locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_...
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40e / i40e_ptp.c
CommitLineData
beb0dff1
JK
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27#include "i40e.h"
beb0dff1
JK
28#include <linux/ptp_classify.h>
29
30/* The XL710 timesync is very much like Intel's 82599 design when it comes to
31 * the fundamental clock design. However, the clock operations are much simpler
32 * in the XL710 because the device supports a full 64 bits of nanoseconds.
33 * Because the field is so wide, we can forgo the cycle counter and just
34 * operate with the nanosecond field directly without fear of overflow.
35 *
36 * Much like the 82599, the update period is dependent upon the link speed:
37 * At 40Gb link or no link, the period is 1.6ns.
38 * At 10Gb link, the period is multiplied by 2. (3.2ns)
39 * At 1Gb link, the period is multiplied by 20. (32ns)
40 * 1588 functionality is not supported at 100Mbps.
41 */
42#define I40E_PTP_40GB_INCVAL 0x0199999999ULL
43#define I40E_PTP_10GB_INCVAL 0x0333333333ULL
44#define I40E_PTP_1GB_INCVAL 0x2000000000ULL
45
41a1d04b
JB
46#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
47#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \
beb0dff1 48 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
beb0dff1
JK
49
50/**
51 * i40e_ptp_read - Read the PHC time from the device
52 * @pf: Board private structure
53 * @ts: timespec structure to hold the current time value
54 *
55 * This function reads the PRTTSYN_TIME registers and stores them in a
56 * timespec. However, since the registers are 64 bits of nanoseconds, we must
57 * convert the result to a timespec before we can return.
58 **/
6f7a9b8a 59static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts)
beb0dff1
JK
60{
61 struct i40e_hw *hw = &pf->hw;
62 u32 hi, lo;
63 u64 ns;
64
65 /* The timer latches on the lowest register read. */
66 lo = rd32(hw, I40E_PRTTSYN_TIME_L);
67 hi = rd32(hw, I40E_PRTTSYN_TIME_H);
68
69 ns = (((u64)hi) << 32) | lo;
70
6f7a9b8a 71 *ts = ns_to_timespec64(ns);
beb0dff1
JK
72}
73
74/**
75 * i40e_ptp_write - Write the PHC time to the device
76 * @pf: Board private structure
77 * @ts: timespec structure that holds the new time value
78 *
79 * This function writes the PRTTSYN_TIME registers with the user value. Since
80 * we receive a timespec from the stack, we must convert that timespec into
81 * nanoseconds before programming the registers.
82 **/
6f7a9b8a 83static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
beb0dff1
JK
84{
85 struct i40e_hw *hw = &pf->hw;
6f7a9b8a 86 u64 ns = timespec64_to_ns(ts);
beb0dff1
JK
87
88 /* The timer will not update until the high register is written, so
89 * write the low register first.
90 */
91 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
92 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
93}
94
95/**
96 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
97 * @hwtstamps: Timestamp structure to update
98 * @timestamp: Timestamp from the hardware
99 *
100 * We need to convert the NIC clock value into a hwtstamp which can be used by
101 * the upper level timestamping functions. Since the timestamp is simply a 64-
102 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
103 **/
104static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
105 u64 timestamp)
106{
107 memset(hwtstamps, 0, sizeof(*hwtstamps));
108
109 hwtstamps->hwtstamp = ns_to_ktime(timestamp);
110}
111
112/**
113 * i40e_ptp_adjfreq - Adjust the PHC frequency
114 * @ptp: The PTP clock structure
115 * @ppb: Parts per billion adjustment from the base
116 *
117 * Adjust the frequency of the PHC by the indicated parts per billion from the
118 * base frequency.
