treewide: relase -> release
[linux-2.6-block.git] / drivers / net / ethernet / intel / igb / e1000_phy.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4b9ea462 4 Copyright(c) 2007-2013 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30
31#include "e1000_mac.h"
32#include "e1000_phy.h"
33
9d5c8243
AK
34static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
35static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
b980ac18 36 u16 *phy_ctrl);
9d5c8243 37static s32 igb_wait_autoneg(struct e1000_hw *hw);
f96a8a0b 38static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
9d5c8243
AK
39
40/* Cable length tables */
b980ac18
JK
41static const u16 e1000_m88_cable_length_table[] = {
42 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
2553bb26 43#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
b980ac18
JK
44 (sizeof(e1000_m88_cable_length_table) / \
45 sizeof(e1000_m88_cable_length_table[0]))
46
47static const u16 e1000_igp_2_cable_length_table[] = {
48 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55 104, 109, 114, 118, 121, 124};
9d5c8243 56#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
b980ac18
JK
57 (sizeof(e1000_igp_2_cable_length_table) / \
58 sizeof(e1000_igp_2_cable_length_table[0]))
9d5c8243
AK
59
60/**
733596be 61 * igb_check_reset_block - Check if PHY reset is blocked
9d5c8243
AK
62 * @hw: pointer to the HW structure
63 *
64 * Read the PHY management control register and check whether a PHY reset
65 * is blocked. If a reset is not blocked return 0, otherwise
66 * return E1000_BLK_PHY_RESET (12).
67 **/
68s32 igb_check_reset_block(struct e1000_hw *hw)
69{
70 u32 manc;
71
72 manc = rd32(E1000_MANC);
73
b980ac18 74 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
9d5c8243
AK
75}
76
77/**
733596be 78 * igb_get_phy_id - Retrieve the PHY ID and revision
9d5c8243
AK
79 * @hw: pointer to the HW structure
80 *
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
83 **/
84s32 igb_get_phy_id(struct e1000_hw *hw)
85{
86 struct e1000_phy_info *phy = &hw->phy;
87 s32 ret_val = 0;
88 u16 phy_id;
89
a8d2a0c2 90 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
9d5c8243
AK
91 if (ret_val)
92 goto out;
93
94 phy->id = (u32)(phy_id << 16);
95 udelay(20);
a8d2a0c2 96 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
9d5c8243
AK
97 if (ret_val)
98 goto out;
99
100 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102
103out:
104 return ret_val;
105}
106
107/**
733596be 108 * igb_phy_reset_dsp - Reset PHY DSP
9d5c8243
AK
109 * @hw: pointer to the HW structure
110 *
111 * Reset the digital signal processor.
112 **/
113static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114{
2553bb26
AD
115 s32 ret_val = 0;
116
117 if (!(hw->phy.ops.write_reg))
118 goto out;
9d5c8243 119
a8d2a0c2 120 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
9d5c8243
AK
121 if (ret_val)
122 goto out;
123
a8d2a0c2 124 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
9d5c8243
AK
125
126out:
127 return ret_val;
128}
129
130/**
733596be 131 * igb_read_phy_reg_mdic - Read MDI control register
9d5c8243
AK
132 * @hw: pointer to the HW structure
133 * @offset: register offset to be read
134 * @data: pointer to the read data
135 *
136 * Reads the MDI control regsiter in the PHY at offset and stores the
137 * information read to data.
138 **/
bb2ac47b 139s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
9d5c8243
AK
140{
141 struct e1000_phy_info *phy = &hw->phy;
142 u32 i, mdic = 0;
143 s32 ret_val = 0;
144
145 if (offset > MAX_PHY_REG_ADDRESS) {
652fff32 146 hw_dbg("PHY Address %d is out of range\n", offset);
9d5c8243
AK
147 ret_val = -E1000_ERR_PARAM;
148 goto out;
149 }
150
b980ac18 151 /* Set up Op-code, Phy Address, and register offset in the MDI
9d5c8243
AK
152 * Control register. The MAC will take care of interfacing with the
153 * PHY to retrieve the desired data.
154 */
155 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
156 (phy->addr << E1000_MDIC_PHY_SHIFT) |
157 (E1000_MDIC_OP_READ));
158
159 wr32(E1000_MDIC, mdic);
160
b980ac18 161 /* Poll the ready bit to see if the MDI read completed
9d5c8243
AK
162 * Increasing the time out as testing showed failures with
163 * the lower time out
164 */
165 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
166 udelay(50);
167 mdic = rd32(E1000_MDIC);
168 if (mdic & E1000_MDIC_READY)
169 break;
170 }
171 if (!(mdic & E1000_MDIC_READY)) {
652fff32 172 hw_dbg("MDI Read did not complete\n");
9d5c8243
AK
173 ret_val = -E1000_ERR_PHY;
174 goto out;
175 }
176 if (mdic & E1000_MDIC_ERROR) {
652fff32 177 hw_dbg("MDI Error\n");
9d5c8243
AK
178 ret_val = -E1000_ERR_PHY;
179 goto out;
180 }
181 *data = (u16) mdic;
182
183out:
184 return ret_val;
185}
186
187/**
733596be 188 * igb_write_phy_reg_mdic - Write MDI control register
9d5c8243
AK
189 * @hw: pointer to the HW structure
190 * @offset: register offset to write to
191 * @data: data to write to register at offset
192 *
193 * Writes data to MDI control register in the PHY at offset.
194 **/
bb2ac47b 195s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
9d5c8243
AK
196{
197 struct e1000_phy_info *phy = &hw->phy;
198 u32 i, mdic = 0;
199 s32 ret_val = 0;
200
201 if (offset > MAX_PHY_REG_ADDRESS) {
652fff32 202 hw_dbg("PHY Address %d is out of range\n", offset);
9d5c8243
AK
203 ret_val = -E1000_ERR_PARAM;
204 goto out;
205 }
206
b980ac18 207 /* Set up Op-code, Phy Address, and register offset in the MDI
9d5c8243
AK
208 * Control register. The MAC will take care of interfacing with the
209 * PHY to retrieve the desired data.
210 */
211 mdic = (((u32)data) |
212 (offset << E1000_MDIC_REG_SHIFT) |
213 (phy->addr << E1000_MDIC_PHY_SHIFT) |
214 (E1000_MDIC_OP_WRITE));
215
216 wr32(E1000_MDIC, mdic);
217
b980ac18 218 /* Poll the ready bit to see if the MDI read completed
9d5c8243
AK
219 * Increasing the time out as testing showed failures with
220 * the lower time out
221 */
222 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
223 udelay(50);
224 mdic = rd32(E1000_MDIC);
225 if (mdic & E1000_MDIC_READY)
226 break;
227 }
228 if (!(mdic & E1000_MDIC_READY)) {
652fff32 229 hw_dbg("MDI Write did not complete\n");
9d5c8243
AK
230 ret_val = -E1000_ERR_PHY;
231 goto out;
232 }
233 if (mdic & E1000_MDIC_ERROR) {
652fff32 234 hw_dbg("MDI Error\n");
9d5c8243
AK
235 ret_val = -E1000_ERR_PHY;
236 goto out;
237 }
238
239out:
240 return ret_val;
241}
242
bf6f7a92
AD
243/**
244 * igb_read_phy_reg_i2c - Read PHY register using i2c
245 * @hw: pointer to the HW structure
246 * @offset: register offset to be read
247 * @data: pointer to the read data
248 *
249 * Reads the PHY register at offset using the i2c interface and stores the
250 * retrieved information in data.
251 **/
252s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
253{
254 struct e1000_phy_info *phy = &hw->phy;
255 u32 i, i2ccmd = 0;
256
b980ac18 257 /* Set up Op-code, Phy Address, and register address in the I2CCMD
bf6f7a92
AD
258 * register. The MAC will take care of interfacing with the
259 * PHY to retrieve the desired data.
260 */
261 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
b980ac18
JK
262 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
263 (E1000_I2CCMD_OPCODE_READ));
bf6f7a92
AD
264
265 wr32(E1000_I2CCMD, i2ccmd);
266
267 /* Poll the ready bit to see if the I2C read completed */
268 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
269 udelay(50);
270 i2ccmd = rd32(E1000_I2CCMD);
271 if (i2ccmd & E1000_I2CCMD_READY)
272 break;
273 }
274 if (!(i2ccmd & E1000_I2CCMD_READY)) {
275 hw_dbg("I2CCMD Read did not complete\n");
276 return -E1000_ERR_PHY;
277 }
278 if (i2ccmd & E1000_I2CCMD_ERROR) {
279 hw_dbg("I2CCMD Error bit set\n");
280 return -E1000_ERR_PHY;
281 }
282
283 /* Need to byte-swap the 16-bit value. */
284 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
285
286 return 0;
287}
288
289/**
290 * igb_write_phy_reg_i2c - Write PHY register using i2c
291 * @hw: pointer to the HW structure
292 * @offset: register offset to write to
293 * @data: data to write at register offset
294 *
295 * Writes the data to PHY register at the offset using the i2c interface.
296 **/
297s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
298{
299 struct e1000_phy_info *phy = &hw->phy;
300 u32 i, i2ccmd = 0;
301 u16 phy_data_swapped;
302
76d06521
AA
303 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
304 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
305 hw_dbg("PHY I2C Address %d is out of range.\n",
306 hw->phy.addr);
307 return -E1000_ERR_CONFIG;
308 }
bf6f7a92
AD
309
310 /* Swap the data bytes for the I2C interface */
311 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312
b980ac18 313 /* Set up Op-code, Phy Address, and register address in the I2CCMD
bf6f7a92
AD
314 * register. The MAC will take care of interfacing with the
315 * PHY to retrieve the desired data.
