Merge remote-tracking branches 'asoc/topic/fsl-spdif', 'asoc/topic/hdmi', 'asoc/topic...
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
a42e7a36 54 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
a42e7a36
KP
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
7f12ad74
GR
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d 129/**
9c6c1259
KP
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
dd353109 132 * @in_sw: is tx_pending being checked in SW or HW
a68de58d 133 *
9c6c1259
KP
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
a68de58d 136 **/
dd353109 137u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
a68de58d 138{
9c6c1259 139 u32 head, tail;
a68de58d 140
dd353109
ASJ
141 if (!in_sw)
142 head = i40e_get_head(ring);
143 else
144 head = ring->next_to_clean;
9c6c1259
KP
145 tail = readl(ring->tail);
146
147 if (head != tail)
148 return (head < tail) ?
149 tail - head : (tail + ring->count - head);
150
151 return 0;
a68de58d
JB
152}
153
c29af37f
ASJ
154#define WB_STRIDE 0x3
155
7f12ad74
GR
156/**
157 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
158 * @vsi: the VSI we care about
159 * @tx_ring: Tx ring to clean
160 * @napi_budget: Used to determine if we are in netpoll
7f12ad74
GR
161 *
162 * Returns true if there's any budget left (e.g. the clean is finished)
163 **/
a619afe8
AD
164static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
165 struct i40e_ring *tx_ring, int napi_budget)
7f12ad74
GR
166{
167 u16 i = tx_ring->next_to_clean;
168 struct i40e_tx_buffer *tx_buf;
1943d8ba 169 struct i40e_tx_desc *tx_head;
7f12ad74 170 struct i40e_tx_desc *tx_desc;
a619afe8
AD
171 unsigned int total_bytes = 0, total_packets = 0;
172 unsigned int budget = vsi->work_limit;
7f12ad74
GR
173
174 tx_buf = &tx_ring->tx_bi[i];
175 tx_desc = I40E_TX_DESC(tx_ring, i);
176 i -= tx_ring->count;
177
1943d8ba
JB
178 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
179
7f12ad74
GR
180 do {
181 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
182
183 /* if next_to_watch is not set then there is no work pending */
184 if (!eop_desc)
185 break;
186
187 /* prevent any other reads prior to eop_desc */
188 read_barrier_depends();
189
1943d8ba
JB
190 /* we have caught up to head, no work left to do */
191 if (tx_head == tx_desc)
7f12ad74
GR
192 break;
193
194 /* clear next_to_watch to prevent false hangs */
195 tx_buf->next_to_watch = NULL;
196
197 /* update the statistics for this packet */
198 total_bytes += tx_buf->bytecount;
199 total_packets += tx_buf->gso_segs;
200
201 /* free the skb */
a619afe8 202 napi_consume_skb(tx_buf->skb, napi_budget);
7f12ad74
GR
203
204 /* unmap skb header data */
205 dma_unmap_single(tx_ring->dev,
206 dma_unmap_addr(tx_buf, dma),
207 dma_unmap_len(tx_buf, len),
208 DMA_TO_DEVICE);
209
210 /* clear tx_buffer data */
211 tx_buf->skb = NULL;
212 dma_unmap_len_set(tx_buf, len, 0);
213
214 /* unmap remaining buffers */
215 while (tx_desc != eop_desc) {
216
217 tx_buf++;
218 tx_desc++;
219 i++;
220 if (unlikely(!i)) {
221 i -= tx_ring->count;
222 tx_buf = tx_ring->tx_bi;
223 tx_desc = I40E_TX_DESC(tx_ring, 0);
224 }
225
226 /* unmap any remaining paged data */
227 if (dma_unmap_len(tx_buf, len)) {
228 dma_unmap_page(tx_ring->dev,
229 dma_unmap_addr(tx_buf, dma),
230 dma_unmap_len(tx_buf, len),
231 DMA_TO_DEVICE);
232 dma_unmap_len_set(tx_buf, len, 0);
233 }
234 }
235
236 /* move us one more past the eop_desc for start of next pkt */
237 tx_buf++;
238 tx_desc++;
239 i++;
240 if (unlikely(!i)) {
241 i -= tx_ring->count;
242 tx_buf = tx_ring->tx_bi;
243 tx_desc = I40E_TX_DESC(tx_ring, 0);
244 }
245
016890b9
JB
246 prefetch(tx_desc);
247
7f12ad74
GR
248 /* update budget accounting */
249 budget--;
250 } while (likely(budget));
251
252 i += tx_ring->count;
253 tx_ring->next_to_clean = i;
254 u64_stats_update_begin(&tx_ring->syncp);
255 tx_ring->stats.bytes += total_bytes;
256 tx_ring->stats.packets += total_packets;
257 u64_stats_update_end(&tx_ring->syncp);
258 tx_ring->q_vector->tx.total_bytes += total_bytes;
259 tx_ring->q_vector->tx.total_packets += total_packets;
260
f6d83d13
ASJ
261 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
262 unsigned int j = 0;
263 /* check to see if there are < 4 descriptors
264 * waiting to be written back, then kick the hardware to force
265 * them to be written back in case we stay in NAPI.
266 * In this mode on X722 we do not enable Interrupt.
267 */
dd353109 268 j = i40evf_get_tx_pending(tx_ring, false);
f6d83d13
ASJ
269
270 if (budget &&
271 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
a619afe8 272 !test_bit(__I40E_DOWN, &vsi->state) &&
f6d83d13
ASJ
273 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
274 tx_ring->arm_wb = true;
275 }
276
7f12ad74
GR
277 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
278 tx_ring->queue_index),
279 total_packets, total_bytes);
280
281#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
282 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
283 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
284 /* Make sure that anybody stopping the queue after this
285 * sees the new next_to_clean.
286 */
287 smp_mb();
288 if (__netif_subqueue_stopped(tx_ring->netdev,
289 tx_ring->queue_index) &&
a619afe8 290 !test_bit(__I40E_DOWN, &vsi->state)) {
7f12ad74
GR
291 netif_wake_subqueue(tx_ring->netdev,
292 tx_ring->queue_index);
293 ++tx_ring->tx_stats.restart_queue;
294 }
295 }
296
b03a8c1f 297 return !!budget;
7f12ad74
GR
298}
299
c29af37f 300/**
ecc6a239 301 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 302 * @vsi: the VSI we care about
ecc6a239 303 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
304 *
305 **/
ecc6a239
ASJ
306static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
307 struct i40e_q_vector *q_vector)
c29af37f 308{
8e0764b4 309 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 310 u32 val;
8e0764b4 311
ecc6a239
ASJ
312 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
313 return;
314
315 if (q_vector->arm_wb_state)
316 return;
317
318 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
319 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
320
321 wr32(&vsi->back->hw,
322 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
323 vsi->base_vector - 1), val);
324 q_vector->arm_wb_state = true;
325}
326
327/**
328 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
329 * @vsi: the VSI we care about
330 * @q_vector: the vector on which to force writeback
331 *
332 **/
333void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
334{
335 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
336 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
337 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
338 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
339 /* allow 00 to be written to the index */;
340
341 wr32(&vsi->back->hw,
342 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
343 val);
c29af37f
ASJ
344}
345
7f12ad74
GR
346/**
347 * i40e_set_new_dynamic_itr - Find new ITR level
348 * @rc: structure containing ring performance data
349 *
8f5e39ce
JB
350 * Returns true if ITR changed, false if not
351 *
7f12ad74
GR
352 * Stores a new ITR value based on packets and byte counts during
353 * the last interrupt. The advantage of per interrupt computation
354 * is faster updates and more accurate ITR for the current traffic
355 * pattern. Constants in this function were computed based on
356 * theoretical maximum wire speed and thresholds were set based on
357 * testing data as well as attempting to minimize response time
358 * while increasing bulk throughput.
359 **/
8f5e39ce 360static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
361{
362 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 363 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
364 u32 new_itr = rc->itr;
365 int bytes_per_int;
51cc6d9f 366 int usecs;
7f12ad74
GR
367
368 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 369 return false;
7f12ad74
GR
370
371 /* simple throttlerate management
c56625d5 372 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 373 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
374 * 20-1249MB/s bulk (18000 ints/s)
375 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
376 *
377 * The math works out because the divisor is in 10^(-6) which
378 * turns the bytes/us input value into MB/s values, but
379 * make sure to use usecs, as the register values written
ee2319cf
JB
380 * are in 2 usec increments in the ITR registers, and make sure
381 * to use the smoothed values that the countdown timer gives us.
