bridge: Allow max MTU when multiple VLANs present
[linux-block.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.h
CommitLineData
7daa6bf3
JB
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
c2e245ab 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7daa6bf3
JB
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
dc641b73
GR
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
7daa6bf3
JB
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
36fac581
VD
27#ifndef _I40E_TXRX_H_
28#define _I40E_TXRX_H_
29
87128824
JDB
30#include <net/xdp.h>
31
aee8087f 32/* Interrupt Throttling and Rate Limiting Goodies */
7daa6bf3 33#define I40E_DEFAULT_IRQ_WORK 256
92418fb1
AD
34
35/* The datasheet for the X710 and XL710 indicate that the maximum value for
36 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
37 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
38 * the register value which is divided by 2 lets use the actual values and
39 * avoid an excessive amount of translation.
40 */
41#define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
42#define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */
43#define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */
44#define I40E_ITR_100K 10 /* all values below must be even */
45#define I40E_ITR_50K 20
46#define I40E_ITR_20K 50
47#define I40E_ITR_18K 60
48#define I40E_ITR_8K 122
49#define I40E_MAX_ITR 8160 /* maximum value as per datasheet */
50#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
51#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
52#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
53
54#define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
55#define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
56
ac26fc13
JB
57/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
58 * the value of the rate limit is non-zero
59 */
60#define INTRL_ENA BIT(6)
92418fb1 61#define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
ac26fc13 62#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
92418fb1 63
1c0e6a36
AB
64/**
65 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
66 * @intrl: interrupt rate limit to convert
67 *
68 * This function converts a decimal interrupt rate limit to the appropriate
69 * register format expected by the firmware when setting interrupt rate limit.
70 */
71static inline u16 i40e_intrl_usec_to_reg(int intrl)
72{
73 if (intrl >> 2)
74 return ((intrl >> 2) | INTRL_ENA);
75 else
76 return 0;
77}
ac26fc13
JB
78#define I40E_INTRL_8K 125 /* 8000 ints/sec */
79#define I40E_INTRL_62K 16 /* 62500 ints/sec */
80#define I40E_INTRL_83K 12 /* 83333 ints/sec */
7daa6bf3
JB
81
82#define I40E_QUEUE_END_OF_LIST 0x7FF
83
0319577f
JB
84/* this enum matches hardware bits and is meant to be used by DYN_CTLN
85 * registers and QINT registers or more generally anywhere in the manual
86 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
87 * register but instead is a special value meaning "don't update" ITR0/1/2.
88 */
89enum i40e_dyn_idx_t {
90 I40E_IDX_ITR0 = 0,
91 I40E_IDX_ITR1 = 1,
92 I40E_IDX_ITR2 = 2,
93 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
94};
95
96/* these are indexes into ITRN registers */
97#define I40E_RX_ITR I40E_IDX_ITR0
98#define I40E_TX_ITR I40E_IDX_ITR1
99#define I40E_PE_ITR I40E_IDX_ITR2
100
12dc4fe3
MW
101/* Supported RSS offloads */
102#define I40E_DEFAULT_RSS_HENA ( \
41a1d04b
JB
103 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
104 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
105 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
106 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
107 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
108 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
109 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
110 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
111 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
112 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
113 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
12dc4fe3 114
e25d00b8 115#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
9c70d7ce
JB
116 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
117 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
118 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
119 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
120 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
121 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
e25d00b8
ASJ
122
123#define i40e_pf_get_default_rss_hena(pf) \
d36e41dc 124 (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
e25d00b8
ASJ
125 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
126
1a557afc
JB
127/* Supported Rx Buffer Sizes (a multiple of 128) */
128#define I40E_RXBUFFER_256 256
dab86afd 129#define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
7daa6bf3 130#define I40E_RXBUFFER_2048 2048
98efd694 131#define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
7daa6bf3
JB
132#define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
133
134/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
135 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
136 * this adds up to 512 bytes of extra data meaning the smallest allocation
137 * we could have is 1K.
