Merge tag 'wireless-drivers-for-davem-2017-04-03' of git://git.kernel.org/pub/scm...
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
64bfd68e
AD
54 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55 kfree(tx_buffer->raw_buf);
56 else
57 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
58 if (dma_unmap_len(tx_buffer, len))
59 dma_unmap_single(ring->dev,
60 dma_unmap_addr(tx_buffer, dma),
61 dma_unmap_len(tx_buffer, len),
62 DMA_TO_DEVICE);
63 } else if (dma_unmap_len(tx_buffer, len)) {
64 dma_unmap_page(ring->dev,
65 dma_unmap_addr(tx_buffer, dma),
66 dma_unmap_len(tx_buffer, len),
67 DMA_TO_DEVICE);
68 }
a42e7a36 69
7f12ad74
GR
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
e486bdfd 106 netdev_tx_reset_queue(txring_txq(tx_ring));
7f12ad74
GR
107}
108
109/**
110 * i40evf_free_tx_resources - Free Tx resources per queue
111 * @tx_ring: Tx descriptor ring for a specific queue
112 *
113 * Free all transmit software resources
114 **/
115void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116{
117 i40evf_clean_tx_ring(tx_ring);
118 kfree(tx_ring->tx_bi);
119 tx_ring->tx_bi = NULL;
120
121 if (tx_ring->desc) {
122 dma_free_coherent(tx_ring->dev, tx_ring->size,
123 tx_ring->desc, tx_ring->dma);
124 tx_ring->desc = NULL;
125 }
126}
127
a68de58d 128/**
9c6c1259
KP
129 * i40evf_get_tx_pending - how many Tx descriptors not processed
130 * @tx_ring: the ring of descriptors
dd353109 131 * @in_sw: is tx_pending being checked in SW or HW
a68de58d 132 *
9c6c1259
KP
133 * Since there is no access to the ring head register
134 * in XL710, we need to use our local copies
a68de58d 135 **/
dd353109 136u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
a68de58d 137{
9c6c1259 138 u32 head, tail;
a68de58d 139
b1cb07db 140 head = ring->next_to_clean;
9c6c1259
KP
141 tail = readl(ring->tail);
142
143 if (head != tail)
144 return (head < tail) ?
145 tail - head : (tail + ring->count - head);
146
147 return 0;
a68de58d
JB
148}
149
1dc8b538 150#define WB_STRIDE 4
c29af37f 151
7f12ad74
GR
152/**
153 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
154 * @vsi: the VSI we care about
155 * @tx_ring: Tx ring to clean
156 * @napi_budget: Used to determine if we are in netpoll
7f12ad74
GR
157 *
158 * Returns true if there's any budget left (e.g. the clean is finished)
159 **/
a619afe8
AD
160static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
161 struct i40e_ring *tx_ring, int napi_budget)
7f12ad74
GR
162{
163 u16 i = tx_ring->next_to_clean;
164 struct i40e_tx_buffer *tx_buf;
165 struct i40e_tx_desc *tx_desc;
a619afe8
AD
166 unsigned int total_bytes = 0, total_packets = 0;
167 unsigned int budget = vsi->work_limit;
7f12ad74
GR
168
169 tx_buf = &tx_ring->tx_bi[i];
170 tx_desc = I40E_TX_DESC(tx_ring, i);
171 i -= tx_ring->count;
172
173 do {
174 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
175
176 /* if next_to_watch is not set then there is no work pending */
177 if (!eop_desc)
178 break;
179
180 /* prevent any other reads prior to eop_desc */
181 read_barrier_depends();
182
b1cb07db
PB
183 /* if the descriptor isn't done, no work yet to do */
184 if (!(eop_desc->cmd_type_offset_bsz &
185 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
7f12ad74
GR
186 break;
187
188 /* clear next_to_watch to prevent false hangs */
189 tx_buf->next_to_watch = NULL;
190
191 /* update the statistics for this packet */
192 total_bytes += tx_buf->bytecount;
193 total_packets += tx_buf->gso_segs;
194
195 /* free the skb */
a619afe8 196 napi_consume_skb(tx_buf->skb, napi_budget);
7f12ad74
GR
197
198 /* unmap skb header data */
199 dma_unmap_single(tx_ring->dev,
200 dma_unmap_addr(tx_buf, dma),
201 dma_unmap_len(tx_buf, len),
202 DMA_TO_DEVICE);
203
204 /* clear tx_buffer data */
205 tx_buf->skb = NULL;
206 dma_unmap_len_set(tx_buf, len, 0);
207
208 /* unmap remaining buffers */
209 while (tx_desc != eop_desc) {
210
211 tx_buf++;
212 tx_desc++;
213 i++;
214 if (unlikely(!i)) {
215 i -= tx_ring->count;
216 tx_buf = tx_ring->tx_bi;
217 tx_desc = I40E_TX_DESC(tx_ring, 0);
218 }
219
220 /* unmap any remaining paged data */
221 if (dma_unmap_len(tx_buf, len)) {
222 dma_unmap_page(tx_ring->dev,
223 dma_unmap_addr(tx_buf, dma),
224 dma_unmap_len(tx_buf, len),
225 DMA_TO_DEVICE);
226 dma_unmap_len_set(tx_buf, len, 0);
227 }
228 }
229
230 /* move us one more past the eop_desc for start of next pkt */
231 tx_buf++;
232 tx_desc++;
233 i++;
234 if (unlikely(!i)) {
235 i -= tx_ring->count;
236 tx_buf = tx_ring->tx_bi;
237 tx_desc = I40E_TX_DESC(tx_ring, 0);
238 }
239
016890b9
JB
240 prefetch(tx_desc);
241
7f12ad74
GR
242 /* update budget accounting */
243 budget--;
244 } while (likely(budget));
245
246 i += tx_ring->count;
247 tx_ring->next_to_clean = i;
248 u64_stats_update_begin(&tx_ring->syncp);
249 tx_ring->stats.bytes += total_bytes;
250 tx_ring->stats.packets += total_packets;
251 u64_stats_update_end(&tx_ring->syncp);
252 tx_ring->q_vector->tx.total_bytes += total_bytes;
253 tx_ring->q_vector->tx.total_packets += total_packets;
254
f6d83d13 255 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
f6d83d13
ASJ
256 /* check to see if there are < 4 descriptors
257 * waiting to be written back, then kick the hardware to force
258 * them to be written back in case we stay in NAPI.
259 * In this mode on X722 we do not enable Interrupt.
260 */
88dc9e6f 261 unsigned int j = i40evf_get_tx_pending(tx_ring, false);
f6d83d13
ASJ
262
263 if (budget &&
1dc8b538 264 ((j / WB_STRIDE) == 0) && (j > 0) &&
a619afe8 265 !test_bit(__I40E_DOWN, &vsi->state) &&
f6d83d13
ASJ
266 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
267 tx_ring->arm_wb = true;
268 }
269
e486bdfd
AD
270 /* notify netdev of completed buffers */
271 netdev_tx_completed_queue(txring_txq(tx_ring),
7f12ad74
GR
272 total_packets, total_bytes);
273
274#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
275 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
276 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
277 /* Make sure that anybody stopping the queue after this
278 * sees the new next_to_clean.
279 */
280 smp_mb();
281 if (__netif_subqueue_stopped(tx_ring->netdev,
282 tx_ring->queue_index) &&
a619afe8 283 !test_bit(__I40E_DOWN, &vsi->state)) {
7f12ad74
GR
284 netif_wake_subqueue(tx_ring->netdev,
285 tx_ring->queue_index);
286 ++tx_ring->tx_stats.restart_queue;
287 }
288 }
289
b03a8c1f 290 return !!budget;
7f12ad74
GR
291}
292
c29af37f 293/**
ecc6a239 294 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 295 * @vsi: the VSI we care about
ecc6a239 296 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
297 *
298 **/
ecc6a239
ASJ
299static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
300 struct i40e_q_vector *q_vector)
c29af37f 301{
8e0764b4 302 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 303 u32 val;
8e0764b4 304
ecc6a239
ASJ
305 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
306 return;
307
308 if (q_vector->arm_wb_state)
309 return;
310
311 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
312 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
313
314 wr32(&vsi->back->hw,
315 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
316 vsi->base_vector - 1), val);
317 q_vector->arm_wb_state = true;
318}
319
320/**
321 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
322 * @vsi: the VSI we care about
323 * @q_vector: the vector on which to force writeback
324 *
325 **/
326void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
327{
328 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
329 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
330 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
331 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
332 /* allow 00 to be written to the index */;
333
334 wr32(&vsi->back->hw,
335 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
336 val);
c29af37f
ASJ
337}
338
7f12ad74
GR
339/**
340 * i40e_set_new_dynamic_itr - Find new ITR level
341 * @rc: structure containing ring performance data
342 *
8f5e39ce
JB
343 * Returns true if ITR changed, false if not
344 *
7f12ad74
GR
345 * Stores a new ITR value based on packets and byte counts during
346 * the last interrupt. The advantage of per interrupt computation
347 * is faster updates and more accurate ITR for the current traffic
348 * pattern. Constants in this function were computed based on
349 * theoretical maximum wire speed and thresholds were set based on
350 * testing data as well as attempting to minimize response time
351 * while increasing bulk throughput.