7f12ad74 382 */
ee2319cf 383 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 384 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 385
de32e3ef 386 switch (new_latency_range) {
7f12ad74
GR
387 case I40E_LOWEST_LATENCY:
388 if (bytes_per_int > 10)
389 new_latency_range = I40E_LOW_LATENCY;
390 break;
391 case I40E_LOW_LATENCY:
392 if (bytes_per_int > 20)
393 new_latency_range = I40E_BULK_LATENCY;
394 else if (bytes_per_int <= 10)
395 new_latency_range = I40E_LOWEST_LATENCY;
396 break;
397 case I40E_BULK_LATENCY:
c56625d5 398 case I40E_ULTRA_LATENCY:
de32e3ef
CW
399 default:
400 if (bytes_per_int <= 20)
401 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
402 break;
403 }
c56625d5
JB
404
405 /* this is to adjust RX more aggressively when streaming small
406 * packets. The value of 40000 was picked as it is just beyond
407 * what the hardware can receive per second if in low latency
408 * mode.
409 */
410#define RX_ULTRA_PACKET_RATE 40000
411
412 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
413 (&qv->rx == rc))
414 new_latency_range = I40E_ULTRA_LATENCY;
415
de32e3ef 416 rc->latency_range = new_latency_range;
7f12ad74
GR
417
418 switch (new_latency_range) {
419 case I40E_LOWEST_LATENCY:
c56625d5 420 new_itr = I40E_ITR_50K;
7f12ad74
GR
421 break;
422 case I40E_LOW_LATENCY:
423 new_itr = I40E_ITR_20K;
424 break;
425 case I40E_BULK_LATENCY:
c56625d5
JB
426 new_itr = I40E_ITR_18K;
427 break;
428 case I40E_ULTRA_LATENCY:
7f12ad74
GR
429 new_itr = I40E_ITR_8K;
430 break;
431 default:
432 break;
433 }
434
7f12ad74
GR
435 rc->total_bytes = 0;
436 rc->total_packets = 0;
8f5e39ce
JB
437
438 if (new_itr != rc->itr) {
439 rc->itr = new_itr;
440 return true;
441 }
442
443 return false;
7f12ad74
GR
444}
445
4eeb1fff 446/**
7f12ad74
GR
447 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
448 * @tx_ring: the tx ring to set up
449 *
450 * Return 0 on success, negative on error
451 **/
452int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
453{
454 struct device *dev = tx_ring->dev;
455 int bi_size;
456
457 if (!dev)
458 return -ENOMEM;
459
67c818a1
MW
460 /* warn if we are about to overwrite the pointer */
461 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
462 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
463 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
464 if (!tx_ring->tx_bi)
465 goto err;
466
467 /* round up to nearest 4K */
468 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
469 /* add u32 for head writeback, align after this takes care of
470 * guaranteeing this is at least one cache line in size
471 */
472 tx_ring->size += sizeof(u32);
7f12ad74
GR
473 tx_ring->size = ALIGN(tx_ring->size, 4096);
474 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
475 &tx_ring->dma, GFP_KERNEL);
476 if (!tx_ring->desc) {
477 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
478 tx_ring->size);
479 goto err;
480 }
481
482 tx_ring->next_to_use = 0;
483 tx_ring->next_to_clean = 0;
484 return 0;
485
486err:
487 kfree(tx_ring->tx_bi);
488 tx_ring->tx_bi = NULL;
489 return -ENOMEM;
490}
491
492/**
493 * i40evf_clean_rx_ring - Free Rx buffers
494 * @rx_ring: ring to be cleaned
495 **/
496void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
497{
498 struct device *dev = rx_ring->dev;
7f12ad74
GR
499 unsigned long bi_size;
500 u16 i;
501
502 /* ring already cleared, nothing to do */
503 if (!rx_ring->rx_bi)
504 return;
505
506 /* Free all the Rx ring sk_buffs */
507 for (i = 0; i < rx_ring->count; i++) {
ab9ad98e
JB
508 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
509
7f12ad74
GR
510 if (rx_bi->skb) {
511 dev_kfree_skb(rx_bi->skb);
512 rx_bi->skb = NULL;
513 }
ab9ad98e
JB
514 if (!rx_bi->page)
515 continue;
516
517 dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
518 __free_pages(rx_bi->page, 0);
519
520 rx_bi->page = NULL;
521 rx_bi->page_offset = 0;
7f12ad74
GR
522 }
523
524 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
525 memset(rx_ring->rx_bi, 0, bi_size);
526
527 /* Zero out the descriptor ring */
528 memset(rx_ring->desc, 0, rx_ring->size);
529
ab9ad98e 530 rx_ring->next_to_alloc = 0;
7f12ad74
GR
531 rx_ring->next_to_clean = 0;
532 rx_ring->next_to_use = 0;
533}
534
535/**
536 * i40evf_free_rx_resources - Free Rx resources
537 * @rx_ring: ring to clean the resources from
538 *
539 * Free all receive software resources
540 **/
541void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
542{
543 i40evf_clean_rx_ring(rx_ring);
544 kfree(rx_ring->rx_bi);
545 rx_ring->rx_bi = NULL;
546
547 if (rx_ring->desc) {
548 dma_free_coherent(rx_ring->dev, rx_ring->size,
549 rx_ring->desc, rx_ring->dma);
550 rx_ring->desc = NULL;
551 }
552}
553
554/**
555 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
556 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
557 *
558 * Returns 0 on success, negative on failure
559 **/
560int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
561{
562 struct device *dev = rx_ring->dev;
563 int bi_size;
564
67c818a1
MW
565 /* warn if we are about to overwrite the pointer */
566 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
567 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
568 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
569 if (!rx_ring->rx_bi)
570 goto err;
571
f217d6ca 572 u64_stats_init(&rx_ring->syncp);
638702bd 573
7f12ad74 574 /* Round up to nearest 4K */
ab9ad98e 575 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
7f12ad74
GR
576 rx_ring->size = ALIGN(rx_ring->size, 4096);
577 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
578 &rx_ring->dma, GFP_KERNEL);
579
580 if (!rx_ring->desc) {
581 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
582 rx_ring->size);
583 goto err;
584 }
585
ab9ad98e 586 rx_ring->next_to_alloc = 0;
7f12ad74
GR
587 rx_ring->next_to_clean = 0;
588 rx_ring->next_to_use = 0;
589
590 return 0;
591err:
592 kfree(rx_ring->rx_bi);
593 rx_ring->rx_bi = NULL;
594 return -ENOMEM;
595}
596
597/**
598 * i40e_release_rx_desc - Store the new tail and head values
599 * @rx_ring: ring to bump
600 * @val: new head index
601 **/
602static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
603{
604 rx_ring->next_to_use = val;
ab9ad98e
JB
605
606 /* update next to alloc since we have filled the ring */
607 rx_ring->next_to_alloc = val;
608
7f12ad74
GR
609 /* Force memory writes to complete before letting h/w
610 * know there are new descriptors to fetch. (Only
611 * applicable for weak-ordered memory model archs,
612 * such as IA-64).
613 */
614 wmb();
615 writel(val, rx_ring->tail);
616}
617
618/**
ab9ad98e
JB
619 * i40e_alloc_mapped_page - recycle or make a new page
620 * @rx_ring: ring to use
621 * @bi: rx_buffer struct to modify
c2e245ab 622 *
ab9ad98e
JB
623 * Returns true if the page was successfully allocated or
624 * reused.
a132af24 625 **/
ab9ad98e
JB
626static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
627 struct i40e_rx_buffer *bi)
a132af24 628{
ab9ad98e
JB
629 struct page *page = bi->page;
630 dma_addr_t dma;
a132af24 631
ab9ad98e
JB
632 /* since we are recycling buffers we should seldom need to alloc */
633 if (likely(page)) {
634 rx_ring->rx_stats.page_reuse_count++;
635 return true;
636 }
a132af24 637
ab9ad98e
JB
638 /* alloc new page for storage */
639 page = dev_alloc_page();
640 if (unlikely(!page)) {
641 rx_ring->rx_stats.alloc_page_failed++;
642 return false;
643 }
a132af24 644
ab9ad98e
JB
645 /* map page for use */
646 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
f16704e5 647
ab9ad98e
JB
648 /* if mapping failed free memory back to system since
649 * there isn't much point in holding memory we can't use
f16704e5 650 */
ab9ad98e
JB
651 if (dma_mapping_error(rx_ring->dev, dma)) {
652 __free_pages(page, 0);
653 rx_ring->rx_stats.alloc_page_failed++;
654 return false;
a132af24
MW
655 }
656
ab9ad98e
JB
657 bi->dma = dma;
658 bi->page = page;
659 bi->page_offset = 0;
c2e245ab 660
ab9ad98e
JB
661 return true;
662}
c2e245ab 663
ab9ad98e
JB
664/**
665 * i40e_receive_skb - Send a completed packet up the stack
666 * @rx_ring: rx ring in play
667 * @skb: packet to send up
668 * @vlan_tag: vlan tag for packet
669 **/
670static void i40e_receive_skb(struct i40e_ring *rx_ring,
671 struct sk_buff *skb, u16 vlan_tag)
672{
673 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 674
ab9ad98e
JB
675 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
676 (vlan_tag & VLAN_VID_MASK))
677 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
678
679 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
680}
681
682/**
ab9ad98e 683 * i40evf_alloc_rx_buffers - Replace used receive buffers
7f12ad74
GR
684 * @rx_ring: ring to place buffers on
685 * @cleaned_count: number of buffers to replace
c2e245ab 686 *
ab9ad98e 687 * Returns false if all allocations were successful, true if any fail
7f12ad74 688 **/
ab9ad98e 689bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74 690{
ab9ad98e 691 u16 ntu = rx_ring->next_to_use;
7f12ad74
GR
692 union i40e_rx_desc *rx_desc;
693 struct i40e_rx_buffer *bi;
7f12ad74
GR
694
695 /* do nothing if no valid netdev defined */
696 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 697 return false;
7f12ad74 698
ab9ad98e
JB
699 rx_desc = I40E_RX_DESC(rx_ring, ntu);
700 bi = &rx_ring->rx_bi[ntu];
7f12ad74 701
ab9ad98e
JB
702 do {
703 if (!i40e_alloc_mapped_page(rx_ring, bi))
704 goto no_buffers;
7f12ad74 705
ab9ad98e
JB
706 /* Refresh the desc even if buffer_addrs didn't change
707 * because each write-back erases this info.
