igb: never generate both software and hardware timestamps
[linux-block.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
CommitLineData
b980ac18 1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
d339b133
RC
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
74cfb2e1
CW
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
d339b133
RC
17 */
18#include <linux/module.h>
19#include <linux/device.h>
20#include <linux/pci.h>
ba59814b 21#include <linux/ptp_classify.h>
d339b133
RC
22
23#include "igb.h"
24
25#define INCVALUE_MASK 0x7fffffff
26#define ISGN 0x80000000
27
b980ac18 28/* The 82580 timesync updates the system timer every 8ns by 8ns,
7ebae817
RC
29 * and this update value cannot be reprogrammed.
30 *
d339b133
RC
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not availible. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
7ebae817
RC
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits. As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
d339b133
RC
50 *
51 * SYSTIMH SYSTIML
52 * +--------------+ +---+---+------+
53 * 82576 | 32 | | 8 | 5 | 19 |
54 * +--------------+ +---+---+------+
55 * \________ 45 bits _______/ fract
56 *
57 * +----------+---+ +--------------+
58 * 82580 | 24 | 8 | | 32 |
59 * +----------+---+ +--------------+
60 * reserved \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 * 2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 * 2^40 * 10^-9 / 60 = 18.3 minutes.
68 */
69
a79f4f88 70#define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
428f1f71 71#define IGB_PTP_TX_TIMEOUT (HZ * 15)
a79f4f88
MV
72#define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
73#define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74#define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
75#define IGB_NBITS_82580 40
d339b133 76
167f3f71
JK
77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
b980ac18 79/* SYSTIM read access for the 82576 */
a79f4f88 80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
d339b133 81{
d339b133
RC
82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 struct e1000_hw *hw = &igb->hw;
a79f4f88
MV
84 u64 val;
85 u32 lo, hi;
d339b133
RC
86
87 lo = rd32(E1000_SYSTIML);
88 hi = rd32(E1000_SYSTIMH);
89
90 val = ((u64) hi) << 32;
91 val |= lo;
92
93 return val;
94}
95
b980ac18 96/* SYSTIM read access for the 82580 */
a79f4f88 97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
d339b133 98{
d339b133
RC
99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 struct e1000_hw *hw = &igb->hw;
e5c3370f 101 u32 lo, hi;
a79f4f88 102 u64 val;
d339b133 103
b980ac18 104 /* The timestamp latches on lowest register read. For the 82580
7ebae817
RC
105 * the lowest register is SYSTIMR instead of SYSTIML. However we only
106 * need to provide nanosecond resolution, so we just ignore it.
107 */
e5c3370f 108 rd32(E1000_SYSTIMR);
d339b133
RC
109 lo = rd32(E1000_SYSTIML);
110 hi = rd32(E1000_SYSTIMH);
111
112 val = ((u64) hi) << 32;
113 val |= lo;
114
115 return val;
116}
117
b980ac18 118/* SYSTIM read access for I210/I211 */
e57b8bdb
MV
119static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120{
121 struct e1000_hw *hw = &adapter->hw;
e5c3370f 122 u32 sec, nsec;
e57b8bdb 123
b980ac18 124 /* The timestamp latches on lowest register read. For I210/I211, the
e57b8bdb
MV
125 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126 * resolution, we can ignore it.
127 */
e5c3370f 128 rd32(E1000_SYSTIMR);
e57b8bdb
MV
129 nsec = rd32(E1000_SYSTIML);
130 sec = rd32(E1000_SYSTIMH);
131
132 ts->tv_sec = sec;
133 ts->tv_nsec = nsec;
134}
135
136static void igb_ptp_write_i210(struct igb_adapter *adapter,
137 const struct timespec *ts)
138{
139 struct e1000_hw *hw = &adapter->hw;
140
b980ac18 141 /* Writing the SYSTIMR register is not necessary as it only provides
e57b8bdb
MV
142 * sub-nanosecond resolution.
