoseconds the cyclecounter and timecounter structures are
44 * used. The SYSTIME registers need to be converted to ns values by use
45 * of only a right shift (division by power of 2). The following math
46 * determines the largest incvalue that will fit into the available
47 * bits in the TIMINCA register.
48 *
49 * PeriodWidth: Number of bits to store the clock period
50 * MaxWidth: The maximum width value of the TIMINCA register
51 * Period: The clock period for the oscillator
52 * round(): discard the fractional portion of the calculation
53 *
54 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
55 *
56 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
57 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
58 *
59 * The period also changes based on the link speed:
60 * At 10Gb link or no link, the period remains the same.
61 * At 1Gb link, the period is multiplied by 10. (64ns)
62 * At 100Mb link, the period is multiplied by 100. (640ns)
63 *
64 * The calculated value allows us to right shift the SYSTIME register
65 * value in order to quickly convert it into a nanosecond clock,
66 * while allowing for the maximum possible adjustment value.
67 *
68 * These diagrams are only for the 10Gb link period
69 *
70 * SYSTIMEH SYSTIMEL
71 * +--------------+ +--------------+
72 * X540 | 32 | | 1 | 3 | 28 |
73 * *--------------+ +--------------+
74 * \________ 36 bits ______/ fract
75 *
76 * +--------------+ +--------------+
77 * 82599 | 32 | | 8 | 3 | 21 |
78 * *--------------+ +--------------+
79 * \________ 43 bits ______/ fract
80 *
81 * The 36 bit X540 SYSTIME overflows every
82 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
83 *
84 * The 43 bit 82599 SYSTIME overflows every
85 * 2^43 * 10^-9 / 3600 = 2.4 hours
86 */
87#define IXGBE_INCVAL_10GB 0x66666666
88#define IXGBE_INCVAL_1GB 0x40000000
89#define IXGBE_INCVAL_100 0x50000000
90
91#define IXGBE_INCVAL_SHIFT_10GB 28
92#define IXGBE_INCVAL_SHIFT_1GB 24
93#define IXGBE_INCVAL_SHIFT_100 21
94
95#define IXGBE_INCVAL_SHIFT_82599 7
96#define IXGBE_INCPER_SHIFT_82599 24
3a6a4eda
JK
97
98#define IXGBE_OVERFLOW_PERIOD (HZ * 30)
891dc082 99#define IXGBE_PTP_TX_TIMEOUT (HZ * 15)
3a6a4eda 100
a5a0fc04
JK
101/* half of a one second clock period, for use with PPS signal. We have to use
102 * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in
103 * order to force at least 64bits of precision for shifting
104 */
105#define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL
681ae1ad 106
a9763f3c
MR
107/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
108 * which contain measurements of seconds and nanoseconds respectively. This
109 * matches the standard linux representation of time in the kernel. In addition,
110 * the X550 also has a SYSTIMER register which represents residue, or
111 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
112 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
113 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
114 * high bit representing whether the adjustent is positive or negative. Every
115 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
116 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
117 * X550's clock for purposes of SYSTIME generation is constant and not dependent
118 * on the link speed.
119 *
120 * SYSTIMEH SYSTIMEL SYSTIMER
121 * +--------------+ +--------------+ +-------------+
122 * X550 | 32 | | 32 | | 32 |
123 * *--------------+ +--------------+ +-------------+
124 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
125 *
126 * This results in a full 96 bits to represent the clock, with 32 bits for
127 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
128 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
129 * underflow of adjustments.
130 *
131 * The 32 bits of seconds for the X550 overflows every
132 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
133 *
134 * In order to adjust the clock frequency for the X550, the TIMINCA register is
135 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
136 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
137 * the sign bit. This register enables software to calculate frequency
138 * adjustments and apply them directly to the clock rate.
139 *
140 * The math for converting ppb into TIMINCA values is fairly straightforward.
141 * TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
142 *
143 * This assumes that ppb is never high enough to create a value bigger than
144 * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
145 * value is also simple.
146 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
147 *
148 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
149 * 12.5 nanoseconds. This means that the Max ppb is 39999999
150 * Note: We subtract one in order to ensure no overflow, because the TIMINCA
151 * register can only hold slightly under 0.5 nanoseconds.
152 *
153 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
154 * into 2^-32 units, which is
155 *
156 * 12.5 * 2^32 = C80000000
157 *
158 * Some revisions of hardware have a faster base frequency than the registers
159 * were defined for. To fix this, we use a timecounter structure with the
160 * proper mult and shift to convert the cycles into nanoseconds of time.
161 */
162#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
163#define INCVALUE_MASK 0x7FFFFFFF
164#define ISGN 0x80000000
165#define MAX_TIMADJ 0x7FFFFFFF
166
82083673 167/**
a9763f3c 168 * ixgbe_ptp_setup_sdp_x540
82083673 169 * @hw: the hardware private structure
82083673 170 *
db0677fa
JK
171 * this function enables or disables the clock out feature on SDP0 for
172 * the X540 device. It will create a 1second periodic output that can
173 * be used as the PPS (via an interrupt).
82083673
JK
174 *
175 * It calculates when the systime will be on an exact second, and then
176 * aligns the start of the PPS signal to that value. The shift is
177 * necessary because it can change based on the link speed.
178 */
a9763f3c 179static void ixgbe_ptp_setup_sdp_x540(struct ixgbe_adapter *adapter)
82083673
JK
180{
181 struct ixgbe_hw *hw = &adapter->hw;
a9763f3c 182 int shift = adapter->hw_cc.shift;
82083673
JK
183 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
184 u64 ns = 0, clock_edge = 0;
185
a9763f3c
MR
186 /* disable the pin first */
187 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
188 IXGBE_WRITE_FLUSH(hw);
db0677fa 189
a9763f3c
MR
190 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
191 return;
db0677fa 192
a9763f3c 193 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
82083673 194
a9763f3c
MR
195 /* enable the SDP0 pin as output, and connected to the
196 * native function for Timesync (ClockOut)
197 */
198 esdp |= IXGBE_ESDP_SDP0_DIR |
199 IXGBE_ESDP_SDP0_NATIVE;
82083673 200
a9763f3c
MR
201 /* enable the Clock Out feature on SDP0, and allow
202 * interrupts to occur when the pin changes
203 */
204 tsauxc = IXGBE_TSAUXC_EN_CLK |
205 IXGBE_TSAUXC_SYNCLK |
206 IXGBE_TSAUXC_SDP0_INT;
82083673 207
a9763f3c
MR
208 /* clock period (or pulse length) */
209 clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
210 clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
82083673 211
a9763f3c
MR
212 /* Account for the cyclecounter wrap-around value by
213 * using the converted ns value of the current time to
214 * check for when the next aligned second would occur.