708 */
709 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
a132af24 710 rx_desc->read.hdr_addr = 0;
7f12ad74 711
ab9ad98e
JB
712 rx_desc++;
713 bi++;
714 ntu++;
715 if (unlikely(ntu == rx_ring->count)) {
716 rx_desc = I40E_RX_DESC(rx_ring, 0);
717 bi = rx_ring->rx_bi;
718 ntu = 0;
719 }
720
721 /* clear the status bits for the next_to_use descriptor */
722 rx_desc->wb.qword1.status_error_len = 0;
723
724 cleaned_count--;
725 } while (cleaned_count);
726
727 if (rx_ring->next_to_use != ntu)
728 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
729
730 return false;
731
7f12ad74 732no_buffers:
ab9ad98e
JB
733 if (rx_ring->next_to_use != ntu)
734 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
735
736 /* make sure to come back via polling to try again after
737 * allocation failure
738 */
739 return true;
7f12ad74
GR
740}
741
7f12ad74
GR
742/**
743 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
744 * @vsi: the VSI we care about
745 * @skb: skb currently being received and modified
ab9ad98e
JB
746 * @rx_desc: the receive descriptor
747 *
748 * skb->protocol must be set before this function is called
7f12ad74
GR
749 **/
750static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
751 struct sk_buff *skb,
ab9ad98e 752 union i40e_rx_desc *rx_desc)
7f12ad74 753{
ab9ad98e 754 struct i40e_rx_ptype_decoded decoded;
ab9ad98e 755 u32 rx_error, rx_status;
858296c8 756 bool ipv4, ipv6;
ab9ad98e
JB
757 u8 ptype;
758 u64 qword;
759
760 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
761 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
762 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
763 I40E_RXD_QW1_ERROR_SHIFT;
764 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
765 I40E_RXD_QW1_STATUS_SHIFT;
766 decoded = decode_rx_desc_ptype(ptype);
7f12ad74 767
7f12ad74
GR
768 skb->ip_summed = CHECKSUM_NONE;
769
ab9ad98e
JB
770 skb_checksum_none_assert(skb);
771
7f12ad74 772 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
773 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
774 return;
775
776 /* did the hardware decode the packet and checksum? */
41a1d04b 777 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
778 return;
779
780 /* both known and outer_ip must be set for the below code to work */
781 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
782 return;
783
fad57330
AD
784 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
785 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
786 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
787 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
788
789 if (ipv4 &&
41a1d04b
JB
790 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
791 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
792 goto checksum_fail;
793
ddf1d0d7 794 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 795 if (ipv6 &&
41a1d04b 796 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 797 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
798 return;
799
8a3c91cc 800 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 801 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
802 goto checksum_fail;
803
804 /* handle packets that were not able to be checksummed due
805 * to arrival speed, in this case the stack can compute
806 * the csum.
807 */
41a1d04b 808 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 809 return;
7f12ad74 810
858296c8
AD
811 /* If there is an outer header present that might contain a checksum
812 * we need to bump the checksum level by 1 to reflect the fact that
813 * we are indicating we validated the inner checksum.
8a3c91cc 814 */
858296c8
AD
815 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
816 skb->csum_level = 1;
817
818 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
819 switch (decoded.inner_prot) {
820 case I40E_RX_PTYPE_INNER_PROT_TCP:
821 case I40E_RX_PTYPE_INNER_PROT_UDP:
822 case I40E_RX_PTYPE_INNER_PROT_SCTP:
823 skb->ip_summed = CHECKSUM_UNNECESSARY;
824 /* fall though */
825 default:
826 break;
827 }
8a3c91cc
JB
828
829 return;
830
831checksum_fail:
832 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
833}
834
835/**
857942fd 836 * i40e_ptype_to_htype - get a hash type
206812b5
JB
837 * @ptype: the ptype value from the descriptor
838 *
839 * Returns a hash type to be used by skb_set_hash
840 **/
ab9ad98e 841static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
842{
843 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
844
845 if (!decoded.known)
846 return PKT_HASH_TYPE_NONE;
847
848 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
849 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
850 return PKT_HASH_TYPE_L4;
851 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
852 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
853 return PKT_HASH_TYPE_L3;
854 else
855 return PKT_HASH_TYPE_L2;
856}
857
857942fd
ASJ
858/**
859 * i40e_rx_hash - set the hash value in the skb
860 * @ring: descriptor ring
861 * @rx_desc: specific descriptor
862 **/
863static inline void i40e_rx_hash(struct i40e_ring *ring,
864 union i40e_rx_desc *rx_desc,
865 struct sk_buff *skb,
866 u8 rx_ptype)
867{
868 u32 hash;
ab9ad98e 869 const __le64 rss_mask =
857942fd
ASJ
870 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
871 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
872
873 if (ring->netdev->features & NETIF_F_RXHASH)
874 return;
875
876 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
877 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
878 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
879 }
880}
881
7f12ad74 882/**
ab9ad98e
JB
883 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
884 * @rx_ring: rx descriptor ring packet is being transacted on
885 * @rx_desc: pointer to the EOP Rx descriptor
886 * @skb: pointer to current skb being populated
887 * @rx_ptype: the packet type decoded by hardware
7f12ad74 888 *
ab9ad98e
JB
889 * This function checks the ring, descriptor, and packet information in
890 * order to populate the hash, checksum, VLAN, protocol, and
891 * other fields within the skb.
7f12ad74 892 **/
ab9ad98e
JB
893static inline
894void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
895 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
896 u8 rx_ptype)
7f12ad74 897{
ab9ad98e 898 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
7f12ad74 899
ab9ad98e
JB
900 /* modifies the skb - consumes the enet header */
901 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
a132af24 902
ab9ad98e 903 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
a132af24 904
ab9ad98e
JB
905 skb_record_rx_queue(skb, rx_ring->queue_index);
906}
a132af24 907
ab9ad98e
JB
908/**
909 * i40e_pull_tail - i40e specific version of skb_pull_tail
910 * @rx_ring: rx descriptor ring packet is being transacted on
911 * @skb: pointer to current skb being adjusted
912 *
913 * This function is an i40e specific version of __pskb_pull_tail. The
914 * main difference between this version and the original function is that
915 * this function can make several assumptions about the state of things
916 * that allow for significant optimizations versus the standard function.
917 * As a result we can do things like drop a frag and maintain an accurate
918 * truesize for the skb.
919 */
920static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
921{
922 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
923 unsigned char *va;
924 unsigned int pull_len;
8b6ed9c2 925
ab9ad98e
JB
926 /* it is valid to use page_address instead of kmap since we are
927 * working with pages allocated out of the lomem pool per
928 * alloc_page(GFP_ATOMIC)
929 */
930 va = skb_frag_address(frag);
7f12ad74 931
ab9ad98e
JB
932 /* we need the header to contain the greater of either ETH_HLEN or
933 * 60 bytes if the skb->len is less than 60 for skb_pad.