119 **/
120static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
121{
122 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
123 struct i40e_hw *hw = &pf->hw;
124 u64 adj, freq, diff;
125 int neg_adj = 0;
126
127 if (ppb < 0) {
128 neg_adj = 1;
129 ppb = -ppb;
130 }
131
132 smp_mb(); /* Force any pending update before accessing. */
6aa7de05 133 adj = READ_ONCE(pf->ptp_base_adj);
beb0dff1
JK
134
135 freq = adj;
136 freq *= ppb;
137 diff = div_u64(freq, 1000000000ULL);
138
139 if (neg_adj)
140 adj -= diff;
141 else
142 adj += diff;
143
144 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
145 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
146
147 return 0;
148}
149
150/**
151 * i40e_ptp_adjtime - Adjust the PHC time
152 * @ptp: The PTP clock structure
153 * @delta: Offset in nanoseconds to adjust the PHC time by
154 *
155 * Adjust the frequency of the PHC by the indicated parts per billion from the
156 * base frequency.
157 **/
158static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
159{
160 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
0ac30ce4 161 struct timespec64 now;
beb0dff1 162
19551262 163 mutex_lock(&pf->tmreg_lock);
beb0dff1
JK
164
165 i40e_ptp_read(pf, &now);
0ac30ce4 166 timespec64_add_ns(&now, delta);
6f7a9b8a 167 i40e_ptp_write(pf, (const struct timespec64 *)&now);
beb0dff1 168
19551262 169 mutex_unlock(&pf->tmreg_lock);
beb0dff1
JK
170
171 return 0;
172}
173
174/**
175 * i40e_ptp_gettime - Get the time of the PHC
176 * @ptp: The PTP clock structure
177 * @ts: timespec structure to hold the current time value
178 *
179 * Read the device clock and return the correct value on ns, after converting it
180 * into a timespec struct.
181 **/
6f7a9b8a 182static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
beb0dff1
JK
183{
184 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
beb0dff1 185
19551262 186 mutex_lock(&pf->tmreg_lock);
beb0dff1 187 i40e_ptp_read(pf, ts);
19551262 188 mutex_unlock(&pf->tmreg_lock);
beb0dff1
JK
189
190 return 0;
191}
192
193/**
194 * i40e_ptp_settime - Set the time of the PHC
195 * @ptp: The PTP clock structure
196 * @ts: timespec structure that holds the new time value
197 *
198 * Set the device clock to the user input value. The conversion from timespec
199 * to ns happens in the write function.
200 **/
201static int i40e_ptp_settime(struct ptp_clock_info *ptp,
6f7a9b8a 202 const struct timespec64 *ts)
beb0dff1
JK
203{
204 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
beb0dff1 205
19551262 206 mutex_lock(&pf->tmreg_lock);
beb0dff1 207 i40e_ptp_write(pf, ts);
19551262 208 mutex_unlock(&pf->tmreg_lock);
beb0dff1
JK
209
210 return 0;
211}
212
beb0dff1 213/**
69d1a70c 214 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
beb0dff1
JK
215 * @ptp: The PTP clock structure
216 * @rq: The requested feature to change
217 * @on: Enable/disable flag
218 *
219 * The XL710 does not support any of the ancillary features of the PHC
220 * subsystem, so this function may just return.
221 **/
69d1a70c
JK
222static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
223 struct ptp_clock_request *rq, int on)
beb0dff1
JK
224{
225 return -EOPNOTSUPP;
226}
227
12490501
JK
228/**
229 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
230 * @pf: the PF data structure
231 *
232 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
233 * for noticed latch events. This allows the driver to keep track of the first
234 * time a latch event was noticed which will be used to help clear out Rx
235 * timestamps for packets that got dropped or lost.
236 *
237 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
238 * expected to be called only while under the ptp_rx_lock.
239 **/
240static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
241{
242 struct i40e_hw *hw = &pf->hw;
243 u32 prttsyn_stat, new_latch_events;
244 int i;
245
246 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
247 new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
248
249 /* Update the jiffies time for any newly latched timestamp. This
250 * ensures that we store the time that we first discovered a timestamp
251 * was latched by the hardware. The service task will later determine
252 * if we should free the latch and drop that timestamp should too much
253 * time pass. This flow ensures that we only update jiffies for new
254 * events latched since the last time we checked, and not all events
255 * currently latched, so that the service task accounting remains
256 * accurate.