215 */
216 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
217 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
218 ns = timecounter_cyc2time(&adapter->hw_tc, clock_edge);
82083673 219
a9763f3c
MR
220 div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
221 clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
82083673 222
a9763f3c
MR
223 /* specify the initial clock start time */
224 trgttiml = (u32)clock_edge;
225 trgttimh = (u32)(clock_edge >> 32);
82083673 226
a9763f3c
MR
227 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
228 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
229 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
230 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
82083673 231
a9763f3c
MR
232 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
233 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
82083673 234
82083673
JK
235 IXGBE_WRITE_FLUSH(hw);
236}
237
3a6a4eda 238/**
a9763f3c
MR
239 * ixgbe_ptp_read_X550 - read cycle counter value
240 * @hw_cc: cyclecounter structure
241 *
242 * This function reads SYSTIME registers. It is called by the cyclecounter
243 * structure to convert from internal representation into nanoseconds. We need
244 * this for X550 since some skews do not have expected clock frequency and
245 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
246 * "cycles", rather than seconds and nanoseconds.
247 */
248static cycle_t ixgbe_ptp_read_X550(const struct cyclecounter *hw_cc)
249{
250 struct ixgbe_adapter *adapter =
251 container_of(hw_cc, struct ixgbe_adapter, hw_cc);
252 struct ixgbe_hw *hw = &adapter->hw;
253 struct timespec64 ts;
254
255 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
256 * Some revisions of hardware run at a higher frequency and so the
257 * cycles are not guaranteed to be nanoseconds. The timespec64 created
258 * here is used for its math/conversions but does not necessarily
259 * represent nominal time.
260 *
261 * It should be noted that this cyclecounter will overflow at a
262 * non-bitmask field since we have to convert our billions of cycles
263 * into an actual cycles count. This results in some possible weird
264 * situations at high cycle counter stamps. However given that 32 bits
265 * of "seconds" is ~138 years this isn't a problem. Even at the
266 * increased frequency of some revisions, this is still ~103 years.
267 * Since the SYSTIME values start at 0 and we never write them, it is
268 * highly unlikely for the cyclecounter to overflow in practice.
269 */
270 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
271 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
272 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
273
274 return (u64)timespec64_to_ns(&ts);
275}
276
277/**
278 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
49ce9c2c 279 * @cc: the cyclecounter structure
3a6a4eda
JK
280 *
281 * this function reads the cyclecounter registers and is called by the
282 * cyclecounter structure used to construct a ns counter from the
283 * arbitrary fixed point registers
284 */
a9763f3c 285static cycle_t ixgbe_ptp_read_82599(const struct cyclecounter *cc)
3a6a4eda
JK
286{
287 struct ixgbe_adapter *adapter =
a9763f3c 288 container_of(cc, struct ixgbe_adapter, hw_cc);
3a6a4eda
JK
289 struct ixgbe_hw *hw = &adapter->hw;
290 u64 stamp = 0;
291
292 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
293 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
294
295 return stamp;
296}
297
298/**
a9763f3c
MR
299 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
300 * @adapter: private adapter structure
301 * @hwtstamp: stack timestamp structure
302 * @systim: unsigned 64bit system time value
303 *
304 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
305 * which can be used by the stack's ptp functions.
306 *
307 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
308 * registers. However, it does not need to protect against the Rx or Tx
309 * timestamp registers, as there can't be a new timestamp until the old one is
310 * unlatched by reading.
311 *
312 * In addition to the timestamp in hardware, some controllers need a software
313 * overflow cyclecounter, and this function takes this into account as well.
314 **/
315static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
316 struct skb_shared_hwtstamps *hwtstamp,
317 u64 timestamp)
318{
319 unsigned long flags;
320 struct timespec64 systime;
321 u64 ns;
322
323 memset(hwtstamp, 0, sizeof(*hwtstamp));
324
325 switch (adapter->hw.mac.type) {
326 /* X550 and later hardware supposedly represent time using a seconds
327 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
328 * to convert the timestamp into cycles before it can be fed to the
329 * cyclecounter. We need an actual cyclecounter because some revisions
330 * of hardware run at a higher frequency and thus the counter does
331 * not represent seconds/nanoseconds. Instead it can be thought of as
332 * cycles and billions of cycles.
333 */
334 case ixgbe_mac_X550:
335 case ixgbe_mac_X550EM_x:
336 /* Upper 32 bits represent billions of cycles, lower 32 bits
337 * represent cycles. However, we use timespec64_to_ns for the
338 * correct math even though the units haven't been corrected
339 * yet.
340 */
341 systime.tv_sec = timestamp >> 32;
342 systime.tv_nsec = timestamp & 0xFFFFFFFF;
343
344 timestamp = timespec64_to_ns(&systime);
345 break;
346 default:
347 break;
348 }
349
350 spin_lock_irqsave(&adapter->tmreg_lock, flags);
351 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
352 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
353
354 hwtstamp->hwtstamp = ns_to_ktime(ns);
355}
356
357/**
358 * ixgbe_ptp_adjfreq_82599
49ce9c2c
BH
359 * @ptp: the ptp clock structure
360 * @ppb: parts per billion adjustment from base
3a6a4eda
JK
361 *
362 * adjust the frequency of the ptp cycle counter by the
363 * indicated ppb from the base frequency.