143 */
144 wr32(E1000_SYSTIML, ts->tv_nsec);
145 wr32(E1000_SYSTIMH, ts->tv_sec);
146}
147
a79f4f88
MV
148/**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166 struct skb_shared_hwtstamps *hwtstamps,
167 u64 systim)
168{
169 unsigned long flags;
170 u64 ns;
171
172 switch (adapter->hw.mac.type) {
e57b8bdb
MV
173 case e1000_82576:
174 case e1000_82580:
ceb5f13b 175 case e1000_i354:
e57b8bdb
MV
176 case e1000_i350:
177 spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179 ns = timecounter_cyc2time(&adapter->tc, systim);
180
181 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183 memset(hwtstamps, 0, sizeof(*hwtstamps));
184 hwtstamps->hwtstamp = ns_to_ktime(ns);
185 break;
a79f4f88
MV
186 case e1000_i210:
187 case e1000_i211:
e57b8bdb
MV
188 memset(hwtstamps, 0, sizeof(*hwtstamps));
189 /* Upper 32 bits contain s, lower 32 bits contain ns. */
190 hwtstamps->hwtstamp = ktime_set(systim >> 32,
191 systim & 0xFFFFFFFF);
a79f4f88
MV
192 break;
193 default:
e57b8bdb 194 break;
a79f4f88 195 }
a79f4f88
MV
196}
197
b980ac18 198/* PTP clock operations */
a79f4f88 199static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
d339b133 200{
a79f4f88
MV
201 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202 ptp_caps);
203 struct e1000_hw *hw = &igb->hw;
204 int neg_adj = 0;
d339b133
RC
205 u64 rate;
206 u32 incvalue;
d339b133
RC
207
208 if (ppb < 0) {
209 neg_adj = 1;
210 ppb = -ppb;
211 }
212 rate = ppb;
213 rate <<= 14;
214 rate = div_u64(rate, 1953125);
215
216 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218 if (neg_adj)
219 incvalue -= rate;
220 else
221 incvalue += rate;
222
223 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225 return 0;
226}
227
a79f4f88 228static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
d339b133 229{
a79f4f88
MV
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 struct e1000_hw *hw = &igb->hw;
233 int neg_adj = 0;
d339b133
RC
234 u64 rate;
235 u32 inca;
d339b133
RC
236
237 if (ppb < 0) {
238 neg_adj = 1;
239 ppb = -ppb;
240 }
241 rate = ppb;
242 rate <<= 26;
243 rate = div_u64(rate, 1953125);
244
245 inca = rate & INCVALUE_MASK;
246 if (neg_adj)
247 inca |= ISGN;
248
249 wr32(E1000_TIMINCA, inca);
250
251 return 0;
252}
253
e57b8bdb 254static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
d339b133 255{
a79f4f88
MV
256 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257 ptp_caps);
d339b133 258 unsigned long flags;
a79f4f88 259 s64 now;
d339b133
RC
260
261 spin_lock_irqsave(&igb->tmreg_lock, flags);
262
263 now = timecounter_read(&igb->tc);
264 now += delta;
265 timecounter_init(&igb->tc, &igb->cc, now);
266
267 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268
269 return 0;
270}
271
e57b8bdb
MV
272static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
273{
274 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275 ptp_caps);
276 unsigned long flags;
277 struct timespec now, then = ns_to_timespec(delta);
278
279 spin_lock_irqsave(&igb->tmreg_lock, flags);
280
281 igb_ptp_read_i210(igb, &now);
282 now = timespec_add(now, then);
283 igb_ptp_write_i210(igb, (const struct timespec *)&now);
284
285 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286
287 return 0;
288}
289
290static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291 struct timespec *ts)
d339b133 292{
a79f4f88
MV
293 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294 ptp_caps);
295 unsigned long flags;
d339b133
RC
296 u64 ns;
297 u32 remainder;
d339b133
RC
298
299 spin_lock_irqsave(&igb->tmreg_lock, flags);
300
301 ns = timecounter_read(&igb->tc);
302
303 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304
305 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306 ts->tv_nsec = remainder;
307
308 return 0;
309}
310
e57b8bdb
MV
311static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312 struct timespec *ts)
313{
314 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315 ptp_caps);
316 unsigned long flags;
317
318 spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320 igb_ptp_read_i210(igb, ts);
321
322 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324 return 0;
325}
326
327static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328 const struct timespec *ts)
d339b133 329{
a79f4f88
MV
330 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331 ptp_caps);
d339b133 332 unsigned long flags;
a79f4f88 333 u64 ns;
d339b133
RC
334
335 ns = ts->tv_sec * 1000000000ULL;
336 ns += ts->tv_nsec;
337
338 spin_lock_irqsave(&igb->tmreg_lock, flags);
339
340 timecounter_init(&igb->tc, &igb->cc, ns);
341
342 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343
344 return 0;
345}
346
e57b8bdb
MV
347static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348 const struct timespec *ts)
349{
350 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351 ptp_caps);
352 unsigned long flags;
353
354 spin_lock_irqsave(&igb->tmreg_lock, flags);
355
356 igb_ptp_write_i210(igb, ts);
357
358 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359
360 return 0;
361}
362
a79f4f88
MV
363static int igb_ptp_enable(struct ptp_clock_info *ptp,
364 struct ptp_clock_request *rq, int on)
d339b133
RC
365{
366 return -EOPNOTSUPP;
367}
368
1f6e8178
MV
369/**
370 * igb_ptp_tx_work
371 * @work: pointer to work struct
372 *
373 * This work function polls the TSYNCTXCTL valid bit to determine when a
374 * timestamp has been taken for the current stored skb.
