ice: get rid of per-tc flow in Tx queue configuration routines
[linux-2.6-block.git] / drivers / net / ethernet / intel / ice / ice_base.c
CommitLineData
eff380aa
AV
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include "ice_base.h"
5#include "ice_dcb_lib.h"
6
7/**
8 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
9 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
10 *
11 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
12 */
13static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
14{
15 int offset, i;
16
17 mutex_lock(qs_cfg->qs_mutex);
18 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
19 0, qs_cfg->q_count, 0);
20 if (offset >= qs_cfg->pf_map_size) {
21 mutex_unlock(qs_cfg->qs_mutex);
22 return -ENOMEM;
23 }
24
25 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
26 for (i = 0; i < qs_cfg->q_count; i++)
27 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
28 mutex_unlock(qs_cfg->qs_mutex);
29
30 return 0;
31}
32
33/**
34 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
35 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
36 *
37 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
38 */
39static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
40{
41 int i, index = 0;
42
43 mutex_lock(qs_cfg->qs_mutex);
44 for (i = 0; i < qs_cfg->q_count; i++) {
45 index = find_next_zero_bit(qs_cfg->pf_map,
46 qs_cfg->pf_map_size, index);
47 if (index >= qs_cfg->pf_map_size)
48 goto err_scatter;
49 set_bit(index, qs_cfg->pf_map);
50 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
51 }
52 mutex_unlock(qs_cfg->qs_mutex);
53
54 return 0;
55err_scatter:
56 for (index = 0; index < i; index++) {
57 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
58 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
59 }
60 mutex_unlock(qs_cfg->qs_mutex);
61
62 return -ENOMEM;
63}
64
65/**
66 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
67 * @pf: the PF being configured
68 * @pf_q: the PF queue
69 * @ena: enable or disable state of the queue
70 *
71 * This routine will wait for the given Rx queue of the PF to reach the
72 * enabled or disabled state.
73 * Returns -ETIMEDOUT in case of failing to reach the requested state after
74 * multiple retries; else will return 0 in case of success.
75 */
76static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
77{
78 int i;
79
80 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
81 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
82 QRX_CTRL_QENA_STAT_M))
83 return 0;
84
85 usleep_range(20, 40);
86 }
87
88 return -ETIMEDOUT;
89}
90
91/**
92 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
93 * @vsi: the VSI being configured
94 * @v_idx: index of the vector in the VSI struct
95 *
96 * We allocate one q_vector. If allocation fails we return -ENOMEM.
97 */
98static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
99{
100 struct ice_pf *pf = vsi->back;
101 struct ice_q_vector *q_vector;
102
103 /* allocate q_vector */
104 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
105 if (!q_vector)
106 return -ENOMEM;
107
108 q_vector->vsi = vsi;
109 q_vector->v_idx = v_idx;
110 if (vsi->type == ICE_VSI_VF)
111 goto out;
112 /* only set affinity_mask if the CPU is online */
113 if (cpu_online(v_idx))
114 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
115
116 /* This will not be called in the driver load path because the netdev
117 * will not be created yet. All other cases with register the NAPI
118 * handler here (i.e. resume, reset/rebuild, etc.)
119 */
120 if (vsi->netdev)
121 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
122 NAPI_POLL_WEIGHT);
123
124out:
125 /* tie q_vector and VSI together */
126 vsi->q_vectors[v_idx] = q_vector;
127
128 return 0;
129}
130
131/**
132 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
133 * @vsi: VSI having the memory freed
134 * @v_idx: index of the vector to be freed
135 */
136static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
137{
138 struct ice_q_vector *q_vector;
139 struct ice_pf *pf = vsi->back;
140 struct ice_ring *ring;
141
142 if (!vsi->q_vectors[v_idx]) {
143 dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
144 v_idx);
145 return;
146 }
147 q_vector = vsi->q_vectors[v_idx];
148
149 ice_for_each_ring(ring, q_vector->tx)
150 ring->q_vector = NULL;
151 ice_for_each_ring(ring, q_vector->rx)
152 ring->q_vector = NULL;
153
154 /* only VSI with an associated netdev is set up with NAPI */
155 if (vsi->netdev)
156 netif_napi_del(&q_vector->napi);
157
158 devm_kfree(&pf->pdev->dev, q_vector);
159 vsi->q_vectors[v_idx] = NULL;
160}
161
162/**
163 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
164 * @hw: board specific structure
165 */
166static void ice_cfg_itr_gran(struct ice_hw *hw)
167{
168 u32 regval = rd32(hw, GLINT_CTL);
169
170 /* no need to update global register if ITR gran is already set */
171 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
172 (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
173 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
174 (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
175 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
176 (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
177 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
178 (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
179 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
180 return;
181
182 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
183 GLINT_CTL_ITR_GRAN_200_M) |
184 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
185 GLINT_CTL_ITR_GRAN_100_M) |
186 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
187 GLINT_CTL_ITR_GRAN_50_M) |
188 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
189 GLINT_CTL_ITR_GRAN_25_M);
190 wr32(hw, GLINT_CTL, regval);
191}
192
e75d1b2c
MF
193/**
194 * ice_calc_q_handle - calculate the queue handle
195 * @vsi: VSI that ring belongs to
196 * @ring: ring to get the absolute queue index
197 * @tc: traffic class number
198 */
199static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
200{
201 /* Idea here for calculation is that we subtract the number of queue
202 * count from TC that ring belongs to from it's absolute queue index
203 * and as a result we get the queue's index within TC.
