Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
ae06c70b 1// SPDX-License-Identifier: GPL-2.0
e52c0f96
CW
2/* Intel(R) Gigabit Ethernet Linux driver
3 * Copyright(c) 2007-2014 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, see <http://www.gnu.org/licenses/>.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Contact Information:
21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
23 */
9d5c8243 24
876d2d6f
JK
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
9d5c8243
AK
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/init.h>
b2cb09b1 30#include <linux/bitops.h>
9d5c8243
AK
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
05f9d3e1 38#include <net/pkt_sched.h>
c6cb090b 39#include <linux/net_tstamp.h>
9d5c8243
AK
40#include <linux/mii.h>
41#include <linux/ethtool.h>
01789349 42#include <linux/if.h>
9d5c8243
AK
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
c54106bb 45#include <linux/pci-aspm.h>
9d5c8243
AK
46#include <linux/delay.h>
47#include <linux/interrupt.h>
7d13a7d0
AD
48#include <linux/ip.h>
49#include <linux/tcp.h>
50#include <linux/sctp.h>
9d5c8243 51#include <linux/if_ether.h>
40a914fa 52#include <linux/aer.h>
70c71606 53#include <linux/prefetch.h>
749ab2cd 54#include <linux/pm_runtime.h>
806ffb1d 55#include <linux/etherdevice.h>
421e02f0 56#ifdef CONFIG_IGB_DCA
fe4506b6
JC
57#include <linux/dca.h>
58#endif
441fc6fd 59#include <linux/i2c.h>
9d5c8243
AK
60#include "igb.h"
61
67b1b903 62#define MAJ 5
0742337c 63#define MIN 4
6fb46902 64#define BUILD 0
0d1fe82d 65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 66__stringify(BUILD) "-k"
05f9d3e1
AG
67
68enum queue_mode {
69 QUEUE_MODE_STRICT_PRIORITY,
70 QUEUE_MODE_STREAM_RESERVATION,
71};
72
73enum tx_queue_prio {
74 TX_QUEUE_PRIO_HIGH,
75 TX_QUEUE_PRIO_LOW,
76};
77
9d5c8243
AK
78char igb_driver_name[] = "igb";
79char igb_driver_version[] = DRV_VERSION;
80static const char igb_driver_string[] =
81 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462 82static const char igb_copyright[] =
74cfb2e1 83 "Copyright (c) 2007-2014 Intel Corporation.";
9d5c8243 84
9d5c8243
AK
85static const struct e1000_info *igb_info_tbl[] = {
86 [board_82575] = &e1000_82575_info,
87};
88
cd1631ce 89static const struct pci_device_id igb_pci_tbl[] = {
ceb5f13b
CW
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
53b87ce3
CW
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
d2ba2ed8
AD
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
125 /* required last entry */
126 {0, }
127};
128
129MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
130
9d5c8243
AK
131static int igb_setup_all_tx_resources(struct igb_adapter *);
132static int igb_setup_all_rx_resources(struct igb_adapter *);
133static void igb_free_all_tx_resources(struct igb_adapter *);
134static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 135static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 136static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 137static void igb_remove(struct pci_dev *pdev);
9d5c8243 138static int igb_sw_init(struct igb_adapter *);
46eafa59
SA
139int igb_open(struct net_device *);
140int igb_close(struct net_device *);
53c7d064 141static void igb_configure(struct igb_adapter *);
9d5c8243
AK
142static void igb_configure_tx(struct igb_adapter *);
143static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
144static void igb_clean_all_tx_rings(struct igb_adapter *);
145static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
146static void igb_clean_tx_ring(struct igb_ring *);
147static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 148static void igb_set_rx_mode(struct net_device *);
26566eae
KC
149static void igb_update_phy_info(struct timer_list *);
150static void igb_watchdog(struct timer_list *);
9d5c8243 151static void igb_watchdog_task(struct work_struct *);
cd392f5c 152static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
bc1f4470 153static void igb_get_stats64(struct net_device *dev,
154 struct rtnl_link_stats64 *stats);
9d5c8243
AK
155static int igb_change_mtu(struct net_device *, int);
156static int igb_set_mac(struct net_device *, void *);
bf456abb 157static void igb_set_uta(struct igb_adapter *adapter, bool set);
9d5c8243
AK
158static irqreturn_t igb_intr(int irq, void *);
159static irqreturn_t igb_intr_msi(int irq, void *);
160static irqreturn_t igb_msix_other(int irq, void *);
047e0030 161static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 162#ifdef CONFIG_IGB_DCA
047e0030 163static void igb_update_dca(struct igb_q_vector *);
fe4506b6 164static void igb_setup_dca(struct igb_adapter *);
421e02f0 165#endif /* CONFIG_IGB_DCA */
661086df 166static int igb_poll(struct napi_struct *, int);
7f0ba845 167static bool igb_clean_tx_irq(struct igb_q_vector *, int);
32b3e08f 168static int igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
169static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
170static void igb_tx_timeout(struct net_device *);
171static void igb_reset_task(struct work_struct *);
c502ea2e
CW
172static void igb_vlan_mode(struct net_device *netdev,
173 netdev_features_t features);
80d5c368
PM
174static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
175static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 176static void igb_restore_vlan(struct igb_adapter *);
83c21335 177static void igb_rar_set_index(struct igb_adapter *, u32);
4ae196df
AD
178static void igb_ping_all_vfs(struct igb_adapter *);
179static void igb_msg_task(struct igb_adapter *);
4ae196df 180static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 181static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
83c21335
YK
182static void igb_flush_mac_table(struct igb_adapter *);
183static int igb_available_rars(struct igb_adapter *, u8);
184static void igb_set_default_mac_filter(struct igb_adapter *);
185static int igb_uc_sync(struct net_device *, const unsigned char *);
186static int igb_uc_unsync(struct net_device *, const unsigned char *);
4ae196df 187static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
188static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
189static int igb_ndo_set_vf_vlan(struct net_device *netdev,
79aab093 190 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
ed616689 191static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
70ea4783
LL
192static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
193 bool setting);
1b8b062a
CV
194static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
195 bool setting);
8151d294
WM
196static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
197 struct ifla_vf_info *ivi);
17dc566c 198static void igb_check_vf_rate_limit(struct igb_adapter *);
0e71def2
GH
199static void igb_nfc_filter_exit(struct igb_adapter *adapter);
200static void igb_nfc_filter_restore(struct igb_adapter *adapter);
46a01698
RL
201
202#ifdef CONFIG_PCI_IOV
0224d663 203static int igb_vf_configure(struct igb_adapter *adapter, int vf);
781798a1 204static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
ceee3450
TF
205static int igb_disable_sriov(struct pci_dev *dev);
206static int igb_pci_disable_sriov(struct pci_dev *dev);
46a01698 207#endif
9d5c8243 208
749ab2cd
YZ
209static int igb_suspend(struct device *);
210static int igb_resume(struct device *);
749ab2cd
YZ
211static int igb_runtime_suspend(struct device *dev);
212static int igb_runtime_resume(struct device *dev);
213static int igb_runtime_idle(struct device *dev);
749ab2cd
YZ
214static const struct dev_pm_ops igb_pm_ops = {
215 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
216 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
217 igb_runtime_idle)
218};
9d5c8243 219static void igb_shutdown(struct pci_dev *);
fa44f2f1 220static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 221#ifdef CONFIG_IGB_DCA
fe4506b6
JC
222static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
223static struct notifier_block dca_notifier = {
224 .notifier_call = igb_notify_dca,
225 .next = NULL,
226 .priority = 0
227};
228#endif
9d5c8243
AK
229#ifdef CONFIG_NET_POLL_CONTROLLER
230/* for netdump / net console */
231static void igb_netpoll(struct net_device *);
232#endif
37680117 233#ifdef CONFIG_PCI_IOV
6dd6d2b7 234static unsigned int max_vfs;
2a3abf6d 235module_param(max_vfs, uint, 0);
c75c4edf 236MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
2a3abf6d
AD
237#endif /* CONFIG_PCI_IOV */
238
9d5c8243
AK
239static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
240 pci_channel_state_t);
241static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
242static void igb_io_resume(struct pci_dev *);
243
3646f0e5 244static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
245 .error_detected = igb_io_error_detected,
246 .slot_reset = igb_io_slot_reset,
247 .resume = igb_io_resume,
248};
249
b6e0c419 250static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
251
252static struct pci_driver igb_driver = {
253 .name = igb_driver_name,
254 .id_table = igb_pci_tbl,
255 .probe = igb_probe,
9f9a12f8 256 .remove = igb_remove,
9d5c8243 257#ifdef CONFIG_PM
749ab2cd 258 .driver.pm = &igb_pm_ops,
9d5c8243
AK
259#endif
260 .shutdown = igb_shutdown,
fa44f2f1 261 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
262 .err_handler = &igb_err_handler
263};
264
265MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
266MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
267MODULE_LICENSE("GPL");
268MODULE_VERSION(DRV_VERSION);
269
b3f4d599 270#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
271static int debug = -1;
272module_param(debug, int, 0);
273MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
274
c97ec42a
TI
275struct igb_reg_info {
276 u32 ofs;
277 char *name;
278};
279
280static const struct igb_reg_info igb_reg_info_tbl[] = {
281
282 /* General Registers */
283 {E1000_CTRL, "CTRL"},
284 {E1000_STATUS, "STATUS"},
285 {E1000_CTRL_EXT, "CTRL_EXT"},
286
287 /* Interrupt Registers */
288 {E1000_ICR, "ICR"},
289
290 /* RX Registers */
291 {E1000_RCTL, "RCTL"},
292 {E1000_RDLEN(0), "RDLEN"},
293 {E1000_RDH(0), "RDH"},
294 {E1000_RDT(0), "RDT"},
295 {E1000_RXDCTL(0), "RXDCTL"},
296 {E1000_RDBAL(0), "RDBAL"},
297 {E1000_RDBAH(0), "RDBAH"},
298
299 /* TX Registers */
300 {E1000_TCTL, "TCTL"},
301 {E1000_TDBAL(0), "TDBAL"},
302 {E1000_TDBAH(0), "TDBAH"},
303 {E1000_TDLEN(0), "TDLEN"},
304 {E1000_TDH(0), "TDH"},
305 {E1000_TDT(0), "TDT"},
306 {E1000_TXDCTL(0), "TXDCTL"},
307 {E1000_TDFH, "TDFH"},
308 {E1000_TDFT, "TDFT"},
309 {E1000_TDFHS, "TDFHS"},
310 {E1000_TDFPC, "TDFPC"},
311
312 /* List Terminator */
313 {}
314};
315
b980ac18 316/* igb_regdump - register printout routine */
c97ec42a
TI
317static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
318{
319 int n = 0;
320 char rname[16];
321 u32 regs[8];
322
323 switch (reginfo->ofs) {
324 case E1000_RDLEN(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDLEN(n));
327 break;
328 case E1000_RDH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDH(n));
331 break;
332 case E1000_RDT(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDT(n));
335 break;
336 case E1000_RXDCTL(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_RXDCTL(n));
339 break;
340 case E1000_RDBAL(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_RDBAL(n));
343 break;
344 case E1000_RDBAH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_RDBAH(n));
347 break;
348 case E1000_TDBAL(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_RDBAL(n));
351 break;
352 case E1000_TDBAH(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TDBAH(n));
355 break;
356 case E1000_TDLEN(0):
357 for (n = 0; n < 4; n++)
358 regs[n] = rd32(E1000_TDLEN(n));
359 break;
360 case E1000_TDH(0):
361 for (n = 0; n < 4; n++)
362 regs[n] = rd32(E1000_TDH(n));
363 break;
364 case E1000_TDT(0):
365 for (n = 0; n < 4; n++)
366 regs[n] = rd32(E1000_TDT(n));
367 break;
368 case E1000_TXDCTL(0):
369 for (n = 0; n < 4; n++)
370 regs[n] = rd32(E1000_TXDCTL(n));
371 break;
372 default:
876d2d6f 373 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
374 return;
375 }
376
377 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
378 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
379 regs[2], regs[3]);
c97ec42a
TI
380}
381
b980ac18 382/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
383static void igb_dump(struct igb_adapter *adapter)
384{
385 struct net_device *netdev = adapter->netdev;
386 struct e1000_hw *hw = &adapter->hw;
387 struct igb_reg_info *reginfo;
c97ec42a
TI
388 struct igb_ring *tx_ring;
389 union e1000_adv_tx_desc *tx_desc;
390 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
391 struct igb_ring *rx_ring;
392 union e1000_adv_rx_desc *rx_desc;
393 u32 staterr;
6ad4edfc 394 u16 i, n;
c97ec42a
TI
395
396 if (!netif_msg_hw(adapter))
397 return;
398
399 /* Print netdevice Info */
400 if (netdev) {
401 dev_info(&adapter->pdev->dev, "Net device Info\n");
4a7c9726
TK
402 pr_info("Device Name state trans_start\n");
403 pr_info("%-15s %016lX %016lX\n", netdev->name,
404 netdev->state, dev_trans_start(netdev));
c97ec42a
TI
405 }
406
407 /* Print Registers */
408 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 409 pr_info(" Register Name Value\n");
c97ec42a
TI
410 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
411 reginfo->name; reginfo++) {
412 igb_regdump(hw, reginfo);
413 }
414
415 /* Print TX Ring Summary */
416 if (!netdev || !netif_running(netdev))
417 goto exit;
418
419 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 420 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 421 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 422 struct igb_tx_buffer *buffer_info;
c97ec42a 423 tx_ring = adapter->tx_ring[n];
06034649 424 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
425 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
426 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
427 (u64)dma_unmap_addr(buffer_info, dma),
428 dma_unmap_len(buffer_info, len),
876d2d6f
JK
429 buffer_info->next_to_watch,
430 (u64)buffer_info->time_stamp);
c97ec42a
TI
431 }
432
433 /* Print TX Rings */
434 if (!netif_msg_tx_done(adapter))
435 goto rx_ring_summary;
436
437 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
438
439 /* Transmit Descriptor Formats
440 *
441 * Advanced Transmit Descriptor
442 * +--------------------------------------------------------------+
443 * 0 | Buffer Address [63:0] |
444 * +--------------------------------------------------------------+
445 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
446 * +--------------------------------------------------------------+
447 * 63 46 45 40 39 38 36 35 32 31 24 15 0
448 */
449
450 for (n = 0; n < adapter->num_tx_queues; n++) {
451 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
452 pr_info("------------------------------------\n");
453 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
454 pr_info("------------------------------------\n");
c75c4edf 455 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
c97ec42a
TI
456
457 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 458 const char *next_desc;
06034649 459 struct igb_tx_buffer *buffer_info;
60136906 460 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 461 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 462 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
463 if (i == tx_ring->next_to_use &&
464 i == tx_ring->next_to_clean)
465 next_desc = " NTC/U";
466 else if (i == tx_ring->next_to_use)
467 next_desc = " NTU";
468 else if (i == tx_ring->next_to_clean)
469 next_desc = " NTC";
470 else
471 next_desc = "";
472
c75c4edf
CW
473 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
474 i, le64_to_cpu(u0->a),
c97ec42a 475 le64_to_cpu(u0->b),
c9f14bf3
AD
476 (u64)dma_unmap_addr(buffer_info, dma),
477 dma_unmap_len(buffer_info, len),
c97ec42a
TI
478 buffer_info->next_to_watch,
479 (u64)buffer_info->time_stamp,
876d2d6f 480 buffer_info->skb, next_desc);
c97ec42a 481
b669588a 482 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
483 print_hex_dump(KERN_INFO, "",
484 DUMP_PREFIX_ADDRESS,
b669588a 485 16, 1, buffer_info->skb->data,
c9f14bf3
AD
486 dma_unmap_len(buffer_info, len),
487 true);
c97ec42a
TI
488 }
489 }
490
491 /* Print RX Rings Summary */
492rx_ring_summary:
493 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 494 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
495 for (n = 0; n < adapter->num_rx_queues; n++) {
496 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
497 pr_info(" %5d %5X %5X\n",
498 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
499 }
500
501 /* Print RX Rings */
502 if (!netif_msg_rx_status(adapter))
503 goto exit;
504
505 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
506
507 /* Advanced Receive Descriptor (Read) Format
508 * 63 1 0
509 * +-----------------------------------------------------+
510 * 0 | Packet Buffer Address [63:1] |A0/NSE|
511 * +----------------------------------------------+------+
512 * 8 | Header Buffer Address [63:1] | DD |
513 * +-----------------------------------------------------+
514 *
515 *
516 * Advanced Receive Descriptor (Write-Back) Format
517 *
518 * 63 48 47 32 31 30 21 20 17 16 4 3 0
519 * +------------------------------------------------------+
520 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
521 * | Checksum Ident | | | | Type | Type |
522 * +------------------------------------------------------+
523 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
524 * +------------------------------------------------------+
525 * 63 48 47 32 31 20 19 0
526 */
527
528 for (n = 0; n < adapter->num_rx_queues; n++) {
529 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
530 pr_info("------------------------------------\n");
531 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
532 pr_info("------------------------------------\n");
c75c4edf
CW
533 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
534 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
535
536 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 537 const char *next_desc;
06034649
AD
538 struct igb_rx_buffer *buffer_info;
539 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 540 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
541 u0 = (struct my_u0 *)rx_desc;
542 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
543
544 if (i == rx_ring->next_to_use)
545 next_desc = " NTU";
546 else if (i == rx_ring->next_to_clean)
547 next_desc = " NTC";
548 else
549 next_desc = "";
550
c97ec42a
TI
551 if (staterr & E1000_RXD_STAT_DD) {
552 /* Descriptor Done */
1a1c225b
AD
553 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
554 "RWB", i,
c97ec42a
TI
555 le64_to_cpu(u0->a),
556 le64_to_cpu(u0->b),
1a1c225b 557 next_desc);
c97ec42a 558 } else {
1a1c225b
AD
559 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
560 "R ", i,
c97ec42a
TI
561 le64_to_cpu(u0->a),
562 le64_to_cpu(u0->b),
563 (u64)buffer_info->dma,
1a1c225b 564 next_desc);
c97ec42a 565
b669588a 566 if (netif_msg_pktdata(adapter) &&
1a1c225b 567 buffer_info->dma && buffer_info->page) {
44390ca6
AD
568 print_hex_dump(KERN_INFO, "",
569 DUMP_PREFIX_ADDRESS,
570 16, 1,
b669588a
ET
571 page_address(buffer_info->page) +
572 buffer_info->page_offset,
8649aaef 573 igb_rx_bufsz(rx_ring), true);
c97ec42a
TI
574 }
575 }
c97ec42a
TI
576 }
577 }
578
579exit:
580 return;
581}
582
b980ac18
JK
583/**
584 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
585 * @hw: pointer to hardware structure
586 * @i2cctl: Current value of I2CCTL register
587 *
588 * Returns the I2C data bit value
b980ac18 589 **/
441fc6fd
CW
590static int igb_get_i2c_data(void *data)
591{
592 struct igb_adapter *adapter = (struct igb_adapter *)data;
593 struct e1000_hw *hw = &adapter->hw;
594 s32 i2cctl = rd32(E1000_I2CPARAMS);
595
da1f1dfe 596 return !!(i2cctl & E1000_I2C_DATA_IN);
441fc6fd
CW
597}
598
b980ac18
JK
599/**
600 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
601 * @data: pointer to hardware structure
602 * @state: I2C data value (0 or 1) to set
603 *
604 * Sets the I2C data bit
b980ac18 605 **/
441fc6fd
CW
606static void igb_set_i2c_data(void *data, int state)
607{
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612 if (state)
613 i2cctl |= E1000_I2C_DATA_OUT;
614 else
615 i2cctl &= ~E1000_I2C_DATA_OUT;
616
617 i2cctl &= ~E1000_I2C_DATA_OE_N;
618 i2cctl |= E1000_I2C_CLK_OE_N;
619 wr32(E1000_I2CPARAMS, i2cctl);
620 wrfl();
621
622}
623
b980ac18
JK
624/**
625 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
626 * @data: pointer to hardware structure
627 * @state: state to set clock
628 *
629 * Sets the I2C clock line to state
b980ac18 630 **/
441fc6fd
CW
631static void igb_set_i2c_clk(void *data, int state)
632{
633 struct igb_adapter *adapter = (struct igb_adapter *)data;
634 struct e1000_hw *hw = &adapter->hw;
635 s32 i2cctl = rd32(E1000_I2CPARAMS);
636
637 if (state) {
638 i2cctl |= E1000_I2C_CLK_OUT;
639 i2cctl &= ~E1000_I2C_CLK_OE_N;
640 } else {
641 i2cctl &= ~E1000_I2C_CLK_OUT;
642 i2cctl &= ~E1000_I2C_CLK_OE_N;
643 }
644 wr32(E1000_I2CPARAMS, i2cctl);
645 wrfl();
646}
647
b980ac18
JK
648/**
649 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
650 * @data: pointer to hardware structure
651 *
652 * Gets the I2C clock state
b980ac18 653 **/
441fc6fd
CW
654static int igb_get_i2c_clk(void *data)
655{
656 struct igb_adapter *adapter = (struct igb_adapter *)data;
657 struct e1000_hw *hw = &adapter->hw;
658 s32 i2cctl = rd32(E1000_I2CPARAMS);
659
da1f1dfe 660 return !!(i2cctl & E1000_I2C_CLK_IN);
441fc6fd
CW
661}
662
663static const struct i2c_algo_bit_data igb_i2c_algo = {
664 .setsda = igb_set_i2c_data,
665 .setscl = igb_set_i2c_clk,
666 .getsda = igb_get_i2c_data,
667 .getscl = igb_get_i2c_clk,
668 .udelay = 5,
669 .timeout = 20,
670};
671
9d5c8243 672/**
b980ac18
JK
673 * igb_get_hw_dev - return device
674 * @hw: pointer to hardware structure
675 *
676 * used by hardware layer to print debugging information
9d5c8243 677 **/
c041076a 678struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
679{
680 struct igb_adapter *adapter = hw->back;
c041076a 681 return adapter->netdev;
9d5c8243 682}
38c845c7 683
9d5c8243 684/**
b980ac18 685 * igb_init_module - Driver Registration Routine
9d5c8243 686 *
b980ac18
JK
687 * igb_init_module is the first routine called when the driver is
688 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
689 **/
690static int __init igb_init_module(void)
691{
692 int ret;
9005df38 693
876d2d6f 694 pr_info("%s - version %s\n",
9d5c8243 695 igb_driver_string, igb_driver_version);
876d2d6f 696 pr_info("%s\n", igb_copyright);
9d5c8243 697
421e02f0 698#ifdef CONFIG_IGB_DCA
fe4506b6
JC
699 dca_register_notify(&dca_notifier);
700#endif
bbd98fe4 701 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
702 return ret;
703}
704
705module_init(igb_init_module);
706
707/**
b980ac18 708 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 709 *
b980ac18
JK
710 * igb_exit_module is called just before the driver is removed
711 * from memory.
9d5c8243
AK
712 **/
713static void __exit igb_exit_module(void)
714{
421e02f0 715#ifdef CONFIG_IGB_DCA
fe4506b6
JC
716 dca_unregister_notify(&dca_notifier);
717#endif
9d5c8243
AK
718 pci_unregister_driver(&igb_driver);
719}
720
721module_exit(igb_exit_module);
722
26bc19ec
AD
723#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
724/**
b980ac18
JK
725 * igb_cache_ring_register - Descriptor ring to register mapping
726 * @adapter: board private structure to initialize
26bc19ec 727 *
b980ac18
JK
728 * Once we know the feature-set enabled for the device, we'll cache
729 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
730 **/
731static void igb_cache_ring_register(struct igb_adapter *adapter)
732{
ee1b9f06 733 int i = 0, j = 0;
047e0030 734 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
735
736 switch (adapter->hw.mac.type) {
737 case e1000_82576:
738 /* The queues are allocated for virtualization such that VF 0
739 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
740 * In order to avoid collision we start at the first free queue
741 * and continue consuming queues in the same sequence
742 */
ee1b9f06 743 if (adapter->vfs_allocated_count) {
a99955fc 744 for (; i < adapter->rss_queues; i++)
3025a446 745 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 746 Q_IDX_82576(i);
ee1b9f06 747 }
b26141d4 748 /* Fall through */
26bc19ec 749 case e1000_82575:
55cac248 750 case e1000_82580:
d2ba2ed8 751 case e1000_i350:
ceb5f13b 752 case e1000_i354:
f96a8a0b
CW
753 case e1000_i210:
754 case e1000_i211:
b26141d4 755 /* Fall through */
26bc19ec 756 default:
ee1b9f06 757 for (; i < adapter->num_rx_queues; i++)
3025a446 758 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 759 for (; j < adapter->num_tx_queues; j++)
3025a446 760 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
761 break;
762 }
763}
764
22a8b291
FT
765u32 igb_rd32(struct e1000_hw *hw, u32 reg)
766{
767 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
6aa7de05 768 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
22a8b291
FT
769 u32 value = 0;
770
771 if (E1000_REMOVED(hw_addr))
772 return ~value;
773
774 value = readl(&hw_addr[reg]);
775
776 /* reads should not return all F's */
777 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
778 struct net_device *netdev = igb->netdev;
779 hw->hw_addr = NULL;
17a0b9ad 780 netdev_err(netdev, "PCIe link lost\n");
22a8b291
FT
781 }
782
783 return value;
784}
785
4be000c8
AD
786/**
787 * igb_write_ivar - configure ivar for given MSI-X vector
788 * @hw: pointer to the HW structure
789 * @msix_vector: vector number we are allocating to a given ring
790 * @index: row index of IVAR register to write within IVAR table
791 * @offset: column offset of in IVAR, should be multiple of 8
792 *
793 * This function is intended to handle the writing of the IVAR register
794 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
795 * each containing an cause allocation for an Rx and Tx ring, and a
796 * variable number of rows depending on the number of queues supported.
797 **/
798static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
799 int index, int offset)
800{
801 u32 ivar = array_rd32(E1000_IVAR0, index);
802
803 /* clear any bits that are currently set */
804 ivar &= ~((u32)0xFF << offset);
805
806 /* write vector and valid bit */
807 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
808
809 array_wr32(E1000_IVAR0, index, ivar);
810}
811
9d5c8243 812#define IGB_N0_QUEUE -1
047e0030 813static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 814{
047e0030 815 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 816 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
817 int rx_queue = IGB_N0_QUEUE;
818 int tx_queue = IGB_N0_QUEUE;
4be000c8 819 u32 msixbm = 0;
047e0030 820
0ba82994
AD
821 if (q_vector->rx.ring)
822 rx_queue = q_vector->rx.ring->reg_idx;
823 if (q_vector->tx.ring)
824 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
825
826 switch (hw->mac.type) {
827 case e1000_82575:
9d5c8243 828 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
829 * bitmask for the EICR/EIMS/EIMC registers. To assign one
830 * or more queues to a vector, we write the appropriate bits
831 * into the MSIXBM register for that vector.
832 */
047e0030 833 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 834 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 835 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 836 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
cd14ef54 837 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
feeb2721 838 msixbm |= E1000_EIMS_OTHER;
9d5c8243 839 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 840 q_vector->eims_value = msixbm;
2d064c06
AD
841 break;
842 case e1000_82576:
b980ac18 843 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
844 * with 8 rows. The ordering is column-major so we use the
845 * lower 3 bits as the row index, and the 4th bit as the
846 * column offset.
847 */
848 if (rx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
850 rx_queue & 0x7,
851 (rx_queue & 0x8) << 1);
852 if (tx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 tx_queue & 0x7,
855 ((tx_queue & 0x8) << 1) + 8);
a51d8c21 856 q_vector->eims_value = BIT(msix_vector);
2d064c06 857 break;
55cac248 858 case e1000_82580:
d2ba2ed8 859 case e1000_i350:
ceb5f13b 860 case e1000_i354:
f96a8a0b
CW
861 case e1000_i210:
862 case e1000_i211:
b980ac18 863 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
864 * however instead of ordering column-major we have things
865 * ordered row-major. So we traverse the table by using
866 * bit 0 as the column offset, and the remaining bits as the
867 * row index.
868 */
869 if (rx_queue > IGB_N0_QUEUE)
870 igb_write_ivar(hw, msix_vector,
871 rx_queue >> 1,
872 (rx_queue & 0x1) << 4);
873 if (tx_queue > IGB_N0_QUEUE)
874 igb_write_ivar(hw, msix_vector,
875 tx_queue >> 1,
876 ((tx_queue & 0x1) << 4) + 8);
a51d8c21 877 q_vector->eims_value = BIT(msix_vector);
55cac248 878 break;
2d064c06
AD
879 default:
880 BUG();
881 break;
882 }
26b39276
AD
883
884 /* add q_vector eims value to global eims_enable_mask */
885 adapter->eims_enable_mask |= q_vector->eims_value;
886
887 /* configure q_vector to set itr on first interrupt */
888 q_vector->set_itr = 1;
9d5c8243
AK
889}
890
891/**
b980ac18
JK
892 * igb_configure_msix - Configure MSI-X hardware
893 * @adapter: board private structure to initialize
9d5c8243 894 *
b980ac18
JK
895 * igb_configure_msix sets up the hardware to properly
896 * generate MSI-X interrupts.
9d5c8243
AK
897 **/
898static void igb_configure_msix(struct igb_adapter *adapter)
899{
900 u32 tmp;
901 int i, vector = 0;
902 struct e1000_hw *hw = &adapter->hw;
903
904 adapter->eims_enable_mask = 0;
9d5c8243
AK
905
906 /* set vector for other causes, i.e. link changes */
2d064c06
AD
907 switch (hw->mac.type) {
908 case e1000_82575:
9d5c8243
AK
909 tmp = rd32(E1000_CTRL_EXT);
910 /* enable MSI-X PBA support*/
911 tmp |= E1000_CTRL_EXT_PBA_CLR;
912
913 /* Auto-Mask interrupts upon ICR read. */
914 tmp |= E1000_CTRL_EXT_EIAME;
915 tmp |= E1000_CTRL_EXT_IRCA;
916
917 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
918
919 /* enable msix_other interrupt */
b980ac18 920 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 921 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 922
2d064c06
AD
923 break;
924
925 case e1000_82576:
55cac248 926 case e1000_82580:
d2ba2ed8 927 case e1000_i350:
ceb5f13b 928 case e1000_i354:
f96a8a0b
CW
929 case e1000_i210:
930 case e1000_i211:
047e0030 931 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
932 * won't stick. And it will take days to debug.
933 */
047e0030 934 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
935 E1000_GPIE_PBA | E1000_GPIE_EIAME |
936 E1000_GPIE_NSICR);
047e0030
AD
937
938 /* enable msix_other interrupt */
a51d8c21 939 adapter->eims_other = BIT(vector);
2d064c06 940 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 941
047e0030 942 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
943 break;
944 default:
945 /* do nothing, since nothing else supports MSI-X */
946 break;
947 } /* switch (hw->mac.type) */
047e0030
AD
948
949 adapter->eims_enable_mask |= adapter->eims_other;
950
26b39276
AD
951 for (i = 0; i < adapter->num_q_vectors; i++)
952 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 953
9d5c8243
AK
954 wrfl();
955}
956
957/**
b980ac18
JK
958 * igb_request_msix - Initialize MSI-X interrupts
959 * @adapter: board private structure to initialize
9d5c8243 960 *
b980ac18
JK
961 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
962 * kernel.
9d5c8243
AK
963 **/
964static int igb_request_msix(struct igb_adapter *adapter)
965{
966 struct net_device *netdev = adapter->netdev;
52285b76 967 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 968
047e0030 969 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 970 igb_msix_other, 0, netdev->name, adapter);
047e0030 971 if (err)
52285b76 972 goto err_out;
047e0030
AD
973
974 for (i = 0; i < adapter->num_q_vectors; i++) {
975 struct igb_q_vector *q_vector = adapter->q_vector[i];
976
52285b76
SA
977 vector++;
978
7b06a690 979 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
047e0030 980
0ba82994 981 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 982 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
983 q_vector->rx.ring->queue_index);
984 else if (q_vector->tx.ring)
047e0030 985 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
986 q_vector->tx.ring->queue_index);
987 else if (q_vector->rx.ring)
047e0030 988 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 989 q_vector->rx.ring->queue_index);
9d5c8243 990 else
047e0030
AD
991 sprintf(q_vector->name, "%s-unused", netdev->name);
992
9d5c8243 993 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
994 igb_msix_ring, 0, q_vector->name,
995 q_vector);
9d5c8243 996 if (err)
52285b76 997 goto err_free;
9d5c8243
AK
998 }
999
9d5c8243
AK
1000 igb_configure_msix(adapter);
1001 return 0;
52285b76
SA
1002
1003err_free:
1004 /* free already assigned IRQs */
1005 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
1006
1007 vector--;
1008 for (i = 0; i < vector; i++) {
1009 free_irq(adapter->msix_entries[free_vector++].vector,
1010 adapter->q_vector[i]);
1011 }
1012err_out:
9d5c8243
AK
1013 return err;
1014}
1015
5536d210 1016/**
b980ac18
JK
1017 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1018 * @adapter: board private structure to initialize
1019 * @v_idx: Index of vector to be freed
5536d210 1020 *
02ef6e1d 1021 * This function frees the memory allocated to the q_vector.
5536d210
AD
1022 **/
1023static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1024{
1025 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1026
02ef6e1d
CW
1027 adapter->q_vector[v_idx] = NULL;
1028
1029 /* igb_get_stats64() might access the rings on this vector,
1030 * we must wait a grace period before freeing it.
1031 */
17a402a0
CW
1032 if (q_vector)
1033 kfree_rcu(q_vector, rcu);
02ef6e1d
CW
1034}
1035
1036/**
1037 * igb_reset_q_vector - Reset config for interrupt vector
1038 * @adapter: board private structure to initialize
1039 * @v_idx: Index of vector to be reset
1040 *
1041 * If NAPI is enabled it will delete any references to the
1042 * NAPI struct. This is preparation for igb_free_q_vector.
1043 **/
1044static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1045{
1046 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1047
cb06d102
CP
1048 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1049 * allocated. So, q_vector is NULL so we should stop here.
1050 */
1051 if (!q_vector)
1052 return;
1053
5536d210
AD
1054 if (q_vector->tx.ring)
1055 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1056
1057 if (q_vector->rx.ring)
2439fc4d 1058 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
5536d210 1059
5536d210
AD
1060 netif_napi_del(&q_vector->napi);
1061
02ef6e1d
CW
1062}
1063
1064static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1065{
1066 int v_idx = adapter->num_q_vectors;
1067
cd14ef54 1068 if (adapter->flags & IGB_FLAG_HAS_MSIX)
02ef6e1d 1069 pci_disable_msix(adapter->pdev);
cd14ef54 1070 else if (adapter->flags & IGB_FLAG_HAS_MSI)
02ef6e1d 1071 pci_disable_msi(adapter->pdev);
02ef6e1d
CW
1072
1073 while (v_idx--)
1074 igb_reset_q_vector(adapter, v_idx);
5536d210
AD
1075}
1076
047e0030 1077/**
b980ac18
JK
1078 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1079 * @adapter: board private structure to initialize
047e0030 1080 *
b980ac18
JK
1081 * This function frees the memory allocated to the q_vectors. In addition if
1082 * NAPI is enabled it will delete any references to the NAPI struct prior
1083 * to freeing the q_vector.
047e0030
AD
1084 **/
1085static void igb_free_q_vectors(struct igb_adapter *adapter)
1086{
5536d210
AD
1087 int v_idx = adapter->num_q_vectors;
1088
1089 adapter->num_tx_queues = 0;
1090 adapter->num_rx_queues = 0;
047e0030 1091 adapter->num_q_vectors = 0;
5536d210 1092
02ef6e1d
CW
1093 while (v_idx--) {
1094 igb_reset_q_vector(adapter, v_idx);
5536d210 1095 igb_free_q_vector(adapter, v_idx);
02ef6e1d 1096 }
047e0030
AD
1097}
1098
1099/**
b980ac18
JK
1100 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1101 * @adapter: board private structure to initialize
047e0030 1102 *
b980ac18
JK
1103 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1104 * MSI-X interrupts allocated.
047e0030
AD
1105 */
1106static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1107{
047e0030
AD
1108 igb_free_q_vectors(adapter);
1109 igb_reset_interrupt_capability(adapter);
1110}
9d5c8243
AK
1111
1112/**
b980ac18
JK
1113 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1114 * @adapter: board private structure to initialize
1115 * @msix: boolean value of MSIX capability
9d5c8243 1116 *
b980ac18
JK
1117 * Attempt to configure interrupts using the best available
1118 * capabilities of the hardware and kernel.
