ice: Cleanup short function signatures
[linux-2.6-block.git] / drivers / net / ethernet / intel / ice / ice_common.c
CommitLineData
7ec59eea
AV
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
9c20346b 5#include "ice_sched.h"
7ec59eea
AV
6#include "ice_adminq_cmd.h"
7
f31e4b6f
AV
8#define ICE_PF_RESET_WAIT_COUNT 200
9
22ef683b
AV
10#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
11 wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
cdedef59
AV
12 ((ICE_RX_OPC_MDID << \
13 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17
22ef683b
AV
18#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
19 wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
cdedef59
AV
20 (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28
f31e4b6f
AV
29/**
30 * ice_set_mac_type - Sets MAC type
31 * @hw: pointer to the HW structure
32 *
33 * This function sets the MAC type of the adapter based on the
34 * vendor ID and device ID stored in the hw structure.
35 */
36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37{
38 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 return ICE_ERR_DEVICE_NOT_SUPPORTED;
40
41 hw->mac_type = ICE_MAC_GENERIC;
42 return 0;
43}
44
f203dca3
AV
45/**
46 * ice_dev_onetime_setup - Temporary HW/FW workarounds
47 * @hw: pointer to the HW structure
48 *
49 * This function provides temporary workarounds for certain issues
50 * that are expected to be fixed in the HW/FW.
51 */
52void ice_dev_onetime_setup(struct ice_hw *hw)
53{
54 /* configure Rx - set non pxe mode */
55 wr32(hw, GLLAN_RCTL_0, 0x1);
56
57#define MBX_PF_VT_PFALLOC 0x00231E80
58 /* set VFs per PF */
59 wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
60}
61
f31e4b6f
AV
62/**
63 * ice_clear_pf_cfg - Clear PF configuration
64 * @hw: pointer to the hardware structure
3968540b
AV
65 *
66 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
67 * configuration, flow director filters, etc.).
f31e4b6f
AV
68 */
69enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
70{
71 struct ice_aq_desc desc;
72
73 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
74
75 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
76}
77
dc49c772
AV
78/**
79 * ice_aq_manage_mac_read - manage MAC address read command
80 * @hw: pointer to the hw struct
81 * @buf: a virtual buffer to hold the manage MAC read response
82 * @buf_size: Size of the virtual buffer
83 * @cd: pointer to command details structure or NULL
84 *
85 * This function is used to return per PF station MAC address (0x0107).
86 * NOTE: Upon successful completion of this command, MAC address information
87 * is returned in user specified buffer. Please interpret user specified
88 * buffer as "manage_mac_read" response.
89 * Response such as various MAC addresses are stored in HW struct (port.mac)
90 * ice_aq_discover_caps is expected to be called before this function is called.
91 */
92static enum ice_status
93ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
94 struct ice_sq_cd *cd)
95{
96 struct ice_aqc_manage_mac_read_resp *resp;
97 struct ice_aqc_manage_mac_read *cmd;
98 struct ice_aq_desc desc;
99 enum ice_status status;
100 u16 flags;
d6fef10c 101 u8 i;
dc49c772
AV
102
103 cmd = &desc.params.mac_read;
104
105 if (buf_size < sizeof(*resp))
106 return ICE_ERR_BUF_TOO_SHORT;
107
108 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
109
110 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
111 if (status)
112 return status;
113
114 resp = (struct ice_aqc_manage_mac_read_resp *)buf;
115 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
116
117 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
118 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
119 return ICE_ERR_CFG;
120 }
121
d6fef10c
MFIP
122 /* A single port can report up to two (LAN and WoL) addresses */
123 for (i = 0; i < cmd->num_addr; i++)
124 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
125 ether_addr_copy(hw->port_info->mac.lan_addr,
126 resp[i].mac_addr);
127 ether_addr_copy(hw->port_info->mac.perm_addr,
128 resp[i].mac_addr);
129 break;
130 }
131
dc49c772
AV
132 return 0;
133}
134
135/**
136 * ice_aq_get_phy_caps - returns PHY capabilities
137 * @pi: port information structure
138 * @qual_mods: report qualified modules
139 * @report_mode: report mode capabilities
140 * @pcaps: structure for PHY capabilities to be filled
141 * @cd: pointer to command details structure or NULL
142 *
143 * Returns the various PHY capabilities supported on the Port (0x0600)
144 */
48cb27f2 145enum ice_status
dc49c772
AV
146ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
147 struct ice_aqc_get_phy_caps_data *pcaps,
148 struct ice_sq_cd *cd)
149{
150 struct ice_aqc_get_phy_caps *cmd;
151 u16 pcaps_size = sizeof(*pcaps);
152 struct ice_aq_desc desc;
153 enum ice_status status;
154
155 cmd = &desc.params.get_phy;
156
157 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 return ICE_ERR_PARAM;
159
160 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
161
162 if (qual_mods)
163 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
164
165 cmd->param0 |= cpu_to_le16(report_mode);
166 status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
167
168 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP)
169 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
170
171 return status;
172}
173
174/**
175 * ice_get_media_type - Gets media type
176 * @pi: port information structure
177 */
178static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
179{
180 struct ice_link_status *hw_link_info;
181
182 if (!pi)
183 return ICE_MEDIA_UNKNOWN;
184
185 hw_link_info = &pi->phy.link_info;
186
187 if (hw_link_info->phy_type_low) {
188 switch (hw_link_info->phy_type_low) {
189 case ICE_PHY_TYPE_LOW_1000BASE_SX:
190 case ICE_PHY_TYPE_LOW_1000BASE_LX:
191 case ICE_PHY_TYPE_LOW_10GBASE_SR:
192 case ICE_PHY_TYPE_LOW_10GBASE_LR:
193 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
194 case ICE_PHY_TYPE_LOW_25GBASE_SR:
195 case ICE_PHY_TYPE_LOW_25GBASE_LR:
196 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
197 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
198 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
199 return ICE_MEDIA_FIBER;
200 case ICE_PHY_TYPE_LOW_100BASE_TX:
201 case ICE_PHY_TYPE_LOW_1000BASE_T:
202 case ICE_PHY_TYPE_LOW_2500BASE_T:
203 case ICE_PHY_TYPE_LOW_5GBASE_T:
204 case ICE_PHY_TYPE_LOW_10GBASE_T:
205 case ICE_PHY_TYPE_LOW_25GBASE_T:
206 return ICE_MEDIA_BASET;
207 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
208 case ICE_PHY_TYPE_LOW_25GBASE_CR:
209 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
210 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
211 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
212 return ICE_MEDIA_DA;
213 case ICE_PHY_TYPE_LOW_1000BASE_KX:
214 case ICE_PHY_TYPE_LOW_2500BASE_KX:
215 case ICE_PHY_TYPE_LOW_2500BASE_X:
216 case ICE_PHY_TYPE_LOW_5GBASE_KR:
217 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
218 case ICE_PHY_TYPE_LOW_25GBASE_KR:
219 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
220 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
221 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
222 return ICE_MEDIA_BACKPLANE;
223 }
224 }
225
226 return ICE_MEDIA_UNKNOWN;
227}
228
229/**
230 * ice_aq_get_link_info
231 * @pi: port information structure
232 * @ena_lse: enable/disable LinkStatusEvent reporting
233 * @link: pointer to link status structure - optional
234 * @cd: pointer to command details structure or NULL
235 *
236 * Get Link Status (0x607). Returns the link status of the adapter.
237 */
4f4be03b 238static enum ice_status
dc49c772
AV
239ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
240 struct ice_link_status *link, struct ice_sq_cd *cd)
241{
242 struct ice_link_status *hw_link_info_old, *hw_link_info;
243 struct ice_aqc_get_link_status_data link_data = { 0 };
244 struct ice_aqc_get_link_status *resp;
245 enum ice_media_type *hw_media_type;
246 struct ice_fc_info *hw_fc_info;
247 bool tx_pause, rx_pause;
248 struct ice_aq_desc desc;
249 enum ice_status status;
250 u16 cmd_flags;
251
252 if (!pi)
253 return ICE_ERR_PARAM;
254 hw_link_info_old = &pi->phy.link_info_old;
255 hw_media_type = &pi->phy.media_type;
256 hw_link_info = &pi->phy.link_info;
257 hw_fc_info = &pi->fc;
258
259 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
260 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
261 resp = &desc.params.get_link_status;
262 resp->cmd_flags = cpu_to_le16(cmd_flags);
263 resp->lport_num = pi->lport;
264
265 status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
266 cd);
267
268 if (status)
269 return status;
270
271 /* save off old link status information */
272 *hw_link_info_old = *hw_link_info;
273
274 /* update current link status information */
275 hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
276 hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
277 *hw_media_type = ice_get_media_type(pi);
278 hw_link_info->link_info = link_data.link_info;
279 hw_link_info->an_info = link_data.an_info;
280 hw_link_info->ext_info = link_data.ext_info;
281 hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
282 hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
283
284 /* update fc info */
285 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
286 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
287 if (tx_pause && rx_pause)
288 hw_fc_info->current_mode = ICE_FC_FULL;
289 else if (tx_pause)
290 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
291 else if (rx_pause)
292 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
293 else
294 hw_fc_info->current_mode = ICE_FC_NONE;
295
296 hw_link_info->lse_ena =
297 !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
298
299 /* save link status information */
300 if (link)
301 *link = *hw_link_info;
302
303 /* flag cleared so calling functions don't call AQ again */
304 pi->phy.get_link_info = false;
305
306 return status;
307}
308
cdedef59 309/**
22ef683b 310 * ice_init_flex_flags
cdedef59 311 * @hw: pointer to the hardware structure
22ef683b 312 * @prof_id: Rx Descriptor Builder profile ID
cdedef59 313 *
22ef683b 314 * Function to initialize Rx flex flags
cdedef59 315 */
22ef683b 316static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
cdedef59
AV
317{
318 u8 idx = 0;
319
22ef683b
AV
320 /* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
321 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
322 * flexiflags1[3:0] - Not used for flag programming
323 * flexiflags2[7:0] - Tunnel and VLAN types
324 * 2 invalid fields in last index
325 */
326 switch (prof_id) {
327 /* Rx flex flags are currently programmed for the NIC profiles only.
328 * Different flag bit programming configurations can be added per
329 * profile as needed.
330 */
331 case ICE_RXDID_FLEX_NIC:
332 case ICE_RXDID_FLEX_NIC_2:
333 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_FRG,
334 ICE_RXFLG_UDP_GRE, ICE_RXFLG_PKT_DSI,
335 ICE_RXFLG_FIN, idx++);
336 /* flex flag 1 is not used for flexi-flag programming, skipping
337 * these four FLG64 bits.
