ice: enable transmit timestamps for E810 devices
[linux-2.6-block.git] / drivers / net / ethernet / intel / ice / ice_ptp.c
CommitLineData
06c16d89
JK
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2021, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_lib.h"
6
ea9b847c
JK
7/**
8 * ice_set_tx_tstamp - Enable or disable Tx timestamping
9 * @pf: The PF pointer to search in
10 * @on: bool value for whether timestamps are enabled or disabled
11 */
12static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
13{
14 struct ice_vsi *vsi;
15 u32 val;
16 u16 i;
17
18 vsi = ice_get_main_vsi(pf);
19 if (!vsi)
20 return;
21
22 /* Set the timestamp enable flag for all the Tx rings */
23 ice_for_each_rxq(vsi, i) {
24 if (!vsi->tx_rings[i])
25 continue;
26 vsi->tx_rings[i]->ptp_tx = on;
27 }
28
29 /* Configure the Tx timestamp interrupt */
30 val = rd32(&pf->hw, PFINT_OICR_ENA);
31 if (on)
32 val |= PFINT_OICR_TSYN_TX_M;
33 else
34 val &= ~PFINT_OICR_TSYN_TX_M;
35 wr32(&pf->hw, PFINT_OICR_ENA, val);
36}
37
77a78115
JK
38/**
39 * ice_set_rx_tstamp - Enable or disable Rx timestamping
40 * @pf: The PF pointer to search in
41 * @on: bool value for whether timestamps are enabled or disabled
42 */
43static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
44{
45 struct ice_vsi *vsi;
46 u16 i;
47
48 vsi = ice_get_main_vsi(pf);
49 if (!vsi)
50 return;
51
52 /* Set the timestamp flag for all the Rx rings */
53 ice_for_each_rxq(vsi, i) {
54 if (!vsi->rx_rings[i])
55 continue;
56 vsi->rx_rings[i]->ptp_rx = on;
57 }
58}
59
60/**
61 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
62 * @pf: Board private structure
63 * @ena: bool value to enable or disable time stamp
64 *
65 * This function will configure timestamping during PTP initialization
66 * and deinitialization
67 */
68static void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
69{
ea9b847c 70 ice_set_tx_tstamp(pf, ena);
77a78115
JK
71 ice_set_rx_tstamp(pf, ena);
72
ea9b847c 73 if (ena) {
77a78115 74 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
ea9b847c
JK
75 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
76 } else {
77a78115 77 pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
ea9b847c
JK
78 pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
79 }
77a78115
JK
80}
81
67569a7f
JK
82/**
83 * ice_get_ptp_clock_index - Get the PTP clock index
84 * @pf: the PF pointer
85 *
86 * Determine the clock index of the PTP clock associated with this device. If
87 * this is the PF controlling the clock, just use the local access to the
88 * clock device pointer.
89 *
90 * Otherwise, read from the driver shared parameters to determine the clock
91 * index value.
92 *
93 * Returns: the index of the PTP clock associated with this device, or -1 if
94 * there is no associated clock.
95 */
96int ice_get_ptp_clock_index(struct ice_pf *pf)
97{
98 struct device *dev = ice_pf_to_dev(pf);
99 enum ice_aqc_driver_params param_idx;
100 struct ice_hw *hw = &pf->hw;
101 u8 tmr_idx;
102 u32 value;
103 int err;
104
105 /* Use the ptp_clock structure if we're the main PF */
106 if (pf->ptp.clock)
107 return ptp_clock_index(pf->ptp.clock);
108
109 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
110 if (!tmr_idx)
111 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
112 else
113 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
114
115 err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
116 if (err) {
117 dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
118 err, ice_aq_str(hw->adminq.sq_last_status));
119 return -1;
120 }
121
122 /* The PTP clock index is an integer, and will be between 0 and
123 * INT_MAX. The highest bit of the driver shared parameter is used to
124 * indicate whether or not the currently stored clock index is valid.
125 */
126 if (!(value & PTP_SHARED_CLK_IDX_VALID))
127 return -1;
128
129 return value & ~PTP_SHARED_CLK_IDX_VALID;
130}
131
132/**
133 * ice_set_ptp_clock_index - Set the PTP clock index
134 * @pf: the PF pointer
135 *
136 * Set the PTP clock index for this device into the shared driver parameters,
137 * so that other PFs associated with this device can read it.
138 *
139 * If the PF is unable to store the clock index, it will log an error, but
140 * will continue operating PTP.
