Merge drm/drm-next into drm-intel-next-queued
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40e / i40e_xsk.c
CommitLineData
0a714186
BT
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2018 Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <net/xdp_sock.h>
6#include <net/xdp.h>
7
8#include "i40e.h"
9#include "i40e_txrx_common.h"
10#include "i40e_xsk.h"
11
12/**
13 * i40e_alloc_xsk_umems - Allocate an array to store per ring UMEMs
14 * @vsi: Current VSI
15 *
16 * Returns 0 on success, <0 on failure
17 **/
18static int i40e_alloc_xsk_umems(struct i40e_vsi *vsi)
19{
20 if (vsi->xsk_umems)
21 return 0;
22
23 vsi->num_xsk_umems_used = 0;
24 vsi->num_xsk_umems = vsi->alloc_queue_pairs;
25 vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
26 GFP_KERNEL);
27 if (!vsi->xsk_umems) {
28 vsi->num_xsk_umems = 0;
29 return -ENOMEM;
30 }
31
32 return 0;
33}
34
35/**
529eb362 36 * i40e_add_xsk_umem - Store a UMEM for a certain ring/qid
0a714186
BT
37 * @vsi: Current VSI
38 * @umem: UMEM to store
39 * @qid: Ring/qid to associate with the UMEM
40 *
41 * Returns 0 on success, <0 on failure
42 **/
43static int i40e_add_xsk_umem(struct i40e_vsi *vsi, struct xdp_umem *umem,
44 u16 qid)
45{
46 int err;
47
48 err = i40e_alloc_xsk_umems(vsi);
49 if (err)
50 return err;
51
52 vsi->xsk_umems[qid] = umem;
53 vsi->num_xsk_umems_used++;
54
55 return 0;
56}
57
58/**
529eb362 59 * i40e_remove_xsk_umem - Remove a UMEM for a certain ring/qid
0a714186
BT
60 * @vsi: Current VSI
61 * @qid: Ring/qid associated with the UMEM
62 **/
63static void i40e_remove_xsk_umem(struct i40e_vsi *vsi, u16 qid)
64{
65 vsi->xsk_umems[qid] = NULL;
66 vsi->num_xsk_umems_used--;
67
68 if (vsi->num_xsk_umems == 0) {
69 kfree(vsi->xsk_umems);
70 vsi->xsk_umems = NULL;
71 vsi->num_xsk_umems = 0;
72 }
73}
74
75/**
76 * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
77 * @vsi: Current VSI
78 * @umem: UMEM to DMA map
79 *
80 * Returns 0 on success, <0 on failure
81 **/
82static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
83{
84 struct i40e_pf *pf = vsi->back;
85 struct device *dev;
86 unsigned int i, j;
87 dma_addr_t dma;
88
89 dev = &pf->pdev->dev;
90 for (i = 0; i < umem->npgs; i++) {
91 dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
92 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
93 if (dma_mapping_error(dev, dma))
94 goto out_unmap;
95
96 umem->pages[i].dma = dma;
97 }
98
99 return 0;
100
101out_unmap:
102 for (j = 0; j < i; j++) {
103 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
104 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
105 umem->pages[i].dma = 0;
106 }
107
108 return -1;
109}
110
111/**
112 * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
113 * @vsi: Current VSI
114 * @umem: UMEM to DMA map
115 **/
116static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
117{
118 struct i40e_pf *pf = vsi->back;
119 struct device *dev;
120 unsigned int i;
121
122 dev = &pf->pdev->dev;
123
124 for (i = 0; i < umem->npgs; i++) {
125 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
126 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
127
128 umem->pages[i].dma = 0;
129 }
130}
131
132/**
529eb362 133 * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
0a714186
BT
134 * @vsi: Current VSI
135 * @umem: UMEM
136 * @qid: Rx ring to associate UMEM to
137 *
138 * Returns 0 on success, <0 on failure
139 **/
140static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
141 u16 qid)
142{