338 */
339 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_SYN, ICE_RXFLG_RST,
340 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
341 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_DSI,
342 ICE_RXFLG_PKT_DSI, ICE_RXFLG_EVLAN_x8100,
343 ICE_RXFLG_EVLAN_x9100, idx++);
344 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_VLAN_x8100,
345 ICE_RXFLG_TNL_VLAN, ICE_RXFLG_TNL_MAC,
346 ICE_RXFLG_TNL0, idx++);
347 ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
348 ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
349 break;
350
351 default:
352 ice_debug(hw, ICE_DBG_INIT,
353 "Flag programming for profile ID %d not supported\n",
354 prof_id);
355 }
356}
357
358/**
359 * ice_init_flex_flds
360 * @hw: pointer to the hardware structure
361 * @prof_id: Rx Descriptor Builder profile ID
362 *
363 * Function to initialize flex descriptors
364 */
365static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
366{
367 enum ice_flex_rx_mdid mdid;
368
369 switch (prof_id) {
370 case ICE_RXDID_FLEX_NIC:
371 case ICE_RXDID_FLEX_NIC_2:
372 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
373 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
374 ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
375
376 mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
377 ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
378
379 ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
380
381 ice_init_flex_flags(hw, prof_id);
382 break;
383
384 default:
385 ice_debug(hw, ICE_DBG_INIT,
386 "Field init for profile ID %d not supported\n",
387 prof_id);
388 }
cdedef59
AV
389}
390
9daf8208
AV
391/**
392 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
393 * @hw: pointer to the hw struct
394 */
395static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
396{
397 struct ice_switch_info *sw;
398
399 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
400 sizeof(*hw->switch_info), GFP_KERNEL);
401 sw = hw->switch_info;
402
403 if (!sw)
404 return ICE_ERR_NO_MEMORY;
405
406 INIT_LIST_HEAD(&sw->vsi_list_map_head);
407
5fb597d7 408 return ice_init_def_sw_recp(hw);
9daf8208
AV
409}
410
411/**
412 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
413 * @hw: pointer to the hw struct
414 */
415static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
416{
417 struct ice_switch_info *sw = hw->switch_info;
418 struct ice_vsi_list_map_info *v_pos_map;
419 struct ice_vsi_list_map_info *v_tmp_map;
80d144c9
AV
420 struct ice_sw_recipe *recps;
421 u8 i;
9daf8208
AV
422
423 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
424 list_entry) {
425 list_del(&v_pos_map->list_entry);
426 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
427 }
80d144c9
AV
428 recps = hw->switch_info->recp_list;
429 for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
430 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
431
432 recps[i].root_rid = i;
433 mutex_destroy(&recps[i].filt_rule_lock);
434 list_for_each_entry_safe(lst_itr, tmp_entry,
435 &recps[i].filt_rules, list_entry) {
436 list_del(&lst_itr->list_entry);
437 devm_kfree(ice_hw_to_dev(hw), lst_itr);
438 }
439 }
334cb062 440 ice_rm_all_sw_replay_rule_info(hw);
80d144c9 441 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
9daf8208
AV
442 devm_kfree(ice_hw_to_dev(hw), sw);
443}
444
8b97ceb1
HT
445#define ICE_FW_LOG_DESC_SIZE(n) (sizeof(struct ice_aqc_fw_logging_data) + \
446 (((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
447#define ICE_FW_LOG_DESC_SIZE_MAX \
448 ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
449
450/**
451 * ice_cfg_fw_log - configure FW logging
452 * @hw: pointer to the hw struct
453 * @enable: enable certain FW logging events if true, disable all if false
454 *
455 * This function enables/disables the FW logging via Rx CQ events and a UART
456 * port based on predetermined configurations. FW logging via the Rx CQ can be
457 * enabled/disabled for individual PF's. However, FW logging via the UART can
458 * only be enabled/disabled for all PFs on the same device.
459 *
460 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
461 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
462 * before initializing the device.
463 *
464 * When re/configuring FW logging, callers need to update the "cfg" elements of
465 * the hw->fw_log.evnts array with the desired logging event configurations for
466 * modules of interest. When disabling FW logging completely, the callers can
467 * just pass false in the "enable" parameter. On completion, the function will
468 * update the "cur" element of the hw->fw_log.evnts array with the resulting
469 * logging event configurations of the modules that are being re/configured. FW
470 * logging modules that are not part of a reconfiguration operation retain their
471 * previous states.
472 *
473 * Before resetting the device, it is recommended that the driver disables FW
474 * logging before shutting down the control queue. When disabling FW logging
475 * ("enable" = false), the latest configurations of FW logging events stored in
476 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
477 * a device reset.
478 *
479 * When enabling FW logging to emit log messages via the Rx CQ during the
480 * device's initialization phase, a mechanism alternative to interrupt handlers
481 * needs to be used to extract FW log messages from the Rx CQ periodically and
482 * to prevent the Rx CQ from being full and stalling other types of control
483 * messages from FW to SW. Interrupts are typically disabled during the device's
484 * initialization phase.
485 */
486static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
487{
488 struct ice_aqc_fw_logging_data *data = NULL;
489 struct ice_aqc_fw_logging *cmd;
490 enum ice_status status = 0;
491 u16 i, chgs = 0, len = 0;
492 struct ice_aq_desc desc;
493 u8 actv_evnts = 0;
494 void *buf = NULL;
495
496 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
497 return 0;
498
499 /* Disable FW logging only when the control queue is still responsive */
500 if (!enable &&
501 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
502 return 0;
503
504 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
505 cmd = &desc.params.fw_logging;
506
507 /* Indicate which controls are valid */
508 if (hw->fw_log.cq_en)
509 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
510
511 if (hw->fw_log.uart_en)
512 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
513
514 if (enable) {
515 /* Fill in an array of entries with FW logging modules and
516 * logging events being reconfigured.
517 */
518 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
519 u16 val;
520
521 /* Keep track of enabled event types */
522 actv_evnts |= hw->fw_log.evnts[i].cfg;
523
524 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
525 continue;
526
527 if (!data) {
528 data = devm_kzalloc(ice_hw_to_dev(hw),
529 ICE_FW_LOG_DESC_SIZE_MAX,
530 GFP_KERNEL);
531 if (!data)
532 return ICE_ERR_NO_MEMORY;
533 }
534
535 val = i << ICE_AQC_FW_LOG_ID_S;
536 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
537 data->entry[chgs++] = cpu_to_le16(val);
538 }
539
540 /* Only enable FW logging if at least one module is specified.
541 * If FW logging is currently enabled but all modules are not
542 * enabled to emit log messages, disable FW logging altogether.
543 */
544 if (actv_evnts) {
545 /* Leave if there is effectively no change */
546 if (!chgs)
547 goto out;
548
549 if (hw->fw_log.cq_en)
550 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
551
552 if (hw->fw_log.uart_en)
553 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
554
555 buf = data;
556 len = ICE_FW_LOG_DESC_SIZE(chgs);
557 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
558 }
559 }
560
561 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
562 if (!status) {
563 /* Update the current configuration to reflect events enabled.
564 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
565 * logging mode is enabled for the device. They do not reflect
566 * actual modules being enabled to emit log messages. So, their
567 * values remain unchanged even when all modules are disabled.
568 */
569 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
570
571 hw->fw_log.actv_evnts = actv_evnts;
572 for (i = 0; i < cnt; i++) {
573 u16 v, m;
574
575 if (!enable) {
576 /* When disabling all FW logging events as part
577 * of device's de-initialization, the original
578 * configurations are retained, and can be used
579 * to reconfigure FW logging later if the device
580 * is re-initialized.
581 */
582 hw->fw_log.evnts[i].cur = 0;
583 continue;
584 }
585
586 v = le16_to_cpu(data->entry[i]);
587 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
588 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
589 }
590 }
591
592out:
593 if (data)
594 devm_kfree(ice_hw_to_dev(hw), data);
595
596 return status;
597}
598
599/**
600 * ice_output_fw_log
601 * @hw: pointer to the hw struct
602 * @desc: pointer to the AQ message descriptor
603 * @buf: pointer to the buffer accompanying the AQ message
604 *
605 * Formats a FW Log message and outputs it via the standard driver logs.
606 */
607void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
608{
609 ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n");
610 ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf,
611 le16_to_cpu(desc->datalen));
612 ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n");
613}
614
9e4ab4c2
BC
615/**
616 * ice_get_itr_intrl_gran - determine int/intrl granularity
617 * @hw: pointer to the hw struct
618 *
619 * Determines the itr/intrl granularities based on the maximum aggregate
620 * bandwidth according to the device's configuration during power-on.
621 */
622static enum ice_status ice_get_itr_intrl_gran(struct ice_hw *hw)
623{
624 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
625 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
626 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
627
628 switch (max_agg_bw) {
629 case ICE_MAX_AGG_BW_200G:
630 case ICE_MAX_AGG_BW_100G:
631 case ICE_MAX_AGG_BW_50G:
632 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
633 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
634 break;
635 case ICE_MAX_AGG_BW_25G:
636 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
637 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
638 break;
639 default:
640 ice_debug(hw, ICE_DBG_INIT,
641 "Failed to determine itr/intrl granularity\n");
642 return ICE_ERR_CFG;
643 }
644
645 return 0;
646}
647
f31e4b6f
AV
648/**
649 * ice_init_hw - main hardware initialization routine
650 * @hw: pointer to the hardware structure
651 */
652enum ice_status ice_init_hw(struct ice_hw *hw)
653{
dc49c772 654 struct ice_aqc_get_phy_caps_data *pcaps;
f31e4b6f 655 enum ice_status status;
dc49c772
AV
656 u16 mac_buf_len;
657 void *mac_buf;
f31e4b6f
AV
658
659 /* Set MAC type based on DeviceID */
660 status = ice_set_mac_type(hw);
661 if (status)
662 return status;
663
664 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
665 PF_FUNC_RID_FUNC_NUM_M) >>
666 PF_FUNC_RID_FUNC_NUM_S;
667
668 status = ice_reset(hw, ICE_RESET_PFR);
669 if (status)
670 return status;
671
9e4ab4c2
BC
672 status = ice_get_itr_intrl_gran(hw);
673 if (status)
674 return status;
940b61af 675
f31e4b6f
AV
676 status = ice_init_all_ctrlq(hw);
677 if (status)
678 goto err_unroll_cqinit;
679
8b97ceb1
HT
680 /* Enable FW logging. Not fatal if this fails. */
681 status = ice_cfg_fw_log(hw, true);
682 if (status)
683 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
684
f31e4b6f
AV
685 status = ice_clear_pf_cfg(hw);
686 if (status)
687 goto err_unroll_cqinit;
688
689 ice_clear_pxe_mode(hw);
690
691 status = ice_init_nvm(hw);
692 if (status)
693 goto err_unroll_cqinit;
694
9c20346b
AV
695 status = ice_get_caps(hw);
696 if (status)
697 goto err_unroll_cqinit;
698
699 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
700 sizeof(*hw->port_info), GFP_KERNEL);
701 if (!hw->port_info) {
702 status = ICE_ERR_NO_MEMORY;
703 goto err_unroll_cqinit;
704 }
705
706 /* set the back pointer to hw */
707 hw->port_info->hw = hw;
708
709 /* Initialize port_info struct with switch configuration data */
710 status = ice_get_initial_sw_cfg(hw);
711 if (status)
712 goto err_unroll_alloc;
713
9daf8208
AV
714 hw->evb_veb = true;
715
9c20346b
AV
716 /* Query the allocated resources for tx scheduler */
717 status = ice_sched_query_res_alloc(hw);
718 if (status) {
719 ice_debug(hw, ICE_DBG_SCHED,
720 "Failed to get scheduler allocated resources\n");
721 goto err_unroll_alloc;
722 }
723
dc49c772
AV
724 /* Initialize port_info struct with scheduler data */
725 status = ice_sched_init_port(hw->port_info);
726 if (status)
727 goto err_unroll_sched;
728
729 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
730 if (!pcaps) {
731 status = ICE_ERR_NO_MEMORY;
732 goto err_unroll_sched;
733 }
734
735 /* Initialize port_info struct with PHY capabilities */
736 status = ice_aq_get_phy_caps(hw->port_info, false,
737 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
738 devm_kfree(ice_hw_to_dev(hw), pcaps);
739 if (status)
740 goto err_unroll_sched;
741
742 /* Initialize port_info struct with link information */
743 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
744 if (status)
745 goto err_unroll_sched;
746
b36c598c
AV
747 /* need a valid SW entry point to build a Tx tree */
748 if (!hw->sw_entry_point_layer) {
749 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
750 status = ICE_ERR_CFG;
751 goto err_unroll_sched;
752 }
753
9daf8208
AV
754 status = ice_init_fltr_mgmt_struct(hw);
755 if (status)
756 goto err_unroll_sched;
757
f203dca3
AV
758 ice_dev_onetime_setup(hw);
759
d6fef10c
MFIP
760 /* Get MAC information */
761 /* A single port can report up to two (LAN and WoL) addresses */
762 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
763 sizeof(struct ice_aqc_manage_mac_read_resp),
764 GFP_KERNEL);
765 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
dc49c772 766
63bb4e1e
WY
767 if (!mac_buf) {
768 status = ICE_ERR_NO_MEMORY;
9daf8208 769 goto err_unroll_fltr_mgmt_struct;
63bb4e1e 770 }
dc49c772
AV
771
772 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
773 devm_kfree(ice_hw_to_dev(hw), mac_buf);
774
775 if (status)
9daf8208 776 goto err_unroll_fltr_mgmt_struct;
dc49c772 777
22ef683b
AV
778 ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
779 ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
cdedef59 780
f31e4b6f
AV
781 return 0;
782
9daf8208
AV
783err_unroll_fltr_mgmt_struct:
784 ice_cleanup_fltr_mgmt_struct(hw);
dc49c772
AV
785err_unroll_sched:
786 ice_sched_cleanup_all(hw);
9c20346b
AV
787err_unroll_alloc:
788 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
f31e4b6f
AV
789err_unroll_cqinit:
790 ice_shutdown_all_ctrlq(hw);
791 return status;
792}
793
794/**
795 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
796 * @hw: pointer to the hardware structure
797 */
798void ice_deinit_hw(struct ice_hw *hw)
799{
8b97ceb1
HT
800 ice_cleanup_fltr_mgmt_struct(hw);
801
9c20346b 802 ice_sched_cleanup_all(hw);
dc49c772 803
9c20346b
AV
804 if (hw->port_info) {
805 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
806 hw->port_info = NULL;
807 }
9daf8208 808
8b97ceb1
HT
809 /* Attempt to disable FW logging before shutting down control queues */
810 ice_cfg_fw_log(hw, false);
811 ice_shutdown_all_ctrlq(hw);
33e055fc
VR
812
813 /* Clear VSI contexts if not already cleared */
814 ice_clear_all_vsi_ctx(hw);
f31e4b6f
AV
815}
816
817/**
818 * ice_check_reset - Check to see if a global reset is complete
819 * @hw: pointer to the hardware structure
820 */
821enum ice_status ice_check_reset(struct ice_hw *hw)
822{
823 u32 cnt, reg = 0, grst_delay;
824
825 /* Poll for Device Active state in case a recent CORER, GLOBR,
826 * or EMPR has occurred. The grst delay value is in 100ms units.