b980ac18 375 **/
167f3f71 376static void igb_ptp_tx_work(struct work_struct *work)
1f6e8178
MV
377{
378 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379 ptp_tx_work);
380 struct e1000_hw *hw = &adapter->hw;
381 u32 tsynctxctl;
382
383 if (!adapter->ptp_tx_skb)
384 return;
385
428f1f71
MV
386 if (time_is_before_jiffies(adapter->ptp_tx_start +
387 IGB_PTP_TX_TIMEOUT)) {
388 dev_kfree_skb_any(adapter->ptp_tx_skb);
389 adapter->ptp_tx_skb = NULL;
390 adapter->tx_hwtstamp_timeouts++;
391 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
392 return;
393 }
394
1f6e8178
MV
395 tsynctxctl = rd32(E1000_TSYNCTXCTL);
396 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
397 igb_ptp_tx_hwtstamp(adapter);
398 else
399 /* reschedule to check later */
400 schedule_work(&adapter->ptp_tx_work);
401}
402
a79f4f88 403static void igb_ptp_overflow_check(struct work_struct *work)
d339b133 404{
a79f4f88
MV
405 struct igb_adapter *igb =
406 container_of(work, struct igb_adapter, ptp_overflow_work.work);
407 struct timespec ts;
408
e57b8bdb 409 igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
a79f4f88
MV
410
411 pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
412
413 schedule_delayed_work(&igb->ptp_overflow_work,
414 IGB_SYSTIM_OVERFLOW_PERIOD);
d339b133
RC
415}
416
fc580751
MV
417/**
418 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
419 * @adapter: private network adapter structure
420 *
421 * This watchdog task is scheduled to detect error case where hardware has
422 * dropped an Rx packet that was timestamped when the ring is full. The
423 * particular error is rare but leaves the device in a state unable to timestamp
424 * any future packets.
b980ac18 425 **/
fc580751
MV
426void igb_ptp_rx_hang(struct igb_adapter *adapter)
427{
428 struct e1000_hw *hw = &adapter->hw;
429 struct igb_ring *rx_ring;
430 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
431 unsigned long rx_event;
432 int n;
433
434 if (hw->mac.type != e1000_82576)
435 return;
436
437 /* If we don't have a valid timestamp in the registers, just update the
438 * timeout counter and exit
439 */
440 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
441 adapter->last_rx_ptp_check = jiffies;
442 return;
443 }
444
445 /* Determine the most recent watchdog or rx_timestamp event */
446 rx_event = adapter->last_rx_ptp_check;
447 for (n = 0; n < adapter->num_rx_queues; n++) {
448 rx_ring = adapter->rx_ring[n];
449 if (time_after(rx_ring->last_rx_timestamp, rx_event))
450 rx_event = rx_ring->last_rx_timestamp;
451 }
452
453 /* Only need to read the high RXSTMP register to clear the lock */
454 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
455 rd32(E1000_RXSTMPH);
456 adapter->last_rx_ptp_check = jiffies;
457 adapter->rx_hwtstamp_cleared++;
458 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
459 }
460}
461
a79f4f88
MV
462/**
463 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
1f6e8178 464 * @adapter: Board private structure.