141 */
142static void ice_set_ptp_clock_index(struct ice_pf *pf)
143{
144 struct device *dev = ice_pf_to_dev(pf);
145 enum ice_aqc_driver_params param_idx;
146 struct ice_hw *hw = &pf->hw;
147 u8 tmr_idx;
148 u32 value;
149 int err;
150
151 if (!pf->ptp.clock)
152 return;
153
154 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
155 if (!tmr_idx)
156 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
157 else
158 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
159
160 value = (u32)ptp_clock_index(pf->ptp.clock);
161 if (value > INT_MAX) {
162 dev_err(dev, "PTP Clock index is too large to store\n");
163 return;
164 }
165 value |= PTP_SHARED_CLK_IDX_VALID;
166
167 err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
168 if (err) {
169 dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
170 err, ice_aq_str(hw->adminq.sq_last_status));
171 }
172}
173
174/**
175 * ice_clear_ptp_clock_index - Clear the PTP clock index
176 * @pf: the PF pointer
177 *
178 * Clear the PTP clock index for this device. Must be called when
179 * unregistering the PTP clock, in order to ensure other PFs stop reporting
180 * a clock object that no longer exists.
181 */
182static void ice_clear_ptp_clock_index(struct ice_pf *pf)
183{
184 struct device *dev = ice_pf_to_dev(pf);
185 enum ice_aqc_driver_params param_idx;
186 struct ice_hw *hw = &pf->hw;
187 u8 tmr_idx;
188 int err;
189
190 /* Do not clear the index if we don't own the timer */
191 if (!hw->func_caps.ts_func_info.src_tmr_owned)
192 return;
193
194 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
195 if (!tmr_idx)
196 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
197 else
198 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
199
200 err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
201 if (err) {
202 dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
203 err, ice_aq_str(hw->adminq.sq_last_status));
204 }
205}
206
06c16d89
JK
207/**
208 * ice_ptp_read_src_clk_reg - Read the source clock register
209 * @pf: Board private structure
210 * @sts: Optional parameter for holding a pair of system timestamps from
211 * the system clock. Will be ignored if NULL is given.
212 */
213static u64
214ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
215{
216 struct ice_hw *hw = &pf->hw;
217 u32 hi, lo, lo2;
218 u8 tmr_idx;
219
220 tmr_idx = ice_get_ptp_src_clock_index(hw);
221 /* Read the system timestamp pre PHC read */
222 if (sts)
223 ptp_read_system_prets(sts);
224
225 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
226
227 /* Read the system timestamp post PHC read */
228 if (sts)
229 ptp_read_system_postts(sts);
230
231 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
232 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
233
234 if (lo2 < lo) {
235 /* if TIME_L rolled over read TIME_L again and update
236 * system timestamps
237 */
238 if (sts)
239 ptp_read_system_prets(sts);
240 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
241 if (sts)
242 ptp_read_system_postts(sts);
243 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
244 }
245
246 return ((u64)hi << 32) | lo;
247}
248
77a78115
JK
249/**
250 * ice_ptp_update_cached_phctime - Update the cached PHC time values
251 * @pf: Board specific private structure
252 *
253 * This function updates the system time values which are cached in the PF
254 * structure and the Rx rings.
255 *
256 * This function must be called periodically to ensure that the cached value
257 * is never more than 2 seconds old. It must also be called whenever the PHC
258 * time has been changed.
259 */
260static void ice_ptp_update_cached_phctime(struct ice_pf *pf)
261{
262 u64 systime;
263 int i;
264
265 /* Read the current PHC time */
266 systime = ice_ptp_read_src_clk_reg(pf, NULL);
267
268 /* Update the cached PHC time stored in the PF structure */
269 WRITE_ONCE(pf->ptp.cached_phc_time, systime);
270
271 ice_for_each_vsi(pf, i) {
272 struct ice_vsi *vsi = pf->vsi[i];
273 int j;
274
275 if (!vsi)
276 continue;
277
278 if (vsi->type != ICE_VSI_PF)
279 continue;
280
281 ice_for_each_rxq(vsi, j) {
282 if (!vsi->rx_rings[j])
283 continue;
284 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
285 }
286 }
287}
288
289/**
290 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
291 * @cached_phc_time: recently cached copy of PHC time
292 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
293 *
294 * Hardware captures timestamps which contain only 32 bits of nominal
295 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
296 * Note that the captured timestamp values may be 40 bits, but the lower
297 * 8 bits are sub-nanoseconds and generally discarded.
298 *
299 * Extend the 32bit nanosecond timestamp using the following algorithm and
300 * assumptions:
301 *
302 * 1) have a recently cached copy of the PHC time
303 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
304 * seconds) before or after the PHC time was captured.
305 * 3) calculate the delta between the cached time and the timestamp
306 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
307 * captured after the PHC time. In this case, the full timestamp is just
308 * the cached PHC time plus the delta.
309 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
310 * timestamp was captured *before* the PHC time, i.e. because the PHC
311 * cache was updated after the timestamp was captured by hardware. In this
312 * case, the full timestamp is the cached time minus the inverse delta.
313 *
314 * This algorithm works even if the PHC time was updated after a Tx timestamp
315 * was requested, but before the Tx timestamp event was reported from
316 * hardware.