352 **/
8f5e39ce 353static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
354{
355 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 356 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
357 u32 new_itr = rc->itr;
358 int bytes_per_int;
51cc6d9f 359 int usecs;
7f12ad74
GR
360
361 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 362 return false;
7f12ad74
GR
363
364 /* simple throttlerate management
c56625d5 365 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 366 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
367 * 20-1249MB/s bulk (18000 ints/s)
368 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
369 *
370 * The math works out because the divisor is in 10^(-6) which
371 * turns the bytes/us input value into MB/s values, but
372 * make sure to use usecs, as the register values written
ee2319cf
JB
373 * are in 2 usec increments in the ITR registers, and make sure
374 * to use the smoothed values that the countdown timer gives us.
7f12ad74 375 */
ee2319cf 376 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 377 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 378
de32e3ef 379 switch (new_latency_range) {
7f12ad74
GR
380 case I40E_LOWEST_LATENCY:
381 if (bytes_per_int > 10)
382 new_latency_range = I40E_LOW_LATENCY;
383 break;
384 case I40E_LOW_LATENCY:
385 if (bytes_per_int > 20)
386 new_latency_range = I40E_BULK_LATENCY;
387 else if (bytes_per_int <= 10)
388 new_latency_range = I40E_LOWEST_LATENCY;
389 break;
390 case I40E_BULK_LATENCY:
c56625d5 391 case I40E_ULTRA_LATENCY:
de32e3ef
CW
392 default:
393 if (bytes_per_int <= 20)
394 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
395 break;
396 }
c56625d5
JB
397
398 /* this is to adjust RX more aggressively when streaming small
399 * packets. The value of 40000 was picked as it is just beyond
400 * what the hardware can receive per second if in low latency
401 * mode.
402 */
403#define RX_ULTRA_PACKET_RATE 40000
404
405 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
406 (&qv->rx == rc))
407 new_latency_range = I40E_ULTRA_LATENCY;
408
de32e3ef 409 rc->latency_range = new_latency_range;
7f12ad74
GR
410
411 switch (new_latency_range) {
412 case I40E_LOWEST_LATENCY:
c56625d5 413 new_itr = I40E_ITR_50K;
7f12ad74
GR
414 break;
415 case I40E_LOW_LATENCY:
416 new_itr = I40E_ITR_20K;
417 break;
418 case I40E_BULK_LATENCY:
c56625d5
JB
419 new_itr = I40E_ITR_18K;
420 break;
421 case I40E_ULTRA_LATENCY:
7f12ad74
GR
422 new_itr = I40E_ITR_8K;
423 break;
424 default:
425 break;
426 }
427
7f12ad74
GR
428 rc->total_bytes = 0;
429 rc->total_packets = 0;
8f5e39ce
JB
430
431 if (new_itr != rc->itr) {
432 rc->itr = new_itr;
433 return true;
434 }
435
436 return false;
7f12ad74
GR
437}
438
4eeb1fff 439/**
7f12ad74
GR
440 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
441 * @tx_ring: the tx ring to set up
442 *
443 * Return 0 on success, negative on error
444 **/
445int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
446{
447 struct device *dev = tx_ring->dev;
448 int bi_size;
449
450 if (!dev)
451 return -ENOMEM;
452
67c818a1
MW
453 /* warn if we are about to overwrite the pointer */
454 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
455 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
456 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
457 if (!tx_ring->tx_bi)
458 goto err;
459
460 /* round up to nearest 4K */
461 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
462 tx_ring->size = ALIGN(tx_ring->size, 4096);
463 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
464 &tx_ring->dma, GFP_KERNEL);
465 if (!tx_ring->desc) {
466 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
467 tx_ring->size);
468 goto err;
469 }
470
471 tx_ring->next_to_use = 0;
472 tx_ring->next_to_clean = 0;
473 return 0;
474
475err:
476 kfree(tx_ring->tx_bi);
477 tx_ring->tx_bi = NULL;
478 return -ENOMEM;
479}
480
481/**
482 * i40evf_clean_rx_ring - Free Rx buffers
483 * @rx_ring: ring to be cleaned
484 **/
485void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
486{
7f12ad74
GR
487 unsigned long bi_size;
488 u16 i;
489
490 /* ring already cleared, nothing to do */
491 if (!rx_ring->rx_bi)
492 return;
493
e72e5659
SP
494 if (rx_ring->skb) {
495 dev_kfree_skb(rx_ring->skb);
496 rx_ring->skb = NULL;
497 }
498
7f12ad74
GR
499 /* Free all the Rx ring sk_buffs */
500 for (i = 0; i < rx_ring->count; i++) {
ab9ad98e
JB
501 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
502
ab9ad98e
JB
503 if (!rx_bi->page)
504 continue;
505
59605bc0
AD
506 /* Invalidate cache lines that may have been written to by
507 * device so that we avoid corrupting memory.
508 */
509 dma_sync_single_range_for_cpu(rx_ring->dev,
510 rx_bi->dma,
511 rx_bi->page_offset,
512 I40E_RXBUFFER_2048,
513 DMA_FROM_DEVICE);
514
515 /* free resources associated with mapping */
516 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
517 PAGE_SIZE,
518 DMA_FROM_DEVICE,
519 I40E_RX_DMA_ATTR);
1793668c 520 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
ab9ad98e
JB
521
522 rx_bi->page = NULL;
523 rx_bi->page_offset = 0;
7f12ad74
GR
524 }
525
526 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
527 memset(rx_ring->rx_bi, 0, bi_size);
528
529 /* Zero out the descriptor ring */
530 memset(rx_ring->desc, 0, rx_ring->size);
531
ab9ad98e 532 rx_ring->next_to_alloc = 0;
7f12ad74
GR
533 rx_ring->next_to_clean = 0;
534 rx_ring->next_to_use = 0;
535}
536
537/**
538 * i40evf_free_rx_resources - Free Rx resources
539 * @rx_ring: ring to clean the resources from
540 *
541 * Free all receive software resources
542 **/
543void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
544{
545 i40evf_clean_rx_ring(rx_ring);
546 kfree(rx_ring->rx_bi);
547 rx_ring->rx_bi = NULL;
548
549 if (rx_ring->desc) {
550 dma_free_coherent(rx_ring->dev, rx_ring->size,
551 rx_ring->desc, rx_ring->dma);
552 rx_ring->desc = NULL;
553 }
554}
555
556/**
557 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
558 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
559 *
560 * Returns 0 on success, negative on failure
561 **/
562int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
563{
564 struct device *dev = rx_ring->dev;
565 int bi_size;
566
67c818a1
MW
567 /* warn if we are about to overwrite the pointer */
568 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
569 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
570 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
571 if (!rx_ring->rx_bi)
572 goto err;
573
f217d6ca 574 u64_stats_init(&rx_ring->syncp);
638702bd 575
7f12ad74 576 /* Round up to nearest 4K */
ab9ad98e 577 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
7f12ad74
GR
578 rx_ring->size = ALIGN(rx_ring->size, 4096);
579 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
580 &rx_ring->dma, GFP_KERNEL);
581
582 if (!rx_ring->desc) {
583 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
584 rx_ring->size);
585 goto err;
586 }
587
ab9ad98e 588 rx_ring->next_to_alloc = 0;
7f12ad74
GR
589 rx_ring->next_to_clean = 0;
590 rx_ring->next_to_use = 0;
591
592 return 0;
593err:
594 kfree(rx_ring->rx_bi);
595 rx_ring->rx_bi = NULL;
596 return -ENOMEM;
597}
598
599/**
600 * i40e_release_rx_desc - Store the new tail and head values
601 * @rx_ring: ring to bump
602 * @val: new head index
603 **/
604static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
605{
606 rx_ring->next_to_use = val;
ab9ad98e
JB
607
608 /* update next to alloc since we have filled the ring */
609 rx_ring->next_to_alloc = val;
610
7f12ad74
GR
611 /* Force memory writes to complete before letting h/w
612 * know there are new descriptors to fetch. (Only
613 * applicable for weak-ordered memory model archs,
614 * such as IA-64).
615 */
616 wmb();
617 writel(val, rx_ring->tail);
618}
619
620/**
ab9ad98e
JB
621 * i40e_alloc_mapped_page - recycle or make a new page
622 * @rx_ring: ring to use
623 * @bi: rx_buffer struct to modify
c2e245ab 624 *
ab9ad98e
JB
625 * Returns true if the page was successfully allocated or
626 * reused.