a79f4f88
MV
465 *
466 * If we were asked to do hardware stamping and such a time stamp is
467 * available, then it must have been for this skb here because we only
468 * allow only one such packet into the queue.
b980ac18 469 **/
167f3f71 470static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
d339b133 471{
a79f4f88
MV
472 struct e1000_hw *hw = &adapter->hw;
473 struct skb_shared_hwtstamps shhwtstamps;
474 u64 regval;
d339b133 475
a79f4f88
MV
476 regval = rd32(E1000_TXSTMPL);
477 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
d339b133 478
a79f4f88 479 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
1f6e8178
MV
480 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
481 dev_kfree_skb_any(adapter->ptp_tx_skb);
482 adapter->ptp_tx_skb = NULL;
a79f4f88
MV
483}
484
b534550a
AD
485/**
486 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
487 * @q_vector: Pointer to interrupt specific structure
488 * @va: Pointer to address containing Rx buffer
489 * @skb: Buffer containing timestamp and packet
490 *
491 * This function is meant to retrieve a timestamp from the first buffer of an
492 * incoming frame. The value is stored in little endian format starting on
493 * byte 8.
b980ac18 494 **/
b534550a
AD
495void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
496 unsigned char *va,
497 struct sk_buff *skb)
498{
ac61d515 499 __le64 *regval = (__le64 *)va;
b534550a 500
b980ac18 501 /* The timestamp is recorded in little endian format.
b534550a
AD
502 * DWORD: 0 1 2 3
503 * Field: Reserved Reserved SYSTIML SYSTIMH
504 */
505 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
506 le64_to_cpu(regval[1]));
507}
508
509/**
510 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
511 * @q_vector: Pointer to interrupt specific structure
512 * @skb: Buffer containing timestamp and packet
513 *
514 * This function is meant to retrieve a timestamp from the internal registers
515 * of the adapter and store it in the skb.
b980ac18 516 **/
b534550a 517void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
a79f4f88
MV
518 struct sk_buff *skb)
519{
520 struct igb_adapter *adapter = q_vector->adapter;
521 struct e1000_hw *hw = &adapter->hw;
522 u64 regval;
523
b980ac18 524 /* If this bit is set, then the RX registers contain the time stamp. No
a79f4f88
MV
525 * other packet will be time stamped until we read these registers, so
526 * read the registers to make them available again. Because only one
527 * packet can be time stamped at a time, we know that the register
528 * values must belong to this one here and therefore we don't need to
529 * compare any of the additional attributes stored for it.
530 *
531 * If nothing went wrong, then it should have a shared tx_flags that we
532 * can turn into a skb_shared_hwtstamps.
533 */
b534550a
AD
534 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
535 return;
536
537 regval = rd32(E1000_RXSTMPL);
538 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
a79f4f88
MV
539
540 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
541}
542
543/**
6ab5f7b2
JK
544 * igb_ptp_get_ts_config - get hardware time stamping config
545 * @netdev:
546 * @ifreq:
547 *
548 * Get the hwtstamp_config settings to return to the user. Rather than attempt
549 * to deconstruct the settings from the registers, just return a shadow copy
550 * of the last known settings.
551 **/
552int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
553{
554 struct igb_adapter *adapter = netdev_priv(netdev);
555 struct hwtstamp_config *config = &adapter->tstamp_config;
556
557 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
558 -EFAULT : 0;
559}
560/**
561 * igb_ptp_set_ts_config - control hardware time stamping
a79f4f88
MV
562 * @netdev:
563 * @ifreq:
a79f4f88
MV
564 *
565 * Outgoing time stamping can be enabled and disabled. Play nice and
566 * disable it when requested, although it shouldn't case any overhead
567 * when no packet needs it. At most one packet in the queue may be
568 * marked for time stamping, otherwise it would be impossible to tell
569 * for sure to which packet the hardware time stamp belongs.