9d5c8243 1119 **/
53c7d064 1120static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1121{
1122 int err;
1123 int numvecs, i;
1124
53c7d064
SA
1125 if (!msix)
1126 goto msi_only;
cd14ef54 1127 adapter->flags |= IGB_FLAG_HAS_MSIX;
53c7d064 1128
83b7180d 1129 /* Number of supported queues. */
a99955fc 1130 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1131 if (adapter->vfs_allocated_count)
1132 adapter->num_tx_queues = 1;
1133 else
1134 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1135
b980ac18 1136 /* start with one vector for every Rx queue */
047e0030
AD
1137 numvecs = adapter->num_rx_queues;
1138
b980ac18 1139 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1140 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1141 numvecs += adapter->num_tx_queues;
047e0030
AD
1142
1143 /* store the number of vectors reserved for queues */
1144 adapter->num_q_vectors = numvecs;
1145
1146 /* add 1 vector for link status interrupts */
1147 numvecs++;
9d5c8243
AK
1148 for (i = 0; i < numvecs; i++)
1149 adapter->msix_entries[i].entry = i;
1150
479d02df
AG
1151 err = pci_enable_msix_range(adapter->pdev,
1152 adapter->msix_entries,
1153 numvecs,
1154 numvecs);
1155 if (err > 0)
0c2cc02e 1156 return;
9d5c8243
AK
1157
1158 igb_reset_interrupt_capability(adapter);
1159
1160 /* If we can't do MSI-X, try MSI */
1161msi_only:
b709323d 1162 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
2a3abf6d
AD
1163#ifdef CONFIG_PCI_IOV
1164 /* disable SR-IOV for non MSI-X configurations */
1165 if (adapter->vf_data) {
1166 struct e1000_hw *hw = &adapter->hw;
1167 /* disable iov and allow time for transactions to clear */
1168 pci_disable_sriov(adapter->pdev);
1169 msleep(500);
1170
4827cc37
YK
1171 kfree(adapter->vf_mac_list);
1172 adapter->vf_mac_list = NULL;
2a3abf6d
AD
1173 kfree(adapter->vf_data);
1174 adapter->vf_data = NULL;
1175 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1176 wrfl();
2a3abf6d
AD
1177 msleep(100);
1178 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1179 }
1180#endif
4fc82adf 1181 adapter->vfs_allocated_count = 0;
a99955fc 1182 adapter->rss_queues = 1;
4fc82adf 1183 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1184 adapter->num_rx_queues = 1;
661086df 1185 adapter->num_tx_queues = 1;
047e0030 1186 adapter->num_q_vectors = 1;
9d5c8243 1187 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1188 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1189}
1190
5536d210
AD
1191static void igb_add_ring(struct igb_ring *ring,
1192 struct igb_ring_container *head)
1193{
1194 head->ring = ring;
1195 head->count++;
1196}
1197
047e0030 1198/**
b980ac18
JK
1199 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1200 * @adapter: board private structure to initialize
1201 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1202 * @v_idx: index of vector in adapter struct
1203 * @txr_count: total number of Tx rings to allocate
1204 * @txr_idx: index of first Tx ring to allocate
1205 * @rxr_count: total number of Rx rings to allocate
1206 * @rxr_idx: index of first Rx ring to allocate
047e0030 1207 *
b980ac18 1208 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1209 **/
5536d210
AD
1210static int igb_alloc_q_vector(struct igb_adapter *adapter,
1211 int v_count, int v_idx,
1212 int txr_count, int txr_idx,
1213 int rxr_count, int rxr_idx)
047e0030
AD
1214{
1215 struct igb_q_vector *q_vector;
5536d210
AD
1216 struct igb_ring *ring;
1217 int ring_count, size;
047e0030 1218
5536d210
AD
1219 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1220 if (txr_count > 1 || rxr_count > 1)
1221 return -ENOMEM;
1222
1223 ring_count = txr_count + rxr_count;
1224 size = sizeof(struct igb_q_vector) +
1225 (sizeof(struct igb_ring) * ring_count);
1226
1227 /* allocate q_vector and rings */
02ef6e1d 1228 q_vector = adapter->q_vector[v_idx];
72ddef05 1229 if (!q_vector) {
02ef6e1d 1230 q_vector = kzalloc(size, GFP_KERNEL);
72ddef05
SS
1231 } else if (size > ksize(q_vector)) {
1232 kfree_rcu(q_vector, rcu);
1233 q_vector = kzalloc(size, GFP_KERNEL);
1234 } else {
c0a06ee1 1235 memset(q_vector, 0, size);
72ddef05 1236 }
5536d210
AD
1237 if (!q_vector)
1238 return -ENOMEM;
1239
1240 /* initialize NAPI */
1241 netif_napi_add(adapter->netdev, &q_vector->napi,
1242 igb_poll, 64);
1243
1244 /* tie q_vector and adapter together */
1245 adapter->q_vector[v_idx] = q_vector;
1246 q_vector->adapter = adapter;
1247
1248 /* initialize work limits */
1249 q_vector->tx.work_limit = adapter->tx_work_limit;
1250
1251 /* initialize ITR configuration */
7b06a690 1252 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
5536d210
AD
1253 q_vector->itr_val = IGB_START_ITR;
1254
1255 /* initialize pointer to rings */
1256 ring = q_vector->ring;
1257
4e227667
AD
1258 /* intialize ITR */
1259 if (rxr_count) {
1260 /* rx or rx/tx vector */
1261 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1262 q_vector->itr_val = adapter->rx_itr_setting;
1263 } else {
1264 /* tx only vector */
1265 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1266 q_vector->itr_val = adapter->tx_itr_setting;
1267 }
1268
5536d210
AD
1269 if (txr_count) {
1270 /* assign generic ring traits */
1271 ring->dev = &adapter->pdev->dev;
1272 ring->netdev = adapter->netdev;
1273
1274 /* configure backlink on ring */
1275 ring->q_vector = q_vector;
1276
1277 /* update q_vector Tx values */
1278 igb_add_ring(ring, &q_vector->tx);
1279
1280 /* For 82575, context index must be unique per ring. */
1281 if (adapter->hw.mac.type == e1000_82575)
1282 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1283
1284 /* apply Tx specific ring traits */
1285 ring->count = adapter->tx_ring_count;
1286 ring->queue_index = txr_idx;
1287
05f9d3e1
AG
1288 ring->cbs_enable = false;
1289 ring->idleslope = 0;
1290 ring->sendslope = 0;
1291 ring->hicredit = 0;
1292 ring->locredit = 0;
1293
827da44c
JS
1294 u64_stats_init(&ring->tx_syncp);
1295 u64_stats_init(&ring->tx_syncp2);
1296
5536d210
AD
1297 /* assign ring to adapter */
1298 adapter->tx_ring[txr_idx] = ring;
1299
1300 /* push pointer to next ring */
1301 ring++;
047e0030 1302 }
81c2fc22 1303
5536d210
AD
1304 if (rxr_count) {
1305 /* assign generic ring traits */
1306 ring->dev = &adapter->pdev->dev;
1307 ring->netdev = adapter->netdev;
047e0030 1308
5536d210
AD
1309 /* configure backlink on ring */
1310 ring->q_vector = q_vector;
047e0030 1311
5536d210
AD
1312 /* update q_vector Rx values */
1313 igb_add_ring(ring, &q_vector->rx);
047e0030 1314
5536d210
AD
1315 /* set flag indicating ring supports SCTP checksum offload */
1316 if (adapter->hw.mac.type >= e1000_82576)
1317 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1318
e52c0f96 1319 /* On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1320 * have the tag byte-swapped.
b980ac18 1321 */
5536d210
AD
1322 if (adapter->hw.mac.type >= e1000_i350)
1323 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1324
5536d210
AD
1325 /* apply Rx specific ring traits */
1326 ring->count = adapter->rx_ring_count;
1327 ring->queue_index = rxr_idx;
1328
827da44c
JS
1329 u64_stats_init(&ring->rx_syncp);
1330
5536d210
AD
1331 /* assign ring to adapter */
1332 adapter->rx_ring[rxr_idx] = ring;
1333 }
1334
1335 return 0;
047e0030
AD
1336}
1337
5536d210 1338
047e0030 1339/**
b980ac18
JK
1340 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1341 * @adapter: board private structure to initialize
047e0030 1342 *
b980ac18
JK
1343 * We allocate one q_vector per queue interrupt. If allocation fails we
1344 * return -ENOMEM.
047e0030 1345 **/
5536d210 1346static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1347{
5536d210
AD
1348 int q_vectors = adapter->num_q_vectors;
1349 int rxr_remaining = adapter->num_rx_queues;
1350 int txr_remaining = adapter->num_tx_queues;
1351 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1352 int err;
047e0030 1353
5536d210
AD
1354 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1355 for (; rxr_remaining; v_idx++) {
1356 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1357 0, 0, 1, rxr_idx);
047e0030 1358
5536d210
AD
1359 if (err)
1360 goto err_out;
1361
1362 /* update counts and index */
1363 rxr_remaining--;
1364 rxr_idx++;
047e0030 1365 }
047e0030 1366 }
5536d210
AD
1367
1368 for (; v_idx < q_vectors; v_idx++) {
1369 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1370 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
9005df38 1371
5536d210
AD
1372 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1373 tqpv, txr_idx, rqpv, rxr_idx);
1374
1375 if (err)
1376 goto err_out;
1377
1378 /* update counts and index */
1379 rxr_remaining -= rqpv;
1380 txr_remaining -= tqpv;
1381 rxr_idx++;
1382 txr_idx++;
1383 }
1384
047e0030 1385 return 0;
5536d210
AD
1386
1387err_out:
1388 adapter->num_tx_queues = 0;
1389 adapter->num_rx_queues = 0;
1390 adapter->num_q_vectors = 0;
1391
1392 while (v_idx--)
1393 igb_free_q_vector(adapter, v_idx);
1394
1395 return -ENOMEM;
047e0030
AD
1396}
1397
1398/**
b980ac18
JK
1399 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1400 * @adapter: board private structure to initialize
1401 * @msix: boolean value of MSIX capability
047e0030 1402 *
b980ac18 1403 * This function initializes the interrupts and allocates all of the queues.
047e0030 1404 **/
53c7d064 1405static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1406{
1407 struct pci_dev *pdev = adapter->pdev;
1408 int err;
1409
53c7d064 1410 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1411
1412 err = igb_alloc_q_vectors(adapter);
1413 if (err) {
1414 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1415 goto err_alloc_q_vectors;
1416 }
1417
5536d210 1418 igb_cache_ring_register(adapter);
047e0030
AD
1419
1420 return 0;
5536d210 1421
047e0030
AD
1422err_alloc_q_vectors:
1423 igb_reset_interrupt_capability(adapter);
1424 return err;
1425}
1426
9d5c8243 1427/**
b980ac18
JK
1428 * igb_request_irq - initialize interrupts
1429 * @adapter: board private structure to initialize
9d5c8243 1430 *
b980ac18
JK
1431 * Attempts to configure interrupts using the best available
1432 * capabilities of the hardware and kernel.
9d5c8243
AK
1433 **/
1434static int igb_request_irq(struct igb_adapter *adapter)
1435{
1436 struct net_device *netdev = adapter->netdev;
047e0030 1437 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1438 int err = 0;
1439
cd14ef54 1440 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243 1441 err = igb_request_msix(adapter);
844290e5 1442 if (!err)
9d5c8243 1443 goto request_done;
9d5c8243 1444 /* fall back to MSI */
5536d210
AD
1445 igb_free_all_tx_resources(adapter);
1446 igb_free_all_rx_resources(adapter);
53c7d064 1447
047e0030 1448 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1449 err = igb_init_interrupt_scheme(adapter, false);
1450 if (err)
047e0030 1451 goto request_done;
53c7d064 1452
047e0030
AD
1453 igb_setup_all_tx_resources(adapter);
1454 igb_setup_all_rx_resources(adapter);
53c7d064 1455 igb_configure(adapter);
9d5c8243 1456 }
844290e5 1457
c74d588e
AD
1458 igb_assign_vector(adapter->q_vector[0], 0);
1459
7dfc16fa 1460 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1461 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1462 netdev->name, adapter);
9d5c8243
AK
1463 if (!err)
1464 goto request_done;
047e0030 1465
9d5c8243
AK
1466 /* fall back to legacy interrupts */
1467 igb_reset_interrupt_capability(adapter);
7dfc16fa 1468 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1469 }
1470
c74d588e 1471 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1472 netdev->name, adapter);
9d5c8243 1473
6cb5e577 1474 if (err)
c74d588e 1475 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1476 err);
9d5c8243
AK
1477
1478request_done:
1479 return err;
1480}
1481
1482static void igb_free_irq(struct igb_adapter *adapter)
1483{
cd14ef54 1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243
AK
1485 int vector = 0, i;
1486
047e0030 1487 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1488
0d1ae7f4 1489 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1490 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1491 adapter->q_vector[i]);
047e0030
AD
1492 } else {
1493 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1494 }
9d5c8243
AK
1495}
1496
1497/**
b980ac18
JK
1498 * igb_irq_disable - Mask off interrupt generation on the NIC
1499 * @adapter: board private structure
9d5c8243
AK
1500 **/
1501static void igb_irq_disable(struct igb_adapter *adapter)
1502{
1503 struct e1000_hw *hw = &adapter->hw;
1504
b980ac18 1505 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1506 * mapped into these registers and so clearing the bits can cause
1507 * issues on the VF drivers so we only need to clear what we set
1508 */
cd14ef54 1509 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2dfd1212 1510 u32 regval = rd32(E1000_EIAM);
9005df38 1511
2dfd1212
AD
1512 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1513 wr32(E1000_EIMC, adapter->eims_enable_mask);
1514 regval = rd32(E1000_EIAC);
1515 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1516 }
844290e5
PW
1517
1518 wr32(E1000_IAM, 0);
9d5c8243
AK
1519 wr32(E1000_IMC, ~0);
1520 wrfl();
cd14ef54 1521 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
81a61859 1522 int i;
9005df38 1523
81a61859
ET
1524 for (i = 0; i < adapter->num_q_vectors; i++)
1525 synchronize_irq(adapter->msix_entries[i].vector);
1526 } else {
1527 synchronize_irq(adapter->pdev->irq);
1528 }
9d5c8243
AK
1529}
1530
1531/**
b980ac18
JK
1532 * igb_irq_enable - Enable default interrupt generation settings
1533 * @adapter: board private structure
9d5c8243
AK
1534 **/
1535static void igb_irq_enable(struct igb_adapter *adapter)
1536{
1537 struct e1000_hw *hw = &adapter->hw;
1538
cd14ef54 1539 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
06218a8d 1540 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212 1541 u32 regval = rd32(E1000_EIAC);
9005df38 1542
2dfd1212
AD
1543 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1544 regval = rd32(E1000_EIAM);
1545 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1546 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1547 if (adapter->vfs_allocated_count) {
4ae196df 1548 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1549 ims |= E1000_IMS_VMMB;
1550 }
1551 wr32(E1000_IMS, ims);
844290e5 1552 } else {
55cac248
AD
1553 wr32(E1000_IMS, IMS_ENABLE_MASK |
1554 E1000_IMS_DRSTA);
1555 wr32(E1000_IAM, IMS_ENABLE_MASK |
1556 E1000_IMS_DRSTA);
844290e5 1557 }
9d5c8243
AK
1558}
1559
1560static void igb_update_mng_vlan(struct igb_adapter *adapter)
1561{
51466239 1562 struct e1000_hw *hw = &adapter->hw;
8b77c6b2 1563 u16 pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
1564 u16 vid = adapter->hw.mng_cookie.vlan_id;
1565 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1566
1567 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1568 /* add VID to filter table */
8b77c6b2 1569 igb_vfta_set(hw, vid, pf_id, true, true);
51466239
AD
1570 adapter->mng_vlan_id = vid;
1571 } else {
1572 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1573 }
1574
1575 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1576 (vid != old_vid) &&
b2cb09b1 1577 !test_bit(old_vid, adapter->active_vlans)) {
51466239 1578 /* remove VID from filter table */
8b77c6b2 1579 igb_vfta_set(hw, vid, pf_id, false, true);
9d5c8243
AK
1580 }
1581}
1582
1583/**
b980ac18
JK
1584 * igb_release_hw_control - release control of the h/w to f/w
1585 * @adapter: address of board private structure
9d5c8243 1586 *
b980ac18
JK
1587 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1588 * For ASF and Pass Through versions of f/w this means that the
1589 * driver is no longer loaded.
9d5c8243
AK
1590 **/
1591static void igb_release_hw_control(struct igb_adapter *adapter)
1592{
1593 struct e1000_hw *hw = &adapter->hw;
1594 u32 ctrl_ext;
1595
1596 /* Let firmware take over control of h/w */
1597 ctrl_ext = rd32(E1000_CTRL_EXT);
1598 wr32(E1000_CTRL_EXT,
1599 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1600}
1601
9d5c8243 1602/**
b980ac18
JK
1603 * igb_get_hw_control - get control of the h/w from f/w
1604 * @adapter: address of board private structure
9d5c8243 1605 *
b980ac18
JK
1606 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1607 * For ASF and Pass Through versions of f/w this means that
1608 * the driver is loaded.
9d5c8243
AK
1609 **/
1610static void igb_get_hw_control(struct igb_adapter *adapter)
1611{
1612 struct e1000_hw *hw = &adapter->hw;
1613 u32 ctrl_ext;
1614
1615 /* Let firmware know the driver has taken over */
1616 ctrl_ext = rd32(E1000_CTRL_EXT);
1617 wr32(E1000_CTRL_EXT,
1618 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1619}
1620
05f9d3e1
AG
1621static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1622{
1623 struct net_device *netdev = adapter->netdev;
1624 struct e1000_hw *hw = &adapter->hw;
1625
1626 WARN_ON(hw->mac.type != e1000_i210);
1627
1628 if (enable)
1629 adapter->flags |= IGB_FLAG_FQTSS;
1630 else
1631 adapter->flags &= ~IGB_FLAG_FQTSS;
1632
1633 if (netif_running(netdev))
1634 schedule_work(&adapter->reset_task);
1635}
1636
1637static bool is_fqtss_enabled(struct igb_adapter *adapter)
1638{
1639 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1640}
1641
1642static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1643 enum tx_queue_prio prio)
1644{
1645 u32 val;
1646
1647 WARN_ON(hw->mac.type != e1000_i210);
1648 WARN_ON(queue < 0 || queue > 4);
1649
1650 val = rd32(E1000_I210_TXDCTL(queue));
1651
1652 if (prio == TX_QUEUE_PRIO_HIGH)
1653 val |= E1000_TXDCTL_PRIORITY;
1654 else
1655 val &= ~E1000_TXDCTL_PRIORITY;
1656
1657 wr32(E1000_I210_TXDCTL(queue), val);
1658}
1659
1660static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1661{
1662 u32 val;
1663
1664 WARN_ON(hw->mac.type != e1000_i210);
1665 WARN_ON(queue < 0 || queue > 1);
1666
1667 val = rd32(E1000_I210_TQAVCC(queue));
1668
1669 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1670 val |= E1000_TQAVCC_QUEUEMODE;
1671 else
1672 val &= ~E1000_TQAVCC_QUEUEMODE;
1673
1674 wr32(E1000_I210_TQAVCC(queue), val);
1675}
1676
1677/**
1678 * igb_configure_cbs - Configure Credit-Based Shaper (CBS)
1679 * @adapter: pointer to adapter struct
1680 * @queue: queue number
1681 * @enable: true = enable CBS, false = disable CBS
1682 * @idleslope: idleSlope in kbps
1683 * @sendslope: sendSlope in kbps
1684 * @hicredit: hiCredit in bytes
1685 * @locredit: loCredit in bytes
1686 *
1687 * Configure CBS for a given hardware queue. When disabling, idleslope,
1688 * sendslope, hicredit, locredit arguments are ignored. Returns 0 if
1689 * success. Negative otherwise.
1690 **/
1691static void igb_configure_cbs(struct igb_adapter *adapter, int queue,
1692 bool enable, int idleslope, int sendslope,
1693 int hicredit, int locredit)
1694{
1695 struct net_device *netdev = adapter->netdev;
1696 struct e1000_hw *hw = &adapter->hw;
1697 u32 tqavcc;
1698 u16 value;
1699
1700 WARN_ON(hw->mac.type != e1000_i210);
1701 WARN_ON(queue < 0 || queue > 1);
1702
2707df97
VCG
1703 if (enable || queue == 0) {
1704 /* i210 does not allow the queue 0 to be in the Strict
1705 * Priority mode while the Qav mode is enabled, so,
1706 * instead of disabling strict priority mode, we give
1707 * queue 0 the maximum of credits possible.
1708 *
1709 * See section 8.12.19 of the i210 datasheet, "Note:
1710 * Queue0 QueueMode must be set to 1b when
1711 * TransmitMode is set to Qav."
1712 */
1713 if (queue == 0 && !enable) {
1714 /* max "linkspeed" idleslope in kbps */
1715 idleslope = 1000000;
1716 hicredit = ETH_FRAME_LEN;
1717 }
1718
05f9d3e1
AG
1719 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1720 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1721
1722 /* According to i210 datasheet section 7.2.7.7, we should set
1723 * the 'idleSlope' field from TQAVCC register following the
1724 * equation:
1725 *
1726 * For 100 Mbps link speed:
1727 *
1728 * value = BW * 0x7735 * 0.2 (E1)
1729 *
1730 * For 1000Mbps link speed:
1731 *
1732 * value = BW * 0x7735 * 2 (E2)
1733 *
1734 * E1 and E2 can be merged into one equation as shown below.
1735 * Note that 'link-speed' is in Mbps.
1736 *
1737 * value = BW * 0x7735 * 2 * link-speed
1738 * -------------- (E3)
1739 * 1000
1740 *
1741 * 'BW' is the percentage bandwidth out of full link speed
1742 * which can be found with the following equation. Note that
1743 * idleSlope here is the parameter from this function which
1744 * is in kbps.
1745 *
1746 * BW = idleSlope
1747 * ----------------- (E4)
1748 * link-speed * 1000
1749 *
1750 * That said, we can come up with a generic equation to
1751 * calculate the value we should set it TQAVCC register by
1752 * replacing 'BW' in E3 by E4. The resulting equation is:
1753 *
1754 * value = idleSlope * 0x7735 * 2 * link-speed
1755 * ----------------- -------------- (E5)
1756 * link-speed * 1000 1000
1757 *
1758 * 'link-speed' is present in both sides of the fraction so
1759 * it is canceled out. The final equation is the following:
1760 *
1761 * value = idleSlope * 61034
1762 * ----------------- (E6)
1763 * 1000000
0da6090f
JSP
1764 *
1765 * NOTE: For i210, given the above, we can see that idleslope
1766 * is represented in 16.38431 kbps units by the value at
1767 * the TQAVCC register (1Gbps / 61034), which reduces
1768 * the granularity for idleslope increments.
1769 * For instance, if you want to configure a 2576kbps
1770 * idleslope, the value to be written on the register
1771 * would have to be 157.23. If rounded down, you end
1772 * up with less bandwidth available than originally
1773 * required (~2572 kbps). If rounded up, you end up
1774 * with a higher bandwidth (~2589 kbps). Below the
1775 * approach we take is to always round up the
1776 * calculated value, so the resulting bandwidth might
1777 * be slightly higher for some configurations.
05f9d3e1
AG
1778 */
1779 value = DIV_ROUND_UP_ULL(idleslope * 61034ULL, 1000000);
1780
1781 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1782 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1783 tqavcc |= value;
1784 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1785
1786 wr32(E1000_I210_TQAVHC(queue), 0x80000000 + hicredit * 0x7735);
1787 } else {
1788 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1789 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1790
1791 /* Set idleSlope to zero. */
1792 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1793 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1794 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1795
1796 /* Set hiCredit to zero. */
1797 wr32(E1000_I210_TQAVHC(queue), 0);
1798 }
1799
1800 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1801 * CBS are not configurable by software so we don't do any 'controller
1802 * configuration' in respect to these parameters.
1803 */
1804
1805 netdev_dbg(netdev, "CBS %s: queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1806 (enable) ? "enabled" : "disabled", queue,
1807 idleslope, sendslope, hicredit, locredit);
1808}
1809
1810static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1811 bool enable, int idleslope, int sendslope,
1812 int hicredit, int locredit)
1813{
1814 struct igb_ring *ring;
1815
1816 if (queue < 0 || queue > adapter->num_tx_queues)
1817 return -EINVAL;
1818
1819 ring = adapter->tx_ring[queue];
1820
1821 ring->cbs_enable = enable;
1822 ring->idleslope = idleslope;
1823 ring->sendslope = sendslope;
1824 ring->hicredit = hicredit;
1825 ring->locredit = locredit;
1826
1827 return 0;
1828}
1829
1830static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1831{
1832 struct igb_ring *ring;
1833 int i;
1834
1835 for (i = 0; i < adapter->num_tx_queues; i++) {
1836 ring = adapter->tx_ring[i];
1837
1838 if (ring->cbs_enable)
1839 return true;
1840 }
1841
1842 return false;
1843}
1844
1845static void igb_setup_tx_mode(struct igb_adapter *adapter)
1846{
1847 struct net_device *netdev = adapter->netdev;
1848 struct e1000_hw *hw = &adapter->hw;
1849 u32 val;
1850
1851 /* Only i210 controller supports changing the transmission mode. */
1852 if (hw->mac.type != e1000_i210)
1853 return;
1854
1855 if (is_fqtss_enabled(adapter)) {
1856 int i, max_queue;
1857
1858 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1859 * set data fetch arbitration to 'round robin' and set data
1860 * transfer arbitration to 'credit shaper algorithm.
1861 */
1862 val = rd32(E1000_I210_TQAVCTRL);
1863 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_DATATRANARB;
1864 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1865 wr32(E1000_I210_TQAVCTRL, val);
1866
1867 /* Configure Tx and Rx packet buffers sizes as described in
1868 * i210 datasheet section 7.2.7.7.
1869 */
1870 val = rd32(E1000_TXPBS);
1871 val &= ~I210_TXPBSIZE_MASK;
1872 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1873 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1874 wr32(E1000_TXPBS, val);
1875
1876 val = rd32(E1000_RXPBS);
1877 val &= ~I210_RXPBSIZE_MASK;
1878 val |= I210_RXPBSIZE_PB_32KB;
1879 wr32(E1000_RXPBS, val);
1880
1881 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1882 * register should not exceed the buffer size programmed in
1883 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1884 * so according to the datasheet we should set MAX_TPKT_SIZE to
1885 * 4kB / 64.
1886 *
1887 * However, when we do so, no frame from queue 2 and 3 are
1888 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1889 * or _equal_ to the buffer size programmed in TXPBS. For this
1890 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1891 */
1892 val = (4096 - 1) / 64;
1893 wr32(E1000_I210_DTXMXPKTSZ, val);
1894
1895 /* Since FQTSS mode is enabled, apply any CBS configuration
1896 * previously set. If no previous CBS configuration has been
1897 * done, then the initial configuration is applied, which means
1898 * CBS is disabled.
1899 */
1900 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1901 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1902
1903 for (i = 0; i < max_queue; i++) {
1904 struct igb_ring *ring = adapter->tx_ring[i];
1905
1906 igb_configure_cbs(adapter, i, ring->cbs_enable,
1907 ring->idleslope, ring->sendslope,
1908 ring->hicredit, ring->locredit);
1909 }
1910 } else {
1911 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1912 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1913 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1914
1915 val = rd32(E1000_I210_TQAVCTRL);
1916 /* According to Section 8.12.21, the other flags we've set when
1917 * enabling FQTSS are not relevant when disabling FQTSS so we
1918 * don't set they here.
1919 */
1920 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1921 wr32(E1000_I210_TQAVCTRL, val);
1922 }
1923
1924 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1925 "enabled" : "disabled");
1926}
1927
9d5c8243 1928/**
b980ac18
JK
1929 * igb_configure - configure the hardware for RX and TX
1930 * @adapter: private board structure
9d5c8243
AK
1931 **/
1932static void igb_configure(struct igb_adapter *adapter)
1933{
1934 struct net_device *netdev = adapter->netdev;
1935 int i;
1936
1937 igb_get_hw_control(adapter);
ff41f8dc 1938 igb_set_rx_mode(netdev);
05f9d3e1 1939 igb_setup_tx_mode(adapter);
9d5c8243
AK
1940
1941 igb_restore_vlan(adapter);
9d5c8243 1942
85b430b4 1943 igb_setup_tctl(adapter);
06cf2666 1944 igb_setup_mrqc(adapter);
9d5c8243 1945 igb_setup_rctl(adapter);
85b430b4 1946
0e71def2 1947 igb_nfc_filter_restore(adapter);
85b430b4 1948 igb_configure_tx(adapter);
9d5c8243 1949 igb_configure_rx(adapter);
662d7205
AD
1950
1951 igb_rx_fifo_flush_82575(&adapter->hw);
1952
c493ea45 1953 /* call igb_desc_unused which always leaves
9d5c8243 1954 * at least 1 descriptor unused to make sure
b980ac18
JK
1955 * next_to_use != next_to_clean
1956 */
9d5c8243 1957 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1958 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1959 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1960 }
9d5c8243
AK
1961}
1962
88a268c1 1963/**
b980ac18
JK
1964 * igb_power_up_link - Power up the phy/serdes link
1965 * @adapter: address of board private structure
88a268c1
NN
1966 **/
1967void igb_power_up_link(struct igb_adapter *adapter)
1968{
76886596
AA
1969 igb_reset_phy(&adapter->hw);
1970
88a268c1
NN
1971 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1972 igb_power_up_phy_copper(&adapter->hw);
1973 else
1974 igb_power_up_serdes_link_82575(&adapter->hw);
aec653c4
TF
1975
1976 igb_setup_link(&adapter->hw);
88a268c1
NN
1977}
1978
1979/**
b980ac18
JK
1980 * igb_power_down_link - Power down the phy/serdes link
1981 * @adapter: address of board private structure
88a268c1
NN
1982 */
1983static void igb_power_down_link(struct igb_adapter *adapter)
1984{
1985 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1986 igb_power_down_phy_copper_82575(&adapter->hw);
1987 else
1988 igb_shutdown_serdes_link_82575(&adapter->hw);
1989}
9d5c8243 1990
56cec249
CW
1991/**
1992 * Detect and switch function for Media Auto Sense
1993 * @adapter: address of the board private structure
1994 **/
1995static void igb_check_swap_media(struct igb_adapter *adapter)
1996{
1997 struct e1000_hw *hw = &adapter->hw;
1998 u32 ctrl_ext, connsw;
1999 bool swap_now = false;
2000
2001 ctrl_ext = rd32(E1000_CTRL_EXT);
2002 connsw = rd32(E1000_CONNSW);
2003
2004 /* need to live swap if current media is copper and we have fiber/serdes
2005 * to go to.
2006 */
2007
2008 if ((hw->phy.media_type == e1000_media_type_copper) &&
2009 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2010 swap_now = true;
2011 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2012 /* copper signal takes time to appear */
2013 if (adapter->copper_tries < 4) {
2014 adapter->copper_tries++;
2015 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2016 wr32(E1000_CONNSW, connsw);
2017 return;
2018 } else {
2019 adapter->copper_tries = 0;
2020 if ((connsw & E1000_CONNSW_PHYSD) &&
2021 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2022 swap_now = true;
2023 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2024 wr32(E1000_CONNSW, connsw);
2025 }
2026 }
2027 }
2028
2029 if (!swap_now)
2030 return;
2031
2032 switch (hw->phy.media_type) {
2033 case e1000_media_type_copper:
2034 netdev_info(adapter->netdev,
2035 "MAS: changing media to fiber/serdes\n");
2036 ctrl_ext |=
2037 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2038 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2039 adapter->copper_tries = 0;
2040 break;
2041 case e1000_media_type_internal_serdes:
2042 case e1000_media_type_fiber:
2043 netdev_info(adapter->netdev,
2044 "MAS: changing media to copper\n");
2045 ctrl_ext &=
2046 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2047 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2048 break;
2049 default:
2050 /* shouldn't get here during regular operation */
2051 netdev_err(adapter->netdev,
2052 "AMS: Invalid media type found, returning\n");
2053 break;
2054 }
2055 wr32(E1000_CTRL_EXT, ctrl_ext);
2056}
2057
9d5c8243 2058/**
b980ac18
JK
2059 * igb_up - Open the interface and prepare it to handle traffic
2060 * @adapter: board private structure
9d5c8243 2061 **/
9d5c8243
AK
2062int igb_up(struct igb_adapter *adapter)
2063{
2064 struct e1000_hw *hw = &adapter->hw;
2065 int i;
2066
2067 /* hardware has been reset, we need to reload some things */
2068 igb_configure(adapter);
2069
2070 clear_bit(__IGB_DOWN, &adapter->state);
2071
0d1ae7f4
AD
2072 for (i = 0; i < adapter->num_q_vectors; i++)
2073 napi_enable(&(adapter->q_vector[i]->napi));
2074
cd14ef54 2075 if (adapter->flags & IGB_FLAG_HAS_MSIX)
9d5c8243 2076 igb_configure_msix(adapter);
feeb2721
AD
2077 else
2078 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
2079
2080 /* Clear any pending interrupts. */
2081 rd32(E1000_ICR);
2082 igb_irq_enable(adapter);
2083
d4960307
AD
2084 /* notify VFs that reset has been completed */
2085 if (adapter->vfs_allocated_count) {
2086 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 2087
d4960307
AD
2088 reg_data |= E1000_CTRL_EXT_PFRSTD;
2089 wr32(E1000_CTRL_EXT, reg_data);
2090 }
2091
4cb9be7a
JB
2092 netif_tx_start_all_queues(adapter->netdev);
2093
25568a53
AD
2094 /* start the watchdog. */
2095 hw->mac.get_link_status = 1;
2096 schedule_work(&adapter->watchdog_task);
2097
f4c01e96
CW
2098 if ((adapter->flags & IGB_FLAG_EEE) &&
2099 (!hw->dev_spec._82575.eee_disable))
2100 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2101
9d5c8243
AK
2102 return 0;
2103}
2104
2105void igb_down(struct igb_adapter *adapter)
2106{
9d5c8243 2107 struct net_device *netdev = adapter->netdev;
330a6d6a 2108 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2109 u32 tctl, rctl;
2110 int i;
2111
2112 /* signal that we're down so the interrupt handler does not
b980ac18
JK
2113 * reschedule our watchdog timer
2114 */
9d5c8243
AK
2115 set_bit(__IGB_DOWN, &adapter->state);
2116
2117 /* disable receives in the hardware */
2118 rctl = rd32(E1000_RCTL);
2119 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2120 /* flush and sleep below */
2121
94221ae7
GH
2122 igb_nfc_filter_exit(adapter);
2123
f28ea083 2124 netif_carrier_off(netdev);
fd2ea0a7 2125 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
2126
2127 /* disable transmits in the hardware */
2128 tctl = rd32(E1000_TCTL);
2129 tctl &= ~E1000_TCTL_EN;
2130 wr32(E1000_TCTL, tctl);
2131 /* flush both disables and wait for them to finish */
2132 wrfl();
0d451e79 2133 usleep_range(10000, 11000);
9d5c8243 2134
41f149a2
CW
2135 igb_irq_disable(adapter);
2136
aa9b8cc4
AA
2137 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2138
41f149a2 2139 for (i = 0; i < adapter->num_q_vectors; i++) {
17a402a0
CW
2140 if (adapter->q_vector[i]) {
2141 napi_synchronize(&adapter->q_vector[i]->napi);
2142 napi_disable(&adapter->q_vector[i]->napi);
2143 }
41f149a2 2144 }
9d5c8243 2145
9d5c8243
AK
2146 del_timer_sync(&adapter->watchdog_timer);
2147 del_timer_sync(&adapter->phy_info_timer);
2148
04fe6358 2149 /* record the stats before reset*/
12dcd86b 2150 spin_lock(&adapter->stats64_lock);
81e3f64a 2151 igb_update_stats(adapter);
12dcd86b 2152 spin_unlock(&adapter->stats64_lock);
04fe6358 2153
9d5c8243
AK
2154 adapter->link_speed = 0;
2155 adapter->link_duplex = 0;
2156
3023682e
JK
2157 if (!pci_channel_offline(adapter->pdev))
2158 igb_reset(adapter);
16903caa
AD
2159
2160 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2161 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2162
9d5c8243
AK
2163 igb_clean_all_tx_rings(adapter);
2164 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
2165#ifdef CONFIG_IGB_DCA
2166
2167 /* since we reset the hardware DCA settings were cleared */
2168 igb_setup_dca(adapter);
2169#endif
9d5c8243
AK
2170}
2171
2172void igb_reinit_locked(struct igb_adapter *adapter)
2173{
2174 WARN_ON(in_interrupt());
2175 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 2176 usleep_range(1000, 2000);
9d5c8243
AK
2177 igb_down(adapter);
2178 igb_up(adapter);
2179 clear_bit(__IGB_RESETTING, &adapter->state);
2180}
2181
56cec249
CW
2182/** igb_enable_mas - Media Autosense re-enable after swap
2183 *
2184 * @adapter: adapter struct
2185 **/
8cfb879d 2186static void igb_enable_mas(struct igb_adapter *adapter)
56cec249
CW
2187{
2188 struct e1000_hw *hw = &adapter->hw;
8cfb879d 2189 u32 connsw = rd32(E1000_CONNSW);
56cec249
CW
2190
2191 /* configure for SerDes media detect */
8cfb879d
TF
2192 if ((hw->phy.media_type == e1000_media_type_copper) &&
2193 (!(connsw & E1000_CONNSW_SERDESD))) {
56cec249
CW
2194 connsw |= E1000_CONNSW_ENRGSRC;
2195 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2196 wr32(E1000_CONNSW, connsw);
2197 wrfl();
56cec249 2198 }
56cec249
CW
2199}
2200
9d5c8243
AK
2201void igb_reset(struct igb_adapter *adapter)
2202{
090b1795 2203 struct pci_dev *pdev = adapter->pdev;
9d5c8243 2204 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
2205 struct e1000_mac_info *mac = &hw->mac;
2206 struct e1000_fc_info *fc = &hw->fc;
45693bcb 2207 u32 pba, hwm;
9d5c8243
AK
2208
2209 /* Repartition Pba for greater than 9k mtu
2210 * To take effect CTRL.RST is required.
2211 */
fa4dfae0 2212 switch (mac->type) {
d2ba2ed8 2213 case e1000_i350:
ceb5f13b 2214 case e1000_i354:
55cac248
AD
2215 case e1000_82580:
2216 pba = rd32(E1000_RXPBS);
2217 pba = igb_rxpbs_adjust_82580(pba);
2218 break;
fa4dfae0 2219 case e1000_82576:
d249be54
AD
2220 pba = rd32(E1000_RXPBS);
2221 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
2222 break;
2223 case e1000_82575:
f96a8a0b
CW
2224 case e1000_i210:
2225 case e1000_i211:
fa4dfae0
AD
2226 default:
2227 pba = E1000_PBA_34K;
2228 break;
2d064c06 2229 }
9d5c8243 2230
45693bcb
AD
2231 if (mac->type == e1000_82575) {
2232 u32 min_rx_space, min_tx_space, needed_tx_space;
2233
2234 /* write Rx PBA so that hardware can report correct Tx PBA */
9d5c8243
AK
2235 wr32(E1000_PBA, pba);
2236
2237 /* To maintain wire speed transmits, the Tx FIFO should be
2238 * large enough to accommodate two full transmit packets,
2239 * rounded up to the next 1KB and expressed in KB. Likewise,
2240 * the Rx FIFO should be large enough to accommodate at least
2241 * one full receive packet and is similarly rounded up and
b980ac18
JK
2242 * expressed in KB.
2243 */
45693bcb
AD
2244 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2245
2246 /* The Tx FIFO also stores 16 bytes of information about the Tx
2247 * but don't include Ethernet FCS because hardware appends it.
2248 * We only need to round down to the nearest 512 byte block
2249 * count since the value we care about is 2 frames, not 1.
b980ac18 2250 */
45693bcb
AD
2251 min_tx_space = adapter->max_frame_size;
2252 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2253 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2254
2255 /* upper 16 bits has Tx packet buffer allocation size in KB */
2256 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
9d5c8243
AK
2257
2258 /* If current Tx allocation is less than the min Tx FIFO size,
2259 * and the min Tx FIFO size is less than the current Rx FIFO
45693bcb 2260 * allocation, take space away from current Rx allocation.
b980ac18 2261 */
45693bcb
AD
2262 if (needed_tx_space < pba) {
2263 pba -= needed_tx_space;
9d5c8243 2264
b980ac18
JK
2265 /* if short on Rx space, Rx wins and must trump Tx
2266 * adjustment
2267 */
9d5c8243
AK
2268 if (pba < min_rx_space)
2269 pba = min_rx_space;
2270 }
45693bcb
AD
2271
2272 /* adjust PBA for jumbo frames */
2d064c06 2273 wr32(E1000_PBA, pba);
9d5c8243 2274 }
9d5c8243 2275
45693bcb
AD
2276 /* flow control settings
2277 * The high water mark must be low enough to fit one full frame
2278 * after transmitting the pause frame. As such we must have enough
2279 * space to allow for us to complete our current transmit and then
2280 * receive the frame that is in progress from the link partner.
2281 * Set it to:
2282 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
b980ac18 2283 */
45693bcb 2284 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
9d5c8243 2285
d48507fe 2286 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 2287 fc->low_water = fc->high_water - 16;
9d5c8243
AK
2288 fc->pause_time = 0xFFFF;
2289 fc->send_xon = 1;
0cce119a 2290 fc->current_mode = fc->requested_mode;
9d5c8243 2291
4ae196df
AD
2292 /* disable receive for all VFs and wait one second */
2293 if (adapter->vfs_allocated_count) {
2294 int i;
9005df38 2295
4ae196df 2296 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 2297 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
2298
2299 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 2300 igb_ping_all_vfs(adapter);
4ae196df
AD
2301
2302 /* disable transmits and receives */
2303 wr32(E1000_VFRE, 0);
2304 wr32(E1000_VFTE, 0);
2305 }
2306
9d5c8243 2307 /* Allow time for pending master requests to run */
330a6d6a 2308 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
2309 wr32(E1000_WUC, 0);
2310
56cec249
CW
2311 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2312 /* need to resetup here after media swap */
2313 adapter->ei.get_invariants(hw);
2314 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2315 }
8cfb879d
TF
2316 if ((mac->type == e1000_82575) &&
2317 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2318 igb_enable_mas(adapter);
56cec249 2319 }
330a6d6a 2320 if (hw->mac.ops.init_hw(hw))
090b1795 2321 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 2322
83c21335
YK
2323 /* RAR registers were cleared during init_hw, clear mac table */
2324 igb_flush_mac_table(adapter);
2325 __dev_uc_unsync(adapter->netdev, NULL);
2326
2327 /* Recover default RAR entry */
2328 igb_set_default_mac_filter(adapter);
2329
b980ac18 2330 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
2331 * control is off when forcing speed.