364 */
a9763f3c 365static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
3a6a4eda
JK
366{
367 struct ixgbe_adapter *adapter =
368 container_of(ptp, struct ixgbe_adapter, ptp_caps);
369 struct ixgbe_hw *hw = &adapter->hw;
a9763f3c
MR
370 u64 freq, incval;
371 u32 diff;
3a6a4eda
JK
372 int neg_adj = 0;
373
374 if (ppb < 0) {
375 neg_adj = 1;
376 ppb = -ppb;
377 }
378
379 smp_mb();
380 incval = ACCESS_ONCE(adapter->base_incval);
381
382 freq = incval;
383 freq *= ppb;
384 diff = div_u64(freq, 1000000000ULL);
385
386 incval = neg_adj ? (incval - diff) : (incval + diff);
387
388 switch (hw->mac.type) {
389 case ixgbe_mac_X540:
a9763f3c
MR
390 if (incval > 0xFFFFFFFFULL)
391 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
392 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
3a6a4eda
JK
393 break;
394 case ixgbe_mac_82599EB:
a9763f3c
MR
395 if (incval > 0x00FFFFFFULL)
396 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
3a6a4eda
JK
397 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
398 (1 << IXGBE_INCPER_SHIFT_82599) |
a9763f3c 399 ((u32)incval & 0x00FFFFFFUL));
3a6a4eda
JK
400 break;
401 default:
402 break;
403 }
404
405 return 0;
406}
407
a9763f3c
MR
408/**
409 * ixgbe_ptp_adjfreq_X550
410 * @ptp: the ptp clock structure
411 * @ppb: parts per billion adjustment from base
412 *
413 * adjust the frequency of the SYSTIME registers by the indicated ppb from base
414 * frequency
415 */
416static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
417{
418 struct ixgbe_adapter *adapter =
419 container_of(ptp, struct ixgbe_adapter, ptp_caps);
420 struct ixgbe_hw *hw = &adapter->hw;
421 int neg_adj = 0;
422 u64 rate = IXGBE_X550_BASE_PERIOD;
423 u32 inca;
424
425 if (ppb < 0) {
426 neg_adj = 1;
427 ppb = -ppb;
428 }
429 rate *= ppb;
430 rate = div_u64(rate, 1000000000ULL);
431
432 /* warn if rate is too large */
433 if (rate >= INCVALUE_MASK)
434 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
435
436 inca = rate & INCVALUE_MASK;
437 if (neg_adj)
438 inca |= ISGN;
439
440 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
441
442 return 0;
443}
444
3a6a4eda
JK
445/**
446 * ixgbe_ptp_adjtime
49ce9c2c
BH
447 * @ptp: the ptp clock structure
448 * @delta: offset to adjust the cycle counter by
3a6a4eda
JK
449 *
450 * adjust the timer by resetting the timecounter structure.
451 */
452static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
453{
454 struct ixgbe_adapter *adapter =
455 container_of(ptp, struct ixgbe_adapter, ptp_caps);
456 unsigned long flags;
3a6a4eda
JK
457
458 spin_lock_irqsave(&adapter->tmreg_lock, flags);
a9763f3c 459 timecounter_adjtime(&adapter->hw_tc, delta);
3a6a4eda 460 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
db0677fa 461
a9763f3c
MR
462 if (adapter->ptp_setup_sdp)
463 adapter->ptp_setup_sdp(adapter);
82083673 464
3a6a4eda
JK
465 return 0;
466}
467
468/**
469 * ixgbe_ptp_gettime
49ce9c2c
BH
470 * @ptp: the ptp clock structure
471 * @ts: timespec structure to hold the current time value
3a6a4eda
JK
472 *
473 * read the timecounter and return the correct value on ns,
474 * after converting it into a struct timespec.
475 */
91432d18 476static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
3a6a4eda
JK
477{
478 struct ixgbe_adapter *adapter =
479 container_of(ptp, struct ixgbe_adapter, ptp_caps);
3a6a4eda 480 unsigned long flags;
a9763f3c 481 u64 ns;
3a6a4eda
JK
482
483 spin_lock_irqsave(&adapter->tmreg_lock, flags);
a9763f3c 484 ns = timecounter_read(&adapter->hw_tc);
3a6a4eda
JK
485 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
486
0704fae3 487 *ts = ns_to_timespec64(ns);
3a6a4eda
JK
488
489 return 0;
490}
491
492/**
493 * ixgbe_ptp_settime
49ce9c2c
BH
494 * @ptp: the ptp clock structure
495 * @ts: the timespec containing the new time for the cycle counter
3a6a4eda
JK
496 *
497 * reset the timecounter to use a new base value instead of the kernel
498 * wall timer value.
499 */
500static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
91432d18 501 const struct timespec64 *ts)
3a6a4eda
JK
502{
503 struct ixgbe_adapter *adapter =
504 container_of(ptp, struct ixgbe_adapter, ptp_caps);
3a6a4eda 505 unsigned long flags;
a9763f3c 506 u64 ns = timespec64_to_ns(ts);
3a6a4eda
JK
507
508 /* reset the timecounter */
509 spin_lock_irqsave(&adapter->tmreg_lock, flags);
a9763f3c 510 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
3a6a4eda
JK
511 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
512
a9763f3c
MR
513 if (adapter->ptp_setup_sdp)
514 adapter->ptp_setup_sdp(adapter);
3a6a4eda
JK
515 return 0;
516}
517
518/**
04c8de8e 519 * ixgbe_ptp_feature_enable
49ce9c2c
BH
520 * @ptp: the ptp clock structure
521 * @rq: the requested feature to change
522 * @on: whether to enable or disable the feature
3a6a4eda
JK
523 *
524 * enable (or disable) ancillary features of the phc subsystem.