570 *
571 * Incoming time stamping has to be configured via the hardware
572 * filters. Not all combinations are supported, in particular event
573 * type has to be specified. Matching the kind of event packet is
574 * not supported, with the exception of "all V2 events regardless of
575 * level 2 or 4".
a79f4f88 576 **/
6ab5f7b2 577int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
a79f4f88
MV
578{
579 struct igb_adapter *adapter = netdev_priv(netdev);
580 struct e1000_hw *hw = &adapter->hw;
6ab5f7b2 581 struct hwtstamp_config *config = &adapter->tstamp_config;
a79f4f88
MV
582 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
583 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
584 u32 tsync_rx_cfg = 0;
585 bool is_l4 = false;
586 bool is_l2 = false;
587 u32 regval;
588
6ab5f7b2 589 if (copy_from_user(config, ifr->ifr_data, sizeof(*config)))
a79f4f88
MV
590 return -EFAULT;
591
592 /* reserved for future extensions */
6ab5f7b2 593 if (config->flags)
a79f4f88
MV
594 return -EINVAL;
595
6ab5f7b2 596 switch (config->tx_type) {
a79f4f88
MV
597 case HWTSTAMP_TX_OFF:
598 tsync_tx_ctl = 0;
599 case HWTSTAMP_TX_ON:
600 break;
601 default:
602 return -ERANGE;
603 }
604
6ab5f7b2 605 switch (config->rx_filter) {
a79f4f88
MV
606 case HWTSTAMP_FILTER_NONE:
607 tsync_rx_ctl = 0;
608 break;
a79f4f88
MV
609 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
610 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
611 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
612 is_l4 = true;
613 break;
614 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
615 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
616 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
617 is_l4 = true;
618 break;
3e961a06
MV
619 case HWTSTAMP_FILTER_PTP_V2_EVENT:
620 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
621 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
622 case HWTSTAMP_FILTER_PTP_V2_SYNC:
a79f4f88
MV
623 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
624 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3e961a06 625 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
a79f4f88
MV
626 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
627 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
a79f4f88 628 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6ab5f7b2 629 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
a79f4f88
MV
630 is_l2 = true;
631 is_l4 = true;
632 break;
3e961a06
MV
633 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
634 case HWTSTAMP_FILTER_ALL:
635 /* 82576 cannot timestamp all packets, which it needs to do to
636 * support both V1 Sync and Delay_Req messages
637 */
638 if (hw->mac.type != e1000_82576) {
639 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6ab5f7b2 640 config->rx_filter = HWTSTAMP_FILTER_ALL;
3e961a06
MV
641 break;
642 }
643 /* fall through */
a79f4f88 644 default:
6ab5f7b2 645 config->rx_filter = HWTSTAMP_FILTER_NONE;
a79f4f88
MV
646 return -ERANGE;
647 }
648
649 if (hw->mac.type == e1000_82575) {
650 if (tsync_rx_ctl | tsync_tx_ctl)
651 return -EINVAL;
652 return 0;
653 }
654
b980ac18 655 /* Per-packet timestamping only works if all packets are
a79f4f88 656 * timestamped, so enable timestamping in all packets as
b980ac18 657 * long as one Rx filter was configured.
a79f4f88
MV
658 */
659 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
660 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
661 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6ab5f7b2 662 config->rx_filter = HWTSTAMP_FILTER_ALL;
3e961a06
MV
663 is_l2 = true;
664 is_l4 = true;
e57b8bdb
MV
665
666 if ((hw->mac.type == e1000_i210) ||
667 (hw->mac.type == e1000_i211)) {
668 regval = rd32(E1000_RXPBS);
669 regval |= E1000_RXPBS_CFG_TS_EN;
670 wr32(E1000_RXPBS, regval);
671 }
a79f4f88
MV
672 }
673
674 /* enable/disable TX */
675 regval = rd32(E1000_TSYNCTXCTL);
676 regval &= ~E1000_TSYNCTXCTL_ENABLED;
677 regval |= tsync_tx_ctl;
678 wr32(E1000_TSYNCTXCTL, regval);
679
680 /* enable/disable RX */
681 regval = rd32(E1000_TSYNCRXCTL);
682 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
683 regval |= tsync_rx_ctl;