316 */
317 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
b980ac18
JK
318 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
319 E1000_I2CCMD_OPCODE_WRITE |
320 phy_data_swapped);
bf6f7a92
AD
321
322 wr32(E1000_I2CCMD, i2ccmd);
323
324 /* Poll the ready bit to see if the I2C read completed */
325 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
326 udelay(50);
327 i2ccmd = rd32(E1000_I2CCMD);
328 if (i2ccmd & E1000_I2CCMD_READY)
329 break;
330 }
331 if (!(i2ccmd & E1000_I2CCMD_READY)) {
332 hw_dbg("I2CCMD Write did not complete\n");
333 return -E1000_ERR_PHY;
334 }
335 if (i2ccmd & E1000_I2CCMD_ERROR) {
336 hw_dbg("I2CCMD Error bit set\n");
337 return -E1000_ERR_PHY;
338 }
339
340 return 0;
341}
342
9d5c8243 343/**
733596be 344 * igb_read_phy_reg_igp - Read igp PHY register
9d5c8243
AK
345 * @hw: pointer to the HW structure
346 * @offset: register offset to be read
347 * @data: pointer to the read data
348 *
349 * Acquires semaphore, if necessary, then reads the PHY register at offset
350 * and storing the retrieved information in data. Release any acquired
351 * semaphores before exiting.
352 **/
353s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
354{
a8d2a0c2
AD
355 s32 ret_val = 0;
356
357 if (!(hw->phy.ops.acquire))
358 goto out;
9d5c8243 359
a8d2a0c2 360 ret_val = hw->phy.ops.acquire(hw);
9d5c8243
AK
361 if (ret_val)
362 goto out;
363
364 if (offset > MAX_PHY_MULTI_PAGE_REG) {
365 ret_val = igb_write_phy_reg_mdic(hw,
b980ac18
JK
366 IGP01E1000_PHY_PAGE_SELECT,
367 (u16)offset);
9d5c8243 368 if (ret_val) {
a8d2a0c2 369 hw->phy.ops.release(hw);
9d5c8243
AK
370 goto out;
371 }
372 }
373
a8d2a0c2
AD
374 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
375 data);
9d5c8243 376
a8d2a0c2 377 hw->phy.ops.release(hw);
9d5c8243
AK
378
379out:
380 return ret_val;
381}
382
383/**
733596be 384 * igb_write_phy_reg_igp - Write igp PHY register
9d5c8243
AK
385 * @hw: pointer to the HW structure
386 * @offset: register offset to write to
387 * @data: data to write at register offset
388 *
389 * Acquires semaphore, if necessary, then writes the data to PHY register
390 * at the offset. Release any acquired semaphores before exiting.
391 **/
392s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
393{
a8d2a0c2 394 s32 ret_val = 0;
9d5c8243 395
a8d2a0c2
AD
396 if (!(hw->phy.ops.acquire))
397 goto out;
398
399 ret_val = hw->phy.ops.acquire(hw);
9d5c8243
AK
400 if (ret_val)
401 goto out;
402
403 if (offset > MAX_PHY_MULTI_PAGE_REG) {
404 ret_val = igb_write_phy_reg_mdic(hw,
b980ac18
JK
405 IGP01E1000_PHY_PAGE_SELECT,
406 (u16)offset);
9d5c8243 407 if (ret_val) {
a8d2a0c2 408 hw->phy.ops.release(hw);
9d5c8243
AK
409 goto out;
410 }
411 }
412
a8d2a0c2 413 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
b980ac18 414 data);
9d5c8243 415
a8d2a0c2 416 hw->phy.ops.release(hw);
9d5c8243
AK
417
418out:
419 return ret_val;
420}
421
2909c3f7
AD
422/**
423 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
424 * @hw: pointer to the HW structure
425 *
426 * Sets up Carrier-sense on Transmit and downshift values.
427 **/
428s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
429{
430 struct e1000_phy_info *phy = &hw->phy;
431 s32 ret_val;
432 u16 phy_data;
433
2909c3f7
AD
434 if (phy->reset_disable) {
435 ret_val = 0;
436 goto out;
437 }
438
439 if (phy->type == e1000_phy_82580) {
440 ret_val = hw->phy.ops.reset(hw);
441 if (ret_val) {
442 hw_dbg("Error resetting the PHY.\n");
443 goto out;
444 }
445 }
446
447 /* Enable CRS on TX. This must be set for half-duplex operation. */
448 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
449 if (ret_val)
450 goto out;
451
452 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
453
454 /* Enable downshift */
455 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
456
457 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
1b556783
JB
458 if (ret_val)
459 goto out;
460
461 /* Set MDI/MDIX mode */
462 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
463 if (ret_val)
464 goto out;
465 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
b980ac18 466 /* Options:
1b556783
JB
467 * 0 - Auto (default)
468 * 1 - MDI mode
469 * 2 - MDI-X mode
470 */
471 switch (hw->phy.mdix) {
472 case 1:
473 break;
474 case 2:
475 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
476 break;
477 case 0:
478 default:
479 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
480 break;
481 }
482 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2909c3f7
AD
483
484out:
485 return ret_val;
486}
487
9d5c8243 488/**
733596be 489 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
9d5c8243
AK
490 * @hw: pointer to the HW structure
491 *
492 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
493 * and downshift values are set also.
494 **/
495s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
496{
497 struct e1000_phy_info *phy = &hw->phy;
498 s32 ret_val;
499 u16 phy_data;
500
501 if (phy->reset_disable) {
502 ret_val = 0;
503 goto out;
504 }
505
506 /* Enable CRS on TX. This must be set for half-duplex operation. */
a8d2a0c2 507 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
9d5c8243
AK
508 if (ret_val)
509 goto out;
510
511 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
512
b980ac18 513 /* Options:
9d5c8243
AK
514 * MDI/MDI-X = 0 (default)
515 * 0 - Auto for all speeds
516 * 1 - MDI mode
517 * 2 - MDI-X mode
518 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
519 */
520 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
521
522 switch (phy->mdix) {
523 case 1:
524 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
525 break;
526 case 2:
527 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
528 break;
529 case 3:
530 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
531 break;
532 case 0:
533 default:
534 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
535 break;
536 }
537
b980ac18 538 /* Options:
9d5c8243
AK
539 * disable_polarity_correction = 0 (default)
540 * Automatic Correction for Reversed Cable Polarity
541 * 0 - Disabled
542 * 1 - Enabled
543 */
544 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
545 if (phy->disable_polarity_correction == 1)
546 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
547
a8d2a0c2 548 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
9d5c8243
AK
549 if (ret_val)
550 goto out;
551
552 if (phy->revision < E1000_REVISION_4) {
b980ac18 553 /* Force TX_CLK in the Extended PHY Specific Control Register
9d5c8243
AK
554 * to 25MHz clock.
555 */
a8d2a0c2 556 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
b980ac18 557 &phy_data);
9d5c8243
AK
558 if (ret_val)
559 goto out;
560
561 phy_data |= M88E1000_EPSCR_TX_CLK_25;
562
563 if ((phy->revision == E1000_REVISION_2) &&
564 (phy->id == M88E1111_I_PHY_ID)) {
565 /* 82573L PHY - set the downshift counter to 5x. */
566 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
567 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
568 } else {
569 /* Configure Master and Slave downshift values */
570 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
571 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
572 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
573 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
574 }
a8d2a0c2 575 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
9d5c8243
AK
576 phy_data);
577 if (ret_val)
578 goto out;
579 }
580
581 /* Commit the changes. */
582 ret_val = igb_phy_sw_reset(hw);
583 if (ret_val) {
652fff32 584 hw_dbg("Error committing the PHY changes\n");
9d5c8243
AK
585 goto out;
586 }
f96a8a0b
CW
587 if (phy->type == e1000_phy_i210) {
588 ret_val = igb_set_master_slave_mode(hw);
589 if (ret_val)
590 return ret_val;
591 }
9d5c8243
AK
592
593out:
594 return ret_val;
595}
596
308fb39a
JG
597/**
598 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
599 * @hw: pointer to the HW structure
600 *
601 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
602 * Also enables and sets the downshift parameters.
603 **/
604s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
605{
606 struct e1000_phy_info *phy = &hw->phy;
607 s32 ret_val;
608 u16 phy_data;
609
610 if (phy->reset_disable) {
611 ret_val = 0;
612 goto out;
613 }
614
615 /* Enable CRS on Tx. This must be set for half-duplex operation. */
616 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
617 if (ret_val)
618 goto out;
619
b980ac18 620 /* Options:
308fb39a
JG
621 * MDI/MDI-X = 0 (default)
622 * 0 - Auto for all speeds
623 * 1 - MDI mode
624 * 2 - MDI-X mode
625 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
626 */
627 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
628
629 switch (phy->mdix) {
630 case 1:
631 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
632 break;
633 case 2:
634 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
635 break;
636 case 3:
637 /* M88E1112 does not support this mode) */
638 if (phy->id != M88E1112_E_PHY_ID) {
639 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
640 break;
641 }
642 case 0:
643 default:
644 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
645 break;
646 }
647
b980ac18 648 /* Options:
308fb39a
JG
649 * disable_polarity_correction = 0 (default)
650 * Automatic Correction for Reversed Cable Polarity
651 * 0 - Disabled
652 * 1 - Enabled
653 */
654 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
655 if (phy->disable_polarity_correction == 1)
656 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
657
658 /* Enable downshift and setting it to X6 */
659 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
660 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
661 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
662
663 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
664 if (ret_val)
665 goto out;
666
667 /* Commit the changes. */
668 ret_val = igb_phy_sw_reset(hw);
669 if (ret_val) {
670 hw_dbg("Error committing the PHY changes\n");
671 goto out;
672 }
673
674out:
675 return ret_val;
676}
677
9d5c8243 678/**
733596be 679 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
9d5c8243
AK
680 * @hw: pointer to the HW structure
681 *
682 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
683 * igp PHY's.