317 *
318 * This calculation primarily relies on keeping the cached PHC time up to
319 * date. If the timestamp was captured more than 2^31 nanoseconds after the
320 * PHC time, it is possible that the lower 32bits of PHC time have
321 * overflowed more than once, and we might generate an incorrect timestamp.
322 *
323 * This is prevented by (a) periodically updating the cached PHC time once
324 * a second, and (b) discarding any Tx timestamp packet if it has waited for
325 * a timestamp for more than one second.
326 */
327static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
328{
329 u32 delta, phc_time_lo;
330 u64 ns;
331
332 /* Extract the lower 32 bits of the PHC time */
333 phc_time_lo = (u32)cached_phc_time;
334
335 /* Calculate the delta between the lower 32bits of the cached PHC
336 * time and the in_tstamp value
337 */
338 delta = (in_tstamp - phc_time_lo);
339
340 /* Do not assume that the in_tstamp is always more recent than the
341 * cached PHC time. If the delta is large, it indicates that the
342 * in_tstamp was taken in the past, and should be converted
343 * forward.
344 */
345 if (delta > (U32_MAX / 2)) {
346 /* reverse the delta calculation here */
347 delta = (phc_time_lo - in_tstamp);
348 ns = cached_phc_time - delta;
349 } else {
350 ns = cached_phc_time + delta;
351 }
352
353 return ns;
354}
355
ea9b847c
JK
356/**
357 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
358 * @pf: Board private structure
359 * @in_tstamp: Ingress/egress 40b timestamp value
360 *
361 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
362 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
363 *
364 * *--------------------------------------------------------------*
365 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
366 * *--------------------------------------------------------------*
367 *
368 * The low bit is an indicator of whether the timestamp is valid. The next
369 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
370 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
371 *
372 * It is assumed that the caller verifies the timestamp is valid prior to
373 * calling this function.
374 *
375 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
376 * time stored in the device private PTP structure as the basis for timestamp
377 * extension.
378 *
379 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
380 * algorithm.
381 */
382static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
383{
384 const u64 mask = GENMASK_ULL(31, 0);
385
386 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
387 (in_tstamp >> 8) & mask);
388}
389
06c16d89
JK
390/**
391 * ice_ptp_read_time - Read the time from the device
392 * @pf: Board private structure
393 * @ts: timespec structure to hold the current time value
394 * @sts: Optional parameter for holding a pair of system timestamps from
395 * the system clock. Will be ignored if NULL is given.
396 *
397 * This function reads the source clock registers and stores them in a timespec.
398 * However, since the registers are 64 bits of nanoseconds, we must convert the
399 * result to a timespec before we can return.
400 */
401static void
402ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
403 struct ptp_system_timestamp *sts)
404{
405 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
406
407 *ts = ns_to_timespec64(time_ns);
408}
409
410/**
411 * ice_ptp_write_init - Set PHC time to provided value
412 * @pf: Board private structure
413 * @ts: timespec structure that holds the new time value
414 *
415 * Set the PHC time to the specified time provided in the timespec.
416 */
417static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
418{
419 u64 ns = timespec64_to_ns(ts);
420 struct ice_hw *hw = &pf->hw;
421
422 return ice_ptp_init_time(hw, ns);
423}
424
425/**
426 * ice_ptp_write_adj - Adjust PHC clock time atomically
427 * @pf: Board private structure
428 * @adj: Adjustment in nanoseconds
429 *
430 * Perform an atomic adjustment of the PHC time by the specified number of
431 * nanoseconds.
432 */
433static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
434{
435 struct ice_hw *hw = &pf->hw;
436
437 return ice_ptp_adj_clock(hw, adj);
438}
439
440/**
441 * ice_ptp_adjfine - Adjust clock increment rate
442 * @info: the driver's PTP info structure
443 * @scaled_ppm: Parts per million with 16-bit fractional field
444 *
445 * Adjust the frequency of the clock by the indicated scaled ppm from the
446 * base frequency.
447 */
448static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
449{
450 struct ice_pf *pf = ptp_info_to_pf(info);
451 u64 freq, divisor = 1000000ULL;
452 struct ice_hw *hw = &pf->hw;
453 s64 incval, diff;
454 int neg_adj = 0;
455 int err;
456
457 incval = ICE_PTP_NOMINAL_INCVAL_E810;
458
459 if (scaled_ppm < 0) {
460 neg_adj = 1;
461 scaled_ppm = -scaled_ppm;
462 }
463
464 while ((u64)scaled_ppm > div_u64(U64_MAX, incval)) {
465 /* handle overflow by scaling down the scaled_ppm and
466 * the divisor, losing some precision
467 */
468 scaled_ppm >>= 2;
469 divisor >>= 2;
470 }
471
472 freq = (incval * (u64)scaled_ppm) >> 16;
473 diff = div_u64(freq, divisor);
474
475 if (neg_adj)
476 incval -= diff;
477 else
478 incval += diff;
479
480 err = ice_ptp_write_incval_locked(hw, incval);
481 if (err) {
482 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
483 err);
484 return -EIO;
485 }
486
487 return 0;
488}
489
490/**
491 * ice_ptp_gettimex64 - Get the time of the clock
492 * @info: the driver's PTP info structure
493 * @ts: timespec64 structure to hold the current time value
494 * @sts: Optional parameter for holding a pair of system timestamps from
495 * the system clock. Will be ignored if NULL is given.