827 * Add 1sec for outstanding AQ commands that can take a long time.
828 */
829 grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
830 GLGEN_RSTCTL_GRSTDEL_S) + 10;
831
832 for (cnt = 0; cnt < grst_delay; cnt++) {
833 mdelay(100);
834 reg = rd32(hw, GLGEN_RSTAT);
835 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
836 break;
837 }
838
839 if (cnt == grst_delay) {
840 ice_debug(hw, ICE_DBG_INIT,
841 "Global reset polling failed to complete.\n");
842 return ICE_ERR_RESET_FAILED;
843 }
844
845#define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \
846 GLNVM_ULD_GLOBR_DONE_M)
847
848 /* Device is Active; check Global Reset processes are done */
849 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
850 reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
851 if (reg == ICE_RESET_DONE_MASK) {
852 ice_debug(hw, ICE_DBG_INIT,
853 "Global reset processes done. %d\n", cnt);
854 break;
855 }
856 mdelay(10);
857 }
858
859 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
860 ice_debug(hw, ICE_DBG_INIT,
861 "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
862 reg);
863 return ICE_ERR_RESET_FAILED;
864 }
865
866 return 0;
867}
868
869/**
870 * ice_pf_reset - Reset the PF
871 * @hw: pointer to the hardware structure
872 *
873 * If a global reset has been triggered, this function checks
874 * for its completion and then issues the PF reset
875 */
876static enum ice_status ice_pf_reset(struct ice_hw *hw)
877{
878 u32 cnt, reg;
879
880 /* If at function entry a global reset was already in progress, i.e.
881 * state is not 'device active' or any of the reset done bits are not
882 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
883 * global reset is done.
884 */
885 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
886 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
887 /* poll on global reset currently in progress until done */
888 if (ice_check_reset(hw))
889 return ICE_ERR_RESET_FAILED;
890
891 return 0;
892 }
893
894 /* Reset the PF */
895 reg = rd32(hw, PFGEN_CTRL);
896
897 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
898
899 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
900 reg = rd32(hw, PFGEN_CTRL);
901 if (!(reg & PFGEN_CTRL_PFSWR_M))
902 break;
903
904 mdelay(1);
905 }
906
907 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
908 ice_debug(hw, ICE_DBG_INIT,
909 "PF reset polling failed to complete.\n");
910 return ICE_ERR_RESET_FAILED;
911 }
912
913 return 0;
914}
915
916/**
917 * ice_reset - Perform different types of reset
918 * @hw: pointer to the hardware structure
919 * @req: reset request
920 *
921 * This function triggers a reset as specified by the req parameter.
922 *
923 * Note:
924 * If anything other than a PF reset is triggered, PXE mode is restored.
925 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
926 * interface has been restored in the rebuild flow.
927 */
928enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
929{
930 u32 val = 0;
931
932 switch (req) {
933 case ICE_RESET_PFR:
934 return ice_pf_reset(hw);
935 case ICE_RESET_CORER:
936 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
937 val = GLGEN_RTRIG_CORER_M;
938 break;
939 case ICE_RESET_GLOBR:
940 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
941 val = GLGEN_RTRIG_GLOBR_M;
942 break;
0f9d5027
AV
943 default:
944 return ICE_ERR_PARAM;
f31e4b6f
AV
945 }
946
947 val |= rd32(hw, GLGEN_RTRIG);
948 wr32(hw, GLGEN_RTRIG, val);
949 ice_flush(hw);
950
951 /* wait for the FW to be ready */
952 return ice_check_reset(hw);
953}
954
cdedef59
AV
955/**
956 * ice_copy_rxq_ctx_to_hw
957 * @hw: pointer to the hardware structure
958 * @ice_rxq_ctx: pointer to the rxq context
959 * @rxq_index: the index of the rx queue
960 *
961 * Copies rxq context from dense structure to hw register space
962 */
963static enum ice_status
964ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
965{
966 u8 i;
967
968 if (!ice_rxq_ctx)
969 return ICE_ERR_BAD_PTR;
970
971 if (rxq_index > QRX_CTRL_MAX_INDEX)
972 return ICE_ERR_PARAM;
973
974 /* Copy each dword separately to hw */
975 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
976 wr32(hw, QRX_CONTEXT(i, rxq_index),
977 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
978
979 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
980 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
981 }
982
983 return 0;
984}
985
986/* LAN Rx Queue Context */
987static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
988 /* Field Width LSB */
989 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
990 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
991 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
992 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
993 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
994 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
995 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
996 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
997 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
998 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
999 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1000 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1001 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1002 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1003 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1004 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1005 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1006 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1007 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1008 { 0 }
1009};
1010
1011/**
1012 * ice_write_rxq_ctx
1013 * @hw: pointer to the hardware structure
1014 * @rlan_ctx: pointer to the rxq context
1015 * @rxq_index: the index of the rx queue
1016 *
1017 * Converts rxq context from sparse to dense structure and then writes
1018 * it to hw register space
1019 */
1020enum ice_status
1021ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1022 u32 rxq_index)
1023{
1024 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1025
1026 ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1027 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1028}
1029
1030/* LAN Tx Queue Context */
1031const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1032 /* Field Width LSB */
1033 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1034 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1035 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1036 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1037 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1038 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1039 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1040 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1041 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1042 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1043 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1044 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1045 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1046 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1047 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1048 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1049 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1050 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1051 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1052 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1053 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1054 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1055 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1056 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1057 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1058 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1059 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171),
1060 { 0 }
1061};
1062
7ec59eea
AV
1063/**
1064 * ice_debug_cq
1065 * @hw: pointer to the hardware structure
1066 * @mask: debug mask
1067 * @desc: pointer to control queue descriptor
1068 * @buf: pointer to command buffer
1069 * @buf_len: max length of buf
1070 *
1071 * Dumps debug log about control command with descriptor contents.
1072 */
1073void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
1074 void *buf, u16 buf_len)
1075{
1076 struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1077 u16 len;
1078
1079#ifndef CONFIG_DYNAMIC_DEBUG
1080 if (!(mask & hw->debug_mask))
1081 return;
1082#endif
1083
1084 if (!desc)
1085 return;
1086
1087 len = le16_to_cpu(cq_desc->datalen);
1088
1089 ice_debug(hw, mask,
1090 "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1091 le16_to_cpu(cq_desc->opcode),
1092 le16_to_cpu(cq_desc->flags),
1093 le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1094 ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1095 le32_to_cpu(cq_desc->cookie_high),
1096 le32_to_cpu(cq_desc->cookie_low));
1097 ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
1098 le32_to_cpu(cq_desc->params.generic.param0),
1099 le32_to_cpu(cq_desc->params.generic.param1));
1100 ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
1101 le32_to_cpu(cq_desc->params.generic.addr_high),
1102 le32_to_cpu(cq_desc->params.generic.addr_low));
1103 if (buf && cq_desc->datalen != 0) {
1104 ice_debug(hw, mask, "Buffer:\n");
1105 if (buf_len < len)
1106 len = buf_len;
1107
1108 ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1109 }
1110}
1111
1112/* FW Admin Queue command wrappers */
1113
1114/**
1115 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1116 * @hw: pointer to the hw struct
1117 * @desc: descriptor describing the command
1118 * @buf: buffer to use for indirect commands (NULL for direct commands)
1119 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1120 * @cd: pointer to command details structure
1121 *
1122 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1123 */
1124enum ice_status
1125ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1126 u16 buf_size, struct ice_sq_cd *cd)
1127{
1128 return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1129}
1130
1131/**
1132 * ice_aq_get_fw_ver
1133 * @hw: pointer to the hw struct
1134 * @cd: pointer to command details structure or NULL
1135 *
1136 * Get the firmware version (0x0001) from the admin queue commands
1137 */
1138enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1139{
1140 struct ice_aqc_get_ver *resp;
1141 struct ice_aq_desc desc;
1142 enum ice_status status;
1143
1144 resp = &desc.params.get_ver;
1145
1146 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1147
1148 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1149
1150 if (!status) {
1151 hw->fw_branch = resp->fw_branch;
1152 hw->fw_maj_ver = resp->fw_major;
1153 hw->fw_min_ver = resp->fw_minor;
1154 hw->fw_patch = resp->fw_patch;
1155 hw->fw_build = le32_to_cpu(resp->fw_build);
1156 hw->api_branch = resp->api_branch;
1157 hw->api_maj_ver = resp->api_major;
1158 hw->api_min_ver = resp->api_minor;
1159 hw->api_patch = resp->api_patch;
1160 }
1161
1162 return status;
1163}
1164
1165/**
1166 * ice_aq_q_shutdown
1167 * @hw: pointer to the hw struct
1168 * @unloading: is the driver unloading itself
1169 *
1170 * Tell the Firmware that we're shutting down the AdminQ and whether
1171 * or not the driver is unloading as well (0x0003).