a132af24 627 **/
ab9ad98e
JB
628static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
629 struct i40e_rx_buffer *bi)
a132af24 630{
ab9ad98e
JB
631 struct page *page = bi->page;
632 dma_addr_t dma;
a132af24 633
ab9ad98e
JB
634 /* since we are recycling buffers we should seldom need to alloc */
635 if (likely(page)) {
636 rx_ring->rx_stats.page_reuse_count++;
637 return true;
638 }
a132af24 639
ab9ad98e
JB
640 /* alloc new page for storage */
641 page = dev_alloc_page();
642 if (unlikely(!page)) {
643 rx_ring->rx_stats.alloc_page_failed++;
644 return false;
645 }
a132af24 646
ab9ad98e 647 /* map page for use */
59605bc0
AD
648 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
649 PAGE_SIZE,
650 DMA_FROM_DEVICE,
651 I40E_RX_DMA_ATTR);
f16704e5 652
ab9ad98e
JB
653 /* if mapping failed free memory back to system since
654 * there isn't much point in holding memory we can't use
f16704e5 655 */
ab9ad98e
JB
656 if (dma_mapping_error(rx_ring->dev, dma)) {
657 __free_pages(page, 0);
658 rx_ring->rx_stats.alloc_page_failed++;
659 return false;
a132af24
MW
660 }
661
ab9ad98e
JB
662 bi->dma = dma;
663 bi->page = page;
664 bi->page_offset = 0;
a0cfc313
AD
665
666 /* initialize pagecnt_bias to 1 representing we fully own page */
1793668c 667 bi->pagecnt_bias = 1;
c2e245ab 668
ab9ad98e
JB
669 return true;
670}
c2e245ab 671
ab9ad98e
JB
672/**
673 * i40e_receive_skb - Send a completed packet up the stack
674 * @rx_ring: rx ring in play
675 * @skb: packet to send up
676 * @vlan_tag: vlan tag for packet
677 **/
678static void i40e_receive_skb(struct i40e_ring *rx_ring,
679 struct sk_buff *skb, u16 vlan_tag)
680{
681 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 682
ab9ad98e
JB
683 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
684 (vlan_tag & VLAN_VID_MASK))
685 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
686
687 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
688}
689
690/**
ab9ad98e 691 * i40evf_alloc_rx_buffers - Replace used receive buffers
7f12ad74
GR
692 * @rx_ring: ring to place buffers on
693 * @cleaned_count: number of buffers to replace
c2e245ab 694 *
ab9ad98e 695 * Returns false if all allocations were successful, true if any fail
7f12ad74 696 **/
ab9ad98e 697bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74 698{
ab9ad98e 699 u16 ntu = rx_ring->next_to_use;
7f12ad74
GR
700 union i40e_rx_desc *rx_desc;
701 struct i40e_rx_buffer *bi;
7f12ad74
GR
702
703 /* do nothing if no valid netdev defined */
704 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 705 return false;
7f12ad74 706
ab9ad98e
JB
707 rx_desc = I40E_RX_DESC(rx_ring, ntu);
708 bi = &rx_ring->rx_bi[ntu];
7f12ad74 709
ab9ad98e
JB
710 do {
711 if (!i40e_alloc_mapped_page(rx_ring, bi))
712 goto no_buffers;
7f12ad74 713
59605bc0
AD
714 /* sync the buffer for use by the device */
715 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
716 bi->page_offset,
717 I40E_RXBUFFER_2048,
718 DMA_FROM_DEVICE);
719
ab9ad98e
JB
720 /* Refresh the desc even if buffer_addrs didn't change
721 * because each write-back erases this info.
722 */
723 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7f12ad74 724
ab9ad98e
JB
725 rx_desc++;
726 bi++;
727 ntu++;
728 if (unlikely(ntu == rx_ring->count)) {
729 rx_desc = I40E_RX_DESC(rx_ring, 0);
730 bi = rx_ring->rx_bi;
731 ntu = 0;
732 }
733
734 /* clear the status bits for the next_to_use descriptor */
735 rx_desc->wb.qword1.status_error_len = 0;
736
737 cleaned_count--;
738 } while (cleaned_count);
739
740 if (rx_ring->next_to_use != ntu)
741 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
742
743 return false;
744
7f12ad74 745no_buffers:
ab9ad98e
JB
746 if (rx_ring->next_to_use != ntu)
747 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
748
749 /* make sure to come back via polling to try again after
750 * allocation failure
751 */
752 return true;
7f12ad74
GR
753}
754
7f12ad74
GR
755/**
756 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
757 * @vsi: the VSI we care about
758 * @skb: skb currently being received and modified
ab9ad98e 759 * @rx_desc: the receive descriptor
7f12ad74
GR
760 **/
761static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
762 struct sk_buff *skb,
ab9ad98e 763 union i40e_rx_desc *rx_desc)
7f12ad74 764{
ab9ad98e 765 struct i40e_rx_ptype_decoded decoded;
ab9ad98e 766 u32 rx_error, rx_status;
858296c8 767 bool ipv4, ipv6;
ab9ad98e
JB
768 u8 ptype;
769 u64 qword;
770
771 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
772 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
773 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
774 I40E_RXD_QW1_ERROR_SHIFT;
775 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
776 I40E_RXD_QW1_STATUS_SHIFT;
777 decoded = decode_rx_desc_ptype(ptype);
7f12ad74 778
7f12ad74
GR
779 skb->ip_summed = CHECKSUM_NONE;
780
ab9ad98e
JB
781 skb_checksum_none_assert(skb);
782
7f12ad74 783 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
784 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
785 return;
786
787 /* did the hardware decode the packet and checksum? */
41a1d04b 788 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
789 return;
790
791 /* both known and outer_ip must be set for the below code to work */
792 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
793 return;
794
fad57330
AD
795 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
796 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
797 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
798 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
799
800 if (ipv4 &&
41a1d04b
JB
801 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
802 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
803 goto checksum_fail;
804
ddf1d0d7 805 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 806 if (ipv6 &&
41a1d04b 807 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 808 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
809 return;
810
8a3c91cc 811 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 812 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
813 goto checksum_fail;
814
815 /* handle packets that were not able to be checksummed due
816 * to arrival speed, in this case the stack can compute
817 * the csum.
818 */
41a1d04b 819 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 820 return;
7f12ad74 821
858296c8
AD
822 /* If there is an outer header present that might contain a checksum
823 * we need to bump the checksum level by 1 to reflect the fact that
824 * we are indicating we validated the inner checksum.
8a3c91cc 825 */
858296c8
AD
826 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
827 skb->csum_level = 1;
828
829 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
830 switch (decoded.inner_prot) {
831 case I40E_RX_PTYPE_INNER_PROT_TCP:
832 case I40E_RX_PTYPE_INNER_PROT_UDP:
833 case I40E_RX_PTYPE_INNER_PROT_SCTP:
834 skb->ip_summed = CHECKSUM_UNNECESSARY;
835 /* fall though */
836 default:
837 break;
838 }
8a3c91cc
JB
839
840 return;
841
842checksum_fail:
843 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
844}
845
846/**
857942fd 847 * i40e_ptype_to_htype - get a hash type
206812b5
JB
848 * @ptype: the ptype value from the descriptor
849 *
850 * Returns a hash type to be used by skb_set_hash
851 **/
ab9ad98e 852static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
853{
854 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
855
856 if (!decoded.known)
857 return PKT_HASH_TYPE_NONE;
858
859 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
860 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
861 return PKT_HASH_TYPE_L4;
862 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
863 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
864 return PKT_HASH_TYPE_L3;
865 else
866 return PKT_HASH_TYPE_L2;
867}
868
857942fd
ASJ
869/**
870 * i40e_rx_hash - set the hash value in the skb
871 * @ring: descriptor ring
872 * @rx_desc: specific descriptor
873 **/
874static inline void i40e_rx_hash(struct i40e_ring *ring,
875 union i40e_rx_desc *rx_desc,
876 struct sk_buff *skb,
877 u8 rx_ptype)
878{
879 u32 hash;
ab9ad98e 880 const __le64 rss_mask =
857942fd
ASJ
881 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
882 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
883
884 if (ring->netdev->features & NETIF_F_RXHASH)
885 return;
886
887 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
888 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
889 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
890 }
891}
892
7f12ad74 893/**
ab9ad98e
JB
894 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
895 * @rx_ring: rx descriptor ring packet is being transacted on
896 * @rx_desc: pointer to the EOP Rx descriptor
897 * @skb: pointer to current skb being populated
898 * @rx_ptype: the packet type decoded by hardware
7f12ad74 899 *
ab9ad98e
JB
900 * This function checks the ring, descriptor, and packet information in
901 * order to populate the hash, checksum, VLAN, protocol, and
902 * other fields within the skb.
7f12ad74 903 **/
ab9ad98e
JB
904static inline
905void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
906 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
907 u8 rx_ptype)
7f12ad74 908{
ab9ad98e 909 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
7f12ad74 910
ab9ad98e 911 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
a132af24 912
ab9ad98e 913 skb_record_rx_queue(skb, rx_ring->queue_index);
a5b268e4
AD
914
915 /* modifies the skb - consumes the enet header */
916 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
ab9ad98e 917}
a132af24 918
ab9ad98e
JB
919/**
920 * i40e_cleanup_headers - Correct empty headers
921 * @rx_ring: rx descriptor ring packet is being transacted on
922 * @skb: pointer to current skb being fixed
923 *
924 * Also address the case where we are pulling data in on pages only
925 * and as such no data is present in the skb header.
926 *
927 * In addition if skb is not at least 60 bytes we need to pad it so that
928 * it is large enough to qualify as a valid Ethernet frame.
929 *
930 * Returns true if an error was encountered and skb was freed.