496 *
497 * Read the device clock and return the correct value on ns, after converting it
498 * into a timespec struct.
499 */
500static int
501ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
502 struct ptp_system_timestamp *sts)
503{
504 struct ice_pf *pf = ptp_info_to_pf(info);
505 struct ice_hw *hw = &pf->hw;
506
507 if (!ice_ptp_lock(hw)) {
508 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
509 return -EBUSY;
510 }
511
512 ice_ptp_read_time(pf, ts, sts);
513 ice_ptp_unlock(hw);
514
515 return 0;
516}
517
518/**
519 * ice_ptp_settime64 - Set the time of the clock
520 * @info: the driver's PTP info structure
521 * @ts: timespec64 structure that holds the new time value
522 *
523 * Set the device clock to the user input value. The conversion from timespec
524 * to ns happens in the write function.
525 */
526static int
527ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
528{
529 struct ice_pf *pf = ptp_info_to_pf(info);
530 struct timespec64 ts64 = *ts;
531 struct ice_hw *hw = &pf->hw;
532 int err;
533
534 if (!ice_ptp_lock(hw)) {
535 err = -EBUSY;
536 goto exit;
537 }
538
539 err = ice_ptp_write_init(pf, &ts64);
540 ice_ptp_unlock(hw);
541
77a78115
JK
542 if (!err)
543 ice_ptp_update_cached_phctime(pf);
544
06c16d89
JK
545exit:
546 if (err) {
547 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
548 return err;
549 }
550
551 return 0;
552}
553
554/**
555 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
556 * @info: the driver's PTP info structure
557 * @delta: Offset in nanoseconds to adjust the time by
558 */
559static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
560{
561 struct timespec64 now, then;
562
563 then = ns_to_timespec64(delta);
564 ice_ptp_gettimex64(info, &now, NULL);
565 now = timespec64_add(now, then);
566
567 return ice_ptp_settime64(info, (const struct timespec64 *)&now);
568}
569
570/**
571 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
572 * @info: the driver's PTP info structure
573 * @delta: Offset in nanoseconds to adjust the time by
574 */
575static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
576{
577 struct ice_pf *pf = ptp_info_to_pf(info);
578 struct ice_hw *hw = &pf->hw;
579 struct device *dev;
580 int err;
581
582 dev = ice_pf_to_dev(pf);
583
584 /* Hardware only supports atomic adjustments using signed 32-bit
585 * integers. For any adjustment outside this range, perform
586 * a non-atomic get->adjust->set flow.
587 */
588 if (delta > S32_MAX || delta < S32_MIN) {
589 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
590 return ice_ptp_adjtime_nonatomic(info, delta);
591 }
592
593 if (!ice_ptp_lock(hw)) {
594 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
595 return -EBUSY;
596 }
597
598 err = ice_ptp_write_adj(pf, delta);
599
600 ice_ptp_unlock(hw);
601
602 if (err) {
603 dev_err(dev, "PTP failed to adjust time, err %d\n", err);
604 return err;
605 }
606
77a78115
JK
607 ice_ptp_update_cached_phctime(pf);
608
609 return 0;
610}
611
612/**
613 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
614 * @pf: Board private structure
615 * @ifr: ioctl data
616 *
617 * Copy the timestamping config to user buffer
618 */
619int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
620{
621 struct hwtstamp_config *config;
622
623 if (!test_bit(ICE_FLAG_PTP, pf->flags))
624 return -EIO;
625
626 config = &pf->ptp.tstamp_config;
627
628 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
629 -EFAULT : 0;
630}
631
632/**
633 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
634 * @pf: Board private structure
635 * @config: hwtstamp settings requested or saved
636 */
637static int
638ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
639{
640 /* Reserved for future extensions. */
641 if (config->flags)
642 return -EINVAL;
643
644 switch (config->tx_type) {
645 case HWTSTAMP_TX_OFF:
ea9b847c
JK
646 ice_set_tx_tstamp(pf, false);
647 break;
648 case HWTSTAMP_TX_ON:
649 ice_set_tx_tstamp(pf, true);
77a78115
JK
650 break;
651 default:
652 return -ERANGE;
653 }
654
655 switch (config->rx_filter) {
656 case HWTSTAMP_FILTER_NONE:
657 ice_set_rx_tstamp(pf, false);
658 break;
659 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
660 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
661 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
662 case HWTSTAMP_FILTER_PTP_V2_EVENT:
663 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
664 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
665 case HWTSTAMP_FILTER_PTP_V2_SYNC:
666 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
667 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
668 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
669 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
670 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
671 case HWTSTAMP_FILTER_NTP_ALL:
672 case HWTSTAMP_FILTER_ALL:
673 config->rx_filter = HWTSTAMP_FILTER_ALL;
674 ice_set_rx_tstamp(pf, true);
675 break;
676 default:
677 return -ERANGE;
678 }
679
06c16d89
JK
680 return 0;
681}
682
77a78115
JK
683/**
684 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
685 * @pf: Board private structure
686 * @ifr: ioctl data
687 *
688 * Get the user config and store it
689 */
690int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
691{
692 struct hwtstamp_config config;
693 int err;
694
695 if (!test_bit(ICE_FLAG_PTP, pf->flags))
696 return -EAGAIN;
697
698 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
699 return -EFAULT;
700
701 err = ice_ptp_set_timestamp_mode(pf, &config);
702 if (err)
703 return err;
704
705 /* Save these settings for future reference */
706 pf->ptp.tstamp_config = config;
707
708 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
709 -EFAULT : 0;
710}
711
712/**
713 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
714 * @rx_ring: Ring to get the VSI info
715 * @rx_desc: Receive descriptor
716 * @skb: Particular skb to send timestamp with
717 *
718 * The driver receives a notification in the receive descriptor with timestamp.