684 **/
685s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
686{
687 struct e1000_phy_info *phy = &hw->phy;
688 s32 ret_val;
689 u16 data;
690
691 if (phy->reset_disable) {
692 ret_val = 0;
693 goto out;
694 }
695
a8d2a0c2 696 ret_val = phy->ops.reset(hw);
9d5c8243 697 if (ret_val) {
652fff32 698 hw_dbg("Error resetting the PHY.\n");
9d5c8243
AK
699 goto out;
700 }
701
b980ac18 702 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
a6a60569
AD
703 * timeout issues when LFS is enabled.
704 */
705 msleep(100);
9d5c8243 706
b980ac18 707 /* The NVM settings will configure LPLU in D3 for
9d5c8243
AK
708 * non-IGP1 PHYs.
709 */
710 if (phy->type == e1000_phy_igp) {
711 /* disable lplu d3 during driver init */
a8d2a0c2
AD
712 if (phy->ops.set_d3_lplu_state)
713 ret_val = phy->ops.set_d3_lplu_state(hw, false);
9d5c8243 714 if (ret_val) {
652fff32 715 hw_dbg("Error Disabling LPLU D3\n");
9d5c8243
AK
716 goto out;
717 }
718 }
719
720 /* disable lplu d0 during driver init */
a8d2a0c2 721 ret_val = phy->ops.set_d0_lplu_state(hw, false);
9d5c8243 722 if (ret_val) {
652fff32 723 hw_dbg("Error Disabling LPLU D0\n");
9d5c8243
AK
724 goto out;
725 }
726 /* Configure mdi-mdix settings */
a8d2a0c2 727 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
9d5c8243
AK
728 if (ret_val)
729 goto out;
730
731 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
732
733 switch (phy->mdix) {
734 case 1:
735 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
736 break;
737 case 2:
738 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
739 break;
740 case 0:
741 default:
742 data |= IGP01E1000_PSCR_AUTO_MDIX;
743 break;
744 }
a8d2a0c2 745 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
9d5c8243
AK
746 if (ret_val)
747 goto out;
748
749 /* set auto-master slave resolution settings */
750 if (hw->mac.autoneg) {
b980ac18 751 /* when autonegotiation advertisement is only 1000Mbps then we
9d5c8243
AK
752 * should disable SmartSpeed and enable Auto MasterSlave
753 * resolution as hardware default.
754 */
755 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
756 /* Disable SmartSpeed */
a8d2a0c2
AD
757 ret_val = phy->ops.read_reg(hw,
758 IGP01E1000_PHY_PORT_CONFIG,
759 &data);
9d5c8243
AK
760 if (ret_val)
761 goto out;
762
763 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 764 ret_val = phy->ops.write_reg(hw,
9d5c8243
AK
765 IGP01E1000_PHY_PORT_CONFIG,
766 data);
767 if (ret_val)
768 goto out;
769
770 /* Set auto Master/Slave resolution process */
a8d2a0c2 771 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
9d5c8243
AK
772 if (ret_val)
773 goto out;
774
775 data &= ~CR_1000T_MS_ENABLE;
a8d2a0c2 776 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
9d5c8243
AK
777 if (ret_val)
778 goto out;
779 }
780
a8d2a0c2 781 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
9d5c8243
AK
782 if (ret_val)
783 goto out;
784
785 /* load defaults for future use */
786 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
787 ((data & CR_1000T_MS_VALUE) ?
788 e1000_ms_force_master :
789 e1000_ms_force_slave) :
790 e1000_ms_auto;
791
792 switch (phy->ms_type) {
793 case e1000_ms_force_master:
794 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
795 break;
796 case e1000_ms_force_slave:
797 data |= CR_1000T_MS_ENABLE;
798 data &= ~(CR_1000T_MS_VALUE);
799 break;
800 case e1000_ms_auto:
801 data &= ~CR_1000T_MS_ENABLE;
802 default:
803 break;
804 }
a8d2a0c2 805 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
9d5c8243
AK
806 if (ret_val)
807 goto out;
808 }
809
810out:
811 return ret_val;
812}
813
814/**
733596be 815 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
9d5c8243
AK
816 * @hw: pointer to the HW structure
817 *
818 * Performs initial bounds checking on autoneg advertisement parameter, then
819 * configure to advertise the full capability. Setup the PHY to autoneg
820 * and restart the negotiation process between the link partner. If
821 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
822 **/
81fadd81 823static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
9d5c8243
AK
824{
825 struct e1000_phy_info *phy = &hw->phy;
826 s32 ret_val;
827 u16 phy_ctrl;
828
b980ac18 829 /* Perform some bounds checking on the autoneg advertisement
9d5c8243
AK
830 * parameter.
831 */
832 phy->autoneg_advertised &= phy->autoneg_mask;
833
b980ac18 834 /* If autoneg_advertised is zero, we assume it was not defaulted
9d5c8243
AK
835 * by the calling code so we set to advertise full capability.
836 */
837 if (phy->autoneg_advertised == 0)
838 phy->autoneg_advertised = phy->autoneg_mask;
839
652fff32 840 hw_dbg("Reconfiguring auto-neg advertisement params\n");
9d5c8243
AK
841 ret_val = igb_phy_setup_autoneg(hw);
842 if (ret_val) {
652fff32 843 hw_dbg("Error Setting up Auto-Negotiation\n");
9d5c8243
AK
844 goto out;
845 }
652fff32 846 hw_dbg("Restarting Auto-Neg\n");
9d5c8243 847
b980ac18 848 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
9d5c8243
AK
849 * the Auto Neg Restart bit in the PHY control register.
850 */
a8d2a0c2 851 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
9d5c8243
AK
852 if (ret_val)
853 goto out;
854
855 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
a8d2a0c2 856 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
9d5c8243
AK
857 if (ret_val)
858 goto out;
859
b980ac18 860 /* Does the user want to wait for Auto-Neg to complete here, or
9d5c8243
AK
861 * check at a later time (for example, callback routine).
862 */
863 if (phy->autoneg_wait_to_complete) {
864 ret_val = igb_wait_autoneg(hw);
865 if (ret_val) {
652fff32
AK
866 hw_dbg("Error while waiting for "
867 "autoneg to complete\n");
9d5c8243
AK
868 goto out;
869 }
870 }
871
872 hw->mac.get_link_status = true;
873
874out:
875 return ret_val;
876}
877
878/**
733596be 879 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
9d5c8243
AK
880 * @hw: pointer to the HW structure
881 *
882 * Reads the MII auto-neg advertisement register and/or the 1000T control
883 * register and if the PHY is already setup for auto-negotiation, then
884 * return successful. Otherwise, setup advertisement and flow control to
885 * the appropriate values for the wanted auto-negotiation.
886 **/
887static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
888{
889 struct e1000_phy_info *phy = &hw->phy;
890 s32 ret_val;
891 u16 mii_autoneg_adv_reg;
892 u16 mii_1000t_ctrl_reg = 0;
893
894 phy->autoneg_advertised &= phy->autoneg_mask;
895
896 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
a8d2a0c2 897 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
9d5c8243
AK
898 if (ret_val)
899 goto out;
900
901 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
902 /* Read the MII 1000Base-T Control Register (Address 9). */
a8d2a0c2 903 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
9d5c8243
AK
904 &mii_1000t_ctrl_reg);
905 if (ret_val)
906 goto out;
907 }
908
b980ac18 909 /* Need to parse both autoneg_advertised and fc and set up
9d5c8243
AK
910 * the appropriate PHY registers. First we will parse for
911 * autoneg_advertised software override. Since we can advertise
912 * a plethora of combinations, we need to check each bit
913 * individually.
914 */
915
b980ac18 916 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
9d5c8243
AK
917 * Advertisement Register (Address 4) and the 1000 mb speed bits in
918 * the 1000Base-T Control Register (Address 9).
919 */
920 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
921 NWAY_AR_100TX_HD_CAPS |
922 NWAY_AR_10T_FD_CAPS |
923 NWAY_AR_10T_HD_CAPS);
924 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
925
652fff32 926 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
9d5c8243
AK
927
928 /* Do we want to advertise 10 Mb Half Duplex? */
929 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
652fff32 930 hw_dbg("Advertise 10mb Half duplex\n");
9d5c8243
AK
931 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
932 }
933
934 /* Do we want to advertise 10 Mb Full Duplex? */
935 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
652fff32 936 hw_dbg("Advertise 10mb Full duplex\n");
9d5c8243
AK
937 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
938 }
939
940 /* Do we want to advertise 100 Mb Half Duplex? */
941 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
652fff32 942 hw_dbg("Advertise 100mb Half duplex\n");
9d5c8243
AK
943 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
944 }
945
946 /* Do we want to advertise 100 Mb Full Duplex? */
947 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
652fff32 948 hw_dbg("Advertise 100mb Full duplex\n");
9d5c8243
AK
949 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
950 }
951
952 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
953 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
652fff32 954 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
9d5c8243
AK
955
956 /* Do we want to advertise 1000 Mb Full Duplex? */
957 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
652fff32 958 hw_dbg("Advertise 1000mb Full duplex\n");
9d5c8243
AK
959 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
960 }
961
b980ac18 962 /* Check for a software override of the flow control settings, and
9d5c8243
AK
963 * setup the PHY advertisement registers accordingly. If
964 * auto-negotiation is enabled, then software will have to set the
965 * "PAUSE" bits to the correct value in the Auto-Negotiation
966 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
967 * negotiation.
968 *
969 * The possible values of the "fc" parameter are:
970 * 0: Flow control is completely disabled
971 * 1: Rx flow control is enabled (we can receive pause frames
972 * but not send pause frames).