1172 */
1173enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1174{
1175 struct ice_aqc_q_shutdown *cmd;
1176 struct ice_aq_desc desc;
1177
1178 cmd = &desc.params.q_shutdown;
1179
1180 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1181
1182 if (unloading)
1183 cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
1184
1185 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1186}
f31e4b6f
AV
1187
1188/**
1189 * ice_aq_req_res
1190 * @hw: pointer to the hw struct
1191 * @res: resource id
1192 * @access: access type
1193 * @sdp_number: resource number
1194 * @timeout: the maximum time in ms that the driver may hold the resource
1195 * @cd: pointer to command details structure or NULL
1196 *
ff2b1321
DN
1197 * Requests common resource using the admin queue commands (0x0008).
1198 * When attempting to acquire the Global Config Lock, the driver can
1199 * learn of three states:
1200 * 1) ICE_SUCCESS - acquired lock, and can perform download package
1201 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
1202 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1203 * successfully downloaded the package; the driver does
1204 * not have to download the package and can continue
1205 * loading
1206 *
1207 * Note that if the caller is in an acquire lock, perform action, release lock
1208 * phase of operation, it is possible that the FW may detect a timeout and issue
1209 * a CORER. In this case, the driver will receive a CORER interrupt and will
1210 * have to determine its cause. The calling thread that is handling this flow
1211 * will likely get an error propagated back to it indicating the Download
1212 * Package, Update Package or the Release Resource AQ commands timed out.
f31e4b6f
AV
1213 */
1214static enum ice_status
1215ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1216 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1217 struct ice_sq_cd *cd)
1218{
1219 struct ice_aqc_req_res *cmd_resp;
1220 struct ice_aq_desc desc;
1221 enum ice_status status;
1222
1223 cmd_resp = &desc.params.res_owner;
1224
1225 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1226
1227 cmd_resp->res_id = cpu_to_le16(res);
1228 cmd_resp->access_type = cpu_to_le16(access);
1229 cmd_resp->res_number = cpu_to_le32(sdp_number);
ff2b1321
DN
1230 cmd_resp->timeout = cpu_to_le32(*timeout);
1231 *timeout = 0;
f31e4b6f
AV
1232
1233 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
ff2b1321 1234
f31e4b6f
AV
1235 /* The completion specifies the maximum time in ms that the driver
1236 * may hold the resource in the Timeout field.
ff2b1321
DN
1237 */
1238
1239 /* Global config lock response utilizes an additional status field.
1240 *
1241 * If the Global config lock resource is held by some other driver, the
1242 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1243 * and the timeout field indicates the maximum time the current owner
1244 * of the resource has to free it.
1245 */
1246 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1247 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1248 *timeout = le32_to_cpu(cmd_resp->timeout);
1249 return 0;
1250 } else if (le16_to_cpu(cmd_resp->status) ==
1251 ICE_AQ_RES_GLBL_IN_PROG) {
1252 *timeout = le32_to_cpu(cmd_resp->timeout);
1253 return ICE_ERR_AQ_ERROR;
1254 } else if (le16_to_cpu(cmd_resp->status) ==
1255 ICE_AQ_RES_GLBL_DONE) {
1256 return ICE_ERR_AQ_NO_WORK;
1257 }
1258
1259 /* invalid FW response, force a timeout immediately */
1260 *timeout = 0;
1261 return ICE_ERR_AQ_ERROR;
1262 }
1263
1264 /* If the resource is held by some other driver, the command completes
1265 * with a busy return value and the timeout field indicates the maximum
1266 * time the current owner of the resource has to free it.
f31e4b6f
AV
1267 */
1268 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1269 *timeout = le32_to_cpu(cmd_resp->timeout);
1270
1271 return status;
1272}
1273
1274/**
1275 * ice_aq_release_res
1276 * @hw: pointer to the hw struct
1277 * @res: resource id
1278 * @sdp_number: resource number
1279 * @cd: pointer to command details structure or NULL
1280 *
1281 * release common resource using the admin queue commands (0x0009)
1282 */
1283static enum ice_status
1284ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1285 struct ice_sq_cd *cd)
1286{
1287 struct ice_aqc_req_res *cmd;
1288 struct ice_aq_desc desc;
1289
1290 cmd = &desc.params.res_owner;
1291
1292 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1293
1294 cmd->res_id = cpu_to_le16(res);
1295 cmd->res_number = cpu_to_le32(sdp_number);
1296
1297 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1298}
1299
1300/**
1301 * ice_acquire_res
1302 * @hw: pointer to the HW structure
1303 * @res: resource id
1304 * @access: access type (read or write)
ff2b1321 1305 * @timeout: timeout in milliseconds
f31e4b6f
AV
1306 *
1307 * This function will attempt to acquire the ownership of a resource.
1308 */
1309enum ice_status
1310ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
ff2b1321 1311 enum ice_aq_res_access_type access, u32 timeout)
f31e4b6f
AV
1312{
1313#define ICE_RES_POLLING_DELAY_MS 10
1314 u32 delay = ICE_RES_POLLING_DELAY_MS;
ff2b1321 1315 u32 time_left = timeout;
f31e4b6f 1316 enum ice_status status;
f31e4b6f
AV
1317
1318 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1319
ff2b1321
DN
1320 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1321 * previously acquired the resource and performed any necessary updates;
1322 * in this case the caller does not obtain the resource and has no
1323 * further work to do.
f31e4b6f 1324 */
ff2b1321 1325 if (status == ICE_ERR_AQ_NO_WORK)
f31e4b6f 1326 goto ice_acquire_res_exit;
f31e4b6f
AV
1327
1328 if (status)
1329 ice_debug(hw, ICE_DBG_RES,
1330 "resource %d acquire type %d failed.\n", res, access);
1331
1332 /* If necessary, poll until the current lock owner timeouts */
1333 timeout = time_left;
1334 while (status && timeout && time_left) {
1335 mdelay(delay);
1336 timeout = (timeout > delay) ? timeout - delay : 0;
1337 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1338
ff2b1321 1339 if (status == ICE_ERR_AQ_NO_WORK)
f31e4b6f 1340 /* lock free, but no work to do */
f31e4b6f 1341 break;
f31e4b6f
AV
1342
1343 if (!status)
1344 /* lock acquired */
1345 break;
1346 }
1347 if (status && status != ICE_ERR_AQ_NO_WORK)
1348 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1349
1350ice_acquire_res_exit:
1351 if (status == ICE_ERR_AQ_NO_WORK) {
1352 if (access == ICE_RES_WRITE)
1353 ice_debug(hw, ICE_DBG_RES,
1354 "resource indicates no work to do.\n");
1355 else
1356 ice_debug(hw, ICE_DBG_RES,
1357 "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1358 }
1359 return status;
1360}
1361
1362/**
1363 * ice_release_res
1364 * @hw: pointer to the HW structure
1365 * @res: resource id
1366 *
1367 * This function will release a resource using the proper Admin Command.
1368 */
1369void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1370{
1371 enum ice_status status;
1372 u32 total_delay = 0;
1373
1374 status = ice_aq_release_res(hw, res, 0, NULL);
1375
1376 /* there are some rare cases when trying to release the resource
1377 * results in an admin Q timeout, so handle them correctly
1378 */
1379 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1380 (total_delay < hw->adminq.sq_cmd_timeout)) {
1381 mdelay(1);
1382 status = ice_aq_release_res(hw, res, 0, NULL);
1383 total_delay++;
1384 }
1385}
1386
995c90f2
AV
1387/**
1388 * ice_get_guar_num_vsi - determine number of guar VSI for a PF
1389 * @hw: pointer to the hw structure
1390 *
1391 * Determine the number of valid functions by going through the bitmap returned
1392 * from parsing capabilities and use this to calculate the number of VSI per PF.
1393 */
1394static u32 ice_get_guar_num_vsi(struct ice_hw *hw)
1395{
1396 u8 funcs;
1397
1398#define ICE_CAPS_VALID_FUNCS_M 0xFF
1399 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1400 ICE_CAPS_VALID_FUNCS_M);
1401
1402 if (!funcs)
1403 return 0;
1404
1405 return ICE_MAX_VSI / funcs;
1406}
1407
9c20346b
AV
1408/**
1409 * ice_parse_caps - parse function/device capabilities
1410 * @hw: pointer to the hw struct
1411 * @buf: pointer to a buffer containing function/device capability records
1412 * @cap_count: number of capability records in the list
1413 * @opc: type of capabilities list to parse
1414 *
1415 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1416 */
1417static void
1418ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1419 enum ice_adminq_opc opc)
1420{
1421 struct ice_aqc_list_caps_elem *cap_resp;
1422 struct ice_hw_func_caps *func_p = NULL;
1423 struct ice_hw_dev_caps *dev_p = NULL;
1424 struct ice_hw_common_caps *caps;
1425 u32 i;
1426
1427 if (!buf)
1428 return;
1429
1430 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1431
1432 if (opc == ice_aqc_opc_list_dev_caps) {
1433 dev_p = &hw->dev_caps;
1434 caps = &dev_p->common_cap;
1435 } else if (opc == ice_aqc_opc_list_func_caps) {
1436 func_p = &hw->func_caps;
1437 caps = &func_p->common_cap;
1438 } else {
1439 ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1440 return;
1441 }
1442
1443 for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1444 u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1445 u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1446 u32 number = le32_to_cpu(cap_resp->number);
1447 u16 cap = le16_to_cpu(cap_resp->cap);
1448
1449 switch (cap) {
995c90f2
AV
1450 case ICE_AQC_CAPS_VALID_FUNCTIONS:
1451 caps->valid_functions = number;
1452 ice_debug(hw, ICE_DBG_INIT,
1453 "HW caps: Valid Functions = %d\n",
1454 caps->valid_functions);
1455 break;
75d2b253
AV
1456 case ICE_AQC_CAPS_SRIOV:
1457 caps->sr_iov_1_1 = (number == 1);
1458 ice_debug(hw, ICE_DBG_INIT,
1459 "HW caps: SR-IOV = %d\n", caps->sr_iov_1_1);
1460 break;
1461 case ICE_AQC_CAPS_VF:
1462 if (dev_p) {
1463 dev_p->num_vfs_exposed = number;
1464 ice_debug(hw, ICE_DBG_INIT,
1465 "HW caps: VFs exposed = %d\n",
1466 dev_p->num_vfs_exposed);
1467 } else if (func_p) {
1468 func_p->num_allocd_vfs = number;
1469 func_p->vf_base_id = logical_id;
1470 ice_debug(hw, ICE_DBG_INIT,
1471 "HW caps: VFs allocated = %d\n",
1472 func_p->num_allocd_vfs);
1473 ice_debug(hw, ICE_DBG_INIT,
1474 "HW caps: VF base_id = %d\n",
1475 func_p->vf_base_id);
1476 }
1477 break;
9c20346b
AV
1478 case ICE_AQC_CAPS_VSI:
1479 if (dev_p) {
1480 dev_p->num_vsi_allocd_to_host = number;
1481 ice_debug(hw, ICE_DBG_INIT,
1482 "HW caps: Dev.VSI cnt = %d\n",
1483 dev_p->num_vsi_allocd_to_host);
1484 } else if (func_p) {
995c90f2 1485 func_p->guar_num_vsi = ice_get_guar_num_vsi(hw);
9c20346b
AV
1486 ice_debug(hw, ICE_DBG_INIT,
1487 "HW caps: Func.VSI cnt = %d\n",
995c90f2 1488 number);
9c20346b
AV
1489 }
1490 break;
1491 case ICE_AQC_CAPS_RSS:
1492 caps->rss_table_size = number;
1493 caps->rss_table_entry_width = logical_id;
1494 ice_debug(hw, ICE_DBG_INIT,
1495 "HW caps: RSS table size = %d\n",
1496 caps->rss_table_size);
1497 ice_debug(hw, ICE_DBG_INIT,
1498 "HW caps: RSS table width = %d\n",
1499 caps->rss_table_entry_width);
1500 break;
1501 case ICE_AQC_CAPS_RXQS:
1502 caps->num_rxq = number;
1503 caps->rxq_first_id = phys_id;
1504 ice_debug(hw, ICE_DBG_INIT,
1505 "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1506 ice_debug(hw, ICE_DBG_INIT,
1507 "HW caps: Rx first queue ID = %d\n",
1508 caps->rxq_first_id);
1509 break;
1510 case ICE_AQC_CAPS_TXQS:
1511 caps->num_txq = number;
1512 caps->txq_first_id = phys_id;
1513 ice_debug(hw, ICE_DBG_INIT,
1514 "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1515 ice_debug(hw, ICE_DBG_INIT,
1516 "HW caps: Tx first queue ID = %d\n",
1517 caps->txq_first_id);
1518 break;
1519 case ICE_AQC_CAPS_MSIX:
1520 caps->num_msix_vectors = number;
1521 caps->msix_vector_first_id = phys_id;
1522 ice_debug(hw, ICE_DBG_INIT,
1523 "HW caps: MSIX vector count = %d\n",
1524 caps->num_msix_vectors);
1525 ice_debug(hw, ICE_DBG_INIT,
1526 "HW caps: MSIX first vector index = %d\n",
1527 caps->msix_vector_first_id);
1528 break;
1529 case ICE_AQC_CAPS_MAX_MTU:
1530 caps->max_mtu = number;
1531 if (dev_p)
1532 ice_debug(hw, ICE_DBG_INIT,
1533 "HW caps: Dev.MaxMTU = %d\n",
1534 caps->max_mtu);
1535 else if (func_p)
1536 ice_debug(hw, ICE_DBG_INIT,
1537 "HW caps: func.MaxMTU = %d\n",
1538 caps->max_mtu);
1539 break;
1540 default:
1541 ice_debug(hw, ICE_DBG_INIT,
1542 "HW caps: Unknown capability[%d]: 0x%x\n", i,
1543 cap);
1544 break;
1545 }
1546 }
1547}
1548
1549/**
1550 * ice_aq_discover_caps - query function/device capabilities
1551 * @hw: pointer to the hw struct
1552 * @buf: a virtual buffer to hold the capabilities
1553 * @buf_size: Size of the virtual buffer
7d86cf38 1554 * @cap_count: cap count needed if AQ err==ENOMEM
9c20346b
AV
1555 * @opc: capabilities type to discover - pass in the command opcode
1556 * @cd: pointer to command details structure or NULL
1557 *
1558 * Get the function(0x000a)/device(0x000b) capabilities description from
1559 * the firmware.