411dc16f 143 struct xdp_umem_fq_reuse *reuseq;
0a714186
BT
144 bool if_running;
145 int err;
146
147 if (vsi->type != I40E_VSI_MAIN)
148 return -EINVAL;
149
150 if (qid >= vsi->num_queue_pairs)
151 return -EINVAL;
152
153 if (vsi->xsk_umems) {
154 if (qid >= vsi->num_xsk_umems)
155 return -EINVAL;
156 if (vsi->xsk_umems[qid])
157 return -EBUSY;
158 }
159
411dc16f
BT
160 reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
161 if (!reuseq)
162 return -ENOMEM;
163
164 xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
165
0a714186
BT
166 err = i40e_xsk_umem_dma_map(vsi, umem);
167 if (err)
168 return err;
169
170 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
171
172 if (if_running) {
173 err = i40e_queue_pair_disable(vsi, qid);
174 if (err)
175 return err;
176 }
177
178 err = i40e_add_xsk_umem(vsi, umem, qid);
179 if (err)
180 return err;
181
182 if (if_running) {
183 err = i40e_queue_pair_enable(vsi, qid);
184 if (err)
185 return err;
14ffeb52
MK
186
187 /* Kick start the NAPI context so that receiving will start */
188 err = i40e_xsk_async_xmit(vsi->netdev, qid);
189 if (err)
190 return err;
0a714186
BT
191 }
192
193 return 0;
194}
195
196/**
529eb362 197 * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
0a714186
BT
198 * @vsi: Current VSI
199 * @qid: Rx ring to associate UMEM to
200 *
201 * Returns 0 on success, <0 on failure
202 **/
203static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
204{
205 bool if_running;
206 int err;
207
208 if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
209 !vsi->xsk_umems[qid])
210 return -EINVAL;
211
212 if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
213
214 if (if_running) {
215 err = i40e_queue_pair_disable(vsi, qid);
216 if (err)
217 return err;
218 }
219
220 i40e_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
221 i40e_remove_xsk_umem(vsi, qid);
222
223 if (if_running) {
224 err = i40e_queue_pair_enable(vsi, qid);
225 if (err)
226 return err;
227 }
228
229 return 0;
230}
231
232/**
233 * i40e_xsk_umem_query - Queries a certain ring/qid for its UMEM
234 * @vsi: Current VSI
235 * @umem: UMEM associated to the ring, if any
236 * @qid: Rx ring to associate UMEM to
237 *
238 * This function will store, if any, the UMEM associated to certain ring.
239 *
240 * Returns 0 on success, <0 on failure
241 **/
242int i40e_xsk_umem_query(struct i40e_vsi *vsi, struct xdp_umem **umem,
243 u16 qid)
244{
245 if (vsi->type != I40E_VSI_MAIN)
246 return -EINVAL;
247
248 if (qid >= vsi->num_queue_pairs)
249 return -EINVAL;
250
251 if (vsi->xsk_umems) {
252 if (qid >= vsi->num_xsk_umems)
253 return -EINVAL;
254 *umem = vsi->xsk_umems[qid];
255 return 0;
256 }
257
258 *umem = NULL;
259 return 0;
260}
261
262/**
529eb362 263 * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
0a714186
BT
264 * @vsi: Current VSI
265 * @umem: UMEM to enable/associate to a ring, or NULL to disable
266 * @qid: Rx ring to (dis)associate UMEM (from)to
267 *
529eb362 268 * This function enables or disables a UMEM to a certain ring.
0a714186
BT
269 *
270 * Returns 0 on success, <0 on failure
271 **/
272int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
273 u16 qid)
274{
275 return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
276 i40e_xsk_umem_disable(vsi, qid);
277}
278
279/**
280 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
281 * @rx_ring: Rx ring
282 * @xdp: xdp_buff used as input to the XDP program
283 *
529eb362 284 * This function enables or disables a UMEM to a certain ring.
