Merge tag 'platform-drivers-x86-v6.9-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.h
CommitLineData
ae06c70b 1/* SPDX-License-Identifier: GPL-2.0 */
51dce24b 2/* Copyright(c) 2013 - 2018 Intel Corporation. */
7daa6bf3 3
36fac581
VD
4#ifndef _I40E_TXRX_H_
5#define _I40E_TXRX_H_
6
87128824 7#include <net/xdp.h>
56df3459 8#include "i40e_type.h"
87128824 9
aee8087f 10/* Interrupt Throttling and Rate Limiting Goodies */
7daa6bf3 11#define I40E_DEFAULT_IRQ_WORK 256
92418fb1
AD
12
13/* The datasheet for the X710 and XL710 indicate that the maximum value for
14 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
15 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
16 * the register value which is divided by 2 lets use the actual values and
17 * avoid an excessive amount of translation.
18 */
19#define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
20#define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */
21#define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */
92418fb1 22#define I40E_ITR_20K 50
92418fb1
AD
23#define I40E_ITR_8K 122
24#define I40E_MAX_ITR 8160 /* maximum value as per datasheet */
25#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
26#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
27#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
28
29#define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
30#define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
31
ac26fc13
JB
32/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
33 * the value of the rate limit is non-zero
34 */
35#define INTRL_ENA BIT(6)
92418fb1 36#define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
ac26fc13 37#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
92418fb1 38
1c0e6a36
AB
39/**
40 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
41 * @intrl: interrupt rate limit to convert
42 *
43 * This function converts a decimal interrupt rate limit to the appropriate
44 * register format expected by the firmware when setting interrupt rate limit.
45 */
46static inline u16 i40e_intrl_usec_to_reg(int intrl)
47{
48 if (intrl >> 2)
49 return ((intrl >> 2) | INTRL_ENA);
50 else
51 return 0;
52}
7daa6bf3
JB
53
54#define I40E_QUEUE_END_OF_LIST 0x7FF
55
0319577f
JB
56/* this enum matches hardware bits and is meant to be used by DYN_CTLN
57 * registers and QINT registers or more generally anywhere in the manual
58 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
59 * register but instead is a special value meaning "don't update" ITR0/1/2.
60 */
addca917 61enum i40e_dyn_idx {
0319577f
JB
62 I40E_IDX_ITR0 = 0,
63 I40E_IDX_ITR1 = 1,
64 I40E_IDX_ITR2 = 2,
65 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
66};
67
68/* these are indexes into ITRN registers */
69#define I40E_RX_ITR I40E_IDX_ITR0
70#define I40E_TX_ITR I40E_IDX_ITR1
ea558de7 71#define I40E_SW_ITR I40E_IDX_ITR2
0319577f 72
12dc4fe3
MW
73/* Supported RSS offloads */
74#define I40E_DEFAULT_RSS_HENA ( \
41a1d04b
JB
75 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
76 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
77 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
78 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
79 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
80 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
82 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
83 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
84 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
85 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
12dc4fe3 86
e25d00b8 87#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
9c70d7ce
JB
88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
90 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
91 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
92 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
93 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
e25d00b8
ASJ
94
95#define i40e_pf_get_default_rss_hena(pf) \
0e8b9fdd 96 (test_bit(I40E_HW_CAP_MULTI_TCP_UDP_RSS_PCTYPE, (pf)->hw.caps) ? \
70756d0a 97 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
e25d00b8 98
1a557afc
JB
99/* Supported Rx Buffer Sizes (a multiple of 128) */
100#define I40E_RXBUFFER_256 256
dab86afd 101#define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
7daa6bf3 102#define I40E_RXBUFFER_2048 2048
98efd694 103#define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
7daa6bf3
JB
104#define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
105
106/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
107 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
108 * this adds up to 512 bytes of extra data meaning the smallest allocation
109 * we could have is 1K.
1a557afc
JB
110 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
111 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
7daa6bf3 112 */
1a557afc 113#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
1e3a5fd5 114#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
f0064bfd 115#define i40e_rx_desc i40e_16byte_rx_desc
1a557afc 116
59605bc0
AD
117#define I40E_RX_DMA_ATTR \
118 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
119
ca9ec088
AD
120/* Attempt to maximize the headroom available for incoming frames. We
121 * use a 2K buffer for receives and need 1536/1534 to store the data for
122 * the frame. This leaves us with 512 bytes of room. From that we need
123 * to deduct the space needed for the shared info and the padding needed
124 * to IP align the frame.