204 */
205 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
206}
207
eff380aa
AV
208/**
209 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
210 * @ring: The Tx ring to configure
211 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
212 * @pf_q: queue index in the PF space
213 *
214 * Configure the Tx descriptor ring in TLAN context.
215 */
216static void
217ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
218{
219 struct ice_vsi *vsi = ring->vsi;
220 struct ice_hw *hw = &vsi->back->hw;
221
222 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
223
224 tlan_ctx->port_num = vsi->port_info->lport;
225
226 /* Transmit Queue Length */
227 tlan_ctx->qlen = ring->count;
228
229 ice_set_cgd_num(tlan_ctx, ring);
230
231 /* PF number */
232 tlan_ctx->pf_num = hw->pf_id;
233
234 /* queue belongs to a specific VSI type
235 * VF / VM index should be programmed per vmvf_type setting:
236 * for vmvf_type = VF, it is VF number between 0-256
237 * for vmvf_type = VM, it is VM number between 0-767
238 * for PF or EMP this field should be set to zero
239 */
240 switch (vsi->type) {
241 case ICE_VSI_LB:
242 /* fall through */
243 case ICE_VSI_PF:
244 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
245 break;
246 case ICE_VSI_VF:
247 /* Firmware expects vmvf_num to be absolute VF ID */
248 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
249 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
250 break;
251 default:
252 return;
253 }
254
255 /* make sure the context is associated with the right VSI */
256 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
257
258 tlan_ctx->tso_ena = ICE_TX_LEGACY;
259 tlan_ctx->tso_qnum = pf_q;
260
261 /* Legacy or Advanced Host Interface:
262 * 0: Advanced Host Interface
263 * 1: Legacy Host Interface
264 */
265 tlan_ctx->legacy_int = ICE_TX_LEGACY;
266}
267
268/**
269 * ice_setup_rx_ctx - Configure a receive ring context
270 * @ring: The Rx ring to configure
271 *
272 * Configure the Rx descriptor ring in RLAN context.
273 */
274int ice_setup_rx_ctx(struct ice_ring *ring)
275{
276 struct ice_vsi *vsi = ring->vsi;
277 struct ice_hw *hw = &vsi->back->hw;
278 u32 rxdid = ICE_RXDID_FLEX_NIC;
279 struct ice_rlan_ctx rlan_ctx;
280 u32 regval;
281 u16 pf_q;
282 int err;
283
284 /* what is Rx queue number in global space of 2K Rx queues */
285 pf_q = vsi->rxq_map[ring->q_index];
286
287 /* clear the context structure first */
288 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
289
290 rlan_ctx.base = ring->dma >> 7;
291
292 rlan_ctx.qlen = ring->count;
293
294 /* Receive Packet Data Buffer Size.
295 * The Packet Data Buffer Size is defined in 128 byte units.
296 */
297 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
298
299 /* use 32 byte descriptors */
300 rlan_ctx.dsize = 1;
301
302 /* Strip the Ethernet CRC bytes before the packet is posted to host
303 * memory.
304 */
305 rlan_ctx.crcstrip = 1;
306
307 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
308 rlan_ctx.l2tsel = 1;
309
310 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
311 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
312 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
313
314 /* This controls whether VLAN is stripped from inner headers
315 * The VLAN in the inner L2 header is stripped to the receive
316 * descriptor if enabled by this flag.