0a714186
BT
285 *
286 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
287 **/
288static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
289{
290 int err, result = I40E_XDP_PASS;
291 struct i40e_ring *xdp_ring;
292 struct bpf_prog *xdp_prog;
293 u32 act;
294
295 rcu_read_lock();
296 /* NB! xdp_prog will always be !NULL, due to the fact that
297 * this path is enabled by setting an XDP program.
298 */
299 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
300 act = bpf_prog_run_xdp(xdp_prog, xdp);
301 xdp->handle += xdp->data - xdp->data_hard_start;
302 switch (act) {
303 case XDP_PASS:
304 break;
305 case XDP_TX:
306 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
307 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
308 break;
309 case XDP_REDIRECT:
310 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
311 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
312 break;
313 default:
314 bpf_warn_invalid_xdp_action(act);
315 case XDP_ABORTED:
316 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
317 /* fallthrough -- handle aborts by dropping packet */
318 case XDP_DROP:
319 result = I40E_XDP_CONSUMED;
320 break;
321 }
322 rcu_read_unlock();
323 return result;
324}
325
326/**
327 * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
328 * @rx_ring: Rx ring
329 * @bi: Rx buffer to populate
330 *
331 * This function allocates an Rx buffer. The buffer can come from fill
332 * queue, or via the recycle queue (next_to_alloc).
333 *
334 * Returns true for a successful allocation, false otherwise
335 **/
336static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
337 struct i40e_rx_buffer *bi)
338{
339 struct xdp_umem *umem = rx_ring->xsk_umem;
340 void *addr = bi->addr;
341 u64 handle, hr;
342
343 if (addr) {
344 rx_ring->rx_stats.page_reuse_count++;
345 return true;
346 }
347
348 if (!xsk_umem_peek_addr(umem, &handle)) {
349 rx_ring->rx_stats.alloc_page_failed++;
350 return false;
351 }
352
353 hr = umem->headroom + XDP_PACKET_HEADROOM;
354
355 bi->dma = xdp_umem_get_dma(umem, handle);
356 bi->dma += hr;
357
358 bi->addr = xdp_umem_get_data(umem, handle);
359 bi->addr += hr;
360
361 bi->handle = handle + umem->headroom;
362
363 xsk_umem_discard_addr(umem);
364 return true;
365}
366
367/**
411dc16f 368 * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
0a714186 369 * @rx_ring: Rx ring
411dc16f 370 * @bi: Rx buffer to populate
0a714186 371 *
411dc16f
BT
372 * This function allocates an Rx buffer. The buffer can come from fill
373 * queue, or via the reuse queue.
0a714186
BT
374 *
375 * Returns true for a successful allocation, false otherwise
376 **/
411dc16f
BT
377static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
378 struct i40e_rx_buffer *bi)
379{
380 struct xdp_umem *umem = rx_ring->xsk_umem;
381 u64 handle, hr;
382
383 if (!xsk_umem_peek_addr_rq(umem, &handle)) {
384 rx_ring->rx_stats.alloc_page_failed++;
385 return false;
386 }
387
388 handle &= rx_ring->xsk_umem->chunk_mask;
389
390 hr = umem->headroom + XDP_PACKET_HEADROOM;
391
392 bi->dma = xdp_umem_get_dma(umem, handle);
393 bi->dma += hr;
394
395 bi->addr = xdp_umem_get_data(umem, handle);
396 bi->addr += hr;
397
398 bi->handle = handle + umem->headroom;
399
400 xsk_umem_discard_addr_rq(umem);
401 return true;
402}
403
404static __always_inline bool
405__i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
406 bool alloc(struct i40e_ring *rx_ring,
407 struct i40e_rx_buffer *bi))
0a714186
BT
408{
409 u16 ntu = rx_ring->next_to_use;
410 union i40e_rx_desc *rx_desc;
411 struct i40e_rx_buffer *bi;
412 bool ok = true;
413
414 rx_desc = I40E_RX_DESC(rx_ring, ntu);
415 bi = &rx_ring->rx_bi[ntu];
416 do {
411dc16f 417 if (!alloc(rx_ring, bi)) {
0a714186
BT
418 ok = false;
419 goto no_buffers;
420 }
421
422 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
423 rx_ring->rx_buf_len,
424 DMA_BIDIRECTIONAL);
425
426 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
427
428 rx_desc++;
429 bi++;
430 ntu++;
431
432 if (unlikely(ntu == rx_ring->count)) {
433 rx_desc = I40E_RX_DESC(rx_ring, 0);
434 bi = rx_ring->rx_bi;
435 ntu = 0;
436 }
437
438 rx_desc->wb.qword1.status_error_len = 0;
439 count--;
440 } while (count);
441
442no_buffers:
443 if (rx_ring->next_to_use != ntu)
444 i40e_release_rx_desc(rx_ring, ntu);
445
446 return ok;
447}
448
411dc16f
BT
449/**
450 * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
451 * @rx_ring: Rx ring
452 * @count: The number of buffers to allocate
453 *
454 * This function allocates a number of Rx buffers from the reuse queue
455 * or fill ring and places them on the Rx ring.