681ae1ad 525 * our driver only supports the PPS feature on the X540
3a6a4eda 526 */
04c8de8e
JK
527static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
528 struct ptp_clock_request *rq, int on)
3a6a4eda 529{
681ae1ad
JK
530 struct ixgbe_adapter *adapter =
531 container_of(ptp, struct ixgbe_adapter, ptp_caps);
532
533 /**
534 * When PPS is enabled, unmask the interrupt for the ClockOut
535 * feature, so that the interrupt handler can send the PPS
536 * event when the clock SDP triggers. Clear mask when PPS is
537 * disabled
538 */
a9763f3c
MR
539 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
540 return -ENOTSUPP;
541
542 if (on)
543 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
544 else
545 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
681ae1ad 546
a9763f3c
MR
547 adapter->ptp_setup_sdp(adapter);
548 return 0;
3a6a4eda
JK
549}
550
681ae1ad
JK
551/**
552 * ixgbe_ptp_check_pps_event
49ce9c2c 553 * @adapter: the private adapter structure
681ae1ad
JK
554 *
555 * This function is called by the interrupt routine when checking for
556 * interrupts. It will check and handle a pps event.
557 */
a9763f3c 558void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
681ae1ad
JK
559{
560 struct ixgbe_hw *hw = &adapter->hw;
561 struct ptp_clock_event event;
562
3645adbb
JK
563 event.type = PTP_CLOCK_PPS;
564
565 /* this check is necessary in case the interrupt was enabled via some
566 * alternative means (ex. debug_fs). Better to check here than
567 * everywhere that calls this function.
568 */
569 if (!adapter->ptp_clock)
570 return;
571
db0677fa
JK
572 switch (hw->mac.type) {
573 case ixgbe_mac_X540:
574 ptp_clock_event(adapter->ptp_clock, &event);
575 break;
576 default:
577 break;
681ae1ad
JK
578 }
579}
580
3a6a4eda 581/**
f2f33387
JK
582 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
583 * @adapter: private adapter struct
3a6a4eda 584 *
f2f33387 585 * this watchdog task periodically reads the timecounter
3a6a4eda 586 * in order to prevent missing when the system time registers wrap
f2f33387 587 * around. This needs to be run approximately twice a minute.
3a6a4eda
JK
588 */
589void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
590{
f2f33387
JK
591 bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
592 IXGBE_OVERFLOW_PERIOD);
91432d18 593 struct timespec64 ts;
3a6a4eda 594
891dc082 595 if (timeout) {
3a6a4eda
JK
596 ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
597 adapter->last_overflow_check = jiffies;
598 }
599}
600
1d1a79b5 601/**
6cb562d6
JK
602 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
603 * @adapter: private network adapter structure
1d1a79b5 604 *
6cb562d6
JK
605 * this watchdog task is scheduled to detect error case where hardware has
606 * dropped an Rx packet that was timestamped when the ring is full. The
607 * particular error is rare but leaves the device in a state unable to timestamp
608 * any future packets.
1d1a79b5 609 */
6cb562d6 610void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
1d1a79b5 611{
6cb562d6 612 struct ixgbe_hw *hw = &adapter->hw;
6cb562d6 613 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
a9763f3c 614 struct ixgbe_ring *rx_ring;
6cb562d6 615 unsigned long rx_event;
a9763f3c 616 int n;
1d1a79b5 617
6cb562d6
JK
618 /* if we don't have a valid timestamp in the registers, just update the
619 * timeout counter and exit
620 */
621 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
622 adapter->last_rx_ptp_check = jiffies;
623 return;
1d1a79b5
JK
624 }
625
6cb562d6
JK
626 /* determine the most recent watchdog or rx_timestamp event */
627 rx_event = adapter->last_rx_ptp_check;
a9763f3c
MR
628 for (n = 0; n < adapter->num_rx_queues; n++) {
629 rx_ring = adapter->rx_ring[n];
630 if (time_after(rx_ring->last_rx_timestamp, rx_event))
631 rx_event = rx_ring->last_rx_timestamp;
632 }
1d1a79b5 633
6cb562d6 634 /* only need to read the high RXSTMP register to clear the lock */
a9763f3c 635 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
6cb562d6
JK
636 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
637 adapter->last_rx_ptp_check = jiffies;
1d1a79b5 638
a9763f3c 639 adapter->rx_hwtstamp_cleared++;
c5ffe7e1 640 e_warn(drv, "clearing RX Timestamp hang\n");
1d1a79b5
JK
641 }
642}
643
a9763f3c
MR
644/**
645 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
646 * @adapter: the private adapter structure
647 *
648 * This function should be called whenever the state related to a Tx timestamp
649 * needs to be cleared. This helps ensure that all related bits are reset for
650 * the next Tx timestamp event.
651 */
652static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
653{
654 struct ixgbe_hw *hw = &adapter->hw;
655
656 IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
657 if (adapter->ptp_tx_skb) {
658 dev_kfree_skb_any(adapter->ptp_tx_skb);
659 adapter->ptp_tx_skb = NULL;
660 }
661 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
662}
663
3a6a4eda
JK
664/**
665 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
891dc082 666 * @adapter: the private adapter struct
3a6a4eda
JK
667 *
668 * if the timestamp is valid, we convert it into the timecounter ns
669 * value, then store that result into the shhwtstamps structure which
670 * is passed up the network stack
671 */
891dc082 672static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
3a6a4eda 673{
891dc082 674 struct ixgbe_hw *hw = &adapter->hw;
3a6a4eda 675 struct skb_shared_hwtstamps shhwtstamps;
a9763f3c 676 u64 regval = 0;
3a6a4eda 677
3a6a4eda
JK
678 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
679 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
680
a9763f3c 681 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
891dc082
JK
682 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
683
a9763f3c 684 ixgbe_ptp_clear_tx_timestamp(adapter);
891dc082
JK
685}
686
687/**
688 * ixgbe_ptp_tx_hwtstamp_work
689 * @work: pointer to the work struct
690 *
691 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
dbedd44e 692 * timestamp has been taken for the current skb. It is necessary, because the
891dc082
JK
693 * descriptor's "done" bit does not correlate with the timestamp event.