931 **/
932static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
933{
ab9ad98e
JB
934 /* if eth_skb_pad returns an error the skb was freed */
935 if (eth_skb_pad(skb))
936 return true;
7f12ad74 937
ab9ad98e
JB
938 return false;
939}
857942fd 940
ab9ad98e
JB
941/**
942 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
943 * @rx_ring: rx descriptor ring to store buffers on
944 * @old_buff: donor buffer to have page reused
945 *
946 * Synchronizes page for reuse by the adapter
947 **/
948static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
949 struct i40e_rx_buffer *old_buff)
950{
951 struct i40e_rx_buffer *new_buff;
952 u16 nta = rx_ring->next_to_alloc;
7f12ad74 953
ab9ad98e 954 new_buff = &rx_ring->rx_bi[nta];
7f12ad74 955
ab9ad98e
JB
956 /* update, and store next to alloc */
957 nta++;
958 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7f12ad74 959
ab9ad98e 960 /* transfer page from old buffer to new buffer */
1793668c
AD
961 new_buff->dma = old_buff->dma;
962 new_buff->page = old_buff->page;
963 new_buff->page_offset = old_buff->page_offset;
964 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
ab9ad98e
JB
965}
966
967/**
9b37c937 968 * i40e_page_is_reusable - check if any reuse is possible
ab9ad98e 969 * @page: page struct to check
9b37c937
SP
970 *
971 * A page is not reusable if it was allocated under low memory
972 * conditions, or it's not in the same NUMA node as this CPU.
ab9ad98e 973 */
9b37c937 974static inline bool i40e_page_is_reusable(struct page *page)
ab9ad98e 975{
9b37c937
SP
976 return (page_to_nid(page) == numa_mem_id()) &&
977 !page_is_pfmemalloc(page);
978}
979
980/**
981 * i40e_can_reuse_rx_page - Determine if this page can be reused by
982 * the adapter for another receive
983 *
984 * @rx_buffer: buffer containing the page
9b37c937
SP
985 *
986 * If page is reusable, rx_buffer->page_offset is adjusted to point to
987 * an unused region in the page.
988 *
989 * For small pages, @truesize will be a constant value, half the size
990 * of the memory at page. We'll attempt to alternate between high and
991 * low halves of the page, with one half ready for use by the hardware
992 * and the other half being consumed by the stack. We use the page
993 * ref count to determine whether the stack has finished consuming the
994 * portion of this page that was passed up with a previous packet. If
995 * the page ref count is >1, we'll assume the "other" half page is
996 * still busy, and this page cannot be reused.
997 *
998 * For larger pages, @truesize will be the actual space used by the
999 * received packet (adjusted upward to an even multiple of the cache
1000 * line size). This will advance through the page by the amount
1001 * actually consumed by the received packets while there is still
1002 * space for a buffer. Each region of larger pages will be used at
1003 * most once, after which the page will not be reused.
1004 *
1005 * In either case, if the page is reusable its refcount is increased.
1006 **/
a0cfc313 1007static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
9b37c937
SP
1008{
1009#if (PAGE_SIZE >= 8192)
1010 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1011#endif
a0cfc313
AD
1012 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1013 struct page *page = rx_buffer->page;
9b37c937
SP
1014
1015 /* Is any reuse possible? */
1016 if (unlikely(!i40e_page_is_reusable(page)))
1017 return false;
1018
1019#if (PAGE_SIZE < 8192)
1020 /* if we are only owner of page we can reuse it */
a0cfc313 1021 if (unlikely((page_count(page) - pagecnt_bias) > 1))
9b37c937 1022 return false;
9b37c937 1023#else
9b37c937
SP
1024 if (rx_buffer->page_offset > last_offset)
1025 return false;
1026#endif
1027
1793668c
AD
1028 /* If we have drained the page fragment pool we need to update
1029 * the pagecnt_bias and page count so that we fully restock the
1030 * number of references the driver holds.
1031 */
a0cfc313 1032 if (unlikely(!pagecnt_bias)) {
1793668c
AD
1033 page_ref_add(page, USHRT_MAX);
1034 rx_buffer->pagecnt_bias = USHRT_MAX;
1035 }
9b37c937
SP
1036
1037 return true;
ab9ad98e
JB
1038}
1039
1040/**
1041 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1042 * @rx_ring: rx descriptor ring to transact packets on
1043 * @rx_buffer: buffer containing page to add
ab9ad98e 1044 * @skb: sk_buff to place the data into
a0cfc313 1045 * @size: packet length from rx_desc
ab9ad98e
JB
1046 *
1047 * This function will add the data contained in rx_buffer->page to the skb.
fa2343e9 1048 * It will just attach the page as a frag to the skb.
ab9ad98e 1049 *
fa2343e9 1050 * The function will then update the page offset.
ab9ad98e 1051 **/
a0cfc313 1052static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
ab9ad98e 1053 struct i40e_rx_buffer *rx_buffer,
a0cfc313
AD
1054 struct sk_buff *skb,
1055 unsigned int size)
ab9ad98e 1056{
ab9ad98e
JB
1057#if (PAGE_SIZE < 8192)
1058 unsigned int truesize = I40E_RXBUFFER_2048;
1059#else
fa2343e9 1060 unsigned int truesize = SKB_DATA_ALIGN(size);
a132af24 1061#endif
ab9ad98e 1062
fa2343e9
AD
1063 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1064 rx_buffer->page_offset, size, truesize);
ab9ad98e 1065
a0cfc313
AD
1066 /* page is being used so we must update the page offset */
1067#if (PAGE_SIZE < 8192)
1068 rx_buffer->page_offset ^= truesize;
1069#else
1070 rx_buffer->page_offset += truesize;
1071#endif
ab9ad98e
JB
1072}
1073
9a064128
AD
1074/**
1075 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1076 * @rx_ring: rx descriptor ring to transact packets on
1077 * @size: size of buffer to add to skb
1078 *
1079 * This function will pull an Rx buffer from the ring and synchronize it
1080 * for use by the CPU.
1081 */
1082static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1083 const unsigned int size)
1084{
1085 struct i40e_rx_buffer *rx_buffer;
1086
1087 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1088 prefetchw(rx_buffer->page);
1089
1090 /* we are reusing so sync this buffer for CPU use */
1091 dma_sync_single_range_for_cpu(rx_ring->dev,
1092 rx_buffer->dma,
1093 rx_buffer->page_offset,
1094 size,
1095 DMA_FROM_DEVICE);
1096
a0cfc313
AD
1097 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1098 rx_buffer->pagecnt_bias--;
1099
9a064128
AD
1100 return rx_buffer;
1101}
1102
ab9ad98e 1103/**
fa2343e9 1104 * i40e_construct_skb - Allocate skb and populate it
ab9ad98e 1105 * @rx_ring: rx descriptor ring to transact packets on
9a064128 1106 * @rx_buffer: rx buffer to pull data from
d57c0e08 1107 * @size: size of buffer to add to skb
ab9ad98e 1108 *
fa2343e9
AD
1109 * This function allocates an skb. It then populates it with the page
1110 * data from the current receive descriptor, taking care to set up the
1111 * skb correctly.
ab9ad98e 1112 */
fa2343e9
AD
1113static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1114 struct i40e_rx_buffer *rx_buffer,
1115 unsigned int size)
ab9ad98e 1116{
fa2343e9
AD
1117 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1118#if (PAGE_SIZE < 8192)
1119 unsigned int truesize = I40E_RXBUFFER_2048;
1120#else
1121 unsigned int truesize = SKB_DATA_ALIGN(size);
1122#endif
1123 unsigned int headlen;
1124 struct sk_buff *skb;
ab9ad98e 1125
fa2343e9
AD
1126 /* prefetch first cache line of first page */
1127 prefetch(va);
ab9ad98e 1128#if L1_CACHE_BYTES < 128
fa2343e9 1129 prefetch(va + L1_CACHE_BYTES);
ab9ad98e
JB
1130#endif
1131
fa2343e9
AD
1132 /* allocate a skb to store the frags */
1133 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1134 I40E_RX_HDR_SIZE,
1135 GFP_ATOMIC | __GFP_NOWARN);
1136 if (unlikely(!skb))
1137 return NULL;
1138
1139 /* Determine available headroom for copy */
1140 headlen = size;
1141 if (headlen > I40E_RX_HDR_SIZE)
1142 headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
ab9ad98e 1143
fa2343e9
AD
1144 /* align pull length to size of long to optimize memcpy performance */
1145 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1146
1147 /* update all of the pointers */
1148 size -= headlen;
1149 if (size) {
1150 skb_add_rx_frag(skb, 0, rx_buffer->page,
1151 rx_buffer->page_offset + headlen,
1152 size, truesize);
1153
1154 /* buffer is used by skb, update page_offset */
1155#if (PAGE_SIZE < 8192)
1156 rx_buffer->page_offset ^= truesize;
1157#else
1158 rx_buffer->page_offset += truesize;
1159#endif
1160 } else {
1161 /* buffer is unused, reset bias back to rx_buffer */
1162 rx_buffer->pagecnt_bias++;
1163 }
a0cfc313
AD
1164
1165 return skb;
1166}
1167
1168/**
1169 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1170 * @rx_ring: rx descriptor ring to transact packets on
1171 * @rx_buffer: rx buffer to pull data from
1172 *
1173 * This function will clean up the contents of the rx_buffer. It will
1174 * either recycle the bufer or unmap it and free the associated resources.
1175 */
1176static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1177 struct i40e_rx_buffer *rx_buffer)
1178{
1179 if (i40e_can_reuse_rx_page(rx_buffer)) {
ab9ad98e
JB
1180 /* hand second half of page back to the ring */
1181 i40e_reuse_rx_page(rx_ring, rx_buffer);
1182 rx_ring->rx_stats.page_reuse_count++;
1183 } else {
1184 /* we are not reusing the buffer so unmap it */
59605bc0
AD
1185 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1186 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1793668c
AD
1187 __page_frag_cache_drain(rx_buffer->page,
1188 rx_buffer->pagecnt_bias);
ab9ad98e
JB
1189 }
1190
1191 /* clear contents of buffer_info */
1192 rx_buffer->page = NULL;
ab9ad98e
JB
1193}
1194
1195/**
1196 * i40e_is_non_eop - process handling of non-EOP buffers
1197 * @rx_ring: Rx ring being processed
1198 * @rx_desc: Rx descriptor for current buffer
1199 * @skb: Current socket buffer containing buffer in progress
1200 *
1201 * This function updates next to clean. If the buffer is an EOP buffer
1202 * this function exits returning false, otherwise it will place the
1203 * sk_buff in the next buffer to be chained and return true indicating
1204 * that this is in fact a non-EOP buffer.