1560 */
1561static enum ice_status
7d86cf38 1562ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
9c20346b
AV
1563 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1564{
1565 struct ice_aqc_list_caps *cmd;
1566 struct ice_aq_desc desc;
1567 enum ice_status status;
1568
1569 cmd = &desc.params.get_cap;
1570
1571 if (opc != ice_aqc_opc_list_func_caps &&
1572 opc != ice_aqc_opc_list_dev_caps)
1573 return ICE_ERR_PARAM;
1574
1575 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1576
1577 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1578 if (!status)
1579 ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
7d86cf38 1580 else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
99189e8b 1581 *cap_count = le32_to_cpu(cmd->count);
9c20346b
AV
1582 return status;
1583}
1584
1585/**
7d86cf38 1586 * ice_discover_caps - get info about the HW
9c20346b 1587 * @hw: pointer to the hardware structure
7d86cf38 1588 * @opc: capabilities type to discover - pass in the command opcode
9c20346b 1589 */
7d86cf38
AV
1590static enum ice_status ice_discover_caps(struct ice_hw *hw,
1591 enum ice_adminq_opc opc)
9c20346b
AV
1592{
1593 enum ice_status status;
7d86cf38 1594 u32 cap_count;
9c20346b
AV
1595 u16 cbuf_len;
1596 u8 retries;
1597
1598 /* The driver doesn't know how many capabilities the device will return
1599 * so the buffer size required isn't known ahead of time. The driver
1600 * starts with cbuf_len and if this turns out to be insufficient, the
7d86cf38
AV
1601 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1602 * The driver then allocates the buffer based on the count and retries
1603 * the operation. So it follows that the retry count is 2.
9c20346b
AV
1604 */
1605#define ICE_GET_CAP_BUF_COUNT 40
1606#define ICE_GET_CAP_RETRY_COUNT 2
1607
7d86cf38 1608 cap_count = ICE_GET_CAP_BUF_COUNT;
9c20346b
AV
1609 retries = ICE_GET_CAP_RETRY_COUNT;
1610
1611 do {
1612 void *cbuf;
1613
7d86cf38
AV
1614 cbuf_len = (u16)(cap_count *
1615 sizeof(struct ice_aqc_list_caps_elem));
9c20346b
AV
1616 cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1617 if (!cbuf)
1618 return ICE_ERR_NO_MEMORY;
1619
7d86cf38
AV
1620 status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1621 opc, NULL);
9c20346b
AV
1622 devm_kfree(ice_hw_to_dev(hw), cbuf);
1623
1624 if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1625 break;
1626
1627 /* If ENOMEM is returned, try again with bigger buffer */
9c20346b
AV
1628 } while (--retries);
1629
1630 return status;
1631}
1632
7d86cf38
AV
1633/**
1634 * ice_get_caps - get info about the HW
1635 * @hw: pointer to the hardware structure
1636 */
1637enum ice_status ice_get_caps(struct ice_hw *hw)
1638{
1639 enum ice_status status;
1640
1641 status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1642 if (!status)
1643 status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1644
1645 return status;
1646}
1647
e94d4478
AV
1648/**
1649 * ice_aq_manage_mac_write - manage MAC address write command
1650 * @hw: pointer to the hw struct
1651 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1652 * @flags: flags to control write behavior
1653 * @cd: pointer to command details structure or NULL
1654 *
1655 * This function is used to write MAC address to the NVM (0x0108).
1656 */
1657enum ice_status
1658ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags,
1659 struct ice_sq_cd *cd)
1660{
1661 struct ice_aqc_manage_mac_write *cmd;
1662 struct ice_aq_desc desc;
1663
1664 cmd = &desc.params.mac_write;
1665 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1666
1667 cmd->flags = flags;
1668
1669 /* Prep values for flags, sah, sal */
1670 cmd->sah = htons(*((u16 *)mac_addr));
1671 cmd->sal = htonl(*((u32 *)(mac_addr + 2)));
1672
1673 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1674}
1675
f31e4b6f
AV
1676/**
1677 * ice_aq_clear_pxe_mode
1678 * @hw: pointer to the hw struct
1679 *
1680 * Tell the firmware that the driver is taking over from PXE (0x0110).
1681 */
1682static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1683{
1684 struct ice_aq_desc desc;
1685
1686 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1687 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1688
1689 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1690}
1691
1692/**
1693 * ice_clear_pxe_mode - clear pxe operations mode
1694 * @hw: pointer to the hw struct
1695 *
1696 * Make sure all PXE mode settings are cleared, including things
1697 * like descriptor fetch/write-back mode.
1698 */
1699void ice_clear_pxe_mode(struct ice_hw *hw)
1700{
1701 if (ice_check_sq_alive(hw, &hw->adminq))
1702 ice_aq_clear_pxe_mode(hw);
1703}
cdedef59 1704
48cb27f2
CC
1705/**
1706 * ice_get_link_speed_based_on_phy_type - returns link speed
1707 * @phy_type_low: lower part of phy_type
1708 *
1709 * This helper function will convert a phy_type_low to its corresponding link
1710 * speed.
1711 * Note: In the structure of phy_type_low, there should be one bit set, as
1712 * this function will convert one phy type to its speed.
1713 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1714 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1715 */
2c5492de 1716static u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low)
48cb27f2
CC
1717{
1718 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1719
1720 switch (phy_type_low) {
1721 case ICE_PHY_TYPE_LOW_100BASE_TX:
1722 case ICE_PHY_TYPE_LOW_100M_SGMII:
1723 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
1724 break;
1725 case ICE_PHY_TYPE_LOW_1000BASE_T:
1726 case ICE_PHY_TYPE_LOW_1000BASE_SX:
1727 case ICE_PHY_TYPE_LOW_1000BASE_LX:
1728 case ICE_PHY_TYPE_LOW_1000BASE_KX:
1729 case ICE_PHY_TYPE_LOW_1G_SGMII:
1730 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
1731 break;
1732 case ICE_PHY_TYPE_LOW_2500BASE_T:
1733 case ICE_PHY_TYPE_LOW_2500BASE_X:
1734 case ICE_PHY_TYPE_LOW_2500BASE_KX:
1735 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
1736 break;
1737 case ICE_PHY_TYPE_LOW_5GBASE_T:
1738 case ICE_PHY_TYPE_LOW_5GBASE_KR:
1739 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
1740 break;
1741 case ICE_PHY_TYPE_LOW_10GBASE_T:
1742 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
1743 case ICE_PHY_TYPE_LOW_10GBASE_SR:
1744 case ICE_PHY_TYPE_LOW_10GBASE_LR:
1745 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1746 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1747 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
1748 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
1749 break;
1750 case ICE_PHY_TYPE_LOW_25GBASE_T:
1751 case ICE_PHY_TYPE_LOW_25GBASE_CR:
1752 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
1753 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
1754 case ICE_PHY_TYPE_LOW_25GBASE_SR:
1755 case ICE_PHY_TYPE_LOW_25GBASE_LR:
1756 case ICE_PHY_TYPE_LOW_25GBASE_KR:
1757 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
1758 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
1759 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1760 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
1761 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
1762 break;
1763 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
1764 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
1765 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
1766 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
1767 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
1768 case ICE_PHY_TYPE_LOW_40G_XLAUI:
1769 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
1770 break;
1771 default:
1772 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1773 break;
1774 }
1775
1776 return speed_phy_type_low;
1777}
1778
1779/**
1780 * ice_update_phy_type
1781 * @phy_type_low: pointer to the lower part of phy_type
1782 * @link_speeds_bitmap: targeted link speeds bitmap
1783 *
1784 * Note: For the link_speeds_bitmap structure, you can check it at
1785 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
1786 * link_speeds_bitmap include multiple speeds.
1787 *
1788 * The value of phy_type_low will present a certain link speed. This helper
1789 * function will turn on bits in the phy_type_low based on the value of
1790 * link_speeds_bitmap input parameter.