456 *
457 * Returns true for a successful allocation, false otherwise
458 **/
459bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
460{
461 return __i40e_alloc_rx_buffers_zc(rx_ring, count,
462 i40e_alloc_buffer_slow_zc);
463}
464
465/**
466 * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
467 * @rx_ring: Rx ring
468 * @count: The number of buffers to allocate
469 *
470 * This function allocates a number of Rx buffers from the fill ring
471 * or the internal recycle mechanism and places them on the Rx ring.
472 *
473 * Returns true for a successful allocation, false otherwise
474 **/
475static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
476{
477 return __i40e_alloc_rx_buffers_zc(rx_ring, count,
478 i40e_alloc_buffer_zc);
479}
480
0a714186
BT
481/**
482 * i40e_get_rx_buffer_zc - Return the current Rx buffer
483 * @rx_ring: Rx ring
484 * @size: The size of the rx buffer (read from descriptor)
485 *
486 * This function returns the current, received Rx buffer, and also
487 * does DMA synchronization. the Rx ring.
488 *
489 * Returns the received Rx buffer
490 **/
491static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
492 const unsigned int size)
493{
494 struct i40e_rx_buffer *bi;
495
496 bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
497
498 /* we are reusing so sync this buffer for CPU use */
499 dma_sync_single_range_for_cpu(rx_ring->dev,
500 bi->dma, 0,
501 size,
502 DMA_BIDIRECTIONAL);
503
504 return bi;
505}
506
507/**
508 * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
509 * @rx_ring: Rx ring
510 * @old_bi: The Rx buffer to recycle
511 *
512 * This function recycles a finished Rx buffer, and places it on the
513 * recycle queue (next_to_alloc).
514 **/
515static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
516 struct i40e_rx_buffer *old_bi)
517{
518 struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
93ee30f3 519 unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
0a714186
BT
520 u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
521 u16 nta = rx_ring->next_to_alloc;
522
523 /* update, and store next to alloc */
524 nta++;
525 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
526
527 /* transfer page from old buffer to new buffer */
528 new_bi->dma = old_bi->dma & mask;
529 new_bi->dma += hr;
530
531 new_bi->addr = (void *)((unsigned long)old_bi->addr & mask);
532 new_bi->addr += hr;
533
534 new_bi->handle = old_bi->handle & mask;
535 new_bi->handle += rx_ring->xsk_umem->headroom;
536
537 old_bi->addr = NULL;
538}
539
540/**
541 * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
542 * @alloc: Zero-copy allocator
543 * @handle: Buffer handle
544 **/
545void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
546{
547 struct i40e_rx_buffer *bi;
548 struct i40e_ring *rx_ring;
549 u64 hr, mask;
550 u16 nta;
551
552 rx_ring = container_of(alloc, struct i40e_ring, zca);
553 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
93ee30f3 554 mask = rx_ring->xsk_umem->chunk_mask;
0a714186
BT
555
556 nta = rx_ring->next_to_alloc;
557 bi = &rx_ring->rx_bi[nta];
558
559 nta++;
560 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
561
562 handle &= mask;
563
564 bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
565 bi->dma += hr;
566
567 bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
568 bi->addr += hr;
569
570 bi->handle = (u64)handle + rx_ring->xsk_umem->headroom;
571}
572
573/**
574 * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
575 * @rx_ring: Rx ring
576 * @bi: Rx buffer
577 * @xdp: xdp_buff
578 *
579 * This functions allocates a new skb from a zero-copy Rx buffer.