973 * 2: Tx flow control is enabled (we can send pause frames
974 * but we do not support receiving pause frames).
975 * 3: Both Rx and TX flow control (symmetric) are enabled.
976 * other: No software override. The flow control configuration
977 * in the EEPROM is used.
978 */
0cce119a 979 switch (hw->fc.current_mode) {
9d5c8243 980 case e1000_fc_none:
b980ac18 981 /* Flow control (RX & TX) is completely disabled by a
9d5c8243
AK
982 * software over-ride.
983 */
984 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
985 break;
986 case e1000_fc_rx_pause:
b980ac18 987 /* RX Flow control is enabled, and TX Flow control is
9d5c8243
AK
988 * disabled, by a software over-ride.
989 *
990 * Since there really isn't a way to advertise that we are
991 * capable of RX Pause ONLY, we will advertise that we
992 * support both symmetric and asymmetric RX PAUSE. Later
993 * (in e1000_config_fc_after_link_up) we will disable the
994 * hw's ability to send PAUSE frames.
995 */
996 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
997 break;
998 case e1000_fc_tx_pause:
b980ac18 999 /* TX Flow control is enabled, and RX Flow control is
9d5c8243
AK
1000 * disabled, by a software over-ride.
1001 */
1002 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1003 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1004 break;
1005 case e1000_fc_full:
b980ac18 1006 /* Flow control (both RX and TX) is enabled by a software
9d5c8243
AK
1007 * over-ride.
1008 */
1009 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1010 break;
1011 default:
652fff32 1012 hw_dbg("Flow control param set incorrectly\n");
9d5c8243
AK
1013 ret_val = -E1000_ERR_CONFIG;
1014 goto out;
1015 }
1016
a8d2a0c2 1017 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
9d5c8243
AK
1018 if (ret_val)
1019 goto out;
1020
652fff32 1021 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
9d5c8243
AK
1022
1023 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
a8d2a0c2
AD
1024 ret_val = phy->ops.write_reg(hw,
1025 PHY_1000T_CTRL,
1026 mii_1000t_ctrl_reg);
9d5c8243
AK
1027 if (ret_val)
1028 goto out;
1029 }
1030
1031out:
1032 return ret_val;
1033}
1034
81fadd81
AD
1035/**
1036 * igb_setup_copper_link - Configure copper link settings
1037 * @hw: pointer to the HW structure
1038 *
1039 * Calls the appropriate function to configure the link for auto-neg or forced
1040 * speed and duplex. Then we check for link, once link is established calls
1041 * to configure collision distance and flow control are called. If link is
1042 * not established, we return -E1000_ERR_PHY (-2).
1043 **/
1044s32 igb_setup_copper_link(struct e1000_hw *hw)
1045{
1046 s32 ret_val;
1047 bool link;
1048
81fadd81 1049 if (hw->mac.autoneg) {
b980ac18 1050 /* Setup autoneg and flow control advertisement and perform
81fadd81
AD
1051 * autonegotiation.
1052 */
1053 ret_val = igb_copper_link_autoneg(hw);
1054 if (ret_val)
1055 goto out;
1056 } else {
b980ac18 1057 /* PHY will be set to 10H, 10F, 100H or 100F
81fadd81
AD
1058 * depending on user settings.
1059 */
1060 hw_dbg("Forcing Speed and Duplex\n");
1061 ret_val = hw->phy.ops.force_speed_duplex(hw);
1062 if (ret_val) {
1063 hw_dbg("Error Forcing Speed and Duplex\n");
1064 goto out;
1065 }
1066 }
1067
b980ac18 1068 /* Check link status. Wait up to 100 microseconds for link to become
81fadd81
AD
1069 * valid.
1070 */
b980ac18 1071 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
81fadd81
AD
1072 if (ret_val)
1073 goto out;
1074
1075 if (link) {
1076 hw_dbg("Valid link established!!!\n");
1077 igb_config_collision_dist(hw);
1078 ret_val = igb_config_fc_after_link_up(hw);
1079 } else {
1080 hw_dbg("Unable to establish link!!!\n");
1081 }
1082
1083out:
1084 return ret_val;
1085}
1086
9d5c8243 1087/**
733596be 1088 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
9d5c8243
AK
1089 * @hw: pointer to the HW structure
1090 *
1091 * Calls the PHY setup function to force speed and duplex. Clears the
1092 * auto-crossover to force MDI manually. Waits for link and returns
1093 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1094 **/
1095s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1096{
1097 struct e1000_phy_info *phy = &hw->phy;
1098 s32 ret_val;
1099 u16 phy_data;
1100 bool link;
1101
a8d2a0c2 1102 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
9d5c8243
AK
1103 if (ret_val)
1104 goto out;
1105
1106 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1107
a8d2a0c2 1108 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
9d5c8243
AK
1109 if (ret_val)
1110 goto out;
1111
b980ac18 1112 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
9d5c8243
AK
1113 * forced whenever speed and duplex are forced.
1114 */
a8d2a0c2 1115 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
9d5c8243
AK
1116 if (ret_val)
1117 goto out;
1118
1119 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1120 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1121
a8d2a0c2 1122 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
9d5c8243
AK
1123 if (ret_val)
1124 goto out;
1125
652fff32 1126 hw_dbg("IGP PSCR: %X\n", phy_data);
9d5c8243
AK
1127
1128 udelay(1);
1129
1130 if (phy->autoneg_wait_to_complete) {
652fff32 1131 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
9d5c8243 1132
dc3d226f 1133 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
9d5c8243
AK
1134 if (ret_val)
1135 goto out;
1136
1137 if (!link)
652fff32 1138 hw_dbg("Link taking longer than expected.\n");
9d5c8243
AK
1139
1140 /* Try once more */
dc3d226f 1141 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
9d5c8243
AK
1142 if (ret_val)
1143 goto out;
1144 }
1145
1146out:
1147 return ret_val;
1148}
1149
1150/**
733596be 1151 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
9d5c8243
AK
1152 * @hw: pointer to the HW structure
1153 *
1154 * Calls the PHY setup function to force speed and duplex. Clears the
1155 * auto-crossover to force MDI manually. Resets the PHY to commit the
1156 * changes. If time expires while waiting for link up, we reset the DSP.
1157 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1158 * successful completion, else return corresponding error code.
1159 **/
1160s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1161{
1162 struct e1000_phy_info *phy = &hw->phy;
1163 s32 ret_val;
1164 u16 phy_data;
1165 bool link;
1166
9f0b8516
MV
1167 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1168 if (phy->type != e1000_phy_i210) {
b980ac18 1169 /* Clear Auto-Crossover to force MDI manually. M88E1000
9f0b8516
MV
1170 * requires MDI forced whenever speed and duplex are forced.
1171 */
1172 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1173 &phy_data);
1174 if (ret_val)
1175 goto out;
9d5c8243 1176
9f0b8516
MV
1177 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1178 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1179 phy_data);
1180 if (ret_val)
1181 goto out;
9d5c8243 1182
9f0b8516
MV
1183 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1184 }
9d5c8243 1185
a8d2a0c2 1186 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
9d5c8243
AK
1187 if (ret_val)
1188 goto out;
1189
1190 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1191
a8d2a0c2 1192 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
9d5c8243
AK
1193 if (ret_val)
1194 goto out;
1195
2553bb26
AD
1196 /* Reset the phy to commit changes. */
1197 ret_val = igb_phy_sw_reset(hw);
1198 if (ret_val)
1199 goto out;
9d5c8243
AK
1200
1201 if (phy->autoneg_wait_to_complete) {
652fff32 1202 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
9d5c8243 1203
2553bb26 1204 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
9d5c8243
AK
1205 if (ret_val)
1206 goto out;
1207
1208 if (!link) {
f96a8a0b
CW
1209 bool reset_dsp = true;
1210
1211 switch (hw->phy.id) {
1212 case I347AT4_E_PHY_ID:
1213 case M88E1112_E_PHY_ID:
1214 case I210_I_PHY_ID:
1215 reset_dsp = false;
1216 break;
1217 default:
1218 if (hw->phy.type != e1000_phy_m88)
1219 reset_dsp = false;
1220 break;
1221 }
1222 if (!reset_dsp)
308fb39a 1223 hw_dbg("Link taking longer than expected.\n");
f96a8a0b 1224 else {
b980ac18 1225 /* We didn't get link.
308fb39a
JG
1226 * Reset the DSP and cross our fingers.
1227 */
1228 ret_val = phy->ops.write_reg(hw,
b980ac18
JK
1229 M88E1000_PHY_PAGE_SELECT,
1230 0x001d);
308fb39a
JG
1231 if (ret_val)
1232 goto out;
1233 ret_val = igb_phy_reset_dsp(hw);
1234 if (ret_val)
1235 goto out;
1236 }
9d5c8243
AK
1237 }
1238
1239 /* Try once more */
1240 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
2553bb26 1241 100000, &link);
9d5c8243
AK
1242 if (ret_val)
1243 goto out;
1244 }
1245
308fb39a
JG
1246 if (hw->phy.type != e1000_phy_m88 ||
1247 hw->phy.id == I347AT4_E_PHY_ID ||
f96a8a0b
CW
1248 hw->phy.id == M88E1112_E_PHY_ID ||
1249 hw->phy.id == I210_I_PHY_ID)
308fb39a
JG
1250 goto out;
1251
a8d2a0c2 1252 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
9d5c8243
AK
1253 if (ret_val)
1254 goto out;
1255
b980ac18 1256 /* Resetting the phy means we need to re-force TX_CLK in the
9d5c8243
AK
1257 * Extended PHY Specific Control Register to 25MHz clock from
1258 * the reset value of 2.5MHz.