2332 */
2333 if (!hw->mac.autoneg)
2334 igb_force_mac_fc(hw);
2335
b6e0c419 2336 igb_init_dmac(adapter, pba);
e428893b
CW
2337#ifdef CONFIG_IGB_HWMON
2338 /* Re-initialize the thermal sensor on i350 devices. */
2339 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2340 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2341 /* If present, re-initialize the external thermal sensor
2342 * interface.
2343 */
2344 if (adapter->ets)
2345 mac->ops.init_thermal_sensor_thresh(hw);
2346 }
2347 }
2348#endif
b936136d 2349 /* Re-establish EEE setting */
f4c01e96
CW
2350 if (hw->phy.media_type == e1000_media_type_copper) {
2351 switch (mac->type) {
2352 case e1000_i350:
2353 case e1000_i210:
2354 case e1000_i211:
c4c112f1 2355 igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2356 break;
2357 case e1000_i354:
c4c112f1 2358 igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2359 break;
2360 default:
2361 break;
2362 }
2363 }
88a268c1
NN
2364 if (!netif_running(adapter->netdev))
2365 igb_power_down_link(adapter);
2366
9d5c8243
AK
2367 igb_update_mng_vlan(adapter);
2368
2369 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2370 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2371
1f6e8178 2372 /* Re-enable PTP, where applicable. */
4f3ce71b
JK
2373 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2374 igb_ptp_reset(adapter);
1f6e8178 2375
330a6d6a 2376 igb_get_phy_info(hw);
9d5c8243
AK
2377}
2378
c8f44aff
MM
2379static netdev_features_t igb_fix_features(struct net_device *netdev,
2380 netdev_features_t features)
b2cb09b1 2381{
b980ac18
JK
2382 /* Since there is no support for separate Rx/Tx vlan accel
2383 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 2384 */
f646968f
PM
2385 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2386 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 2387 else
f646968f 2388 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
2389
2390 return features;
2391}
2392
c8f44aff
MM
2393static int igb_set_features(struct net_device *netdev,
2394 netdev_features_t features)
ac52caa3 2395{
c8f44aff 2396 netdev_features_t changed = netdev->features ^ features;
89eaefb6 2397 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 2398
f646968f 2399 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
2400 igb_vlan_mode(netdev, features);
2401
16903caa 2402 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
89eaefb6
BG
2403 return 0;
2404
0e71def2
GH
2405 if (!(features & NETIF_F_NTUPLE)) {
2406 struct hlist_node *node2;
2407 struct igb_nfc_filter *rule;
2408
2409 spin_lock(&adapter->nfc_lock);
2410 hlist_for_each_entry_safe(rule, node2,
2411 &adapter->nfc_filter_list, nfc_node) {
2412 igb_erase_filter(adapter, rule);
2413 hlist_del(&rule->nfc_node);
2414 kfree(rule);
2415 }
2416 spin_unlock(&adapter->nfc_lock);
2417 adapter->nfc_filter_count = 0;
2418 }
2419
89eaefb6
BG
2420 netdev->features = features;
2421
2422 if (netif_running(netdev))
2423 igb_reinit_locked(adapter);
2424 else
2425 igb_reset(adapter);
2426
ac52caa3
MM
2427 return 0;
2428}
2429
268f9d33
AD
2430static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2431 struct net_device *dev,
2432 const unsigned char *addr, u16 vid,
2433 u16 flags)
2434{
2435 /* guarantee we can provide a unique filter for the unicast address */
2436 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2437 struct igb_adapter *adapter = netdev_priv(dev);
268f9d33 2438 int vfn = adapter->vfs_allocated_count;
268f9d33 2439
83c21335 2440 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
268f9d33
AD
2441 return -ENOMEM;
2442 }
2443
2444 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2445}
2446
e10715d3
AD
2447#define IGB_MAX_MAC_HDR_LEN 127
2448#define IGB_MAX_NETWORK_HDR_LEN 511
2449
2450static netdev_features_t
2451igb_features_check(struct sk_buff *skb, struct net_device *dev,
2452 netdev_features_t features)
2453{
2454 unsigned int network_hdr_len, mac_hdr_len;
2455
2456 /* Make certain the headers can be described by a context descriptor */
2457 mac_hdr_len = skb_network_header(skb) - skb->data;
2458 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2459 return features & ~(NETIF_F_HW_CSUM |
2460 NETIF_F_SCTP_CRC |
2461 NETIF_F_HW_VLAN_CTAG_TX |
2462 NETIF_F_TSO |
2463 NETIF_F_TSO6);
2464
2465 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2466 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2467 return features & ~(NETIF_F_HW_CSUM |
2468 NETIF_F_SCTP_CRC |
2469 NETIF_F_TSO |
2470 NETIF_F_TSO6);
2471
2472 /* We can only support IPV4 TSO in tunnels if we can mangle the
2473 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2474 */
2475 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2476 features &= ~NETIF_F_TSO;
2477
2478 return features;
2479}
2480
05f9d3e1
AG
2481static int igb_offload_cbs(struct igb_adapter *adapter,
2482 struct tc_cbs_qopt_offload *qopt)
2483{
2484 struct e1000_hw *hw = &adapter->hw;
2485 int err;
2486
2487 /* CBS offloading is only supported by i210 controller. */
2488 if (hw->mac.type != e1000_i210)
2489 return -EOPNOTSUPP;
2490
2491 /* CBS offloading is only supported by queue 0 and queue 1. */
2492 if (qopt->queue < 0 || qopt->queue > 1)
2493 return -EINVAL;
2494
2495 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2496 qopt->idleslope, qopt->sendslope,
2497 qopt->hicredit, qopt->locredit);
2498 if (err)
2499 return err;
2500
2501 if (is_fqtss_enabled(adapter)) {
2502 igb_configure_cbs(adapter, qopt->queue, qopt->enable,
2503 qopt->idleslope, qopt->sendslope,
2504 qopt->hicredit, qopt->locredit);
2505
2506 if (!is_any_cbs_enabled(adapter))
2507 enable_fqtss(adapter, false);
2508
2509 } else {
2510 enable_fqtss(adapter, true);
2511 }
2512
2513 return 0;
2514}
2515
2516static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2517 void *type_data)
2518{
2519 struct igb_adapter *adapter = netdev_priv(dev);
2520
2521 switch (type) {
8521db4c 2522 case TC_SETUP_QDISC_CBS:
05f9d3e1
AG
2523 return igb_offload_cbs(adapter, type_data);
2524
2525 default:
2526 return -EOPNOTSUPP;
2527 }
2528}
2529
2e5c6922 2530static const struct net_device_ops igb_netdev_ops = {
559e9c49 2531 .ndo_open = igb_open,
2e5c6922 2532 .ndo_stop = igb_close,
cd392f5c 2533 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 2534 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 2535 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
2536 .ndo_set_mac_address = igb_set_mac,
2537 .ndo_change_mtu = igb_change_mtu,
2538 .ndo_do_ioctl = igb_ioctl,
2539 .ndo_tx_timeout = igb_tx_timeout,
2540 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
2541 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2542 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
2543 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2544 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
ed616689 2545 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
70ea4783 2546 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
1b8b062a 2547 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
8151d294 2548 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
2549#ifdef CONFIG_NET_POLL_CONTROLLER
2550 .ndo_poll_controller = igb_netpoll,
2551#endif
b2cb09b1
JP
2552 .ndo_fix_features = igb_fix_features,
2553 .ndo_set_features = igb_set_features,
268f9d33 2554 .ndo_fdb_add = igb_ndo_fdb_add,
e10715d3 2555 .ndo_features_check = igb_features_check,
05f9d3e1 2556 .ndo_setup_tc = igb_setup_tc,
2e5c6922
SH
2557};
2558
d67974f0
CW
2559/**
2560 * igb_set_fw_version - Configure version string for ethtool
2561 * @adapter: adapter struct
d67974f0
CW
2562 **/
2563void igb_set_fw_version(struct igb_adapter *adapter)
2564{
2565 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
2566 struct e1000_fw_version fw;
2567
2568 igb_get_fw_version(hw, &fw);
2569
2570 switch (hw->mac.type) {
7dc98a62 2571 case e1000_i210:
0b1a6f2e 2572 case e1000_i211:
7dc98a62
CW
2573 if (!(igb_get_flash_presence_i210(hw))) {
2574 snprintf(adapter->fw_version,
2575 sizeof(adapter->fw_version),
2576 "%2d.%2d-%d",
2577 fw.invm_major, fw.invm_minor,
2578 fw.invm_img_type);
2579 break;
2580 }
2581 /* fall through */
0b1a6f2e
CW
2582 default:
2583 /* if option is rom valid, display its version too */
2584 if (fw.or_valid) {
2585 snprintf(adapter->fw_version,
2586 sizeof(adapter->fw_version),
2587 "%d.%d, 0x%08x, %d.%d.%d",
2588 fw.eep_major, fw.eep_minor, fw.etrack_id,
2589 fw.or_major, fw.or_build, fw.or_patch);
2590 /* no option rom */
7dc98a62 2591 } else if (fw.etrack_id != 0X0000) {
0b1a6f2e 2592 snprintf(adapter->fw_version,
7dc98a62
CW
2593 sizeof(adapter->fw_version),
2594 "%d.%d, 0x%08x",
2595 fw.eep_major, fw.eep_minor, fw.etrack_id);
2596 } else {
2597 snprintf(adapter->fw_version,
2598 sizeof(adapter->fw_version),
2599 "%d.%d.%d",
2600 fw.eep_major, fw.eep_minor, fw.eep_build);
0b1a6f2e
CW
2601 }
2602 break;
d67974f0 2603 }
d67974f0
CW
2604}
2605
56cec249
CW
2606/**
2607 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2608 *
2609 * @adapter: adapter struct
2610 **/
2611static void igb_init_mas(struct igb_adapter *adapter)
2612{
2613 struct e1000_hw *hw = &adapter->hw;
2614 u16 eeprom_data;
2615
2616 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2617 switch (hw->bus.func) {
2618 case E1000_FUNC_0:
2619 if (eeprom_data & IGB_MAS_ENABLE_0) {
2620 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2621 netdev_info(adapter->netdev,
2622 "MAS: Enabling Media Autosense for port %d\n",
2623 hw->bus.func);
2624 }
2625 break;
2626 case E1000_FUNC_1:
2627 if (eeprom_data & IGB_MAS_ENABLE_1) {
2628 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2629 netdev_info(adapter->netdev,
2630 "MAS: Enabling Media Autosense for port %d\n",
2631 hw->bus.func);
2632 }
2633 break;
2634 case E1000_FUNC_2:
2635 if (eeprom_data & IGB_MAS_ENABLE_2) {
2636 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2637 netdev_info(adapter->netdev,
2638 "MAS: Enabling Media Autosense for port %d\n",
2639 hw->bus.func);
2640 }
2641 break;
2642 case E1000_FUNC_3:
2643 if (eeprom_data & IGB_MAS_ENABLE_3) {
2644 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2645 netdev_info(adapter->netdev,
2646 "MAS: Enabling Media Autosense for port %d\n",
2647 hw->bus.func);
2648 }
2649 break;
2650 default:
2651 /* Shouldn't get here */
2652 netdev_err(adapter->netdev,
2653 "MAS: Invalid port configuration, returning\n");
2654 break;
2655 }
2656}
2657
b980ac18
JK
2658/**
2659 * igb_init_i2c - Init I2C interface
441fc6fd 2660 * @adapter: pointer to adapter structure
b980ac18 2661 **/
441fc6fd
CW
2662static s32 igb_init_i2c(struct igb_adapter *adapter)
2663{
23d87824 2664 s32 status = 0;
441fc6fd
CW
2665
2666 /* I2C interface supported on i350 devices */
2667 if (adapter->hw.mac.type != e1000_i350)
23d87824 2668 return 0;
441fc6fd
CW
2669
2670 /* Initialize the i2c bus which is controlled by the registers.
2671 * This bus will use the i2c_algo_bit structue that implements
2672 * the protocol through toggling of the 4 bits in the register.
2673 */
2674 adapter->i2c_adap.owner = THIS_MODULE;
2675 adapter->i2c_algo = igb_i2c_algo;
2676 adapter->i2c_algo.data = adapter;
2677 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2678 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2679 strlcpy(adapter->i2c_adap.name, "igb BB",
2680 sizeof(adapter->i2c_adap.name));
2681 status = i2c_bit_add_bus(&adapter->i2c_adap);
2682 return status;
2683}
2684
9d5c8243 2685/**
b980ac18
JK
2686 * igb_probe - Device Initialization Routine
2687 * @pdev: PCI device information struct
2688 * @ent: entry in igb_pci_tbl
9d5c8243 2689 *
b980ac18 2690 * Returns 0 on success, negative on failure
9d5c8243 2691 *
b980ac18
JK
2692 * igb_probe initializes an adapter identified by a pci_dev structure.
2693 * The OS initialization, configuring of the adapter private structure,
2694 * and a hardware reset occur.
9d5c8243 2695 **/
1dd06ae8 2696static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
2697{
2698 struct net_device *netdev;
2699 struct igb_adapter *adapter;
2700 struct e1000_hw *hw;
4337e993 2701 u16 eeprom_data = 0;
9835fd73 2702 s32 ret_val;
4337e993 2703 static int global_quad_port_a; /* global quad port a indication */
9d5c8243 2704 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2d6a5e95 2705 int err, pci_using_dac;
9835fd73 2706 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2707
bded64a7
AG
2708 /* Catch broken hardware that put the wrong VF device ID in
2709 * the PCIe SR-IOV capability.
2710 */
2711 if (pdev->is_virtfn) {
2712 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2713 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2714 return -EINVAL;
2715 }
2716
aed5dec3 2717 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2718 if (err)
2719 return err;
2720
2721 pci_using_dac = 0;
dc4ff9bb 2722 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2723 if (!err) {
dc4ff9bb 2724 pci_using_dac = 1;
9d5c8243 2725 } else {
dc4ff9bb 2726 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2727 if (err) {
dc4ff9bb
RK
2728 dev_err(&pdev->dev,
2729 "No usable DMA configuration, aborting\n");
2730 goto err_dma;
9d5c8243
AK
2731 }
2732 }
2733
56d766d6 2734 err = pci_request_mem_regions(pdev, igb_driver_name);
9d5c8243
AK
2735 if (err)
2736 goto err_pci_reg;
2737
19d5afd4 2738 pci_enable_pcie_error_reporting(pdev);
40a914fa 2739
9d5c8243 2740 pci_set_master(pdev);
c682fc23 2741 pci_save_state(pdev);
9d5c8243
AK
2742
2743 err = -ENOMEM;
1bfaf07b 2744 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2745 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2746 if (!netdev)
2747 goto err_alloc_etherdev;
2748
2749 SET_NETDEV_DEV(netdev, &pdev->dev);
2750
2751 pci_set_drvdata(pdev, netdev);
2752 adapter = netdev_priv(netdev);
2753 adapter->netdev = netdev;
2754 adapter->pdev = pdev;
2755 hw = &adapter->hw;
2756 hw->back = adapter;
b3f4d599 2757 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243 2758
9d5c8243 2759 err = -EIO;
73bf8048
JW
2760 adapter->io_addr = pci_iomap(pdev, 0, 0);
2761 if (!adapter->io_addr)
9d5c8243 2762 goto err_ioremap;
73bf8048
JW
2763 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2764 hw->hw_addr = adapter->io_addr;
9d5c8243 2765
2e5c6922 2766 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2767 igb_set_ethtool_ops(netdev);
9d5c8243 2768 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2769
2770 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771
89dbefb2
AS
2772 netdev->mem_start = pci_resource_start(pdev, 0);
2773 netdev->mem_end = pci_resource_end(pdev, 0);
9d5c8243 2774
9d5c8243
AK
2775 /* PCI config space info */
2776 hw->vendor_id = pdev->vendor;
2777 hw->device_id = pdev->device;
2778 hw->revision_id = pdev->revision;
2779 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2780 hw->subsystem_device_id = pdev->subsystem_device;
2781
9d5c8243
AK
2782 /* Copy the default MAC, PHY and NVM function pointers */
2783 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2784 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2785 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2786 /* Initialize skew-specific constants */
2787 err = ei->get_invariants(hw);
2788 if (err)
450c87c8 2789 goto err_sw_init;
9d5c8243 2790
450c87c8 2791 /* setup the private structure */
9d5c8243
AK
2792 err = igb_sw_init(adapter);
2793 if (err)
2794 goto err_sw_init;
2795
2796 igb_get_bus_info_pcie(hw);
2797
2798 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2799
2800 /* Copper options */
2801 if (hw->phy.media_type == e1000_media_type_copper) {
2802 hw->phy.mdix = AUTO_ALL_MODES;
2803 hw->phy.disable_polarity_correction = false;
2804 hw->phy.ms_type = e1000_ms_hw_default;
2805 }
2806
2807 if (igb_check_reset_block(hw))
2808 dev_info(&pdev->dev,
2809 "PHY reset is blocked due to SOL/IDER session.\n");
2810
b980ac18 2811 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2812 * set by igb_sw_init so we should use an or instead of an
2813 * assignment.
2814 */
2815 netdev->features |= NETIF_F_SG |
077887c3
AD
2816 NETIF_F_TSO |
2817 NETIF_F_TSO6 |
2818 NETIF_F_RXHASH |
2819 NETIF_F_RXCSUM |
e10715d3 2820 NETIF_F_HW_CSUM;
077887c3 2821
6e033700
AD
2822 if (hw->mac.type >= e1000_82576)
2823 netdev->features |= NETIF_F_SCTP_CRC;
2824
e10715d3
AD
2825#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2826 NETIF_F_GSO_GRE_CSUM | \
7e13318d 2827 NETIF_F_GSO_IPXIP4 | \
bf2d1df3 2828 NETIF_F_GSO_IPXIP6 | \
e10715d3
AD
2829 NETIF_F_GSO_UDP_TUNNEL | \
2830 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2831
2832 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2833 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2834
077887c3 2835 /* copy netdev features into list of user selectable features */
e10715d3
AD
2836 netdev->hw_features |= netdev->features |
2837 NETIF_F_HW_VLAN_CTAG_RX |
2838 NETIF_F_HW_VLAN_CTAG_TX |
2839 NETIF_F_RXALL;
077887c3 2840
6e033700
AD
2841 if (hw->mac.type >= e1000_i350)
2842 netdev->hw_features |= NETIF_F_NTUPLE;
2843
e10715d3
AD
2844 if (pci_using_dac)
2845 netdev->features |= NETIF_F_HIGHDMA;
6e033700 2846
e10715d3 2847 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6e033700 2848 netdev->mpls_features |= NETIF_F_HW_CSUM;
e10715d3 2849 netdev->hw_enc_features |= netdev->vlan_features;
48f29ffc 2850
e10715d3
AD
2851 /* set this bit last since it cannot be part of vlan_features */
2852 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2853 NETIF_F_HW_VLAN_CTAG_RX |
2854 NETIF_F_HW_VLAN_CTAG_TX;
6b8f0922 2855
e10715d3 2856 netdev->priv_flags |= IFF_SUPP_NOFCS;
9d5c8243 2857
01789349
JP
2858 netdev->priv_flags |= IFF_UNICAST_FLT;
2859
91c527a5
JW
2860 /* MTU range: 68 - 9216 */
2861 netdev->min_mtu = ETH_MIN_MTU;
2862 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2863
330a6d6a 2864 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2865
2866 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2867 * known good starting state
2868 */
9d5c8243
AK
2869 hw->mac.ops.reset_hw(hw);
2870
ef3a0092
CW
2871 /* make sure the NVM is good , i211/i210 parts can have special NVM
2872 * that doesn't contain a checksum
f96a8a0b 2873 */
ef3a0092
CW
2874 switch (hw->mac.type) {
2875 case e1000_i210:
2876 case e1000_i211:
2877 if (igb_get_flash_presence_i210(hw)) {
2878 if (hw->nvm.ops.validate(hw) < 0) {
2879 dev_err(&pdev->dev,
2880 "The NVM Checksum Is Not Valid\n");
2881 err = -EIO;
2882 goto err_eeprom;
2883 }
2884 }
2885 break;
2886 default:
f96a8a0b
CW
2887 if (hw->nvm.ops.validate(hw) < 0) {
2888 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2889 err = -EIO;
2890 goto err_eeprom;
2891 }
ef3a0092 2892 break;
9d5c8243
AK
2893 }
2894
806ffb1d
JH
2895 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2896 /* copy the MAC address out of the NVM */
2897 if (hw->mac.ops.read_mac_addr(hw))
2898 dev_err(&pdev->dev, "NVM Read Error\n");
2899 }
9d5c8243
AK
2900
2901 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2902
aaeb6cdf 2903 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2904 dev_err(&pdev->dev, "Invalid MAC Address\n");
2905 err = -EIO;
2906 goto err_eeprom;
2907 }
2908
83c21335
YK
2909 igb_set_default_mac_filter(adapter);
2910
d67974f0
CW
2911 /* get firmware version for ethtool -i */
2912 igb_set_fw_version(adapter);
2913
27dff8b2
TF
2914 /* configure RXPBSIZE and TXPBSIZE */
2915 if (hw->mac.type == e1000_i210) {
2916 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2917 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2918 }
2919
26566eae
KC
2920 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
2921 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
9d5c8243
AK
2922
2923 INIT_WORK(&adapter->reset_task, igb_reset_task);
2924 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2925
450c87c8 2926 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2927 adapter->fc_autoneg = true;
2928 hw->mac.autoneg = true;
2929 hw->phy.autoneg_advertised = 0x2f;
2930
0cce119a
AD
2931 hw->fc.requested_mode = e1000_fc_default;
2932 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2933
9d5c8243
AK
2934 igb_validate_mdi_setting(hw);
2935
63d4a8f9 2936 /* By default, support wake on port A */
a2cf8b6c 2937 if (hw->bus.func == 0)
63d4a8f9
MV
2938 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2939
2940 /* Check the NVM for wake support on non-port A ports */
2941 if (hw->mac.type >= e1000_82580)
55cac248 2942 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2943 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2944 &eeprom_data);
a2cf8b6c
AD
2945 else if (hw->bus.func == 1)
2946 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2947
63d4a8f9
MV
2948 if (eeprom_data & IGB_EEPROM_APME)
2949 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2950
2951 /* now that we have the eeprom settings, apply the special cases where
2952 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2953 * lan on a particular port
2954 */
9d5c8243
AK
2955 switch (pdev->device) {
2956 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2957 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2958 break;
2959 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2960 case E1000_DEV_ID_82576_FIBER:
2961 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2962 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2963 * regardless of eeprom setting
2964 */
9d5c8243 2965 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2966 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2967 break;
c8ea5ea9 2968 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2969 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2970 /* if quad port adapter, disable WoL on all but port A */
2971 if (global_quad_port_a != 0)
63d4a8f9 2972 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2973 else
2974 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2975 /* Reset for multiple quad port adapters */
2976 if (++global_quad_port_a == 4)
2977 global_quad_port_a = 0;
2978 break;
63d4a8f9
MV
2979 default:
2980 /* If the device can't wake, don't set software support */
2981 if (!device_can_wakeup(&adapter->pdev->dev))
2982 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2983 }
2984
2985 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2986 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2987 adapter->wol |= E1000_WUFC_MAG;
2988
2989 /* Some vendors want WoL disabled by default, but still supported */
2990 if ((hw->mac.type == e1000_i350) &&
2991 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2992 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2993 adapter->wol = 0;
2994 }
2995
5e350b92
TF
2996 /* Some vendors want the ability to Use the EEPROM setting as
2997 * enable/disable only, and not for capability
2998 */
2999 if (((hw->mac.type == e1000_i350) ||
3000 (hw->mac.type == e1000_i354)) &&
3001 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3002 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3003 adapter->wol = 0;
3004 }
3005 if (hw->mac.type == e1000_i350) {
3006 if (((pdev->subsystem_device == 0x5001) ||
3007 (pdev->subsystem_device == 0x5002)) &&
3008 (hw->bus.func == 0)) {
3009 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3010 adapter->wol = 0;
3011 }
3012 if (pdev->subsystem_device == 0x1F52)
3013 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3014 }
3015
63d4a8f9
MV
3016 device_set_wakeup_enable(&adapter->pdev->dev,
3017 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
3018
3019 /* reset the hardware with the new settings */
3020 igb_reset(adapter);
3021
441fc6fd
CW
3022 /* Init the I2C interface */
3023 err = igb_init_i2c(adapter);
3024 if (err) {
3025 dev_err(&pdev->dev, "failed to init i2c interface\n");
3026 goto err_eeprom;
3027 }
3028
9d5c8243 3029 /* let the f/w know that the h/w is now under the control of the
e52c0f96
CW
3030 * driver.
3031 */
9d5c8243
AK
3032 igb_get_hw_control(adapter);
3033
9d5c8243
AK
3034 strcpy(netdev->name, "eth%d");
3035 err = register_netdev(netdev);
3036 if (err)
3037 goto err_register;
3038
b168dfc5
JB
3039 /* carrier off reporting is important to ethtool even BEFORE open */
3040 netif_carrier_off(netdev);
3041
421e02f0 3042#ifdef CONFIG_IGB_DCA
bbd98fe4 3043 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 3044 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 3045 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
3046 igb_setup_dca(adapter);
3047 }
fe4506b6 3048
38c845c7 3049#endif
e428893b
CW
3050#ifdef CONFIG_IGB_HWMON
3051 /* Initialize the thermal sensor on i350 devices. */
3052 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3053 u16 ets_word;
3c89f6d0 3054
b980ac18 3055 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
3056 * external thermal sensor.
3057 */
3058 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3059 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3060 adapter->ets = true;
3061 else
3062 adapter->ets = false;
3063 if (igb_sysfs_init(adapter))
3064 dev_err(&pdev->dev,
3065 "failed to allocate sysfs resources\n");
3066 } else {
3067 adapter->ets = false;
3068 }
3069#endif
56cec249
CW
3070 /* Check if Media Autosense is enabled */
3071 adapter->ei = *ei;
3072 if (hw->dev_spec._82575.mas_capable)
3073 igb_init_mas(adapter);
3074
673b8b70 3075 /* do hw tstamp init after resetting */
7ebae817 3076 igb_ptp_init(adapter);
673b8b70 3077
9d5c8243 3078 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
3079 /* print bus type/speed/width info, not applicable to i354 */
3080 if (hw->mac.type != e1000_i354) {
3081 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3082 netdev->name,
3083 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3084 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3085 "unknown"),
3086 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3087 "Width x4" :
3088 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3089 "Width x2" :
3090 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3091 "Width x1" : "unknown"), netdev->dev_addr);
3092 }
9d5c8243 3093
53ea6c7e
TF
3094 if ((hw->mac.type >= e1000_i210 ||
3095 igb_get_flash_presence_i210(hw))) {
3096 ret_val = igb_read_part_string(hw, part_str,
3097 E1000_PBANUM_LENGTH);
3098 } else {
3099 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3100 }
3101
9835fd73
CW
3102 if (ret_val)
3103 strcpy(part_str, "Unknown");
3104 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
3105 dev_info(&pdev->dev,
3106 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
cd14ef54 3107 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
7dfc16fa 3108 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 3109 adapter->num_rx_queues, adapter->num_tx_queues);
f4c01e96
CW
3110 if (hw->phy.media_type == e1000_media_type_copper) {
3111 switch (hw->mac.type) {
3112 case e1000_i350:
3113 case e1000_i210:
3114 case e1000_i211:
3115 /* Enable EEE for internal copper PHY devices */
c4c112f1 3116 err = igb_set_eee_i350(hw, true, true);
f4c01e96
CW
3117 if ((!err) &&
3118 (!hw->dev_spec._82575.eee_disable)) {
3119 adapter->eee_advert =
3120 MDIO_EEE_100TX | MDIO_EEE_1000T;
3121 adapter->flags |= IGB_FLAG_EEE;
3122 }
3123 break;
3124 case e1000_i354:
ceb5f13b 3125 if ((rd32(E1000_CTRL_EXT) &
f4c01e96 3126 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
c4c112f1 3127 err = igb_set_eee_i354(hw, true, true);
f4c01e96
CW
3128 if ((!err) &&
3129 (!hw->dev_spec._82575.eee_disable)) {
3130 adapter->eee_advert =
3131 MDIO_EEE_100TX | MDIO_EEE_1000T;
3132 adapter->flags |= IGB_FLAG_EEE;
3133 }
3134 }
3135 break;
3136 default:
3137 break;
ceb5f13b 3138 }
09b068d4 3139 }
749ab2cd 3140 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
3141 return 0;
3142
3143err_register:
3144 igb_release_hw_control(adapter);
441fc6fd 3145 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
3146err_eeprom:
3147 if (!igb_check_reset_block(hw))
f5f4cf08 3148 igb_reset_phy(hw);
9d5c8243
AK
3149
3150 if (hw->flash_address)
3151 iounmap(hw->flash_address);
9d5c8243 3152err_sw_init:
83c21335 3153 kfree(adapter->mac_table);
42ad1a03 3154 kfree(adapter->shadow_vfta);
047e0030 3155 igb_clear_interrupt_scheme(adapter);
ceee3450
TF
3156#ifdef CONFIG_PCI_IOV
3157 igb_disable_sriov(pdev);
3158#endif
73bf8048 3159 pci_iounmap(pdev, adapter->io_addr);
9d5c8243
AK
3160err_ioremap:
3161 free_netdev(netdev);
3162err_alloc_etherdev:
56d766d6 3163 pci_release_mem_regions(pdev);
9d5c8243
AK
3164err_pci_reg:
3165err_dma:
3166 pci_disable_device(pdev);
3167 return err;
3168}
3169
fa44f2f1 3170#ifdef CONFIG_PCI_IOV
781798a1 3171static int igb_disable_sriov(struct pci_dev *pdev)
fa44f2f1
GR
3172{
3173 struct net_device *netdev = pci_get_drvdata(pdev);
3174 struct igb_adapter *adapter = netdev_priv(netdev);
3175 struct e1000_hw *hw = &adapter->hw;
3176
3177 /* reclaim resources allocated to VFs */
3178 if (adapter->vf_data) {
3179 /* disable iov and allow time for transactions to clear */
b09186d2 3180 if (pci_vfs_assigned(pdev)) {
fa44f2f1
GR
3181 dev_warn(&pdev->dev,
3182 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3183 return -EPERM;
3184 } else {
3185 pci_disable_sriov(pdev);
3186 msleep(500);
3187 }
3188
4827cc37
YK
3189 kfree(adapter->vf_mac_list);
3190 adapter->vf_mac_list = NULL;
fa44f2f1
GR
3191 kfree(adapter->vf_data);
3192 adapter->vf_data = NULL;
3193 adapter->vfs_allocated_count = 0;
3194 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3195 wrfl();
3196 msleep(100);
3197 dev_info(&pdev->dev, "IOV Disabled\n");
3198
3199 /* Re-enable DMA Coalescing flag since IOV is turned off */
3200 adapter->flags |= IGB_FLAG_DMAC;
3201 }
3202
3203 return 0;
3204}
3205
3206static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3207{
3208 struct net_device *netdev = pci_get_drvdata(pdev);
3209 struct igb_adapter *adapter = netdev_priv(netdev);
3210 int old_vfs = pci_num_vf(pdev);
4827cc37 3211 struct vf_mac_filter *mac_list;
fa44f2f1 3212 int err = 0;
4827cc37 3213 int num_vf_mac_filters, i;
fa44f2f1 3214
cd14ef54 3215 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
50267196
MW
3216 err = -EPERM;
3217 goto out;
3218 }
fa44f2f1
GR
3219 if (!num_vfs)
3220 goto out;
fa44f2f1 3221
781798a1
SA
3222 if (old_vfs) {
3223 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3224 old_vfs, max_vfs);
3225 adapter->vfs_allocated_count = old_vfs;
3226 } else
3227 adapter->vfs_allocated_count = num_vfs;
fa44f2f1
GR
3228
3229 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3230 sizeof(struct vf_data_storage), GFP_KERNEL);
3231
3232 /* if allocation failed then we do not support SR-IOV */
3233 if (!adapter->vf_data) {
3234 adapter->vfs_allocated_count = 0;
fa44f2f1
GR
3235 err = -ENOMEM;
3236 goto out;
3237 }
3238
4827cc37
YK
3239 /* Due to the limited number of RAR entries calculate potential
3240 * number of MAC filters available for the VFs. Reserve entries
3241 * for PF default MAC, PF MAC filters and at least one RAR entry
3242 * for each VF for VF MAC.
3243 */
3244 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3245 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3246 adapter->vfs_allocated_count);
3247
3248 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3249 sizeof(struct vf_mac_filter),
3250 GFP_KERNEL);
3251
3252 mac_list = adapter->vf_mac_list;
3253 INIT_LIST_HEAD(&adapter->vf_macs.l);
3254
3255 if (adapter->vf_mac_list) {
3256 /* Initialize list of VF MAC filters */
3257 for (i = 0; i < num_vf_mac_filters; i++) {
3258 mac_list->vf = -1;
3259 mac_list->free = true;
3260 list_add(&mac_list->l, &adapter->vf_macs.l);
3261 mac_list++;
3262 }
3263 } else {
3264 /* If we could not allocate memory for the VF MAC filters
3265 * we can continue without this feature but warn user.
3266 */
3267 dev_err(&pdev->dev,
3268 "Unable to allocate memory for VF MAC filter list\n");
3269 }
3270
781798a1
SA
3271 /* only call pci_enable_sriov() if no VFs are allocated already */
3272 if (!old_vfs) {
3273 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3274 if (err)
3275 goto err_out;
3276 }
fa44f2f1
GR
3277 dev_info(&pdev->dev, "%d VFs allocated\n",
3278 adapter->vfs_allocated_count);
3279 for (i = 0; i < adapter->vfs_allocated_count; i++)
3280 igb_vf_configure(adapter, i);
3281
3282 /* DMA Coalescing is not supported in IOV mode. */
3283 adapter->flags &= ~IGB_FLAG_DMAC;
3284 goto out;
3285
3286err_out:
4827cc37
YK
3287 kfree(adapter->vf_mac_list);
3288 adapter->vf_mac_list = NULL;
fa44f2f1
GR
3289 kfree(adapter->vf_data);
3290 adapter->vf_data = NULL;
3291 adapter->vfs_allocated_count = 0;
3292out:
3293 return err;
3294}
3295
3296#endif
b980ac18 3297/**
441fc6fd
CW
3298 * igb_remove_i2c - Cleanup I2C interface
3299 * @adapter: pointer to adapter structure
b980ac18 3300 **/
441fc6fd
CW
3301static void igb_remove_i2c(struct igb_adapter *adapter)
3302{
441fc6fd
CW
3303 /* free the adapter bus structure */
3304 i2c_del_adapter(&adapter->i2c_adap);
3305}
3306
9d5c8243 3307/**
b980ac18
JK
3308 * igb_remove - Device Removal Routine
3309 * @pdev: PCI device information struct
9d5c8243 3310 *
b980ac18
JK
3311 * igb_remove is called by the PCI subsystem to alert the driver
3312 * that it should release a PCI device. The could be caused by a
3313 * Hot-Plug event, or because the driver is going to be removed from
3314 * memory.
9d5c8243 3315 **/
9f9a12f8 3316static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
3317{
3318 struct net_device *netdev = pci_get_drvdata(pdev);
3319 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 3320 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3321
749ab2cd 3322 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
3323#ifdef CONFIG_IGB_HWMON
3324 igb_sysfs_exit(adapter);
3325#endif
441fc6fd 3326 igb_remove_i2c(adapter);
a79f4f88 3327 igb_ptp_stop(adapter);
b980ac18 3328 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
3329 * disable watchdog from being rescheduled.
3330 */
9d5c8243
AK
3331 set_bit(__IGB_DOWN, &adapter->state);
3332 del_timer_sync(&adapter->watchdog_timer);
3333 del_timer_sync(&adapter->phy_info_timer);
3334
760141a5
TH
3335 cancel_work_sync(&adapter->reset_task);
3336 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 3337
421e02f0 3338#ifdef CONFIG_IGB_DCA
7dfc16fa 3339 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
3340 dev_info(&pdev->dev, "DCA disabled\n");
3341 dca_remove_requester(&pdev->dev);
7dfc16fa 3342 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 3343 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
3344 }
3345#endif
3346
9d5c8243 3347 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
3348 * would have already happened in close and is redundant.
3349 */
9d5c8243
AK
3350 igb_release_hw_control(adapter);
3351
37680117 3352#ifdef CONFIG_PCI_IOV
fa44f2f1 3353 igb_disable_sriov(pdev);
37680117 3354#endif
559e9c49 3355
c23d92b8
AW
3356 unregister_netdev(netdev);
3357
3358 igb_clear_interrupt_scheme(adapter);
3359
73bf8048 3360 pci_iounmap(pdev, adapter->io_addr);
28b0759c
AD
3361 if (hw->flash_address)
3362 iounmap(hw->flash_address);
56d766d6 3363 pci_release_mem_regions(pdev);
9d5c8243 3364
83c21335 3365 kfree(adapter->mac_table);
1128c756 3366 kfree(adapter->shadow_vfta);
9d5c8243
AK
3367 free_netdev(netdev);
3368
19d5afd4 3369 pci_disable_pcie_error_reporting(pdev);
40a914fa 3370
9d5c8243
AK
3371 pci_disable_device(pdev);
3372}
3373
a6b623e0 3374/**
b980ac18
JK
3375 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3376 * @adapter: board private structure to initialize
a6b623e0 3377 *
b980ac18
JK
3378 * This function initializes the vf specific data storage and then attempts to
3379 * allocate the VFs. The reason for ordering it this way is because it is much
3380 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3381 * the memory for the VFs.
a6b623e0 3382 **/
9f9a12f8 3383static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
3384{
3385#ifdef CONFIG_PCI_IOV
3386 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 3387 struct e1000_hw *hw = &adapter->hw;
a6b623e0 3388
f96a8a0b
CW
3389 /* Virtualization features not supported on i210 family. */
3390 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3391 return;
3392
be06998f
JB
3393 /* Of the below we really only want the effect of getting
3394 * IGB_FLAG_HAS_MSIX set (if available), without which
3395 * igb_enable_sriov() has no effect.
3396 */
3397 igb_set_interrupt_capability(adapter, true);
3398 igb_reset_interrupt_capability(adapter);
3399
fa44f2f1 3400 pci_sriov_set_totalvfs(pdev, 7);
6423fc34 3401 igb_enable_sriov(pdev, max_vfs);
0224d663 3402
a6b623e0
AD
3403#endif /* CONFIG_PCI_IOV */
3404}
3405
28cb2d1b 3406unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
9d5c8243
AK
3407{
3408 struct e1000_hw *hw = &adapter->hw;
28cb2d1b 3409 unsigned int max_rss_queues;
9d5c8243 3410
374a542d 3411 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 3412 switch (hw->mac.type) {
374a542d
MV
3413 case e1000_i211:
3414 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3415 break;
3416 case e1000_82575:
f96a8a0b 3417 case e1000_i210:
374a542d
MV
3418 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3419 break;
3420 case e1000_i350:
3421 /* I350 cannot do RSS and SR-IOV at the same time */
3422 if (!!adapter->vfs_allocated_count) {
3423 max_rss_queues = 1;
3424 break;
3425 }
3426 /* fall through */
3427 case e1000_82576:
3428 if (!!adapter->vfs_allocated_count) {
3429 max_rss_queues = 2;
3430 break;
3431 }
3432 /* fall through */
3433 case e1000_82580:
ceb5f13b 3434 case e1000_i354:
374a542d
MV
3435 default:
3436 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 3437 break;
374a542d
MV
3438 }
3439
28cb2d1b
ZS
3440 return max_rss_queues;
3441}
3442
3443static void igb_init_queue_configuration(struct igb_adapter *adapter)
3444{
3445 u32 max_rss_queues;
3446
3447 max_rss_queues = igb_get_max_rss_queues(adapter);
374a542d
MV
3448 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3449
72ddef05
SS
3450 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3451}
3452
3453void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3454 const u32 max_rss_queues)
3455{
3456 struct e1000_hw *hw = &adapter->hw;
3457
374a542d
MV
3458 /* Determine if we need to pair queues. */
3459 switch (hw->mac.type) {
3460 case e1000_82575:
f96a8a0b 3461 case e1000_i211:
374a542d 3462 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 3463 break;
374a542d 3464 case e1000_82576:
374a542d
MV
3465 case e1000_82580:
3466 case e1000_i350:
ceb5f13b 3467 case e1000_i354:
374a542d 3468 case e1000_i210:
f96a8a0b 3469 default:
b980ac18 3470 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
3471 * order to conserve interrupts due to limited supply.