719 * The timestamp is in ns, so we must convert the result first.
720 */
721void
722ice_ptp_rx_hwtstamp(struct ice_ring *rx_ring,
723 union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
724{
725 u32 ts_high;
726 u64 ts_ns;
727
728 /* Populate timesync data into skb */
729 if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
730 struct skb_shared_hwtstamps *hwtstamps;
731
732 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific
733 * cached PHC value, rather than accessing the PF. This also
734 * allows us to simply pass the upper 32bits of nanoseconds
735 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as
736 * it would just discard these bits itself.
737 */
738 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
739 ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
740
741 hwtstamps = skb_hwtstamps(skb);
742 memset(hwtstamps, 0, sizeof(*hwtstamps));
743 hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
744 }
745}
746
06c16d89
JK
747/**
748 * ice_ptp_set_caps - Set PTP capabilities
749 * @pf: Board private structure
750 */
751static void ice_ptp_set_caps(struct ice_pf *pf)
752{
753 struct ptp_clock_info *info = &pf->ptp.info;
754 struct device *dev = ice_pf_to_dev(pf);
755
756 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
757 dev_driver_string(dev), dev_name(dev));
758 info->owner = THIS_MODULE;
759 info->max_adj = 999999999;
760 info->adjtime = ice_ptp_adjtime;
761 info->adjfine = ice_ptp_adjfine;
762 info->gettimex64 = ice_ptp_gettimex64;
763 info->settime64 = ice_ptp_settime64;
764}
765
766/**
767 * ice_ptp_create_clock - Create PTP clock device for userspace
768 * @pf: Board private structure
769 *
770 * This function creates a new PTP clock device. It only creates one if we
771 * don't already have one. Will return error if it can't create one, but success
772 * if we already have a device. Should be used by ice_ptp_init to create clock
773 * initially, and prevent global resets from creating new clock devices.
774 */
775static long ice_ptp_create_clock(struct ice_pf *pf)
776{
777 struct ptp_clock_info *info;
778 struct ptp_clock *clock;
779 struct device *dev;
780
781 /* No need to create a clock device if we already have one */
782 if (pf->ptp.clock)
783 return 0;
784
785 ice_ptp_set_caps(pf);
786
787 info = &pf->ptp.info;
788 dev = ice_pf_to_dev(pf);
789
790 /* Attempt to register the clock before enabling the hardware. */
791 clock = ptp_clock_register(info, dev);
792 if (IS_ERR(clock))
793 return PTR_ERR(clock);
794
795 pf->ptp.clock = clock;
796
797 return 0;
798}
799
ea9b847c
JK
800/**
801 * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
802 * @work: pointer to the kthread_work struct
803 *
804 * Process timestamps captured by the PHY associated with this port. To do
805 * this, loop over each index with a waiting skb.
806 *
807 * If a given index has a valid timestamp, perform the following steps:
808 *
809 * 1) copy the timestamp out of the PHY register
810 * 4) clear the timestamp valid bit in the PHY register
811 * 5) unlock the index by clearing the associated in_use bit.
812 * 2) extend the 40b timestamp value to get a 64bit timestamp
813 * 3) send that timestamp to the stack
814 *
815 * After looping, if we still have waiting SKBs, then re-queue the work. This
816 * may cause us effectively poll even when not strictly necessary. We do this
817 * because it's possible a new timestamp was requested around the same time as
818 * the interrupt. In some cases hardware might not interrupt us again when the
819 * timestamp is captured.