934 */
935 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
7f12ad74 936
ab9ad98e
JB
937 /* align pull length to size of long to optimize memcpy performance */
938 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
7f12ad74 939
ab9ad98e
JB
940 /* update all of the pointers */
941 skb_frag_size_sub(frag, pull_len);
942 frag->page_offset += pull_len;
943 skb->data_len -= pull_len;
944 skb->tail += pull_len;
945}
7f12ad74 946
ab9ad98e
JB
947/**
948 * i40e_cleanup_headers - Correct empty headers
949 * @rx_ring: rx descriptor ring packet is being transacted on
950 * @skb: pointer to current skb being fixed
951 *
952 * Also address the case where we are pulling data in on pages only
953 * and as such no data is present in the skb header.
954 *
955 * In addition if skb is not at least 60 bytes we need to pad it so that
956 * it is large enough to qualify as a valid Ethernet frame.
957 *
958 * Returns true if an error was encountered and skb was freed.
959 **/
960static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
961{
962 /* place header in linear portion of buffer */
963 if (skb_is_nonlinear(skb))
964 i40e_pull_tail(rx_ring, skb);
7f12ad74 965
ab9ad98e
JB
966 /* if eth_skb_pad returns an error the skb was freed */
967 if (eth_skb_pad(skb))
968 return true;
7f12ad74 969
ab9ad98e
JB
970 return false;
971}
857942fd 972
ab9ad98e
JB
973/**
974 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
975 * @rx_ring: rx descriptor ring to store buffers on
976 * @old_buff: donor buffer to have page reused
977 *
978 * Synchronizes page for reuse by the adapter
979 **/
980static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
981 struct i40e_rx_buffer *old_buff)
982{
983 struct i40e_rx_buffer *new_buff;
984 u16 nta = rx_ring->next_to_alloc;
7f12ad74 985
ab9ad98e 986 new_buff = &rx_ring->rx_bi[nta];
7f12ad74 987
ab9ad98e
JB
988 /* update, and store next to alloc */
989 nta++;
990 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7f12ad74 991
ab9ad98e
JB
992 /* transfer page from old buffer to new buffer */
993 *new_buff = *old_buff;
994}
995
996/**
997 * i40e_page_is_reserved - check if reuse is possible
998 * @page: page struct to check
999 */
1000static inline bool i40e_page_is_reserved(struct page *page)
1001{
1002 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1003}
1004
1005/**
1006 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1007 * @rx_ring: rx descriptor ring to transact packets on
1008 * @rx_buffer: buffer containing page to add
1009 * @rx_desc: descriptor containing length of buffer written by hardware
1010 * @skb: sk_buff to place the data into
1011 *
1012 * This function will add the data contained in rx_buffer->page to the skb.
1013 * This is done either through a direct copy if the data in the buffer is
1014 * less than the skb header size, otherwise it will just attach the page as
1015 * a frag to the skb.
1016 *
1017 * The function will then update the page offset if necessary and return
1018 * true if the buffer can be reused by the adapter.
1019 **/
1020static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1021 struct i40e_rx_buffer *rx_buffer,
1022 union i40e_rx_desc *rx_desc,
1023 struct sk_buff *skb)
1024{
1025 struct page *page = rx_buffer->page;
1026 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1027 unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1028 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1029#if (PAGE_SIZE < 8192)
1030 unsigned int truesize = I40E_RXBUFFER_2048;
1031#else
1032 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1033 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
a132af24 1034#endif
7f12ad74 1035
ab9ad98e
JB
1036 /* will the data fit in the skb we allocated? if so, just
1037 * copy it as it is pretty small anyway
1038 */
1039 if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1040 unsigned char *va = page_address(page) + rx_buffer->page_offset;
7f12ad74 1041
ab9ad98e 1042 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
a132af24 1043
ab9ad98e
JB
1044 /* page is not reserved, we can reuse buffer as-is */
1045 if (likely(!i40e_page_is_reserved(page)))
1046 return true;
a132af24 1047
ab9ad98e
JB
1048 /* this page cannot be reused so discard it */
1049 __free_pages(page, 0);
1050 return false;
1051 }
1052
1053 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1054 rx_buffer->page_offset, size, truesize);
1055
1056 /* avoid re-using remote pages */
1057 if (unlikely(i40e_page_is_reserved(page)))
1058 return false;
1059
1060#if (PAGE_SIZE < 8192)
1061 /* if we are only owner of page we can reuse it */
1062 if (unlikely(page_count(page) != 1))
1063 return false;
1064
1065 /* flip page offset to other buffer */
1066 rx_buffer->page_offset ^= truesize;
1067#else
1068 /* move offset up to the next cache line */
1069 rx_buffer->page_offset += truesize;
1070
1071 if (rx_buffer->page_offset > last_offset)
1072 return false;
1073#endif
1074
1075 /* Even if we own the page, we are not allowed to use atomic_set()
1076 * This would break get_page_unless_zero() users.
1077 */
1078 get_page(rx_buffer->page);
1079
1080 return true;
1081}
1082
1083/**
1084 * i40evf_fetch_rx_buffer - Allocate skb and populate it
1085 * @rx_ring: rx descriptor ring to transact packets on
1086 * @rx_desc: descriptor containing info written by hardware
1087 *
1088 * This function allocates an skb on the fly, and populates it with the page
1089 * data from the current receive descriptor, taking care to set up the skb
1090 * correctly, as well as handling calling the page recycle function if
1091 * necessary.
1092 */
1093static inline
1094struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
1095 union i40e_rx_desc *rx_desc)
1096{
1097 struct i40e_rx_buffer *rx_buffer;
1098 struct sk_buff *skb;
1099 struct page *page;
1100
1101 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1102 page = rx_buffer->page;
1103 prefetchw(page);
1104
1105 skb = rx_buffer->skb;
1106
1107 if (likely(!skb)) {
1108 void *page_addr = page_address(page) + rx_buffer->page_offset;
1109
1110 /* prefetch first cache line of first page */
1111 prefetch(page_addr);
1112#if L1_CACHE_BYTES < 128
1113 prefetch(page_addr + L1_CACHE_BYTES);
1114#endif
1115
1116 /* allocate a skb to store the frags */
1117 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1118 I40E_RX_HDR_SIZE,
1119 GFP_ATOMIC | __GFP_NOWARN);
1120 if (unlikely(!skb)) {
1121 rx_ring->rx_stats.alloc_buff_failed++;
1122 return NULL;
1123 }
1124
1125 /* we will be copying header into skb->data in
1126 * pskb_may_pull so it is in our interest to prefetch
1127 * it now to avoid a possible cache miss
1128 */
1129 prefetchw(skb->data);
1130 } else {
1131 rx_buffer->skb = NULL;
1132 }
1133
1134 /* we are reusing so sync this buffer for CPU use */
1135 dma_sync_single_range_for_cpu(rx_ring->dev,
1136 rx_buffer->dma,
1137 rx_buffer->page_offset,
1138 I40E_RXBUFFER_2048,
1139 DMA_FROM_DEVICE);
1140
1141 /* pull page into skb */
1142 if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1143 /* hand second half of page back to the ring */
1144 i40e_reuse_rx_page(rx_ring, rx_buffer);
1145 rx_ring->rx_stats.page_reuse_count++;
1146 } else {
1147 /* we are not reusing the buffer so unmap it */
1148 dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1149 DMA_FROM_DEVICE);
1150 }
1151
1152 /* clear contents of buffer_info */
1153 rx_buffer->page = NULL;
1154
1155 return skb;
1156}
1157
1158/**
1159 * i40e_is_non_eop - process handling of non-EOP buffers
1160 * @rx_ring: Rx ring being processed
1161 * @rx_desc: Rx descriptor for current buffer
1162 * @skb: Current socket buffer containing buffer in progress
1163 *
1164 * This function updates next to clean. If the buffer is an EOP buffer
1165 * this function exits returning false, otherwise it will place the
1166 * sk_buff in the next buffer to be chained and return true indicating
1167 * that this is in fact a non-EOP buffer.