580 *
581 * Returns the skb, or NULL on failure.
582 **/
583static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
584 struct i40e_rx_buffer *bi,
585 struct xdp_buff *xdp)
586{
587 unsigned int metasize = xdp->data - xdp->data_meta;
588 unsigned int datasize = xdp->data_end - xdp->data;
589 struct sk_buff *skb;
590
591 /* allocate a skb to store the frags */
592 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
593 xdp->data_end - xdp->data_hard_start,
594 GFP_ATOMIC | __GFP_NOWARN);
595 if (unlikely(!skb))
596 return NULL;
597
598 skb_reserve(skb, xdp->data - xdp->data_hard_start);
599 memcpy(__skb_put(skb, datasize), xdp->data, datasize);
600 if (metasize)
601 skb_metadata_set(skb, metasize);
602
603 i40e_reuse_rx_buffer_zc(rx_ring, bi);
604 return skb;
605}
606
607/**
608 * i40e_inc_ntc: Advance the next_to_clean index
609 * @rx_ring: Rx ring
610 **/
611static void i40e_inc_ntc(struct i40e_ring *rx_ring)
612{
613 u32 ntc = rx_ring->next_to_clean + 1;
614
615 ntc = (ntc < rx_ring->count) ? ntc : 0;
616 rx_ring->next_to_clean = ntc;
617 prefetch(I40E_RX_DESC(rx_ring, ntc));
618}
619
620/**
621 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
622 * @rx_ring: Rx ring
623 * @budget: NAPI budget
624 *
625 * Returns amount of work completed
626 **/
627int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
628{
629 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
630 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
631 unsigned int xdp_res, xdp_xmit = 0;
632 bool failure = false;
633 struct sk_buff *skb;
634 struct xdp_buff xdp;
635
636 xdp.rxq = &rx_ring->xdp_rxq;
637
638 while (likely(total_rx_packets < (unsigned int)budget)) {
639 struct i40e_rx_buffer *bi;
640 union i40e_rx_desc *rx_desc;
641 unsigned int size;
0a714186
BT
642 u64 qword;
643
644 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
645 failure = failure ||
411dc16f
BT
646 !i40e_alloc_rx_buffers_fast_zc(rx_ring,
647 cleaned_count);
0a714186
BT
648 cleaned_count = 0;
649 }
650
651 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
652 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
653
654 /* This memory barrier is needed to keep us from reading
655 * any other fields out of the rx_desc until we have
656 * verified the descriptor has been written back.
657 */
658 dma_rmb();
659
660 bi = i40e_clean_programming_status(rx_ring, rx_desc,
661 qword);
662 if (unlikely(bi)) {
663 i40e_reuse_rx_buffer_zc(rx_ring, bi);
664 cleaned_count++;
665 continue;
666 }
667
668 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
669 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
670 if (!size)
671 break;
672
673 bi = i40e_get_rx_buffer_zc(rx_ring, size);
674 xdp.data = bi->addr;
675 xdp.data_meta = xdp.data;
676 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
677 xdp.data_end = xdp.data + size;
678 xdp.handle = bi->handle;
679
680 xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
681 if (xdp_res) {
682 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
683 xdp_xmit |= xdp_res;
684 bi->addr = NULL;
685 } else {
686 i40e_reuse_rx_buffer_zc(rx_ring, bi);
687 }
688
689 total_rx_bytes += size;
690 total_rx_packets++;
691
692 cleaned_count++;
693 i40e_inc_ntc(rx_ring);
694 continue;
695 }
696
697 /* XDP_PASS path */
698
699 /* NB! We are not checking for errors using
700 * i40e_test_staterr with
701 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
702 * SBP is *not* set in PRT_SBPVSI (default not set).