820 *
821 * Note that we only take the tracking lock when clearing the bit and when
822 * checking if we need to re-queue this task. The only place where bits can be
823 * set is the hard xmit routine where an SKB has a request flag set. The only
824 * places where we clear bits are this work function, or the periodic cleanup
825 * thread. If the cleanup thread clears a bit we're processing we catch it
826 * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
827 * starts a new timestamp, we might not begin processing it right away but we
828 * will notice it at the end when we re-queue the work item. If a Tx thread
829 * starts a new timestamp just after this function exits without re-queuing,
830 * the interrupt when the timestamp finishes should trigger. Avoiding holding
831 * the lock for the entire function is important in order to ensure that Tx
832 * threads do not get blocked while waiting for the lock.
833 */
834static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
835{
836 struct ice_ptp_port *ptp_port;
837 struct ice_ptp_tx *tx;
838 struct ice_pf *pf;
839 struct ice_hw *hw;
840 u8 idx;
841
842 tx = container_of(work, struct ice_ptp_tx, work);
843 if (!tx->init)
844 return;
845
846 ptp_port = container_of(tx, struct ice_ptp_port, tx);
847 pf = ptp_port_to_pf(ptp_port);
848 hw = &pf->hw;
849
850 for_each_set_bit(idx, tx->in_use, tx->len) {
851 struct skb_shared_hwtstamps shhwtstamps = {};
852 u8 phy_idx = idx + tx->quad_offset;
853 u64 raw_tstamp, tstamp;
854 struct sk_buff *skb;
855 int err;
856
857 err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
858 &raw_tstamp);
859 if (err)
860 continue;
861
862 /* Check if the timestamp is valid */
863 if (!(raw_tstamp & ICE_PTP_TS_VALID))
864 continue;
865
866 /* clear the timestamp register, so that it won't show valid
867 * again when re-used.
868 */
869 ice_clear_phy_tstamp(hw, tx->quad, phy_idx);
870
871 /* The timestamp is valid, so we'll go ahead and clear this
872 * index and then send the timestamp up to the stack.
873 */
874 spin_lock(&tx->lock);
875 clear_bit(idx, tx->in_use);
876 skb = tx->tstamps[idx].skb;
877 tx->tstamps[idx].skb = NULL;
878 spin_unlock(&tx->lock);
879
880 /* it's (unlikely but) possible we raced with the cleanup
881 * thread for discarding old timestamp requests.
882 */
883 if (!skb)
884 continue;
885
886 /* Extend the timestamp using cached PHC time */
887 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
888 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
889
890 skb_tstamp_tx(skb, &shhwtstamps);
891 dev_kfree_skb_any(skb);
892 }
893
894 /* Check if we still have work to do. If so, re-queue this task to
895 * poll for remaining timestamps.
896 */
897 spin_lock(&tx->lock);
898 if (!bitmap_empty(tx->in_use, tx->len))
899 kthread_queue_work(pf->ptp.kworker, &tx->work);
900 spin_unlock(&tx->lock);
901}
902
903/**
904 * ice_ptp_request_ts - Request an available Tx timestamp index
905 * @tx: the PTP Tx timestamp tracker to request from
906 * @skb: the SKB to associate with this timestamp request
907 */
908s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
909{
910 u8 idx;
911
912 /* Check if this tracker is initialized */
913 if (!tx->init)
914 return -1;
915
916 spin_lock(&tx->lock);
917 /* Find and set the first available index */
918 idx = find_first_zero_bit(tx->in_use, tx->len);
919 if (idx < tx->len) {
920 /* We got a valid index that no other thread could have set. Store
921 * a reference to the skb and the start time to allow discarding old
922 * requests.
923 */
924 set_bit(idx, tx->in_use);
925 tx->tstamps[idx].start = jiffies;
926 tx->tstamps[idx].skb = skb_get(skb);
927 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
928 }
929
930 spin_unlock(&tx->lock);
931
932 /* return the appropriate PHY timestamp register index, -1 if no
933 * indexes were available.
934 */
935 if (idx >= tx->len)
936 return -1;
937 else
938 return idx + tx->quad_offset;
939}
940
941/**
942 * ice_ptp_process_ts - Spawn kthread work to handle timestamps
943 * @pf: Board private structure
944 *
945 * Queue work required to process the PTP Tx timestamps outside of interrupt
946 * context.