684 wr32(E1000_TSYNCRXCTL, regval);
685
686 /* define which PTP packets are time stamped */
687 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
688
689 /* define ethertype filter for timestamped packets */
690 if (is_l2)
691 wr32(E1000_ETQF(3),
692 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
693 E1000_ETQF_1588 | /* enable timestamping */
694 ETH_P_1588)); /* 1588 eth protocol type */
695 else
696 wr32(E1000_ETQF(3), 0);
697
a79f4f88
MV
698 /* L4 Queue Filter[3]: filter by destination port and protocol */
699 if (is_l4) {
700 u32 ftqf = (IPPROTO_UDP /* UDP */
701 | E1000_FTQF_VF_BP /* VF not compared */
702 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
703 | E1000_FTQF_MASK); /* mask all inputs */
704 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
705
ba59814b 706 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
a79f4f88
MV
707 wr32(E1000_IMIREXT(3),
708 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
709 if (hw->mac.type == e1000_82576) {
710 /* enable source port check */
ba59814b 711 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
a79f4f88
MV
712 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
713 }
714 wr32(E1000_FTQF(3), ftqf);
715 } else {
716 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
717 }
718 wrfl();
719
720 /* clear TX/RX time stamp registers, just to be sure */
e57b8bdb 721 regval = rd32(E1000_TXSTMPL);
a79f4f88 722 regval = rd32(E1000_TXSTMPH);
e57b8bdb 723 regval = rd32(E1000_RXSTMPL);
a79f4f88
MV
724 regval = rd32(E1000_RXSTMPH);
725
6ab5f7b2 726 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
a79f4f88 727 -EFAULT : 0;
d339b133
RC
728}
729
730void igb_ptp_init(struct igb_adapter *adapter)
731{
732 struct e1000_hw *hw = &adapter->hw;
201987e3 733 struct net_device *netdev = adapter->netdev;
d339b133
RC
734
735 switch (hw->mac.type) {
e57b8bdb
MV
736 case e1000_82576:
737 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
738 adapter->ptp_caps.owner = THIS_MODULE;
75517d92 739 adapter->ptp_caps.max_adj = 999999881;
e57b8bdb
MV
740 adapter->ptp_caps.n_ext_ts = 0;
741 adapter->ptp_caps.pps = 0;
742 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
743 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
744 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
745 adapter->ptp_caps.settime = igb_ptp_settime_82576;
746 adapter->ptp_caps.enable = igb_ptp_enable;
747 adapter->cc.read = igb_ptp_read_82576;
748 adapter->cc.mask = CLOCKSOURCE_MASK(64);
749 adapter->cc.mult = 1;
750 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
751 /* Dial the nominal frequency. */
752 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
753 break;
d339b133 754 case e1000_82580:
ceb5f13b 755 case e1000_i354:
e57b8bdb 756 case e1000_i350:
201987e3 757 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
a79f4f88 758 adapter->ptp_caps.owner = THIS_MODULE;
a79f4f88
MV
759 adapter->ptp_caps.max_adj = 62499999;
760 adapter->ptp_caps.n_ext_ts = 0;
761 adapter->ptp_caps.pps = 0;
762 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
e57b8bdb
MV
763 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
764 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
765 adapter->ptp_caps.settime = igb_ptp_settime_82576;
a79f4f88
MV
766 adapter->ptp_caps.enable = igb_ptp_enable;
767 adapter->cc.read = igb_ptp_read_82580;
768 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
769 adapter->cc.mult = 1;
770 adapter->cc.shift = 0;
d339b133
RC
771 /* Enable the timer functions by clearing bit 31. */
772 wr32(E1000_TSAUXC, 0x0);
773 break;
e57b8bdb
MV
774 case e1000_i210:
775 case e1000_i211:
201987e3 776 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
a79f4f88 777 adapter->ptp_caps.owner = THIS_MODULE;
e57b8bdb 778 adapter->ptp_caps.max_adj = 62499999;
a79f4f88
MV
779 adapter->ptp_caps.n_ext_ts = 0;
780 adapter->ptp_caps.pps = 0;
e57b8bdb
MV
781 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
782 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
783 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
784 adapter->ptp_caps.settime = igb_ptp_settime_i210;
a79f4f88 785 adapter->ptp_caps.enable = igb_ptp_enable;
e57b8bdb
MV