257 */
258 for (i = 0; i < 4; i++) {
259 if (new_latch_events & BIT(i))
260 pf->latch_events[i] = jiffies;
261 }
262
263 /* Finally, we store the current status of the Rx timestamp latches */
264 pf->latch_event_flags = prttsyn_stat;
265
266 return prttsyn_stat;
267}
268
beb0dff1
JK
269/**
270 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
61189556 271 * @pf: The PF private data structure
beb0dff1
JK
272 * @vsi: The VSI with the rings relevant to 1588
273 *
274 * This watchdog task is scheduled to detect error case where hardware has
275 * dropped an Rx packet that was timestamped when the ring is full. The
276 * particular error is rare but leaves the device in a state unable to timestamp
277 * any future packets.
278 **/
61189556 279void i40e_ptp_rx_hang(struct i40e_pf *pf)
beb0dff1 280{
beb0dff1 281 struct i40e_hw *hw = &pf->hw;
e6e3fc2b 282 unsigned int i, cleared = 0;
beb0dff1 283
b535a013
JK
284 /* Since we cannot turn off the Rx timestamp logic if the device is
285 * configured for Tx timestamping, we check if Rx timestamping is
286 * configured. We don't want to spuriously warn about Rx timestamp
287 * hangs if we don't care about the timestamps.
288 */
289 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
beb0dff1
JK
290 return;
291
12490501 292 spin_lock_bh(&pf->ptp_rx_lock);
beb0dff1 293
12490501
JK
294 /* Update current latch times for Rx events */
295 i40e_ptp_get_rx_events(pf);
beb0dff1 296
12490501
JK
297 /* Check all the currently latched Rx events and see whether they have
298 * been latched for over a second. It is assumed that any timestamp
299 * should have been cleared within this time, or else it was captured
300 * for a dropped frame that the driver never received. Thus, we will
301 * clear any timestamp that has been latched for over 1 second.
302 */
303 for (i = 0; i < 4; i++) {
304 if ((pf->latch_event_flags & BIT(i)) &&
305 time_is_before_jiffies(pf->latch_events[i] + HZ)) {
306 rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
307 pf->latch_event_flags &= ~BIT(i);
e6e3fc2b 308 cleared++;
12490501 309 }
beb0dff1
JK
310 }
311
12490501 312 spin_unlock_bh(&pf->ptp_rx_lock);
e6e3fc2b
JK
313
314 /* Log a warning if more than 2 timestamps got dropped in the same
315 * check. We don't want to warn about all drops because it can occur
316 * in normal scenarios such as PTP frames on multicast addresses we
317 * aren't listening to. However, administrator should know if this is
318 * the reason packets aren't receiving timestamps.
319 */
320 if (cleared > 2)
321 dev_dbg(&pf->pdev->dev,
322 "Dropped %d missed RXTIME timestamp events\n",
323 cleared);
324
325 /* Finally, update the rx_hwtstamp_cleared counter */
326 pf->rx_hwtstamp_cleared += cleared;
beb0dff1
JK
327}
328
0bc0706b
JK
329/**
330 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
331 * @pf: The PF private data structure
332 *
333 * This watchdog task is run periodically to make sure that we clear the Tx
334 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
335 * time. It is unexpected in the normal case but if it occurs it results in
336 * permanently prevent timestamps of future packets
337 **/
338void i40e_ptp_tx_hang(struct i40e_pf *pf)
339{
340 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
341 return;
342
343 /* Nothing to do if we're not already waiting for a timestamp */
344 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
345 return;
346
347 /* We already have a handler routine which is run when we are notified
348 * of a Tx timestamp in the hardware. If we don't get an interrupt
349 * within a second it is reasonable to assume that we never will.
350 */
351 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
352 dev_kfree_skb_any(pf->ptp_tx_skb);
353 pf->ptp_tx_skb = NULL;
354 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
355 pf->tx_hwtstamp_timeouts++;
356 }
357}
358
beb0dff1
JK
359/**
360 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
361 * @pf: Board private structure
362 *
363 * Read the value of the Tx timestamp from the registers, convert it into a
364 * value consumable by the stack, and store that result into the shhwtstamps
365 * struct before returning it up the stack.