3472 */
3473 if (adapter->rss_queues > (max_rss_queues / 2))
3474 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
37a5d163
SS
3475 else
3476 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
3477 break;
3478 }
fa44f2f1
GR
3479}
3480
3481/**
b980ac18
JK
3482 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3483 * @adapter: board private structure to initialize
fa44f2f1 3484 *
b980ac18
JK
3485 * igb_sw_init initializes the Adapter private data structure.
3486 * Fields are initialized based on PCI device information and
3487 * OS network device settings (MTU size).
fa44f2f1
GR
3488 **/
3489static int igb_sw_init(struct igb_adapter *adapter)
3490{
3491 struct e1000_hw *hw = &adapter->hw;
3492 struct net_device *netdev = adapter->netdev;
3493 struct pci_dev *pdev = adapter->pdev;
3494
3495 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3496
3497 /* set default ring sizes */
3498 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3499 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3500
3501 /* set default ITR values */
3502 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3503 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3504
3505 /* set default work limits */
3506 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3507
3508 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3509 VLAN_HLEN;
3510 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3511
0e71def2 3512 spin_lock_init(&adapter->nfc_lock);
fa44f2f1
GR
3513 spin_lock_init(&adapter->stats64_lock);
3514#ifdef CONFIG_PCI_IOV
3515 switch (hw->mac.type) {
3516 case e1000_82576:
3517 case e1000_i350:
3518 if (max_vfs > 7) {
3519 dev_warn(&pdev->dev,
3520 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 3521 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
3522 } else
3523 adapter->vfs_allocated_count = max_vfs;
3524 if (adapter->vfs_allocated_count)
3525 dev_warn(&pdev->dev,
3526 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3527 break;
3528 default:
3529 break;
3530 }
3531#endif /* CONFIG_PCI_IOV */
3532
cbfe360a
SA
3533 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3534 adapter->flags |= IGB_FLAG_HAS_MSIX;
3535
83c21335
YK
3536 adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3537 hw->mac.rar_entry_count, GFP_ATOMIC);
3538 if (!adapter->mac_table)
3539 return -ENOMEM;
3540
ceee3450
TF
3541 igb_probe_vfs(adapter);
3542
fa44f2f1 3543 igb_init_queue_configuration(adapter);
a99955fc 3544
1128c756 3545 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
3546 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3547 GFP_ATOMIC);
18eb8636
CJ
3548 if (!adapter->shadow_vfta)
3549 return -ENOMEM;
1128c756 3550
a6b623e0 3551 /* This call may decrease the number of queues */
53c7d064 3552 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
3553 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3554 return -ENOMEM;
3555 }
3556
3557 /* Explicitly disable IRQ since the NIC can be in any state. */
3558 igb_irq_disable(adapter);
3559
f96a8a0b 3560 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
3561 adapter->flags &= ~IGB_FLAG_DMAC;
3562
9d5c8243
AK
3563 set_bit(__IGB_DOWN, &adapter->state);
3564 return 0;
3565}
3566
3567/**
b980ac18
JK
3568 * igb_open - Called when a network interface is made active
3569 * @netdev: network interface device structure
9d5c8243 3570 *
b980ac18 3571 * Returns 0 on success, negative value on failure
9d5c8243 3572 *
b980ac18
JK
3573 * The open entry point is called when a network interface is made
3574 * active by the system (IFF_UP). At this point all resources needed
3575 * for transmit and receive operations are allocated, the interrupt
3576 * handler is registered with the OS, the watchdog timer is started,
3577 * and the stack is notified that the interface is ready.
9d5c8243 3578 **/
749ab2cd 3579static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
3580{
3581 struct igb_adapter *adapter = netdev_priv(netdev);
3582 struct e1000_hw *hw = &adapter->hw;
749ab2cd 3583 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3584 int err;
3585 int i;
3586
3587 /* disallow open during test */
749ab2cd
YZ
3588 if (test_bit(__IGB_TESTING, &adapter->state)) {
3589 WARN_ON(resuming);
9d5c8243 3590 return -EBUSY;
749ab2cd
YZ
3591 }
3592
3593 if (!resuming)
3594 pm_runtime_get_sync(&pdev->dev);
9d5c8243 3595
b168dfc5
JB
3596 netif_carrier_off(netdev);
3597
9d5c8243
AK
3598 /* allocate transmit descriptors */
3599 err = igb_setup_all_tx_resources(adapter);
3600 if (err)
3601 goto err_setup_tx;
3602
3603 /* allocate receive descriptors */
3604 err = igb_setup_all_rx_resources(adapter);
3605 if (err)
3606 goto err_setup_rx;
3607
88a268c1 3608 igb_power_up_link(adapter);
9d5c8243 3609
9d5c8243
AK
3610 /* before we allocate an interrupt, we must be ready to handle it.
3611 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3612 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
3613 * clean_rx handler before we do so.
3614 */
9d5c8243
AK
3615 igb_configure(adapter);
3616
3617 err = igb_request_irq(adapter);
3618 if (err)
3619 goto err_req_irq;
3620
0c2cc02e
AD
3621 /* Notify the stack of the actual queue counts. */
3622 err = netif_set_real_num_tx_queues(adapter->netdev,
3623 adapter->num_tx_queues);
3624 if (err)
3625 goto err_set_queues;
3626
3627 err = netif_set_real_num_rx_queues(adapter->netdev,
3628 adapter->num_rx_queues);
3629 if (err)
3630 goto err_set_queues;
3631
9d5c8243
AK
3632 /* From here on the code is the same as igb_up() */
3633 clear_bit(__IGB_DOWN, &adapter->state);
3634
0d1ae7f4
AD
3635 for (i = 0; i < adapter->num_q_vectors; i++)
3636 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
3637
3638 /* Clear any pending interrupts. */
3639 rd32(E1000_ICR);
844290e5
PW
3640
3641 igb_irq_enable(adapter);
3642
d4960307
AD
3643 /* notify VFs that reset has been completed */
3644 if (adapter->vfs_allocated_count) {
3645 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 3646
d4960307
AD
3647 reg_data |= E1000_CTRL_EXT_PFRSTD;
3648 wr32(E1000_CTRL_EXT, reg_data);
3649 }
3650
d55b53ff
JK
3651 netif_tx_start_all_queues(netdev);
3652
749ab2cd
YZ
3653 if (!resuming)
3654 pm_runtime_put(&pdev->dev);
3655
25568a53
AD
3656 /* start the watchdog. */
3657 hw->mac.get_link_status = 1;
3658 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
3659
3660 return 0;
3661
0c2cc02e
AD
3662err_set_queues:
3663 igb_free_irq(adapter);
9d5c8243
AK
3664err_req_irq:
3665 igb_release_hw_control(adapter);
88a268c1 3666 igb_power_down_link(adapter);
9d5c8243
AK
3667 igb_free_all_rx_resources(adapter);
3668err_setup_rx:
3669 igb_free_all_tx_resources(adapter);
3670err_setup_tx:
3671 igb_reset(adapter);
749ab2cd
YZ
3672 if (!resuming)
3673 pm_runtime_put(&pdev->dev);
9d5c8243
AK
3674
3675 return err;
3676}
3677
46eafa59 3678int igb_open(struct net_device *netdev)
749ab2cd
YZ
3679{
3680 return __igb_open(netdev, false);
3681}
3682
9d5c8243 3683/**
b980ac18
JK
3684 * igb_close - Disables a network interface
3685 * @netdev: network interface device structure
9d5c8243 3686 *
b980ac18 3687 * Returns 0, this is not allowed to fail
9d5c8243 3688 *
b980ac18
JK
3689 * The close entry point is called when an interface is de-activated
3690 * by the OS. The hardware is still under the driver's control, but
3691 * needs to be disabled. A global MAC reset is issued to stop the
3692 * hardware, and all transmit and receive resources are freed.
9d5c8243 3693 **/
749ab2cd 3694static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
3695{
3696 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 3697 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3698
3699 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 3700
749ab2cd
YZ
3701 if (!suspending)
3702 pm_runtime_get_sync(&pdev->dev);
3703
3704 igb_down(adapter);
9d5c8243
AK
3705 igb_free_irq(adapter);
3706
3707 igb_free_all_tx_resources(adapter);
3708 igb_free_all_rx_resources(adapter);
3709
749ab2cd
YZ
3710 if (!suspending)
3711 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
3712 return 0;
3713}
3714
46eafa59 3715int igb_close(struct net_device *netdev)
749ab2cd 3716{
888f2293 3717 if (netif_device_present(netdev) || netdev->dismantle)
9474933c
TF
3718 return __igb_close(netdev, false);
3719 return 0;
749ab2cd
YZ
3720}
3721
9d5c8243 3722/**
b980ac18
JK
3723 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3724 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 3725 *
b980ac18 3726 * Return 0 on success, negative on failure
9d5c8243 3727 **/
80785298 3728int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3729{
59d71989 3730 struct device *dev = tx_ring->dev;
9d5c8243
AK
3731 int size;
3732
06034649 3733 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6 3734
7cc6fd4c 3735 tx_ring->tx_buffer_info = vmalloc(size);
06034649 3736 if (!tx_ring->tx_buffer_info)
9d5c8243 3737 goto err;
9d5c8243
AK
3738
3739 /* round up to nearest 4K */
85e8d004 3740 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
3741 tx_ring->size = ALIGN(tx_ring->size, 4096);
3742
5536d210
AD
3743 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3744 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3745 if (!tx_ring->desc)
3746 goto err;
3747
9d5c8243
AK
3748 tx_ring->next_to_use = 0;
3749 tx_ring->next_to_clean = 0;
81c2fc22 3750
9d5c8243
AK
3751 return 0;
3752
3753err:
06034649 3754 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
3755 tx_ring->tx_buffer_info = NULL;
3756 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
3757 return -ENOMEM;
3758}
3759
3760/**
b980ac18
JK
3761 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3762 * (Descriptors) for all queues
3763 * @adapter: board private structure
9d5c8243 3764 *
b980ac18 3765 * Return 0 on success, negative on failure
9d5c8243
AK
3766 **/
3767static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3768{
439705e1 3769 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3770 int i, err = 0;
3771
3772 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3773 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 3774 if (err) {
439705e1 3775 dev_err(&pdev->dev,
9d5c8243
AK
3776 "Allocation for Tx Queue %u failed\n", i);
3777 for (i--; i >= 0; i--)
3025a446 3778 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3779 break;
3780 }
3781 }
3782
3783 return err;
3784}
3785
3786/**
b980ac18
JK
3787 * igb_setup_tctl - configure the transmit control registers
3788 * @adapter: Board private structure
9d5c8243 3789 **/
d7ee5b3a 3790void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 3791{
9d5c8243
AK
3792 struct e1000_hw *hw = &adapter->hw;
3793 u32 tctl;
9d5c8243 3794
85b430b4
AD
3795 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3796 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
3797
3798 /* Program the Transmit Control Register */
9d5c8243
AK
3799 tctl = rd32(E1000_TCTL);
3800 tctl &= ~E1000_TCTL_CT;
3801 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3802 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3803
3804 igb_config_collision_dist(hw);
3805
9d5c8243
AK
3806 /* Enable transmits */
3807 tctl |= E1000_TCTL_EN;
3808
3809 wr32(E1000_TCTL, tctl);
3810}
3811
85b430b4 3812/**
b980ac18
JK
3813 * igb_configure_tx_ring - Configure transmit ring after Reset
3814 * @adapter: board private structure
3815 * @ring: tx ring to configure
85b430b4 3816 *
b980ac18 3817 * Configure a transmit ring after a reset.
85b430b4 3818 **/
d7ee5b3a 3819void igb_configure_tx_ring(struct igb_adapter *adapter,
9005df38 3820 struct igb_ring *ring)
85b430b4
AD
3821{
3822 struct e1000_hw *hw = &adapter->hw;
a74420e0 3823 u32 txdctl = 0;
85b430b4
AD
3824 u64 tdba = ring->dma;
3825 int reg_idx = ring->reg_idx;
3826
3827 /* disable the queue */
a74420e0 3828 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
3829 wrfl();
3830 mdelay(10);
3831
3832 wr32(E1000_TDLEN(reg_idx),
b980ac18 3833 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 3834 wr32(E1000_TDBAL(reg_idx),
b980ac18 3835 tdba & 0x00000000ffffffffULL);
85b430b4
AD
3836 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3837
629823b8 3838 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
a74420e0 3839 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3840 writel(0, ring->tail);
85b430b4
AD
3841
3842 txdctl |= IGB_TX_PTHRESH;
3843 txdctl |= IGB_TX_HTHRESH << 8;
3844 txdctl |= IGB_TX_WTHRESH << 16;
3845
7cc6fd4c
AD
3846 /* reinitialize tx_buffer_info */
3847 memset(ring->tx_buffer_info, 0,
3848 sizeof(struct igb_tx_buffer) * ring->count);
3849
85b430b4
AD
3850 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3851 wr32(E1000_TXDCTL(reg_idx), txdctl);
3852}
3853
3854/**
b980ac18
JK
3855 * igb_configure_tx - Configure transmit Unit after Reset
3856 * @adapter: board private structure
85b430b4 3857 *
b980ac18 3858 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3859 **/
3860static void igb_configure_tx(struct igb_adapter *adapter)
3861{
3862 int i;
3863
3864 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3865 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3866}
3867
9d5c8243 3868/**
b980ac18
JK
3869 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3870 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3871 *
b980ac18 3872 * Returns 0 on success, negative on failure
9d5c8243 3873 **/
80785298 3874int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3875{
59d71989 3876 struct device *dev = rx_ring->dev;
f33005a6 3877 int size;
9d5c8243 3878
06034649 3879 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6 3880
d2bead57 3881 rx_ring->rx_buffer_info = vmalloc(size);
06034649 3882 if (!rx_ring->rx_buffer_info)
9d5c8243 3883 goto err;
9d5c8243 3884
9d5c8243 3885 /* Round up to nearest 4K */
f33005a6 3886 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3887 rx_ring->size = ALIGN(rx_ring->size, 4096);
3888
5536d210
AD
3889 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3890 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3891 if (!rx_ring->desc)
3892 goto err;
3893
cbc8e55f 3894 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3895 rx_ring->next_to_clean = 0;
3896 rx_ring->next_to_use = 0;
9d5c8243 3897
9d5c8243
AK
3898 return 0;
3899
3900err:
06034649
AD
3901 vfree(rx_ring->rx_buffer_info);
3902 rx_ring->rx_buffer_info = NULL;
f33005a6 3903 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3904 return -ENOMEM;
3905}
3906
3907/**
b980ac18
JK
3908 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3909 * (Descriptors) for all queues
3910 * @adapter: board private structure
9d5c8243 3911 *
b980ac18 3912 * Return 0 on success, negative on failure
9d5c8243
AK
3913 **/
3914static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3915{
439705e1 3916 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3917 int i, err = 0;
3918
3919 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3920 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3921 if (err) {
439705e1 3922 dev_err(&pdev->dev,
9d5c8243
AK
3923 "Allocation for Rx Queue %u failed\n", i);
3924 for (i--; i >= 0; i--)
3025a446 3925 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3926 break;
3927 }
3928 }
3929
3930 return err;
3931}
3932
06cf2666 3933/**
b980ac18
JK
3934 * igb_setup_mrqc - configure the multiple receive queue control registers
3935 * @adapter: Board private structure
06cf2666
AD
3936 **/
3937static void igb_setup_mrqc(struct igb_adapter *adapter)
3938{
3939 struct e1000_hw *hw = &adapter->hw;
3940 u32 mrqc, rxcsum;
ed12cc9a 3941 u32 j, num_rx_queues;
eb31f849 3942 u32 rss_key[10];
06cf2666 3943
eb31f849 3944 netdev_rss_key_fill(rss_key, sizeof(rss_key));
a57fe23e 3945 for (j = 0; j < 10; j++)
eb31f849 3946 wr32(E1000_RSSRK(j), rss_key[j]);
06cf2666 3947
a99955fc 3948 num_rx_queues = adapter->rss_queues;
06cf2666 3949
797fd4be 3950 switch (hw->mac.type) {
797fd4be
AD
3951 case e1000_82576:
3952 /* 82576 supports 2 RSS queues for SR-IOV */
ed12cc9a 3953 if (adapter->vfs_allocated_count)
06cf2666 3954 num_rx_queues = 2;
797fd4be
AD
3955 break;
3956 default:
3957 break;
06cf2666
AD
3958 }
3959
ed12cc9a
LMV
3960 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3961 for (j = 0; j < IGB_RETA_SIZE; j++)
c502ea2e
CW
3962 adapter->rss_indir_tbl[j] =
3963 (j * num_rx_queues) / IGB_RETA_SIZE;
ed12cc9a 3964 adapter->rss_indir_tbl_init = num_rx_queues;
06cf2666 3965 }
ed12cc9a 3966 igb_write_rss_indir_tbl(adapter);
06cf2666 3967
b980ac18 3968 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3969 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3970 * offloads as they are enabled by default
3971 */
3972 rxcsum = rd32(E1000_RXCSUM);
3973 rxcsum |= E1000_RXCSUM_PCSD;
3974
3975 if (adapter->hw.mac.type >= e1000_82576)
3976 /* Enable Receive Checksum Offload for SCTP */
3977 rxcsum |= E1000_RXCSUM_CRCOFL;
3978
3979 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3980 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3981
039454a8
AA
3982 /* Generate RSS hash based on packet types, TCP/UDP
3983 * port numbers and/or IPv4/v6 src and dst addresses
3984 */
f96a8a0b
CW
3985 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3986 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3987 E1000_MRQC_RSS_FIELD_IPV6 |
3988 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3989 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3990
039454a8
AA
3991 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3992 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3993 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3994 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3995
06cf2666
AD
3996 /* If VMDq is enabled then we set the appropriate mode for that, else
3997 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3998 * if we are only using one queue
3999 */
06cf2666
AD
4000 if (adapter->vfs_allocated_count) {
4001 if (hw->mac.type > e1000_82575) {
4002 /* Set the default pool for the PF's first queue */
4003 u32 vtctl = rd32(E1000_VT_CTL);
9005df38 4004
06cf2666
AD
4005 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4006 E1000_VT_CTL_DISABLE_DEF_POOL);
4007 vtctl |= adapter->vfs_allocated_count <<
4008 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4009 wr32(E1000_VT_CTL, vtctl);
4010 }
a99955fc 4011 if (adapter->rss_queues > 1)
c883de9f 4012 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
06cf2666 4013 else
f96a8a0b 4014 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 4015 } else {
f96a8a0b 4016 if (hw->mac.type != e1000_i211)
c883de9f 4017 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
06cf2666
AD
4018 }
4019 igb_vmm_control(adapter);
4020
06cf2666
AD
4021 wr32(E1000_MRQC, mrqc);
4022}
4023
9d5c8243 4024/**
b980ac18
JK
4025 * igb_setup_rctl - configure the receive control registers
4026 * @adapter: Board private structure
9d5c8243 4027 **/
d7ee5b3a 4028void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
4029{
4030 struct e1000_hw *hw = &adapter->hw;
4031 u32 rctl;
9d5c8243
AK
4032
4033 rctl = rd32(E1000_RCTL);
4034
4035 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 4036 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 4037
69d728ba 4038 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 4039 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 4040
b980ac18 4041 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
4042 * redirection as it did with e1000. Newer features require
4043 * that the HW strips the CRC.
73cd78f1 4044 */
87cb7e8c 4045 rctl |= E1000_RCTL_SECRC;
9d5c8243 4046
559e9c49 4047 /* disable store bad packets and clear size bits. */
ec54d7d6 4048 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 4049
45693bcb 4050 /* enable LPE to allow for reception of jumbo frames */
6ec43fe6 4051 rctl |= E1000_RCTL_LPE;
9d5c8243 4052
952f72a8
AD
4053 /* disable queue 0 to prevent tail write w/o re-config */
4054 wr32(E1000_RXDCTL(0), 0);
9d5c8243 4055
e1739522
AD
4056 /* Attention!!! For SR-IOV PF driver operations you must enable
4057 * queue drop for all VF and PF queues to prevent head of line blocking
4058 * if an un-trusted VF does not provide descriptors to hardware.
4059 */
4060 if (adapter->vfs_allocated_count) {
e1739522
AD
4061 /* set all queue drop enable bits */
4062 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
4063 }
4064
89eaefb6
BG
4065 /* This is useful for sniffing bad packets. */
4066 if (adapter->netdev->features & NETIF_F_RXALL) {
4067 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
4068 * in e1000e_set_rx_mode
4069 */
89eaefb6
BG
4070 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4071 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4072 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4073
16903caa 4074 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
89eaefb6
BG
4075 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4076 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4077 * and that breaks VLANs.
4078 */
4079 }
4080
9d5c8243
AK
4081 wr32(E1000_RCTL, rctl);
4082}
4083
7d5753f0 4084static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
9005df38 4085 int vfn)
7d5753f0
AD
4086{
4087 struct e1000_hw *hw = &adapter->hw;
4088 u32 vmolr;
4089
d3836f8e
AD
4090 if (size > MAX_JUMBO_FRAME_SIZE)
4091 size = MAX_JUMBO_FRAME_SIZE;
7d5753f0
AD
4092
4093 vmolr = rd32(E1000_VMOLR(vfn));
4094 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4095 vmolr |= size | E1000_VMOLR_LPE;
4096 wr32(E1000_VMOLR(vfn), vmolr);
4097
4098 return 0;
4099}
4100
030f9f52
CV
4101static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4102 int vfn, bool enable)
e1739522 4103{
e1739522 4104 struct e1000_hw *hw = &adapter->hw;
030f9f52 4105 u32 val, reg;
e1739522 4106
030f9f52
CV
4107 if (hw->mac.type < e1000_82576)
4108 return;
e1739522 4109
030f9f52
CV
4110 if (hw->mac.type == e1000_i350)
4111 reg = E1000_DVMOLR(vfn);
4112 else
4113 reg = E1000_VMOLR(vfn);
4114
4115 val = rd32(reg);
4116 if (enable)
4117 val |= E1000_VMOLR_STRVLAN;
4118 else
4119 val &= ~(E1000_VMOLR_STRVLAN);
4120 wr32(reg, val);
e1739522
AD
4121}
4122
8151d294
WM
4123static inline void igb_set_vmolr(struct igb_adapter *adapter,
4124 int vfn, bool aupe)
7d5753f0
AD
4125{
4126 struct e1000_hw *hw = &adapter->hw;
4127 u32 vmolr;
4128
b980ac18 4129 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
4130 * we should exit and do nothing
4131 */
4132 if (hw->mac.type < e1000_82576)
4133 return;
4134
4135 vmolr = rd32(E1000_VMOLR(vfn));
8151d294 4136 if (aupe)
b980ac18 4137 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
4138 else
4139 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
4140
4141 /* clear all bits that might not be set */
4142 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4143
a99955fc 4144 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 4145 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 4146 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
4147 * multicast packets
4148 */
4149 if (vfn <= adapter->vfs_allocated_count)
b980ac18 4150 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
4151
4152 wr32(E1000_VMOLR(vfn), vmolr);
4153}
4154
85b430b4 4155/**
b980ac18
JK
4156 * igb_configure_rx_ring - Configure a receive ring after Reset
4157 * @adapter: board private structure
4158 * @ring: receive ring to be configured
85b430b4 4159 *
b980ac18 4160 * Configure the Rx unit of the MAC after a reset.
85b430b4 4161 **/
d7ee5b3a 4162void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 4163 struct igb_ring *ring)
85b430b4
AD
4164{
4165 struct e1000_hw *hw = &adapter->hw;
7ec0116c 4166 union e1000_adv_rx_desc *rx_desc;
85b430b4
AD
4167 u64 rdba = ring->dma;
4168 int reg_idx = ring->reg_idx;
a74420e0 4169 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
4170
4171 /* disable the queue */
a74420e0 4172 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
4173
4174 /* Set DMA base address registers */
4175 wr32(E1000_RDBAL(reg_idx),
4176 rdba & 0x00000000ffffffffULL);
4177 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4178 wr32(E1000_RDLEN(reg_idx),
b980ac18 4179 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
4180
4181 /* initialize head and tail */
629823b8 4182 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
a74420e0 4183 wr32(E1000_RDH(reg_idx), 0);
fce99e34 4184 writel(0, ring->tail);
85b430b4 4185
952f72a8 4186 /* set descriptor configuration */
44390ca6 4187 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
8649aaef
AD
4188 if (ring_uses_large_buffer(ring))
4189 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4190 else
4191 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 4192 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 4193 if (hw->mac.type >= e1000_82580)
757b77e2 4194 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
4195 /* Only set Drop Enable if we are supporting multiple queues */
4196 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4197 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
4198
4199 wr32(E1000_SRRCTL(reg_idx), srrctl);
4200
7d5753f0 4201 /* set filtering for VMDQ pools */
8151d294 4202 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 4203
85b430b4
AD
4204 rxdctl |= IGB_RX_PTHRESH;
4205 rxdctl |= IGB_RX_HTHRESH << 8;
4206 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0 4207
d2bead57
AD
4208 /* initialize rx_buffer_info */
4209 memset(ring->rx_buffer_info, 0,
4210 sizeof(struct igb_rx_buffer) * ring->count);
4211
7ec0116c
AD
4212 /* initialize Rx descriptor 0 */
4213 rx_desc = IGB_RX_DESC(ring, 0);
4214 rx_desc->wb.upper.length = 0;
4215
a74420e0
AD
4216 /* enable receive descriptor fetching */
4217 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
4218 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4219}
4220
8649aaef
AD
4221static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4222 struct igb_ring *rx_ring)
4223{
4224 /* set build_skb and buffer size flags */
e3cdf68d 4225 clear_ring_build_skb_enabled(rx_ring);
8649aaef
AD
4226 clear_ring_uses_large_buffer(rx_ring);
4227
4228 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4229 return;
4230
e3cdf68d
AD
4231 set_ring_build_skb_enabled(rx_ring);
4232
8649aaef
AD
4233#if (PAGE_SIZE < 8192)
4234 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4235 return;
4236
4237 set_ring_uses_large_buffer(rx_ring);
4238#endif
4239}
4240
9d5c8243 4241/**
b980ac18
JK
4242 * igb_configure_rx - Configure receive Unit after Reset
4243 * @adapter: board private structure
9d5c8243 4244 *
b980ac18 4245 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
4246 **/
4247static void igb_configure_rx(struct igb_adapter *adapter)
4248{
9107584e 4249 int i;
9d5c8243 4250
26ad9178 4251 /* set the correct pool for the PF default MAC address in entry 0 */
83c21335 4252 igb_set_default_mac_filter(adapter);
26ad9178 4253
06cf2666 4254 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
4255 * the Base and Length of the Rx Descriptor Ring
4256 */
8649aaef
AD
4257 for (i = 0; i < adapter->num_rx_queues; i++) {
4258 struct igb_ring *rx_ring = adapter->rx_ring[i];
4259
4260 igb_set_rx_buffer_len(adapter, rx_ring);
4261 igb_configure_rx_ring(adapter, rx_ring);
4262 }
9d5c8243
AK
4263}
4264
4265/**
b980ac18
JK
4266 * igb_free_tx_resources - Free Tx Resources per Queue
4267 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 4268 *
b980ac18 4269 * Free all transmit software resources
9d5c8243 4270 **/
68fd9910 4271void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 4272{
3b644cf6 4273 igb_clean_tx_ring(tx_ring);
9d5c8243 4274
06034649
AD
4275 vfree(tx_ring->tx_buffer_info);
4276 tx_ring->tx_buffer_info = NULL;
9d5c8243 4277
439705e1
AD
4278 /* if not set, then don't free */
4279 if (!tx_ring->desc)
4280 return;
4281
59d71989
AD
4282 dma_free_coherent(tx_ring->dev, tx_ring->size,
4283 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
4284
4285 tx_ring->desc = NULL;
4286}
4287
4288/**
b980ac18
JK
4289 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4290 * @adapter: board private structure
9d5c8243 4291 *
b980ac18 4292 * Free all transmit software resources
9d5c8243
AK
4293 **/
4294static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4295{
4296 int i;
4297
4298 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
4299 if (adapter->tx_ring[i])
4300 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
4301}
4302
9d5c8243 4303/**
b980ac18
JK
4304 * igb_clean_tx_ring - Free Tx Buffers
4305 * @tx_ring: ring to be cleaned
9d5c8243 4306 **/
3b644cf6 4307static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 4308{
7cc6fd4c
AD
4309 u16 i = tx_ring->next_to_clean;
4310 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243 4311
7cc6fd4c
AD
4312 while (i != tx_ring->next_to_use) {
4313 union e1000_adv_tx_desc *eop_desc, *tx_desc;
9d5c8243 4314
7cc6fd4c
AD
4315 /* Free all the Tx ring sk_buffs */
4316 dev_kfree_skb_any(tx_buffer->skb);
9d5c8243 4317
7cc6fd4c
AD
4318 /* unmap skb header data */
4319 dma_unmap_single(tx_ring->dev,
4320 dma_unmap_addr(tx_buffer, dma),
4321 dma_unmap_len(tx_buffer, len),
4322 DMA_TO_DEVICE);
dad8a3b3 4323
7cc6fd4c
AD
4324 /* check for eop_desc to determine the end of the packet */
4325 eop_desc = tx_buffer->next_to_watch;
4326 tx_desc = IGB_TX_DESC(tx_ring, i);
4327
4328 /* unmap remaining buffers */
4329 while (tx_desc != eop_desc) {
4330 tx_buffer++;
4331 tx_desc++;
4332 i++;
4333 if (unlikely(i == tx_ring->count)) {
4334 i = 0;
4335 tx_buffer = tx_ring->tx_buffer_info;
4336 tx_desc = IGB_TX_DESC(tx_ring, 0);
4337 }
4338
4339 /* unmap any remaining paged data */
4340 if (dma_unmap_len(tx_buffer, len))
4341 dma_unmap_page(tx_ring->dev,
4342 dma_unmap_addr(tx_buffer, dma),
4343 dma_unmap_len(tx_buffer, len),
4344 DMA_TO_DEVICE);
4345 }
9d5c8243 4346
7cc6fd4c
AD
4347 /* move us one more past the eop_desc for start of next pkt */
4348 tx_buffer++;
4349 i++;
4350 if (unlikely(i == tx_ring->count)) {
4351 i = 0;
4352 tx_buffer = tx_ring->tx_buffer_info;
4353 }
4354 }
4355
4356 /* reset BQL for queue */
4357 netdev_tx_reset_queue(txring_txq(tx_ring));
9d5c8243 4358
7cc6fd4c 4359 /* reset next_to_use and next_to_clean */
9d5c8243
AK
4360 tx_ring->next_to_use = 0;
4361 tx_ring->next_to_clean = 0;
9d5c8243
AK
4362}
4363
4364/**
b980ac18
JK
4365 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4366 * @adapter: board private structure
9d5c8243
AK
4367 **/
4368static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4369{
4370 int i;
4371
4372 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
4373 if (adapter->tx_ring[i])
4374 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
4375}
4376
4377/**
b980ac18
JK
4378 * igb_free_rx_resources - Free Rx Resources
4379 * @rx_ring: ring to clean the resources from
9d5c8243 4380 *
b980ac18 4381 * Free all receive software resources
9d5c8243 4382 **/
68fd9910 4383void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 4384{
3b644cf6 4385 igb_clean_rx_ring(rx_ring);
9d5c8243 4386
06034649
AD
4387 vfree(rx_ring->rx_buffer_info);
4388 rx_ring->rx_buffer_info = NULL;
9d5c8243 4389
439705e1
AD
4390 /* if not set, then don't free */
4391 if (!rx_ring->desc)
4392 return;
4393
59d71989
AD
4394 dma_free_coherent(rx_ring->dev, rx_ring->size,
4395 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
4396
4397 rx_ring->desc = NULL;
4398}
4399
4400/**
b980ac18
JK
4401 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4402 * @adapter: board private structure
9d5c8243 4403 *
b980ac18 4404 * Free all receive software resources
9d5c8243
AK
4405 **/
4406static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4407{
4408 int i;
4409
4410 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
4411 if (adapter->rx_ring[i])
4412 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
4413}
4414
4415/**
b980ac18
JK
4416 * igb_clean_rx_ring - Free Rx Buffers per Queue
4417 * @rx_ring: ring to free buffers from
9d5c8243 4418 **/
3b644cf6 4419static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 4420{
d2bead57 4421 u16 i = rx_ring->next_to_clean;
9d5c8243 4422
1a1c225b
AD
4423 if (rx_ring->skb)
4424 dev_kfree_skb(rx_ring->skb);
4425 rx_ring->skb = NULL;
4426
9d5c8243 4427 /* Free all the Rx ring sk_buffs */
d2bead57 4428 while (i != rx_ring->next_to_alloc) {
06034649 4429 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 4430
5be59554
AD
4431 /* Invalidate cache lines that may have been written to by
4432 * device so that we avoid corrupting memory.
4433 */
4434 dma_sync_single_range_for_cpu(rx_ring->dev,
4435 buffer_info->dma,
4436 buffer_info->page_offset,
8649aaef 4437 igb_rx_bufsz(rx_ring),
5be59554
AD
4438 DMA_FROM_DEVICE);
4439
4440 /* free resources associated with mapping */
4441 dma_unmap_page_attrs(rx_ring->dev,
4442 buffer_info->dma,
8649aaef 4443 igb_rx_pg_size(rx_ring),
5be59554 4444 DMA_FROM_DEVICE,
7bd17592 4445 IGB_RX_DMA_ATTR);
2976db80
AD
4446 __page_frag_cache_drain(buffer_info->page,
4447 buffer_info->pagecnt_bias);
cbc8e55f 4448
d2bead57
AD
4449 i++;
4450 if (i == rx_ring->count)
4451 i = 0;
9d5c8243
AK
4452 }
4453
cbc8e55f 4454 rx_ring->next_to_alloc = 0;
9d5c8243
AK
4455 rx_ring->next_to_clean = 0;
4456 rx_ring->next_to_use = 0;
9d5c8243
AK
4457}
4458
4459/**
b980ac18
JK
4460 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4461 * @adapter: board private structure
9d5c8243
AK
4462 **/
4463static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4464{
4465 int i;
4466
4467 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
4468 if (adapter->rx_ring[i])
4469 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
4470}
4471
4472/**
b980ac18
JK
4473 * igb_set_mac - Change the Ethernet Address of the NIC
4474 * @netdev: network interface device structure
4475 * @p: pointer to an address structure
9d5c8243 4476 *
b980ac18 4477 * Returns 0 on success, negative on failure
9d5c8243
AK
4478 **/
4479static int igb_set_mac(struct net_device *netdev, void *p)
4480{
4481 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 4482 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4483 struct sockaddr *addr = p;
4484
4485 if (!is_valid_ether_addr(addr->sa_data))
4486 return -EADDRNOTAVAIL;
4487
4488 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 4489 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 4490
26ad9178 4491 /* set the correct pool for the new PF MAC address in entry 0 */
83c21335 4492 igb_set_default_mac_filter(adapter);
e1739522 4493
9d5c8243
AK
4494 return 0;
4495}
4496
4497/**
b980ac18
JK
4498 * igb_write_mc_addr_list - write multicast addresses to MTA
4499 * @netdev: network interface device structure
9d5c8243 4500 *
b980ac18
JK
4501 * Writes multicast address list to the MTA hash table.
4502 * Returns: -ENOMEM on failure
4503 * 0 on no addresses written
4504 * X on writing X addresses to MTA
9d5c8243 4505 **/
68d480c4 4506static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
4507{
4508 struct igb_adapter *adapter = netdev_priv(netdev);
4509 struct e1000_hw *hw = &adapter->hw;
22bedad3 4510 struct netdev_hw_addr *ha;
68d480c4 4511 u8 *mta_list;
9d5c8243
AK
4512 int i;
4513
4cd24eaf 4514 if (netdev_mc_empty(netdev)) {
68d480c4
AD
4515 /* nothing to program, so clear mc list */
4516 igb_update_mc_addr_list(hw, NULL, 0);
4517 igb_restore_vf_multicasts(adapter);
4518 return 0;
4519 }
9d5c8243 4520
4cd24eaf 4521 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
4522 if (!mta_list)
4523 return -ENOMEM;
ff41f8dc 4524
68d480c4 4525 /* The shared function expects a packed array of only addresses. */
48e2f183 4526 i = 0;
22bedad3
JP
4527 netdev_for_each_mc_addr(ha, netdev)
4528 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 4529
68d480c4
AD
4530 igb_update_mc_addr_list(hw, mta_list, i);
4531 kfree(mta_list);
4532
4cd24eaf 4533 return netdev_mc_count(netdev);
68d480c4
AD
4534}
4535
16903caa
AD
4536static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4537{
4538 struct e1000_hw *hw = &adapter->hw;
4539 u32 i, pf_id;
4540
4541 switch (hw->mac.type) {
4542 case e1000_i210:
4543 case e1000_i211:
4544 case e1000_i350:
4545 /* VLAN filtering needed for VLAN prio filter */
4546 if (adapter->netdev->features & NETIF_F_NTUPLE)
4547 break;
4548 /* fall through */
4549 case e1000_82576:
4550 case e1000_82580:
4551 case e1000_i354:
4552 /* VLAN filtering needed for pool filtering */
4553 if (adapter->vfs_allocated_count)
4554 break;
4555 /* fall through */
4556 default:
4557 return 1;
4558 }
4559
4560 /* We are already in VLAN promisc, nothing to do */
4561 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4562 return 0;
4563
4564 if (!adapter->vfs_allocated_count)
4565 goto set_vfta;
4566
4567 /* Add PF to all active pools */
4568 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4569
4570 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4571 u32 vlvf = rd32(E1000_VLVF(i));
4572
a51d8c21 4573 vlvf |= BIT(pf_id);
16903caa
AD
4574 wr32(E1000_VLVF(i), vlvf);
4575 }
4576
4577set_vfta:
4578 /* Set all bits in the VLAN filter table array */
4579 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4580 hw->mac.ops.write_vfta(hw, i, ~0U);
4581
4582 /* Set flag so we don't redo unnecessary work */
4583 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4584
4585 return 0;
4586}
4587
4588#define VFTA_BLOCK_SIZE 8
4589static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4590{
4591 struct e1000_hw *hw = &adapter->hw;
4592 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4593 u32 vid_start = vfta_offset * 32;
4594 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4595 u32 i, vid, word, bits, pf_id;
4596
4597 /* guarantee that we don't scrub out management VLAN */
4598 vid = adapter->mng_vlan_id;
4599 if (vid >= vid_start && vid < vid_end)
a51d8c21 4600 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
16903caa
AD
4601
4602 if (!adapter->vfs_allocated_count)
4603 goto set_vfta;
4604
4605 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4606
4607 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4608 u32 vlvf = rd32(E1000_VLVF(i));
4609
4610 /* pull VLAN ID from VLVF */
4611 vid = vlvf & VLAN_VID_MASK;
4612
4613 /* only concern ourselves with a certain range */
4614 if (vid < vid_start || vid >= vid_end)
4615 continue;
4616
4617 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4618 /* record VLAN ID in VFTA */
a51d8c21 4619 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
16903caa
AD
4620
4621 /* if PF is part of this then continue */
4622 if (test_bit(vid, adapter->active_vlans))
4623 continue;
4624 }
4625
4626 /* remove PF from the pool */
a51d8c21 4627 bits = ~BIT(pf_id);
16903caa
AD
4628 bits &= rd32(E1000_VLVF(i));
4629 wr32(E1000_VLVF(i), bits);
4630 }
4631
4632set_vfta:
4633 /* extract values from active_vlans and write back to VFTA */
4634 for (i = VFTA_BLOCK_SIZE; i--;) {
4635 vid = (vfta_offset + i) * 32;
4636 word = vid / BITS_PER_LONG;
4637 bits = vid % BITS_PER_LONG;
4638
4639 vfta[i] |= adapter->active_vlans[word] >> bits;
4640
4641 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4642 }
4643}
4644
4645static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4646{
4647 u32 i;
4648
4649 /* We are not in VLAN promisc, nothing to do */
4650 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4651 return;
4652
4653 /* Set flag so we don't redo unnecessary work */
4654 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4655
4656 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4657 igb_scrub_vfta(adapter, i);
4658}
4659
68d480c4 4660/**
b980ac18
JK
4661 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4662 * @netdev: network interface device structure
68d480c4 4663 *
b980ac18
JK
4664 * The set_rx_mode entry point is called whenever the unicast or multicast
4665 * address lists or the network interface flags are updated. This routine is
4666 * responsible for configuring the hardware for proper unicast, multicast,
4667 * promiscuous mode, and all-multi behavior.