1259 */
1260 phy_data |= M88E1000_EPSCR_TX_CLK_25;
a8d2a0c2 1261 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
9d5c8243
AK
1262 if (ret_val)
1263 goto out;
1264
b980ac18 1265 /* In addition, we must re-enable CRS on Tx for both half and full
9d5c8243
AK
1266 * duplex.
1267 */
a8d2a0c2 1268 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
9d5c8243
AK
1269 if (ret_val)
1270 goto out;
1271
1272 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
a8d2a0c2 1273 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
9d5c8243
AK
1274
1275out:
1276 return ret_val;
1277}
1278
1279/**
733596be 1280 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
9d5c8243
AK
1281 * @hw: pointer to the HW structure
1282 * @phy_ctrl: pointer to current value of PHY_CONTROL
1283 *
1284 * Forces speed and duplex on the PHY by doing the following: disable flow
1285 * control, force speed/duplex on the MAC, disable auto speed detection,
1286 * disable auto-negotiation, configure duplex, configure speed, configure
1287 * the collision distance, write configuration to CTRL register. The
1288 * caller must write to the PHY_CONTROL register for these settings to
1289 * take affect.
1290 **/
1291static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
b980ac18 1292 u16 *phy_ctrl)
9d5c8243
AK
1293{
1294 struct e1000_mac_info *mac = &hw->mac;
1295 u32 ctrl;
1296
1297 /* Turn off flow control when forcing speed/duplex */
0cce119a 1298 hw->fc.current_mode = e1000_fc_none;
9d5c8243
AK
1299
1300 /* Force speed/duplex on the mac */
1301 ctrl = rd32(E1000_CTRL);
1302 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1303 ctrl &= ~E1000_CTRL_SPD_SEL;
1304
1305 /* Disable Auto Speed Detection */
1306 ctrl &= ~E1000_CTRL_ASDE;
1307
1308 /* Disable autoneg on the phy */
1309 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1310
1311 /* Forcing Full or Half Duplex? */
1312 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1313 ctrl &= ~E1000_CTRL_FD;
1314 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
652fff32 1315 hw_dbg("Half Duplex\n");
9d5c8243
AK
1316 } else {
1317 ctrl |= E1000_CTRL_FD;
1318 *phy_ctrl |= MII_CR_FULL_DUPLEX;
652fff32 1319 hw_dbg("Full Duplex\n");
9d5c8243
AK
1320 }
1321
1322 /* Forcing 10mb or 100mb? */
1323 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1324 ctrl |= E1000_CTRL_SPD_100;
1325 *phy_ctrl |= MII_CR_SPEED_100;
1326 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
652fff32 1327 hw_dbg("Forcing 100mb\n");
9d5c8243
AK
1328 } else {
1329 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1330 *phy_ctrl |= MII_CR_SPEED_10;
1331 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
652fff32 1332 hw_dbg("Forcing 10mb\n");
9d5c8243
AK
1333 }
1334
1335 igb_config_collision_dist(hw);
1336
1337 wr32(E1000_CTRL, ctrl);
1338}
1339
1340/**
733596be 1341 * igb_set_d3_lplu_state - Sets low power link up state for D3
9d5c8243
AK
1342 * @hw: pointer to the HW structure
1343 * @active: boolean used to enable/disable lplu
1344 *
1345 * Success returns 0, Failure returns 1
1346 *
1347 * The low power link up (lplu) state is set to the power management level D3
1348 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1349 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1350 * is used during Dx states where the power conservation is most important.
1351 * During driver activity, SmartSpeed should be enabled so performance is
1352 * maintained.
1353 **/
1354s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1355{
1356 struct e1000_phy_info *phy = &hw->phy;
2553bb26 1357 s32 ret_val = 0;
9d5c8243
AK
1358 u16 data;
1359
2553bb26
AD
1360 if (!(hw->phy.ops.read_reg))
1361 goto out;
1362
a8d2a0c2 1363 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
9d5c8243
AK
1364 if (ret_val)
1365 goto out;
1366
1367 if (!active) {
1368 data &= ~IGP02E1000_PM_D3_LPLU;
a8d2a0c2 1369 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
9d5c8243
AK
1370 data);
1371 if (ret_val)
1372 goto out;
b980ac18 1373 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
9d5c8243
AK
1374 * during Dx states where the power conservation is most
1375 * important. During driver activity we should enable
1376 * SmartSpeed, so performance is maintained.
1377 */
1378 if (phy->smart_speed == e1000_smart_speed_on) {
a8d2a0c2 1379 ret_val = phy->ops.read_reg(hw,
9d5c8243
AK
1380 IGP01E1000_PHY_PORT_CONFIG,
1381 &data);
1382 if (ret_val)
1383 goto out;
1384
1385 data |= IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 1386 ret_val = phy->ops.write_reg(hw,
9d5c8243
AK
1387 IGP01E1000_PHY_PORT_CONFIG,
1388 data);
1389 if (ret_val)
1390 goto out;
1391 } else if (phy->smart_speed == e1000_smart_speed_off) {
a8d2a0c2 1392 ret_val = phy->ops.read_reg(hw,
9d5c8243
AK
1393 IGP01E1000_PHY_PORT_CONFIG,
1394 &data);
1395 if (ret_val)
1396 goto out;
1397
1398 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 1399 ret_val = phy->ops.write_reg(hw,
9d5c8243
AK
1400 IGP01E1000_PHY_PORT_CONFIG,
1401 data);
1402 if (ret_val)
1403 goto out;
1404 }
1405 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1406 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1407 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1408 data |= IGP02E1000_PM_D3_LPLU;
a8d2a0c2 1409 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
9d5c8243
AK
1410 data);
1411 if (ret_val)
1412 goto out;
1413
1414 /* When LPLU is enabled, we should disable SmartSpeed */
a8d2a0c2 1415 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
b980ac18 1416 &data);
9d5c8243
AK
1417 if (ret_val)
1418 goto out;
1419
1420 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 1421 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
b980ac18 1422 data);
9d5c8243
AK
1423 }
1424
1425out:
1426 return ret_val;
1427}
1428
1429/**
25985edc 1430 * igb_check_downshift - Checks whether a downshift in speed occurred
9d5c8243
AK
1431 * @hw: pointer to the HW structure
1432 *
1433 * Success returns 0, Failure returns 1
1434 *
1435 * A downshift is detected by querying the PHY link health.
1436 **/
1437s32 igb_check_downshift(struct e1000_hw *hw)
1438{
1439 struct e1000_phy_info *phy = &hw->phy;
1440 s32 ret_val;
1441 u16 phy_data, offset, mask;
1442
1443 switch (phy->type) {
f96a8a0b 1444 case e1000_phy_i210:
9d5c8243
AK
1445 case e1000_phy_m88:
1446 case e1000_phy_gg82563:
1447 offset = M88E1000_PHY_SPEC_STATUS;
1448 mask = M88E1000_PSSR_DOWNSHIFT;
1449 break;
1450 case e1000_phy_igp_2:
1451 case e1000_phy_igp:
1452 case e1000_phy_igp_3:
1453 offset = IGP01E1000_PHY_LINK_HEALTH;
1454 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1455 break;
1456 default:
1457 /* speed downshift not supported */
1458 phy->speed_downgraded = false;
1459 ret_val = 0;
1460 goto out;
1461 }
1462
a8d2a0c2 1463 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
9d5c8243
AK
1464
1465 if (!ret_val)
1466 phy->speed_downgraded = (phy_data & mask) ? true : false;
1467
1468out:
1469 return ret_val;
1470}
1471
1472/**
733596be 1473 * igb_check_polarity_m88 - Checks the polarity.
9d5c8243
AK
1474 * @hw: pointer to the HW structure
1475 *
1476 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1477 *
1478 * Polarity is determined based on the PHY specific status register.
1479 **/
f96a8a0b 1480s32 igb_check_polarity_m88(struct e1000_hw *hw)
9d5c8243
AK
1481{
1482 struct e1000_phy_info *phy = &hw->phy;
1483 s32 ret_val;
1484 u16 data;
1485
a8d2a0c2 1486 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
9d5c8243
AK
1487
1488 if (!ret_val)
1489 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1490 ? e1000_rev_polarity_reversed
1491 : e1000_rev_polarity_normal;
1492
1493 return ret_val;
1494}
1495
1496/**
733596be 1497 * igb_check_polarity_igp - Checks the polarity.
9d5c8243
AK
1498 * @hw: pointer to the HW structure
1499 *
1500 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1501 *
1502 * Polarity is determined based on the PHY port status register, and the
1503 * current speed (since there is no polarity at 100Mbps).
1504 **/
1505static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1506{
1507 struct e1000_phy_info *phy = &hw->phy;
1508 s32 ret_val;
1509 u16 data, offset, mask;
1510
b980ac18 1511 /* Polarity is determined based on the speed of
9d5c8243
AK
1512 * our connection.
1513 */
a8d2a0c2 1514 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
9d5c8243
AK
1515 if (ret_val)
1516 goto out;
1517
1518 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1519 IGP01E1000_PSSR_SPEED_1000MBPS) {
1520 offset = IGP01E1000_PHY_PCS_INIT_REG;
1521 mask = IGP01E1000_PHY_POLARITY_MASK;
1522 } else {
b980ac18 1523 /* This really only applies to 10Mbps since
9d5c8243
AK
1524 * there is no polarity for 100Mbps (always 0).