1168 **/
1169static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1170 union i40e_rx_desc *rx_desc,
1171 struct sk_buff *skb)
1172{
1173 u32 ntc = rx_ring->next_to_clean + 1;
1174
1175 /* fetch, update, and store next to clean */
1176 ntc = (ntc < rx_ring->count) ? ntc : 0;
1177 rx_ring->next_to_clean = ntc;
1178
1179 prefetch(I40E_RX_DESC(rx_ring, ntc));
1180
1181 /* if we are the last buffer then there is nothing else to do */
1182#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1183 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1184 return false;
1185
1186 /* place skb in next buffer to be received */
1187 rx_ring->rx_bi[ntc].skb = skb;
1188 rx_ring->rx_stats.non_eop_descs++;
1189
1190 return true;
a132af24
MW
1191}
1192
1193/**
ab9ad98e
JB
1194 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1195 * @rx_ring: rx descriptor ring to transact packets on
1196 * @budget: Total limit on number of packets to process
1197 *
1198 * This function provides a "bounce buffer" approach to Rx interrupt
1199 * processing. The advantage to this is that on systems that have
1200 * expensive overhead for IOMMU access this provides a means of avoiding
1201 * it by maintaining the mapping of the page to the system.
a132af24 1202 *
ab9ad98e 1203 * Returns amount of work completed
a132af24 1204 **/
ab9ad98e 1205static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
1206{
1207 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1208 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
c2e245ab 1209 bool failure = false;
a132af24 1210
ab9ad98e
JB
1211 while (likely(total_rx_packets < budget)) {
1212 union i40e_rx_desc *rx_desc;
a132af24 1213 struct sk_buff *skb;
ab9ad98e 1214 u32 rx_status;
a132af24 1215 u16 vlan_tag;
ab9ad98e
JB
1216 u8 rx_ptype;
1217 u64 qword;
1218
7f12ad74
GR
1219 /* return some buffers to hardware, one at a time is too slow */
1220 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 1221 failure = failure ||
ab9ad98e 1222 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
7f12ad74
GR
1223 cleaned_count = 0;
1224 }
1225
ab9ad98e
JB
1226 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1227
7f12ad74 1228 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
ab9ad98e
JB
1229 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1230 I40E_RXD_QW1_PTYPE_SHIFT;
7f12ad74 1231 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
ab9ad98e 1232 I40E_RXD_QW1_STATUS_SHIFT;
a132af24 1233
41a1d04b 1234 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1235 break;
1236
ab9ad98e
JB
1237 /* status_error_len will always be zero for unused descriptors
1238 * because it's cleared in cleanup, and overlaps with hdr_addr
1239 * which is always zero because packet split isn't used, if the
1240 * hardware wrote DD then it will be non-zero
1241 */
1242 if (!rx_desc->wb.qword1.status_error_len)
1243 break;
1244
a132af24
MW
1245 /* This memory barrier is needed to keep us from reading
1246 * any other fields out of the rx_desc until we know the
1247 * DD bit is set.
1248 */
67317166 1249 dma_rmb();
a132af24 1250
ab9ad98e
JB
1251 skb = i40evf_fetch_rx_buffer(rx_ring, rx_desc);
1252 if (!skb)
1253 break;
a132af24 1254
a132af24
MW
1255 cleaned_count++;
1256
ab9ad98e 1257 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 1258 continue;
a132af24 1259
ab9ad98e
JB
1260 /* ERR_MASK will only have valid bits if EOP set, and
1261 * what we are doing here is actually checking
1262 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1263 * the error field
1264 */
1265 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
a132af24 1266 dev_kfree_skb_any(skb);
a132af24
MW
1267 continue;
1268 }
1269
ab9ad98e
JB
1270 if (i40e_cleanup_headers(rx_ring, skb))
1271 continue;
1272
a132af24
MW
1273 /* probably a little skewed due to removing CRC */
1274 total_rx_bytes += skb->len;
a132af24 1275
ab9ad98e
JB
1276 /* populate checksum, VLAN, and protocol */
1277 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 1278
a132af24 1279
ab9ad98e
JB
1280 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1281 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1282
a132af24
MW
1283 i40e_receive_skb(rx_ring, skb, vlan_tag);
1284
ab9ad98e
JB
1285 /* update budget accounting */
1286 total_rx_packets++;
1287 }
7f12ad74 1288
7f12ad74
GR
1289 u64_stats_update_begin(&rx_ring->syncp);
1290 rx_ring->stats.packets += total_rx_packets;
1291 rx_ring->stats.bytes += total_rx_bytes;
1292 u64_stats_update_end(&rx_ring->syncp);
1293 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1294 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1295
ab9ad98e 1296 /* guarantee a trip back through this routine if there was a failure */
c2e245ab 1297 return failure ? budget : total_rx_packets;
7f12ad74
GR
1298}
1299
8f5e39ce
JB
1300static u32 i40e_buildreg_itr(const int type, const u16 itr)
1301{
1302 u32 val;
1303
1304 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
40d72a50
JB
1305 /* Don't clear PBA because that can cause lost interrupts that
1306 * came in while we were cleaning/polling
1307 */
8f5e39ce
JB
1308 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1309 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1310
1311 return val;
1312}
1313
1314/* a small macro to shorten up some long lines */
1315#define INTREG I40E_VFINT_DYN_CTLN1
1316
de32e3ef
CW
1317/**
1318 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1319 * @vsi: the VSI we care about
1320 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1321 *
1322 **/
1323static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1324 struct i40e_q_vector *q_vector)
1325{
1326 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1327 bool rx = false, tx = false;
1328 u32 rxval, txval;
de32e3ef 1329 int vector;
de32e3ef
CW
1330
1331 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1332
1333 /* avoid dynamic calculation if in countdown mode OR if
1334 * all dynamic is disabled
1335 */
8f5e39ce
JB
1336 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1337
ee2319cf
JB
1338 if (q_vector->itr_countdown > 0 ||
1339 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1340 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1341 goto enable_int;
1342 }
1343
de32e3ef 1344 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
8f5e39ce
JB
1345 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1346 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1347 }
4eeb1fff 1348
de32e3ef 1349 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
8f5e39ce
JB
1350 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1351 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1352 }
4eeb1fff 1353
8f5e39ce
JB
1354 if (rx || tx) {
1355 /* get the higher of the two ITR adjustments and
1356 * use the same value for both ITR registers
1357 * when in adaptive mode (Rx and/or Tx)
1358 */
1359 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1360
1361 q_vector->tx.itr = q_vector->rx.itr = itr;
1362 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1363 tx = true;
1364 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1365 rx = true;
de32e3ef 1366 }
8f5e39ce
JB
1367
1368 /* only need to enable the interrupt once, but need
1369 * to possibly update both ITR values
1370 */
1371 if (rx) {
1372 /* set the INTENA_MSK_MASK so that this first write
1373 * won't actually enable the interrupt, instead just
1374 * updating the ITR (it's bit 31 PF and VF)
1375 */
1376 rxval |= BIT(31);
1377 /* don't check _DOWN because interrupt isn't being enabled */
1378 wr32(hw, INTREG(vector - 1), rxval);
1379 }
1380
ee2319cf 1381enable_int:
8f5e39ce
JB
1382 if (!test_bit(__I40E_DOWN, &vsi->state))
1383 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1384
1385 if (q_vector->itr_countdown)
1386 q_vector->itr_countdown--;
1387 else
1388 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1389}
1390
7f12ad74
GR
1391/**
1392 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1393 * @napi: napi struct with our devices info in it
1394 * @budget: amount of work driver is allowed to do this pass, in packets
1395 *
1396 * This function will clean all queues associated with a q_vector.
1397 *
1398 * Returns the amount of work done
1399 **/
1400int i40evf_napi_poll(struct napi_struct *napi, int budget)
1401{
1402 struct i40e_q_vector *q_vector =
1403 container_of(napi, struct i40e_q_vector, napi);
1404 struct i40e_vsi *vsi = q_vector->vsi;
1405 struct i40e_ring *ring;
1406 bool clean_complete = true;
c29af37f 1407 bool arm_wb = false;
7f12ad74 1408 int budget_per_ring;
32b3e08f 1409 int work_done = 0;
7f12ad74
GR
1410
1411 if (test_bit(__I40E_DOWN, &vsi->state)) {
1412 napi_complete(napi);
1413 return 0;
1414 }
1415
1416 /* Since the actual Tx work is minimal, we can give the Tx a larger
1417 * budget and be more aggressive about cleaning up the Tx descriptors.
1418 */
c29af37f 1419 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 1420 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
1421 clean_complete = false;
1422 continue;
1423 }
1424 arm_wb |= ring->arm_wb;
0deda868 1425 ring->arm_wb = false;
c29af37f 1426 }
7f12ad74 1427
c67caceb
AD
1428 /* Handle case where we are called by netpoll with a budget of 0 */
1429 if (budget <= 0)
1430 goto tx_only;
1431
7f12ad74
GR
1432 /* We attempt to distribute budget to each Rx queue fairly, but don't
1433 * allow the budget to go below 1 because that would exit polling early.