1a557afc
JB
138 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
139 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
7daa6bf3 140 */
1a557afc 141#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
1e3a5fd5 142#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
1a557afc
JB
143#define i40e_rx_desc i40e_32byte_rx_desc
144
59605bc0
AD
145#define I40E_RX_DMA_ATTR \
146 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
147
ca9ec088
AD
148/* Attempt to maximize the headroom available for incoming frames. We
149 * use a 2K buffer for receives and need 1536/1534 to store the data for
150 * the frame. This leaves us with 512 bytes of room. From that we need
151 * to deduct the space needed for the shared info and the padding needed
152 * to IP align the frame.
153 *
154 * Note: For cache line sizes 256 or larger this value is going to end
155 * up negative. In these cases we should fall back to the legacy
156 * receive path.
157 */
158#if (PAGE_SIZE < 8192)
159#define I40E_2K_TOO_SMALL_WITH_PADDING \
160((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
161
162static inline int i40e_compute_pad(int rx_buf_len)
163{
164 int page_size, pad_size;
165
166 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
167 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
168
169 return pad_size;
170}
171
172static inline int i40e_skb_pad(void)
173{
174 int rx_buf_len;
175
176 /* If a 2K buffer cannot handle a standard Ethernet frame then
177 * optimize padding for a 3K buffer instead of a 1.5K buffer.
178 *
179 * For a 3K buffer we need to add enough padding to allow for
180 * tailroom due to NET_IP_ALIGN possibly shifting us out of
181 * cache-line alignment.
182 */
183 if (I40E_2K_TOO_SMALL_WITH_PADDING)
184 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
185 else
186 rx_buf_len = I40E_RXBUFFER_1536;
187
188 /* if needed make room for NET_IP_ALIGN */
189 rx_buf_len -= NET_IP_ALIGN;
190
191 return i40e_compute_pad(rx_buf_len);
192}
193
194#define I40E_SKB_PAD i40e_skb_pad()
195#else
196#define I40E_2K_TOO_SMALL_WITH_PADDING false
197#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
198#endif
199
1a557afc
JB
200/**
201 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
202 * @rx_desc: pointer to receive descriptor (in le64 format)
203 * @stat_err_bits: value to mask
204 *
205 * This function does some fast chicanery in order to return the
206 * value of the mask which is really only used for boolean tests.
207 * The status_error_len doesn't need to be shifted because it begins
208 * at offset zero.
209 */
210static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
211 const u64 stat_err_bits)
212{
213 return !!(rx_desc->wb.qword1.status_error_len &
214 cpu_to_le64(stat_err_bits));
215}
7daa6bf3
JB
216
217/* How many Rx Buffers do we bundle into one write to the hardware ? */
95bc2fb4 218#define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */
a132af24
MW
219#define I40E_RX_INCREMENT(r, i) \
220 do { \
221 (i)++; \
222 if ((i) == (r)->count) \
223 i = 0; \
224 r->next_to_clean = i; \
225 } while (0)
226
7daa6bf3
JB
227#define I40E_RX_NEXT_DESC(r, i, n) \
228 do { \
229 (i)++; \
230 if ((i) == (r)->count) \
231 i = 0; \
232 (n) = I40E_RX_DESC((r), (i)); \
233 } while (0)
234
235#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
236 do { \
237 I40E_RX_NEXT_DESC((r), (i), (n)); \
238 prefetch((n)); \
239 } while (0)
240
71da6197 241#define I40E_MAX_BUFFER_TXD 8
7daa6bf3 242#define I40E_MIN_TX_LEN 17
5c4654da
AD
243
244/* The size limit for a transmit buffer in a descriptor is (16K - 1).
245 * In order to align with the read requests we will align the value to
246 * the nearest 4K which represents our maximum read request size.
247 */
248#define I40E_MAX_READ_REQ_SIZE 4096
249#define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
250#define I40E_MAX_DATA_PER_TXD_ALIGNED \
251 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
252
4293d5f5
MW
253/**
254 * i40e_txd_use_count - estimate the number of descriptors needed for Tx
255 * @size: transmit request size in bytes
256 *
257 * Due to hardware alignment restrictions (4K alignment), we need to
258 * assume that we can have no more than 12K of data per descriptor, even
259 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
260 * Thus, we need to divide by 12K. But division is slow! Instead,
261 * we decompose the operation into shifts and one relatively cheap
262 * multiply operation.