1205 **/
1206static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1207 union i40e_rx_desc *rx_desc,
1208 struct sk_buff *skb)
1209{
1210 u32 ntc = rx_ring->next_to_clean + 1;
1211
1212 /* fetch, update, and store next to clean */
1213 ntc = (ntc < rx_ring->count) ? ntc : 0;
1214 rx_ring->next_to_clean = ntc;
1215
1216 prefetch(I40E_RX_DESC(rx_ring, ntc));
1217
1218 /* if we are the last buffer then there is nothing else to do */
1219#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1220 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1221 return false;
1222
ab9ad98e
JB
1223 rx_ring->rx_stats.non_eop_descs++;
1224
1225 return true;
a132af24
MW
1226}
1227
1228/**
ab9ad98e
JB
1229 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1230 * @rx_ring: rx descriptor ring to transact packets on
1231 * @budget: Total limit on number of packets to process
1232 *
1233 * This function provides a "bounce buffer" approach to Rx interrupt
1234 * processing. The advantage to this is that on systems that have
1235 * expensive overhead for IOMMU access this provides a means of avoiding
1236 * it by maintaining the mapping of the page to the system.
a132af24 1237 *
ab9ad98e 1238 * Returns amount of work completed
a132af24 1239 **/
ab9ad98e 1240static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
1241{
1242 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
e72e5659 1243 struct sk_buff *skb = rx_ring->skb;
a132af24 1244 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
c2e245ab 1245 bool failure = false;
a132af24 1246
ab9ad98e 1247 while (likely(total_rx_packets < budget)) {
9a064128 1248 struct i40e_rx_buffer *rx_buffer;
ab9ad98e 1249 union i40e_rx_desc *rx_desc;
d57c0e08 1250 unsigned int size;
a132af24 1251 u16 vlan_tag;
ab9ad98e
JB
1252 u8 rx_ptype;
1253 u64 qword;
1254
7f12ad74
GR
1255 /* return some buffers to hardware, one at a time is too slow */
1256 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 1257 failure = failure ||
ab9ad98e 1258 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
7f12ad74
GR
1259 cleaned_count = 0;
1260 }
1261
ab9ad98e
JB
1262 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1263
ab9ad98e
JB
1264 /* status_error_len will always be zero for unused descriptors
1265 * because it's cleared in cleanup, and overlaps with hdr_addr
1266 * which is always zero because packet split isn't used, if the
d57c0e08 1267 * hardware wrote DD then the length will be non-zero
ab9ad98e 1268 */
d57c0e08
AD
1269 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1270 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1271 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1272 if (!size)
ab9ad98e
JB
1273 break;
1274
a132af24 1275 /* This memory barrier is needed to keep us from reading
d57c0e08
AD
1276 * any other fields out of the rx_desc until we have
1277 * verified the descriptor has been written back.
a132af24 1278 */
67317166 1279 dma_rmb();
a132af24 1280
9a064128
AD
1281 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
1282
fa2343e9
AD
1283 /* retrieve a buffer from the ring */
1284 if (skb)
1285 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1286 else
1287 skb = i40e_construct_skb(rx_ring, rx_buffer, size);
1288
1289 /* exit if we failed to retrieve a buffer */
1290 if (!skb) {
1291 rx_ring->rx_stats.alloc_buff_failed++;
1292 rx_buffer->pagecnt_bias++;
ab9ad98e 1293 break;
fa2343e9 1294 }
a132af24 1295
a0cfc313 1296 i40e_put_rx_buffer(rx_ring, rx_buffer);
a132af24
MW
1297 cleaned_count++;
1298
ab9ad98e 1299 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 1300 continue;
a132af24 1301
ab9ad98e
JB
1302 /* ERR_MASK will only have valid bits if EOP set, and
1303 * what we are doing here is actually checking
1304 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1305 * the error field
1306 */
1307 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
a132af24 1308 dev_kfree_skb_any(skb);
741b8b83 1309 skb = NULL;
a132af24
MW
1310 continue;
1311 }
1312
e72e5659
SP
1313 if (i40e_cleanup_headers(rx_ring, skb)) {
1314 skb = NULL;
ab9ad98e 1315 continue;
e72e5659 1316 }
ab9ad98e 1317
a132af24
MW
1318 /* probably a little skewed due to removing CRC */
1319 total_rx_bytes += skb->len;
a132af24 1320
99dad8b3
AD
1321 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1322 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1323 I40E_RXD_QW1_PTYPE_SHIFT;
1324
ab9ad98e
JB
1325 /* populate checksum, VLAN, and protocol */
1326 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 1327
a132af24 1328
ab9ad98e
JB
1329 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1330 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1331
a132af24 1332 i40e_receive_skb(rx_ring, skb, vlan_tag);
e72e5659 1333 skb = NULL;
a132af24 1334
ab9ad98e
JB
1335 /* update budget accounting */
1336 total_rx_packets++;
1337 }
7f12ad74 1338
e72e5659
SP
1339 rx_ring->skb = skb;
1340
7f12ad74
GR
1341 u64_stats_update_begin(&rx_ring->syncp);
1342 rx_ring->stats.packets += total_rx_packets;
1343 rx_ring->stats.bytes += total_rx_bytes;
1344 u64_stats_update_end(&rx_ring->syncp);
1345 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1346 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1347
ab9ad98e 1348 /* guarantee a trip back through this routine if there was a failure */
c2e245ab 1349 return failure ? budget : total_rx_packets;
7f12ad74
GR
1350}
1351
8f5e39ce
JB
1352static u32 i40e_buildreg_itr(const int type, const u16 itr)
1353{
1354 u32 val;
1355
1356 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
40d72a50
JB
1357 /* Don't clear PBA because that can cause lost interrupts that
1358 * came in while we were cleaning/polling
1359 */
8f5e39ce
JB
1360 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1361 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1362
1363 return val;
1364}
1365
1366/* a small macro to shorten up some long lines */
1367#define INTREG I40E_VFINT_DYN_CTLN1
3c234c47 1368static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
65e87c03
JK
1369{
1370 struct i40evf_adapter *adapter = vsi->back;
1371
3c234c47 1372 return adapter->rx_rings[idx].rx_itr_setting;
65e87c03
JK
1373}
1374
3c234c47 1375static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
65e87c03
JK
1376{
1377 struct i40evf_adapter *adapter = vsi->back;
1378
3c234c47 1379 return adapter->tx_rings[idx].tx_itr_setting;
65e87c03 1380}
8f5e39ce 1381
de32e3ef
CW
1382/**
1383 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1384 * @vsi: the VSI we care about
1385 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1386 *
1387 **/
1388static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1389 struct i40e_q_vector *q_vector)
1390{
1391 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1392 bool rx = false, tx = false;
1393 u32 rxval, txval;
de32e3ef 1394 int vector;
65e87c03
JK
1395 int idx = q_vector->v_idx;
1396 int rx_itr_setting, tx_itr_setting;
de32e3ef
CW
1397
1398 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1399
1400 /* avoid dynamic calculation if in countdown mode OR if
1401 * all dynamic is disabled
1402 */
8f5e39ce
JB
1403 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1404
3c234c47
CW
1405 rx_itr_setting = get_rx_itr(vsi, idx);
1406 tx_itr_setting = get_tx_itr(vsi, idx);
65e87c03 1407
ee2319cf 1408 if (q_vector->itr_countdown > 0 ||
65e87c03
JK
1409 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1410 !ITR_IS_DYNAMIC(tx_itr_setting))) {
ee2319cf
JB
1411 goto enable_int;
1412 }
1413
65e87c03 1414 if (ITR_IS_DYNAMIC(rx_itr_setting)) {
8f5e39ce
JB
1415 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1416 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1417 }
4eeb1fff 1418
65e87c03 1419 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
1420 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1421 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1422 }
4eeb1fff 1423
8f5e39ce
JB
1424 if (rx || tx) {
1425 /* get the higher of the two ITR adjustments and
1426 * use the same value for both ITR registers
1427 * when in adaptive mode (Rx and/or Tx)
1428 */
1429 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1430
1431 q_vector->tx.itr = q_vector->rx.itr = itr;
1432 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1433 tx = true;
1434 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1435 rx = true;
de32e3ef 1436 }
8f5e39ce
JB
1437
1438 /* only need to enable the interrupt once, but need
1439 * to possibly update both ITR values
1440 */
1441 if (rx) {
1442 /* set the INTENA_MSK_MASK so that this first write
1443 * won't actually enable the interrupt, instead just
1444 * updating the ITR (it's bit 31 PF and VF)
1445 */
1446 rxval |= BIT(31);
1447 /* don't check _DOWN because interrupt isn't being enabled */
1448 wr32(hw, INTREG(vector - 1), rxval);
1449 }
1450
ee2319cf 1451enable_int:
8f5e39ce
JB
1452 if (!test_bit(__I40E_DOWN, &vsi->state))
1453 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1454
1455 if (q_vector->itr_countdown)
1456 q_vector->itr_countdown--;
1457 else
1458 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1459}
1460
7f12ad74
GR
1461/**
1462 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1463 * @napi: napi struct with our devices info in it
1464 * @budget: amount of work driver is allowed to do this pass, in packets
1465 *
1466 * This function will clean all queues associated with a q_vector.