1791 */
1792void ice_update_phy_type(u64 *phy_type_low, u16 link_speeds_bitmap)
1793{
1794 u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN;
1795 u64 pt_low;
1796 int index;
1797
1798 /* We first check with low part of phy_type */
1799 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
1800 pt_low = BIT_ULL(index);
1801 speed = ice_get_link_speed_based_on_phy_type(pt_low);
1802
1803 if (link_speeds_bitmap & speed)
1804 *phy_type_low |= BIT_ULL(index);
1805 }
1806}
1807
fcea6f3d
AV
1808/**
1809 * ice_aq_set_phy_cfg
1810 * @hw: pointer to the hw struct
1811 * @lport: logical port number
1812 * @cfg: structure with PHY configuration data to be set
1813 * @cd: pointer to command details structure or NULL
1814 *
1815 * Set the various PHY configuration parameters supported on the Port.
1816 * One or more of the Set PHY config parameters may be ignored in an MFP
1817 * mode as the PF may not have the privilege to set some of the PHY Config
1818 * parameters. This status will be indicated by the command response (0x0601).
1819 */
48cb27f2 1820enum ice_status
fcea6f3d
AV
1821ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1822 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1823{
fcea6f3d
AV
1824 struct ice_aq_desc desc;
1825
1826 if (!cfg)
1827 return ICE_ERR_PARAM;
1828
fcea6f3d 1829 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
48cb27f2
CC
1830 desc.params.set_phy.lport_num = lport;
1831 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
fcea6f3d
AV
1832
1833 return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1834}
1835
1836/**
1837 * ice_update_link_info - update status of the HW network link
1838 * @pi: port info structure of the interested logical port
1839 */
5755143d 1840enum ice_status ice_update_link_info(struct ice_port_info *pi)
fcea6f3d
AV
1841{
1842 struct ice_aqc_get_phy_caps_data *pcaps;
1843 struct ice_phy_info *phy_info;
1844 enum ice_status status;
1845 struct ice_hw *hw;
1846
1847 if (!pi)
1848 return ICE_ERR_PARAM;
1849
1850 hw = pi->hw;
1851
1852 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1853 if (!pcaps)
1854 return ICE_ERR_NO_MEMORY;
1855
1856 phy_info = &pi->phy;
1857 status = ice_aq_get_link_info(pi, true, NULL, NULL);
1858 if (status)
1859 goto out;
1860
1861 if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1862 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1863 pcaps, NULL);
1864 if (status)
1865 goto out;
1866
1867 memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1868 sizeof(phy_info->link_info.module_type));
1869 }
1870out:
1871 devm_kfree(ice_hw_to_dev(hw), pcaps);
1872 return status;
1873}
1874
1875/**
1876 * ice_set_fc
1877 * @pi: port information structure
1878 * @aq_failures: pointer to status code, specific to ice_set_fc routine
48cb27f2 1879 * @ena_auto_link_update: enable automatic link update
fcea6f3d
AV
1880 *
1881 * Set the requested flow control mode.
1882 */
1883enum ice_status
48cb27f2 1884ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
fcea6f3d
AV
1885{
1886 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1887 struct ice_aqc_get_phy_caps_data *pcaps;
1888 enum ice_status status;
1889 u8 pause_mask = 0x0;
1890 struct ice_hw *hw;
1891
1892 if (!pi)
1893 return ICE_ERR_PARAM;
1894 hw = pi->hw;
1895 *aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
1896
1897 switch (pi->fc.req_mode) {
1898 case ICE_FC_FULL:
1899 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1900 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1901 break;
1902 case ICE_FC_RX_PAUSE:
1903 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1904 break;
1905 case ICE_FC_TX_PAUSE:
1906 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1907 break;
1908 default:
1909 break;
1910 }
1911
1912 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1913 if (!pcaps)
1914 return ICE_ERR_NO_MEMORY;
1915
1916 /* Get the current phy config */
1917 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1918 NULL);
1919 if (status) {
1920 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
1921 goto out;
1922 }
1923
1924 /* clear the old pause settings */
1925 cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
1926 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
1927 /* set the new capabilities */
1928 cfg.caps |= pause_mask;
1929 /* If the capabilities have changed, then set the new config */
1930 if (cfg.caps != pcaps->caps) {
1931 int retry_count, retry_max = 10;
1932
1933 /* Auto restart link so settings take effect */
48cb27f2
CC
1934 if (ena_auto_link_update)
1935 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
fcea6f3d
AV
1936 /* Copy over all the old settings */
1937 cfg.phy_type_low = pcaps->phy_type_low;
1938 cfg.low_power_ctrl = pcaps->low_power_ctrl;
1939 cfg.eee_cap = pcaps->eee_cap;
1940 cfg.eeer_value = pcaps->eeer_value;
1941 cfg.link_fec_opt = pcaps->link_fec_options;
1942
1943 status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
1944 if (status) {
1945 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
1946 goto out;
1947 }
1948
1949 /* Update the link info
1950 * It sometimes takes a really long time for link to
1951 * come back from the atomic reset. Thus, we wait a
1952 * little bit.
1953 */
1954 for (retry_count = 0; retry_count < retry_max; retry_count++) {
1955 status = ice_update_link_info(pi);
1956
1957 if (!status)
1958 break;
1959
1960 mdelay(100);
1961 }
1962
1963 if (status)
1964 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
1965 }
1966
1967out:
1968 devm_kfree(ice_hw_to_dev(hw), pcaps);
1969 return status;
1970}
1971
0b28b702
AV
1972/**
1973 * ice_get_link_status - get status of the HW network link
1974 * @pi: port information structure
1975 * @link_up: pointer to bool (true/false = linkup/linkdown)
1976 *
1977 * Variable link_up is true if link is up, false if link is down.
1978 * The variable link_up is invalid if status is non zero. As a
1979 * result of this call, link status reporting becomes enabled
1980 */
1981enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
1982{
1983 struct ice_phy_info *phy_info;
1984 enum ice_status status = 0;
1985
c7f2c42b 1986 if (!pi || !link_up)
0b28b702
AV
1987 return ICE_ERR_PARAM;
1988
1989 phy_info = &pi->phy;
1990
1991 if (phy_info->get_link_info) {
1992 status = ice_update_link_info(pi);
1993
1994 if (status)
1995 ice_debug(pi->hw, ICE_DBG_LINK,
1996 "get link status error, status = %d\n",
1997 status);
1998 }
1999
2000 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2001
2002 return status;
2003}
2004
fcea6f3d
AV
2005/**
2006 * ice_aq_set_link_restart_an
2007 * @pi: pointer to the port information structure
2008 * @ena_link: if true: enable link, if false: disable link
2009 * @cd: pointer to command details structure or NULL
2010 *
2011 * Sets up the link and restarts the Auto-Negotiation over the link.
2012 */
2013enum ice_status
2014ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2015 struct ice_sq_cd *cd)
2016{
2017 struct ice_aqc_restart_an *cmd;
2018 struct ice_aq_desc desc;
2019
2020 cmd = &desc.params.restart_an;
2021
2022 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2023
2024 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2025 cmd->lport_num = pi->lport;
2026 if (ena_link)
2027 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2028 else
2029 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2030
2031 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2032}
2033
d76a60ba
AV
2034/**
2035 * __ice_aq_get_set_rss_lut
2036 * @hw: pointer to the hardware structure
2037 * @vsi_id: VSI FW index
2038 * @lut_type: LUT table type
2039 * @lut: pointer to the LUT buffer provided by the caller
2040 * @lut_size: size of the LUT buffer
2041 * @glob_lut_idx: global LUT index
2042 * @set: set true to set the table, false to get the table
2043 *
2044 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2045 */
2046static enum ice_status
2047__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2048 u16 lut_size, u8 glob_lut_idx, bool set)
2049{
2050 struct ice_aqc_get_set_rss_lut *cmd_resp;
2051 struct ice_aq_desc desc;
2052 enum ice_status status;
2053 u16 flags = 0;
2054
2055 cmd_resp = &desc.params.get_set_rss_lut;
2056
2057 if (set) {
2058 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2059 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2060 } else {
2061 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2062 }
2063
2064 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2065 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2066 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2067 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2068
2069 switch (lut_type) {
2070 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2071 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2072 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2073 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2074 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2075 break;
2076 default:
2077 status = ICE_ERR_PARAM;
2078 goto ice_aq_get_set_rss_lut_exit;
2079 }
2080
2081 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2082 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2083 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2084
2085 if (!set)
2086 goto ice_aq_get_set_rss_lut_send;
2087 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2088 if (!set)
2089 goto ice_aq_get_set_rss_lut_send;
2090 } else {
2091 goto ice_aq_get_set_rss_lut_send;
2092 }
2093
2094 /* LUT size is only valid for Global and PF table types */
4381147d
AV
2095 switch (lut_size) {
2096 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2097 break;
2098 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
d76a60ba
AV
2099 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2100 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2101 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
4381147d
AV
2102 break;
2103 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2104 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2105 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2106 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2107 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2108 break;
2109 }
2110 /* fall-through */
2111 default:
d76a60ba
AV
2112 status = ICE_ERR_PARAM;
2113 goto ice_aq_get_set_rss_lut_exit;
2114 }
2115
2116ice_aq_get_set_rss_lut_send:
2117 cmd_resp->flags = cpu_to_le16(flags);
2118 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2119
2120ice_aq_get_set_rss_lut_exit:
2121 return status;
2122}
2123
2124/**
2125 * ice_aq_get_rss_lut
2126 * @hw: pointer to the hardware structure
4fb33f31 2127 * @vsi_handle: software VSI handle
d76a60ba
AV
2128 * @lut_type: LUT table type
2129 * @lut: pointer to the LUT buffer provided by the caller
2130 * @lut_size: size of the LUT buffer
2131 *
2132 * get the RSS lookup table, PF or VSI type
2133 */
2134enum ice_status
4fb33f31
AV
2135ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2136 u8 *lut, u16 lut_size)
d76a60ba 2137{
4fb33f31
AV
2138 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2139 return ICE_ERR_PARAM;
2140
2141 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2142 lut_type, lut, lut_size, 0, false);
d76a60ba
AV
2143}
2144
2145/**
2146 * ice_aq_set_rss_lut
2147 * @hw: pointer to the hardware structure
4fb33f31 2148 * @vsi_handle: software VSI handle
d76a60ba
AV
2149 * @lut_type: LUT table type
2150 * @lut: pointer to the LUT buffer provided by the caller
2151 * @lut_size: size of the LUT buffer
2152 *
2153 * set the RSS lookup table, PF or VSI type
2154 */
2155enum ice_status
4fb33f31
AV
2156ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2157 u8 *lut, u16 lut_size)
d76a60ba 2158{
4fb33f31
AV
2159 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2160 return ICE_ERR_PARAM;
2161
2162 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2163 lut_type, lut, lut_size, 0, true);
d76a60ba
AV
2164}
2165
2166/**
2167 * __ice_aq_get_set_rss_key
2168 * @hw: pointer to the hw struct
2169 * @vsi_id: VSI FW index
2170 * @key: pointer to key info struct
2171 * @set: set true to set the key, false to get the key
2172 *
2173 * get (0x0B04) or set (0x0B02) the RSS key per VSI
2174 */
2175static enum
2176ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2177 struct ice_aqc_get_set_rss_keys *key,
2178 bool set)
2179{
2180 struct ice_aqc_get_set_rss_key *cmd_resp;
2181 u16 key_size = sizeof(*key);
2182 struct ice_aq_desc desc;
2183
2184 cmd_resp = &desc.params.get_set_rss_key;
2185
2186 if (set) {
2187 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2188 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2189 } else {
2190 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2191 }
2192
2193 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2194 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2195 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2196 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2197
2198 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2199}
2200
2201/**
2202 * ice_aq_get_rss_key
2203 * @hw: pointer to the hw struct
4fb33f31 2204 * @vsi_handle: software VSI handle
d76a60ba
AV
2205 * @key: pointer to key info struct
2206 *
2207 * get the RSS key per VSI
2208 */
2209enum ice_status
4fb33f31 2210ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
d76a60ba
AV
2211 struct ice_aqc_get_set_rss_keys *key)
2212{
4fb33f31
AV
2213 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2214 return ICE_ERR_PARAM;
2215
2216 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2217 key, false);
d76a60ba
AV
2218}
2219
2220/**
2221 * ice_aq_set_rss_key
2222 * @hw: pointer to the hw struct
4fb33f31 2223 * @vsi_handle: software VSI handle
d76a60ba
AV
2224 * @keys: pointer to key info struct
2225 *
2226 * set the RSS key per VSI
2227 */
2228enum ice_status
4fb33f31 2229ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
d76a60ba
AV
2230 struct ice_aqc_get_set_rss_keys *keys)
2231{
4fb33f31
AV
2232 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2233 return ICE_ERR_PARAM;
2234
2235 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2236 keys, true);
d76a60ba
AV
2237}
2238
cdedef59
AV
2239/**
2240 * ice_aq_add_lan_txq
2241 * @hw: pointer to the hardware structure
2242 * @num_qgrps: Number of added queue groups
2243 * @qg_list: list of queue groups to be added
2244 * @buf_size: size of buffer for indirect command
2245 * @cd: pointer to command details structure or NULL
2246 *
2247 * Add Tx LAN queue (0x0C30)
2248 *
2249 * NOTE:
2250 * Prior to calling add Tx LAN queue:
2251 * Initialize the following as part of the Tx queue context:
2252 * Completion queue ID if the queue uses Completion queue, Quanta profile,
2253 * Cache profile and Packet shaper profile.