1434 */
1435 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1436
a132af24 1437 i40e_for_each_ring(ring, q_vector->rx) {
ab9ad98e 1438 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
1439
1440 work_done += cleaned;
f2edaaaa
AD
1441 /* if we clean as many as budgeted, we must not be done */
1442 if (cleaned >= budget_per_ring)
1443 clean_complete = false;
a132af24 1444 }
7f12ad74
GR
1445
1446 /* If work not completed, return budget and polling will return */
c29af37f 1447 if (!clean_complete) {
c67caceb 1448tx_only:
164c9f54
ASJ
1449 if (arm_wb) {
1450 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
ecc6a239 1451 i40e_enable_wb_on_itr(vsi, q_vector);
164c9f54 1452 }
7f12ad74 1453 return budget;
c29af37f 1454 }
7f12ad74 1455
8e0764b4
ASJ
1456 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1457 q_vector->arm_wb_state = false;
1458
7f12ad74 1459 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1460 napi_complete_done(napi, work_done);
de32e3ef 1461 i40e_update_enable_itr(vsi, q_vector);
7f12ad74
GR
1462 return 0;
1463}
1464
1465/**
3e587cf3 1466 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1467 * @skb: send buffer
1468 * @tx_ring: ring to send buffer on
1469 * @flags: the tx flags to be set
1470 *
1471 * Checks the skb and set up correspondingly several generic transmit flags
1472 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1473 *
1474 * Returns error code indicate the frame should be dropped upon error and the
1475 * otherwise returns 0 to indicate the flags has been set properly.
1476 **/
3e587cf3
JB
1477static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1478 struct i40e_ring *tx_ring,
1479 u32 *flags)
7f12ad74
GR
1480{
1481 __be16 protocol = skb->protocol;
1482 u32 tx_flags = 0;
1483
31eaaccf
GR
1484 if (protocol == htons(ETH_P_8021Q) &&
1485 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1486 /* When HW VLAN acceleration is turned off by the user the
1487 * stack sets the protocol to 8021q so that the driver
1488 * can take any steps required to support the SW only
1489 * VLAN handling. In our case the driver doesn't need
1490 * to take any further steps so just set the protocol
1491 * to the encapsulated ethertype.
1492 */
1493 skb->protocol = vlan_get_protocol(skb);
1494 goto out;
1495 }
1496
7f12ad74 1497 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1498 if (skb_vlan_tag_present(skb)) {
1499 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1500 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1501 /* else if it is a SW VLAN, check the next protocol and store the tag */
1502 } else if (protocol == htons(ETH_P_8021Q)) {
1503 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1504
7f12ad74
GR
1505 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1506 if (!vhdr)
1507 return -EINVAL;
1508
1509 protocol = vhdr->h_vlan_encapsulated_proto;
1510 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1511 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1512 }
1513
31eaaccf 1514out:
7f12ad74
GR
1515 *flags = tx_flags;
1516 return 0;
1517}
1518
1519/**
1520 * i40e_tso - set up the tso context descriptor
7f12ad74 1521 * @skb: ptr to the skb we're sending
7f12ad74 1522 * @hdr_len: ptr to the size of the packet header
9c883bd3 1523 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1524 *
1525 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1526 **/
84b07992 1527static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
7f12ad74 1528{
03f9d6a5 1529 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
1530 union {
1531 struct iphdr *v4;
1532 struct ipv6hdr *v6;
1533 unsigned char *hdr;
1534 } ip;
c49a7bc3
AD
1535 union {
1536 struct tcphdr *tcp;
5453205c 1537 struct udphdr *udp;
c49a7bc3
AD
1538 unsigned char *hdr;
1539 } l4;
1540 u32 paylen, l4_offset;
7f12ad74 1541 int err;
7f12ad74 1542
e9f6563d
SN
1543 if (skb->ip_summed != CHECKSUM_PARTIAL)
1544 return 0;
1545
7f12ad74
GR
1546 if (!skb_is_gso(skb))
1547 return 0;
1548
fe6d4aa4
FR
1549 err = skb_cow_head(skb, 0);
1550 if (err < 0)
1551 return err;
7f12ad74 1552
c777019a
AD
1553 ip.hdr = skb_network_header(skb);
1554 l4.hdr = skb_transport_header(skb);
85e76d03 1555
c777019a
AD
1556 /* initialize outer IP header fields */
1557 if (ip.v4->version == 4) {
1558 ip.v4->tot_len = 0;
1559 ip.v4->check = 0;
c49a7bc3 1560 } else {
c777019a
AD
1561 ip.v6->payload_len = 0;
1562 }
1563
577389a5 1564 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 1565 SKB_GSO_GRE_CSUM |
7e13318d 1566 SKB_GSO_IPXIP4 |
bf2d1df3 1567 SKB_GSO_IPXIP6 |
577389a5 1568 SKB_GSO_UDP_TUNNEL |
5453205c 1569 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
1570 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1571 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1572 l4.udp->len = 0;
1573
5453205c
AD
1574 /* determine offset of outer transport header */
1575 l4_offset = l4.hdr - skb->data;
1576
1577 /* remove payload length from outer checksum */
24d41e5e
AD
1578 paylen = skb->len - l4_offset;
1579 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
5453205c
AD
1580 }
1581
c777019a
AD
1582 /* reset pointers to inner headers */
1583 ip.hdr = skb_inner_network_header(skb);
1584 l4.hdr = skb_inner_transport_header(skb);
1585
1586 /* initialize inner IP header fields */
1587 if (ip.v4->version == 4) {
1588 ip.v4->tot_len = 0;
1589 ip.v4->check = 0;
1590 } else {
1591 ip.v6->payload_len = 0;
1592 }
7f12ad74
GR
1593 }
1594
c49a7bc3
AD
1595 /* determine offset of inner transport header */
1596 l4_offset = l4.hdr - skb->data;
1597
1598 /* remove payload length from inner checksum */
24d41e5e
AD
1599 paylen = skb->len - l4_offset;
1600 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
c49a7bc3
AD
1601
1602 /* compute length of segmentation header */
1603 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
7f12ad74
GR
1604
1605 /* find the field values */
1606 cd_cmd = I40E_TX_CTX_DESC_TSO;
1607 cd_tso_len = skb->len - *hdr_len;
1608 cd_mss = skb_shinfo(skb)->gso_size;
03f9d6a5
AD
1609 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1610 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1611 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
7f12ad74
GR
1612 return 1;
1613}
1614
1615/**
1616 * i40e_tx_enable_csum - Enable Tx checksum offloads
1617 * @skb: send buffer
89232c3b 1618 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1619 * @td_cmd: Tx descriptor command bits to set
1620 * @td_offset: Tx descriptor header offsets to set
529f1f65 1621 * @tx_ring: Tx descriptor ring
7f12ad74
GR
1622 * @cd_tunneling: ptr to context desc bits
1623 **/
529f1f65
AD
1624static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1625 u32 *td_cmd, u32 *td_offset,
1626 struct i40e_ring *tx_ring,
1627 u32 *cd_tunneling)
7f12ad74 1628{
b96b78f2
AD
1629 union {
1630 struct iphdr *v4;
1631 struct ipv6hdr *v6;
1632 unsigned char *hdr;
1633 } ip;
1634 union {
1635 struct tcphdr *tcp;
1636 struct udphdr *udp;
1637 unsigned char *hdr;
1638 } l4;
a3fd9d88 1639 unsigned char *exthdr;
d1bd743b 1640 u32 offset, cmd = 0;
a3fd9d88 1641 __be16 frag_off;
b96b78f2
AD
1642 u8 l4_proto = 0;
1643
529f1f65
AD
1644 if (skb->ip_summed != CHECKSUM_PARTIAL)
1645 return 0;
1646
b96b78f2
AD
1647 ip.hdr = skb_network_header(skb);
1648 l4.hdr = skb_transport_header(skb);
7f12ad74 1649
475b4205
AD
1650 /* compute outer L2 header size */
1651 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1652
7f12ad74 1653 if (skb->encapsulation) {
d1bd743b 1654 u32 tunnel = 0;
a0064728
AD
1655 /* define outer network header type */
1656 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
1657 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1658 I40E_TX_CTX_EXT_IP_IPV4 :
1659 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1660
a0064728
AD
1661 l4_proto = ip.v4->protocol;
1662 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1663 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
1664
1665 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 1666 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
1667 if (l4.hdr != exthdr)
1668 ipv6_skip_exthdr(skb, exthdr - skb->data,
1669 &l4_proto, &frag_off);
a0064728
AD
1670 }
1671
1672 /* define outer transport */
1673 switch (l4_proto) {
45991204 1674 case IPPROTO_UDP:
475b4205 1675 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1676 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204 1677 break;
a0064728 1678 case IPPROTO_GRE:
475b4205 1679 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728
AD
1680 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1681 break;
577389a5
AD
1682 case IPPROTO_IPIP:
1683 case IPPROTO_IPV6:
1684 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1685 l4.hdr = skb_inner_network_header(skb);
1686 break;
45991204 1687 default:
529f1f65
AD
1688 if (*tx_flags & I40E_TX_FLAGS_TSO)
1689 return -1;
1690
1691 skb_checksum_help(skb);
1692 return 0;
45991204 1693 }
b96b78f2 1694
577389a5
AD
1695 /* compute outer L3 header size */
1696 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1697 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1698
1699 /* switch IP header pointer from outer to inner header */
1700 ip.hdr = skb_inner_network_header(skb);
1701
475b4205
AD
1702 /* compute tunnel header size */
1703 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1704 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1705
5453205c
AD
1706 /* indicate if we need to offload outer UDP header */
1707 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 1708 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
1709 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1710 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1711
475b4205
AD
1712 /* record tunnel offload values */
1713 *cd_tunneling |= tunnel;
1714
b96b78f2 1715 /* switch L4 header pointer from outer to inner */
b96b78f2 1716 l4.hdr = skb_inner_transport_header(skb);
a0064728 1717 l4_proto = 0;
7f12ad74 1718
a0064728
AD
1719 /* reset type as we transition from outer to inner headers */
1720 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1721 if (ip.v4->version == 4)
1722 *tx_flags |= I40E_TX_FLAGS_IPV4;
1723 if (ip.v6->version == 6)
89232c3b 1724 *tx_flags |= I40E_TX_FLAGS_IPV6;
7f12ad74
GR
1725 }
1726
1727 /* Enable IP checksum offloads */
89232c3b 1728 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 1729 l4_proto = ip.v4->protocol;
7f12ad74
GR
1730 /* the stack computes the IP header already, the only time we
1731 * need the hardware to recompute it is in the case of TSO.