703 */
704 skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
705 if (!skb) {
706 rx_ring->rx_stats.alloc_buff_failed++;
707 break;
708 }
709
710 cleaned_count++;
711 i40e_inc_ntc(rx_ring);
712
713 if (eth_skb_pad(skb))
714 continue;
715
716 total_rx_bytes += skb->len;
717 total_rx_packets++;
718
800b8f63 719 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2a508c64 720 napi_gro_receive(&rx_ring->q_vector->napi, skb);
0a714186
BT
721 }
722
723 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
724 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
725 return failure ? budget : (int)total_rx_packets;
726}
727
1328dcdd
MK
728/**
729 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
730 * @xdp_ring: XDP Tx ring
731 * @budget: NAPI budget
732 *
733 * Returns true if the work is finished.
734 **/
735static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
736{
cf484f9f 737 struct i40e_tx_desc *tx_desc = NULL;
1328dcdd 738 struct i40e_tx_buffer *tx_bi;
1328dcdd
MK
739 bool work_done = true;
740 dma_addr_t dma;
741 u32 len;
742
743 while (budget-- > 0) {
744 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
745 xdp_ring->tx_stats.tx_busy++;
746 work_done = false;
747 break;
748 }
749
750 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &dma, &len))
751 break;
752
753 dma_sync_single_for_device(xdp_ring->dev, dma, len,
754 DMA_BIDIRECTIONAL);
755
756 tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
757 tx_bi->bytecount = len;
758
759 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
760 tx_desc->buffer_addr = cpu_to_le64(dma);
761 tx_desc->cmd_type_offset_bsz =
762 build_ctob(I40E_TX_DESC_CMD_ICRC
763 | I40E_TX_DESC_CMD_EOP,
764 0, len, 0);
1328dcdd
MK
765
766 xdp_ring->next_to_use++;
767 if (xdp_ring->next_to_use == xdp_ring->count)
768 xdp_ring->next_to_use = 0;
769 }
770
cf484f9f 771 if (tx_desc) {
1328dcdd
MK
772 /* Request an interrupt for the last frame and bump tail ptr. */
773 tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
774 I40E_TXD_QW1_CMD_SHIFT);
775 i40e_xdp_ring_update_tail(xdp_ring);
776
777 xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
778 }
779
780 return !!budget && work_done;
781}
782
783/**
784 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
785 * @tx_ring: XDP Tx ring
786 * @tx_bi: Tx buffer info to clean
787 **/
788static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
789 struct i40e_tx_buffer *tx_bi)
790{
791 xdp_return_frame(tx_bi->xdpf);
792 dma_unmap_single(tx_ring->dev,
793 dma_unmap_addr(tx_bi, dma),
794 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
795 dma_unmap_len_set(tx_bi, len, 0);
796}
797
798/**
799 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
800 * @tx_ring: XDP Tx ring
801 * @tx_bi: Tx buffer info to clean
802 *
803 * Returns true if cleanup/tranmission is done.