317 */
318 rlan_ctx.showiv = 0;
319
320 /* Max packet size for this queue - must not be set to a larger value
321 * than 5 x DBUF
322 */
323 rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
324 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
325
326 /* Rx queue threshold in units of 64 */
327 rlan_ctx.lrxqthresh = 1;
328
329 /* Enable Flexible Descriptors in the queue context which
330 * allows this driver to select a specific receive descriptor format
331 */
332 if (vsi->type != ICE_VSI_VF) {
333 regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
334 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
335 QRXFLXP_CNTXT_RXDID_IDX_M;
336
337 /* increasing context priority to pick up profile ID;
338 * default is 0x01; setting to 0x03 to ensure profile
339 * is programming if prev context is of same priority
340 */
341 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
342 QRXFLXP_CNTXT_RXDID_PRIO_M;
343
344 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
345 }
346
347 /* Absolute queue number out of 2K needs to be passed */
348 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
349 if (err) {
350 dev_err(&vsi->back->pdev->dev,
351 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
352 pf_q, err);
353 return -EIO;
354 }
355
356 if (vsi->type == ICE_VSI_VF)
357 return 0;
358
359 /* init queue specific tail register */
360 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
361 writel(0, ring->tail);
362 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
363
364 return 0;
365}
366
367/**
368 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
369 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
370 *
371 * This function first tries to find contiguous space. If it is not successful,
372 * it tries with the scatter approach.
373 *
374 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
375 */
376int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
377{
378 int ret = 0;
379
380 ret = __ice_vsi_get_qs_contig(qs_cfg);
381 if (ret) {
382 /* contig failed, so try with scatter approach */
383 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
384 qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
385 qs_cfg->scatter_count);
386 ret = __ice_vsi_get_qs_sc(qs_cfg);
387 }
388 return ret;
389}
390
391/**
392 * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
393 * @vsi: the VSI being configured
394 * @ena: start or stop the Rx rings
395 * @rxq_idx: Rx queue index
396 */
397int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
398{
399 int pf_q = vsi->rxq_map[rxq_idx];
400 struct ice_pf *pf = vsi->back;
401 struct ice_hw *hw = &pf->hw;
402 int ret = 0;
403 u32 rx_reg;
404
405 rx_reg = rd32(hw, QRX_CTRL(pf_q));
406
407 /* Skip if the queue is already in the requested state */
408 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
409 return 0;
410
411 /* turn on/off the queue */
412 if (ena)
413 rx_reg |= QRX_CTRL_QENA_REQ_M;
414 else
415 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
416 wr32(hw, QRX_CTRL(pf_q), rx_reg);
417
418 /* wait for the change to finish */
419 ret = ice_pf_rxq_wait(pf, pf_q, ena);
420 if (ret)
421 dev_err(&pf->pdev->dev,
422 "VSI idx %d Rx ring %d %sable timeout\n",
423 vsi->idx, pf_q, (ena ? "en" : "dis"));
424
425 return ret;
426}
427
428/**
429 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
430 * @vsi: the VSI being configured
431 *
432 * We allocate one q_vector per queue interrupt. If allocation fails we
433 * return -ENOMEM.
434 */
435int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
436{
437 struct ice_pf *pf = vsi->back;
438 int v_idx = 0, num_q_vectors;
439 int err;
440
441 if (vsi->q_vectors[0]) {
442 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
443 vsi->vsi_num);
444 return -EEXIST;
445 }
446
447 num_q_vectors = vsi->num_q_vectors;
448
449 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
450 err = ice_vsi_alloc_q_vector(vsi, v_idx);
451 if (err)
452 goto err_out;
453 }
454
455 return 0;
456
457err_out:
458 while (v_idx--)
459 ice_free_q_vector(vsi, v_idx);
460
461 dev_err(&pf->pdev->dev,
462 "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
463 vsi->num_q_vectors, vsi->vsi_num, err);
464 vsi->num_q_vectors = 0;
465 return err;
466}
467
468/**
469 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
470 * @vsi: the VSI being configured
471 *
472 * This function maps descriptor rings to the queue-specific vectors allotted
473 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
474 * and Rx rings to the vector as "efficiently" as possible.