125 *
126 * Note: For cache line sizes 256 or larger this value is going to end
127 * up negative. In these cases we should fall back to the legacy
128 * receive path.
129 */
130#if (PAGE_SIZE < 8192)
131#define I40E_2K_TOO_SMALL_WITH_PADDING \
132((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
133
134static inline int i40e_compute_pad(int rx_buf_len)
135{
136 int page_size, pad_size;
137
138 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
139 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
140
141 return pad_size;
142}
143
144static inline int i40e_skb_pad(void)
145{
146 int rx_buf_len;
147
148 /* If a 2K buffer cannot handle a standard Ethernet frame then
149 * optimize padding for a 3K buffer instead of a 1.5K buffer.
150 *
151 * For a 3K buffer we need to add enough padding to allow for
152 * tailroom due to NET_IP_ALIGN possibly shifting us out of
153 * cache-line alignment.
154 */
155 if (I40E_2K_TOO_SMALL_WITH_PADDING)
156 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
157 else
158 rx_buf_len = I40E_RXBUFFER_1536;
159
160 /* if needed make room for NET_IP_ALIGN */
161 rx_buf_len -= NET_IP_ALIGN;
162
163 return i40e_compute_pad(rx_buf_len);
164}
165
166#define I40E_SKB_PAD i40e_skb_pad()
167#else
168#define I40E_2K_TOO_SMALL_WITH_PADDING false
169#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
170#endif
171
1a557afc
JB
172/**
173 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
174 * @rx_desc: pointer to receive descriptor (in le64 format)
175 * @stat_err_bits: value to mask
176 *
177 * This function does some fast chicanery in order to return the
178 * value of the mask which is really only used for boolean tests.
179 * The status_error_len doesn't need to be shifted because it begins
180 * at offset zero.
181 */
182static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
183 const u64 stat_err_bits)
184{
185 return !!(rx_desc->wb.qword1.status_error_len &
186 cpu_to_le64(stat_err_bits));
187}
7daa6bf3
JB
188
189/* How many Rx Buffers do we bundle into one write to the hardware ? */
95bc2fb4 190#define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */
a132af24 191
7daa6bf3
JB
192#define I40E_RX_NEXT_DESC(r, i, n) \
193 do { \
194 (i)++; \
195 if ((i) == (r)->count) \
196 i = 0; \
197 (n) = I40E_RX_DESC((r), (i)); \
198 } while (0)
199
7daa6bf3 200
71da6197 201#define I40E_MAX_BUFFER_TXD 8
7daa6bf3 202#define I40E_MIN_TX_LEN 17
5c4654da
AD
203
204/* The size limit for a transmit buffer in a descriptor is (16K - 1).
205 * In order to align with the read requests we will align the value to
206 * the nearest 4K which represents our maximum read request size.
207 */
208#define I40E_MAX_READ_REQ_SIZE 4096
209#define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
210#define I40E_MAX_DATA_PER_TXD_ALIGNED \
211 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
212
4293d5f5
MW
213/**
214 * i40e_txd_use_count - estimate the number of descriptors needed for Tx
215 * @size: transmit request size in bytes
216 *
217 * Due to hardware alignment restrictions (4K alignment), we need to
218 * assume that we can have no more than 12K of data per descriptor, even
219 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
220 * Thus, we need to divide by 12K. But division is slow! Instead,
221 * we decompose the operation into shifts and one relatively cheap
222 * multiply operation.
223 *
224 * To divide by 12K, we first divide by 4K, then divide by 3:
225 * To divide by 4K, shift right by 12 bits
226 * To divide by 3, multiply by 85, then divide by 256
227 * (Divide by 256 is done by shifting right by 8 bits)
228 * Finally, we add one to round up. Because 256 isn't an exact multiple of
229 * 3, we'll underestimate near each multiple of 12K. This is actually more
230 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
231 * segment. For our purposes this is accurate out to 1M which is orders of
232 * magnitude greater than our largest possible GSO size.