694 */
695static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
696{
697 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
698 ptp_tx_work);
699 struct ixgbe_hw *hw = &adapter->hw;
700 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
701 IXGBE_PTP_TX_TIMEOUT);
702 u32 tsynctxctl;
703
a9763f3c
MR
704 /* we have to have a valid skb to poll for a timestamp */
705 if (!adapter->ptp_tx_skb) {
706 ixgbe_ptp_clear_tx_timestamp(adapter);
891dc082
JK
707 return;
708 }
709
a9763f3c 710 /* stop polling once we have a valid timestamp */
891dc082 711 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
a9763f3c 712 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
891dc082 713 ixgbe_ptp_tx_hwtstamp(adapter);
a9763f3c
MR
714 return;
715 }
716
717 if (timeout) {
718 ixgbe_ptp_clear_tx_timestamp(adapter);
719 adapter->tx_hwtstamp_timeouts++;
720 e_warn(drv, "clearing Tx Timestamp hang\n");
721 } else {
891dc082
JK
722 /* reschedule to keep checking if it's not available yet */
723 schedule_work(&adapter->ptp_tx_work);
a9763f3c 724 }
3a6a4eda
JK
725}
726
727/**
a9763f3c
MR
728 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
729 * @q_vector: structure containing interrupt and ring information
730 * @skb: the packet
731 *
732 * This function will be called by the Rx routine of the timestamp for this
733 * packet is stored in the buffer. The value is stored in little endian format
734 * starting at the end of the packet data.
735 */
736void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
737 struct sk_buff *skb)
738{
739 __le64 regval;
740
741 /* copy the bits out of the skb, and then trim the skb length */
742 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
743 IXGBE_TS_HDR_LEN);
744 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
745
746 /* The timestamp is recorded in little endian format, and is stored at
747 * the end of the packet.
748 *
749 * DWORD: N N + 1 N + 2
750 * Field: End of Packet SYSTIMH SYSTIML
751 */
752 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
753 le64_to_cpu(regval));
754}
755
756/**
757 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
758 * @q_vector: structure containing interrupt and ring information
3a6a4eda
JK
759 * @skb: particular skb to send timestamp with
760 *
761 * if the timestamp is valid, we convert it into the timecounter ns
762 * value, then store that result into the shhwtstamps structure which
763 * is passed up the network stack
764 */
a9763f3c
MR
765void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
766 struct sk_buff *skb)
3a6a4eda 767{
a9763f3c
MR
768 struct ixgbe_adapter *adapter;
769 struct ixgbe_hw *hw;
770 u64 regval = 0;
3a6a4eda 771 u32 tsyncrxctl;
a9763f3c
MR
772
773 /* we cannot process timestamps on a ring without a q_vector */
774 if (!q_vector || !q_vector->adapter)
775 return;
776
777 adapter = q_vector->adapter;
778 hw = &adapter->hw;
779
780 /* Read the tsyncrxctl register afterwards in order to prevent taking an
781 * I/O hit on every packet.
782 */
3a6a4eda 783
3a6a4eda 784 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
f42df167 785 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
1d1a79b5
JK
786 return;
787
3a6a4eda
JK
788 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
789 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
790
a9763f3c 791 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
3a6a4eda
JK
792}
793
93501d48
JK
794int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
795{
796 struct hwtstamp_config *config = &adapter->tstamp_config;
797
798 return copy_to_user(ifr->ifr_data, config,
799 sizeof(*config)) ? -EFAULT : 0;
800}
801
3a6a4eda 802/**
a7ef4286
JK
803 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
804 * @adapter: the private ixgbe adapter structure
805 * @config: the hwtstamp configuration requested
3a6a4eda
JK
806 *
807 * Outgoing time stamping can be enabled and disabled. Play nice and
93501d48 808 * disable it when requested, although it shouldn't cause any overhead
3a6a4eda
JK
809 * when no packet needs it. At most one packet in the queue may be
810 * marked for time stamping, otherwise it would be impossible to tell
811 * for sure to which packet the hardware time stamp belongs.
812 *
813 * Incoming time stamping has to be configured via the hardware
814 * filters. Not all combinations are supported, in particular event
815 * type has to be specified. Matching the kind of event packet is
816 * not supported, with the exception of "all V2 events regardless of
817 * level 2 or 4".
c19197a7
JK
818 *
819 * Since hardware always timestamps Path delay packets when timestamping V2
820 * packets, regardless of the type specified in the register, only use V2
821 * Event mode. This more accurately tells the user what the hardware is going
822 * to do anyways.
a7ef4286
JK
823 *
824 * Note: this may modify the hwtstamp configuration towards a more general
825 * mode, if required to support the specifically requested mode.
3a6a4eda 826 */
a7ef4286
JK
827static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
828 struct hwtstamp_config *config)
3a6a4eda
JK
829{
830 struct ixgbe_hw *hw = &adapter->hw;
3a6a4eda
JK
831 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
832 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
f3444d8b 833 u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
3a6a4eda
JK
834 bool is_l2 = false;
835 u32 regval;
836
3a6a4eda 837 /* reserved for future extensions */
a7ef4286 838 if (config->flags)
3a6a4eda
JK
839 return -EINVAL;
840
a7ef4286 841 switch (config->tx_type) {
3a6a4eda
JK
842 case HWTSTAMP_TX_OFF:
843 tsync_tx_ctl = 0;
844 case HWTSTAMP_TX_ON:
845 break;
846 default:
847 return -ERANGE;
848 }
849
a7ef4286 850 switch (config->rx_filter) {
3a6a4eda
JK
851 case HWTSTAMP_FILTER_NONE:
852 tsync_rx_ctl = 0;
f3444d8b 853 tsync_rx_mtrl = 0;
a9763f3c
MR
854 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
855 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
3a6a4eda
JK
856 break;
857 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
858 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
b1e50f7a 859 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
a9763f3c
MR
860 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
861 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
3a6a4eda
JK
862 break;
863 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
864 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
b1e50f7a 865 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
a9763f3c
MR
866 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
867 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
3a6a4eda 868 break;
c19197a7
JK
869 case HWTSTAMP_FILTER_PTP_V2_EVENT:
870 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
871 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3a6a4eda
JK
872 case HWTSTAMP_FILTER_PTP_V2_SYNC:
873 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
874 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3a6a4eda
JK
875 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
876 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
877 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3a6a4eda 878 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
3a6a4eda 879 is_l2 = true;
a7ef4286 880 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
a9763f3c
MR
881 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
882 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
3a6a4eda
JK
883 break;
884 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
885 case HWTSTAMP_FILTER_ALL:
a9763f3c
MR
886 /* The X550 controller is capable of timestamping all packets,
887 * which allows it to accept any filter.