1467 *
1468 * Returns the amount of work done
1469 **/
1470int i40evf_napi_poll(struct napi_struct *napi, int budget)
1471{
1472 struct i40e_q_vector *q_vector =
1473 container_of(napi, struct i40e_q_vector, napi);
1474 struct i40e_vsi *vsi = q_vector->vsi;
1475 struct i40e_ring *ring;
1476 bool clean_complete = true;
c29af37f 1477 bool arm_wb = false;
7f12ad74 1478 int budget_per_ring;
32b3e08f 1479 int work_done = 0;
7f12ad74
GR
1480
1481 if (test_bit(__I40E_DOWN, &vsi->state)) {
1482 napi_complete(napi);
1483 return 0;
1484 }
1485
1486 /* Since the actual Tx work is minimal, we can give the Tx a larger
1487 * budget and be more aggressive about cleaning up the Tx descriptors.
1488 */
c29af37f 1489 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 1490 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
1491 clean_complete = false;
1492 continue;
1493 }
1494 arm_wb |= ring->arm_wb;
0deda868 1495 ring->arm_wb = false;
c29af37f 1496 }
7f12ad74 1497
c67caceb
AD
1498 /* Handle case where we are called by netpoll with a budget of 0 */
1499 if (budget <= 0)
1500 goto tx_only;
1501
7f12ad74
GR
1502 /* We attempt to distribute budget to each Rx queue fairly, but don't
1503 * allow the budget to go below 1 because that would exit polling early.
1504 */
1505 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1506
a132af24 1507 i40e_for_each_ring(ring, q_vector->rx) {
ab9ad98e 1508 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
1509
1510 work_done += cleaned;
f2edaaaa
AD
1511 /* if we clean as many as budgeted, we must not be done */
1512 if (cleaned >= budget_per_ring)
1513 clean_complete = false;
a132af24 1514 }
7f12ad74
GR
1515
1516 /* If work not completed, return budget and polling will return */
c29af37f 1517 if (!clean_complete) {
96db776a
AB
1518 const cpumask_t *aff_mask = &q_vector->affinity_mask;
1519 int cpu_id = smp_processor_id();
1520
1521 /* It is possible that the interrupt affinity has changed but,
1522 * if the cpu is pegged at 100%, polling will never exit while
1523 * traffic continues and the interrupt will be stuck on this
1524 * cpu. We check to make sure affinity is correct before we
1525 * continue to poll, otherwise we must stop polling so the
1526 * interrupt can move to the correct cpu.
1527 */
1528 if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
c67caceb 1529tx_only:
96db776a
AB
1530 if (arm_wb) {
1531 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1532 i40e_enable_wb_on_itr(vsi, q_vector);
1533 }
1534 return budget;
164c9f54 1535 }
c29af37f 1536 }
7f12ad74 1537
8e0764b4
ASJ
1538 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1539 q_vector->arm_wb_state = false;
1540
7f12ad74 1541 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1542 napi_complete_done(napi, work_done);
96db776a
AB
1543
1544 /* If we're prematurely stopping polling to fix the interrupt
1545 * affinity we want to make sure polling starts back up so we
1546 * issue a call to i40evf_force_wb which triggers a SW interrupt.
1547 */
1548 if (!clean_complete)
1549 i40evf_force_wb(vsi, q_vector);
1550 else
1551 i40e_update_enable_itr(vsi, q_vector);
1552
6beb84a7 1553 return min(work_done, budget - 1);
7f12ad74
GR
1554}
1555
1556/**
3e587cf3 1557 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1558 * @skb: send buffer
1559 * @tx_ring: ring to send buffer on
1560 * @flags: the tx flags to be set
1561 *
1562 * Checks the skb and set up correspondingly several generic transmit flags
1563 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1564 *
1565 * Returns error code indicate the frame should be dropped upon error and the
1566 * otherwise returns 0 to indicate the flags has been set properly.
1567 **/
3e587cf3
JB
1568static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1569 struct i40e_ring *tx_ring,
1570 u32 *flags)
7f12ad74
GR
1571{
1572 __be16 protocol = skb->protocol;
1573 u32 tx_flags = 0;
1574
31eaaccf
GR
1575 if (protocol == htons(ETH_P_8021Q) &&
1576 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1577 /* When HW VLAN acceleration is turned off by the user the
1578 * stack sets the protocol to 8021q so that the driver
1579 * can take any steps required to support the SW only
1580 * VLAN handling. In our case the driver doesn't need
1581 * to take any further steps so just set the protocol
1582 * to the encapsulated ethertype.
1583 */
1584 skb->protocol = vlan_get_protocol(skb);
1585 goto out;
1586 }
1587
7f12ad74 1588 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1589 if (skb_vlan_tag_present(skb)) {
1590 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1591 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1592 /* else if it is a SW VLAN, check the next protocol and store the tag */
1593 } else if (protocol == htons(ETH_P_8021Q)) {
1594 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1595
7f12ad74
GR
1596 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1597 if (!vhdr)
1598 return -EINVAL;
1599
1600 protocol = vhdr->h_vlan_encapsulated_proto;
1601 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1602 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1603 }
1604
31eaaccf 1605out:
7f12ad74
GR
1606 *flags = tx_flags;
1607 return 0;
1608}
1609
1610/**
1611 * i40e_tso - set up the tso context descriptor
52ea3e80 1612 * @first: pointer to first Tx buffer for xmit
7f12ad74 1613 * @hdr_len: ptr to the size of the packet header
9c883bd3 1614 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1615 *
1616 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1617 **/
52ea3e80
AD
1618static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
1619 u64 *cd_type_cmd_tso_mss)
7f12ad74 1620{
52ea3e80 1621 struct sk_buff *skb = first->skb;
03f9d6a5 1622 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
1623 union {
1624 struct iphdr *v4;
1625 struct ipv6hdr *v6;
1626 unsigned char *hdr;
1627 } ip;
c49a7bc3
AD
1628 union {
1629 struct tcphdr *tcp;
5453205c 1630 struct udphdr *udp;
c49a7bc3
AD
1631 unsigned char *hdr;
1632 } l4;
1633 u32 paylen, l4_offset;
52ea3e80 1634 u16 gso_segs, gso_size;
7f12ad74 1635 int err;
7f12ad74 1636
e9f6563d
SN
1637 if (skb->ip_summed != CHECKSUM_PARTIAL)
1638 return 0;
1639
7f12ad74
GR
1640 if (!skb_is_gso(skb))
1641 return 0;
1642
fe6d4aa4
FR
1643 err = skb_cow_head(skb, 0);
1644 if (err < 0)
1645 return err;
7f12ad74 1646
c777019a
AD
1647 ip.hdr = skb_network_header(skb);
1648 l4.hdr = skb_transport_header(skb);
85e76d03 1649
c777019a
AD
1650 /* initialize outer IP header fields */
1651 if (ip.v4->version == 4) {
1652 ip.v4->tot_len = 0;
1653 ip.v4->check = 0;
c49a7bc3 1654 } else {
c777019a
AD
1655 ip.v6->payload_len = 0;
1656 }
1657
577389a5 1658 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 1659 SKB_GSO_GRE_CSUM |
7e13318d 1660 SKB_GSO_IPXIP4 |
bf2d1df3 1661 SKB_GSO_IPXIP6 |
577389a5 1662 SKB_GSO_UDP_TUNNEL |
5453205c 1663 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
1664 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1665 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1666 l4.udp->len = 0;
1667
5453205c
AD
1668 /* determine offset of outer transport header */
1669 l4_offset = l4.hdr - skb->data;
1670
1671 /* remove payload length from outer checksum */
24d41e5e 1672 paylen = skb->len - l4_offset;
b9c015d4
JK
1673 csum_replace_by_diff(&l4.udp->check,
1674 (__force __wsum)htonl(paylen));
5453205c
AD
1675 }
1676
c777019a
AD
1677 /* reset pointers to inner headers */
1678 ip.hdr = skb_inner_network_header(skb);
1679 l4.hdr = skb_inner_transport_header(skb);
1680
1681 /* initialize inner IP header fields */
1682 if (ip.v4->version == 4) {
1683 ip.v4->tot_len = 0;
1684 ip.v4->check = 0;
1685 } else {
1686 ip.v6->payload_len = 0;
1687 }
7f12ad74
GR
1688 }
1689
c49a7bc3
AD
1690 /* determine offset of inner transport header */
1691 l4_offset = l4.hdr - skb->data;
1692
1693 /* remove payload length from inner checksum */
24d41e5e 1694 paylen = skb->len - l4_offset;
b9c015d4 1695 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
c49a7bc3
AD
1696
1697 /* compute length of segmentation header */
1698 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
7f12ad74 1699
52ea3e80
AD
1700 /* pull values out of skb_shinfo */
1701 gso_size = skb_shinfo(skb)->gso_size;
1702 gso_segs = skb_shinfo(skb)->gso_segs;
1703
1704 /* update GSO size and bytecount with header size */
1705 first->gso_segs = gso_segs;
1706 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1707
7f12ad74
GR
1708 /* find the field values */
1709 cd_cmd = I40E_TX_CTX_DESC_TSO;
1710 cd_tso_len = skb->len - *hdr_len;
52ea3e80 1711 cd_mss = gso_size;
03f9d6a5
AD
1712 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1713 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1714 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
7f12ad74
GR
1715 return 1;
1716}
1717
1718/**
1719 * i40e_tx_enable_csum - Enable Tx checksum offloads
1720 * @skb: send buffer
89232c3b 1721 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1722 * @td_cmd: Tx descriptor command bits to set