2254 *
2255 * After add Tx LAN queue AQ command is completed:
2256 * Interrupts should be associated with specific queues,
2257 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2258 * flow.
2259 */
2260static enum ice_status
2261ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2262 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2263 struct ice_sq_cd *cd)
2264{
2265 u16 i, sum_header_size, sum_q_size = 0;
2266 struct ice_aqc_add_tx_qgrp *list;
2267 struct ice_aqc_add_txqs *cmd;
2268 struct ice_aq_desc desc;
2269
2270 cmd = &desc.params.add_txqs;
2271
2272 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2273
2274 if (!qg_list)
2275 return ICE_ERR_PARAM;
2276
2277 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2278 return ICE_ERR_PARAM;
2279
2280 sum_header_size = num_qgrps *
2281 (sizeof(*qg_list) - sizeof(*qg_list->txqs));
2282
2283 list = qg_list;
2284 for (i = 0; i < num_qgrps; i++) {
2285 struct ice_aqc_add_txqs_perq *q = list->txqs;
2286
2287 sum_q_size += list->num_txqs * sizeof(*q);
2288 list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2289 }
2290
2291 if (buf_size != (sum_header_size + sum_q_size))
2292 return ICE_ERR_PARAM;
2293
2294 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2295
2296 cmd->num_qgrps = num_qgrps;
2297
2298 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2299}
2300
2301/**
2302 * ice_aq_dis_lan_txq
2303 * @hw: pointer to the hardware structure
2304 * @num_qgrps: number of groups in the list
2305 * @qg_list: the list of groups to disable
2306 * @buf_size: the total size of the qg_list buffer in bytes
ddf30f7f
AV
2307 * @rst_src: if called due to reset, specifies the RST source
2308 * @vmvf_num: the relative VM or VF number that is undergoing the reset
cdedef59
AV
2309 * @cd: pointer to command details structure or NULL
2310 *
2311 * Disable LAN Tx queue (0x0C31)
2312 */
2313static enum ice_status
2314ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2315 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
ddf30f7f 2316 enum ice_disq_rst_src rst_src, u16 vmvf_num,
cdedef59
AV
2317 struct ice_sq_cd *cd)
2318{
2319 struct ice_aqc_dis_txqs *cmd;
2320 struct ice_aq_desc desc;
2321 u16 i, sz = 0;
2322
2323 cmd = &desc.params.dis_txqs;
2324 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2325
ddf30f7f
AV
2326 /* qg_list can be NULL only in VM/VF reset flow */
2327 if (!qg_list && !rst_src)
cdedef59
AV
2328 return ICE_ERR_PARAM;
2329
2330 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2331 return ICE_ERR_PARAM;
ddf30f7f 2332
cdedef59
AV
2333 cmd->num_entries = num_qgrps;
2334
ddf30f7f
AV
2335 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2336 ICE_AQC_Q_DIS_TIMEOUT_M);
2337
2338 switch (rst_src) {
2339 case ICE_VM_RESET:
2340 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2341 cmd->vmvf_and_timeout |=
2342 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2343 break;
2344 case ICE_VF_RESET:
2345 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2346 /* In this case, FW expects vmvf_num to be absolute VF id */
2347 cmd->vmvf_and_timeout |=
2348 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2349 ICE_AQC_Q_DIS_VMVF_NUM_M);
2350 break;
2351 case ICE_NO_RESET:
2352 default:
2353 break;
2354 }
2355
2356 /* If no queue group info, we are in a reset flow. Issue the AQ */
2357 if (!qg_list)
2358 goto do_aq;
2359
2360 /* set RD bit to indicate that command buffer is provided by the driver
2361 * and it needs to be read by the firmware
2362 */
2363 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2364
cdedef59
AV
2365 for (i = 0; i < num_qgrps; ++i) {
2366 /* Calculate the size taken up by the queue IDs in this group */
2367 sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2368
2369 /* Add the size of the group header */
2370 sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2371
2372 /* If the num of queues is even, add 2 bytes of padding */
2373 if ((qg_list[i].num_qs % 2) == 0)
2374 sz += 2;
2375 }
2376
2377 if (buf_size != sz)
2378 return ICE_ERR_PARAM;
2379
ddf30f7f 2380do_aq:
cdedef59
AV
2381 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2382}
2383
2384/* End of FW Admin Queue command wrappers */
2385
2386/**
2387 * ice_write_byte - write a byte to a packed context structure
2388 * @src_ctx: the context structure to read from
2389 * @dest_ctx: the context to be written to
2390 * @ce_info: a description of the struct to be filled
2391 */
2392static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
2393 const struct ice_ctx_ele *ce_info)
2394{
2395 u8 src_byte, dest_byte, mask;
2396 u8 *from, *dest;
2397 u16 shift_width;
2398
2399 /* copy from the next struct field */
2400 from = src_ctx + ce_info->offset;
2401
2402 /* prepare the bits and mask */
2403 shift_width = ce_info->lsb % 8;
2404 mask = (u8)(BIT(ce_info->width) - 1);
2405
2406 src_byte = *from;
2407 src_byte &= mask;
2408
2409 /* shift to correct alignment */
2410 mask <<= shift_width;
2411 src_byte <<= shift_width;
2412
2413 /* get the current bits from the target bit string */
2414 dest = dest_ctx + (ce_info->lsb / 8);
2415
2416 memcpy(&dest_byte, dest, sizeof(dest_byte));
2417
2418 dest_byte &= ~mask; /* get the bits not changing */
2419 dest_byte |= src_byte; /* add in the new bits */
2420
2421 /* put it all back */
2422 memcpy(dest, &dest_byte, sizeof(dest_byte));
2423}
2424
2425/**
2426 * ice_write_word - write a word to a packed context structure
2427 * @src_ctx: the context structure to read from
2428 * @dest_ctx: the context to be written to
2429 * @ce_info: a description of the struct to be filled
2430 */
2431static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
2432 const struct ice_ctx_ele *ce_info)
2433{
2434 u16 src_word, mask;
2435 __le16 dest_word;
2436 u8 *from, *dest;
2437 u16 shift_width;
2438
2439 /* copy from the next struct field */
2440 from = src_ctx + ce_info->offset;
2441
2442 /* prepare the bits and mask */
2443 shift_width = ce_info->lsb % 8;
2444 mask = BIT(ce_info->width) - 1;
2445
2446 /* don't swizzle the bits until after the mask because the mask bits
2447 * will be in a different bit position on big endian machines
2448 */
2449 src_word = *(u16 *)from;
2450 src_word &= mask;
2451
2452 /* shift to correct alignment */
2453 mask <<= shift_width;
2454 src_word <<= shift_width;
2455
2456 /* get the current bits from the target bit string */
2457 dest = dest_ctx + (ce_info->lsb / 8);
2458
2459 memcpy(&dest_word, dest, sizeof(dest_word));
2460
2461 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
2462 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
2463
2464 /* put it all back */
2465 memcpy(dest, &dest_word, sizeof(dest_word));
2466}
2467
2468/**
2469 * ice_write_dword - write a dword to a packed context structure
2470 * @src_ctx: the context structure to read from
2471 * @dest_ctx: the context to be written to
2472 * @ce_info: a description of the struct to be filled
2473 */
2474static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
2475 const struct ice_ctx_ele *ce_info)
2476{
2477 u32 src_dword, mask;
2478 __le32 dest_dword;
2479 u8 *from, *dest;
2480 u16 shift_width;
2481
2482 /* copy from the next struct field */
2483 from = src_ctx + ce_info->offset;
2484
2485 /* prepare the bits and mask */
2486 shift_width = ce_info->lsb % 8;
2487
2488 /* if the field width is exactly 32 on an x86 machine, then the shift
2489 * operation will not work because the SHL instructions count is masked
2490 * to 5 bits so the shift will do nothing
2491 */
2492 if (ce_info->width < 32)
2493 mask = BIT(ce_info->width) - 1;
2494 else
2495 mask = (u32)~0;
2496
2497 /* don't swizzle the bits until after the mask because the mask bits
2498 * will be in a different bit position on big endian machines
2499 */
2500 src_dword = *(u32 *)from;
2501 src_dword &= mask;
2502
2503 /* shift to correct alignment */
2504 mask <<= shift_width;
2505 src_dword <<= shift_width;
2506
2507 /* get the current bits from the target bit string */
2508 dest = dest_ctx + (ce_info->lsb / 8);
2509
2510 memcpy(&dest_dword, dest, sizeof(dest_dword));
2511
2512 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
2513 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
2514
2515 /* put it all back */
2516 memcpy(dest, &dest_dword, sizeof(dest_dword));
2517}
2518
2519/**
2520 * ice_write_qword - write a qword to a packed context structure
2521 * @src_ctx: the context structure to read from
2522 * @dest_ctx: the context to be written to
2523 * @ce_info: a description of the struct to be filled
2524 */
2525static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
2526 const struct ice_ctx_ele *ce_info)
2527{
2528 u64 src_qword, mask;
2529 __le64 dest_qword;
2530 u8 *from, *dest;
2531 u16 shift_width;
2532
2533 /* copy from the next struct field */
2534 from = src_ctx + ce_info->offset;
2535
2536 /* prepare the bits and mask */
2537 shift_width = ce_info->lsb % 8;
2538
2539 /* if the field width is exactly 64 on an x86 machine, then the shift
2540 * operation will not work because the SHL instructions count is masked
2541 * to 6 bits so the shift will do nothing
2542 */
2543 if (ce_info->width < 64)
2544 mask = BIT_ULL(ce_info->width) - 1;
2545 else
2546 mask = (u64)~0;
2547
2548 /* don't swizzle the bits until after the mask because the mask bits
2549 * will be in a different bit position on big endian machines
2550 */
2551 src_qword = *(u64 *)from;
2552 src_qword &= mask;
2553
2554 /* shift to correct alignment */
2555 mask <<= shift_width;
2556 src_qword <<= shift_width;
2557
2558 /* get the current bits from the target bit string */
2559 dest = dest_ctx + (ce_info->lsb / 8);
2560
2561 memcpy(&dest_qword, dest, sizeof(dest_qword));
2562
2563 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
2564 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
2565
2566 /* put it all back */
2567 memcpy(dest, &dest_qword, sizeof(dest_qword));
2568}
2569
2570/**
2571 * ice_set_ctx - set context bits in packed structure
2572 * @src_ctx: pointer to a generic non-packed context structure
2573 * @dest_ctx: pointer to memory for the packed structure
2574 * @ce_info: a description of the structure to be transformed
2575 */
2576enum ice_status
2577ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2578{
2579 int f;
2580
2581 for (f = 0; ce_info[f].width; f++) {
2582 /* We have to deal with each element of the FW response
2583 * using the correct size so that we are correct regardless
2584 * of the endianness of the machine.