888 */
889 if (hw->mac.type >= ixgbe_mac_X550) {
890 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
891 config->rx_filter = HWTSTAMP_FILTER_ALL;
892 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
893 break;
894 }
895 /* fall through */
3a6a4eda
JK
896 default:
897 /*
1d1a79b5
JK
898 * register RXMTRL must be set in order to do V1 packets,
899 * therefore it is not possible to time stamp both V1 Sync and
900 * Delay_Req messages and hardware does not support
901 * timestamping all packets => return error
3a6a4eda 902 */
a9763f3c
MR
903 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
904 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
a7ef4286 905 config->rx_filter = HWTSTAMP_FILTER_NONE;
3a6a4eda
JK
906 return -ERANGE;
907 }
908
909 if (hw->mac.type == ixgbe_mac_82598EB) {
a9763f3c
MR
910 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
911 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
3a6a4eda
JK
912 if (tsync_rx_ctl | tsync_tx_ctl)
913 return -ERANGE;
914 return 0;
915 }
916
a9763f3c
MR
917 /* Per-packet timestamping only works if the filter is set to all
918 * packets. Since this is desired, always timestamp all packets as long
919 * as any Rx filter was configured.
920 */
921 switch (hw->mac.type) {
922 case ixgbe_mac_X550:
923 case ixgbe_mac_X550EM_x:
924 /* enable timestamping all packets only if at least some
925 * packets were requested. Otherwise, play nice and disable
926 * timestamping
927 */
928 if (config->rx_filter == HWTSTAMP_FILTER_NONE)
929 break;
930
931 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
932 IXGBE_TSYNCRXCTL_TYPE_ALL |
933 IXGBE_TSYNCRXCTL_TSIP_UT_EN;
934 config->rx_filter = HWTSTAMP_FILTER_ALL;
935 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
936 adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
937 is_l2 = true;
938 break;
939 default:
940 break;
941 }
942
6ccf7a57 943 /* define ethertype filter for timestamping L2 packets */
3a6a4eda 944 if (is_l2)
6ccf7a57 945 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
3a6a4eda
JK
946 (IXGBE_ETQF_FILTER_EN | /* enable filter */
947 IXGBE_ETQF_1588 | /* enable timestamping */
948 ETH_P_1588)); /* 1588 eth protocol type */
949 else
6ccf7a57 950 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
3a6a4eda 951
3a6a4eda
JK
952 /* enable/disable TX */
953 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
954 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
955 regval |= tsync_tx_ctl;
956 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
957
958 /* enable/disable RX */
959 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
960 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
961 regval |= tsync_rx_ctl;
962 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
963
964 /* define which PTP packets are time stamped */
965 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
966
967 IXGBE_WRITE_FLUSH(hw);
968
969 /* clear TX/RX time stamp registers, just to be sure */
a9763f3c
MR
970 ixgbe_ptp_clear_tx_timestamp(adapter);
971 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
3a6a4eda 972
a7ef4286
JK
973 return 0;
974}
975
976/**
977 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
978 * @adapter: pointer to adapter struct
979 * @ifreq: ioctl data
980 *
981 * Set hardware to requested mode. If unsupported, return an error with no
982 * changes. Otherwise, store the mode for future reference.
983 */
984int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
985{
986 struct hwtstamp_config config;
987 int err;
988
989 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
990 return -EFAULT;
991
992 err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
993 if (err)
994 return err;
995
93501d48
JK
996 /* save these settings for future reference */
997 memcpy(&adapter->tstamp_config, &config,
998 sizeof(adapter->tstamp_config));
999
3a6a4eda
JK
1000 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1001 -EFAULT : 0;
1002}
1003
a9763f3c
MR
1004static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1005 u32 *shift, u32 *incval)
3a6a4eda 1006{
3a6a4eda
JK
1007 /**
1008 * Scale the NIC cycle counter by a large factor so that
1009 * relatively small corrections to the frequency can be added
1010 * or subtracted. The drawbacks of a large factor include
1011 * (a) the clock register overflows more quickly, (b) the cycle
1012 * counter structure must be able to convert the systime value
1013 * to nanoseconds using only a multiplier and a right-shift,
1014 * and (c) the value must fit within the timinca register space
1015 * => math based on internal DMA clock rate and available bits
1a71ab24
JK
1016 *
1017 * Note that when there is no link, internal DMA clock is same as when
1018 * link speed is 10Gb. Set the registers correctly even when link is
1019 * down to preserve the clock setting
3a6a4eda 1020 */
1a71ab24 1021 switch (adapter->link_speed) {
3a6a4eda 1022 case IXGBE_LINK_SPEED_100_FULL:
a9763f3c
MR
1023 *shift = IXGBE_INCVAL_SHIFT_100;
1024 *incval = IXGBE_INCVAL_100;
3a6a4eda
JK
1025 break;
1026 case IXGBE_LINK_SPEED_1GB_FULL:
a9763f3c
MR
1027 *shift = IXGBE_INCVAL_SHIFT_1GB;
1028 *incval = IXGBE_INCVAL_1GB;
3a6a4eda
JK
1029 break;
1030 case IXGBE_LINK_SPEED_10GB_FULL:
1a71ab24 1031 default:
a9763f3c
MR
1032 *shift = IXGBE_INCVAL_SHIFT_10GB;
1033 *incval = IXGBE_INCVAL_10GB;
3a6a4eda
JK
1034 break;
1035 }
a9763f3c 1036}
3a6a4eda 1037
a9763f3c
MR
1038/**
1039 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1040 * @adapter: pointer to the adapter structure
1041 *
1042 * This function should be called to set the proper values for the TIMINCA
1043 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1044 * is. It does not directly modify SYSTIME registers or the timecounter
1045 * structure. It should be called whenever a new TIMINCA value is necessary,
1046 * such as during initialization or when the link speed changes.