233 *
234 * This would then be implemented as:
235 * return (((size >> 12) * 85) >> 8) + 1;
236 *
237 * Since multiplication and division are commutative, we can reorder
238 * operations into:
239 * return ((size * 85) >> 20) + 1;
5c4654da
AD
240 */
241static inline unsigned int i40e_txd_use_count(unsigned int size)
242{
4293d5f5 243 return ((size * 85) >> 20) + 1;
5c4654da 244}
7daa6bf3
JB
245
246/* Tx Descriptors needed, worst case */
0a797db3 247#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
7daa6bf3 248
41a1d04b
JB
249#define I40E_TX_FLAGS_HW_VLAN BIT(1)
250#define I40E_TX_FLAGS_SW_VLAN BIT(2)
251#define I40E_TX_FLAGS_TSO BIT(3)
252#define I40E_TX_FLAGS_IPV4 BIT(4)
253#define I40E_TX_FLAGS_IPV6 BIT(5)
41a1d04b
JB
254#define I40E_TX_FLAGS_TSYN BIT(8)
255#define I40E_TX_FLAGS_FD_SB BIT(9)
6a899024 256#define I40E_TX_FLAGS_UDP_TUNNEL BIT(10)
7daa6bf3
JB
257#define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
258#define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
259#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
260#define I40E_TX_FLAGS_VLAN_SHIFT 16
261
262struct i40e_tx_buffer {
7daa6bf3 263 struct i40e_tx_desc *next_to_watch;
49d7d933 264 union {
b411ef11 265 struct xdp_frame *xdpf;
49d7d933
ASJ
266 struct sk_buff *skb;
267 void *raw_buf;
268 };
7daa6bf3 269 unsigned int bytecount;
35a1e2ad 270 unsigned short gso_segs;
6995b36c 271
35a1e2ad
AD
272 DEFINE_DMA_UNMAP_ADDR(dma);
273 DEFINE_DMA_UNMAP_LEN(len);
274 u32 tx_flags;
7daa6bf3
JB
275};
276
277struct i40e_rx_buffer {
7daa6bf3 278 dma_addr_t dma;
be1222b5
BT
279 struct page *page;
280 __u32 page_offset;
281 __u16 pagecnt_bias;
e2843f03 282 __u32 page_count;
be1222b5
BT
283};
284
a114d0a6 285struct i40e_queue_stats {
7daa6bf3
JB
286 u64 packets;
287 u64 bytes;
a114d0a6
AD
288};
289
290struct i40e_tx_queue_stats {
7daa6bf3
JB
291 u64 restart_queue;
292 u64 tx_busy;
7daa6bf3 293 u64 tx_done_old;
2fc3d715 294 u64 tx_linearize;
164c9f54 295 u64 tx_force_wb;
f728fa01 296 u64 tx_stopped;
07d44190 297 int prev_pkt_ctr;
7daa6bf3
JB
298};
299
300struct i40e_rx_queue_stats {
7daa6bf3 301 u64 non_eop_descs;
420136cc
MW
302 u64 alloc_page_failed;
303 u64 alloc_buff_failed;
f16704e5 304 u64 page_reuse_count;
453f8305 305 u64 page_alloc_count;
cb963b98 306 u64 page_waive_count;
b76bc129 307 u64 page_busy_count;
7daa6bf3
JB
308};
309
addca917 310enum i40e_ring_state {
7daa6bf3
JB
311 __I40E_TX_FDIR_INIT_DONE,
312 __I40E_TX_XPS_INIT_DONE,
bd6cd4e6 313 __I40E_RING_STATE_NBITS /* must be last */
7daa6bf3
JB
314};
315
bec60fc4
JB
316/* some useful defines for virtchannel interface, which
317 * is the only remaining user of header split
318 */
bec60fc4 319#define I40E_RX_DTYPE_HEADER_SPLIT 1
bec60fc4
JB
320#define I40E_RX_SPLIT_L2 0x1
321#define I40E_RX_SPLIT_IP 0x2
322#define I40E_RX_SPLIT_TCP_UDP 0x4
323#define I40E_RX_SPLIT_SCTP 0x8
7daa6bf3
JB
324
325/* struct that defines a descriptor ring, associated with a VSI */
326struct i40e_ring {
cd0b6fa6 327 struct i40e_ring *next; /* pointer to next ring in q_vector */
7daa6bf3
JB
328 void *desc; /* Descriptor ring memory */
329 struct device *dev; /* Used for DMA mapping */
330 struct net_device *netdev; /* netdev ring maps to */
0c8493d9 331 struct bpf_prog *xdp_prog;
7daa6bf3
JB
332 union {
333 struct i40e_tx_buffer *tx_bi;
334 struct i40e_rx_buffer *rx_bi;
3b4f0b66 335 struct xdp_buff **rx_bi_zc;
7daa6bf3 336 };
bd6cd4e6 337 DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
7daa6bf3
JB
338 u16 queue_index; /* Queue number of ring */
339 u8 dcb_tc; /* Traffic class of ring */
340 u8 __iomem *tail;
341
01aa49e3
TS
342 /* Storing xdp_buff on ring helps in saving the state of partially built
343 * packet when i40e_clean_rx_ring_irq() must return before it sees EOP
344 * and to resume packet building for this ring in the next call to
345 * i40e_clean_rx_ring_irq().