68d480c4
AD
4668 **/
4669static void igb_set_rx_mode(struct net_device *netdev)
4670{
4671 struct igb_adapter *adapter = netdev_priv(netdev);
4672 struct e1000_hw *hw = &adapter->hw;
4673 unsigned int vfn = adapter->vfs_allocated_count;
cfbc871c 4674 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
68d480c4
AD
4675 int count;
4676
4677 /* Check for Promiscuous and All Multicast modes */
68d480c4 4678 if (netdev->flags & IFF_PROMISC) {
16903caa 4679 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
bf456abb
AD
4680 vmolr |= E1000_VMOLR_MPME;
4681
4682 /* enable use of UTA filter to force packets to default pool */
4683 if (hw->mac.type == e1000_82576)
4684 vmolr |= E1000_VMOLR_ROPE;
68d480c4
AD
4685 } else {
4686 if (netdev->flags & IFF_ALLMULTI) {
4687 rctl |= E1000_RCTL_MPE;
4688 vmolr |= E1000_VMOLR_MPME;
4689 } else {
b980ac18 4690 /* Write addresses to the MTA, if the attempt fails
25985edc 4691 * then we should just turn on promiscuous mode so
68d480c4
AD
4692 * that we can at least receive multicast traffic
4693 */
4694 count = igb_write_mc_addr_list(netdev);
4695 if (count < 0) {
4696 rctl |= E1000_RCTL_MPE;
4697 vmolr |= E1000_VMOLR_MPME;
4698 } else if (count) {
4699 vmolr |= E1000_VMOLR_ROMPE;
4700 }
4701 }
28fc06f5 4702 }
268f9d33
AD
4703
4704 /* Write addresses to available RAR registers, if there is not
4705 * sufficient space to store all the addresses then enable
4706 * unicast promiscuous mode
4707 */
83c21335 4708 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
268f9d33
AD
4709 rctl |= E1000_RCTL_UPE;
4710 vmolr |= E1000_VMOLR_ROPE;
28fc06f5 4711 }
16903caa
AD
4712
4713 /* enable VLAN filtering by default */
4714 rctl |= E1000_RCTL_VFE;
4715
4716 /* disable VLAN filtering for modes that require it */
4717 if ((netdev->flags & IFF_PROMISC) ||
4718 (netdev->features & NETIF_F_RXALL)) {
4719 /* if we fail to set all rules then just clear VFE */
4720 if (igb_vlan_promisc_enable(adapter))
4721 rctl &= ~E1000_RCTL_VFE;
4722 } else {
4723 igb_vlan_promisc_disable(adapter);
4724 }
4725
4726 /* update state of unicast, multicast, and VLAN filtering modes */
4727 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4728 E1000_RCTL_VFE);
68d480c4 4729 wr32(E1000_RCTL, rctl);
28fc06f5 4730
cfbc871c
AD
4731#if (PAGE_SIZE < 8192)
4732 if (!adapter->vfs_allocated_count) {
4733 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4734 rlpml = IGB_MAX_FRAME_BUILD_SKB;
4735 }
4736#endif
4737 wr32(E1000_RLPML, rlpml);
4738
b980ac18 4739 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
4740 * the VMOLR to enable the appropriate modes. Without this workaround
4741 * we will have issues with VLAN tag stripping not being done for frames
4742 * that are only arriving because we are the default pool
4743 */
f96a8a0b 4744 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 4745 return;
9d5c8243 4746
bf456abb
AD
4747 /* set UTA to appropriate mode */
4748 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4749
68d480c4 4750 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 4751 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
45693bcb 4752
cfbc871c 4753 /* enable Rx jumbo frames, restrict as needed to support build_skb */
45693bcb 4754 vmolr &= ~E1000_VMOLR_RLPML_MASK;
cfbc871c
AD
4755#if (PAGE_SIZE < 8192)
4756 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4757 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4758 else
4759#endif
4760 vmolr |= MAX_JUMBO_FRAME_SIZE;
4761 vmolr |= E1000_VMOLR_LPE;
45693bcb 4762
68d480c4 4763 wr32(E1000_VMOLR(vfn), vmolr);
45693bcb 4764
28fc06f5 4765 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
4766}
4767
13800469
GR
4768static void igb_check_wvbr(struct igb_adapter *adapter)
4769{
4770 struct e1000_hw *hw = &adapter->hw;
4771 u32 wvbr = 0;
4772
4773 switch (hw->mac.type) {
4774 case e1000_82576:
4775 case e1000_i350:
81ad807b
CW
4776 wvbr = rd32(E1000_WVBR);
4777 if (!wvbr)
13800469
GR
4778 return;
4779 break;
4780 default:
4781 break;
4782 }
4783
4784 adapter->wvbr |= wvbr;
4785}
4786
4787#define IGB_STAGGERED_QUEUE_OFFSET 8
4788
4789static void igb_spoof_check(struct igb_adapter *adapter)
4790{
4791 int j;
4792
4793 if (!adapter->wvbr)
4794 return;
4795
9005df38 4796 for (j = 0; j < adapter->vfs_allocated_count; j++) {
a51d8c21
JK
4797 if (adapter->wvbr & BIT(j) ||
4798 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
13800469
GR
4799 dev_warn(&adapter->pdev->dev,
4800 "Spoof event(s) detected on VF %d\n", j);
4801 adapter->wvbr &=
a51d8c21
JK
4802 ~(BIT(j) |
4803 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
13800469
GR
4804 }
4805 }
4806}
4807
9d5c8243 4808/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
4809 * the phy
4810 */
26566eae 4811static void igb_update_phy_info(struct timer_list *t)
9d5c8243 4812{
26566eae 4813 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
f5f4cf08 4814 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
4815}
4816
4d6b725e 4817/**
b980ac18
JK
4818 * igb_has_link - check shared code for link and determine up/down
4819 * @adapter: pointer to driver private info
4d6b725e 4820 **/
3145535a 4821bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
4822{
4823 struct e1000_hw *hw = &adapter->hw;
4824 bool link_active = false;
4d6b725e
AD
4825
4826 /* get_link_status is set on LSC (link status) interrupt or
4827 * rx sequence error interrupt. get_link_status will stay
4828 * false until the e1000_check_for_link establishes link
4829 * for copper adapters ONLY
4830 */
4831 switch (hw->phy.media_type) {
4832 case e1000_media_type_copper:
e5c3370f
AA
4833 if (!hw->mac.get_link_status)
4834 return true;
4d6b725e 4835 case e1000_media_type_internal_serdes:
e5c3370f
AA
4836 hw->mac.ops.check_for_link(hw);
4837 link_active = !hw->mac.get_link_status;
4d6b725e
AD
4838 break;
4839 default:
4840 case e1000_media_type_unknown:
4841 break;
4842 }
4843
aa9b8cc4
AA
4844 if (((hw->mac.type == e1000_i210) ||
4845 (hw->mac.type == e1000_i211)) &&
4846 (hw->phy.id == I210_I_PHY_ID)) {
4847 if (!netif_carrier_ok(adapter->netdev)) {
4848 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4849 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4850 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4851 adapter->link_check_timeout = jiffies;
4852 }
4853 }
4854
4d6b725e
AD
4855 return link_active;
4856}
4857
563988dc
SA
4858static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4859{
4860 bool ret = false;
4861 u32 ctrl_ext, thstat;
4862
f96a8a0b 4863 /* check for thermal sensor event on i350 copper only */
563988dc
SA
4864 if (hw->mac.type == e1000_i350) {
4865 thstat = rd32(E1000_THSTAT);
4866 ctrl_ext = rd32(E1000_CTRL_EXT);
4867
4868 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 4869 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 4870 ret = !!(thstat & event);
563988dc
SA
4871 }
4872
4873 return ret;
4874}
4875
1516f0a6
CW
4876/**
4877 * igb_check_lvmmc - check for malformed packets received
4878 * and indicated in LVMMC register
4879 * @adapter: pointer to adapter
4880 **/
4881static void igb_check_lvmmc(struct igb_adapter *adapter)
4882{
4883 struct e1000_hw *hw = &adapter->hw;
4884 u32 lvmmc;
4885
4886 lvmmc = rd32(E1000_LVMMC);
4887 if (lvmmc) {
4888 if (unlikely(net_ratelimit())) {
4889 netdev_warn(adapter->netdev,
4890 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4891 lvmmc);
4892 }
4893 }
4894}
4895
9d5c8243 4896/**
b980ac18
JK
4897 * igb_watchdog - Timer Call-back
4898 * @data: pointer to adapter cast into an unsigned long
9d5c8243 4899 **/
26566eae 4900static void igb_watchdog(struct timer_list *t)
9d5c8243 4901{
26566eae 4902 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
9d5c8243
AK
4903 /* Do the rest outside of interrupt context */
4904 schedule_work(&adapter->watchdog_task);
4905}
4906
4907static void igb_watchdog_task(struct work_struct *work)
4908{
4909 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
4910 struct igb_adapter,
4911 watchdog_task);
9d5c8243 4912 struct e1000_hw *hw = &adapter->hw;
c0ba4778 4913 struct e1000_phy_info *phy = &hw->phy;
9d5c8243 4914 struct net_device *netdev = adapter->netdev;
563988dc 4915 u32 link;
7a6ea550 4916 int i;
56cec249 4917 u32 connsw;
b72f3f72 4918 u16 phy_data, retry_count = 20;
9d5c8243 4919
4d6b725e 4920 link = igb_has_link(adapter);
aa9b8cc4
AA
4921
4922 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4923 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4924 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4925 else
4926 link = false;
4927 }
4928
56cec249
CW
4929 /* Force link down if we have fiber to swap to */
4930 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4931 if (hw->phy.media_type == e1000_media_type_copper) {
4932 connsw = rd32(E1000_CONNSW);
4933 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4934 link = 0;
4935 }
4936 }
9d5c8243 4937 if (link) {
2bdfc4e2
CW
4938 /* Perform a reset if the media type changed. */
4939 if (hw->dev_spec._82575.media_changed) {
4940 hw->dev_spec._82575.media_changed = false;
4941 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4942 igb_reset(adapter);
4943 }
749ab2cd
YZ
4944 /* Cancel scheduled suspend requests. */
4945 pm_runtime_resume(netdev->dev.parent);
4946
9d5c8243
AK
4947 if (!netif_carrier_ok(netdev)) {
4948 u32 ctrl;
9005df38 4949
330a6d6a 4950 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
4951 &adapter->link_speed,
4952 &adapter->link_duplex);
9d5c8243
AK
4953
4954 ctrl = rd32(E1000_CTRL);
527d47c1 4955 /* Links status message must follow this format */
c75c4edf
CW
4956 netdev_info(netdev,
4957 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
559e9c49
AD
4958 netdev->name,
4959 adapter->link_speed,
4960 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
4961 "Full" : "Half",
4962 (ctrl & E1000_CTRL_TFCE) &&
4963 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4964 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4965 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 4966
f4c01e96
CW
4967 /* disable EEE if enabled */
4968 if ((adapter->flags & IGB_FLAG_EEE) &&
4969 (adapter->link_duplex == HALF_DUPLEX)) {
4970 dev_info(&adapter->pdev->dev,
4971 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4972 adapter->hw.dev_spec._82575.eee_disable = true;
4973 adapter->flags &= ~IGB_FLAG_EEE;
4974 }
4975
c0ba4778
KS
4976 /* check if SmartSpeed worked */
4977 igb_check_downshift(hw);
4978 if (phy->speed_downgraded)
4979 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4980
563988dc 4981 /* check for thermal sensor event */
876d2d6f 4982 if (igb_thermal_sensor_event(hw,
d34a15ab 4983 E1000_THSTAT_LINK_THROTTLE))
c75c4edf 4984 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
563988dc 4985
d07f3e37 4986 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
4987 adapter->tx_timeout_factor = 1;
4988 switch (adapter->link_speed) {
4989 case SPEED_10:
9d5c8243
AK
4990 adapter->tx_timeout_factor = 14;
4991 break;
4992 case SPEED_100:
9d5c8243
AK
4993 /* maybe add some timeout factor ? */
4994 break;
4995 }
4996
b72f3f72
TU
4997 if (adapter->link_speed != SPEED_1000)
4998 goto no_wait;
4999
5000 /* wait for Remote receiver status OK */
5001retry_read_status:
5002 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5003 &phy_data)) {
5004 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5005 retry_count) {
5006 msleep(100);
5007 retry_count--;
5008 goto retry_read_status;
5009 } else if (!retry_count) {
5010 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5011 }
5012 } else {
5013 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5014 }
5015no_wait:
9d5c8243 5016 netif_carrier_on(netdev);
9d5c8243 5017
4ae196df 5018 igb_ping_all_vfs(adapter);
17dc566c 5019 igb_check_vf_rate_limit(adapter);
4ae196df 5020
4b1a9877 5021 /* link state has changed, schedule phy info update */
9d5c8243
AK
5022 if (!test_bit(__IGB_DOWN, &adapter->state))
5023 mod_timer(&adapter->phy_info_timer,
5024 round_jiffies(jiffies + 2 * HZ));
5025 }
5026 } else {
5027 if (netif_carrier_ok(netdev)) {
5028 adapter->link_speed = 0;
5029 adapter->link_duplex = 0;
563988dc
SA
5030
5031 /* check for thermal sensor event */
876d2d6f
JK
5032 if (igb_thermal_sensor_event(hw,
5033 E1000_THSTAT_PWR_DOWN)) {
c75c4edf 5034 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
7ef5ed1c 5035 }
563988dc 5036
527d47c1 5037 /* Links status message must follow this format */
c75c4edf 5038 netdev_info(netdev, "igb: %s NIC Link is Down\n",
527d47c1 5039 netdev->name);
9d5c8243 5040 netif_carrier_off(netdev);
4b1a9877 5041
4ae196df
AD
5042 igb_ping_all_vfs(adapter);
5043
4b1a9877 5044 /* link state has changed, schedule phy info update */
9d5c8243
AK
5045 if (!test_bit(__IGB_DOWN, &adapter->state))
5046 mod_timer(&adapter->phy_info_timer,
5047 round_jiffies(jiffies + 2 * HZ));
749ab2cd 5048
56cec249
CW
5049 /* link is down, time to check for alternate media */
5050 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5051 igb_check_swap_media(adapter);
5052 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5053 schedule_work(&adapter->reset_task);
5054 /* return immediately */
5055 return;
5056 }
5057 }
749ab2cd
YZ
5058 pm_schedule_suspend(netdev->dev.parent,
5059 MSEC_PER_SEC * 5);
56cec249
CW
5060
5061 /* also check for alternate media here */
5062 } else if (!netif_carrier_ok(netdev) &&
5063 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5064 igb_check_swap_media(adapter);
5065 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5066 schedule_work(&adapter->reset_task);
5067 /* return immediately */
5068 return;
5069 }
9d5c8243
AK
5070 }
5071 }
5072
12dcd86b 5073 spin_lock(&adapter->stats64_lock);
81e3f64a 5074 igb_update_stats(adapter);
12dcd86b 5075 spin_unlock(&adapter->stats64_lock);
9d5c8243 5076
dbabb065 5077 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 5078 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 5079 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
5080 /* We've lost link, so the controller stops DMA,
5081 * but we've got queued Tx work that's never going
5082 * to get done, so reset controller to flush Tx.
b980ac18
JK
5083 * (Do the reset outside of interrupt context).
5084 */
dbabb065
AD
5085 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5086 adapter->tx_timeout_count++;
5087 schedule_work(&adapter->reset_task);
5088 /* return immediately since reset is imminent */
5089 return;
5090 }
9d5c8243 5091 }
9d5c8243 5092
dbabb065 5093 /* Force detection of hung controller every watchdog period */
6d095fa8 5094 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 5095 }
f7ba205e 5096
b980ac18 5097 /* Cause software interrupt to ensure Rx ring is cleaned */
cd14ef54 5098 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
047e0030 5099 u32 eics = 0;
9005df38 5100
0d1ae7f4
AD
5101 for (i = 0; i < adapter->num_q_vectors; i++)
5102 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
5103 wr32(E1000_EICS, eics);
5104 } else {
5105 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5106 }
9d5c8243 5107
13800469 5108 igb_spoof_check(adapter);
fc580751 5109 igb_ptp_rx_hang(adapter);
e5f36ad1 5110 igb_ptp_tx_hang(adapter);
13800469 5111
1516f0a6
CW
5112 /* Check LVMMC register on i350/i354 only */
5113 if ((adapter->hw.mac.type == e1000_i350) ||
5114 (adapter->hw.mac.type == e1000_i354))
5115 igb_check_lvmmc(adapter);
5116
9d5c8243 5117 /* Reset the timer */
aa9b8cc4
AA
5118 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5119 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5120 mod_timer(&adapter->watchdog_timer,
5121 round_jiffies(jiffies + HZ));
5122 else
5123 mod_timer(&adapter->watchdog_timer,
5124 round_jiffies(jiffies + 2 * HZ));
5125 }
9d5c8243
AK
5126}
5127
5128enum latency_range {
5129 lowest_latency = 0,
5130 low_latency = 1,
5131 bulk_latency = 2,
5132 latency_invalid = 255
5133};
5134
6eb5a7f1 5135/**
b980ac18
JK
5136 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5137 * @q_vector: pointer to q_vector
6eb5a7f1 5138 *
b980ac18
JK
5139 * Stores a new ITR value based on strictly on packet size. This
5140 * algorithm is less sophisticated than that used in igb_update_itr,
5141 * due to the difficulty of synchronizing statistics across multiple
5142 * receive rings. The divisors and thresholds used by this function
5143 * were determined based on theoretical maximum wire speed and testing
5144 * data, in order to minimize response time while increasing bulk
5145 * throughput.
406d4965 5146 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
5147 * NOTE: This function is called only when operating in a multiqueue
5148 * receive environment.
6eb5a7f1 5149 **/
047e0030 5150static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 5151{
047e0030 5152 int new_val = q_vector->itr_val;
6eb5a7f1 5153 int avg_wire_size = 0;
047e0030 5154 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 5155 unsigned int packets;
9d5c8243 5156
6eb5a7f1
AD
5157 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5158 * ints/sec - ITR timer value of 120 ticks.
5159 */
5160 if (adapter->link_speed != SPEED_1000) {
0ba82994 5161 new_val = IGB_4K_ITR;
6eb5a7f1 5162 goto set_itr_val;
9d5c8243 5163 }
047e0030 5164
0ba82994
AD
5165 packets = q_vector->rx.total_packets;
5166 if (packets)
5167 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 5168
0ba82994
AD
5169 packets = q_vector->tx.total_packets;
5170 if (packets)
5171 avg_wire_size = max_t(u32, avg_wire_size,
5172 q_vector->tx.total_bytes / packets);
047e0030
AD
5173
5174 /* if avg_wire_size isn't set no work was done */
5175 if (!avg_wire_size)
5176 goto clear_counts;
9d5c8243 5177
6eb5a7f1
AD
5178 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5179 avg_wire_size += 24;
5180
5181 /* Don't starve jumbo frames */
5182 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 5183
6eb5a7f1
AD
5184 /* Give a little boost to mid-size frames */
5185 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5186 new_val = avg_wire_size / 3;
5187 else
5188 new_val = avg_wire_size / 2;
9d5c8243 5189
0ba82994
AD
5190 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5191 if (new_val < IGB_20K_ITR &&
5192 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5193 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5194 new_val = IGB_20K_ITR;
abe1c363 5195
6eb5a7f1 5196set_itr_val:
047e0030
AD
5197 if (new_val != q_vector->itr_val) {
5198 q_vector->itr_val = new_val;
5199 q_vector->set_itr = 1;
9d5c8243 5200 }
6eb5a7f1 5201clear_counts:
0ba82994
AD
5202 q_vector->rx.total_bytes = 0;
5203 q_vector->rx.total_packets = 0;
5204 q_vector->tx.total_bytes = 0;
5205 q_vector->tx.total_packets = 0;
9d5c8243
AK
5206}
5207
5208/**
b980ac18
JK
5209 * igb_update_itr - update the dynamic ITR value based on statistics
5210 * @q_vector: pointer to q_vector
5211 * @ring_container: ring info to update the itr for
5212 *
5213 * Stores a new ITR value based on packets and byte
5214 * counts during the last interrupt. The advantage of per interrupt
5215 * computation is faster updates and more accurate ITR for the current
5216 * traffic pattern. Constants in this function were computed
5217 * based on theoretical maximum wire speed and thresholds were set based
5218 * on testing data as well as attempting to minimize response time
5219 * while increasing bulk throughput.
406d4965 5220 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
5221 * NOTE: These calculations are only valid when operating in a single-
5222 * queue environment.
9d5c8243 5223 **/
0ba82994
AD
5224static void igb_update_itr(struct igb_q_vector *q_vector,
5225 struct igb_ring_container *ring_container)
9d5c8243 5226{
0ba82994
AD
5227 unsigned int packets = ring_container->total_packets;
5228 unsigned int bytes = ring_container->total_bytes;
5229 u8 itrval = ring_container->itr;
9d5c8243 5230
0ba82994 5231 /* no packets, exit with status unchanged */
9d5c8243 5232 if (packets == 0)
0ba82994 5233 return;
9d5c8243 5234
0ba82994 5235 switch (itrval) {
9d5c8243
AK
5236 case lowest_latency:
5237 /* handle TSO and jumbo frames */
5238 if (bytes/packets > 8000)
0ba82994 5239 itrval = bulk_latency;
9d5c8243 5240 else if ((packets < 5) && (bytes > 512))
0ba82994 5241 itrval = low_latency;
9d5c8243
AK
5242 break;
5243 case low_latency: /* 50 usec aka 20000 ints/s */
5244 if (bytes > 10000) {
5245 /* this if handles the TSO accounting */
d34a15ab 5246 if (bytes/packets > 8000)
0ba82994 5247 itrval = bulk_latency;
d34a15ab 5248 else if ((packets < 10) || ((bytes/packets) > 1200))
0ba82994 5249 itrval = bulk_latency;
d34a15ab 5250 else if ((packets > 35))
0ba82994 5251 itrval = lowest_latency;
9d5c8243 5252 } else if (bytes/packets > 2000) {
0ba82994 5253 itrval = bulk_latency;
9d5c8243 5254 } else if (packets <= 2 && bytes < 512) {
0ba82994 5255 itrval = lowest_latency;
9d5c8243
AK
5256 }
5257 break;
5258 case bulk_latency: /* 250 usec aka 4000 ints/s */
5259 if (bytes > 25000) {
5260 if (packets > 35)
0ba82994 5261 itrval = low_latency;
1e5c3d21 5262 } else if (bytes < 1500) {
0ba82994 5263 itrval = low_latency;
9d5c8243
AK
5264 }
5265 break;
5266 }
5267
0ba82994
AD
5268 /* clear work counters since we have the values we need */
5269 ring_container->total_bytes = 0;
5270 ring_container->total_packets = 0;
5271
5272 /* write updated itr to ring container */
5273 ring_container->itr = itrval;
9d5c8243
AK
5274}
5275
0ba82994 5276static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 5277{
0ba82994 5278 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5279 u32 new_itr = q_vector->itr_val;
0ba82994 5280 u8 current_itr = 0;
9d5c8243
AK
5281
5282 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5283 if (adapter->link_speed != SPEED_1000) {
5284 current_itr = 0;
0ba82994 5285 new_itr = IGB_4K_ITR;
9d5c8243
AK
5286 goto set_itr_now;
5287 }
5288
0ba82994
AD
5289 igb_update_itr(q_vector, &q_vector->tx);
5290 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 5291
0ba82994 5292 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 5293
6eb5a7f1 5294 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
5295 if (current_itr == lowest_latency &&
5296 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5297 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
5298 current_itr = low_latency;
5299
9d5c8243
AK
5300 switch (current_itr) {
5301 /* counts and packets in update_itr are dependent on these numbers */
5302 case lowest_latency:
0ba82994 5303 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
5304 break;
5305 case low_latency:
0ba82994 5306 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
5307 break;
5308 case bulk_latency:
0ba82994 5309 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
5310 break;
5311 default:
5312 break;
5313 }
5314
5315set_itr_now:
047e0030 5316 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
5317 /* this attempts to bias the interrupt rate towards Bulk
5318 * by adding intermediate steps when interrupt rate is
b980ac18
JK
5319 * increasing
5320 */
047e0030 5321 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
5322 max((new_itr * q_vector->itr_val) /
5323 (new_itr + (q_vector->itr_val >> 2)),
5324 new_itr) : new_itr;
9d5c8243
AK
5325 /* Don't write the value here; it resets the adapter's
5326 * internal timer, and causes us to delay far longer than
5327 * we should between interrupts. Instead, we write the ITR
5328 * value at the beginning of the next interrupt so the timing
5329 * ends up being correct.
5330 */
047e0030
AD
5331 q_vector->itr_val = new_itr;
5332 q_vector->set_itr = 1;
9d5c8243 5333 }
9d5c8243
AK
5334}
5335
c50b52a0
SH
5336static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5337 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
5338{
5339 struct e1000_adv_tx_context_desc *context_desc;
5340 u16 i = tx_ring->next_to_use;
5341
5342 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5343
5344 i++;
5345 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5346
5347 /* set bits to identify this as an advanced context descriptor */
5348 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5349
5350 /* For 82575, context index must be unique per ring. */
866cff06 5351 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
5352 mss_l4len_idx |= tx_ring->reg_idx << 4;
5353
5354 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5355 context_desc->seqnum_seed = 0;
5356 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5357 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5358}
5359
7af40ad9
AD
5360static int igb_tso(struct igb_ring *tx_ring,
5361 struct igb_tx_buffer *first,
5362 u8 *hdr_len)
9d5c8243 5363{
e10715d3 5364 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
7af40ad9 5365 struct sk_buff *skb = first->skb;
e10715d3
AD
5366 union {
5367 struct iphdr *v4;
5368 struct ipv6hdr *v6;
5369 unsigned char *hdr;
5370 } ip;
5371 union {
5372 struct tcphdr *tcp;
5373 unsigned char *hdr;
5374 } l4;
5375 u32 paylen, l4_offset;
06c14e5a 5376 int err;
7d13a7d0 5377
ed6aa105
AD
5378 if (skb->ip_summed != CHECKSUM_PARTIAL)
5379 return 0;
5380
7d13a7d0
AD
5381 if (!skb_is_gso(skb))
5382 return 0;
9d5c8243 5383
06c14e5a
FR
5384 err = skb_cow_head(skb, 0);
5385 if (err < 0)
5386 return err;
9d5c8243 5387
e10715d3
AD
5388 ip.hdr = skb_network_header(skb);
5389 l4.hdr = skb_checksum_start(skb);
5390
7d13a7d0
AD
5391 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5392 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 5393
e10715d3
AD
5394 /* initialize outer IP header fields */
5395 if (ip.v4->version == 4) {
516165a1
AD
5396 unsigned char *csum_start = skb_checksum_start(skb);
5397 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5398
e10715d3
AD
5399 /* IP header will have to cancel out any data that
5400 * is not a part of the outer IP header
5401 */
516165a1
AD
5402 ip.v4->check = csum_fold(csum_partial(trans_start,
5403 csum_start - trans_start,
5404 0));
7d13a7d0 5405 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
e10715d3
AD
5406
5407 ip.v4->tot_len = 0;
7af40ad9
AD
5408 first->tx_flags |= IGB_TX_FLAGS_TSO |
5409 IGB_TX_FLAGS_CSUM |
5410 IGB_TX_FLAGS_IPV4;
e10715d3
AD
5411 } else {
5412 ip.v6->payload_len = 0;
7af40ad9
AD
5413 first->tx_flags |= IGB_TX_FLAGS_TSO |
5414 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
5415 }
5416
e10715d3
AD
5417 /* determine offset of inner transport header */
5418 l4_offset = l4.hdr - skb->data;
5419
5420 /* compute length of segmentation header */
5421 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5422
5423 /* remove payload length from inner checksum */
5424 paylen = skb->len - l4_offset;
5425 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
9d5c8243 5426
7af40ad9
AD
5427 /* update gso size and bytecount with header size */
5428 first->gso_segs = skb_shinfo(skb)->gso_segs;
5429 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5430
9d5c8243 5431 /* MSS L4LEN IDX */
e10715d3 5432 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
7d13a7d0 5433 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 5434
7d13a7d0 5435 /* VLAN MACLEN IPLEN */
e10715d3
AD
5436 vlan_macip_lens = l4.hdr - ip.hdr;
5437 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 5438 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 5439
7d13a7d0 5440 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 5441
7d13a7d0 5442 return 1;
9d5c8243
AK
5443}
5444
6e033700
AD
5445static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5446{
5447 unsigned int offset = 0;
5448
5449 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5450
5451 return offset == skb_checksum_start_offset(skb);
5452}
5453
7af40ad9 5454static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 5455{
7af40ad9 5456 struct sk_buff *skb = first->skb;
7d13a7d0 5457 u32 vlan_macip_lens = 0;
7d13a7d0 5458 u32 type_tucmd = 0;
9d5c8243 5459
7d13a7d0 5460 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6e033700 5461csum_failed:
7af40ad9
AD
5462 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5463 return;
6e033700
AD
5464 goto no_csum;
5465 }
fa4a7ef3 5466
6e033700
AD
5467 switch (skb->csum_offset) {
5468 case offsetof(struct tcphdr, check):
5469 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5470 /* fall through */
5471 case offsetof(struct udphdr, check):
5472 break;
5473 case offsetof(struct sctphdr, checksum):
5474 /* validate that this is actually an SCTP request */
5475 if (((first->protocol == htons(ETH_P_IP)) &&
5476 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5477 ((first->protocol == htons(ETH_P_IPV6)) &&
5478 igb_ipv6_csum_is_sctp(skb))) {
5479 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
7d13a7d0 5480 break;
9d5c8243 5481 }
6e033700
AD
5482 default:
5483 skb_checksum_help(skb);
5484 goto csum_failed;
7d13a7d0 5485 }
9d5c8243 5486
6e033700
AD
5487 /* update TX checksum flag */
5488 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5489 vlan_macip_lens = skb_checksum_start_offset(skb) -
5490 skb_network_offset(skb);
5491no_csum:
7d13a7d0 5492 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 5493 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 5494
6e033700 5495 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
9d5c8243
AK
5496}
5497
1d9daf45
AD
5498#define IGB_SET_FLAG(_input, _flag, _result) \
5499 ((_flag <= _result) ? \
5500 ((u32)(_input & _flag) * (_result / _flag)) : \
5501 ((u32)(_input & _flag) / (_flag / _result)))
5502
5503static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
5504{
5505 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
5506 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5507 E1000_ADVTXD_DCMD_DEXT |
5508 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
5509
5510 /* set HW vlan bit if vlan is present */
1d9daf45
AD
5511 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5512 (E1000_ADVTXD_DCMD_VLE));
5513
5514 /* set segmentation bits for TSO */
5515 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5516 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
5517
5518 /* set timestamp bit if present */
1d9daf45
AD
5519 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5520 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 5521
1d9daf45
AD
5522 /* insert frame checksum */
5523 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
5524
5525 return cmd_type;
5526}
5527
7af40ad9
AD
5528static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5529 union e1000_adv_tx_desc *tx_desc,
5530 u32 tx_flags, unsigned int paylen)
e032afc8
AD
5531{
5532 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5533
1d9daf45
AD
5534 /* 82575 requires a unique index per ring */
5535 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
5536 olinfo_status |= tx_ring->reg_idx << 4;
5537
5538 /* insert L4 checksum */
1d9daf45
AD
5539 olinfo_status |= IGB_SET_FLAG(tx_flags,
5540 IGB_TX_FLAGS_CSUM,
5541 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 5542
1d9daf45
AD
5543 /* insert IPv4 checksum */
5544 olinfo_status |= IGB_SET_FLAG(tx_flags,
5545 IGB_TX_FLAGS_IPV4,
5546 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 5547
7af40ad9 5548 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
5549}
5550
6f19e12f
DM
5551static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5552{
5553 struct net_device *netdev = tx_ring->netdev;
5554
5555 netif_stop_subqueue(netdev, tx_ring->queue_index);
5556
5557 /* Herbert's original patch had:
5558 * smp_mb__after_netif_stop_queue();
5559 * but since that doesn't exist yet, just open code it.
5560 */
5561 smp_mb();
5562
5563 /* We need to check again in a case another CPU has just
5564 * made room available.
5565 */
5566 if (igb_desc_unused(tx_ring) < size)
5567 return -EBUSY;
5568
5569 /* A reprieve! */
5570 netif_wake_subqueue(netdev, tx_ring->queue_index);
5571
5572 u64_stats_update_begin(&tx_ring->tx_syncp2);
5573 tx_ring->tx_stats.restart_queue2++;
5574 u64_stats_update_end(&tx_ring->tx_syncp2);
5575
5576 return 0;
5577}
5578
5579static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5580{
5581 if (igb_desc_unused(tx_ring) >= size)
5582 return 0;
5583 return __igb_maybe_stop_tx(tx_ring, size);
5584}
5585
74344e32
JK
5586static int igb_tx_map(struct igb_ring *tx_ring,
5587 struct igb_tx_buffer *first,
5588 const u8 hdr_len)
9d5c8243 5589{
7af40ad9 5590 struct sk_buff *skb = first->skb;
c9f14bf3 5591 struct igb_tx_buffer *tx_buffer;
ebe42d16 5592 union e1000_adv_tx_desc *tx_desc;
80d0759e 5593 struct skb_frag_struct *frag;
ebe42d16 5594 dma_addr_t dma;
80d0759e 5595 unsigned int data_len, size;
7af40ad9 5596 u32 tx_flags = first->tx_flags;
1d9daf45 5597 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 5598 u16 i = tx_ring->next_to_use;
ebe42d16
AD
5599
5600 tx_desc = IGB_TX_DESC(tx_ring, i);
5601
80d0759e
AD
5602 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5603
5604 size = skb_headlen(skb);
5605 data_len = skb->data_len;
ebe42d16
AD
5606
5607 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 5608
80d0759e
AD
5609 tx_buffer = first;
5610
5611 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5612 if (dma_mapping_error(tx_ring->dev, dma))
5613 goto dma_error;
5614
5615 /* record length, and DMA address */
5616 dma_unmap_len_set(tx_buffer, len, size);
5617 dma_unmap_addr_set(tx_buffer, dma, dma);
5618
5619 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 5620
ebe42d16
AD
5621 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5622 tx_desc->read.cmd_type_len =
1d9daf45 5623 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
5624
5625 i++;
5626 tx_desc++;
5627 if (i == tx_ring->count) {
5628 tx_desc = IGB_TX_DESC(tx_ring, 0);
5629 i = 0;
5630 }
80d0759e 5631 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
5632
5633 dma += IGB_MAX_DATA_PER_TXD;
5634 size -= IGB_MAX_DATA_PER_TXD;
5635
ebe42d16
AD
5636 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5637 }
5638
5639 if (likely(!data_len))
5640 break;
2bbfebe2 5641
1d9daf45 5642 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 5643
65689fef 5644 i++;
ebe42d16
AD
5645 tx_desc++;
5646 if (i == tx_ring->count) {
5647 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 5648 i = 0;
ebe42d16 5649 }
80d0759e 5650 tx_desc->read.olinfo_status = 0;
65689fef 5651
9e903e08 5652 size = skb_frag_size(frag);
ebe42d16
AD
5653 data_len -= size;
5654
5655 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 5656 size, DMA_TO_DEVICE);
6366ad33 5657
c9f14bf3 5658 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
5659 }
5660
ebe42d16 5661 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
5662 cmd_type |= size | IGB_TXD_DCMD;
5663 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 5664
80d0759e
AD
5665 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5666
8542db05
AD
5667 /* set the timestamp */
5668 first->time_stamp = jiffies;
5669
b980ac18 5670 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
5671 * are new descriptors to fetch. (Only applicable for weak-ordered
5672 * memory model archs, such as IA-64).
5673 *
5674 * We also need this memory barrier to make certain all of the
5675 * status bits have been updated before next_to_watch is written.