1047 */
1048void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1049{
1050 struct ixgbe_hw *hw = &adapter->hw;
1051 struct cyclecounter cc;
1052 unsigned long flags;
1053 u32 incval = 0;
1054 u32 tsauxc = 0;
1055 u32 fuse0 = 0;
1056
1057 /* For some of the boards below this mask is technically incorrect.
1058 * The timestamp mask overflows at approximately 61bits. However the
1059 * particular hardware does not overflow on an even bitmask value.
1060 * Instead, it overflows due to conversion of upper 32bits billions of
1061 * cycles. Timecounters are not really intended for this purpose so
1062 * they do not properly function if the overflow point isn't 2^N-1.
1063 * However, the actual SYSTIME values in question take ~138 years to
1064 * overflow. In practice this means they won't actually overflow. A
1065 * proper fix to this problem would require modification of the
1066 * timecounter delta calculations.
3a6a4eda 1067 */
a9763f3c
MR
1068 cc.mask = CLOCKSOURCE_MASK(64);
1069 cc.mult = 1;
1070 cc.shift = 0;
1071
3a6a4eda 1072 switch (hw->mac.type) {
a9763f3c
MR
1073 case ixgbe_mac_X550EM_x:
1074 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1075 * designed to represent seconds and nanoseconds when this is
1076 * the case. However, some revisions of hardware have a 400Mhz
1077 * clock and we have to compensate for this frequency
1078 * variation using corrected mult and shift values.
1079 */
1080 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1081 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1082 cc.mult = 3;
1083 cc.shift = 2;
1084 }
1085 /* fallthrough */
1086 case ixgbe_mac_X550:
1087 cc.read = ixgbe_ptp_read_X550;
1088
1089 /* enable SYSTIME counter */
1090 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1091 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1092 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1093 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1094 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1095 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1096 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1097 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1098
1099 IXGBE_WRITE_FLUSH(hw);
1100 break;
3a6a4eda 1101 case ixgbe_mac_X540:
a9763f3c
MR
1102 cc.read = ixgbe_ptp_read_82599;
1103
1104 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
3a6a4eda
JK
1105 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1106 break;
1107 case ixgbe_mac_82599EB:
a9763f3c
MR
1108 cc.read = ixgbe_ptp_read_82599;
1109
1110 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
3a6a4eda 1111 incval >>= IXGBE_INCVAL_SHIFT_82599;
a9763f3c 1112 cc.shift -= IXGBE_INCVAL_SHIFT_82599;
3a6a4eda 1113 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
a9763f3c 1114 (1 << IXGBE_INCPER_SHIFT_82599) | incval);
3a6a4eda
JK
1115 break;
1116 default:
1117 /* other devices aren't supported */
1118 return;
1119 }
1120
1a71ab24 1121 /* update the base incval used to calculate frequency adjustment */
3a6a4eda
JK
1122 ACCESS_ONCE(adapter->base_incval) = incval;
1123 smp_mb();
1124
1a71ab24 1125 /* need lock to prevent incorrect read while modifying cyclecounter */
3a6a4eda 1126 spin_lock_irqsave(&adapter->tmreg_lock, flags);
a9763f3c 1127 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1a71ab24
JK
1128 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1129}
1130
1131/**
1132 * ixgbe_ptp_reset
1133 * @adapter: the ixgbe private board structure
1134 *
d6321407
JK
1135 * When the MAC resets, all the hardware bits for timesync are reset. This
1136 * function is used to re-enable the device for PTP based on current settings.
1137 * We do lose the current clock time, so just reset the cyclecounter to the
1138 * system real clock time.
1139 *
1140 * This function will maintain hwtstamp_config settings, and resets the SDP
1141 * output if it was enabled.
1a71ab24
JK
1142 */
1143void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1144{
1145 struct ixgbe_hw *hw = &adapter->hw;
1146 unsigned long flags;
1147
d6321407
JK
1148 /* reset the hardware timestamping mode */
1149 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
93501d48 1150
a9763f3c
MR
1151 /* 82598 does not support PTP */
1152 if (hw->mac.type == ixgbe_mac_82598EB)
1153 return;
1154
1a71ab24
JK
1155 ixgbe_ptp_start_cyclecounter(adapter);
1156
1157 spin_lock_irqsave(&adapter->tmreg_lock, flags);
a9763f3c 1158 timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
3a6a4eda 1159 ktime_to_ns(ktime_get_real()));
3a6a4eda 1160 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
82083673 1161
a9763f3c
MR
1162 adapter->last_overflow_check = jiffies;
1163
1164 /* Now that the shift has been calculated and the systime
82083673
JK
1165 * registers reset, (re-)enable the Clock out feature
1166 */
a9763f3c
MR
1167 if (adapter->ptp_setup_sdp)
1168 adapter->ptp_setup_sdp(adapter);
3a6a4eda
JK
1169}
1170
1171/**
63328ada 1172 * ixgbe_ptp_create_clock
49ce9c2c 1173 * @adapter: the ixgbe private adapter structure
3a6a4eda 1174 *
63328ada
JK
1175 * This function performs setup of the user entry point function table and
1176 * initializes the PTP clock device, which is used to access the clock-like
a9763f3c
MR
1177 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1178 * reuse a previously initialized clock (such as during a suspend/resume
1179 * cycle).