475 */
476void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
477{
478 int q_vectors = vsi->num_q_vectors;
479 int tx_rings_rem, rx_rings_rem;
480 int v_id;
481
482 /* initially assigning remaining rings count to VSIs num queue value */
483 tx_rings_rem = vsi->num_txq;
484 rx_rings_rem = vsi->num_rxq;
485
486 for (v_id = 0; v_id < q_vectors; v_id++) {
487 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
488 int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
489
490 /* Tx rings mapping to vector */
491 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
492 q_vector->num_ring_tx = tx_rings_per_v;
493 q_vector->tx.ring = NULL;
494 q_vector->tx.itr_idx = ICE_TX_ITR;
495 q_base = vsi->num_txq - tx_rings_rem;
496
497 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
498 struct ice_ring *tx_ring = vsi->tx_rings[q_id];
499
500 tx_ring->q_vector = q_vector;
501 tx_ring->next = q_vector->tx.ring;
502 q_vector->tx.ring = tx_ring;
503 }
504 tx_rings_rem -= tx_rings_per_v;
505
506 /* Rx rings mapping to vector */
507 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
508 q_vector->num_ring_rx = rx_rings_per_v;
509 q_vector->rx.ring = NULL;
510 q_vector->rx.itr_idx = ICE_RX_ITR;
511 q_base = vsi->num_rxq - rx_rings_rem;
512
513 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
514 struct ice_ring *rx_ring = vsi->rx_rings[q_id];
515
516 rx_ring->q_vector = q_vector;
517 rx_ring->next = q_vector->rx.ring;
518 q_vector->rx.ring = rx_ring;
519 }
520 rx_rings_rem -= rx_rings_per_v;
521 }
522}
523
524/**
525 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
526 * @vsi: the VSI having memory freed
527 */
528void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
529{
530 int v_idx;
531
532 ice_for_each_q_vector(vsi, v_idx)
533 ice_free_q_vector(vsi, v_idx);
534}
535
536/**
537 * ice_vsi_cfg_txq - Configure single Tx queue
538 * @vsi: the VSI that queue belongs to
539 * @ring: Tx ring to be configured
eff380aa 540 * @qg_buf: queue group buffer
eff380aa
AV
541 */
542int
e75d1b2c
MF
543ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
544 struct ice_aqc_add_tx_qgrp *qg_buf)
eff380aa
AV
545{
546 struct ice_tlan_ctx tlan_ctx = { 0 };
547 struct ice_aqc_add_txqs_perq *txq;
548 struct ice_pf *pf = vsi->back;
549 u8 buf_len = sizeof(*qg_buf);
550 enum ice_status status;
551 u16 pf_q;
e75d1b2c 552 u8 tc;
eff380aa
AV
553
554 pf_q = ring->reg_idx;
555 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
556 /* copy context contents into the qg_buf */
557 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
558 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
559 ice_tlan_ctx_info);
560
561 /* init queue specific tail reg. It is referred as
562 * transmit comm scheduler queue doorbell.
563 */
564 ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
565
e75d1b2c
MF
566 if (IS_ENABLED(CONFIG_DCB))
567 tc = ring->dcb_tc;
568 else
569 tc = 0;
570
eff380aa
AV
571 /* Add unique software queue handle of the Tx queue per
572 * TC into the VSI Tx ring
573 */
e75d1b2c 574 ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
eff380aa
AV
575
576 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
577 1, qg_buf, buf_len, NULL);
578 if (status) {
579 dev_err(&pf->pdev->dev,
580 "Failed to set LAN Tx queue context, error: %d\n",
581 status);
582 return -ENODEV;
583 }
584
585 /* Add Tx Queue TEID into the VSI Tx ring from the
586 * response. This will complete configuring and
587 * enabling the queue.
588 */
589 txq = &qg_buf->txqs[0];
590 if (pf_q == le16_to_cpu(txq->txq_id))
591 ring->txq_teid = le32_to_cpu(txq->q_teid);
592
593 return 0;
594}
595
596/**
597 * ice_cfg_itr - configure the initial interrupt throttle values
598 * @hw: pointer to the HW structure
599 * @q_vector: interrupt vector that's being configured
600 *
601 * Configure interrupt throttling values for the ring containers that are
602 * associated with the interrupt vector passed in.
603 */
604void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
605{
606 ice_cfg_itr_gran(hw);
607
608 if (q_vector->num_ring_rx) {
609 struct ice_ring_container *rc = &q_vector->rx;
610
611 /* if this value is set then don't overwrite with default */
612 if (!rc->itr_setting)
613 rc->itr_setting = ICE_DFLT_RX_ITR;
614
615 rc->target_itr = ITR_TO_REG(rc->itr_setting);
616 rc->next_update = jiffies + 1;
617 rc->current_itr = rc->target_itr;
618 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
619 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
620 }
621
622 if (q_vector->num_ring_tx) {
623 struct ice_ring_container *rc = &q_vector->tx;
624
625 /* if this value is set then don't overwrite with default */
626 if (!rc->itr_setting)
627 rc->itr_setting = ICE_DFLT_TX_ITR;
628
629 rc->target_itr = ITR_TO_REG(rc->itr_setting);
630 rc->next_update = jiffies + 1;
631 rc->current_itr = rc->target_itr;
632 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
633 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
634 }
635}
636
637/**
638 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
639 * @vsi: the VSI being configured
640 * @txq: Tx queue being mapped to MSI-X vector
641 * @msix_idx: MSI-X vector index within the function
642 * @itr_idx: ITR index of the interrupt cause
643 *
644 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
645 * within the function space.