5676 */
5677 wmb();
5678
8542db05 5679 /* set next_to_watch value indicating a packet is present */
ebe42d16 5680 first->next_to_watch = tx_desc;
9d5c8243 5681
ebe42d16
AD
5682 i++;
5683 if (i == tx_ring->count)
5684 i = 0;
6366ad33 5685
ebe42d16 5686 tx_ring->next_to_use = i;
6366ad33 5687
6f19e12f
DM
5688 /* Make sure there is space in the ring for the next send. */
5689 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5690
5691 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
0b725a2c
DM
5692 writel(i, tx_ring->tail);
5693
5694 /* we need this if more than one processor can write to our tail
5695 * at a time, it synchronizes IO on IA64/Altix systems
5696 */
5697 mmiowb();
5698 }
74344e32 5699 return 0;
ebe42d16
AD
5700
5701dma_error:
5702 dev_err(tx_ring->dev, "TX DMA map failed\n");
7cc6fd4c 5703 tx_buffer = &tx_ring->tx_buffer_info[i];
ebe42d16
AD
5704
5705 /* clear dma mappings for failed tx_buffer_info map */
7cc6fd4c
AD
5706 while (tx_buffer != first) {
5707 if (dma_unmap_len(tx_buffer, len))
5708 dma_unmap_page(tx_ring->dev,
5709 dma_unmap_addr(tx_buffer, dma),
5710 dma_unmap_len(tx_buffer, len),
5711 DMA_TO_DEVICE);
5712 dma_unmap_len_set(tx_buffer, len, 0);
5713
104ba833 5714 if (i-- == 0)
7cc6fd4c 5715 i += tx_ring->count;
c9f14bf3 5716 tx_buffer = &tx_ring->tx_buffer_info[i];
6366ad33
AD
5717 }
5718
7cc6fd4c
AD
5719 if (dma_unmap_len(tx_buffer, len))
5720 dma_unmap_single(tx_ring->dev,
5721 dma_unmap_addr(tx_buffer, dma),
5722 dma_unmap_len(tx_buffer, len),
5723 DMA_TO_DEVICE);
5724 dma_unmap_len_set(tx_buffer, len, 0);
5725
5726 dev_kfree_skb_any(tx_buffer->skb);
5727 tx_buffer->skb = NULL;
5728
9d5c8243 5729 tx_ring->next_to_use = i;
74344e32
JK
5730
5731 return -1;
9d5c8243
AK
5732}
5733
cd392f5c
AD
5734netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5735 struct igb_ring *tx_ring)
9d5c8243 5736{
8542db05 5737 struct igb_tx_buffer *first;
ebe42d16 5738 int tso;
91d4ee33 5739 u32 tx_flags = 0;
2ee52ad4 5740 unsigned short f;
21ba6fe1 5741 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 5742 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 5743 u8 hdr_len = 0;
9d5c8243 5744
21ba6fe1
AD
5745 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5746 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 5747 * + 2 desc gap to keep tail from touching head,
9d5c8243 5748 * + 1 desc for context descriptor,
21ba6fe1
AD
5749 * otherwise try next time
5750 */
2ee52ad4
AD
5751 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5752 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
21ba6fe1
AD
5753
5754 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 5755 /* this is a hard error */
9d5c8243
AK
5756 return NETDEV_TX_BUSY;
5757 }
33af6bcc 5758
7af40ad9
AD
5759 /* record the location of the first descriptor for this packet */
5760 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5761 first->skb = skb;
5762 first->bytecount = skb->len;
5763 first->gso_segs = 1;
5764
b646c22e
AD
5765 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5766 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 5767
0a6f2f05 5768 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
26bd4e2d 5769 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
ed4420a3 5770 &adapter->state)) {
b646c22e
AD
5771 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5772 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5773
5774 adapter->ptp_tx_skb = skb_get(skb);
5775 adapter->ptp_tx_start = jiffies;
5776 if (adapter->hw.mac.type == e1000_82576)
5777 schedule_work(&adapter->ptp_tx_work);
c3b8f85e
JK
5778 } else {
5779 adapter->tx_hwtstamp_skipped++;
b646c22e 5780 }
33af6bcc 5781 }
9d5c8243 5782
afc835d1
JK
5783 skb_tx_timestamp(skb);
5784
df8a39de 5785 if (skb_vlan_tag_present(skb)) {
9d5c8243 5786 tx_flags |= IGB_TX_FLAGS_VLAN;
df8a39de 5787 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
9d5c8243
AK
5788 }
5789
7af40ad9
AD
5790 /* record initial flags and protocol */
5791 first->tx_flags = tx_flags;
5792 first->protocol = protocol;
cdfd01fc 5793
7af40ad9
AD
5794 tso = igb_tso(tx_ring, first, &hdr_len);
5795 if (tso < 0)
7d13a7d0 5796 goto out_drop;
7af40ad9
AD
5797 else if (!tso)
5798 igb_tx_csum(tx_ring, first);
9d5c8243 5799
74344e32
JK
5800 if (igb_tx_map(tx_ring, first, hdr_len))
5801 goto cleanup_tx_tstamp;
85ad76b2 5802
9d5c8243 5803 return NETDEV_TX_OK;
7d13a7d0
AD
5804
5805out_drop:
7cc6fd4c
AD
5806 dev_kfree_skb_any(first->skb);
5807 first->skb = NULL;
74344e32
JK
5808cleanup_tx_tstamp:
5809 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5810 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5811
5812 dev_kfree_skb_any(adapter->ptp_tx_skb);
5813 adapter->ptp_tx_skb = NULL;
5814 if (adapter->hw.mac.type == e1000_82576)
5815 cancel_work_sync(&adapter->ptp_tx_work);
5816 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5817 }
7af40ad9 5818
7d13a7d0 5819 return NETDEV_TX_OK;
9d5c8243
AK
5820}
5821
0b725a2c
DM
5822static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5823 struct sk_buff *skb)
1cc3bd87 5824{
0b725a2c
DM
5825 unsigned int r_idx = skb->queue_mapping;
5826
1cc3bd87
AD
5827 if (r_idx >= adapter->num_tx_queues)
5828 r_idx = r_idx % adapter->num_tx_queues;
5829
5830 return adapter->tx_ring[r_idx];
5831}
5832
cd392f5c
AD
5833static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5834 struct net_device *netdev)
9d5c8243
AK
5835{
5836 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3 5837
b980ac18 5838 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
5839 * in order to meet this minimum size requirement.
5840 */
a94d9e22
AD
5841 if (skb_put_padto(skb, 17))
5842 return NETDEV_TX_OK;
9d5c8243 5843
1cc3bd87 5844 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
5845}
5846
5847/**
b980ac18
JK
5848 * igb_tx_timeout - Respond to a Tx Hang
5849 * @netdev: network interface device structure
9d5c8243
AK
5850 **/
5851static void igb_tx_timeout(struct net_device *netdev)
5852{
5853 struct igb_adapter *adapter = netdev_priv(netdev);
5854 struct e1000_hw *hw = &adapter->hw;
5855
5856 /* Do the reset outside of interrupt context */
5857 adapter->tx_timeout_count++;
f7ba205e 5858
06218a8d 5859 if (hw->mac.type >= e1000_82580)
55cac248
AD
5860 hw->dev_spec._82575.global_device_reset = true;
5861
9d5c8243 5862 schedule_work(&adapter->reset_task);
265de409
AD
5863 wr32(E1000_EICS,
5864 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
5865}
5866
5867static void igb_reset_task(struct work_struct *work)
5868{
5869 struct igb_adapter *adapter;
5870 adapter = container_of(work, struct igb_adapter, reset_task);
5871
c97ec42a
TI
5872 igb_dump(adapter);
5873 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
5874 igb_reinit_locked(adapter);
5875}
5876
5877/**
b980ac18
JK
5878 * igb_get_stats64 - Get System Network Statistics
5879 * @netdev: network interface device structure
5880 * @stats: rtnl_link_stats64 pointer
9d5c8243 5881 **/
bc1f4470 5882static void igb_get_stats64(struct net_device *netdev,
5883 struct rtnl_link_stats64 *stats)
9d5c8243 5884{
12dcd86b
ED
5885 struct igb_adapter *adapter = netdev_priv(netdev);
5886
5887 spin_lock(&adapter->stats64_lock);
81e3f64a 5888 igb_update_stats(adapter);
12dcd86b
ED
5889 memcpy(stats, &adapter->stats64, sizeof(*stats));
5890 spin_unlock(&adapter->stats64_lock);
9d5c8243
AK
5891}
5892
5893/**
b980ac18
JK
5894 * igb_change_mtu - Change the Maximum Transfer Unit
5895 * @netdev: network interface device structure
5896 * @new_mtu: new value for maximum frame size
9d5c8243 5897 *
b980ac18 5898 * Returns 0 on success, negative on failure
9d5c8243
AK
5899 **/
5900static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5901{
5902 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5903 struct pci_dev *pdev = adapter->pdev;
153285f9 5904 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 5905
2ccd994c
AD
5906 /* adjust max frame to be at least the size of a standard frame */
5907 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5908 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5909
9d5c8243 5910 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 5911 usleep_range(1000, 2000);
73cd78f1 5912
9d5c8243
AK
5913 /* igb_down has a dependency on max_frame_size */
5914 adapter->max_frame_size = max_frame;
559e9c49 5915
4c844851
AD
5916 if (netif_running(netdev))
5917 igb_down(adapter);
9d5c8243 5918
090b1795 5919 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
5920 netdev->mtu, new_mtu);
5921 netdev->mtu = new_mtu;
5922
5923 if (netif_running(netdev))
5924 igb_up(adapter);
5925 else
5926 igb_reset(adapter);
5927
5928 clear_bit(__IGB_RESETTING, &adapter->state);
5929
5930 return 0;
5931}
5932
5933/**
b980ac18
JK
5934 * igb_update_stats - Update the board statistics counters
5935 * @adapter: board private structure
9d5c8243 5936 **/
81e3f64a 5937void igb_update_stats(struct igb_adapter *adapter)
9d5c8243 5938{
81e3f64a 5939 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
9d5c8243
AK
5940 struct e1000_hw *hw = &adapter->hw;
5941 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 5942 u32 reg, mpc;
3f9c0164
AD
5943 int i;
5944 u64 bytes, packets;
12dcd86b
ED
5945 unsigned int start;
5946 u64 _bytes, _packets;
9d5c8243 5947
b980ac18 5948 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
5949 * connection is down.
5950 */
5951 if (adapter->link_speed == 0)
5952 return;
5953 if (pci_channel_offline(pdev))
5954 return;
5955
3f9c0164
AD
5956 bytes = 0;
5957 packets = 0;
7f90128e
AA
5958
5959 rcu_read_lock();
3f9c0164 5960 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 5961 struct igb_ring *ring = adapter->rx_ring[i];
e66c083a
TF
5962 u32 rqdpc = rd32(E1000_RQDPC(i));
5963 if (hw->mac.type >= e1000_i210)
5964 wr32(E1000_RQDPC(i), 0);
12dcd86b 5965
ae1c07a6
AD
5966 if (rqdpc) {
5967 ring->rx_stats.drops += rqdpc;
5968 net_stats->rx_fifo_errors += rqdpc;
5969 }
12dcd86b
ED
5970
5971 do {
57a7744e 5972 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
12dcd86b
ED
5973 _bytes = ring->rx_stats.bytes;
5974 _packets = ring->rx_stats.packets;
57a7744e 5975 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
12dcd86b
ED
5976 bytes += _bytes;
5977 packets += _packets;
3f9c0164
AD
5978 }
5979
128e45eb
AD
5980 net_stats->rx_bytes = bytes;
5981 net_stats->rx_packets = packets;
3f9c0164
AD
5982
5983 bytes = 0;
5984 packets = 0;
5985 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 5986 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b 5987 do {
57a7744e 5988 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
12dcd86b
ED
5989 _bytes = ring->tx_stats.bytes;
5990 _packets = ring->tx_stats.packets;
57a7744e 5991 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
12dcd86b
ED
5992 bytes += _bytes;
5993 packets += _packets;
3f9c0164 5994 }
128e45eb
AD
5995 net_stats->tx_bytes = bytes;
5996 net_stats->tx_packets = packets;
7f90128e 5997 rcu_read_unlock();
3f9c0164
AD
5998
5999 /* read stats registers */
9d5c8243
AK
6000 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6001 adapter->stats.gprc += rd32(E1000_GPRC);
6002 adapter->stats.gorc += rd32(E1000_GORCL);
6003 rd32(E1000_GORCH); /* clear GORCL */
6004 adapter->stats.bprc += rd32(E1000_BPRC);
6005 adapter->stats.mprc += rd32(E1000_MPRC);
6006 adapter->stats.roc += rd32(E1000_ROC);
6007
6008 adapter->stats.prc64 += rd32(E1000_PRC64);
6009 adapter->stats.prc127 += rd32(E1000_PRC127);
6010 adapter->stats.prc255 += rd32(E1000_PRC255);
6011 adapter->stats.prc511 += rd32(E1000_PRC511);
6012 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6013 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6014 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6015 adapter->stats.sec += rd32(E1000_SEC);
6016
fa3d9a6d
MW
6017 mpc = rd32(E1000_MPC);
6018 adapter->stats.mpc += mpc;
6019 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
6020 adapter->stats.scc += rd32(E1000_SCC);
6021 adapter->stats.ecol += rd32(E1000_ECOL);
6022 adapter->stats.mcc += rd32(E1000_MCC);
6023 adapter->stats.latecol += rd32(E1000_LATECOL);
6024 adapter->stats.dc += rd32(E1000_DC);
6025 adapter->stats.rlec += rd32(E1000_RLEC);
6026 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6027 adapter->stats.xontxc += rd32(E1000_XONTXC);
6028 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6029 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6030 adapter->stats.fcruc += rd32(E1000_FCRUC);
6031 adapter->stats.gptc += rd32(E1000_GPTC);
6032 adapter->stats.gotc += rd32(E1000_GOTCL);
6033 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 6034 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
6035 adapter->stats.ruc += rd32(E1000_RUC);
6036 adapter->stats.rfc += rd32(E1000_RFC);
6037 adapter->stats.rjc += rd32(E1000_RJC);
6038 adapter->stats.tor += rd32(E1000_TORH);
6039 adapter->stats.tot += rd32(E1000_TOTH);
6040 adapter->stats.tpr += rd32(E1000_TPR);
6041
6042 adapter->stats.ptc64 += rd32(E1000_PTC64);
6043 adapter->stats.ptc127 += rd32(E1000_PTC127);
6044 adapter->stats.ptc255 += rd32(E1000_PTC255);
6045 adapter->stats.ptc511 += rd32(E1000_PTC511);
6046 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6047 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6048
6049 adapter->stats.mptc += rd32(E1000_MPTC);
6050 adapter->stats.bptc += rd32(E1000_BPTC);
6051
2d0b0f69
NN
6052 adapter->stats.tpt += rd32(E1000_TPT);
6053 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
6054
6055 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
6056 /* read internal phy specific stats */
6057 reg = rd32(E1000_CTRL_EXT);
6058 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6059 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
6060
6061 /* this stat has invalid values on i210/i211 */
6062 if ((hw->mac.type != e1000_i210) &&
6063 (hw->mac.type != e1000_i211))
6064 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
6065 }
6066
9d5c8243
AK
6067 adapter->stats.tsctc += rd32(E1000_TSCTC);
6068 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6069
6070 adapter->stats.iac += rd32(E1000_IAC);
6071 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6072 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6073 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6074 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6075 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6076 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6077 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6078 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6079
6080 /* Fill out the OS statistics structure */
128e45eb
AD
6081 net_stats->multicast = adapter->stats.mprc;
6082 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
6083
6084 /* Rx Errors */
6085
6086 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
6087 * our own version based on RUC and ROC
6088 */
128e45eb 6089 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
6090 adapter->stats.crcerrs + adapter->stats.algnerrc +
6091 adapter->stats.ruc + adapter->stats.roc +
6092 adapter->stats.cexterr;
128e45eb
AD
6093 net_stats->rx_length_errors = adapter->stats.ruc +
6094 adapter->stats.roc;
6095 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6096 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6097 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
6098
6099 /* Tx Errors */
128e45eb
AD
6100 net_stats->tx_errors = adapter->stats.ecol +
6101 adapter->stats.latecol;
6102 net_stats->tx_aborted_errors = adapter->stats.ecol;
6103 net_stats->tx_window_errors = adapter->stats.latecol;
6104 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
6105
6106 /* Tx Dropped needs to be maintained elsewhere */
6107
9d5c8243
AK
6108 /* Management Stats */
6109 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6110 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6111 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
6112
6113 /* OS2BMC Stats */
6114 reg = rd32(E1000_MANC);
6115 if (reg & E1000_MANC_EN_BMC2OS) {
6116 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6117 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6118 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6119 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6120 }
9d5c8243
AK
6121}
6122
61d7f75f
RC
6123static void igb_tsync_interrupt(struct igb_adapter *adapter)
6124{
6125 struct e1000_hw *hw = &adapter->hw;
00c65578 6126 struct ptp_clock_event event;
40c9b079 6127 struct timespec64 ts;
720db4ff 6128 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
00c65578
RC
6129
6130 if (tsicr & TSINTR_SYS_WRAP) {
6131 event.type = PTP_CLOCK_PPS;
6132 if (adapter->ptp_caps.pps)
6133 ptp_clock_event(adapter->ptp_clock, &event);
00c65578
RC
6134 ack |= TSINTR_SYS_WRAP;
6135 }
61d7f75f
RC
6136
6137 if (tsicr & E1000_TSICR_TXTS) {
61d7f75f
RC
6138 /* retrieve hardware timestamp */
6139 schedule_work(&adapter->ptp_tx_work);
00c65578 6140 ack |= E1000_TSICR_TXTS;
61d7f75f 6141 }
00c65578 6142
720db4ff
RC
6143 if (tsicr & TSINTR_TT0) {
6144 spin_lock(&adapter->tmreg_lock);
40c9b079
AB
6145 ts = timespec64_add(adapter->perout[0].start,
6146 adapter->perout[0].period);
6147 /* u32 conversion of tv_sec is safe until y2106 */
720db4ff 6148 wr32(E1000_TRGTTIML0, ts.tv_nsec);
40c9b079 6149 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
720db4ff
RC
6150 tsauxc = rd32(E1000_TSAUXC);
6151 tsauxc |= TSAUXC_EN_TT0;
6152 wr32(E1000_TSAUXC, tsauxc);
6153 adapter->perout[0].start = ts;
6154 spin_unlock(&adapter->tmreg_lock);
6155 ack |= TSINTR_TT0;
6156 }
6157
6158 if (tsicr & TSINTR_TT1) {
6159 spin_lock(&adapter->tmreg_lock);
40c9b079
AB
6160 ts = timespec64_add(adapter->perout[1].start,
6161 adapter->perout[1].period);
720db4ff 6162 wr32(E1000_TRGTTIML1, ts.tv_nsec);
40c9b079 6163 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
720db4ff
RC
6164 tsauxc = rd32(E1000_TSAUXC);
6165 tsauxc |= TSAUXC_EN_TT1;
6166 wr32(E1000_TSAUXC, tsauxc);
6167 adapter->perout[1].start = ts;
6168 spin_unlock(&adapter->tmreg_lock);
6169 ack |= TSINTR_TT1;
6170 }
6171
6172 if (tsicr & TSINTR_AUTT0) {
6173 nsec = rd32(E1000_AUXSTMPL0);
6174 sec = rd32(E1000_AUXSTMPH0);
6175 event.type = PTP_CLOCK_EXTTS;
6176 event.index = 0;
6177 event.timestamp = sec * 1000000000ULL + nsec;
6178 ptp_clock_event(adapter->ptp_clock, &event);
6179 ack |= TSINTR_AUTT0;
6180 }
6181
6182 if (tsicr & TSINTR_AUTT1) {
6183 nsec = rd32(E1000_AUXSTMPL1);
6184 sec = rd32(E1000_AUXSTMPH1);
6185 event.type = PTP_CLOCK_EXTTS;
6186 event.index = 1;
6187 event.timestamp = sec * 1000000000ULL + nsec;
6188 ptp_clock_event(adapter->ptp_clock, &event);
6189 ack |= TSINTR_AUTT1;
6190 }
6191
00c65578
RC
6192 /* acknowledge the interrupts */
6193 wr32(E1000_TSICR, ack);
61d7f75f
RC
6194}
6195
9d5c8243
AK
6196static irqreturn_t igb_msix_other(int irq, void *data)
6197{
047e0030 6198 struct igb_adapter *adapter = data;
9d5c8243 6199 struct e1000_hw *hw = &adapter->hw;
844290e5 6200 u32 icr = rd32(E1000_ICR);
844290e5 6201 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 6202
7f081d40
AD
6203 if (icr & E1000_ICR_DRSTA)
6204 schedule_work(&adapter->reset_task);
6205
047e0030 6206 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6207 /* HW is reporting DMA is out of sync */
6208 adapter->stats.doosync++;
13800469
GR
6209 /* The DMA Out of Sync is also indication of a spoof event
6210 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
6211 * see if it is really a spoof event.
6212 */
13800469 6213 igb_check_wvbr(adapter);
dda0e083 6214 }
eebbbdba 6215
4ae196df
AD
6216 /* Check for a mailbox event */
6217 if (icr & E1000_ICR_VMMB)
6218 igb_msg_task(adapter);
6219
6220 if (icr & E1000_ICR_LSC) {
6221 hw->mac.get_link_status = 1;
6222 /* guard against interrupt when we're going down */
6223 if (!test_bit(__IGB_DOWN, &adapter->state))
6224 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6225 }
6226
61d7f75f
RC
6227 if (icr & E1000_ICR_TS)
6228 igb_tsync_interrupt(adapter);
1f6e8178 6229
844290e5 6230 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
6231
6232 return IRQ_HANDLED;
6233}
6234
047e0030 6235static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 6236{
26b39276 6237 struct igb_adapter *adapter = q_vector->adapter;
047e0030 6238 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 6239
047e0030
AD
6240 if (!q_vector->set_itr)
6241 return;
73cd78f1 6242
047e0030
AD
6243 if (!itr_val)
6244 itr_val = 0x4;
661086df 6245
26b39276
AD
6246 if (adapter->hw.mac.type == e1000_82575)
6247 itr_val |= itr_val << 16;
661086df 6248 else
0ba82994 6249 itr_val |= E1000_EITR_CNT_IGNR;
661086df 6250
047e0030
AD
6251 writel(itr_val, q_vector->itr_register);
6252 q_vector->set_itr = 0;
6eb5a7f1
AD
6253}
6254
047e0030 6255static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 6256{
047e0030 6257 struct igb_q_vector *q_vector = data;
9d5c8243 6258
047e0030
AD
6259 /* Write the ITR value calculated from the previous interrupt. */
6260 igb_write_itr(q_vector);
9d5c8243 6261
047e0030 6262 napi_schedule(&q_vector->napi);
844290e5 6263
047e0030 6264 return IRQ_HANDLED;
fe4506b6
JC
6265}
6266
421e02f0 6267#ifdef CONFIG_IGB_DCA
6a05004a
AD
6268static void igb_update_tx_dca(struct igb_adapter *adapter,
6269 struct igb_ring *tx_ring,
6270 int cpu)
6271{
6272 struct e1000_hw *hw = &adapter->hw;
6273 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6274
6275 if (hw->mac.type != e1000_82575)
6276 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6277
b980ac18 6278 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
6279 * DCA is enabled. This is due to a known issue in some chipsets
6280 * which will cause the DCA tag to be cleared.
6281 */
6282 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6283 E1000_DCA_TXCTRL_DATA_RRO_EN |
6284 E1000_DCA_TXCTRL_DESC_DCA_EN;
6285
6286 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6287}
6288
6289static void igb_update_rx_dca(struct igb_adapter *adapter,
6290 struct igb_ring *rx_ring,
6291 int cpu)
6292{
6293 struct e1000_hw *hw = &adapter->hw;
6294 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6295
6296 if (hw->mac.type != e1000_82575)
6297 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6298
b980ac18 6299 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
6300 * DCA is enabled. This is due to a known issue in some chipsets
6301 * which will cause the DCA tag to be cleared.
6302 */
6303 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6304 E1000_DCA_RXCTRL_DESC_DCA_EN;
6305
6306 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6307}
6308
047e0030 6309static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 6310{
047e0030 6311 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 6312 int cpu = get_cpu();
fe4506b6 6313
047e0030
AD
6314 if (q_vector->cpu == cpu)
6315 goto out_no_update;
6316
6a05004a
AD
6317 if (q_vector->tx.ring)
6318 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6319
6320 if (q_vector->rx.ring)
6321 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6322
047e0030
AD
6323 q_vector->cpu = cpu;
6324out_no_update:
fe4506b6
JC
6325 put_cpu();
6326}
6327
6328static void igb_setup_dca(struct igb_adapter *adapter)
6329{
7e0e99ef 6330 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
6331 int i;
6332
7dfc16fa 6333 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
6334 return;
6335
7e0e99ef
AD
6336 /* Always use CB2 mode, difference is masked in the CB driver. */
6337 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6338
047e0030 6339 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
6340 adapter->q_vector[i]->cpu = -1;
6341 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
6342 }
6343}
6344
6345static int __igb_notify_dca(struct device *dev, void *data)
6346{
6347 struct net_device *netdev = dev_get_drvdata(dev);
6348 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 6349 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
6350 struct e1000_hw *hw = &adapter->hw;
6351 unsigned long event = *(unsigned long *)data;
6352
6353 switch (event) {
6354 case DCA_PROVIDER_ADD:
6355 /* if already enabled, don't do it again */
7dfc16fa 6356 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 6357 break;
fe4506b6 6358 if (dca_add_requester(dev) == 0) {
bbd98fe4 6359 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 6360 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
6361 igb_setup_dca(adapter);
6362 break;
6363 }
6364 /* Fall Through since DCA is disabled. */
6365 case DCA_PROVIDER_REMOVE:
7dfc16fa 6366 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 6367 /* without this a class_device is left
b980ac18
JK
6368 * hanging around in the sysfs model
6369 */
fe4506b6 6370 dca_remove_requester(dev);
090b1795 6371 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 6372 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 6373 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
6374 }
6375 break;
6376 }
bbd98fe4 6377
fe4506b6 6378 return 0;
9d5c8243
AK
6379}
6380
fe4506b6 6381static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 6382 void *p)
fe4506b6
JC
6383{
6384 int ret_val;
6385
6386 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 6387 __igb_notify_dca);
fe4506b6
JC
6388
6389 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6390}
421e02f0 6391#endif /* CONFIG_IGB_DCA */
9d5c8243 6392
0224d663
GR
6393#ifdef CONFIG_PCI_IOV
6394static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6395{
6396 unsigned char mac_addr[ETH_ALEN];
0224d663 6397
5ac6f91d 6398 eth_zero_addr(mac_addr);
0224d663
GR
6399 igb_set_vf_mac(adapter, vf, mac_addr);
6400
70ea4783
LL
6401 /* By default spoof check is enabled for all VFs */
6402 adapter->vf_data[vf].spoofchk_enabled = true;
6403
1b8b062a
CV
6404 /* By default VFs are not trusted */
6405 adapter->vf_data[vf].trusted = false;
6406
f557147c 6407 return 0;
0224d663
GR
6408}
6409
0224d663 6410#endif
4ae196df
AD
6411static void igb_ping_all_vfs(struct igb_adapter *adapter)
6412{
6413 struct e1000_hw *hw = &adapter->hw;
6414 u32 ping;
6415 int i;
6416
6417 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6418 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 6419 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
6420 ping |= E1000_VT_MSGTYPE_CTS;
6421 igb_write_mbx(hw, &ping, 1, i);
6422 }
6423}
6424
7d5753f0
AD
6425static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6426{
6427 struct e1000_hw *hw = &adapter->hw;
6428 u32 vmolr = rd32(E1000_VMOLR(vf));
6429 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6430
d85b9004 6431 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 6432 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
6433 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6434
6435 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6436 vmolr |= E1000_VMOLR_MPME;
d85b9004 6437 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
6438 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6439 } else {
b980ac18 6440 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
6441 * flag we need to write the hashes to the MTA as this step
6442 * was previously skipped
6443 */
6444 if (vf_data->num_vf_mc_hashes > 30) {
6445 vmolr |= E1000_VMOLR_MPME;
6446 } else if (vf_data->num_vf_mc_hashes) {
6447 int j;
9005df38 6448
7d5753f0
AD
6449 vmolr |= E1000_VMOLR_ROMPE;
6450 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6451 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6452 }
6453 }
6454
6455 wr32(E1000_VMOLR(vf), vmolr);
6456
6457 /* there are flags left unprocessed, likely not supported */
6458 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6459 return -EINVAL;
6460
6461 return 0;
7d5753f0
AD
6462}
6463
4ae196df
AD
6464static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6465 u32 *msgbuf, u32 vf)
6466{
6467 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6468 u16 *hash_list = (u16 *)&msgbuf[1];
6469 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6470 int i;
6471
7d5753f0 6472 /* salt away the number of multicast addresses assigned
4ae196df
AD
6473 * to this VF for later use to restore when the PF multi cast
6474 * list changes
6475 */
6476 vf_data->num_vf_mc_hashes = n;
6477
7d5753f0
AD
6478 /* only up to 30 hash values supported */
6479 if (n > 30)
6480 n = 30;
6481
6482 /* store the hashes for later use */
4ae196df 6483 for (i = 0; i < n; i++)
a419aef8 6484 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
6485
6486 /* Flush and reset the mta with the new values */
ff41f8dc 6487 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
6488
6489 return 0;
6490}
6491
6492static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6493{
6494 struct e1000_hw *hw = &adapter->hw;
6495 struct vf_data_storage *vf_data;
6496 int i, j;
6497
6498 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0 6499 u32 vmolr = rd32(E1000_VMOLR(i));
9005df38 6500
7d5753f0
AD
6501 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6502
4ae196df 6503 vf_data = &adapter->vf_data[i];
7d5753f0
AD
6504
6505 if ((vf_data->num_vf_mc_hashes > 30) ||
6506 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6507 vmolr |= E1000_VMOLR_MPME;
6508 } else if (vf_data->num_vf_mc_hashes) {
6509 vmolr |= E1000_VMOLR_ROMPE;
6510 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6511 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6512 }
6513 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
6514 }
6515}
6516
6517static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6518{
6519 struct e1000_hw *hw = &adapter->hw;
16903caa 6520 u32 pool_mask, vlvf_mask, i;
4ae196df 6521
16903caa
AD
6522 /* create mask for VF and other pools */
6523 pool_mask = E1000_VLVF_POOLSEL_MASK;
a51d8c21 6524 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
16903caa
AD
6525
6526 /* drop PF from pool bits */
a51d8c21
JK
6527 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6528 adapter->vfs_allocated_count);
4ae196df
AD
6529
6530 /* Find the vlan filter for this id */
16903caa
AD
6531 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6532 u32 vlvf = rd32(E1000_VLVF(i));
6533 u32 vfta_mask, vid, vfta;
4ae196df
AD
6534
6535 /* remove the vf from the pool */
16903caa
AD
6536 if (!(vlvf & vlvf_mask))
6537 continue;
6538
6539 /* clear out bit from VLVF */
6540 vlvf ^= vlvf_mask;
6541
6542 /* if other pools are present, just remove ourselves */
6543 if (vlvf & pool_mask)
6544 goto update_vlvfb;
4ae196df 6545
16903caa
AD
6546 /* if PF is present, leave VFTA */
6547 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6548 goto update_vlvf;
4ae196df 6549
16903caa 6550 vid = vlvf & E1000_VLVF_VLANID_MASK;
a51d8c21 6551 vfta_mask = BIT(vid % 32);
16903caa
AD
6552
6553 /* clear bit from VFTA */
6554 vfta = adapter->shadow_vfta[vid / 32];
6555 if (vfta & vfta_mask)
6556 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6557update_vlvf:
6558 /* clear pool selection enable */
6559 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6560 vlvf &= E1000_VLVF_POOLSEL_MASK;
6561 else
6562 vlvf = 0;
6563update_vlvfb:
6564 /* clear pool bits */
6565 wr32(E1000_VLVF(i), vlvf);
4ae196df
AD
6566 }
6567}
ae641bdc 6568
16903caa 6569static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6f3dc319 6570{
16903caa
AD
6571 u32 vlvf;
6572 int idx;
6f3dc319 6573
16903caa
AD
6574 /* short cut the special case */
6575 if (vlan == 0)
6576 return 0;
6577
6578 /* Search for the VLAN id in the VLVF entries */
6579 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6580 vlvf = rd32(E1000_VLVF(idx));
6581 if ((vlvf & VLAN_VID_MASK) == vlan)
6f3dc319
GR
6582 break;
6583 }
6584
16903caa 6585 return idx;
4ae196df
AD
6586}
6587
8008f68c 6588static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
4ae196df
AD
6589{
6590 struct e1000_hw *hw = &adapter->hw;
16903caa
AD
6591 u32 bits, pf_id;
6592 int idx;
51466239 6593
16903caa
AD
6594 idx = igb_find_vlvf_entry(hw, vid);
6595 if (!idx)
6596 return;
4ae196df 6597
16903caa
AD
6598 /* See if any other pools are set for this VLAN filter
6599 * entry other than the PF.
6600 */
6601 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
a51d8c21 6602 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
16903caa
AD
6603 bits &= rd32(E1000_VLVF(idx));
6604
6605 /* Disable the filter so this falls into the default pool. */
6606 if (!bits) {
6607 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
a51d8c21 6608 wr32(E1000_VLVF(idx), BIT(pf_id));
16903caa
AD
6609 else
6610 wr32(E1000_VLVF(idx), 0);
4ae196df 6611 }
6f3dc319 6612}
4ae196df 6613
a15d9259
AD
6614static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6615 bool add, u32 vf)
4ae196df 6616{
a15d9259 6617 int pf_id = adapter->vfs_allocated_count;
6f3dc319 6618 struct e1000_hw *hw = &adapter->hw;
a15d9259 6619 int err;
ae641bdc 6620
a15d9259
AD
6621 /* If VLAN overlaps with one the PF is currently monitoring make
6622 * sure that we are able to allocate a VLVF entry. This may be
6623 * redundant but it guarantees PF will maintain visibility to
6624 * the VLAN.
6f3dc319 6625 */
16903caa 6626 if (add && test_bit(vid, adapter->active_vlans)) {
a15d9259
AD
6627 err = igb_vfta_set(hw, vid, pf_id, true, false);
6628 if (err)
6629 return err;
4ae196df 6630 }
6f3dc319 6631
a15d9259 6632 err = igb_vfta_set(hw, vid, vf, add, false);
6f3dc319 6633
16903caa
AD
6634 if (add && !err)
6635 return err;
6f3dc319 6636
16903caa
AD
6637 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6638 * we may need to drop the PF pool bit in order to allow us to free
6639 * up the VLVF resources.
6f3dc319 6640 */
16903caa
AD
6641 if (test_bit(vid, adapter->active_vlans) ||
6642 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6643 igb_update_pf_vlvf(adapter, vid);
6f3dc319 6644
6f3dc319 6645 return err;
8151d294
WM
6646}
6647
6648static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6649{
6650 struct e1000_hw *hw = &adapter->hw;
6651
6652 if (vid)
6653 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6654 else
6655 wr32(E1000_VMVIR(vf), 0);
6656}
6657
a15d9259
AD
6658static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6659 u16 vlan, u8 qos)
8151d294 6660{
a15d9259 6661 int err;
8151d294 6662
a15d9259
AD
6663 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6664 if (err)
6665 return err;
6666
6667 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6668 igb_set_vmolr(adapter, vf, !vlan);
6669
6670 /* revoke access to previous VLAN */
6671 if (vlan != adapter->vf_data[vf].pf_vlan)
6672 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6673 false, vf);
6674
6675 adapter->vf_data[vf].pf_vlan = vlan;
6676 adapter->vf_data[vf].pf_qos = qos;
030f9f52 6677 igb_set_vf_vlan_strip(adapter, vf, true);
a15d9259
AD
6678 dev_info(&adapter->pdev->dev,
6679 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6680 if (test_bit(__IGB_DOWN, &adapter->state)) {
6681 dev_warn(&adapter->pdev->dev,
6682 "The VF VLAN has been set, but the PF device is not up.\n");
6683 dev_warn(&adapter->pdev->dev,
6684 "Bring the PF device up before attempting to use the VF device.\n");
b980ac18 6685 }
a15d9259 6686
b980ac18 6687 return err;
4ae196df
AD
6688}
6689
a15d9259 6690static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6f3dc319 6691{
a15d9259
AD
6692 /* Restore tagless access via VLAN 0 */
6693 igb_set_vf_vlan(adapter, 0, true, vf);
6f3dc319 6694
a15d9259 6695 igb_set_vmvir(adapter, 0, vf);
8151d294 6696 igb_set_vmolr(adapter, vf, true);
4ae196df 6697
a15d9259
AD
6698 /* Remove any PF assigned VLAN */
6699 if (adapter->vf_data[vf].pf_vlan)
6700 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6701 false, vf);
6f3dc319 6702
a15d9259
AD
6703 adapter->vf_data[vf].pf_vlan = 0;
6704 adapter->vf_data[vf].pf_qos = 0;
030f9f52 6705 igb_set_vf_vlan_strip(adapter, vf, false);
6f3dc319 6706
a15d9259 6707 return 0;
6f3dc319
GR
6708}
6709
79aab093
MS
6710static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6711 u16 vlan, u8 qos, __be16 vlan_proto)
4ae196df 6712{
a15d9259 6713 struct igb_adapter *adapter = netdev_priv(netdev);
4ae196df 6714
a15d9259
AD
6715 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6716 return -EINVAL;
6f3dc319 6717
79aab093
MS
6718 if (vlan_proto != htons(ETH_P_8021Q))
6719 return -EPROTONOSUPPORT;
6720
a15d9259
AD
6721 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6722 igb_disable_port_vlan(adapter, vf);
6723}
6f3dc319 6724
a15d9259
AD
6725static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6726{
6727 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6728 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
030f9f52 6729 int ret;
6f3dc319 6730
a15d9259
AD
6731 if (adapter->vf_data[vf].pf_vlan)
6732 return -1;
6f3dc319 6733
a15d9259
AD
6734 /* VLAN 0 is a special case, don't allow it to be removed */
6735 if (!vid && !add)
6736 return 0;
6737
030f9f52
CV
6738 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6739 if (!ret)
6740 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6741 return ret;
4ae196df
AD
6742}
6743
f2ca0dbe 6744static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 6745{
a15d9259 6746 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df 6747
a15d9259
AD
6748 /* clear flags - except flag that indicates PF has set the MAC */
6749 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6750 vf_data->last_nack = jiffies;
4ae196df
AD
6751
6752 /* reset vlans for device */
6753 igb_clear_vf_vfta(adapter, vf);
a15d9259
AD
6754 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6755 igb_set_vmvir(adapter, vf_data->pf_vlan |
6756 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6757 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
030f9f52 6758 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
4ae196df
AD
6759
6760 /* reset multicast table array for vf */
6761 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6762
6763 /* Flush and reset the mta with the new values */
ff41f8dc 6764 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
6765}
6766
f2ca0dbe
AD
6767static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6768{
6769 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6770
5ac6f91d 6771 /* clear mac address as we were hotplug removed/added */
8151d294 6772 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 6773 eth_zero_addr(vf_mac);
f2ca0dbe
AD
6774
6775 /* process remaining reset events */
6776 igb_vf_reset(adapter, vf);
6777}
6778
6779static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
6780{
6781 struct e1000_hw *hw = &adapter->hw;
6782 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6783 u32 reg, msgbuf[3];
6784 u8 *addr = (u8 *)(&msgbuf[1]);
6785
6786 /* process all the same items cleared in a function level reset */
f2ca0dbe 6787 igb_vf_reset(adapter, vf);
4ae196df
AD
6788
6789 /* set vf mac address */
83c21335 6790 igb_set_vf_mac(adapter, vf, vf_mac);
4ae196df
AD
6791
6792 /* enable transmit and receive for vf */
6793 reg = rd32(E1000_VFTE);
a51d8c21 6794 wr32(E1000_VFTE, reg | BIT(vf));
4ae196df 6795 reg = rd32(E1000_VFRE);
a51d8c21 6796 wr32(E1000_VFRE, reg | BIT(vf));
4ae196df 6797
8fa7e0f7 6798 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
6799
6800 /* reply to reset with ack and vf mac address */
6ddbc4cf
AG
6801 if (!is_zero_ether_addr(vf_mac)) {
6802 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6803 memcpy(addr, vf_mac, ETH_ALEN);
6804 } else {
6805 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6806 }
4ae196df
AD
6807 igb_write_mbx(hw, msgbuf, 3, vf);
6808}
6809
83c21335
YK
6810static void igb_flush_mac_table(struct igb_adapter *adapter)
6811{
6812 struct e1000_hw *hw = &adapter->hw;
6813 int i;
6814
6815 for (i = 0; i < hw->mac.rar_entry_count; i++) {
6816 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6817 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6818 adapter->mac_table[i].queue = 0;
6819 igb_rar_set_index(adapter, i);
6820 }
6821}
6822
6823static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6824{
6825 struct e1000_hw *hw = &adapter->hw;
6826 /* do not count rar entries reserved for VFs MAC addresses */
6827 int rar_entries = hw->mac.rar_entry_count -
6828 adapter->vfs_allocated_count;
6829 int i, count = 0;
6830
6831 for (i = 0; i < rar_entries; i++) {
6832 /* do not count default entries */
6833 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6834 continue;
6835
6836 /* do not count "in use" entries for different queues */
6837 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6838 (adapter->mac_table[i].queue != queue))
6839 continue;
6840
6841 count++;
6842 }
6843
6844 return count;
6845}
6846
6847/* Set default MAC address for the PF in the first RAR entry */
6848static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6849{
6850 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6851
6852 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6853 mac_table->queue = adapter->vfs_allocated_count;
6854 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6855
6856 igb_rar_set_index(adapter, 0);
6857}
6858
b476deab
CIK
6859static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6860 const u8 queue)
83c21335
YK
6861{
6862 struct e1000_hw *hw = &adapter->hw;
6863 int rar_entries = hw->mac.rar_entry_count -
6864 adapter->vfs_allocated_count;
6865 int i;
6866
6867 if (is_zero_ether_addr(addr))
6868 return -EINVAL;
6869
6870 /* Search for the first empty entry in the MAC table.
6871 * Do not touch entries at the end of the table reserved for the VF MAC
6872 * addresses.