366 **/
367void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
368{
369 struct skb_shared_hwtstamps shhwtstamps;
bbc4e7d2 370 struct sk_buff *skb = pf->ptp_tx_skb;
beb0dff1
JK
371 struct i40e_hw *hw = &pf->hw;
372 u32 hi, lo;
373 u64 ns;
374
22b4777d
JK
375 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
376 return;
377
378 /* don't attempt to timestamp if we don't have an skb */
379 if (!pf->ptp_tx_skb)
380 return;
381
beb0dff1
JK
382 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
383 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
384
385 ns = (((u64)hi) << 32) | lo;
beb0dff1 386 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
bbc4e7d2
JK
387
388 /* Clear the bit lock as soon as possible after reading the register,
389 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
390 * applications might wake up and attempt to request another transmit
391 * timestamp prior to the bit lock being cleared.
392 */
beb0dff1 393 pf->ptp_tx_skb = NULL;
0da36b97 394 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
bbc4e7d2
JK
395
396 /* Notify the stack and free the skb after we've unlocked */
397 skb_tstamp_tx(skb, &shhwtstamps);
398 dev_kfree_skb_any(skb);
beb0dff1
JK
399}
400
401/**
402 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
403 * @pf: Board private structure
404 * @skb: Particular skb to send timestamp with
405 * @index: Index into the receive timestamp registers for the timestamp
406 *
407 * The XL710 receives a notification in the receive descriptor with an offset
408 * into the set of RXTIME registers where the timestamp is for that skb. This
409 * function goes and fetches the receive timestamp from that offset, if a valid
410 * one exists. The RXTIME registers are in ns, so we must convert the result
411 * first.
412 **/
413void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
414{
415 u32 prttsyn_stat, hi, lo;
416 struct i40e_hw *hw;
417 u64 ns;
418
419 /* Since we cannot turn off the Rx timestamp logic if the device is
420 * doing Tx timestamping, check if Rx timestamping is configured.
421 */
22b4777d 422 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
beb0dff1
JK
423 return;
424
425 hw = &pf->hw;
426
12490501
JK
427 spin_lock_bh(&pf->ptp_rx_lock);
428
429 /* Get current Rx events and update latch times */
430 prttsyn_stat = i40e_ptp_get_rx_events(pf);
beb0dff1 431
12490501
JK
432 /* TODO: Should we warn about missing Rx timestamp event? */
433 if (!(prttsyn_stat & BIT(index))) {
434 spin_unlock_bh(&pf->ptp_rx_lock);
beb0dff1 435 return;
12490501
JK
436 }
437
438 /* Clear the latched event since we're about to read its register */
439 pf->latch_event_flags &= ~BIT(index);
beb0dff1
JK
440
441 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
442 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
443
12490501
JK
444 spin_unlock_bh(&pf->ptp_rx_lock);
445
beb0dff1
JK
446 ns = (((u64)hi) << 32) | lo;
447
448 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
449}
450
451/**
452 * i40e_ptp_set_increment - Utility function to update clock increment rate
453 * @pf: Board private structure
454 *
455 * During a link change, the DMA frequency that drives the 1588 logic will
456 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
457 * we must update the increment value per clock tick.
458 **/
459void i40e_ptp_set_increment(struct i40e_pf *pf)
460{
461 struct i40e_link_status *hw_link_info;
462 struct i40e_hw *hw = &pf->hw;
463 u64 incval;
464
465 hw_link_info = &hw->phy.link_info;
466
467 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
468
469 switch (hw_link_info->link_speed) {
470 case I40E_LINK_SPEED_10GB:
471 incval = I40E_PTP_10GB_INCVAL;
472 break;
473 case I40E_LINK_SPEED_1GB:
474 incval = I40E_PTP_1GB_INCVAL;
475 break;
476 case I40E_LINK_SPEED_100MB:
e684fa34
SN
477 {
478 static int warn_once;
479
480 if (!warn_once) {
481 dev_warn(&pf->pdev->dev,
482 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
483 warn_once++;
484 }
beb0dff1
JK
485 incval = 0;
486 break;
e684fa34 487 }
beb0dff1
JK
488 case I40E_LINK_SPEED_40GB:
489 default:
490 incval = I40E_PTP_40GB_INCVAL;
491 break;
492 }
493
494 /* Write the new increment value into the increment register. The
495 * hardware will not update the clock until both registers have been
496 * written.