1732 */
475b4205
AD
1733 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1734 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1735 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 1736 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1737 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
1738
1739 exthdr = ip.hdr + sizeof(*ip.v6);
1740 l4_proto = ip.v6->nexthdr;
1741 if (l4.hdr != exthdr)
1742 ipv6_skip_exthdr(skb, exthdr - skb->data,
1743 &l4_proto, &frag_off);
7f12ad74 1744 }
b96b78f2 1745
475b4205
AD
1746 /* compute inner L3 header size */
1747 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
7f12ad74
GR
1748
1749 /* Enable L4 checksum offloads */
b96b78f2 1750 switch (l4_proto) {
7f12ad74
GR
1751 case IPPROTO_TCP:
1752 /* enable checksum offloads */
475b4205
AD
1753 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1754 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1755 break;
1756 case IPPROTO_SCTP:
1757 /* enable SCTP checksum offload */
475b4205
AD
1758 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1759 offset |= (sizeof(struct sctphdr) >> 2) <<
1760 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1761 break;
1762 case IPPROTO_UDP:
1763 /* enable UDP checksum offload */
475b4205
AD
1764 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1765 offset |= (sizeof(struct udphdr) >> 2) <<
1766 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1767 break;
1768 default:
529f1f65
AD
1769 if (*tx_flags & I40E_TX_FLAGS_TSO)
1770 return -1;
1771 skb_checksum_help(skb);
1772 return 0;
7f12ad74 1773 }
475b4205
AD
1774
1775 *td_cmd |= cmd;
1776 *td_offset |= offset;
529f1f65
AD
1777
1778 return 1;
7f12ad74
GR
1779}
1780
1781/**
1782 * i40e_create_tx_ctx Build the Tx context descriptor
1783 * @tx_ring: ring to create the descriptor on
1784 * @cd_type_cmd_tso_mss: Quad Word 1
1785 * @cd_tunneling: Quad Word 0 - bits 0-31
1786 * @cd_l2tag2: Quad Word 0 - bits 32-63
1787 **/
1788static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1789 const u64 cd_type_cmd_tso_mss,
1790 const u32 cd_tunneling, const u32 cd_l2tag2)
1791{
1792 struct i40e_tx_context_desc *context_desc;
1793 int i = tx_ring->next_to_use;
1794
ff40dd5d
JB
1795 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1796 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1797 return;
1798
1799 /* grab the next descriptor */
1800 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1801
1802 i++;
1803 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1804
1805 /* cpu_to_le32 and assign to struct fields */
1806 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1807 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1808 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1809 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1810}
1811
4eeb1fff 1812/**
3f3f7cb8 1813 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 1814 * @skb: send buffer
71da6197 1815 *
3f3f7cb8
AD
1816 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1817 * and so we need to figure out the cases where we need to linearize the skb.
1818 *
1819 * For TSO we need to count the TSO header and segment payload separately.
1820 * As such we need to check cases where we have 7 fragments or more as we
1821 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1822 * the segment payload in the first descriptor, and another 7 for the
1823 * fragments.
71da6197 1824 **/
2d37490b 1825bool __i40evf_chk_linearize(struct sk_buff *skb)
71da6197 1826{
2d37490b 1827 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 1828 int nr_frags, sum;
71da6197 1829
3f3f7cb8 1830 /* no need to check if number of frags is less than 7 */
2d37490b 1831 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 1832 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 1833 return false;
71da6197 1834
2d37490b
AD
1835 /* We need to walk through the list and validate that each group
1836 * of 6 fragments totals at least gso_size. However we don't need
3f3f7cb8
AD
1837 * to perform such validation on the last 6 since the last 6 cannot
1838 * inherit any data from a descriptor after them.
2d37490b 1839 */
3f3f7cb8 1840 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
1841 frag = &skb_shinfo(skb)->frags[0];
1842
1843 /* Initialize size to the negative value of gso_size minus 1. We
1844 * use this as the worst case scenerio in which the frag ahead
1845 * of us only provides one byte which is why we are limited to 6
1846 * descriptors for a single transmit as the header and previous
1847 * fragment are already consuming 2 descriptors.
1848 */
3f3f7cb8 1849 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 1850
3f3f7cb8
AD
1851 /* Add size of frags 0 through 4 to create our initial sum */
1852 sum += skb_frag_size(frag++);
1853 sum += skb_frag_size(frag++);
1854 sum += skb_frag_size(frag++);
1855 sum += skb_frag_size(frag++);
1856 sum += skb_frag_size(frag++);
2d37490b
AD
1857
1858 /* Walk through fragments adding latest fragment, testing it, and
1859 * then removing stale fragments from the sum.
1860 */
1861 stale = &skb_shinfo(skb)->frags[0];
1862 for (;;) {
3f3f7cb8 1863 sum += skb_frag_size(frag++);
2d37490b
AD
1864
1865 /* if sum is negative we failed to make sufficient progress */
1866 if (sum < 0)
1867 return true;
1868
1869 /* use pre-decrement to avoid processing last fragment */
1870 if (!--nr_frags)
1871 break;
1872
3f3f7cb8 1873 sum -= skb_frag_size(stale++);
71da6197
AS
1874 }
1875
2d37490b 1876 return false;
71da6197
AS
1877}
1878
8f6a2b05
JB
1879/**
1880 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1881 * @tx_ring: the ring to be checked
1882 * @size: the size buffer we want to assure is available
1883 *
1884 * Returns -EBUSY if a stop is needed, else 0
1885 **/
4ec441df 1886int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1887{
1888 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1889 /* Memory barrier before checking head and tail */
1890 smp_mb();
1891
1892 /* Check again in a case another CPU has just made room available. */
1893 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1894 return -EBUSY;
1895
1896 /* A reprieve! - use start_queue because it doesn't call schedule */
1897 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1898 ++tx_ring->tx_stats.restart_queue;
1899 return 0;
1900}
1901
7f12ad74 1902/**
3e587cf3 1903 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
1904 * @tx_ring: ring to send buffer on
1905 * @skb: send buffer
1906 * @first: first buffer info buffer to use
1907 * @tx_flags: collected send information
1908 * @hdr_len: size of the packet header
1909 * @td_cmd: the command field in the descriptor
1910 * @td_offset: offset for checksum or crc
1911 **/
3e587cf3
JB
1912static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1913 struct i40e_tx_buffer *first, u32 tx_flags,
1914 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
1915{
1916 unsigned int data_len = skb->data_len;
1917 unsigned int size = skb_headlen(skb);
1918 struct skb_frag_struct *frag;
1919 struct i40e_tx_buffer *tx_bi;
1920 struct i40e_tx_desc *tx_desc;
1921 u16 i = tx_ring->next_to_use;
1922 u32 td_tag = 0;
1923 dma_addr_t dma;
1924 u16 gso_segs;
6a7fded7
ASJ
1925 u16 desc_count = 0;
1926 bool tail_bump = true;
1927 bool do_rs = false;
7f12ad74
GR
1928
1929 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1930 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1931 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1932 I40E_TX_FLAGS_VLAN_SHIFT;
1933 }
1934
1935 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1936 gso_segs = skb_shinfo(skb)->gso_segs;
1937 else
1938 gso_segs = 1;
1939
1940 /* multiply data chunks by size of headers */
1941 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1942 first->gso_segs = gso_segs;
1943 first->skb = skb;
1944 first->tx_flags = tx_flags;
1945
1946 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1947
1948 tx_desc = I40E_TX_DESC(tx_ring, i);
1949 tx_bi = first;
1950
1951 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
1952 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1953
7f12ad74
GR
1954 if (dma_mapping_error(tx_ring->dev, dma))
1955 goto dma_error;
1956
1957 /* record length, and DMA address */
1958 dma_unmap_len_set(tx_bi, len, size);
1959 dma_unmap_addr_set(tx_bi, dma, dma);
1960
5c4654da
AD
1961 /* align size to end of page */
1962 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
7f12ad74
GR
1963 tx_desc->buffer_addr = cpu_to_le64(dma);
1964
1965 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1966 tx_desc->cmd_type_offset_bsz =
1967 build_ctob(td_cmd, td_offset,
5c4654da 1968 max_data, td_tag);
7f12ad74
GR
1969
1970 tx_desc++;
1971 i++;
6a7fded7
ASJ
1972 desc_count++;
1973
7f12ad74
GR
1974 if (i == tx_ring->count) {
1975 tx_desc = I40E_TX_DESC(tx_ring, 0);
1976 i = 0;
1977 }
1978
5c4654da
AD
1979 dma += max_data;
1980 size -= max_data;
7f12ad74 1981
5c4654da 1982 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
7f12ad74
GR
1983 tx_desc->buffer_addr = cpu_to_le64(dma);
1984 }
1985
1986 if (likely(!data_len))
1987 break;
1988
1989 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1990 size, td_tag);
1991
1992 tx_desc++;
1993 i++;
6a7fded7
ASJ
1994 desc_count++;
1995
7f12ad74
GR
1996 if (i == tx_ring->count) {
1997 tx_desc = I40E_TX_DESC(tx_ring, 0);
1998 i = 0;
1999 }
2000
2001 size = skb_frag_size(frag);
2002 data_len -= size;
2003
2004 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2005 DMA_TO_DEVICE);
2006
2007 tx_bi = &tx_ring->tx_bi[i];
2008 }
2009
7f12ad74
GR
2010 /* set next_to_watch value indicating a packet is present */
2011 first->next_to_watch = tx_desc;
2012
2013 i++;
2014 if (i == tx_ring->count)
2015 i = 0;
2016
2017 tx_ring->next_to_use = i;
2018
6a7fded7
ASJ
2019 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2020 tx_ring->queue_index),
2021 first->bytecount);
4ec441df 2022 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7
ASJ
2023
2024 /* Algorithm to optimize tail and RS bit setting:
2025 * if xmit_more is supported
2026 * if xmit_more is true
2027 * do not update tail and do not mark RS bit.