2585 */
2586 switch (ce_info[f].size_of) {
2587 case sizeof(u8):
2588 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2589 break;
2590 case sizeof(u16):
2591 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2592 break;
2593 case sizeof(u32):
2594 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2595 break;
2596 case sizeof(u64):
2597 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2598 break;
2599 default:
2600 return ICE_ERR_INVAL_SIZE;
2601 }
2602 }
2603
2604 return 0;
2605}
2606
2607/**
2608 * ice_ena_vsi_txq
2609 * @pi: port information structure
4fb33f31 2610 * @vsi_handle: software VSI handle
cdedef59
AV
2611 * @tc: tc number
2612 * @num_qgrps: Number of added queue groups
2613 * @buf: list of queue groups to be added
2614 * @buf_size: size of buffer for indirect command
2615 * @cd: pointer to command details structure or NULL
2616 *
2617 * This function adds one lan q
2618 */
2619enum ice_status
4fb33f31 2620ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps,
cdedef59
AV
2621 struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2622 struct ice_sq_cd *cd)
2623{
2624 struct ice_aqc_txsched_elem_data node = { 0 };
2625 struct ice_sched_node *parent;
2626 enum ice_status status;
2627 struct ice_hw *hw;
2628
2629 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2630 return ICE_ERR_CFG;
2631
2632 if (num_qgrps > 1 || buf->num_txqs > 1)
2633 return ICE_ERR_MAX_LIMIT;
2634
2635 hw = pi->hw;
2636
4fb33f31
AV
2637 if (!ice_is_vsi_valid(hw, vsi_handle))
2638 return ICE_ERR_PARAM;
2639
cdedef59
AV
2640 mutex_lock(&pi->sched_lock);
2641
2642 /* find a parent node */
4fb33f31 2643 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
cdedef59
AV
2644 ICE_SCHED_NODE_OWNER_LAN);
2645 if (!parent) {
2646 status = ICE_ERR_PARAM;
2647 goto ena_txq_exit;
2648 }
4fb33f31 2649
cdedef59
AV
2650 buf->parent_teid = parent->info.node_teid;
2651 node.parent_teid = parent->info.node_teid;
2652 /* Mark that the values in the "generic" section as valid. The default
2653 * value in the "generic" section is zero. This means that :
2654 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2655 * - 0 priority among siblings, indicated by Bit 1-3.
2656 * - WFQ, indicated by Bit 4.
2657 * - 0 Adjustment value is used in PSM credit update flow, indicated by
2658 * Bit 5-6.
2659 * - Bit 7 is reserved.
2660 * Without setting the generic section as valid in valid_sections, the
2661 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
2662 */
2663 buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2664
2665 /* add the lan q */
2666 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
2667 if (status)
2668 goto ena_txq_exit;
2669
2670 node.node_teid = buf->txqs[0].q_teid;
2671 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2672
2673 /* add a leaf node into schduler tree q layer */
2674 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2675
2676ena_txq_exit:
2677 mutex_unlock(&pi->sched_lock);
2678 return status;
2679}
2680
2681/**
2682 * ice_dis_vsi_txq
2683 * @pi: port information structure
2684 * @num_queues: number of queues
2685 * @q_ids: pointer to the q_id array
2686 * @q_teids: pointer to queue node teids
ddf30f7f
AV
2687 * @rst_src: if called due to reset, specifies the RST source
2688 * @vmvf_num: the relative VM or VF number that is undergoing the reset
cdedef59
AV
2689 * @cd: pointer to command details structure or NULL
2690 *
2691 * This function removes queues and their corresponding nodes in SW DB
2692 */
2693enum ice_status
2694ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
ddf30f7f
AV
2695 u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
2696 struct ice_sq_cd *cd)
cdedef59
AV
2697{
2698 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2699 struct ice_aqc_dis_txq_item qg_list;
2700 u16 i;
2701
2702 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2703 return ICE_ERR_CFG;
2704
ddf30f7f
AV
2705 /* if queue is disabled already yet the disable queue command has to be
2706 * sent to complete the VF reset, then call ice_aq_dis_lan_txq without
2707 * any queue information
2708 */
2709
2710 if (!num_queues && rst_src)
2711 return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num,
2712 NULL);
2713
cdedef59
AV
2714 mutex_lock(&pi->sched_lock);
2715
2716 for (i = 0; i < num_queues; i++) {
2717 struct ice_sched_node *node;
2718
2719 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2720 if (!node)
2721 continue;
2722 qg_list.parent_teid = node->info.parent_teid;
2723 qg_list.num_qs = 1;
2724 qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2725 status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
ddf30f7f
AV
2726 sizeof(qg_list), rst_src, vmvf_num,
2727 cd);
cdedef59
AV
2728
2729 if (status)
2730 break;
2731 ice_free_sched_node(pi, node);
2732 }
2733 mutex_unlock(&pi->sched_lock);
2734 return status;
2735}
5513b920
AV
2736
2737/**
2738 * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
2739 * @pi: port information structure
4fb33f31 2740 * @vsi_handle: software VSI handle
5513b920
AV
2741 * @tc_bitmap: TC bitmap
2742 * @maxqs: max queues array per TC
2743 * @owner: lan or rdma
2744 *
2745 * This function adds/updates the VSI queues per TC.
2746 */
2747static enum ice_status
4fb33f31 2748ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5513b920
AV
2749 u16 *maxqs, u8 owner)
2750{
2751 enum ice_status status = 0;
2752 u8 i;
2753
2754 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2755 return ICE_ERR_CFG;
2756
4fb33f31
AV
2757 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2758 return ICE_ERR_PARAM;
2759
5513b920
AV
2760 mutex_lock(&pi->sched_lock);
2761
2762 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
2763 /* configuration is possible only if TC node is present */
2764 if (!ice_sched_get_tc_node(pi, i))
2765 continue;
2766
4fb33f31 2767 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5513b920
AV
2768 ice_is_tc_ena(tc_bitmap, i));
2769 if (status)
2770 break;
2771 }
2772
2773 mutex_unlock(&pi->sched_lock);
2774 return status;
2775}
2776
2777/**
2778 * ice_cfg_vsi_lan - configure VSI lan queues
2779 * @pi: port information structure
4fb33f31 2780 * @vsi_handle: software VSI handle
5513b920
AV
2781 * @tc_bitmap: TC bitmap
2782 * @max_lanqs: max lan queues array per TC
2783 *
2784 * This function adds/updates the VSI lan queues per TC.
2785 */
2786enum ice_status
4fb33f31 2787ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5513b920
AV
2788 u16 *max_lanqs)
2789{
4fb33f31 2790 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5513b920
AV
2791 ICE_SCHED_NODE_OWNER_LAN);
2792}
45d3d428 2793
334cb062
AV
2794/**
2795 * ice_replay_pre_init - replay pre initialization
2796 * @hw: pointer to the hw struct
2797 *
2798 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
2799 */
2800static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
2801{
2802 struct ice_switch_info *sw = hw->switch_info;
2803 u8 i;
2804
2805 /* Delete old entries from replay filter list head if there is any */
2806 ice_rm_all_sw_replay_rule_info(hw);
2807 /* In start of replay, move entries into replay_rules list, it
2808 * will allow adding rules entries back to filt_rules list,
2809 * which is operational list.
2810 */
2811 for (i = 0; i < ICE_SW_LKUP_LAST; i++)
2812 list_replace_init(&sw->recp_list[i].filt_rules,
2813 &sw->recp_list[i].filt_replay_rules);
2814
2815 return 0;
2816}
2817
2818/**
2819 * ice_replay_vsi - replay VSI configuration
2820 * @hw: pointer to the hw struct
2821 * @vsi_handle: driver VSI handle
2822 *
2823 * Restore all VSI configuration after reset. It is required to call this
2824 * function with main VSI first.
2825 */
2826enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
2827{
2828 enum ice_status status;
2829
2830 if (!ice_is_vsi_valid(hw, vsi_handle))
2831 return ICE_ERR_PARAM;
2832
2833 /* Replay pre-initialization if there is any */
2834 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
2835 status = ice_replay_pre_init(hw);
2836 if (status)
2837 return status;
2838 }
2839
2840 /* Replay per VSI all filters */
2841 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
2842 return status;
2843}
2844
2845/**
2846 * ice_replay_post - post replay configuration cleanup
2847 * @hw: pointer to the hw struct
2848 *
2849 * Post replay cleanup.
2850 */
2851void ice_replay_post(struct ice_hw *hw)
2852{
2853 /* Delete old entries from replay filter list head */
2854 ice_rm_all_sw_replay_rule_info(hw);
2855}
2856
45d3d428
AV
2857/**
2858 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
2859 * @hw: ptr to the hardware info
2860 * @hireg: high 32 bit HW register to read from
2861 * @loreg: low 32 bit HW register to read from
2862 * @prev_stat_loaded: bool to specify if previous stats are loaded
2863 * @prev_stat: ptr to previous loaded stat value
2864 * @cur_stat: ptr to current stat value
2865 */
2866void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
2867 bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat)
2868{
2869 u64 new_data;
2870
2871 new_data = rd32(hw, loreg);
2872 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
2873
2874 /* device stats are not reset at PFR, they likely will not be zeroed
2875 * when the driver starts. So save the first values read and use them as
2876 * offsets to be subtracted from the raw values in order to report stats
2877 * that count from zero.
2878 */
2879 if (!prev_stat_loaded)
2880 *prev_stat = new_data;
2881 if (new_data >= *prev_stat)
2882 *cur_stat = new_data - *prev_stat;
2883 else
2884 /* to manage the potential roll-over */
2885 *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
2886 *cur_stat &= 0xFFFFFFFFFFULL;
2887}
2888
2889/**
2890 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
2891 * @hw: ptr to the hardware info
2892 * @reg: HW register to read from
2893 * @prev_stat_loaded: bool to specify if previous stats are loaded
2894 * @prev_stat: ptr to previous loaded stat value
2895 * @cur_stat: ptr to current stat value
2896 */
2897void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
2898 u64 *prev_stat, u64 *cur_stat)
2899{
2900 u32 new_data;
2901
2902 new_data = rd32(hw, reg);
2903
2904 /* device stats are not reset at PFR, they likely will not be zeroed
2905 * when the driver starts. So save the first values read and use them as
2906 * offsets to be subtracted from the raw values in order to report stats
2907 * that count from zero.
2908 */
2909 if (!prev_stat_loaded)
2910 *prev_stat = new_data;
2911 if (new_data >= *prev_stat)
2912 *cur_stat = new_data - *prev_stat;
2913 else
2914 /* to manage the potential roll-over */
2915 *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
2916}