497 */
498 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
499 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
500
501 /* Update the base adjustement value. */
6aa7de05 502 WRITE_ONCE(pf->ptp_base_adj, incval);
beb0dff1
JK
503 smp_mb(); /* Force the above update. */
504}
505
506/**
507 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
508 * @pf: Board private structure
509 * @ifreq: ioctl data
510 *
511 * Obtain the current hardware timestamping settigs as requested. To do this,
512 * keep a shadow copy of the timestamp settings rather than attempting to
513 * deconstruct it from the registers.
514 **/
515int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
516{
517 struct hwtstamp_config *config = &pf->tstamp_config;
518
fe88bda9
JK
519 if (!(pf->flags & I40E_FLAG_PTP))
520 return -EOPNOTSUPP;
521
beb0dff1
JK
522 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
523 -EFAULT : 0;
524}
525
526/**
18946455 527 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
beb0dff1 528 * @pf: Board private structure
18946455 529 * @config: hwtstamp settings requested or saved
beb0dff1 530 *
18946455
JK
531 * Control hardware registers to enter the specific mode requested by the
532 * user. Also used during reset path to ensure that timestamp settings are
533 * maintained.
beb0dff1 534 *
18946455
JK
535 * Note: modifies config in place, and may update the requested mode to be
536 * more broad if the specific filter is not directly supported.
beb0dff1 537 **/
18946455
JK
538static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
539 struct hwtstamp_config *config)
beb0dff1
JK
540{
541 struct i40e_hw *hw = &pf->hw;
fe88bda9 542 u32 tsyntype, regval;
beb0dff1 543
beb0dff1
JK
544 /* Reserved for future extensions. */
545 if (config->flags)
546 return -EINVAL;
547
beb0dff1
JK
548 switch (config->tx_type) {
549 case HWTSTAMP_TX_OFF:
550 pf->ptp_tx = false;
551 break;
552 case HWTSTAMP_TX_ON:
553 pf->ptp_tx = true;
554 break;
555 default:
556 return -ERANGE;
557 }
558
559 switch (config->rx_filter) {
560 case HWTSTAMP_FILTER_NONE:
561 pf->ptp_rx = false;
4fda14ca
JK
562 /* We set the type to V1, but do not enable UDP packet
563 * recognition. In this way, we should be as close to
564 * disabling PTP Rx timestamps as possible since V1 packets
565 * are always UDP, since L2 packets are a V2 feature.