346 */
347 struct xdp_buff xdp;
348
e9031f2d
TS
349 /* Next descriptor to be processed; next_to_clean is updated only on
350 * processing EOP descriptor
351 */
352 u16 next_to_process;
a75e8005
KL
353 /* high bit set means dynamic, use accessor routines to read/write.
354 * hardware only supports 2us resolution for the ITR registers.
355 * these values always store the USER setting, and must be converted
356 * before programming to a register.
357 */
40588ca6 358 u16 itr_setting;
a75e8005 359
7daa6bf3
JB
360 u16 count; /* Number of descriptors */
361 u16 reg_idx; /* HW register index of the ring */
7daa6bf3 362 u16 rx_buf_len;
7daa6bf3
JB
363
364 /* used in interrupt processing */
365 u16 next_to_use;
366 u16 next_to_clean;
5574ff7b 367 u16 xdp_tx_active;
7daa6bf3
JB
368
369 u8 atr_sample_rate;
370 u8 atr_count;
371
372 bool ring_active; /* is ring online or not */
d91649f5 373 bool arm_wb; /* do something to arm write back */
58044743 374 u8 packet_stride;
7daa6bf3 375
8e0764b4 376 u16 flags;
ca9ec088
AD
377#define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
378#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
74608d17 379#define I40E_TXR_FLAGS_XDP BIT(2)
527274c7 380
7daa6bf3 381 /* stats structs */
a114d0a6 382 struct i40e_queue_stats stats;
980e9b11 383 struct u64_stats_sync syncp;
7daa6bf3
JB
384 union {
385 struct i40e_tx_queue_stats tx_stats;
386 struct i40e_rx_queue_stats rx_stats;
387 };
388
389 unsigned int size; /* length of descriptor ring in bytes */
390 dma_addr_t dma; /* physical address of ring */
391
392 struct i40e_vsi *vsi; /* Backreference to associated VSI */
393 struct i40e_q_vector *q_vector; /* Backreference to associated vector */
9f65e15b
AD
394
395 struct rcu_head rcu; /* to avoid race on free */
1a557afc 396 u16 next_to_alloc;
8f88b303
AN
397
398 struct i40e_channel *ch;
f7bb0d71 399 u16 rx_offset;
87128824 400 struct xdp_rxq_info xdp_rxq;
1742b3d5 401 struct xsk_buff_pool *xsk_pool;
7daa6bf3
JB
402} ____cacheline_internodealigned_in_smp;
403
ca9ec088
AD
404static inline bool ring_uses_build_skb(struct i40e_ring *ring)
405{
406 return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
407}
408
409static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
410{
411 ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
412}
413
414static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
415{
416 ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
417}
418
74608d17
BT
419static inline bool ring_is_xdp(struct i40e_ring *ring)
420{
421 return !!(ring->flags & I40E_TXR_FLAGS_XDP);
422}
423
424static inline void set_ring_xdp(struct i40e_ring *ring)
425{
426 ring->flags |= I40E_TXR_FLAGS_XDP;
427}
428
a0073a4b
AD
429#define I40E_ITR_ADAPTIVE_MIN_INC 0x0002
430#define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002
431#define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e
432#define I40E_ITR_ADAPTIVE_LATENCY 0x8000
433#define I40E_ITR_ADAPTIVE_BULK 0x0000
7daa6bf3
JB
434
435struct i40e_ring_container {
a0073a4b
AD
436 struct i40e_ring *ring; /* pointer to linked list of ring(s) */
437 unsigned long next_update; /* jiffies value of next update */
7daa6bf3
JB
438 unsigned int total_bytes; /* total bytes processed this int */
439 unsigned int total_packets; /* total packets processed this int */
440 u16 count;
556fdfd6
AD
441 u16 target_itr; /* target ITR setting for ring(s) */
442 u16 current_itr; /* current ITR setting for ring(s) */
7daa6bf3
JB
443};
444
cd0b6fa6
AD
445/* iterator for handling rings in ring container */
446#define i40e_for_each_ring(pos, head) \
447 for (pos = (head).ring; pos != NULL; pos = pos->next)
448
98efd694
AD
449static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
450{
451#if (PAGE_SIZE < 8192)
452 if (ring->rx_buf_len > (PAGE_SIZE / 2))
453 return 1;
454#endif
455 return 0;
456}
457