947 */
948void ice_ptp_process_ts(struct ice_pf *pf)
949{
950 if (pf->ptp.port.tx.init)
951 kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
952}
953
954/**
955 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
956 * @tx: Tx tracking structure to initialize
957 *
958 * Assumes that the length has already been initialized. Do not call directly,
959 * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
960 */
961static int
962ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
963{
964 tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
965 if (!tx->tstamps)
966 return -ENOMEM;
967
968 tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
969 if (!tx->in_use) {
970 kfree(tx->tstamps);
971 tx->tstamps = NULL;
972 return -ENOMEM;
973 }
974
975 spin_lock_init(&tx->lock);
976 kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
977
978 tx->init = 1;
979
980 return 0;
981}
982
983/**
984 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
985 * @pf: Board private structure
986 * @tx: the tracker to flush
987 */
988static void
989ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
990{
991 u8 idx;
992
993 for (idx = 0; idx < tx->len; idx++) {
994 u8 phy_idx = idx + tx->quad_offset;
995
996 /* Clear any potential residual timestamp in the PHY block */
997 if (!pf->hw.reset_ongoing)
998 ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
999
1000 if (tx->tstamps[idx].skb) {
1001 dev_kfree_skb_any(tx->tstamps[idx].skb);
1002 tx->tstamps[idx].skb = NULL;
1003 }
1004 }
1005}
1006
1007/**
1008 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
1009 * @pf: Board private structure
1010 * @tx: Tx tracking structure to release
1011 *
1012 * Free memory associated with the Tx timestamp tracker.
1013 */
1014static void
1015ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
1016{
1017 tx->init = 0;
1018
1019 kthread_cancel_work_sync(&tx->work);
1020
1021 ice_ptp_flush_tx_tracker(pf, tx);
1022
1023 kfree(tx->tstamps);
1024 tx->tstamps = NULL;
1025
1026 kfree(tx->in_use);
1027 tx->in_use = NULL;
1028
1029 tx->len = 0;
1030}
1031
1032/**
1033 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1034 * @pf: Board private structure
1035 * @tx: the Tx tracking structure to initialize
1036 *
1037 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1038 * port has its own block of timestamps, independent of the other ports.
1039 */
1040static int
1041ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1042{
1043 tx->quad = pf->hw.port_info->lport;
1044 tx->quad_offset = 0;
1045 tx->len = INDEX_PER_QUAD;
1046
1047 return ice_ptp_alloc_tx_tracker(tx);
1048}
1049
1050/**
1051 * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
1052 * @tx: PTP Tx tracker to clean up
1053 *
1054 * Loop through the Tx timestamp requests and see if any of them have been
1055 * waiting for a long time. Discard any SKBs that have been waiting for more
1056 * than 2 seconds. This is long enough to be reasonably sure that the
1057 * timestamp will never be captured. This might happen if the packet gets
1058 * discarded before it reaches the PHY timestamping block.
1059 */
1060static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx)
1061{
1062 u8 idx;
1063
1064 if (!tx->init)
1065 return;
1066
1067 for_each_set_bit(idx, tx->in_use, tx->len) {
1068 struct sk_buff *skb;
1069
1070 /* Check if this SKB has been waiting for too long */
1071 if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
1072 continue;
1073
1074 spin_lock(&tx->lock);
1075 skb = tx->tstamps[idx].skb;
1076 tx->tstamps[idx].skb = NULL;
1077 clear_bit(idx, tx->in_use);
1078 spin_unlock(&tx->lock);
1079
1080 /* Free the SKB after we've cleared the bit */
1081 dev_kfree_skb_any(skb);
1082 }
1083}
1084
77a78115
JK
1085static void ice_ptp_periodic_work(struct kthread_work *work)
1086{
1087 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
1088 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1089
1090 if (!test_bit(ICE_FLAG_PTP, pf->flags))
1091 return;
1092
1093 ice_ptp_update_cached_phctime(pf);
1094
ea9b847c
JK
1095 ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx);
1096
77a78115
JK
1097 /* Run twice a second */
1098 kthread_queue_delayed_work(ptp->kworker, &ptp->work,
1099 msecs_to_jiffies(500));
1100}
1101
06c16d89
JK
1102/**
1103 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
1104 * @pf: Board private structure
1105 *
1106 * Setup and initialize a PTP clock device that represents the device hardware
1107 * clock. Save the clock index for other functions connected to the same
1108 * hardware resource.