1723 * @td_offset: Tx descriptor header offsets to set
529f1f65 1724 * @tx_ring: Tx descriptor ring
7f12ad74
GR
1725 * @cd_tunneling: ptr to context desc bits
1726 **/
529f1f65
AD
1727static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1728 u32 *td_cmd, u32 *td_offset,
1729 struct i40e_ring *tx_ring,
1730 u32 *cd_tunneling)
7f12ad74 1731{
b96b78f2
AD
1732 union {
1733 struct iphdr *v4;
1734 struct ipv6hdr *v6;
1735 unsigned char *hdr;
1736 } ip;
1737 union {
1738 struct tcphdr *tcp;
1739 struct udphdr *udp;
1740 unsigned char *hdr;
1741 } l4;
a3fd9d88 1742 unsigned char *exthdr;
d1bd743b 1743 u32 offset, cmd = 0;
a3fd9d88 1744 __be16 frag_off;
b96b78f2
AD
1745 u8 l4_proto = 0;
1746
529f1f65
AD
1747 if (skb->ip_summed != CHECKSUM_PARTIAL)
1748 return 0;
1749
b96b78f2
AD
1750 ip.hdr = skb_network_header(skb);
1751 l4.hdr = skb_transport_header(skb);
7f12ad74 1752
475b4205
AD
1753 /* compute outer L2 header size */
1754 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1755
7f12ad74 1756 if (skb->encapsulation) {
d1bd743b 1757 u32 tunnel = 0;
a0064728
AD
1758 /* define outer network header type */
1759 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
1760 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1761 I40E_TX_CTX_EXT_IP_IPV4 :
1762 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1763
a0064728
AD
1764 l4_proto = ip.v4->protocol;
1765 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1766 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
1767
1768 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 1769 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
1770 if (l4.hdr != exthdr)
1771 ipv6_skip_exthdr(skb, exthdr - skb->data,
1772 &l4_proto, &frag_off);
a0064728
AD
1773 }
1774
1775 /* define outer transport */
1776 switch (l4_proto) {
45991204 1777 case IPPROTO_UDP:
475b4205 1778 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1779 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204 1780 break;
a0064728 1781 case IPPROTO_GRE:
475b4205 1782 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728
AD
1783 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1784 break;
577389a5
AD
1785 case IPPROTO_IPIP:
1786 case IPPROTO_IPV6:
1787 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1788 l4.hdr = skb_inner_network_header(skb);
1789 break;
45991204 1790 default:
529f1f65
AD
1791 if (*tx_flags & I40E_TX_FLAGS_TSO)
1792 return -1;
1793
1794 skb_checksum_help(skb);
1795 return 0;
45991204 1796 }
b96b78f2 1797
577389a5
AD
1798 /* compute outer L3 header size */
1799 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1800 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1801
1802 /* switch IP header pointer from outer to inner header */
1803 ip.hdr = skb_inner_network_header(skb);
1804
475b4205
AD
1805 /* compute tunnel header size */
1806 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1807 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1808
5453205c
AD
1809 /* indicate if we need to offload outer UDP header */
1810 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 1811 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
1812 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1813 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1814
475b4205
AD
1815 /* record tunnel offload values */
1816 *cd_tunneling |= tunnel;
1817
b96b78f2 1818 /* switch L4 header pointer from outer to inner */
b96b78f2 1819 l4.hdr = skb_inner_transport_header(skb);
a0064728 1820 l4_proto = 0;
7f12ad74 1821
a0064728
AD
1822 /* reset type as we transition from outer to inner headers */
1823 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1824 if (ip.v4->version == 4)
1825 *tx_flags |= I40E_TX_FLAGS_IPV4;
1826 if (ip.v6->version == 6)
89232c3b 1827 *tx_flags |= I40E_TX_FLAGS_IPV6;
7f12ad74
GR
1828 }
1829
1830 /* Enable IP checksum offloads */
89232c3b 1831 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 1832 l4_proto = ip.v4->protocol;
7f12ad74
GR
1833 /* the stack computes the IP header already, the only time we
1834 * need the hardware to recompute it is in the case of TSO.
1835 */
475b4205
AD
1836 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1837 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1838 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 1839 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1840 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
1841
1842 exthdr = ip.hdr + sizeof(*ip.v6);
1843 l4_proto = ip.v6->nexthdr;
1844 if (l4.hdr != exthdr)
1845 ipv6_skip_exthdr(skb, exthdr - skb->data,
1846 &l4_proto, &frag_off);
7f12ad74 1847 }
b96b78f2 1848
475b4205
AD
1849 /* compute inner L3 header size */
1850 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
7f12ad74
GR
1851
1852 /* Enable L4 checksum offloads */
b96b78f2 1853 switch (l4_proto) {
7f12ad74
GR
1854 case IPPROTO_TCP:
1855 /* enable checksum offloads */
475b4205
AD
1856 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1857 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1858 break;
1859 case IPPROTO_SCTP:
1860 /* enable SCTP checksum offload */
475b4205
AD
1861 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1862 offset |= (sizeof(struct sctphdr) >> 2) <<
1863 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1864 break;
1865 case IPPROTO_UDP:
1866 /* enable UDP checksum offload */
475b4205
AD
1867 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1868 offset |= (sizeof(struct udphdr) >> 2) <<
1869 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1870 break;
1871 default:
529f1f65
AD
1872 if (*tx_flags & I40E_TX_FLAGS_TSO)
1873 return -1;
1874 skb_checksum_help(skb);
1875 return 0;
7f12ad74 1876 }
475b4205
AD
1877
1878 *td_cmd |= cmd;
1879 *td_offset |= offset;
529f1f65
AD
1880
1881 return 1;
7f12ad74
GR
1882}
1883
1884/**
1885 * i40e_create_tx_ctx Build the Tx context descriptor
1886 * @tx_ring: ring to create the descriptor on
1887 * @cd_type_cmd_tso_mss: Quad Word 1
1888 * @cd_tunneling: Quad Word 0 - bits 0-31
1889 * @cd_l2tag2: Quad Word 0 - bits 32-63
1890 **/
1891static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1892 const u64 cd_type_cmd_tso_mss,
1893 const u32 cd_tunneling, const u32 cd_l2tag2)
1894{
1895 struct i40e_tx_context_desc *context_desc;
1896 int i = tx_ring->next_to_use;
1897
ff40dd5d
JB
1898 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1899 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1900 return;
1901
1902 /* grab the next descriptor */
1903 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1904
1905 i++;
1906 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1907
1908 /* cpu_to_le32 and assign to struct fields */
1909 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1910 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1911 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1912 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1913}
1914
4eeb1fff 1915/**
3f3f7cb8 1916 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 1917 * @skb: send buffer
71da6197 1918 *
3f3f7cb8
AD
1919 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1920 * and so we need to figure out the cases where we need to linearize the skb.
1921 *
1922 * For TSO we need to count the TSO header and segment payload separately.
1923 * As such we need to check cases where we have 7 fragments or more as we
1924 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1925 * the segment payload in the first descriptor, and another 7 for the
1926 * fragments.
71da6197 1927 **/
2d37490b 1928bool __i40evf_chk_linearize(struct sk_buff *skb)
71da6197 1929{
2d37490b 1930 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 1931 int nr_frags, sum;
71da6197 1932
3f3f7cb8 1933 /* no need to check if number of frags is less than 7 */
2d37490b 1934 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 1935 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 1936 return false;
71da6197 1937
2d37490b 1938 /* We need to walk through the list and validate that each group
841493a3 1939 * of 6 fragments totals at least gso_size.
2d37490b 1940 */
3f3f7cb8 1941 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
1942 frag = &skb_shinfo(skb)->frags[0];
1943
1944 /* Initialize size to the negative value of gso_size minus 1. We
1945 * use this as the worst case scenerio in which the frag ahead
1946 * of us only provides one byte which is why we are limited to 6
1947 * descriptors for a single transmit as the header and previous
1948 * fragment are already consuming 2 descriptors.
1949 */
3f3f7cb8 1950 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 1951
3f3f7cb8
AD
1952 /* Add size of frags 0 through 4 to create our initial sum */
1953 sum += skb_frag_size(frag++);
1954 sum += skb_frag_size(frag++);
1955 sum += skb_frag_size(frag++);
1956 sum += skb_frag_size(frag++);
1957 sum += skb_frag_size(frag++);
2d37490b
AD
1958
1959 /* Walk through fragments adding latest fragment, testing it, and
1960 * then removing stale fragments from the sum.