566 */
567 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
beb0dff1
JK
568 break;
569 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
570 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
571 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
d36e41dc 572 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1e28e861 573 return -ERANGE;
beb0dff1
JK
574 pf->ptp_rx = true;
575 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
576 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
577 I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
578 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
579 break;
580 case HWTSTAMP_FILTER_PTP_V2_EVENT:
beb0dff1
JK
581 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
582 case HWTSTAMP_FILTER_PTP_V2_SYNC:
beb0dff1
JK
583 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
584 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
beb0dff1 585 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
d36e41dc 586 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1e28e861
JK
587 return -ERANGE;
588 /* fall through */
589 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
590 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
591 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
beb0dff1
JK
592 pf->ptp_rx = true;
593 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1e28e861 594 I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
d36e41dc 595 if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
1e28e861
JK
596 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
597 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
598 } else {
599 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
600 }
beb0dff1 601 break;
e3412575 602 case HWTSTAMP_FILTER_NTP_ALL:
beb0dff1
JK
603 case HWTSTAMP_FILTER_ALL:
604 default:
605 return -ERANGE;
606 }
607
608 /* Clear out all 1588-related registers to clear and unlatch them. */
12490501 609 spin_lock_bh(&pf->ptp_rx_lock);
beb0dff1
JK
610 rd32(hw, I40E_PRTTSYN_STAT_0);
611 rd32(hw, I40E_PRTTSYN_TXTIME_H);
612 rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
613 rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
614 rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
615 rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
12490501
JK
616 pf->latch_event_flags = 0;
617 spin_unlock_bh(&pf->ptp_rx_lock);
beb0dff1
JK
618
619 /* Enable/disable the Tx timestamp interrupt based on user input. */
620 regval = rd32(hw, I40E_PRTTSYN_CTL0);
621 if (pf->ptp_tx)
622 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
623 else
624 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
625 wr32(hw, I40E_PRTTSYN_CTL0, regval);
626
627 regval = rd32(hw, I40E_PFINT_ICR0_ENA);
628 if (pf->ptp_tx)
629 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
630 else
631 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
632 wr32(hw, I40E_PFINT_ICR0_ENA, regval);
633
4fda14ca
JK
634 /* Although there is no simple on/off switch for Rx, we "disable" Rx
635 * timestamps by setting to V1 only mode and clear the UDP
636 * recognition. This ought to disable all PTP Rx timestamps as V1
637 * packets are always over UDP. Note that software is configured to
638 * ignore Rx timestamps via the pf->ptp_rx flag.
beb0dff1 639 */
4fda14ca
JK
640 regval = rd32(hw, I40E_PRTTSYN_CTL1);
641 /* clear everything but the enable bit */
642 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
643 /* now enable bits for desired Rx timestamps */
644 regval |= tsyntype;
645 wr32(hw, I40E_PRTTSYN_CTL1, regval);
beb0dff1 646
18946455
JK
647 return 0;
648}
649
650/**
651 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
652 * @pf: Board private structure
653 * @ifreq: ioctl data
654 *
655 * Respond to the user filter requests and make the appropriate hardware
656 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
657 * logic, so keep track in software of whether to indicate these timestamps
658 * or not.
659 *
660 * It is permissible to "upgrade" the user request to a broader filter, as long
661 * as the user receives the timestamps they care about and the user is notified
662 * the filter has been broadened.
663 **/
664int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
665{
d19af2af 666 struct hwtstamp_config config;
18946455
JK
667 int err;
668
fe88bda9
JK
669 if (!(pf->flags & I40E_FLAG_PTP))
670 return -EOPNOTSUPP;
671
d19af2af 672 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
18946455
JK
673 return -EFAULT;
674
d19af2af 675 err = i40e_ptp_set_timestamp_mode(pf, &config);
18946455
JK
676 if (err)
677 return err;
678
d19af2af
JK
679 /* save these settings for future reference */
680 pf->tstamp_config = config;
681
682 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
beb0dff1
JK
683 -EFAULT : 0;
684}
685
686/**
fbd5e2df 687 * i40e_ptp_create_clock - Create PTP clock device for userspace
beb0dff1
JK
688 * @pf: Board private structure
689 *
fbd5e2df
JK
690 * This function creates a new PTP clock device. It only creates one if we
691 * don't already have one, so it is safe to call. Will return error if it
692 * can't create one, but success if we already have a device. Should be used
693 * by i40e_ptp_init to create clock initially, and prevent global resets from
694 * creating new clock devices.