1109 */
1110static int ice_ptp_init_owner(struct ice_pf *pf)
1111{
1112 struct device *dev = ice_pf_to_dev(pf);
1113 struct ice_hw *hw = &pf->hw;
1114 struct timespec64 ts;
1115 u8 src_idx;
1116 int err;
1117
1118 wr32(hw, GLTSYN_SYNC_DLAY, 0);
1119
1120 /* Clear some HW residue and enable source clock */
1121 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1122
1123 /* Enable source clocks */
1124 wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
1125
1126 /* Enable PHY time sync */
1127 err = ice_ptp_init_phy_e810(hw);
1128 if (err)
1129 goto err_exit;
1130
1131 /* Clear event status indications for auxiliary pins */
1132 (void)rd32(hw, GLTSYN_STAT(src_idx));
1133
1134 /* Acquire the global hardware lock */
1135 if (!ice_ptp_lock(hw)) {
1136 err = -EBUSY;
1137 goto err_exit;
1138 }
1139
1140 /* Write the increment time value to PHY and LAN */
1141 err = ice_ptp_write_incval(hw, ICE_PTP_NOMINAL_INCVAL_E810);
1142 if (err) {
1143 ice_ptp_unlock(hw);
1144 goto err_exit;
1145 }
1146
1147 ts = ktime_to_timespec64(ktime_get_real());
1148 /* Write the initial Time value to PHY and LAN */
1149 err = ice_ptp_write_init(pf, &ts);
1150 if (err) {
1151 ice_ptp_unlock(hw);
1152 goto err_exit;
1153 }
1154
1155 /* Release the global hardware lock */
1156 ice_ptp_unlock(hw);
1157
1158 /* Ensure we have a clock device */
1159 err = ice_ptp_create_clock(pf);
1160 if (err)
1161 goto err_clk;
1162
67569a7f
JK
1163 /* Store the PTP clock index for other PFs */
1164 ice_set_ptp_clock_index(pf);
1165
06c16d89
JK
1166 return 0;
1167
1168err_clk:
1169 pf->ptp.clock = NULL;
1170err_exit:
1171 dev_err(dev, "PTP failed to register clock, err %d\n", err);
1172
1173 return err;
1174}
1175
1176/**
1177 * ice_ptp_init - Initialize the PTP support after device probe or reset
1178 * @pf: Board private structure
1179 *
1180 * This function sets device up for PTP support. The first time it is run, it
1181 * will create a clock device. It does not create a clock device if one
1182 * already exists. It also reconfigures the device after a reset.
1183 */
1184void ice_ptp_init(struct ice_pf *pf)
1185{
1186 struct device *dev = ice_pf_to_dev(pf);
77a78115 1187 struct kthread_worker *kworker;
06c16d89
JK
1188 struct ice_hw *hw = &pf->hw;
1189 int err;
1190
1191 /* PTP is currently only supported on E810 devices */
1192 if (!ice_is_e810(hw))
1193 return;
1194
1195 /* Check if this PF owns the source timer */
1196 if (hw->func_caps.ts_func_info.src_tmr_owned) {
1197 err = ice_ptp_init_owner(pf);
1198 if (err)
1199 return;
1200 }
1201
77a78115
JK
1202 /* Disable timestamping for both Tx and Rx */
1203 ice_ptp_cfg_timestamp(pf, false);
1204
ea9b847c
JK
1205 /* Initialize the PTP port Tx timestamp tracker */
1206 ice_ptp_init_tx_e810(pf, &pf->ptp.port.tx);
1207
77a78115
JK
1208 /* Initialize work functions */
1209 kthread_init_delayed_work(&pf->ptp.work, ice_ptp_periodic_work);
1210
1211 /* Allocate a kworker for handling work required for the ports
1212 * connected to the PTP hardware clock.
1213 */
1214 kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(dev));
1215 if (IS_ERR(kworker)) {
1216 err = PTR_ERR(kworker);
1217 goto err_kworker;
1218 }
1219 pf->ptp.kworker = kworker;
1220
06c16d89
JK
1221 set_bit(ICE_FLAG_PTP, pf->flags);
1222
77a78115
JK
1223 /* Start periodic work going */
1224 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 0);
1225
06c16d89 1226 dev_info(dev, "PTP init successful\n");
77a78115
JK
1227 return;
1228
1229err_kworker:
1230 /* If we registered a PTP clock, release it */
1231 if (pf->ptp.clock) {
1232 ptp_clock_unregister(pf->ptp.clock);
1233 pf->ptp.clock = NULL;
1234 }
1235 dev_err(dev, "PTP failed %d\n", err);
06c16d89
JK
1236}
1237
1238/**
1239 * ice_ptp_release - Disable the driver/HW support and unregister the clock
1240 * @pf: Board private structure
1241 *
1242 * This function handles the cleanup work required from the initialization by
1243 * clearing out the important information and unregistering the clock
1244 */
1245void ice_ptp_release(struct ice_pf *pf)
1246{
77a78115
JK
1247 /* Disable timestamping for both Tx and Rx */
1248 ice_ptp_cfg_timestamp(pf, false);
1249
ea9b847c
JK
1250 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
1251
06c16d89
JK
1252 clear_bit(ICE_FLAG_PTP, pf->flags);
1253
77a78115
JK
1254 kthread_cancel_delayed_work_sync(&pf->ptp.work);
1255
1256 if (pf->ptp.kworker) {
1257 kthread_destroy_worker(pf->ptp.kworker);
1258 pf->ptp.kworker = NULL;
1259 }
1260
06c16d89
JK
1261 if (!pf->ptp.clock)
1262 return;
1263
67569a7f 1264 ice_clear_ptp_clock_index(pf);
06c16d89
JK
1265 ptp_clock_unregister(pf->ptp.clock);
1266 pf->ptp.clock = NULL;
1267
1268 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
1269}