3a6a4eda 1180 */
a9763f3c 1181static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
3a6a4eda
JK
1182{
1183 struct net_device *netdev = adapter->netdev;
63328ada
JK
1184 long err;
1185
1186 /* do nothing if we already have a clock device */
1187 if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1188 return 0;
3a6a4eda
JK
1189
1190 switch (adapter->hw.mac.type) {
1191 case ixgbe_mac_X540:
ca324099
JK
1192 snprintf(adapter->ptp_caps.name,
1193 sizeof(adapter->ptp_caps.name),
1194 "%s", netdev->name);
681ae1ad
JK
1195 adapter->ptp_caps.owner = THIS_MODULE;
1196 adapter->ptp_caps.max_adj = 250000000;
1197 adapter->ptp_caps.n_alarm = 0;
1198 adapter->ptp_caps.n_ext_ts = 0;
1199 adapter->ptp_caps.n_per_out = 0;
1200 adapter->ptp_caps.pps = 1;
a9763f3c 1201 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
681ae1ad 1202 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
91432d18
RC
1203 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1204 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
04c8de8e 1205 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
a9763f3c 1206 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_x540;
681ae1ad 1207 break;
3a6a4eda 1208 case ixgbe_mac_82599EB:
ca324099
JK
1209 snprintf(adapter->ptp_caps.name,
1210 sizeof(adapter->ptp_caps.name),
1211 "%s", netdev->name);
3a6a4eda
JK
1212 adapter->ptp_caps.owner = THIS_MODULE;
1213 adapter->ptp_caps.max_adj = 250000000;
1214 adapter->ptp_caps.n_alarm = 0;
1215 adapter->ptp_caps.n_ext_ts = 0;
1216 adapter->ptp_caps.n_per_out = 0;
1217 adapter->ptp_caps.pps = 0;
a9763f3c
MR
1218 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1219 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1220 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1221 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1222 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1223 break;
1224 case ixgbe_mac_X550:
1225 case ixgbe_mac_X550EM_x:
1226 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1227 adapter->ptp_caps.owner = THIS_MODULE;
1228 adapter->ptp_caps.max_adj = 30000000;
1229 adapter->ptp_caps.n_alarm = 0;
1230 adapter->ptp_caps.n_ext_ts = 0;
1231 adapter->ptp_caps.n_per_out = 0;
1232 adapter->ptp_caps.pps = 0;
1233 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
3a6a4eda 1234 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
91432d18
RC
1235 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1236 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
04c8de8e 1237 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
a9763f3c 1238 adapter->ptp_setup_sdp = NULL;
3a6a4eda
JK
1239 break;
1240 default:
1241 adapter->ptp_clock = NULL;
a9763f3c 1242 adapter->ptp_setup_sdp = NULL;
63328ada 1243 return -EOPNOTSUPP;
3a6a4eda
JK
1244 }
1245
1ef76158
RC
1246 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1247 &adapter->pdev->dev);
3a6a4eda 1248 if (IS_ERR(adapter->ptp_clock)) {
63328ada 1249 err = PTR_ERR(adapter->ptp_clock);
3a6a4eda
JK
1250 adapter->ptp_clock = NULL;
1251 e_dev_err("ptp_clock_register failed\n");
63328ada 1252 return err;
3a6a4eda
JK
1253 } else
1254 e_dev_info("registered PHC device on %s\n", netdev->name);
1255
63328ada
JK
1256 /* set default timestamp mode to disabled here. We do this in
1257 * create_clock instead of init, because we don't want to override the
1258 * previous settings during a resume cycle.
1259 */
d6321407
JK
1260 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1261 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
63328ada
JK
1262
1263 return 0;
1264}
1265
1266/**
1267 * ixgbe_ptp_init
1268 * @adapter: the ixgbe private adapter structure
1269 *
1270 * This function performs the required steps for enabling PTP
1271 * support. If PTP support has already been loaded it simply calls the
1272 * cyclecounter init routine and exits.
1273 */
1274void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1275{
1276 /* initialize the spin lock first since we can't control when a user
1277 * will call the entry functions once we have initialized the clock
1278 * device
1279 */
1280 spin_lock_init(&adapter->tmreg_lock);
1281
1282 /* obtain a PTP device, or re-use an existing device */
1283 if (ixgbe_ptp_create_clock(adapter))
1284 return;
1285
1286 /* we have a clock so we can initialize work now */
1287 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1288
1289 /* reset the PTP related hardware bits */
1a71ab24
JK
1290 ixgbe_ptp_reset(adapter);
1291
8fecf67c
JK
1292 /* enter the IXGBE_PTP_RUNNING state */
1293 set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1a71ab24 1294
3a6a4eda
JK
1295 return;
1296}
1297
1298/**
9966d1ee
JK
1299 * ixgbe_ptp_suspend - stop PTP work items
1300 * @ adapter: pointer to adapter struct
3a6a4eda 1301 *
9966d1ee
JK
1302 * this function suspends PTP activity, and prevents more PTP work from being
1303 * generated, but does not destroy the PTP clock device.
3a6a4eda 1304 */
9966d1ee 1305void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
3a6a4eda 1306{
8fecf67c
JK
1307 /* Leave the IXGBE_PTP_RUNNING state. */
1308 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1309 return;
db0677fa 1310
a9763f3c
MR
1311 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1312 if (adapter->ptp_setup_sdp)
1313 adapter->ptp_setup_sdp(adapter);
3a6a4eda 1314
9966d1ee 1315 /* ensure that we cancel any pending PTP Tx work item in progress */
891dc082 1316 cancel_work_sync(&adapter->ptp_tx_work);
a9763f3c 1317 ixgbe_ptp_clear_tx_timestamp(adapter);
9966d1ee
JK
1318}
1319
1320/**
1321 * ixgbe_ptp_stop - close the PTP device
1322 * @adapter: pointer to adapter struct
1323 *
1324 * completely destroy the PTP device, should only be called when the device is
1325 * being fully closed.
1326 */
1327void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1328{
1329 /* first, suspend PTP activity */
1330 ixgbe_ptp_suspend(adapter);
891dc082 1331
9966d1ee 1332 /* disable the PTP clock device */
3a6a4eda
JK
1333 if (adapter->ptp_clock) {
1334 ptp_clock_unregister(adapter->ptp_clock);
1335 adapter->ptp_clock = NULL;
1336 e_dev_info("removed PHC on %s\n",
1337 adapter->netdev->name);
1338 }
1339}