804 **/
805bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
806 struct i40e_ring *tx_ring, int napi_budget)
807{
808 unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
809 u32 i, completed_frames, frames_ready, xsk_frames = 0;
810 struct xdp_umem *umem = tx_ring->xsk_umem;
811 u32 head_idx = i40e_get_head(tx_ring);
812 bool work_done = true, xmit_done;
813 struct i40e_tx_buffer *tx_bi;
814
815 if (head_idx < tx_ring->next_to_clean)
816 head_idx += tx_ring->count;
817 frames_ready = head_idx - tx_ring->next_to_clean;
818
819 if (frames_ready == 0) {
820 goto out_xmit;
821 } else if (frames_ready > budget) {
822 completed_frames = budget;
823 work_done = false;
824 } else {
825 completed_frames = frames_ready;
826 }
827
828 ntc = tx_ring->next_to_clean;
829
830 for (i = 0; i < completed_frames; i++) {
831 tx_bi = &tx_ring->tx_bi[ntc];
832
833 if (tx_bi->xdpf)
834 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
835 else
836 xsk_frames++;
837
838 tx_bi->xdpf = NULL;
839 total_bytes += tx_bi->bytecount;
840
841 if (++ntc >= tx_ring->count)
842 ntc = 0;
843 }
844
845 tx_ring->next_to_clean += completed_frames;
846 if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
847 tx_ring->next_to_clean -= tx_ring->count;
848
849 if (xsk_frames)
850 xsk_umem_complete_tx(umem, xsk_frames);
851
852 i40e_arm_wb(tx_ring, vsi, budget);
853 i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
854
855out_xmit:
856 xmit_done = i40e_xmit_zc(tx_ring, budget);
857
858 return work_done && xmit_done;
859}
860
861/**
862 * i40e_xsk_async_xmit - Implements the ndo_xsk_async_xmit
863 * @dev: the netdevice
864 * @queue_id: queue id to wake up
865 *
866 * Returns <0 for errors, 0 otherwise.
867 **/
868int i40e_xsk_async_xmit(struct net_device *dev, u32 queue_id)
869{
870 struct i40e_netdev_priv *np = netdev_priv(dev);
871 struct i40e_vsi *vsi = np->vsi;
872 struct i40e_ring *ring;
873
874 if (test_bit(__I40E_VSI_DOWN, vsi->state))
875 return -ENETDOWN;
876
877 if (!i40e_enabled_xdp_vsi(vsi))
878 return -ENXIO;
879
880 if (queue_id >= vsi->num_queue_pairs)
881 return -ENXIO;
882
883 if (!vsi->xdp_rings[queue_id]->xsk_umem)
884 return -ENXIO;
885
886 ring = vsi->xdp_rings[queue_id];
887
888 /* The idea here is that if NAPI is running, mark a miss, so
889 * it will run again. If not, trigger an interrupt and
890 * schedule the NAPI from interrupt context. If NAPI would be
891 * scheduled here, the interrupt affinity would not be
892 * honored.
893 */
894 if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
895 i40e_force_wb(vsi, ring->q_vector);
896
897 return 0;
898}
9dbb1370 899
411dc16f
BT
900void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
901{
902 u16 i;
903
904 for (i = 0; i < rx_ring->count; i++) {
905 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
906
907 if (!rx_bi->addr)
908 continue;
909
910 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
911 rx_bi->addr = NULL;
912 }
913}
914
9dbb1370
BT
915/**
916 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
917 * @xdp_ring: XDP Tx ring
918 **/
919void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
920{
921 u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
922 struct xdp_umem *umem = tx_ring->xsk_umem;
923 struct i40e_tx_buffer *tx_bi;
924 u32 xsk_frames = 0;
925
926 while (ntc != ntu) {
927 tx_bi = &tx_ring->tx_bi[ntc];
928
929 if (tx_bi->xdpf)
930 i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
931 else
932 xsk_frames++;
933
934 tx_bi->xdpf = NULL;
935
936 ntc++;
937 if (ntc >= tx_ring->count)
938 ntc = 0;
939 }
940
941 if (xsk_frames)
942 xsk_umem_complete_tx(umem, xsk_frames);
943}
3ab52af5
BT
944
945/**
946 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
947 * @vsi: vsi
948 *
949 * Returns true if any of the Rx rings has an AF_XDP UMEM attached
950 **/
951bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
952{
953 int i;
954
955 if (!vsi->xsk_umems)
956 return false;
957
958 for (i = 0; i < vsi->num_queue_pairs; i++) {
959 if (vsi->xsk_umems[i])
960 return true;
961 }
962
963 return false;
964}