786 /* Enable the timer functions by clearing bit 31. */
787 wr32(E1000_TSAUXC, 0x0);
d339b133 788 break;
d339b133
RC
789 default:
790 adapter->ptp_clock = NULL;
791 return;
792 }
793
794 wrfl();
795
e57b8bdb
MV
796 spin_lock_init(&adapter->tmreg_lock);
797 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
d339b133 798
e57b8bdb
MV
799 /* Initialize the clock and overflow work for devices that need it. */
800 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
801 struct timespec ts = ktime_to_timespec(ktime_get_real());
d339b133 802
e57b8bdb
MV
803 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
804 } else {
805 timecounter_init(&adapter->tc, &adapter->cc,
806 ktime_to_ns(ktime_get_real()));
d339b133 807
e57b8bdb
MV
808 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
809 igb_ptp_overflow_check);
1f6e8178 810
e57b8bdb
MV
811 schedule_delayed_work(&adapter->ptp_overflow_work,
812 IGB_SYSTIM_OVERFLOW_PERIOD);
813 }
d339b133 814
1f6e8178
MV
815 /* Initialize the time sync interrupts for devices that support it. */
816 if (hw->mac.type >= e1000_82580) {
0c375ac1 817 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1f6e8178
MV
818 wr32(E1000_IMS, E1000_IMS_TS);
819 }
820
1ef76158
RC
821 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
822 &adapter->pdev->dev);
d339b133
RC
823 if (IS_ERR(adapter->ptp_clock)) {
824 adapter->ptp_clock = NULL;
825 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1f6e8178 826 } else {
d339b133
RC
827 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
828 adapter->netdev->name);
1f6e8178
MV
829 adapter->flags |= IGB_FLAG_PTP;
830 }
d339b133
RC
831}
832
a79f4f88
MV
833/**
834 * igb_ptp_stop - Disable PTP device and stop the overflow check.
835 * @adapter: Board private structure.
836 *
837 * This function stops the PTP support and cancels the delayed work.
838 **/
839void igb_ptp_stop(struct igb_adapter *adapter)
d339b133 840{
d3eef8c8 841 switch (adapter->hw.mac.type) {
d3eef8c8 842 case e1000_82576:
1f6e8178 843 case e1000_82580:
ceb5f13b 844 case e1000_i354:
1f6e8178 845 case e1000_i350:
a79f4f88 846 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
d3eef8c8 847 break;
1f6e8178
MV
848 case e1000_i210:
849 case e1000_i211:
850 /* No delayed work to cancel. */
851 break;
d3eef8c8
CW
852 default:
853 return;
854 }
d339b133 855
1f6e8178 856 cancel_work_sync(&adapter->ptp_tx_work);
badc26dd
MV
857 if (adapter->ptp_tx_skb) {
858 dev_kfree_skb_any(adapter->ptp_tx_skb);
859 adapter->ptp_tx_skb = NULL;
860 }
1f6e8178 861
d339b133
RC
862 if (adapter->ptp_clock) {
863 ptp_clock_unregister(adapter->ptp_clock);
864 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
865 adapter->netdev->name);
1f6e8178 866 adapter->flags &= ~IGB_FLAG_PTP;
d339b133
RC
867 }
868}
1f6e8178
MV
869
870/**
871 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
872 * @adapter: Board private structure.
873 *
874 * This function handles the reset work required to re-enable the PTP device.
875 **/
876void igb_ptp_reset(struct igb_adapter *adapter)
877{
878 struct e1000_hw *hw = &adapter->hw;
879
880 if (!(adapter->flags & IGB_FLAG_PTP))
881 return;
882
6ab5f7b2
JK
883 /* reset the tstamp_config */
884 memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
885
1f6e8178
MV
886 switch (adapter->hw.mac.type) {
887 case e1000_82576:
888 /* Dial the nominal frequency. */
889 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
890 break;
891 case e1000_82580:
ceb5f13b 892 case e1000_i354:
1f6e8178
MV
893 case e1000_i350:
894 case e1000_i210:
895 case e1000_i211:
896 /* Enable the timer functions and interrupts. */
897 wr32(E1000_TSAUXC, 0x0);
0c375ac1 898 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1f6e8178
MV
899 wr32(E1000_IMS, E1000_IMS_TS);
900 break;
901 default:
902 /* No work to do. */
903 return;
904 }
905
e57b8bdb
MV
906 /* Re-initialize the timer. */
907 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
908 struct timespec ts = ktime_to_timespec(ktime_get_real());
909
910 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
911 } else {
912 timecounter_init(&adapter->tc, &adapter->cc,
913 ktime_to_ns(ktime_get_real()));
914 }
1f6e8178 915}