646 */
647void
648ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
649{
650 struct ice_pf *pf = vsi->back;
651 struct ice_hw *hw = &pf->hw;
652 u32 val;
653
654 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
655
656 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
657 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
658
659 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
660}
661
662/**
663 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
664 * @vsi: the VSI being configured
665 * @rxq: Rx queue being mapped to MSI-X vector
666 * @msix_idx: MSI-X vector index within the function
667 * @itr_idx: ITR index of the interrupt cause
668 *
669 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
670 * within the function space.
671 */
672void
673ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
674{
675 struct ice_pf *pf = vsi->back;
676 struct ice_hw *hw = &pf->hw;
677 u32 val;
678
679 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
680
681 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
682 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
683
684 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
685
686 ice_flush(hw);
687}
688
689/**
690 * ice_trigger_sw_intr - trigger a software interrupt
691 * @hw: pointer to the HW structure
692 * @q_vector: interrupt vector to trigger the software interrupt for
693 */
694void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
695{
696 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
697 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
698 GLINT_DYN_CTL_SWINT_TRIG_M |
699 GLINT_DYN_CTL_INTENA_M);
700}
701
702/**
703 * ice_vsi_stop_tx_ring - Disable single Tx ring
704 * @vsi: the VSI being configured
705 * @rst_src: reset source
706 * @rel_vmvf_num: Relative ID of VF/VM
707 * @ring: Tx ring to be stopped
708 * @txq_meta: Meta data of Tx ring to be stopped
709 */
710int
711ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
712 u16 rel_vmvf_num, struct ice_ring *ring,
713 struct ice_txq_meta *txq_meta)
714{
715 struct ice_pf *pf = vsi->back;
716 struct ice_q_vector *q_vector;
717 struct ice_hw *hw = &pf->hw;
718 enum ice_status status;
719 u32 val;
720
721 /* clear cause_ena bit for disabled queues */
722 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
723 val &= ~QINT_TQCTL_CAUSE_ENA_M;
724 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
725
726 /* software is expected to wait for 100 ns */
727 ndelay(100);
728
729 /* trigger a software interrupt for the vector
730 * associated to the queue to schedule NAPI handler
731 */
732 q_vector = ring->q_vector;
733 if (q_vector)
734 ice_trigger_sw_intr(hw, q_vector);
735
736 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
737 txq_meta->tc, 1, &txq_meta->q_handle,
738 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
739 rel_vmvf_num, NULL);
740
741 /* if the disable queue command was exercised during an
742 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
743 * This is not an error as the reset operation disables
744 * queues at the hardware level anyway.
745 */
746 if (status == ICE_ERR_RESET_ONGOING) {
747 dev_dbg(&vsi->back->pdev->dev,
748 "Reset in progress. LAN Tx queues already disabled\n");
749 } else if (status == ICE_ERR_DOES_NOT_EXIST) {
750 dev_dbg(&vsi->back->pdev->dev,
751 "LAN Tx queues do not exist, nothing to disable\n");
752 } else if (status) {
753 dev_err(&vsi->back->pdev->dev,
754 "Failed to disable LAN Tx queues, error: %d\n", status);
755 return -ENODEV;
756 }
757
758 return 0;
759}
760
761/**
762 * ice_fill_txq_meta - Prepare the Tx queue's meta data
763 * @vsi: VSI that ring belongs to
764 * @ring: ring that txq_meta will be based on
765 * @txq_meta: a helper struct that wraps Tx queue's information
766 *
767 * Set up a helper struct that will contain all the necessary fields that
768 * are needed for stopping Tx queue
769 */
770void
771ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
772 struct ice_txq_meta *txq_meta)
773{
774 u8 tc;
775
776 if (IS_ENABLED(CONFIG_DCB))
777 tc = ring->dcb_tc;
778 else
779 tc = 0;
780
781 txq_meta->q_id = ring->reg_idx;
782 txq_meta->q_teid = ring->txq_teid;
783 txq_meta->q_handle = ring->q_handle;
784 txq_meta->vsi_idx = vsi->idx;
785 txq_meta->tc = tc;
786}