6873 */
6874 for (i = 0; i < rar_entries; i++) {
6875 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6876 continue;
6877
6878 ether_addr_copy(adapter->mac_table[i].addr, addr);
6879 adapter->mac_table[i].queue = queue;
6880 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6881
6882 igb_rar_set_index(adapter, i);
6883 return i;
6884 }
6885
6886 return -ENOSPC;
6887}
6888
b476deab
CIK
6889static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6890 const u8 queue)
83c21335
YK
6891{
6892 struct e1000_hw *hw = &adapter->hw;
6893 int rar_entries = hw->mac.rar_entry_count -
6894 adapter->vfs_allocated_count;
6895 int i;
6896
6897 if (is_zero_ether_addr(addr))
6898 return -EINVAL;
6899
6900 /* Search for matching entry in the MAC table based on given address
6901 * and queue. Do not touch entries at the end of the table reserved
6902 * for the VF MAC addresses.
6903 */
6904 for (i = 0; i < rar_entries; i++) {
6905 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6906 continue;
6907 if (adapter->mac_table[i].queue != queue)
6908 continue;
6909 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6910 continue;
6911
6912 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6913 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6914 adapter->mac_table[i].queue = 0;
6915
6916 igb_rar_set_index(adapter, i);
6917 return 0;
6918 }
6919
6920 return -ENOENT;
6921}
6922
6923static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6924{
6925 struct igb_adapter *adapter = netdev_priv(netdev);
6926 int ret;
6927
6928 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6929
6930 return min_t(int, ret, 0);
6931}
6932
6933static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6934{
6935 struct igb_adapter *adapter = netdev_priv(netdev);
6936
6937 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6938
6939 return 0;
6940}
6941
b476deab
CIK
6942static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6943 const u32 info, const u8 *addr)
4827cc37
YK
6944{
6945 struct pci_dev *pdev = adapter->pdev;
6946 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6947 struct list_head *pos;
6948 struct vf_mac_filter *entry = NULL;
6949 int ret = 0;
6950
6951 switch (info) {
6952 case E1000_VF_MAC_FILTER_CLR:
6953 /* remove all unicast MAC filters related to the current VF */
6954 list_for_each(pos, &adapter->vf_macs.l) {
6955 entry = list_entry(pos, struct vf_mac_filter, l);
6956 if (entry->vf == vf) {
6957 entry->vf = -1;
6958 entry->free = true;
6959 igb_del_mac_filter(adapter, entry->vf_mac, vf);
6960 }
6961 }
6962 break;
6963 case E1000_VF_MAC_FILTER_ADD:
1b8b062a
CV
6964 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
6965 !vf_data->trusted) {
4827cc37
YK
6966 dev_warn(&pdev->dev,
6967 "VF %d requested MAC filter but is administratively denied\n",
6968 vf);
6969 return -EINVAL;
6970 }
4827cc37
YK
6971 if (!is_valid_ether_addr(addr)) {
6972 dev_warn(&pdev->dev,
6973 "VF %d attempted to set invalid MAC filter\n",
6974 vf);
6975 return -EINVAL;
6976 }
6977
6978 /* try to find empty slot in the list */
6979 list_for_each(pos, &adapter->vf_macs.l) {
6980 entry = list_entry(pos, struct vf_mac_filter, l);
6981 if (entry->free)
6982 break;
6983 }
6984
6985 if (entry && entry->free) {
6986 entry->free = false;
6987 entry->vf = vf;
6988 ether_addr_copy(entry->vf_mac, addr);
6989
6990 ret = igb_add_mac_filter(adapter, addr, vf);
6991 ret = min_t(int, ret, 0);
6992 } else {
6993 ret = -ENOSPC;
6994 }
6995
6996 if (ret == -ENOSPC)
6997 dev_warn(&pdev->dev,
6998 "VF %d has requested MAC filter but there is no space for it\n",
6999 vf);
7000 break;
7001 default:
7002 ret = -EINVAL;
7003 break;
7004 }
7005
7006 return ret;
7007}
7008
4ae196df
AD
7009static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7010{
4827cc37
YK
7011 struct pci_dev *pdev = adapter->pdev;
7012 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7013 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7014
b980ac18 7015 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
7016 * starting at the second 32 bit word of the msg array
7017 */
4827cc37
YK
7018 unsigned char *addr = (unsigned char *)&msg[1];
7019 int ret = 0;
4ae196df 7020
4827cc37 7021 if (!info) {
1b8b062a
CV
7022 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7023 !vf_data->trusted) {
4827cc37
YK
7024 dev_warn(&pdev->dev,
7025 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7026 vf);
7027 return -EINVAL;
7028 }
4ae196df 7029
4827cc37
YK
7030 if (!is_valid_ether_addr(addr)) {
7031 dev_warn(&pdev->dev,
7032 "VF %d attempted to set invalid MAC\n",
7033 vf);
7034 return -EINVAL;
7035 }
7036
7037 ret = igb_set_vf_mac(adapter, vf, addr);
7038 } else {
7039 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7040 }
7041
7042 return ret;
4ae196df
AD
7043}
7044
7045static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7046{
7047 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 7048 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
7049 u32 msg = E1000_VT_MSGTYPE_NACK;
7050
7051 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
7052 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7053 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 7054 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 7055 vf_data->last_nack = jiffies;
4ae196df
AD
7056 }
7057}
7058
f2ca0dbe 7059static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 7060{
f2ca0dbe
AD
7061 struct pci_dev *pdev = adapter->pdev;
7062 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 7063 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 7064 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
7065 s32 retval;
7066
46b3bb9b 7067 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
4ae196df 7068
fef45f4c
AD
7069 if (retval) {
7070 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 7071 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
7072 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7073 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
46b3bb9b 7074 goto unlock;
fef45f4c
AD
7075 goto out;
7076 }
4ae196df
AD
7077
7078 /* this is a message we already processed, do nothing */
7079 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
46b3bb9b 7080 goto unlock;
4ae196df 7081
b980ac18 7082 /* until the vf completes a reset it should not be
4ae196df
AD
7083 * allowed to start any configuration.
7084 */
4ae196df 7085 if (msgbuf[0] == E1000_VF_RESET) {
46b3bb9b 7086 /* unlocks mailbox */
4ae196df 7087 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 7088 return;
4ae196df
AD
7089 }
7090
f2ca0dbe 7091 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c 7092 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
46b3bb9b 7093 goto unlock;
fef45f4c
AD
7094 retval = -1;
7095 goto out;
4ae196df
AD
7096 }
7097
7098 switch ((msgbuf[0] & 0xFFFF)) {
7099 case E1000_VF_SET_MAC_ADDR:
4827cc37 7100 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4ae196df 7101 break;
7d5753f0
AD
7102 case E1000_VF_SET_PROMISC:
7103 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7104 break;
4ae196df
AD
7105 case E1000_VF_SET_MULTICAST:
7106 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7107 break;
7108 case E1000_VF_SET_LPE:
7109 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7110 break;
7111 case E1000_VF_SET_VLAN:
a6b5ea35
GR
7112 retval = -1;
7113 if (vf_data->pf_vlan)
7114 dev_warn(&pdev->dev,
b980ac18
JK
7115 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7116 vf);
8151d294 7117 else
a15d9259 7118 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
4ae196df
AD
7119 break;
7120 default:
090b1795 7121 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
7122 retval = -1;
7123 break;
7124 }
7125
fef45f4c
AD
7126 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7127out:
4ae196df
AD
7128 /* notify the VF of the results of what it sent us */
7129 if (retval)
7130 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7131 else
7132 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7133
46b3bb9b 7134 /* unlocks mailbox */
4ae196df 7135 igb_write_mbx(hw, msgbuf, 1, vf);
46b3bb9b
GE
7136 return;
7137
7138unlock:
7139 igb_unlock_mbx(hw, vf);
f2ca0dbe 7140}
4ae196df 7141
f2ca0dbe
AD
7142static void igb_msg_task(struct igb_adapter *adapter)
7143{
7144 struct e1000_hw *hw = &adapter->hw;
7145 u32 vf;
7146
7147 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7148 /* process any reset requests */
7149 if (!igb_check_for_rst(hw, vf))
7150 igb_vf_reset_event(adapter, vf);
7151
7152 /* process any messages pending */
7153 if (!igb_check_for_msg(hw, vf))
7154 igb_rcv_msg_from_vf(adapter, vf);
7155
7156 /* process any acks */
7157 if (!igb_check_for_ack(hw, vf))
7158 igb_rcv_ack_from_vf(adapter, vf);
7159 }
4ae196df
AD
7160}
7161
68d480c4
AD
7162/**
7163 * igb_set_uta - Set unicast filter table address
7164 * @adapter: board private structure
bf456abb 7165 * @set: boolean indicating if we are setting or clearing bits
68d480c4
AD
7166 *
7167 * The unicast table address is a register array of 32-bit registers.
7168 * The table is meant to be used in a way similar to how the MTA is used
7169 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
7170 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7171 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4 7172 **/
bf456abb 7173static void igb_set_uta(struct igb_adapter *adapter, bool set)
68d480c4
AD
7174{
7175 struct e1000_hw *hw = &adapter->hw;
bf456abb 7176 u32 uta = set ? ~0 : 0;
68d480c4
AD
7177 int i;
7178
68d480c4
AD
7179 /* we only need to do this if VMDq is enabled */
7180 if (!adapter->vfs_allocated_count)
7181 return;
7182
bf456abb
AD
7183 for (i = hw->mac.uta_reg_count; i--;)
7184 array_wr32(E1000_UTA, i, uta);
68d480c4
AD
7185}
7186
9d5c8243 7187/**
b980ac18
JK
7188 * igb_intr_msi - Interrupt Handler
7189 * @irq: interrupt number
7190 * @data: pointer to a network interface device structure
9d5c8243
AK
7191 **/
7192static irqreturn_t igb_intr_msi(int irq, void *data)
7193{
047e0030
AD
7194 struct igb_adapter *adapter = data;
7195 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
7196 struct e1000_hw *hw = &adapter->hw;
7197 /* read ICR disables interrupts using IAM */
7198 u32 icr = rd32(E1000_ICR);
7199
047e0030 7200 igb_write_itr(q_vector);
9d5c8243 7201
7f081d40
AD
7202 if (icr & E1000_ICR_DRSTA)
7203 schedule_work(&adapter->reset_task);
7204
047e0030 7205 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
7206 /* HW is reporting DMA is out of sync */
7207 adapter->stats.doosync++;
7208 }
7209
9d5c8243
AK
7210 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7211 hw->mac.get_link_status = 1;
7212 if (!test_bit(__IGB_DOWN, &adapter->state))
7213 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7214 }
7215
61d7f75f
RC
7216 if (icr & E1000_ICR_TS)
7217 igb_tsync_interrupt(adapter);
1f6e8178 7218
047e0030 7219 napi_schedule(&q_vector->napi);
9d5c8243
AK
7220
7221 return IRQ_HANDLED;
7222}
7223
7224/**
b980ac18
JK
7225 * igb_intr - Legacy Interrupt Handler
7226 * @irq: interrupt number
7227 * @data: pointer to a network interface device structure
9d5c8243
AK
7228 **/
7229static irqreturn_t igb_intr(int irq, void *data)
7230{
047e0030
AD
7231 struct igb_adapter *adapter = data;
7232 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
7233 struct e1000_hw *hw = &adapter->hw;
7234 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
7235 * need for the IMC write
7236 */
9d5c8243 7237 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
7238
7239 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
7240 * not set, then the adapter didn't send an interrupt
7241 */
9d5c8243
AK
7242 if (!(icr & E1000_ICR_INT_ASSERTED))
7243 return IRQ_NONE;
7244
0ba82994
AD
7245 igb_write_itr(q_vector);
7246
7f081d40
AD
7247 if (icr & E1000_ICR_DRSTA)
7248 schedule_work(&adapter->reset_task);
7249
047e0030 7250 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
7251 /* HW is reporting DMA is out of sync */
7252 adapter->stats.doosync++;
7253 }
7254
9d5c8243
AK
7255 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7256 hw->mac.get_link_status = 1;
7257 /* guard against interrupt when we're going down */
7258 if (!test_bit(__IGB_DOWN, &adapter->state))
7259 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7260 }
7261
61d7f75f
RC
7262 if (icr & E1000_ICR_TS)
7263 igb_tsync_interrupt(adapter);
1f6e8178 7264
047e0030 7265 napi_schedule(&q_vector->napi);
9d5c8243
AK
7266
7267 return IRQ_HANDLED;
7268}
7269
c50b52a0 7270static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 7271{
047e0030 7272 struct igb_adapter *adapter = q_vector->adapter;
46544258 7273 struct e1000_hw *hw = &adapter->hw;
9d5c8243 7274
0ba82994
AD
7275 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7276 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7277 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7278 igb_set_itr(q_vector);
46544258 7279 else
047e0030 7280 igb_update_ring_itr(q_vector);
9d5c8243
AK
7281 }
7282
46544258 7283 if (!test_bit(__IGB_DOWN, &adapter->state)) {
cd14ef54 7284 if (adapter->flags & IGB_FLAG_HAS_MSIX)
047e0030 7285 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
7286 else
7287 igb_irq_enable(adapter);
7288 }
9d5c8243
AK
7289}
7290
46544258 7291/**
b980ac18
JK
7292 * igb_poll - NAPI Rx polling callback
7293 * @napi: napi polling structure
7294 * @budget: count of how many packets we should handle
46544258
AD
7295 **/
7296static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 7297{
047e0030 7298 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
7299 struct igb_q_vector,
7300 napi);
16eb8815 7301 bool clean_complete = true;
32b3e08f 7302 int work_done = 0;
9d5c8243 7303
421e02f0 7304#ifdef CONFIG_IGB_DCA
047e0030
AD
7305 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7306 igb_update_dca(q_vector);
fe4506b6 7307#endif
0ba82994 7308 if (q_vector->tx.ring)
7f0ba845 7309 clean_complete = igb_clean_tx_irq(q_vector, budget);
9d5c8243 7310
32b3e08f
JB
7311 if (q_vector->rx.ring) {
7312 int cleaned = igb_clean_rx_irq(q_vector, budget);
7313
7314 work_done += cleaned;
7f0ba845
AD
7315 if (cleaned >= budget)
7316 clean_complete = false;
32b3e08f 7317 }
047e0030 7318
16eb8815
AD
7319 /* If all work not completed, return budget and keep polling */
7320 if (!clean_complete)
7321 return budget;
46544258 7322
9d5c8243 7323 /* If not enough Rx work done, exit the polling mode */
32b3e08f 7324 napi_complete_done(napi, work_done);
16eb8815 7325 igb_ring_irq_enable(q_vector);
9d5c8243 7326
16eb8815 7327 return 0;
9d5c8243 7328}
6d8126f9 7329
9d5c8243 7330/**
b980ac18
JK
7331 * igb_clean_tx_irq - Reclaim resources after transmit completes
7332 * @q_vector: pointer to q_vector containing needed info
7f0ba845 7333 * @napi_budget: Used to determine if we are in netpoll
49ce9c2c 7334 *
b980ac18 7335 * returns true if ring is completely cleaned
9d5c8243 7336 **/
7f0ba845 7337static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
9d5c8243 7338{
047e0030 7339 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 7340 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 7341 struct igb_tx_buffer *tx_buffer;
f4128785 7342 union e1000_adv_tx_desc *tx_desc;
9d5c8243 7343 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 7344 unsigned int budget = q_vector->tx.work_limit;
8542db05 7345 unsigned int i = tx_ring->next_to_clean;
9d5c8243 7346
13fde97a
AD
7347 if (test_bit(__IGB_DOWN, &adapter->state))
7348 return true;
0e014cb1 7349
06034649 7350 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 7351 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 7352 i -= tx_ring->count;
9d5c8243 7353
f4128785
AD
7354 do {
7355 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
7356
7357 /* if next_to_watch is not set then there is no work pending */
7358 if (!eop_desc)
7359 break;
13fde97a 7360
f4128785 7361 /* prevent any other reads prior to eop_desc */
c4cb9918 7362 smp_rmb();
f4128785 7363
13fde97a
AD
7364 /* if DD is not set pending work has not been completed */
7365 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7366 break;
7367
8542db05
AD
7368 /* clear next_to_watch to prevent false hangs */
7369 tx_buffer->next_to_watch = NULL;
9d5c8243 7370
ebe42d16
AD
7371 /* update the statistics for this packet */
7372 total_bytes += tx_buffer->bytecount;
7373 total_packets += tx_buffer->gso_segs;
13fde97a 7374
ebe42d16 7375 /* free the skb */
7f0ba845 7376 napi_consume_skb(tx_buffer->skb, napi_budget);
13fde97a 7377
ebe42d16
AD
7378 /* unmap skb header data */
7379 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
7380 dma_unmap_addr(tx_buffer, dma),
7381 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
7382 DMA_TO_DEVICE);
7383
c9f14bf3 7384 /* clear tx_buffer data */
c9f14bf3
AD
7385 dma_unmap_len_set(tx_buffer, len, 0);
7386
ebe42d16
AD
7387 /* clear last DMA location and unmap remaining buffers */
7388 while (tx_desc != eop_desc) {
13fde97a
AD
7389 tx_buffer++;
7390 tx_desc++;
9d5c8243 7391 i++;
8542db05
AD
7392 if (unlikely(!i)) {
7393 i -= tx_ring->count;
06034649 7394 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
7395 tx_desc = IGB_TX_DESC(tx_ring, 0);
7396 }
ebe42d16
AD
7397
7398 /* unmap any remaining paged data */
c9f14bf3 7399 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 7400 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
7401 dma_unmap_addr(tx_buffer, dma),
7402 dma_unmap_len(tx_buffer, len),
ebe42d16 7403 DMA_TO_DEVICE);
c9f14bf3 7404 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
7405 }
7406 }
7407
ebe42d16
AD
7408 /* move us one more past the eop_desc for start of next pkt */
7409 tx_buffer++;
7410 tx_desc++;
7411 i++;
7412 if (unlikely(!i)) {
7413 i -= tx_ring->count;
7414 tx_buffer = tx_ring->tx_buffer_info;
7415 tx_desc = IGB_TX_DESC(tx_ring, 0);
7416 }
f4128785
AD
7417
7418 /* issue prefetch for next Tx descriptor */
7419 prefetch(tx_desc);
7420
7421 /* update budget accounting */
7422 budget--;
7423 } while (likely(budget));
0e014cb1 7424
bdbc0631
ED
7425 netdev_tx_completed_queue(txring_txq(tx_ring),
7426 total_packets, total_bytes);
8542db05 7427 i += tx_ring->count;
9d5c8243 7428 tx_ring->next_to_clean = i;
13fde97a
AD
7429 u64_stats_update_begin(&tx_ring->tx_syncp);
7430 tx_ring->tx_stats.bytes += total_bytes;
7431 tx_ring->tx_stats.packets += total_packets;
7432 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
7433 q_vector->tx.total_bytes += total_bytes;
7434 q_vector->tx.total_packets += total_packets;
9d5c8243 7435
6d095fa8 7436 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 7437 struct e1000_hw *hw = &adapter->hw;
12dcd86b 7438
9d5c8243 7439 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
7440 * check with the clearing of time_stamp and movement of i
7441 */
6d095fa8 7442 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 7443 if (tx_buffer->next_to_watch &&
8542db05 7444 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
7445 (adapter->tx_timeout_factor * HZ)) &&
7446 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 7447
9d5c8243 7448 /* detected Tx unit hang */
59d71989 7449 dev_err(tx_ring->dev,
9d5c8243 7450 "Detected Tx Unit Hang\n"
2d064c06 7451 " Tx Queue <%d>\n"
9d5c8243
AK
7452 " TDH <%x>\n"
7453 " TDT <%x>\n"
7454 " next_to_use <%x>\n"
7455 " next_to_clean <%x>\n"
9d5c8243
AK
7456 "buffer_info[next_to_clean]\n"
7457 " time_stamp <%lx>\n"
8542db05 7458 " next_to_watch <%p>\n"
9d5c8243
AK
7459 " jiffies <%lx>\n"
7460 " desc.status <%x>\n",
2d064c06 7461 tx_ring->queue_index,
238ac817 7462 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 7463 readl(tx_ring->tail),
9d5c8243
AK
7464 tx_ring->next_to_use,
7465 tx_ring->next_to_clean,
8542db05 7466 tx_buffer->time_stamp,
f4128785 7467 tx_buffer->next_to_watch,
9d5c8243 7468 jiffies,
f4128785 7469 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
7470 netif_stop_subqueue(tx_ring->netdev,
7471 tx_ring->queue_index);
7472
7473 /* we are about to reset, no point in enabling stuff */
7474 return true;
9d5c8243
AK
7475 }
7476 }
13fde97a 7477
21ba6fe1 7478#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 7479 if (unlikely(total_packets &&
b980ac18
JK
7480 netif_carrier_ok(tx_ring->netdev) &&
7481 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
7482 /* Make sure that anybody stopping the queue after this
7483 * sees the new next_to_clean.
7484 */
7485 smp_mb();
7486 if (__netif_subqueue_stopped(tx_ring->netdev,
7487 tx_ring->queue_index) &&
7488 !(test_bit(__IGB_DOWN, &adapter->state))) {
7489 netif_wake_subqueue(tx_ring->netdev,
7490 tx_ring->queue_index);
7491
7492 u64_stats_update_begin(&tx_ring->tx_syncp);
7493 tx_ring->tx_stats.restart_queue++;
7494 u64_stats_update_end(&tx_ring->tx_syncp);
7495 }
7496 }
7497
7498 return !!budget;
9d5c8243
AK
7499}
7500
cbc8e55f 7501/**
b980ac18
JK
7502 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7503 * @rx_ring: rx descriptor ring to store buffers on
7504 * @old_buff: donor buffer to have page reused
cbc8e55f 7505 *
b980ac18 7506 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
7507 **/
7508static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7509 struct igb_rx_buffer *old_buff)
7510{
7511 struct igb_rx_buffer *new_buff;
7512 u16 nta = rx_ring->next_to_alloc;
7513
7514 new_buff = &rx_ring->rx_buffer_info[nta];
7515
7516 /* update, and store next to alloc */
7517 nta++;
7518 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7519
e0142726
AD
7520 /* Transfer page from old buffer to new buffer.
7521 * Move each member individually to avoid possible store
7522 * forwarding stalls.
7523 */
7524 new_buff->dma = old_buff->dma;
7525 new_buff->page = old_buff->page;
7526 new_buff->page_offset = old_buff->page_offset;
7527 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
cbc8e55f
AD
7528}
7529
95dd44b4
AD
7530static inline bool igb_page_is_reserved(struct page *page)
7531{
2f064f34 7532 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
95dd44b4
AD
7533}
7534
e0142726 7535static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
74e238ea 7536{
e0142726
AD
7537 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7538 struct page *page = rx_buffer->page;
bd4171a5 7539
74e238ea 7540 /* avoid re-using remote pages */
95dd44b4 7541 if (unlikely(igb_page_is_reserved(page)))
bc16e47f
RG
7542 return false;
7543
74e238ea
AD
7544#if (PAGE_SIZE < 8192)
7545 /* if we are only owner of page we can reuse it */
e0142726 7546 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
74e238ea 7547 return false;
74e238ea 7548#else
8649aaef
AD
7549#define IGB_LAST_OFFSET \
7550 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
74e238ea 7551
8649aaef 7552 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
74e238ea 7553 return false;
74e238ea
AD
7554#endif
7555
bd4171a5
AD
7556 /* If we have drained the page fragment pool we need to update
7557 * the pagecnt_bias and page count so that we fully restock the
7558 * number of references the driver holds.
95dd44b4 7559 */
e0142726 7560 if (unlikely(!pagecnt_bias)) {
bd4171a5
AD
7561 page_ref_add(page, USHRT_MAX);
7562 rx_buffer->pagecnt_bias = USHRT_MAX;
7563 }
95dd44b4 7564
74e238ea
AD
7565 return true;
7566}
7567
cbc8e55f 7568/**
b980ac18
JK
7569 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7570 * @rx_ring: rx descriptor ring to transact packets on
7571 * @rx_buffer: buffer containing page to add
b980ac18 7572 * @skb: sk_buff to place the data into
e0142726 7573 * @size: size of buffer to be added
cbc8e55f 7574 *
b980ac18 7575 * This function will add the data contained in rx_buffer->page to the skb.
cbc8e55f 7576 **/
e0142726 7577static void igb_add_rx_frag(struct igb_ring *rx_ring,
cbc8e55f 7578 struct igb_rx_buffer *rx_buffer,
e0142726
AD
7579 struct sk_buff *skb,
7580 unsigned int size)
cbc8e55f 7581{
74e238ea 7582#if (PAGE_SIZE < 8192)
8649aaef 7583 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
74e238ea 7584#else
e3cdf68d
AD
7585 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7586 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7587 SKB_DATA_ALIGN(size);
74e238ea 7588#endif
e0142726
AD
7589 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7590 rx_buffer->page_offset, size, truesize);
7591#if (PAGE_SIZE < 8192)
7592 rx_buffer->page_offset ^= truesize;
7593#else
7594 rx_buffer->page_offset += truesize;
7595#endif
7596}
7597
7598static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7599 struct igb_rx_buffer *rx_buffer,
7600 union e1000_adv_rx_desc *rx_desc,
7601 unsigned int size)
7602{
7603 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7604#if (PAGE_SIZE < 8192)
7605 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7606#else
7607 unsigned int truesize = SKB_DATA_ALIGN(size);
7608#endif
7609 unsigned int headlen;
7610 struct sk_buff *skb;
cbc8e55f 7611
e0142726
AD
7612 /* prefetch first cache line of first page */
7613 prefetch(va);
7614#if L1_CACHE_BYTES < 128
7615 prefetch(va + L1_CACHE_BYTES);
7616#endif
7617
7618 /* allocate a skb to store the frags */
7619 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7620 if (unlikely(!skb))
7621 return NULL;
cbc8e55f 7622
f56e7bba
AD
7623 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7624 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7625 va += IGB_TS_HDR_LEN;
7626 size -= IGB_TS_HDR_LEN;
7627 }
cbc8e55f 7628
e0142726
AD
7629 /* Determine available headroom for copy */
7630 headlen = size;
7631 if (headlen > IGB_RX_HDR_LEN)
7632 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
f56e7bba
AD
7633
7634 /* align pull length to size of long to optimize memcpy performance */
e0142726 7635 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
f56e7bba
AD
7636
7637 /* update all of the pointers */
e0142726
AD
7638 size -= headlen;
7639 if (size) {
7640 skb_add_rx_frag(skb, 0, rx_buffer->page,
7641 (va + headlen) - page_address(rx_buffer->page),
7642 size, truesize);
7643#if (PAGE_SIZE < 8192)
7644 rx_buffer->page_offset ^= truesize;
7645#else
7646 rx_buffer->page_offset += truesize;
2e334eee 7647#endif
2e334eee 7648 } else {
e0142726 7649 rx_buffer->pagecnt_bias++;
2e334eee
AD
7650 }
7651
2e334eee
AD
7652 return skb;
7653}
7654
b1bb2eb0
AD
7655static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7656 struct igb_rx_buffer *rx_buffer,
7657 union e1000_adv_rx_desc *rx_desc,
7658 unsigned int size)
7659{
7660 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7661#if (PAGE_SIZE < 8192)
7662 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7663#else
7664 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7665 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7666#endif
7667 struct sk_buff *skb;
7668
7669 /* prefetch first cache line of first page */
7670 prefetch(va);
7671#if L1_CACHE_BYTES < 128
7672 prefetch(va + L1_CACHE_BYTES);
7673#endif
7674
3a1eb6d1 7675 /* build an skb around the page buffer */
b1bb2eb0
AD
7676 skb = build_skb(va - IGB_SKB_PAD, truesize);
7677 if (unlikely(!skb))
7678 return NULL;
7679
7680 /* update pointers within the skb to store the data */
7681 skb_reserve(skb, IGB_SKB_PAD);
7682 __skb_put(skb, size);
7683
7684 /* pull timestamp out of packet data */
7685 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7686 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7687 __skb_pull(skb, IGB_TS_HDR_LEN);
7688 }
7689
7690 /* update buffer offset */
7691#if (PAGE_SIZE < 8192)
7692 rx_buffer->page_offset ^= truesize;
7693#else
7694 rx_buffer->page_offset += truesize;
7695#endif
7696
7697 return skb;
7698}
7699
cd392f5c 7700static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
7701 union e1000_adv_rx_desc *rx_desc,
7702 struct sk_buff *skb)
9d5c8243 7703{
bc8acf2c 7704 skb_checksum_none_assert(skb);
9d5c8243 7705
294e7d78 7706 /* Ignore Checksum bit is set */
3ceb90fd 7707 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
7708 return;
7709
7710 /* Rx checksum disabled via ethtool */
7711 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 7712 return;
85ad76b2 7713
9d5c8243 7714 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
7715 if (igb_test_staterr(rx_desc,
7716 E1000_RXDEXT_STATERR_TCPE |
7717 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 7718 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
7719 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7720 * packets, (aka let the stack check the crc32c)
7721 */
866cff06
AD
7722 if (!((skb->len == 60) &&
7723 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 7724 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 7725 ring->rx_stats.csum_err++;
12dcd86b
ED
7726 u64_stats_update_end(&ring->rx_syncp);
7727 }
9d5c8243 7728 /* let the stack verify checksum errors */
9d5c8243
AK
7729 return;
7730 }
7731 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
7732 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7733 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
7734 skb->ip_summed = CHECKSUM_UNNECESSARY;
7735
3ceb90fd
AD
7736 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7737 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
7738}
7739
077887c3
AD
7740static inline void igb_rx_hash(struct igb_ring *ring,
7741 union e1000_adv_rx_desc *rx_desc,
7742 struct sk_buff *skb)
7743{
7744 if (ring->netdev->features & NETIF_F_RXHASH)
42bdf083
TH
7745 skb_set_hash(skb,
7746 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7747 PKT_HASH_TYPE_L3);
077887c3
AD
7748}
7749
2e334eee 7750/**
b980ac18
JK
7751 * igb_is_non_eop - process handling of non-EOP buffers
7752 * @rx_ring: Rx ring being processed
7753 * @rx_desc: Rx descriptor for current buffer
7754 * @skb: current socket buffer containing buffer in progress
2e334eee 7755 *
b980ac18
JK
7756 * This function updates next to clean. If the buffer is an EOP buffer
7757 * this function exits returning false, otherwise it will place the
7758 * sk_buff in the next buffer to be chained and return true indicating
7759 * that this is in fact a non-EOP buffer.
2e334eee
AD
7760 **/
7761static bool igb_is_non_eop(struct igb_ring *rx_ring,
7762 union e1000_adv_rx_desc *rx_desc)
7763{
7764 u32 ntc = rx_ring->next_to_clean + 1;
7765
7766 /* fetch, update, and store next to clean */
7767 ntc = (ntc < rx_ring->count) ? ntc : 0;
7768 rx_ring->next_to_clean = ntc;
7769
7770 prefetch(IGB_RX_DESC(rx_ring, ntc));
7771
7772 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7773 return false;
7774
7775 return true;
7776}
7777
1a1c225b 7778/**
b980ac18
JK
7779 * igb_cleanup_headers - Correct corrupted or empty headers
7780 * @rx_ring: rx descriptor ring packet is being transacted on
7781 * @rx_desc: pointer to the EOP Rx descriptor
7782 * @skb: pointer to current skb being fixed
1a1c225b 7783 *
b980ac18
JK
7784 * Address the case where we are pulling data in on pages only
7785 * and as such no data is present in the skb header.
1a1c225b 7786 *
b980ac18
JK
7787 * In addition if skb is not at least 60 bytes we need to pad it so that
7788 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 7789 *
b980ac18 7790 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
7791 **/
7792static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7793 union e1000_adv_rx_desc *rx_desc,
7794 struct sk_buff *skb)
7795{
1a1c225b
AD
7796 if (unlikely((igb_test_staterr(rx_desc,
7797 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7798 struct net_device *netdev = rx_ring->netdev;
7799 if (!(netdev->features & NETIF_F_RXALL)) {
7800 dev_kfree_skb_any(skb);
7801 return true;
7802 }
7803 }
7804
a94d9e22
AD
7805 /* if eth_skb_pad returns an error the skb was freed */
7806 if (eth_skb_pad(skb))
7807 return true;
1a1c225b
AD
7808
7809 return false;
2d94d8ab
AD
7810}
7811
db2ee5bd 7812/**
b980ac18
JK
7813 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7814 * @rx_ring: rx descriptor ring packet is being transacted on
7815 * @rx_desc: pointer to the EOP Rx descriptor
7816 * @skb: pointer to current skb being populated
db2ee5bd 7817 *
b980ac18
JK
7818 * This function checks the ring, descriptor, and packet information in
7819 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7820 * other fields within the skb.
db2ee5bd
AD
7821 **/
7822static void igb_process_skb_fields(struct igb_ring *rx_ring,
7823 union e1000_adv_rx_desc *rx_desc,
7824 struct sk_buff *skb)
7825{
7826 struct net_device *dev = rx_ring->netdev;
7827
7828 igb_rx_hash(rx_ring, rx_desc, skb);
7829
7830 igb_rx_checksum(rx_ring, rx_desc, skb);
7831
5499a968
JK
7832 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7833 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7834 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
db2ee5bd 7835
f646968f 7836 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
7837 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7838 u16 vid;
9005df38 7839
db2ee5bd
AD
7840 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7841 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7842 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7843 else
7844 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7845
86a9bad3 7846 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
7847 }
7848
7849 skb_record_rx_queue(skb, rx_ring->queue_index);
7850
7851 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7852}
7853
e0142726
AD
7854static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7855 const unsigned int size)
7856{
7857 struct igb_rx_buffer *rx_buffer;
7858
7859 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7860 prefetchw(rx_buffer->page);
7861
7862 /* we are reusing so sync this buffer for CPU use */
7863 dma_sync_single_range_for_cpu(rx_ring->dev,
7864 rx_buffer->dma,
7865 rx_buffer->page_offset,
7866 size,
7867 DMA_FROM_DEVICE);
7868
7869 rx_buffer->pagecnt_bias--;
7870
7871 return rx_buffer;
7872}
7873
7874static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7875 struct igb_rx_buffer *rx_buffer)
7876{
7877 if (igb_can_reuse_rx_page(rx_buffer)) {
7878 /* hand second half of page back to the ring */
7879 igb_reuse_rx_page(rx_ring, rx_buffer);
7880 } else {
7881 /* We are not reusing the buffer so unmap it and free
7882 * any references we are holding to it
7883 */
7884 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7885 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7886 IGB_RX_DMA_ATTR);
7887 __page_frag_cache_drain(rx_buffer->page,
7888 rx_buffer->pagecnt_bias);
7889 }
7890
7891 /* clear contents of rx_buffer */
7892 rx_buffer->page = NULL;
7893}
7894
32b3e08f 7895static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 7896{
0ba82994 7897 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 7898 struct sk_buff *skb = rx_ring->skb;
9d5c8243 7899 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 7900 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 7901
57ba34c9 7902 while (likely(total_packets < budget)) {
2e334eee 7903 union e1000_adv_rx_desc *rx_desc;
e0142726
AD
7904 struct igb_rx_buffer *rx_buffer;
7905 unsigned int size;
bf36c1a0 7906
2e334eee
AD
7907 /* return some buffers to hardware, one at a time is too slow */
7908 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7909 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7910 cleaned_count = 0;
7911 }
bf36c1a0 7912
2e334eee 7913 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
e0142726
AD
7914 size = le16_to_cpu(rx_desc->wb.upper.length);
7915 if (!size)
2e334eee 7916 break;
9d5c8243 7917
74e238ea
AD
7918 /* This memory barrier is needed to keep us from reading
7919 * any other fields out of the rx_desc until we know the
124b74c1 7920 * descriptor has been written back
74e238ea 7921 */
124b74c1 7922 dma_rmb();
74e238ea 7923
e0142726
AD
7924 rx_buffer = igb_get_rx_buffer(rx_ring, size);
7925
2e334eee 7926 /* retrieve a buffer from the ring */
e0142726
AD
7927 if (skb)
7928 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
b1bb2eb0
AD
7929 else if (ring_uses_build_skb(rx_ring))
7930 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
e0142726
AD
7931 else
7932 skb = igb_construct_skb(rx_ring, rx_buffer,
7933 rx_desc, size);
9d5c8243 7934
2e334eee 7935 /* exit if we failed to retrieve a buffer */
e0142726
AD
7936 if (!skb) {
7937 rx_ring->rx_stats.alloc_failed++;
7938 rx_buffer->pagecnt_bias++;
2e334eee 7939 break;
e0142726 7940 }
1a1c225b 7941
e0142726 7942 igb_put_rx_buffer(rx_ring, rx_buffer);
2e334eee 7943 cleaned_count++;
1a1c225b 7944
2e334eee
AD
7945 /* fetch next buffer in frame if non-eop */
7946 if (igb_is_non_eop(rx_ring, rx_desc))
7947 continue;
1a1c225b
AD
7948
7949 /* verify the packet layout is correct */
7950 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7951 skb = NULL;
7952 continue;
9d5c8243 7953 }
9d5c8243 7954
db2ee5bd 7955 /* probably a little skewed due to removing CRC */
3ceb90fd 7956 total_bytes += skb->len;
3ceb90fd 7957
db2ee5bd
AD
7958 /* populate checksum, timestamp, VLAN, and protocol */
7959 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 7960
b2cb09b1 7961 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 7962
1a1c225b
AD
7963 /* reset skb pointer */
7964 skb = NULL;
7965
2e334eee
AD
7966 /* update budget accounting */
7967 total_packets++;
57ba34c9 7968 }
bf36c1a0 7969
1a1c225b
AD
7970 /* place incomplete frames back on ring for completion */
7971 rx_ring->skb = skb;
7972
12dcd86b 7973 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
7974 rx_ring->rx_stats.packets += total_packets;
7975 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 7976 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
7977 q_vector->rx.total_packets += total_packets;
7978 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
7979
7980 if (cleaned_count)
cd392f5c 7981 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 7982
32b3e08f 7983 return total_packets;
9d5c8243
AK
7984}
7985
e3cdf68d
AD
7986static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7987{
7988 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7989}
7990
c023cd88 7991static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 7992 struct igb_rx_buffer *bi)
c023cd88
AD
7993{
7994 struct page *page = bi->page;
cbc8e55f 7995 dma_addr_t dma;
c023cd88 7996
cbc8e55f
AD
7997 /* since we are recycling buffers we should seldom need to alloc */
7998 if (likely(page))
c023cd88
AD
7999 return true;
8000
cbc8e55f 8001 /* alloc new page for storage */
8649aaef 8002 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
cbc8e55f
AD
8003 if (unlikely(!page)) {
8004 rx_ring->rx_stats.alloc_failed++;
8005 return false;
c023cd88
AD
8006 }
8007
cbc8e55f 8008 /* map page for use */
8649aaef
AD
8009 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8010 igb_rx_pg_size(rx_ring),
8011 DMA_FROM_DEVICE,
8012 IGB_RX_DMA_ATTR);
c023cd88 8013
b980ac18 8014 /* if mapping failed free memory back to system since
cbc8e55f
AD
8015 * there isn't much point in holding memory we can't use
8016 */
1a1c225b 8017 if (dma_mapping_error(rx_ring->dev, dma)) {
8649aaef 8018 __free_pages(page, igb_rx_pg_order(rx_ring));
cbc8e55f 8019
c023cd88
AD
8020 rx_ring->rx_stats.alloc_failed++;
8021 return false;
8022 }
8023
1a1c225b 8024 bi->dma = dma;
cbc8e55f 8025 bi->page = page;
e3cdf68d 8026 bi->page_offset = igb_rx_offset(rx_ring);
bd4171a5 8027 bi->pagecnt_bias = 1;
1a1c225b 8028
c023cd88
AD
8029 return true;
8030}
8031
9d5c8243 8032/**
b980ac18
JK
8033 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8034 * @adapter: address of board private structure
9d5c8243 8035 **/
cd392f5c 8036void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 8037{
9d5c8243 8038 union e1000_adv_rx_desc *rx_desc;
06034649 8039 struct igb_rx_buffer *bi;
c023cd88 8040 u16 i = rx_ring->next_to_use;
8649aaef 8041 u16 bufsz;
9d5c8243 8042
cbc8e55f
AD
8043 /* nothing to do */
8044 if (!cleaned_count)
8045 return;
8046
60136906 8047 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 8048 bi = &rx_ring->rx_buffer_info[i];
c023cd88 8049 i -= rx_ring->count;
9d5c8243 8050
8649aaef
AD
8051 bufsz = igb_rx_bufsz(rx_ring);
8052
cbc8e55f 8053 do {
1a1c225b 8054 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 8055 break;
9d5c8243 8056
5be59554
AD
8057 /* sync the buffer for use by the device */
8058 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8649aaef 8059 bi->page_offset, bufsz,
5be59554
AD
8060 DMA_FROM_DEVICE);
8061
b980ac18 8062 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
8063 * because each write-back erases this info.