1961 */
1962 stale = &skb_shinfo(skb)->frags[0];
1963 for (;;) {
3f3f7cb8 1964 sum += skb_frag_size(frag++);
2d37490b
AD
1965
1966 /* if sum is negative we failed to make sufficient progress */
1967 if (sum < 0)
1968 return true;
1969
841493a3 1970 if (!nr_frags--)
2d37490b
AD
1971 break;
1972
3f3f7cb8 1973 sum -= skb_frag_size(stale++);
71da6197
AS
1974 }
1975
2d37490b 1976 return false;
71da6197
AS
1977}
1978
8f6a2b05
JB
1979/**
1980 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1981 * @tx_ring: the ring to be checked
1982 * @size: the size buffer we want to assure is available
1983 *
1984 * Returns -EBUSY if a stop is needed, else 0
1985 **/
4ec441df 1986int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1987{
1988 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1989 /* Memory barrier before checking head and tail */
1990 smp_mb();
1991
1992 /* Check again in a case another CPU has just made room available. */
1993 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1994 return -EBUSY;
1995
1996 /* A reprieve! - use start_queue because it doesn't call schedule */
1997 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1998 ++tx_ring->tx_stats.restart_queue;
1999 return 0;
2000}
2001
7f12ad74 2002/**
3e587cf3 2003 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
2004 * @tx_ring: ring to send buffer on
2005 * @skb: send buffer
2006 * @first: first buffer info buffer to use
2007 * @tx_flags: collected send information
2008 * @hdr_len: size of the packet header
2009 * @td_cmd: the command field in the descriptor
2010 * @td_offset: offset for checksum or crc
2011 **/
3e587cf3
JB
2012static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2013 struct i40e_tx_buffer *first, u32 tx_flags,
2014 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
2015{
2016 unsigned int data_len = skb->data_len;
2017 unsigned int size = skb_headlen(skb);
2018 struct skb_frag_struct *frag;
2019 struct i40e_tx_buffer *tx_bi;
2020 struct i40e_tx_desc *tx_desc;
2021 u16 i = tx_ring->next_to_use;
2022 u32 td_tag = 0;
2023 dma_addr_t dma;
7f12ad74
GR
2024
2025 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2026 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2027 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2028 I40E_TX_FLAGS_VLAN_SHIFT;
2029 }
2030
7f12ad74
GR
2031 first->tx_flags = tx_flags;
2032
2033 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2034
2035 tx_desc = I40E_TX_DESC(tx_ring, i);
2036 tx_bi = first;
2037
2038 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
2039 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2040
7f12ad74
GR
2041 if (dma_mapping_error(tx_ring->dev, dma))
2042 goto dma_error;
2043
2044 /* record length, and DMA address */
2045 dma_unmap_len_set(tx_bi, len, size);
2046 dma_unmap_addr_set(tx_bi, dma, dma);
2047
5c4654da
AD
2048 /* align size to end of page */
2049 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
7f12ad74
GR
2050 tx_desc->buffer_addr = cpu_to_le64(dma);
2051
2052 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2053 tx_desc->cmd_type_offset_bsz =
2054 build_ctob(td_cmd, td_offset,
5c4654da 2055 max_data, td_tag);
7f12ad74
GR
2056
2057 tx_desc++;
2058 i++;
6a7fded7 2059
7f12ad74
GR
2060 if (i == tx_ring->count) {
2061 tx_desc = I40E_TX_DESC(tx_ring, 0);
2062 i = 0;
2063 }
2064
5c4654da
AD
2065 dma += max_data;
2066 size -= max_data;
7f12ad74 2067
5c4654da 2068 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
7f12ad74
GR
2069 tx_desc->buffer_addr = cpu_to_le64(dma);
2070 }
2071
2072 if (likely(!data_len))
2073 break;
2074
2075 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2076 size, td_tag);
2077
2078 tx_desc++;
2079 i++;
6a7fded7 2080
7f12ad74
GR
2081 if (i == tx_ring->count) {
2082 tx_desc = I40E_TX_DESC(tx_ring, 0);
2083 i = 0;
2084 }
2085
2086 size = skb_frag_size(frag);
2087 data_len -= size;
2088
2089 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2090 DMA_TO_DEVICE);
2091
2092 tx_bi = &tx_ring->tx_bi[i];
2093 }
2094
1dc8b538 2095 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
7f12ad74
GR
2096
2097 i++;
2098 if (i == tx_ring->count)
2099 i = 0;
2100
2101 tx_ring->next_to_use = i;
2102
4ec441df 2103 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7 2104
b1cb07db
PB
2105 /* write last descriptor with RS and EOP bits */
2106 td_cmd |= I40E_TXD_CMD;
6a7fded7 2107 tx_desc->cmd_type_offset_bsz =
1dc8b538
AD
2108 build_ctob(td_cmd, td_offset, size, td_tag);
2109
2110 /* Force memory writes to complete before letting h/w know there
2111 * are new descriptors to fetch.
2112 *
2113 * We also use this memory barrier to make certain all of the
2114 * status bits have been updated before next_to_watch is written.
2115 */
2116 wmb();
2117
2118 /* set next_to_watch value indicating a packet is present */
2119 first->next_to_watch = tx_desc;
6a7fded7 2120
7f12ad74 2121 /* notify HW of packet */
b1cb07db 2122 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6a7fded7 2123 writel(i, tx_ring->tail);
1dc8b538
AD
2124
2125 /* we need this if more than one processor can write to our tail
2126 * at a time, it synchronizes IO on IA64/Altix systems
2127 */
2128 mmiowb();
6a7fded7 2129 }
1dc8b538 2130
7f12ad74
GR
2131 return;
2132
2133dma_error:
2134 dev_info(tx_ring->dev, "TX DMA map failed\n");
2135
2136 /* clear dma mappings for failed tx_bi map */
2137 for (;;) {
2138 tx_bi = &tx_ring->tx_bi[i];
2139 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2140 if (tx_bi == first)
2141 break;
2142 if (i == 0)
2143 i = tx_ring->count;
2144 i--;
2145 }
2146
2147 tx_ring->next_to_use = i;
2148}
2149
7f12ad74
GR
2150/**
2151 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2152 * @skb: send buffer
2153 * @tx_ring: ring to send buffer on
2154 *
2155 * Returns NETDEV_TX_OK if sent, else an error code
2156 **/
2157static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2158 struct i40e_ring *tx_ring)
2159{
2160 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2161 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2162 struct i40e_tx_buffer *first;
2163 u32 td_offset = 0;
2164 u32 tx_flags = 0;
2165 __be16 protocol;
2166 u32 td_cmd = 0;
2167 u8 hdr_len = 0;
4ec441df 2168 int tso, count;
6995b36c 2169
b74118f0
JB
2170 /* prefetch the data, we'll need it later */
2171 prefetch(skb->data);
2172
4ec441df 2173 count = i40e_xmit_descriptor_count(skb);
2d37490b 2174 if (i40e_chk_linearize(skb, count)) {
52ea3e80
AD
2175 if (__skb_linearize(skb)) {
2176 dev_kfree_skb_any(skb);
2177 return NETDEV_TX_OK;
2178 }
5c4654da 2179 count = i40e_txd_use_count(skb->len);
2d37490b
AD
2180 tx_ring->tx_stats.tx_linearize++;
2181 }
4ec441df
AD
2182
2183 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2184 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2185 * + 4 desc gap to avoid the cache line where head is,
2186 * + 1 desc for context descriptor,
2187 * otherwise try next time
2188 */
2189 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2190 tx_ring->tx_stats.tx_busy++;
7f12ad74 2191 return NETDEV_TX_BUSY;
4ec441df 2192 }
7f12ad74 2193
52ea3e80
AD
2194 /* record the location of the first descriptor for this packet */
2195 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2196 first->skb = skb;
2197 first->bytecount = skb->len;
2198 first->gso_segs = 1;
2199
7f12ad74 2200 /* prepare the xmit flags */
3e587cf3 2201 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2202 goto out_drop;
2203
2204 /* obtain protocol of skb */
a12c4158 2205 protocol = vlan_get_protocol(skb);
7f12ad74 2206
7f12ad74
GR
2207 /* setup IPv4/IPv6 offloads */
2208 if (protocol == htons(ETH_P_IP))
2209 tx_flags |= I40E_TX_FLAGS_IPV4;
2210 else if (protocol == htons(ETH_P_IPV6))
2211 tx_flags |= I40E_TX_FLAGS_IPV6;
2212
52ea3e80 2213 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2214
2215 if (tso < 0)
2216 goto out_drop;
2217 else if (tso)
2218 tx_flags |= I40E_TX_FLAGS_TSO;
2219
7f12ad74 2220 /* Always offload the checksum, since it's in the data descriptor */
529f1f65
AD
2221 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2222 tx_ring, &cd_tunneling);
2223 if (tso < 0)
2224 goto out_drop;
7f12ad74 2225
3bc67973
AD
2226 skb_tx_timestamp(skb);
2227
2228 /* always enable CRC insertion offload */
2229 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2230
7f12ad74
GR
2231 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2232 cd_tunneling, cd_l2tag2);
2233
3e587cf3
JB
2234 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2235 td_cmd, td_offset);
7f12ad74 2236
7f12ad74
GR
2237 return NETDEV_TX_OK;
2238
2239out_drop:
52ea3e80
AD
2240 dev_kfree_skb_any(first->skb);
2241 first->skb = NULL;
7f12ad74
GR
2242 return NETDEV_TX_OK;
2243}
2244
2245/**
2246 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2247 * @skb: send buffer
2248 * @netdev: network interface device structure
2249 *
2250 * Returns NETDEV_TX_OK if sent, else an error code
2251 **/
2252netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2253{
2254 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2255 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2256
2257 /* hardware can't handle really short frames, hardware padding works
2258 * beyond this point
2259 */
2260 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2261 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2262 return NETDEV_TX_OK;
2263 skb->len = I40E_MIN_TX_LEN;
2264 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2265 }
2266
2267 return i40e_xmit_frame_ring(skb, tx_ring);
2268}