beb0dff1 695 **/
fbd5e2df 696static long i40e_ptp_create_clock(struct i40e_pf *pf)
beb0dff1 697{
fbd5e2df
JK
698 /* no need to create a clock device if we already have one */
699 if (!IS_ERR_OR_NULL(pf->ptp_clock))
700 return 0;
beb0dff1 701
fbd5e2df 702 strncpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name));
beb0dff1
JK
703 pf->ptp_caps.owner = THIS_MODULE;
704 pf->ptp_caps.max_adj = 999999999;
705 pf->ptp_caps.n_ext_ts = 0;
706 pf->ptp_caps.pps = 0;
707 pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
708 pf->ptp_caps.adjtime = i40e_ptp_adjtime;
6f7a9b8a
RC
709 pf->ptp_caps.gettime64 = i40e_ptp_gettime;
710 pf->ptp_caps.settime64 = i40e_ptp_settime;
69d1a70c 711 pf->ptp_caps.enable = i40e_ptp_feature_enable;
beb0dff1
JK
712
713 /* Attempt to register the clock before enabling the hardware. */
714 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
6995b36c 715 if (IS_ERR(pf->ptp_clock))
fbd5e2df 716 return PTR_ERR(pf->ptp_clock);
fbd5e2df
JK
717
718 /* clear the hwtstamp settings here during clock create, instead of
719 * during regular init, so that we can maintain settings across a
720 * reset or suspend.
721 */
722 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
723 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
724
725 return 0;
726}
727
728/**
729 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
730 * @pf: Board private structure
731 *
732 * This function sets device up for 1588 support. The first time it is run, it
733 * will create a PHC clock device. It does not create a clock device if one
734 * already exists. It also reconfigures the device after a reset.
735 **/
736void i40e_ptp_init(struct i40e_pf *pf)
737{
738 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
739 struct i40e_hw *hw = &pf->hw;
fe88bda9 740 u32 pf_id;
fbd5e2df
JK
741 long err;
742
fe88bda9
JK
743 /* Only one PF is assigned to control 1588 logic per port. Do not
744 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
745 */
746 pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
747 I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
748 if (hw->pf_id != pf_id) {
749 pf->flags &= ~I40E_FLAG_PTP;
750 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
751 __func__,
752 netdev->name);
753 return;
754 }
755
19551262 756 mutex_init(&pf->tmreg_lock);
12490501 757 spin_lock_init(&pf->ptp_rx_lock);
fbd5e2df
JK
758
759 /* ensure we have a clock device */
760 err = i40e_ptp_create_clock(pf);
761 if (err) {
beb0dff1
JK
762 pf->ptp_clock = NULL;
763 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
764 __func__);
efee95f4 765 } else if (pf->ptp_clock) {
6f7a9b8a 766 struct timespec64 ts;
beb0dff1
JK
767 u32 regval;
768
6dec1017
SN
769 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
770 dev_info(&pf->pdev->dev, "PHC enabled\n");
beb0dff1
JK
771 pf->flags |= I40E_FLAG_PTP;
772
773 /* Ensure the clocks are running. */
774 regval = rd32(hw, I40E_PRTTSYN_CTL0);
775 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
776 wr32(hw, I40E_PRTTSYN_CTL0, regval);
777 regval = rd32(hw, I40E_PRTTSYN_CTL1);
778 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
779 wr32(hw, I40E_PRTTSYN_CTL1, regval);
780
781 /* Set the increment value per clock tick. */
782 i40e_ptp_set_increment(pf);
783
18946455
JK
784 /* reset timestamping mode */
785 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
beb0dff1
JK
786
787 /* Set the clock value. */
6f7a9b8a 788 ts = ktime_to_timespec64(ktime_get_real());
beb0dff1
JK
789 i40e_ptp_settime(&pf->ptp_caps, &ts);
790 }
791}
792
793/**
794 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
795 * @pf: Board private structure
796 *
797 * This function handles the cleanup work required from the initialization by
798 * clearing out the important information and unregistering the PHC.
799 **/
800void i40e_ptp_stop(struct i40e_pf *pf)
801{
802 pf->flags &= ~I40E_FLAG_PTP;
803 pf->ptp_tx = false;
804 pf->ptp_rx = false;
805
beb0dff1
JK
806 if (pf->ptp_tx_skb) {
807 dev_kfree_skb_any(pf->ptp_tx_skb);
808 pf->ptp_tx_skb = NULL;
0da36b97 809 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
beb0dff1
JK
810 }
811
812 if (pf->ptp_clock) {
813 ptp_clock_unregister(pf->ptp_clock);
814 pf->ptp_clock = NULL;
815 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
816 pf->vsi[pf->lan_vsi]->netdev->name);
817 }
818}