1525 */
1526 offset = IGP01E1000_PHY_PORT_STATUS;
1527 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1528 }
1529
a8d2a0c2 1530 ret_val = phy->ops.read_reg(hw, offset, &data);
9d5c8243
AK
1531
1532 if (!ret_val)
1533 phy->cable_polarity = (data & mask)
1534 ? e1000_rev_polarity_reversed
1535 : e1000_rev_polarity_normal;
1536
1537out:
1538 return ret_val;
1539}
1540
1541/**
b980ac18 1542 * igb_wait_autoneg - Wait for auto-neg completion
9d5c8243
AK
1543 * @hw: pointer to the HW structure
1544 *
1545 * Waits for auto-negotiation to complete or for the auto-negotiation time
1546 * limit to expire, which ever happens first.
1547 **/
1548static s32 igb_wait_autoneg(struct e1000_hw *hw)
1549{
1550 s32 ret_val = 0;
1551 u16 i, phy_status;
1552
1553 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1554 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
a8d2a0c2 1555 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
9d5c8243
AK
1556 if (ret_val)
1557 break;
a8d2a0c2 1558 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
9d5c8243
AK
1559 if (ret_val)
1560 break;
1561 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1562 break;
1563 msleep(100);
1564 }
1565
b980ac18 1566 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
9d5c8243
AK
1567 * has completed.
1568 */
1569 return ret_val;
1570}
1571
1572/**
733596be 1573 * igb_phy_has_link - Polls PHY for link
9d5c8243
AK
1574 * @hw: pointer to the HW structure
1575 * @iterations: number of times to poll for link
1576 * @usec_interval: delay between polling attempts
1577 * @success: pointer to whether polling was successful or not
1578 *
1579 * Polls the PHY status register for link, 'iterations' number of times.
1580 **/
1581s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
b980ac18 1582 u32 usec_interval, bool *success)
9d5c8243
AK
1583{
1584 s32 ret_val = 0;
1585 u16 i, phy_status;
1586
1587 for (i = 0; i < iterations; i++) {
b980ac18 1588 /* Some PHYs require the PHY_STATUS register to be read
9d5c8243
AK
1589 * twice due to the link bit being sticky. No harm doing
1590 * it across the board.
1591 */
a8d2a0c2 1592 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
dc3d226f 1593 if (ret_val && usec_interval > 0) {
b980ac18 1594 /* If the first read fails, another entity may have
ab576389
AD
1595 * ownership of the resources, wait and try again to
1596 * see if they have relinquished the resources yet.
1597 */
1598 udelay(usec_interval);
1599 }
a8d2a0c2 1600 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
9d5c8243
AK
1601 if (ret_val)
1602 break;
1603 if (phy_status & MII_SR_LINK_STATUS)
1604 break;
1605 if (usec_interval >= 1000)
1606 mdelay(usec_interval/1000);
1607 else
1608 udelay(usec_interval);
1609 }
1610
1611 *success = (i < iterations) ? true : false;
1612
1613 return ret_val;
1614}
1615
1616/**
733596be 1617 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
9d5c8243
AK
1618 * @hw: pointer to the HW structure
1619 *
1620 * Reads the PHY specific status register to retrieve the cable length
1621 * information. The cable length is determined by averaging the minimum and
1622 * maximum values to get the "average" cable length. The m88 PHY has four
1623 * possible cable length values, which are:
1624 * Register Value Cable Length
1625 * 0 < 50 meters
1626 * 1 50 - 80 meters
1627 * 2 80 - 110 meters
1628 * 3 110 - 140 meters
1629 * 4 > 140 meters
1630 **/
1631s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1632{
1633 struct e1000_phy_info *phy = &hw->phy;
1634 s32 ret_val;
1635 u16 phy_data, index;
1636
a8d2a0c2 1637 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
9d5c8243
AK
1638 if (ret_val)
1639 goto out;
1640
1641 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1642 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
2553bb26
AD
1643 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1644 ret_val = -E1000_ERR_PHY;
1645 goto out;
1646 }
1647
9d5c8243 1648 phy->min_cable_length = e1000_m88_cable_length_table[index];
2553bb26 1649 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
9d5c8243
AK
1650
1651 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1652
1653out:
1654 return ret_val;
1655}
1656
308fb39a
JG
1657s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1658{
1659 struct e1000_phy_info *phy = &hw->phy;
1660 s32 ret_val;
1661 u16 phy_data, phy_data2, index, default_page, is_cm;
1662
1663 switch (hw->phy.id) {
f96a8a0b 1664 case I210_I_PHY_ID:
59f30104
CW
1665 /* Get cable length from PHY Cable Diagnostics Control Reg */
1666 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1667 (I347AT4_PCDL + phy->addr),
1668 &phy_data);
1669 if (ret_val)
1670 return ret_val;
1671
1672 /* Check if the unit of cable length is meters or cm */
1673 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1674 I347AT4_PCDC, &phy_data2);
1675 if (ret_val)
1676 return ret_val;
1677
1678 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1679
1680 /* Populate the phy structure with cable length in meters */
1681 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1682 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1683 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1684 break;
ceb5f13b 1685 case M88E1545_E_PHY_ID:
308fb39a
JG
1686 case I347AT4_E_PHY_ID:
1687 /* Remember the original page select and set it to 7 */
1688 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1689 &default_page);
1690 if (ret_val)
1691 goto out;
1692
1693 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1694 if (ret_val)
1695 goto out;
1696
1697 /* Get cable length from PHY Cable Diagnostics Control Reg */
1698 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1699 &phy_data);
1700 if (ret_val)
1701 goto out;
1702
1703 /* Check if the unit of cable length is meters or cm */
1704 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1705 if (ret_val)
1706 goto out;
1707
d5a0e364 1708 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
308fb39a
JG
1709
1710 /* Populate the phy structure with cable length in meters */
1711 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1712 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1713 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1714
1715 /* Reset the page selec to its original value */
1716 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1717 default_page);
1718 if (ret_val)
1719 goto out;
1720 break;
1721 case M88E1112_E_PHY_ID:
1722 /* Remember the original page select and set it to 5 */
1723 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1724 &default_page);
1725 if (ret_val)
1726 goto out;
1727
1728 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1729 if (ret_val)
1730 goto out;
1731
1732 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1733 &phy_data);
1734 if (ret_val)
1735 goto out;
1736
1737 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1738 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1739 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1740 ret_val = -E1000_ERR_PHY;
1741 goto out;
1742 }
1743
1744 phy->min_cable_length = e1000_m88_cable_length_table[index];
1745 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1746
1747 phy->cable_length = (phy->min_cable_length +
1748 phy->max_cable_length) / 2;
1749
1750 /* Reset the page select to its original value */
1751 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1752 default_page);
1753 if (ret_val)
1754 goto out;
1755
1756 break;
1757 default:
1758 ret_val = -E1000_ERR_PHY;
1759 goto out;
1760 }
1761
1762out:
1763 return ret_val;
1764}
1765
9d5c8243 1766/**
733596be 1767 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
9d5c8243
AK
1768 * @hw: pointer to the HW structure
1769 *
1770 * The automatic gain control (agc) normalizes the amplitude of the
1771 * received signal, adjusting for the attenuation produced by the
a8d2a0c2
AD
1772 * cable. By reading the AGC registers, which represent the
1773 * combination of coarse and fine gain value, the value can be put
9d5c8243
AK
1774 * into a lookup table to obtain the approximate cable length
1775 * for each channel.
1776 **/
1777s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1778{
1779 struct e1000_phy_info *phy = &hw->phy;
1780 s32 ret_val = 0;
1781 u16 phy_data, i, agc_value = 0;
1782 u16 cur_agc_index, max_agc_index = 0;
1783 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
66744500 1784 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
b980ac18
JK
1785 IGP02E1000_PHY_AGC_A,
1786 IGP02E1000_PHY_AGC_B,
1787 IGP02E1000_PHY_AGC_C,
1788 IGP02E1000_PHY_AGC_D
66744500 1789 };
9d5c8243
AK
1790
1791 /* Read the AGC registers for all channels */
1792 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
a8d2a0c2 1793 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
9d5c8243
AK
1794 if (ret_val)
1795 goto out;
1796
b980ac18 1797 /* Getting bits 15:9, which represent the combination of
a8d2a0c2 1798 * coarse and fine gain values. The result is a number
9d5c8243
AK
1799 * that can be put into the lookup table to obtain the
1800 * approximate cable length.
1801 */
1802 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1803 IGP02E1000_AGC_LENGTH_MASK;
1804
1805 /* Array index bound check. */
1806 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1807 (cur_agc_index == 0)) {
1808 ret_val = -E1000_ERR_PHY;
1809 goto out;
1810 }
1811
1812 /* Remove min & max AGC values from calculation. */
1813 if (e1000_igp_2_cable_length_table[min_agc_index] >
1814 e1000_igp_2_cable_length_table[cur_agc_index])
1815 min_agc_index = cur_agc_index;
1816 if (e1000_igp_2_cable_length_table[max_agc_index] <
1817 e1000_igp_2_cable_length_table[cur_agc_index])
1818 max_agc_index = cur_agc_index;
1819
1820 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1821 }
1822
1823 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1824 e1000_igp_2_cable_length_table[max_agc_index]);
1825 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1826
1827 /* Calculate cable length with the error range of +/- 10 meters. */
1828 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1829 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1830 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1831
1832 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1833
1834out:
1835 return ret_val;
1836}
1837
1838/**
733596be 1839 * igb_get_phy_info_m88 - Retrieve PHY information
9d5c8243
AK
1840 * @hw: pointer to the HW structure
1841 *
1842 * Valid for only copper links. Read the PHY status register (sticky read)
1843 * to verify that link is up. Read the PHY special control register to
1844 * determine the polarity and 10base-T extended distance. Read the PHY
1845 * special status register to determine MDI/MDIx and current speed. If
1846 * speed is 1000, then determine cable length, local and remote receiver.