8064 */
f9d40f6a 8065 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 8066
c023cd88
AD
8067 rx_desc++;
8068 bi++;
9d5c8243 8069 i++;
c023cd88 8070 if (unlikely(!i)) {
60136906 8071 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 8072 bi = rx_ring->rx_buffer_info;
c023cd88
AD
8073 i -= rx_ring->count;
8074 }
8075
7ec0116c
AD
8076 /* clear the length for the next_to_use descriptor */
8077 rx_desc->wb.upper.length = 0;
cbc8e55f
AD
8078
8079 cleaned_count--;
8080 } while (cleaned_count);
9d5c8243 8081
c023cd88
AD
8082 i += rx_ring->count;
8083
9d5c8243 8084 if (rx_ring->next_to_use != i) {
cbc8e55f 8085 /* record the next descriptor to use */
9d5c8243 8086 rx_ring->next_to_use = i;
9d5c8243 8087
cbc8e55f
AD
8088 /* update next to alloc since we have filled the ring */
8089 rx_ring->next_to_alloc = i;
8090
b980ac18 8091 /* Force memory writes to complete before letting h/w
9d5c8243
AK
8092 * know there are new descriptors to fetch. (Only
8093 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
8094 * such as IA-64).
8095 */
9d5c8243 8096 wmb();
fce99e34 8097 writel(i, rx_ring->tail);
9d5c8243
AK
8098 }
8099}
8100
8101/**
8102 * igb_mii_ioctl -
8103 * @netdev:
8104 * @ifreq:
8105 * @cmd:
8106 **/
8107static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8108{
8109 struct igb_adapter *adapter = netdev_priv(netdev);
8110 struct mii_ioctl_data *data = if_mii(ifr);
8111
8112 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8113 return -EOPNOTSUPP;
8114
8115 switch (cmd) {
8116 case SIOCGMIIPHY:
8117 data->phy_id = adapter->hw.phy.addr;
8118 break;
8119 case SIOCGMIIREG:
f5f4cf08 8120 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9005df38 8121 &data->val_out))
9d5c8243
AK
8122 return -EIO;
8123 break;
8124 case SIOCSMIIREG:
8125 default:
8126 return -EOPNOTSUPP;
8127 }
8128 return 0;
8129}
8130
8131/**
8132 * igb_ioctl -
8133 * @netdev:
8134 * @ifreq:
8135 * @cmd:
8136 **/
8137static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8138{
8139 switch (cmd) {
8140 case SIOCGMIIPHY:
8141 case SIOCGMIIREG:
8142 case SIOCSMIIREG:
8143 return igb_mii_ioctl(netdev, ifr, cmd);
6ab5f7b2
JK
8144 case SIOCGHWTSTAMP:
8145 return igb_ptp_get_ts_config(netdev, ifr);
c6cb090b 8146 case SIOCSHWTSTAMP:
6ab5f7b2 8147 return igb_ptp_set_ts_config(netdev, ifr);
9d5c8243
AK
8148 default:
8149 return -EOPNOTSUPP;
8150 }
8151}
8152
94826487
TF
8153void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8154{
8155 struct igb_adapter *adapter = hw->back;
8156
8157 pci_read_config_word(adapter->pdev, reg, value);
8158}
8159
8160void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8161{
8162 struct igb_adapter *adapter = hw->back;
8163
8164 pci_write_config_word(adapter->pdev, reg, *value);
8165}
8166
009bc06e
AD
8167s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8168{
8169 struct igb_adapter *adapter = hw->back;
009bc06e 8170
23d028cc 8171 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
8172 return -E1000_ERR_CONFIG;
8173
009bc06e
AD
8174 return 0;
8175}
8176
8177s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8178{
8179 struct igb_adapter *adapter = hw->back;
009bc06e 8180
23d028cc 8181 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
8182 return -E1000_ERR_CONFIG;
8183
009bc06e
AD
8184 return 0;
8185}
8186
c8f44aff 8187static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
8188{
8189 struct igb_adapter *adapter = netdev_priv(netdev);
8190 struct e1000_hw *hw = &adapter->hw;
8191 u32 ctrl, rctl;
f646968f 8192 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 8193
5faf030c 8194 if (enable) {
9d5c8243
AK
8195 /* enable VLAN tag insert/strip */
8196 ctrl = rd32(E1000_CTRL);
8197 ctrl |= E1000_CTRL_VME;
8198 wr32(E1000_CTRL, ctrl);
8199
51466239 8200 /* Disable CFI check */
9d5c8243 8201 rctl = rd32(E1000_RCTL);
9d5c8243
AK
8202 rctl &= ~E1000_RCTL_CFIEN;
8203 wr32(E1000_RCTL, rctl);
9d5c8243
AK
8204 } else {
8205 /* disable VLAN tag insert/strip */
8206 ctrl = rd32(E1000_CTRL);
8207 ctrl &= ~E1000_CTRL_VME;
8208 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
8209 }
8210
030f9f52 8211 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9d5c8243
AK
8212}
8213
80d5c368
PM
8214static int igb_vlan_rx_add_vid(struct net_device *netdev,
8215 __be16 proto, u16 vid)
9d5c8243
AK
8216{
8217 struct igb_adapter *adapter = netdev_priv(netdev);
8218 struct e1000_hw *hw = &adapter->hw;
4ae196df 8219 int pf_id = adapter->vfs_allocated_count;
9d5c8243 8220
51466239 8221 /* add the filter since PF can receive vlans w/o entry in vlvf */
16903caa
AD
8222 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8223 igb_vfta_set(hw, vid, pf_id, true, !!vid);
b2cb09b1
JP
8224
8225 set_bit(vid, adapter->active_vlans);
8e586137
JP
8226
8227 return 0;
9d5c8243
AK
8228}
8229
80d5c368
PM
8230static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8231 __be16 proto, u16 vid)
9d5c8243
AK
8232{
8233 struct igb_adapter *adapter = netdev_priv(netdev);
4ae196df 8234 int pf_id = adapter->vfs_allocated_count;
8b77c6b2 8235 struct e1000_hw *hw = &adapter->hw;
9d5c8243 8236
8b77c6b2 8237 /* remove VID from filter table */
16903caa
AD
8238 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8239 igb_vfta_set(hw, vid, pf_id, false, true);
b2cb09b1
JP
8240
8241 clear_bit(vid, adapter->active_vlans);
8e586137
JP
8242
8243 return 0;
9d5c8243
AK
8244}
8245
8246static void igb_restore_vlan(struct igb_adapter *adapter)
8247{
5982a556 8248 u16 vid = 1;
9d5c8243 8249
5faf030c 8250 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
5982a556 8251 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
5faf030c 8252
5982a556 8253 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 8254 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
8255}
8256
14ad2513 8257int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 8258{
090b1795 8259 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
8260 struct e1000_mac_info *mac = &adapter->hw.mac;
8261
8262 mac->autoneg = 0;
8263
14ad2513 8264 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
8265 * for the switch() below to work
8266 */
14ad2513
DD
8267 if ((spd & 1) || (dplx & ~1))
8268 goto err_inval;
8269
f502ef7d
AA
8270 /* Fiber NIC's only allow 1000 gbps Full duplex
8271 * and 100Mbps Full duplex for 100baseFx sfp
8272 */
8273 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8274 switch (spd + dplx) {
8275 case SPEED_10 + DUPLEX_HALF:
8276 case SPEED_10 + DUPLEX_FULL:
8277 case SPEED_100 + DUPLEX_HALF:
8278 goto err_inval;
8279 default:
8280 break;
8281 }
8282 }
cd2638a8 8283
14ad2513 8284 switch (spd + dplx) {
9d5c8243
AK
8285 case SPEED_10 + DUPLEX_HALF:
8286 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8287 break;
8288 case SPEED_10 + DUPLEX_FULL:
8289 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8290 break;
8291 case SPEED_100 + DUPLEX_HALF:
8292 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8293 break;
8294 case SPEED_100 + DUPLEX_FULL:
8295 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8296 break;
8297 case SPEED_1000 + DUPLEX_FULL:
8298 mac->autoneg = 1;
8299 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8300 break;
8301 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8302 default:
14ad2513 8303 goto err_inval;
9d5c8243 8304 }
8376dad0
JB
8305
8306 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8307 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8308
9d5c8243 8309 return 0;
14ad2513
DD
8310
8311err_inval:
8312 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8313 return -EINVAL;
9d5c8243
AK
8314}
8315
749ab2cd
YZ
8316static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8317 bool runtime)
9d5c8243
AK
8318{
8319 struct net_device *netdev = pci_get_drvdata(pdev);
8320 struct igb_adapter *adapter = netdev_priv(netdev);
8321 struct e1000_hw *hw = &adapter->hw;
2d064c06 8322 u32 ctrl, rctl, status;
749ab2cd 8323 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
8324#ifdef CONFIG_PM
8325 int retval = 0;
8326#endif
8327
9474933c 8328 rtnl_lock();
9d5c8243
AK
8329 netif_device_detach(netdev);
8330
a88f10ec 8331 if (netif_running(netdev))
749ab2cd 8332 __igb_close(netdev, true);
a88f10ec 8333
8646f7b4
JK
8334 igb_ptp_suspend(adapter);
8335
047e0030 8336 igb_clear_interrupt_scheme(adapter);
9474933c 8337 rtnl_unlock();
9d5c8243
AK
8338
8339#ifdef CONFIG_PM
8340 retval = pci_save_state(pdev);
8341 if (retval)
8342 return retval;
8343#endif
8344
8345 status = rd32(E1000_STATUS);
8346 if (status & E1000_STATUS_LU)
8347 wufc &= ~E1000_WUFC_LNKC;
8348
8349 if (wufc) {
8350 igb_setup_rctl(adapter);
ff41f8dc 8351 igb_set_rx_mode(netdev);
9d5c8243
AK
8352
8353 /* turn on all-multi mode if wake on multicast is enabled */
8354 if (wufc & E1000_WUFC_MC) {
8355 rctl = rd32(E1000_RCTL);
8356 rctl |= E1000_RCTL_MPE;
8357 wr32(E1000_RCTL, rctl);
8358 }
8359
8360 ctrl = rd32(E1000_CTRL);
8361 /* advertise wake from D3Cold */
8362 #define E1000_CTRL_ADVD3WUC 0x00100000
8363 /* phy power management enable */
8364 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8365 ctrl |= E1000_CTRL_ADVD3WUC;
8366 wr32(E1000_CTRL, ctrl);
8367
9d5c8243 8368 /* Allow time for pending master requests to run */
330a6d6a 8369 igb_disable_pcie_master(hw);
9d5c8243
AK
8370
8371 wr32(E1000_WUC, E1000_WUC_PME_EN);
8372 wr32(E1000_WUFC, wufc);
9d5c8243
AK
8373 } else {
8374 wr32(E1000_WUC, 0);
8375 wr32(E1000_WUFC, 0);
9d5c8243
AK
8376 }
8377
3fe7c4c9
RW
8378 *enable_wake = wufc || adapter->en_mng_pt;
8379 if (!*enable_wake)
88a268c1
NN
8380 igb_power_down_link(adapter);
8381 else
8382 igb_power_up_link(adapter);
9d5c8243
AK
8383
8384 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
8385 * would have already happened in close and is redundant.
8386 */
9d5c8243
AK
8387 igb_release_hw_control(adapter);
8388
8389 pci_disable_device(pdev);
8390
9d5c8243
AK
8391 return 0;
8392}
8393
b90fa876
KTC
8394static void igb_deliver_wake_packet(struct net_device *netdev)
8395{
8396 struct igb_adapter *adapter = netdev_priv(netdev);
8397 struct e1000_hw *hw = &adapter->hw;
8398 struct sk_buff *skb;
8399 u32 wupl;
8400
8401 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8402
8403 /* WUPM stores only the first 128 bytes of the wake packet.
8404 * Read the packet only if we have the whole thing.
8405 */
8406 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8407 return;
8408
8409 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8410 if (!skb)
8411 return;
8412
8413 skb_put(skb, wupl);
8414
8415 /* Ensure reads are 32-bit aligned */
8416 wupl = roundup(wupl, 4);
8417
8418 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8419
8420 skb->protocol = eth_type_trans(skb, netdev);
8421 netif_rx(skb);
8422}
8423
000ba1f2 8424static int __maybe_unused igb_suspend(struct device *dev)
3fe7c4c9
RW
8425{
8426 int retval;
8427 bool wake;
749ab2cd 8428 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 8429
749ab2cd 8430 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
8431 if (retval)
8432 return retval;
8433
8434 if (wake) {
8435 pci_prepare_to_sleep(pdev);
8436 } else {
8437 pci_wake_from_d3(pdev, false);
8438 pci_set_power_state(pdev, PCI_D3hot);
8439 }
8440
8441 return 0;
8442}
8443
000ba1f2 8444static int __maybe_unused igb_resume(struct device *dev)
9d5c8243 8445{
749ab2cd 8446 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
8447 struct net_device *netdev = pci_get_drvdata(pdev);
8448 struct igb_adapter *adapter = netdev_priv(netdev);
8449 struct e1000_hw *hw = &adapter->hw;
b90fa876 8450 u32 err, val;
9d5c8243
AK
8451
8452 pci_set_power_state(pdev, PCI_D0);
8453 pci_restore_state(pdev);
b94f2d77 8454 pci_save_state(pdev);
42bfd33a 8455
17a402a0
CW
8456 if (!pci_device_is_present(pdev))
8457 return -ENODEV;
aed5dec3 8458 err = pci_enable_device_mem(pdev);
9d5c8243
AK
8459 if (err) {
8460 dev_err(&pdev->dev,
8461 "igb: Cannot enable PCI device from suspend\n");
8462 return err;
8463 }
8464 pci_set_master(pdev);
8465
8466 pci_enable_wake(pdev, PCI_D3hot, 0);
8467 pci_enable_wake(pdev, PCI_D3cold, 0);
8468
53c7d064 8469 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
8470 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8471 return -ENOMEM;
9d5c8243
AK
8472 }
8473
9d5c8243 8474 igb_reset(adapter);
a8564f03
AD
8475
8476 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
8477 * driver.
8478 */
a8564f03
AD
8479 igb_get_hw_control(adapter);
8480
b90fa876
KTC
8481 val = rd32(E1000_WUS);
8482 if (val & WAKE_PKT_WUS)
8483 igb_deliver_wake_packet(netdev);
8484
9d5c8243
AK
8485 wr32(E1000_WUS, ~0);
8486
9474933c
TF
8487 rtnl_lock();
8488 if (!err && netif_running(netdev))
749ab2cd 8489 err = __igb_open(netdev, true);
9d5c8243 8490
9474933c
TF
8491 if (!err)
8492 netif_device_attach(netdev);
8493 rtnl_unlock();
8494
8495 return err;
749ab2cd
YZ
8496}
8497
000ba1f2 8498static int __maybe_unused igb_runtime_idle(struct device *dev)
749ab2cd
YZ
8499{
8500 struct pci_dev *pdev = to_pci_dev(dev);
8501 struct net_device *netdev = pci_get_drvdata(pdev);
8502 struct igb_adapter *adapter = netdev_priv(netdev);
8503
8504 if (!igb_has_link(adapter))
8505 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8506
8507 return -EBUSY;
8508}
8509
000ba1f2 8510static int __maybe_unused igb_runtime_suspend(struct device *dev)
749ab2cd
YZ
8511{
8512 struct pci_dev *pdev = to_pci_dev(dev);
8513 int retval;
8514 bool wake;
8515
8516 retval = __igb_shutdown(pdev, &wake, 1);
8517 if (retval)
8518 return retval;
8519
8520 if (wake) {
8521 pci_prepare_to_sleep(pdev);
8522 } else {
8523 pci_wake_from_d3(pdev, false);
8524 pci_set_power_state(pdev, PCI_D3hot);
8525 }
9d5c8243 8526
9d5c8243
AK
8527 return 0;
8528}
749ab2cd 8529
000ba1f2 8530static int __maybe_unused igb_runtime_resume(struct device *dev)
749ab2cd
YZ
8531{
8532 return igb_resume(dev);
8533}
9d5c8243
AK
8534
8535static void igb_shutdown(struct pci_dev *pdev)
8536{
3fe7c4c9
RW
8537 bool wake;
8538
749ab2cd 8539 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
8540
8541 if (system_state == SYSTEM_POWER_OFF) {
8542 pci_wake_from_d3(pdev, wake);
8543 pci_set_power_state(pdev, PCI_D3hot);
8544 }
9d5c8243
AK
8545}
8546
fa44f2f1
GR
8547#ifdef CONFIG_PCI_IOV
8548static int igb_sriov_reinit(struct pci_dev *dev)
8549{
8550 struct net_device *netdev = pci_get_drvdata(dev);
8551 struct igb_adapter *adapter = netdev_priv(netdev);
8552 struct pci_dev *pdev = adapter->pdev;
8553
8554 rtnl_lock();
8555
8556 if (netif_running(netdev))
8557 igb_close(netdev);
76252723
SA
8558 else
8559 igb_reset(adapter);
fa44f2f1
GR
8560
8561 igb_clear_interrupt_scheme(adapter);
8562
8563 igb_init_queue_configuration(adapter);
8564
8565 if (igb_init_interrupt_scheme(adapter, true)) {
f468adc9 8566 rtnl_unlock();
fa44f2f1
GR
8567 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8568 return -ENOMEM;
8569 }
8570
8571 if (netif_running(netdev))
8572 igb_open(netdev);
8573
8574 rtnl_unlock();
8575
8576 return 0;
8577}
8578
8579static int igb_pci_disable_sriov(struct pci_dev *dev)
8580{
8581 int err = igb_disable_sriov(dev);
8582
8583 if (!err)
8584 err = igb_sriov_reinit(dev);
8585
8586 return err;
8587}
8588
8589static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8590{
8591 int err = igb_enable_sriov(dev, num_vfs);
8592
8593 if (err)
8594 goto out;
8595
8596 err = igb_sriov_reinit(dev);
8597 if (!err)
8598 return num_vfs;
8599
8600out:
8601 return err;
8602}
8603
8604#endif
8605static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8606{
8607#ifdef CONFIG_PCI_IOV
8608 if (num_vfs == 0)
8609 return igb_pci_disable_sriov(dev);
8610 else
8611 return igb_pci_enable_sriov(dev, num_vfs);
8612#endif
8613 return 0;
8614}
8615
9d5c8243 8616#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 8617/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
8618 * without having to re-enable interrupts. It's not called while
8619 * the interrupt routine is executing.
8620 */
8621static void igb_netpoll(struct net_device *netdev)
8622{
8623 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 8624 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 8625 struct igb_q_vector *q_vector;
9d5c8243 8626 int i;
9d5c8243 8627
047e0030 8628 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4 8629 q_vector = adapter->q_vector[i];
cd14ef54 8630 if (adapter->flags & IGB_FLAG_HAS_MSIX)
0d1ae7f4
AD
8631 wr32(E1000_EIMC, q_vector->eims_value);
8632 else
8633 igb_irq_disable(adapter);
047e0030 8634 napi_schedule(&q_vector->napi);
eebbbdba 8635 }
9d5c8243
AK
8636}
8637#endif /* CONFIG_NET_POLL_CONTROLLER */
8638
8639/**
b980ac18
JK
8640 * igb_io_error_detected - called when PCI error is detected
8641 * @pdev: Pointer to PCI device
8642 * @state: The current pci connection state
9d5c8243 8643 *
b980ac18
JK
8644 * This function is called after a PCI bus error affecting
8645 * this device has been detected.
8646 **/
9d5c8243
AK
8647static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8648 pci_channel_state_t state)
8649{
8650 struct net_device *netdev = pci_get_drvdata(pdev);
8651 struct igb_adapter *adapter = netdev_priv(netdev);
8652
8653 netif_device_detach(netdev);
8654
59ed6eec
AD
8655 if (state == pci_channel_io_perm_failure)
8656 return PCI_ERS_RESULT_DISCONNECT;
8657
9d5c8243
AK
8658 if (netif_running(netdev))
8659 igb_down(adapter);
8660 pci_disable_device(pdev);
8661
8662 /* Request a slot slot reset. */
8663 return PCI_ERS_RESULT_NEED_RESET;
8664}
8665
8666/**
b980ac18
JK
8667 * igb_io_slot_reset - called after the pci bus has been reset.
8668 * @pdev: Pointer to PCI device
9d5c8243 8669 *
b980ac18
JK
8670 * Restart the card from scratch, as if from a cold-boot. Implementation
8671 * resembles the first-half of the igb_resume routine.
8672 **/
9d5c8243
AK
8673static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8674{
8675 struct net_device *netdev = pci_get_drvdata(pdev);
8676 struct igb_adapter *adapter = netdev_priv(netdev);
8677 struct e1000_hw *hw = &adapter->hw;
40a914fa 8678 pci_ers_result_t result;
42bfd33a 8679 int err;
9d5c8243 8680
aed5dec3 8681 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
8682 dev_err(&pdev->dev,
8683 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
8684 result = PCI_ERS_RESULT_DISCONNECT;
8685 } else {
8686 pci_set_master(pdev);
8687 pci_restore_state(pdev);
b94f2d77 8688 pci_save_state(pdev);
9d5c8243 8689
40a914fa
AD
8690 pci_enable_wake(pdev, PCI_D3hot, 0);
8691 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 8692
69b97cf6
GP
8693 /* In case of PCI error, adapter lose its HW address
8694 * so we should re-assign it here.
8695 */
8696 hw->hw_addr = adapter->io_addr;
8697
40a914fa
AD
8698 igb_reset(adapter);
8699 wr32(E1000_WUS, ~0);
8700 result = PCI_ERS_RESULT_RECOVERED;
8701 }
9d5c8243 8702
ea943d41
JK
8703 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8704 if (err) {
b980ac18
JK
8705 dev_err(&pdev->dev,
8706 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8707 err);
ea943d41
JK
8708 /* non-fatal, continue */
8709 }
40a914fa
AD
8710
8711 return result;
9d5c8243
AK
8712}
8713
8714/**
b980ac18
JK
8715 * igb_io_resume - called when traffic can start flowing again.
8716 * @pdev: Pointer to PCI device
9d5c8243 8717 *
b980ac18
JK
8718 * This callback is called when the error recovery driver tells us that
8719 * its OK to resume normal operation. Implementation resembles the
8720 * second-half of the igb_resume routine.
9d5c8243
AK
8721 */
8722static void igb_io_resume(struct pci_dev *pdev)
8723{
8724 struct net_device *netdev = pci_get_drvdata(pdev);
8725 struct igb_adapter *adapter = netdev_priv(netdev);
8726
9d5c8243
AK
8727 if (netif_running(netdev)) {
8728 if (igb_up(adapter)) {
8729 dev_err(&pdev->dev, "igb_up failed after reset\n");
8730 return;
8731 }
8732 }
8733
8734 netif_device_attach(netdev);
8735
8736 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
8737 * driver.
8738 */
9d5c8243 8739 igb_get_hw_control(adapter);
9d5c8243
AK
8740}
8741
83c21335
YK
8742/**
8743 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8744 * @adapter: Pointer to adapter structure
8745 * @index: Index of the RAR entry which need to be synced with MAC table
8746 **/
8747static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
26ad9178 8748{
26ad9178 8749 struct e1000_hw *hw = &adapter->hw;
c3278587 8750 u32 rar_low, rar_high;
83c21335 8751 u8 *addr = adapter->mac_table[index].addr;
26ad9178 8752
415cd2a6
AD
8753 /* HW expects these to be in network order when they are plugged
8754 * into the registers which are little endian. In order to guarantee
8755 * that ordering we need to do an leXX_to_cpup here in order to be
8756 * ready for the byteswap that occurs with writel
26ad9178 8757 */
415cd2a6
AD
8758 rar_low = le32_to_cpup((__le32 *)(addr));
8759 rar_high = le16_to_cpup((__le16 *)(addr + 4));
26ad9178
AD
8760
8761 /* Indicate to hardware the Address is Valid. */
83c21335 8762 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
177132df
CV
8763 if (is_valid_ether_addr(addr))
8764 rar_high |= E1000_RAH_AV;
26ad9178 8765
83c21335
YK
8766 if (hw->mac.type == e1000_82575)
8767 rar_high |= E1000_RAH_POOL_1 *
8768 adapter->mac_table[index].queue;
8769 else
8770 rar_high |= E1000_RAH_POOL_1 <<
8771 adapter->mac_table[index].queue;
8772 }
26ad9178
AD
8773
8774 wr32(E1000_RAL(index), rar_low);
8775 wrfl();
8776 wr32(E1000_RAH(index), rar_high);
8777 wrfl();
8778}
8779
4ae196df 8780static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 8781 int vf, unsigned char *mac_addr)
4ae196df
AD
8782{
8783 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 8784 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
8785 * towards the first, as a result a collision should not be possible
8786 */
ff41f8dc 8787 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
83c21335 8788 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
4ae196df 8789
83c21335
YK
8790 ether_addr_copy(vf_mac_addr, mac_addr);
8791 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8792 adapter->mac_table[rar_entry].queue = vf;
8793 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8794 igb_rar_set_index(adapter, rar_entry);
4ae196df
AD
8795
8796 return 0;
8797}
8798
8151d294
WM
8799static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8800{
8801 struct igb_adapter *adapter = netdev_priv(netdev);
177132df
CV
8802
8803 if (vf >= adapter->vfs_allocated_count)
8804 return -EINVAL;
8805
8806 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
8807 * flag and allows to overwrite the MAC via VF netdev. This
8808 * is necessary to allow libvirt a way to restore the original
8809 * MAC after unbinding vfio-pci and reloading igbvf after shutting
8810 * down a VM.
8811 */
8812 if (is_zero_ether_addr(mac)) {
8813 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
8814 dev_info(&adapter->pdev->dev,
8815 "remove administratively set MAC on VF %d\n",
8816 vf);
8817 } else if (is_valid_ether_addr(mac)) {
8818 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8819 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
8820 mac, vf);
8821 dev_info(&adapter->pdev->dev,
8822 "Reload the VF driver to make this change effective.");
8823 /* Generate additional warning if PF is down */
8824 if (test_bit(__IGB_DOWN, &adapter->state)) {
8825 dev_warn(&adapter->pdev->dev,
8826 "The VF MAC address has been set, but the PF device is not up.\n");
8827 dev_warn(&adapter->pdev->dev,
8828 "Bring the PF device up before attempting to use the VF device.\n");
8829 }
8830 } else {
8151d294 8831 return -EINVAL;
8151d294
WM
8832 }
8833 return igb_set_vf_mac(adapter, vf, mac);
8834}
8835
17dc566c
LL
8836static int igb_link_mbps(int internal_link_speed)
8837{
8838 switch (internal_link_speed) {
8839 case SPEED_100:
8840 return 100;
8841 case SPEED_1000:
8842 return 1000;
8843 default:
8844 return 0;
8845 }
8846}
8847
8848static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8849 int link_speed)
8850{
8851 int rf_dec, rf_int;
8852 u32 bcnrc_val;
8853
8854 if (tx_rate != 0) {
8855 /* Calculate the rate factor values to set */
8856 rf_int = link_speed / tx_rate;
8857 rf_dec = (link_speed - (rf_int * tx_rate));
a51d8c21 8858 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
b980ac18 8859 tx_rate;
17dc566c
LL
8860
8861 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
8862 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8863 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
8864 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8865 } else {
8866 bcnrc_val = 0;
8867 }
8868
8869 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 8870 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
8871 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8872 */
8873 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
8874 wr32(E1000_RTTBCNRC, bcnrc_val);
8875}
8876
8877static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8878{
8879 int actual_link_speed, i;
8880 bool reset_rate = false;
8881
8882 /* VF TX rate limit was not set or not supported */
8883 if ((adapter->vf_rate_link_speed == 0) ||
8884 (adapter->hw.mac.type != e1000_82576))
8885 return;
8886
8887 actual_link_speed = igb_link_mbps(adapter->link_speed);
8888 if (actual_link_speed != adapter->vf_rate_link_speed) {
8889 reset_rate = true;
8890 adapter->vf_rate_link_speed = 0;
8891 dev_info(&adapter->pdev->dev,
b980ac18 8892 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
8893 }
8894
8895 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8896 if (reset_rate)
8897 adapter->vf_data[i].tx_rate = 0;
8898
8899 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
8900 adapter->vf_data[i].tx_rate,
8901 actual_link_speed);
17dc566c
LL
8902 }
8903}
8904
ed616689
SC
8905static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8906 int min_tx_rate, int max_tx_rate)
8151d294 8907{
17dc566c
LL
8908 struct igb_adapter *adapter = netdev_priv(netdev);
8909 struct e1000_hw *hw = &adapter->hw;
8910 int actual_link_speed;
8911
8912 if (hw->mac.type != e1000_82576)
8913 return -EOPNOTSUPP;
8914
ed616689
SC
8915 if (min_tx_rate)
8916 return -EINVAL;
8917
17dc566c
LL
8918 actual_link_speed = igb_link_mbps(adapter->link_speed);
8919 if ((vf >= adapter->vfs_allocated_count) ||
8920 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
ed616689
SC
8921 (max_tx_rate < 0) ||
8922 (max_tx_rate > actual_link_speed))
17dc566c
LL
8923 return -EINVAL;
8924
8925 adapter->vf_rate_link_speed = actual_link_speed;
ed616689
SC
8926 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8927 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
17dc566c
LL
8928
8929 return 0;
8151d294
WM
8930}
8931
70ea4783
LL
8932static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8933 bool setting)
8934{
8935 struct igb_adapter *adapter = netdev_priv(netdev);
8936 struct e1000_hw *hw = &adapter->hw;
8937 u32 reg_val, reg_offset;
8938
8939 if (!adapter->vfs_allocated_count)
8940 return -EOPNOTSUPP;
8941
8942 if (vf >= adapter->vfs_allocated_count)
8943 return -EINVAL;
8944
8945 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8946 reg_val = rd32(reg_offset);
8947 if (setting)
a51d8c21
JK
8948 reg_val |= (BIT(vf) |
8949 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
70ea4783 8950 else
a51d8c21
JK
8951 reg_val &= ~(BIT(vf) |
8952 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
70ea4783
LL
8953 wr32(reg_offset, reg_val);
8954
8955 adapter->vf_data[vf].spoofchk_enabled = setting;
23d87824 8956 return 0;
70ea4783
LL
8957}
8958
1b8b062a
CV
8959static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
8960{
8961 struct igb_adapter *adapter = netdev_priv(netdev);
8962
8963 if (vf >= adapter->vfs_allocated_count)
8964 return -EINVAL;
8965 if (adapter->vf_data[vf].trusted == setting)
8966 return 0;
8967
8968 adapter->vf_data[vf].trusted = setting;
8969
8970 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
8971 vf, setting ? "" : "not ");
8972 return 0;
8973}
8974
8151d294
WM
8975static int igb_ndo_get_vf_config(struct net_device *netdev,
8976 int vf, struct ifla_vf_info *ivi)
8977{
8978 struct igb_adapter *adapter = netdev_priv(netdev);
8979 if (vf >= adapter->vfs_allocated_count)
8980 return -EINVAL;
8981 ivi->vf = vf;
8982 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
ed616689
SC
8983 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8984 ivi->min_tx_rate = 0;
8151d294
WM
8985 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8986 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 8987 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
1b8b062a 8988 ivi->trusted = adapter->vf_data[vf].trusted;
8151d294
WM
8989 return 0;
8990}
8991
4ae196df
AD
8992static void igb_vmm_control(struct igb_adapter *adapter)
8993{
8994 struct e1000_hw *hw = &adapter->hw;
10d8e907 8995 u32 reg;
4ae196df 8996
52a1dd4d
AD
8997 switch (hw->mac.type) {
8998 case e1000_82575:
f96a8a0b
CW
8999 case e1000_i210:
9000 case e1000_i211:
ceb5f13b 9001 case e1000_i354:
52a1dd4d
AD
9002 default:
9003 /* replication is not supported for 82575 */
4ae196df 9004 return;
52a1dd4d
AD
9005 case e1000_82576:
9006 /* notify HW that the MAC is adding vlan tags */
9007 reg = rd32(E1000_DTXCTL);
9008 reg |= E1000_DTXCTL_VLAN_ADDED;
9009 wr32(E1000_DTXCTL, reg);
b26141d4 9010 /* Fall through */
52a1dd4d
AD
9011 case e1000_82580:
9012 /* enable replication vlan tag stripping */
9013 reg = rd32(E1000_RPLOLR);
9014 reg |= E1000_RPLOLR_STRVLAN;
9015 wr32(E1000_RPLOLR, reg);
b26141d4 9016 /* Fall through */
d2ba2ed8
AD
9017 case e1000_i350:
9018 /* none of the above registers are supported by i350 */
52a1dd4d
AD
9019 break;
9020 }
10d8e907 9021
d4960307
AD
9022 if (adapter->vfs_allocated_count) {
9023 igb_vmdq_set_loopback_pf(hw, true);
9024 igb_vmdq_set_replication_pf(hw, true);
13800469 9025 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 9026 adapter->vfs_allocated_count);
d4960307
AD
9027 } else {
9028 igb_vmdq_set_loopback_pf(hw, false);
9029 igb_vmdq_set_replication_pf(hw, false);
9030 }
4ae196df
AD
9031}
9032
b6e0c419
CW
9033static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9034{
9035 struct e1000_hw *hw = &adapter->hw;
9036 u32 dmac_thr;
9037 u16 hwm;
9038
9039 if (hw->mac.type > e1000_82580) {
9040 if (adapter->flags & IGB_FLAG_DMAC) {
9041 u32 reg;
9042
9043 /* force threshold to 0. */
9044 wr32(E1000_DMCTXTH, 0);
9045
b980ac18 9046 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
9047 * than the Rx threshold. Set hwm to PBA - max frame
9048 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 9049 */
45693bcb 9050 hwm = 64 * (pba - 6);
e8c626e9
MV
9051 reg = rd32(E1000_FCRTC);
9052 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9053 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9054 & E1000_FCRTC_RTH_COAL_MASK);
9055 wr32(E1000_FCRTC, reg);
9056
b980ac18 9057 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
9058 * frame size, capping it at PBA - 10KB.
9059 */
45693bcb 9060 dmac_thr = pba - 10;
b6e0c419
CW
9061 reg = rd32(E1000_DMACR);
9062 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
9063 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9064 & E1000_DMACR_DMACTHR_MASK);
9065
9066 /* transition to L0x or L1 if available..*/
9067 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9068
9069 /* watchdog timer= +-1000 usec in 32usec intervals */
9070 reg |= (1000 >> 5);
0c02dd98
MV
9071
9072 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
9073 if (hw->mac.type != e1000_i354)
9074 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9075
b6e0c419
CW
9076 wr32(E1000_DMACR, reg);
9077
b980ac18 9078 /* no lower threshold to disable
b6e0c419
CW
9079 * coalescing(smart fifb)-UTRESH=0
9080 */
9081 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
9082
9083 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9084
9085 wr32(E1000_DMCTLX, reg);
9086
b980ac18 9087 /* free space in tx packet buffer to wake from
b6e0c419
CW
9088 * DMA coal
9089 */
9090 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9091 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9092
b980ac18 9093 /* make low power state decision controlled
b6e0c419
CW
9094 * by DMA coal
9095 */
9096 reg = rd32(E1000_PCIEMISC);
9097 reg &= ~E1000_PCIEMISC_LX_DECISION;
9098 wr32(E1000_PCIEMISC, reg);
9099 } /* endif adapter->dmac is not disabled */
9100 } else if (hw->mac.type == e1000_82580) {
9101 u32 reg = rd32(E1000_PCIEMISC);
9005df38 9102
b6e0c419
CW
9103 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9104 wr32(E1000_DMACR, 0);
9105 }
9106}
9107
b980ac18
JK
9108/**
9109 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
9110 * @hw: pointer to hardware structure
9111 * @byte_offset: byte offset to read
9112 * @dev_addr: device address
9113 * @data: value read
9114 *
9115 * Performs byte read operation over I2C interface at
9116 * a specified device address.
b980ac18 9117 **/
441fc6fd 9118s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 9119 u8 dev_addr, u8 *data)
441fc6fd
CW
9120{
9121 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 9122 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
9123 s32 status;
9124 u16 swfw_mask = 0;
9125
9126 if (!this_client)
9127 return E1000_ERR_I2C;
9128
9129 swfw_mask = E1000_SWFW_PHY0_SM;
9130
23d87824 9131 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
9132 return E1000_ERR_SWFW_SYNC;
9133
9134 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9135 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9136
9137 if (status < 0)
9138 return E1000_ERR_I2C;
9139 else {
9140 *data = status;
23d87824 9141 return 0;
441fc6fd
CW
9142 }
9143}
9144
b980ac18
JK
9145/**
9146 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
9147 * @hw: pointer to hardware structure
9148 * @byte_offset: byte offset to write
9149 * @dev_addr: device address
9150 * @data: value to write
9151 *
9152 * Performs byte write operation over I2C interface at
9153 * a specified device address.
b980ac18 9154 **/
441fc6fd 9155s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 9156 u8 dev_addr, u8 data)
441fc6fd
CW
9157{
9158 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 9159 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
9160 s32 status;
9161 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9162
9163 if (!this_client)
9164 return E1000_ERR_I2C;
9165
23d87824 9166 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
9167 return E1000_ERR_SWFW_SYNC;
9168 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9169 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9170
9171 if (status)
9172 return E1000_ERR_I2C;
9173 else
23d87824 9174 return 0;
441fc6fd
CW
9175
9176}
907b7835
LMV
9177
9178int igb_reinit_queues(struct igb_adapter *adapter)
9179{
9180 struct net_device *netdev = adapter->netdev;
9181 struct pci_dev *pdev = adapter->pdev;
9182 int err = 0;
9183
9184 if (netif_running(netdev))
9185 igb_close(netdev);
9186
02ef6e1d 9187 igb_reset_interrupt_capability(adapter);
907b7835
LMV
9188
9189 if (igb_init_interrupt_scheme(adapter, true)) {
9190 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9191 return -ENOMEM;
9192 }
9193
9194 if (netif_running(netdev))
9195 err = igb_open(netdev);
9196
9197 return err;
9198}
0e71def2
GH
9199
9200static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9201{
9202 struct igb_nfc_filter *rule;
9203
9204 spin_lock(&adapter->nfc_lock);
9205
9206 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9207 igb_erase_filter(adapter, rule);
9208
9209 spin_unlock(&adapter->nfc_lock);
9210}
9211
9212static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9213{
9214 struct igb_nfc_filter *rule;
9215
9216 spin_lock(&adapter->nfc_lock);
9217
9218 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9219 igb_add_filter(adapter, rule);
9220
9221 spin_unlock(&adapter->nfc_lock);
9222}
9d5c8243 9223/* igb_main.c */