263 *
264 * To divide by 12K, we first divide by 4K, then divide by 3:
265 * To divide by 4K, shift right by 12 bits
266 * To divide by 3, multiply by 85, then divide by 256
267 * (Divide by 256 is done by shifting right by 8 bits)
268 * Finally, we add one to round up. Because 256 isn't an exact multiple of
269 * 3, we'll underestimate near each multiple of 12K. This is actually more
270 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
271 * segment. For our purposes this is accurate out to 1M which is orders of
272 * magnitude greater than our largest possible GSO size.
273 *
274 * This would then be implemented as:
275 * return (((size >> 12) * 85) >> 8) + 1;
276 *
277 * Since multiplication and division are commutative, we can reorder
278 * operations into:
279 * return ((size * 85) >> 20) + 1;
5c4654da
AD
280 */
281static inline unsigned int i40e_txd_use_count(unsigned int size)
282{
4293d5f5 283 return ((size * 85) >> 20) + 1;
5c4654da 284}
7daa6bf3
JB
285
286/* Tx Descriptors needed, worst case */
0a797db3 287#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
810b3ae4 288#define I40E_MIN_DESC_PENDING 4
7daa6bf3 289
41a1d04b
JB
290#define I40E_TX_FLAGS_HW_VLAN BIT(1)
291#define I40E_TX_FLAGS_SW_VLAN BIT(2)
292#define I40E_TX_FLAGS_TSO BIT(3)
293#define I40E_TX_FLAGS_IPV4 BIT(4)
294#define I40E_TX_FLAGS_IPV6 BIT(5)
295#define I40E_TX_FLAGS_FCCRC BIT(6)
296#define I40E_TX_FLAGS_FSO BIT(7)
297#define I40E_TX_FLAGS_TSYN BIT(8)
298#define I40E_TX_FLAGS_FD_SB BIT(9)
6a899024 299#define I40E_TX_FLAGS_UDP_TUNNEL BIT(10)
7daa6bf3
JB
300#define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
301#define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
302#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
303#define I40E_TX_FLAGS_VLAN_SHIFT 16
304
305struct i40e_tx_buffer {
7daa6bf3 306 struct i40e_tx_desc *next_to_watch;
49d7d933
ASJ
307 union {
308 struct sk_buff *skb;
309 void *raw_buf;
310 };
7daa6bf3 311 unsigned int bytecount;
35a1e2ad 312 unsigned short gso_segs;
6995b36c 313
35a1e2ad
AD
314 DEFINE_DMA_UNMAP_ADDR(dma);
315 DEFINE_DMA_UNMAP_LEN(len);
316 u32 tx_flags;
7daa6bf3
JB
317};
318
319struct i40e_rx_buffer {
7daa6bf3
JB
320 dma_addr_t dma;
321 struct page *page;
1793668c
AD
322#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
323 __u32 page_offset;
324#else
325 __u16 page_offset;
326#endif
327 __u16 pagecnt_bias;
7daa6bf3
JB
328};
329
a114d0a6 330struct i40e_queue_stats {
7daa6bf3
JB
331 u64 packets;
332 u64 bytes;
a114d0a6
AD
333};
334
335struct i40e_tx_queue_stats {
7daa6bf3
JB
336 u64 restart_queue;
337 u64 tx_busy;
7daa6bf3 338 u64 tx_done_old;
2fc3d715 339 u64 tx_linearize;
164c9f54 340 u64 tx_force_wb;
07d44190 341 int prev_pkt_ctr;
7daa6bf3
JB
342};
343
344struct i40e_rx_queue_stats {
7daa6bf3 345 u64 non_eop_descs;
420136cc
MW
346 u64 alloc_page_failed;
347 u64 alloc_buff_failed;
f16704e5
MW
348 u64 page_reuse_count;
349 u64 realloc_count;
7daa6bf3
JB
350};
351
352enum i40e_ring_state_t {
353 __I40E_TX_FDIR_INIT_DONE,