1847 **/
1848s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1849{
1850 struct e1000_phy_info *phy = &hw->phy;
1851 s32 ret_val;
1852 u16 phy_data;
1853 bool link;
1854
a8d2a0c2 1855 if (phy->media_type != e1000_media_type_copper) {
652fff32 1856 hw_dbg("Phy info is only valid for copper media\n");
9d5c8243
AK
1857 ret_val = -E1000_ERR_CONFIG;
1858 goto out;
1859 }
1860
1861 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1862 if (ret_val)
1863 goto out;
1864
1865 if (!link) {
652fff32 1866 hw_dbg("Phy info is only valid if link is up\n");
9d5c8243
AK
1867 ret_val = -E1000_ERR_CONFIG;
1868 goto out;
1869 }
1870
a8d2a0c2 1871 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
9d5c8243
AK
1872 if (ret_val)
1873 goto out;
1874
1875 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
a8d2a0c2 1876 ? true : false;
9d5c8243
AK
1877
1878 ret_val = igb_check_polarity_m88(hw);
1879 if (ret_val)
1880 goto out;
1881
a8d2a0c2 1882 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
9d5c8243
AK
1883 if (ret_val)
1884 goto out;
1885
1886 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1887
1888 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
a8d2a0c2 1889 ret_val = phy->ops.get_cable_length(hw);
9d5c8243
AK
1890 if (ret_val)
1891 goto out;
1892
a8d2a0c2 1893 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
9d5c8243
AK
1894 if (ret_val)
1895 goto out;
1896
1897 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1898 ? e1000_1000t_rx_status_ok
1899 : e1000_1000t_rx_status_not_ok;
1900
1901 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1902 ? e1000_1000t_rx_status_ok
1903 : e1000_1000t_rx_status_not_ok;
1904 } else {
1905 /* Set values to "undefined" */
1906 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1907 phy->local_rx = e1000_1000t_rx_status_undefined;
1908 phy->remote_rx = e1000_1000t_rx_status_undefined;
1909 }
1910
1911out:
1912 return ret_val;
1913}
1914
1915/**
733596be 1916 * igb_get_phy_info_igp - Retrieve igp PHY information
9d5c8243
AK
1917 * @hw: pointer to the HW structure
1918 *
1919 * Read PHY status to determine if link is up. If link is up, then
1920 * set/determine 10base-T extended distance and polarity correction. Read
1921 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1922 * determine on the cable length, local and remote receiver.
1923 **/
1924s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1925{
1926 struct e1000_phy_info *phy = &hw->phy;
1927 s32 ret_val;
1928 u16 data;
1929 bool link;
1930
1931 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1932 if (ret_val)
1933 goto out;
1934
1935 if (!link) {
652fff32 1936 hw_dbg("Phy info is only valid if link is up\n");
9d5c8243
AK
1937 ret_val = -E1000_ERR_CONFIG;
1938 goto out;
1939 }
1940
1941 phy->polarity_correction = true;
1942
1943 ret_val = igb_check_polarity_igp(hw);
1944 if (ret_val)
1945 goto out;
1946
a8d2a0c2 1947 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
9d5c8243
AK
1948 if (ret_val)
1949 goto out;
1950
1951 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1952
1953 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1954 IGP01E1000_PSSR_SPEED_1000MBPS) {
a8d2a0c2 1955 ret_val = phy->ops.get_cable_length(hw);
9d5c8243
AK
1956 if (ret_val)
1957 goto out;
1958
a8d2a0c2 1959 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
9d5c8243
AK
1960 if (ret_val)
1961 goto out;
1962
1963 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1964 ? e1000_1000t_rx_status_ok
1965 : e1000_1000t_rx_status_not_ok;
1966
1967 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1968 ? e1000_1000t_rx_status_ok
1969 : e1000_1000t_rx_status_not_ok;
1970 } else {
1971 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1972 phy->local_rx = e1000_1000t_rx_status_undefined;
1973 phy->remote_rx = e1000_1000t_rx_status_undefined;
1974 }
1975
1976out:
1977 return ret_val;
1978}
1979
1980/**
733596be 1981 * igb_phy_sw_reset - PHY software reset
9d5c8243
AK
1982 * @hw: pointer to the HW structure
1983 *
1984 * Does a software reset of the PHY by reading the PHY control register and
1985 * setting/write the control register reset bit to the PHY.
1986 **/
1987s32 igb_phy_sw_reset(struct e1000_hw *hw)
1988{
d314737a 1989 s32 ret_val = 0;
9d5c8243
AK
1990 u16 phy_ctrl;
1991
d314737a
AD
1992 if (!(hw->phy.ops.read_reg))
1993 goto out;
1994
a8d2a0c2 1995 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
9d5c8243
AK
1996 if (ret_val)
1997 goto out;
1998
1999 phy_ctrl |= MII_CR_RESET;
a8d2a0c2 2000 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
9d5c8243
AK
2001 if (ret_val)
2002 goto out;
2003
2004 udelay(1);
2005
2006out:
2007 return ret_val;
2008}
2009
2010/**
733596be 2011 * igb_phy_hw_reset - PHY hardware reset
9d5c8243
AK
2012 * @hw: pointer to the HW structure
2013 *
2014 * Verify the reset block is not blocking us from resetting. Acquire
2015 * semaphore (if necessary) and read/set/write the device control reset
2016 * bit in the PHY. Wait the appropriate delay time for the device to
83a35e36 2017 * reset and release the semaphore (if necessary).
9d5c8243
AK
2018 **/
2019s32 igb_phy_hw_reset(struct e1000_hw *hw)
2020{
2021 struct e1000_phy_info *phy = &hw->phy;
2022 s32 ret_val;
2023 u32 ctrl;
2024
2025 ret_val = igb_check_reset_block(hw);
2026 if (ret_val) {
2027 ret_val = 0;
2028 goto out;
2029 }
2030
a8d2a0c2 2031 ret_val = phy->ops.acquire(hw);
9d5c8243
AK
2032 if (ret_val)
2033 goto out;
2034
2035 ctrl = rd32(E1000_CTRL);
2036 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2037 wrfl();
2038
2039 udelay(phy->reset_delay_us);
2040
2041 wr32(E1000_CTRL, ctrl);
2042 wrfl();
2043
2044 udelay(150);
2045
a8d2a0c2 2046 phy->ops.release(hw);
9d5c8243 2047
a8d2a0c2 2048 ret_val = phy->ops.get_cfg_done(hw);
9d5c8243
AK
2049
2050out:
2051 return ret_val;
2052}
2053
9d5c8243 2054/**
733596be 2055 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
9d5c8243
AK
2056 * @hw: pointer to the HW structure
2057 *
2058 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2059 **/
2060s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2061{
652fff32 2062 hw_dbg("Running IGP 3 PHY init script\n");
9d5c8243
AK
2063
2064 /* PHY init IGP 3 */
2065 /* Enable rise/fall, 10-mode work in class-A */
a8d2a0c2 2066 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
9d5c8243 2067 /* Remove all caps from Replica path filter */
a8d2a0c2 2068 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
9d5c8243 2069 /* Bias trimming for ADC, AFE and Driver (Default) */
a8d2a0c2 2070 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
9d5c8243 2071 /* Increase Hybrid poly bias */
a8d2a0c2 2072 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
9d5c8243 2073 /* Add 4% to TX amplitude in Giga mode */
a8d2a0c2 2074 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
9d5c8243 2075 /* Disable trimming (TTT) */
a8d2a0c2 2076 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
9d5c8243 2077 /* Poly DC correction to 94.6% + 2% for all channels */
a8d2a0c2 2078 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
9d5c8243 2079 /* ABS DC correction to 95.9% */
a8d2a0c2 2080 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
9d5c8243 2081 /* BG temp curve trim */
a8d2a0c2 2082 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
9d5c8243 2083 /* Increasing ADC OPAMP stage 1 currents to max */
a8d2a0c2 2084 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
9d5c8243 2085 /* Force 1000 ( required for enabling PHY regs configuration) */
a8d2a0c2 2086 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
9d5c8243 2087 /* Set upd_freq to 6 */
a8d2a0c2 2088 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
9d5c8243 2089 /* Disable NPDFE */
a8d2a0c2 2090 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
9d5c8243 2091 /* Disable adaptive fixed FFE (Default) */
a8d2a0c2 2092 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
9d5c8243 2093 /* Enable FFE hysteresis */
a8d2a0c2 2094 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
9d5c8243 2095 /* Fixed FFE for short cable lengths */
a8d2a0c2 2096 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
9d5c8243 2097 /* Fixed FFE for medium cable lengths */
a8d2a0c2 2098 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
9d5c8243 2099 /* Fixed FFE for long cable lengths */
a8d2a0c2 2100 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
9d5c8243 2101 /* Enable Adaptive Clip Threshold */
a8d2a0c2 2102 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
9d5c8243 2103 /* AHT reset limit to 1 */
a8d2a0c2 2104 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
9d5c8243 2105 /* Set AHT master delay to 127 msec */
a8d2a0c2 2106 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
9d5c8243 2107 /* Set scan bits for AHT */
a8d2a0c2 2108 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
9d5c8243 2109 /* Set AHT Preset bits */
a8d2a0c2 2110 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
9d5c8243 2111 /* Change integ_factor of channel A to 3 */
a8d2a0c2 2112 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
9d5c8243 2113 /* Change prop_factor of channels BCD to 8 */
a8d2a0c2 2114 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
9d5c8243 2115 /* Change cg_icount + enable integbp for channels BCD */
a8d2a0c2 2116 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
b980ac18 2117 /* Change cg_icount + enable integbp + change prop_factor_master
9d5c8243
AK
2118 * to 8 for channel A
2119 */
a8d2a0c2 2120 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
9d5c8243 2121 /* Disable AHT in Slave mode on channel A */
a8d2a0c2 2122 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
b980ac18 2123 /* Enable LPLU and disable AN to 1000 in non-D0a states,
9d5c8243
AK
2124 * Enable SPD+B2B
2125 */
a8d2a0c2 2126 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
9d5c8243 2127 /* Enable restart AN on an1000_dis change */
a8d2a0c2 2128 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
9d5c8243 2129 /* Enable wh_fifo read clock in 10/100 modes */
a8d2a0c2 2130 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
9d5c8243 2131 /* Restart AN, Speed selection is 1000 */
a8d2a0c2 2132 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
9d5c8243
AK
2133
2134 return 0;
2135}
2136
88a268c1
NN
2137/**
2138 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2139 * @hw: pointer to the HW structure
2140 *
2141 * In the case of a PHY power down to save power, or to turn off link during a
2142 * driver unload, restore the link to previous settings.