2028 * if xmit_more is false and last xmit_more was false
2029 * if every packet spanned less than 4 desc
2030 * then set RS bit on 4th packet and update tail
2031 * on every packet
2032 * else
2033 * update tail and set RS bit on every packet.
2034 * if xmit_more is false and last_xmit_more was true
2035 * update tail and set RS bit.
6a7fded7
ASJ
2036 *
2037 * Optimization: wmb to be issued only in case of tail update.
2038 * Also optimize the Descriptor WB path for RS bit with the same
2039 * algorithm.
2040 *
2041 * Note: If there are less than 4 packets
2042 * pending and interrupts were disabled the service task will
2043 * trigger a force WB.
2044 */
2045 if (skb->xmit_more &&
2046 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2047 tx_ring->queue_index))) {
2048 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2049 tail_bump = false;
2050 } else if (!skb->xmit_more &&
2051 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2052 tx_ring->queue_index)) &&
2053 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2054 (tx_ring->packet_stride < WB_STRIDE) &&
2055 (desc_count < WB_STRIDE)) {
2056 tx_ring->packet_stride++;
2057 } else {
2058 tx_ring->packet_stride = 0;
2059 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2060 do_rs = true;
2061 }
2062 if (do_rs)
2063 tx_ring->packet_stride = 0;
2064
2065 tx_desc->cmd_type_offset_bsz =
2066 build_ctob(td_cmd, td_offset, size, td_tag) |
2067 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2068 I40E_TX_DESC_CMD_EOP) <<
2069 I40E_TXD_QW1_CMD_SHIFT);
2070
7f12ad74 2071 /* notify HW of packet */
6a7fded7 2072 if (!tail_bump)
489ce7a4 2073 prefetchw(tx_desc + 1);
7f12ad74 2074
6a7fded7
ASJ
2075 if (tail_bump) {
2076 /* Force memory writes to complete before letting h/w
2077 * know there are new descriptors to fetch. (Only
2078 * applicable for weak-ordered memory model archs,
2079 * such as IA-64).
2080 */
2081 wmb();
2082 writel(i, tx_ring->tail);
2083 }
2084
7f12ad74
GR
2085 return;
2086
2087dma_error:
2088 dev_info(tx_ring->dev, "TX DMA map failed\n");
2089
2090 /* clear dma mappings for failed tx_bi map */
2091 for (;;) {
2092 tx_bi = &tx_ring->tx_bi[i];
2093 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2094 if (tx_bi == first)
2095 break;
2096 if (i == 0)
2097 i = tx_ring->count;
2098 i--;
2099 }
2100
2101 tx_ring->next_to_use = i;
2102}
2103
7f12ad74
GR
2104/**
2105 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2106 * @skb: send buffer
2107 * @tx_ring: ring to send buffer on
2108 *
2109 * Returns NETDEV_TX_OK if sent, else an error code
2110 **/
2111static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2112 struct i40e_ring *tx_ring)
2113{
2114 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2115 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2116 struct i40e_tx_buffer *first;
2117 u32 td_offset = 0;
2118 u32 tx_flags = 0;
2119 __be16 protocol;
2120 u32 td_cmd = 0;
2121 u8 hdr_len = 0;
4ec441df 2122 int tso, count;
6995b36c 2123
b74118f0
JB
2124 /* prefetch the data, we'll need it later */
2125 prefetch(skb->data);
2126
4ec441df 2127 count = i40e_xmit_descriptor_count(skb);
2d37490b
AD
2128 if (i40e_chk_linearize(skb, count)) {
2129 if (__skb_linearize(skb))
2130 goto out_drop;
5c4654da 2131 count = i40e_txd_use_count(skb->len);
2d37490b
AD
2132 tx_ring->tx_stats.tx_linearize++;
2133 }
4ec441df
AD
2134
2135 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2136 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2137 * + 4 desc gap to avoid the cache line where head is,
2138 * + 1 desc for context descriptor,
2139 * otherwise try next time
2140 */
2141 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2142 tx_ring->tx_stats.tx_busy++;
7f12ad74 2143 return NETDEV_TX_BUSY;
4ec441df 2144 }
7f12ad74
GR
2145
2146 /* prepare the xmit flags */
3e587cf3 2147 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2148 goto out_drop;
2149
2150 /* obtain protocol of skb */
a12c4158 2151 protocol = vlan_get_protocol(skb);
7f12ad74
GR
2152
2153 /* record the location of the first descriptor for this packet */
2154 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2155
2156 /* setup IPv4/IPv6 offloads */
2157 if (protocol == htons(ETH_P_IP))
2158 tx_flags |= I40E_TX_FLAGS_IPV4;
2159 else if (protocol == htons(ETH_P_IPV6))
2160 tx_flags |= I40E_TX_FLAGS_IPV6;
2161
84b07992 2162 tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2163
2164 if (tso < 0)
2165 goto out_drop;
2166 else if (tso)
2167 tx_flags |= I40E_TX_FLAGS_TSO;
2168
7f12ad74 2169 /* Always offload the checksum, since it's in the data descriptor */
529f1f65
AD
2170 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2171 tx_ring, &cd_tunneling);
2172 if (tso < 0)
2173 goto out_drop;
7f12ad74 2174
3bc67973
AD
2175 skb_tx_timestamp(skb);
2176
2177 /* always enable CRC insertion offload */
2178 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2179
7f12ad74
GR
2180 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2181 cd_tunneling, cd_l2tag2);
2182
3e587cf3
JB
2183 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2184 td_cmd, td_offset);
7f12ad74 2185
7f12ad74
GR
2186 return NETDEV_TX_OK;
2187
2188out_drop:
2189 dev_kfree_skb_any(skb);
2190 return NETDEV_TX_OK;
2191}
2192
2193/**
2194 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2195 * @skb: send buffer
2196 * @netdev: network interface device structure
2197 *
2198 * Returns NETDEV_TX_OK if sent, else an error code
2199 **/
2200netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2201{
2202 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2203 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2204
2205 /* hardware can't handle really short frames, hardware padding works
2206 * beyond this point
2207 */
2208 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2209 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2210 return NETDEV_TX_OK;
2211 skb->len = I40E_MIN_TX_LEN;
2212 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2213 }
2214
2215 return i40e_xmit_frame_ring(skb, tx_ring);
2216}