354 __I40E_TX_XPS_INIT_DONE,
bd6cd4e6 355 __I40E_RING_STATE_NBITS /* must be last */
7daa6bf3
JB
356};
357
bec60fc4
JB
358/* some useful defines for virtchannel interface, which
359 * is the only remaining user of header split
360 */
361#define I40E_RX_DTYPE_NO_SPLIT 0
362#define I40E_RX_DTYPE_HEADER_SPLIT 1
363#define I40E_RX_DTYPE_SPLIT_ALWAYS 2
364#define I40E_RX_SPLIT_L2 0x1
365#define I40E_RX_SPLIT_IP 0x2
366#define I40E_RX_SPLIT_TCP_UDP 0x4
367#define I40E_RX_SPLIT_SCTP 0x8
7daa6bf3
JB
368
369/* struct that defines a descriptor ring, associated with a VSI */
370struct i40e_ring {
cd0b6fa6 371 struct i40e_ring *next; /* pointer to next ring in q_vector */
7daa6bf3
JB
372 void *desc; /* Descriptor ring memory */
373 struct device *dev; /* Used for DMA mapping */
374 struct net_device *netdev; /* netdev ring maps to */
0c8493d9 375 struct bpf_prog *xdp_prog;
7daa6bf3
JB
376 union {
377 struct i40e_tx_buffer *tx_bi;
378 struct i40e_rx_buffer *rx_bi;
379 };
bd6cd4e6 380 DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
7daa6bf3
JB
381 u16 queue_index; /* Queue number of ring */
382 u8 dcb_tc; /* Traffic class of ring */
383 u8 __iomem *tail;
384
a75e8005
KL
385 /* high bit set means dynamic, use accessor routines to read/write.
386 * hardware only supports 2us resolution for the ITR registers.
387 * these values always store the USER setting, and must be converted
388 * before programming to a register.
389 */
40588ca6 390 u16 itr_setting;
a75e8005 391
7daa6bf3
JB
392 u16 count; /* Number of descriptors */
393 u16 reg_idx; /* HW register index of the ring */
7daa6bf3 394 u16 rx_buf_len;
7daa6bf3
JB
395
396 /* used in interrupt processing */
397 u16 next_to_use;
398 u16 next_to_clean;
399
400 u8 atr_sample_rate;
401 u8 atr_count;
402
403 bool ring_active; /* is ring online or not */
d91649f5 404 bool arm_wb; /* do something to arm write back */
58044743 405 u8 packet_stride;
7daa6bf3 406
8e0764b4 407 u16 flags;
ca9ec088
AD
408#define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
409#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
74608d17 410#define I40E_TXR_FLAGS_XDP BIT(2)
527274c7 411
7daa6bf3 412 /* stats structs */
a114d0a6 413 struct i40e_queue_stats stats;
980e9b11 414 struct u64_stats_sync syncp;
7daa6bf3
JB
415 union {
416 struct i40e_tx_queue_stats tx_stats;
417 struct i40e_rx_queue_stats rx_stats;
418 };
419
420 unsigned int size; /* length of descriptor ring in bytes */
421 dma_addr_t dma; /* physical address of ring */
422
423 struct i40e_vsi *vsi; /* Backreference to associated VSI */
424 struct i40e_q_vector *q_vector; /* Backreference to associated vector */
9f65e15b
AD
425
426 struct rcu_head rcu; /* to avoid race on free */
1a557afc 427 u16 next_to_alloc;
e72e5659
SP
428 struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must
429 * return before it sees the EOP for
430 * the current packet, we save that skb
431 * here and resume receiving this
432 * packet the next time
433 * i40e_clean_rx_ring_irq() is called
434 * for this ring.