2143 **/
2144void igb_power_up_phy_copper(struct e1000_hw *hw)
2145{
2146 u16 mii_reg = 0;
f96a8a0b 2147 u16 power_reg = 0;
88a268c1
NN
2148
2149 /* The PHY will retain its settings across a power down/up cycle */
2150 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2151 mii_reg &= ~MII_CR_POWER_DOWN;
f96a8a0b
CW
2152 if (hw->phy.type == e1000_phy_i210) {
2153 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2154 power_reg &= ~GS40G_CS_POWER_DOWN;
2155 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2156 }
88a268c1
NN
2157 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2158}
2159
2160/**
2161 * igb_power_down_phy_copper - Power down copper PHY
2162 * @hw: pointer to the HW structure
2163 *
2164 * Power down PHY to save power when interface is down and wake on lan
2165 * is not enabled.
2166 **/
2167void igb_power_down_phy_copper(struct e1000_hw *hw)
2168{
2169 u16 mii_reg = 0;
f96a8a0b 2170 u16 power_reg = 0;
88a268c1
NN
2171
2172 /* The PHY will retain its settings across a power down/up cycle */
2173 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2174 mii_reg |= MII_CR_POWER_DOWN;
f96a8a0b
CW
2175
2176 /* i210 Phy requires an additional bit for power up/down */
2177 if (hw->phy.type == e1000_phy_i210) {
2178 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2179 power_reg |= GS40G_CS_POWER_DOWN;
2180 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2181 }
88a268c1
NN
2182 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2183 msleep(1);
2184}
2185
2909c3f7
AD
2186/**
2187 * igb_check_polarity_82580 - Checks the polarity.
2188 * @hw: pointer to the HW structure
2189 *
2190 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2191 *
2192 * Polarity is determined based on the PHY specific status register.
2193 **/
bb2ac47b 2194static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2909c3f7
AD
2195{
2196 struct e1000_phy_info *phy = &hw->phy;
2197 s32 ret_val;
2198 u16 data;
2199
2200
2201 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2202
2203 if (!ret_val)
2204 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
b980ac18
JK
2205 ? e1000_rev_polarity_reversed
2206 : e1000_rev_polarity_normal;
2909c3f7
AD
2207
2208 return ret_val;
2209}
2210
2211/**
2212 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2213 * @hw: pointer to the HW structure
2214 *
2215 * Calls the PHY setup function to force speed and duplex. Clears the
2216 * auto-crossover to force MDI manually. Waits for link and returns
2217 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2218 **/
2219s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2220{
2221 struct e1000_phy_info *phy = &hw->phy;
2222 s32 ret_val;
2223 u16 phy_data;
2224 bool link;
2225
2909c3f7
AD
2226 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2227 if (ret_val)
2228 goto out;
2229
2230 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2231
2232 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2233 if (ret_val)
2234 goto out;
2235
b980ac18 2236 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2909c3f7
AD
2237 * forced whenever speed and duplex are forced.
2238 */
2239 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2240 if (ret_val)
2241 goto out;
2242
1b556783 2243 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2909c3f7
AD
2244
2245 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2246 if (ret_val)
2247 goto out;
2248
2249 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2250
2251 udelay(1);
2252
2253 if (phy->autoneg_wait_to_complete) {
2254 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2255
b980ac18 2256 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2909c3f7
AD
2257 if (ret_val)
2258 goto out;
2259
2260 if (!link)
2261 hw_dbg("Link taking longer than expected.\n");
2262
2263 /* Try once more */
b980ac18 2264 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2909c3f7
AD
2265 if (ret_val)
2266 goto out;
2267 }
2268
2269out:
2270 return ret_val;
2271}
2272
2273/**
2274 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2275 * @hw: pointer to the HW structure
2276 *
2277 * Read PHY status to determine if link is up. If link is up, then
2278 * set/determine 10base-T extended distance and polarity correction. Read
2279 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2280 * determine on the cable length, local and remote receiver.
2281 **/
2282s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2283{
2284 struct e1000_phy_info *phy = &hw->phy;
2285 s32 ret_val;
2286 u16 data;
2287 bool link;
2288
2909c3f7
AD
2289 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2290 if (ret_val)
2291 goto out;
2292
2293 if (!link) {
2294 hw_dbg("Phy info is only valid if link is up\n");
2295 ret_val = -E1000_ERR_CONFIG;
2296 goto out;
2297 }
2298
2299 phy->polarity_correction = true;
2300
2301 ret_val = igb_check_polarity_82580(hw);
2302 if (ret_val)
2303 goto out;
2304
2305 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2306 if (ret_val)
2307 goto out;
2308
2309 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2310
2311 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2312 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2313 ret_val = hw->phy.ops.get_cable_length(hw);
2314 if (ret_val)
2315 goto out;
2316
2317 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2318 if (ret_val)
2319 goto out;
2320
2321 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
b980ac18
JK
2322 ? e1000_1000t_rx_status_ok
2323 : e1000_1000t_rx_status_not_ok;
2909c3f7
AD
2324
2325 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
b980ac18
JK
2326 ? e1000_1000t_rx_status_ok
2327 : e1000_1000t_rx_status_not_ok;
2909c3f7
AD
2328 } else {
2329 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2330 phy->local_rx = e1000_1000t_rx_status_undefined;
2331 phy->remote_rx = e1000_1000t_rx_status_undefined;
2332 }
2333
2334out:
2335 return ret_val;
2336}
2337
2338/**
2339 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2340 * @hw: pointer to the HW structure
2341 *
2342 * Reads the diagnostic status register and verifies result is valid before
2343 * placing it in the phy_cable_length field.
2344 **/
2345s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2346{
2347 struct e1000_phy_info *phy = &hw->phy;
2348 s32 ret_val;
2349 u16 phy_data, length;
2350
2909c3f7
AD
2351 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2352 if (ret_val)
2353 goto out;
2354
2355 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
b980ac18 2356 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2909c3f7
AD
2357
2358 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2359 ret_val = -E1000_ERR_PHY;
2360
2361 phy->cable_length = length;
2362
2363out:
2364 return ret_val;
2365}
f96a8a0b
CW
2366
2367/**
2368 * igb_write_phy_reg_gs40g - Write GS40G PHY register
2369 * @hw: pointer to the HW structure
2370 * @offset: lower half is register offset to write to
2371 * upper half is page to use.
2372 * @data: data to write at register offset
2373 *
2374 * Acquires semaphore, if necessary, then writes the data to PHY register
2375 * at the offset. Release any acquired semaphores before exiting.
2376 **/
2377s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2378{
2379 s32 ret_val;
2380 u16 page = offset >> GS40G_PAGE_SHIFT;
2381
2382 offset = offset & GS40G_OFFSET_MASK;
2383 ret_val = hw->phy.ops.acquire(hw);
2384 if (ret_val)
2385 return ret_val;
2386
2387 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2388 if (ret_val)
2389 goto release;
2390 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2391
2392release:
2393 hw->phy.ops.release(hw);
2394 return ret_val;
2395}
2396
2397/**
2398 * igb_read_phy_reg_gs40g - Read GS40G PHY register
2399 * @hw: pointer to the HW structure
2400 * @offset: lower half is register offset to read to
2401 * upper half is page to use.
2402 * @data: data to read at register offset
2403 *
2404 * Acquires semaphore, if necessary, then reads the data in the PHY register
2405 * at the offset. Release any acquired semaphores before exiting.
2406 **/
2407s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2408{
2409 s32 ret_val;
2410 u16 page = offset >> GS40G_PAGE_SHIFT;
2411
2412 offset = offset & GS40G_OFFSET_MASK;
2413 ret_val = hw->phy.ops.acquire(hw);
2414 if (ret_val)
2415 return ret_val;
2416
2417 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2418 if (ret_val)
2419 goto release;
2420 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2421
2422release:
2423 hw->phy.ops.release(hw);
2424 return ret_val;
2425}
2426
2427/**
2428 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2429 * @hw: pointer to the HW structure
2430 *
2431 * Sets up Master/slave mode
2432 **/
2433static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2434{
2435 s32 ret_val;
2436 u16 phy_data;
2437
2438 /* Resolve Master/Slave mode */
2439 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2440 if (ret_val)
2441 return ret_val;
2442
2443 /* load defaults for future use */
2444 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2445 ((phy_data & CR_1000T_MS_VALUE) ?
2446 e1000_ms_force_master :
2447 e1000_ms_force_slave) : e1000_ms_auto;
2448
2449 switch (hw->phy.ms_type) {
2450 case e1000_ms_force_master:
2451 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2452 break;
2453 case e1000_ms_force_slave:
2454 phy_data |= CR_1000T_MS_ENABLE;
2455 phy_data &= ~(CR_1000T_MS_VALUE);
2456 break;
2457 case e1000_ms_auto:
2458 phy_data &= ~CR_1000T_MS_ENABLE;
2459 /* fall-through */
2460 default:
2461 break;
2462 }
2463
2464 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2465}