458#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
459
1a557afc 460bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
7daa6bf3 461netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
89ec1f08
JJ
462u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb,
463 struct net_device *sb_dev);
7daa6bf3
JB
464void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
465void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
466int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
467int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
468void i40e_free_tx_resources(struct i40e_ring *tx_ring);
469void i40e_free_rx_resources(struct i40e_ring *rx_ring);
470int i40e_napi_poll(struct napi_struct *napi, int budget);
b03a8c1f 471void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
04d41051 472u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
07d44190 473void i40e_detect_recover_hung(struct i40e_vsi *vsi);
4ec441df 474int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
2d37490b 475bool __i40e_chk_linearize(struct sk_buff *skb);
42b33468
JDB
476int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
477 u32 flags);
1c9ba9c1
TS
478bool i40e_is_non_eop(struct i40e_ring *rx_ring,
479 union i40e_rx_desc *rx_desc);
1e6d6f8c
KP
480
481/**
482 * i40e_get_head - Retrieve head from head writeback
483 * @tx_ring: tx ring to fetch head of
484 *
485 * Returns value of Tx ring head based on value stored
486 * in head write-back location
487 **/
488static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
489{
490 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
491
492 return le32_to_cpu(*(volatile __le32 *)head);
493}
4ec441df
AD
494
495/**
496 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
497 * @skb: send buffer
4ec441df
AD
498 *
499 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
500 * there is not enough descriptors available in this ring since we need at least
501 * one descriptor.
502 **/
503static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
504{
d7840976 505 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
4ec441df
AD
506 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
507 int count = 0, size = skb_headlen(skb);
508
509 for (;;) {
5c4654da 510 count += i40e_txd_use_count(size);
4ec441df
AD
511
512 if (!nr_frags--)
513 break;
514
515 size = skb_frag_size(frag++);
516 }
517
518 return count;
519}
520
521/**
522 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
523 * @tx_ring: the ring to be checked
524 * @size: the size buffer we want to assure is available
525 *
526 * Returns 0 if stop is not needed
527 **/
528static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
529{
530 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
531 return 0;
532 return __i40e_maybe_stop_tx(tx_ring, size);
533}
2d37490b
AD
534
535/**
536 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
537 * @skb: send buffer
538 * @count: number of buffers used
539 *
540 * Note: Our HW can't scatter-gather more than 8 fragments to build
541 * a packet on the wire and so we need to figure out the cases where we
542 * need to linearize the skb.
543 **/
544static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
545{
3f3f7cb8
AD
546 /* Both TSO and single send will work if count is less than 8 */
547 if (likely(count < I40E_MAX_BUFFER_TXD))
2d37490b
AD
548 return false;
549
3f3f7cb8
AD
550 if (skb_is_gso(skb))
551 return __i40e_chk_linearize(skb);
552
553 /* we can support up to 8 data buffers for a single send */
554 return count != I40E_MAX_BUFFER_TXD;
2d37490b 555}
1f15d667 556
e486bdfd
AD
557/**
558 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
559 * @ring: Tx ring to find the netdev equivalent of
560 **/
561static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
562{
563 return netdev_get_tx_queue(ring->netdev, ring->queue_index);
564}
36fac581 565#endif /* _I40E_TXRX_H_ */