435 */
8f88b303
AN
436
437 struct i40e_channel *ch;
87128824 438 struct xdp_rxq_info xdp_rxq;
7daa6bf3
JB
439} ____cacheline_internodealigned_in_smp;
440
ca9ec088
AD
441static inline bool ring_uses_build_skb(struct i40e_ring *ring)
442{
443 return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
444}
445
446static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
447{
448 ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
449}
450
451static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
452{
453 ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
454}
455
74608d17
BT
456static inline bool ring_is_xdp(struct i40e_ring *ring)
457{
458 return !!(ring->flags & I40E_TXR_FLAGS_XDP);
459}
460
461static inline void set_ring_xdp(struct i40e_ring *ring)
462{
463 ring->flags |= I40E_TXR_FLAGS_XDP;
464}
465
a0073a4b
AD
466#define I40E_ITR_ADAPTIVE_MIN_INC 0x0002
467#define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002
468#define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e
469#define I40E_ITR_ADAPTIVE_LATENCY 0x8000
470#define I40E_ITR_ADAPTIVE_BULK 0x0000
471#define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
7daa6bf3
JB
472
473struct i40e_ring_container {
a0073a4b
AD
474 struct i40e_ring *ring; /* pointer to linked list of ring(s) */
475 unsigned long next_update; /* jiffies value of next update */
7daa6bf3
JB
476 unsigned int total_bytes; /* total bytes processed this int */
477 unsigned int total_packets; /* total packets processed this int */
478 u16 count;
556fdfd6
AD
479 u16 target_itr; /* target ITR setting for ring(s) */
480 u16 current_itr; /* current ITR setting for ring(s) */
7daa6bf3
JB
481};
482
cd0b6fa6
AD
483/* iterator for handling rings in ring container */
484#define i40e_for_each_ring(pos, head) \
485 for (pos = (head).ring; pos != NULL; pos = pos->next)
486
98efd694
AD
487static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
488{
489#if (PAGE_SIZE < 8192)
490 if (ring->rx_buf_len > (PAGE_SIZE / 2))
491 return 1;
492#endif
493 return 0;
494}
495
496#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
497
1a557afc 498bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
7daa6bf3
JB
499netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
500void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
501void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
502int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
503int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
504void i40e_free_tx_resources(struct i40e_ring *tx_ring);
505void i40e_free_rx_resources(struct i40e_ring *rx_ring);
506int i40e_napi_poll(struct napi_struct *napi, int budget);
b03a8c1f 507void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
04d41051 508u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
07d44190 509void i40e_detect_recover_hung(struct i40e_vsi *vsi);
4ec441df 510int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
2d37490b 511bool __i40e_chk_linearize(struct sk_buff *skb);
1e6d6f8c
KP
512
513/**
514 * i40e_get_head - Retrieve head from head writeback
515 * @tx_ring: tx ring to fetch head of
516 *
517 * Returns value of Tx ring head based on value stored
518 * in head write-back location
519 **/
520static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
521{
522 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
523
524 return le32_to_cpu(*(volatile __le32 *)head);
525}
4ec441df
AD
526
527/**
528 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
529 * @skb: send buffer
530 * @tx_ring: ring to send buffer on
531 *
532 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
533 * there is not enough descriptors available in this ring since we need at least
534 * one descriptor.
535 **/
536static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
537{
538 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
539 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
540 int count = 0, size = skb_headlen(skb);
541
542 for (;;) {
5c4654da 543 count += i40e_txd_use_count(size);
4ec441df
AD
544
545 if (!nr_frags--)
546 break;
547
548 size = skb_frag_size(frag++);
549 }
550
551 return count;
552}
553
554/**
555 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
556 * @tx_ring: the ring to be checked
557 * @size: the size buffer we want to assure is available
558 *
559 * Returns 0 if stop is not needed
560 **/
561static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
562{
563 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
564 return 0;
565 return __i40e_maybe_stop_tx(tx_ring, size);
566}
2d37490b
AD
567
568/**
569 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
570 * @skb: send buffer
571 * @count: number of buffers used
572 *
573 * Note: Our HW can't scatter-gather more than 8 fragments to build
574 * a packet on the wire and so we need to figure out the cases where we
575 * need to linearize the skb.
576 **/
577static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
578{
3f3f7cb8
AD
579 /* Both TSO and single send will work if count is less than 8 */
580 if (likely(count < I40E_MAX_BUFFER_TXD))
2d37490b
AD
581 return false;
582
3f3f7cb8
AD
583 if (skb_is_gso(skb))
584 return __i40e_chk_linearize(skb);
585
586 /* we can support up to 8 data buffers for a single send */
587 return count != I40E_MAX_BUFFER_TXD;
2d37490b 588}
1f15d667 589
e486bdfd
AD
590/**
591 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
592 * @ring: Tx ring to find the netdev equivalent of
593 **/
594static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
595{
596 return netdev_get_tx_queue(ring->netdev, ring->queue_index);
597}
36fac581 598#endif /* _I40E_TXRX_H_ */