e1000e: Cleanup - Update GPL header and Copyright
[linux-2.6-block.git] / drivers / net / ethernet / intel / e1000e / nvm.c
CommitLineData
e78b80b1
DE
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
fe2ddfb5
BA
21
22#include "e1000.h"
23
24/**
25 * e1000_raise_eec_clk - Raise EEPROM clock
26 * @hw: pointer to the HW structure
27 * @eecd: pointer to the EEPROM
28 *
29 * Enable/Raise the EEPROM clock bit.
30 **/
31static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
32{
33 *eecd = *eecd | E1000_EECD_SK;
34 ew32(EECD, *eecd);
35 e1e_flush();
36 udelay(hw->nvm.delay_usec);
37}
38
39/**
40 * e1000_lower_eec_clk - Lower EEPROM clock
41 * @hw: pointer to the HW structure
42 * @eecd: pointer to the EEPROM
43 *
44 * Clear/Lower the EEPROM clock bit.
45 **/
46static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
47{
48 *eecd = *eecd & ~E1000_EECD_SK;
49 ew32(EECD, *eecd);
50 e1e_flush();
51 udelay(hw->nvm.delay_usec);
52}
53
54/**
55 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
56 * @hw: pointer to the HW structure
57 * @data: data to send to the EEPROM
58 * @count: number of bits to shift out
59 *
60 * We need to shift 'count' bits out to the EEPROM. So, the value in the
61 * "data" parameter will be shifted out to the EEPROM one bit at a time.
62 * In order to do this, "data" must be broken down into bits.
63 **/
64static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
65{
66 struct e1000_nvm_info *nvm = &hw->nvm;
67 u32 eecd = er32(EECD);
68 u32 mask;
69
70 mask = 0x01 << (count - 1);
71 if (nvm->type == e1000_nvm_eeprom_spi)
72 eecd |= E1000_EECD_DO;
73
74 do {
75 eecd &= ~E1000_EECD_DI;
76
77 if (data & mask)
78 eecd |= E1000_EECD_DI;
79
80 ew32(EECD, eecd);
81 e1e_flush();
82
83 udelay(nvm->delay_usec);
84
85 e1000_raise_eec_clk(hw, &eecd);
86 e1000_lower_eec_clk(hw, &eecd);
87
88 mask >>= 1;
89 } while (mask);
90
91 eecd &= ~E1000_EECD_DI;
92 ew32(EECD, eecd);
93}
94
95/**
96 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
97 * @hw: pointer to the HW structure
98 * @count: number of bits to shift in
99 *
100 * In order to read a register from the EEPROM, we need to shift 'count' bits
101 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
102 * the EEPROM (setting the SK bit), and then reading the value of the data out
103 * "DO" bit. During this "shifting in" process the data in "DI" bit should
104 * always be clear.
105 **/
106static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
107{
108 u32 eecd;
109 u32 i;
110 u16 data;
111
112 eecd = er32(EECD);
fe2ddfb5
BA
113 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
114 data = 0;
115
116 for (i = 0; i < count; i++) {
117 data <<= 1;
118 e1000_raise_eec_clk(hw, &eecd);
119
120 eecd = er32(EECD);
121
122 eecd &= ~E1000_EECD_DI;
123 if (eecd & E1000_EECD_DO)
124 data |= 1;
125
126 e1000_lower_eec_clk(hw, &eecd);
127 }
128
129 return data;
130}
131
132/**
133 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
134 * @hw: pointer to the HW structure
135 * @ee_reg: EEPROM flag for polling
136 *
137 * Polls the EEPROM status bit for either read or write completion based
138 * upon the value of 'ee_reg'.
139 **/
140s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
141{
142 u32 attempts = 100000;
143 u32 i, reg = 0;
144
145 for (i = 0; i < attempts; i++) {
146 if (ee_reg == E1000_NVM_POLL_READ)
147 reg = er32(EERD);
148 else
149 reg = er32(EEWR);
150
151 if (reg & E1000_NVM_RW_REG_DONE)
152 return 0;
153
154 udelay(5);
155 }
156
157 return -E1000_ERR_NVM;
158}
159
160/**
161 * e1000e_acquire_nvm - Generic request for access to EEPROM
162 * @hw: pointer to the HW structure
163 *
164 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
165 * Return successful if access grant bit set, else clear the request for
166 * EEPROM access and return -E1000_ERR_NVM (-1).
167 **/
168s32 e1000e_acquire_nvm(struct e1000_hw *hw)
169{
170 u32 eecd = er32(EECD);
171 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
172
173 ew32(EECD, eecd | E1000_EECD_REQ);
174 eecd = er32(EECD);
175
176 while (timeout) {
177 if (eecd & E1000_EECD_GNT)
178 break;
179 udelay(5);
180 eecd = er32(EECD);
181 timeout--;
182 }
183
184 if (!timeout) {
185 eecd &= ~E1000_EECD_REQ;
186 ew32(EECD, eecd);
187 e_dbg("Could not acquire NVM grant\n");
188 return -E1000_ERR_NVM;
189 }
190
191 return 0;
192}
193
194/**
195 * e1000_standby_nvm - Return EEPROM to standby state
196 * @hw: pointer to the HW structure
197 *
198 * Return the EEPROM to a standby state.
199 **/
200static void e1000_standby_nvm(struct e1000_hw *hw)
201{
202 struct e1000_nvm_info *nvm = &hw->nvm;
203 u32 eecd = er32(EECD);
204
205 if (nvm->type == e1000_nvm_eeprom_spi) {
206 /* Toggle CS to flush commands */
207 eecd |= E1000_EECD_CS;
208 ew32(EECD, eecd);
209 e1e_flush();
210 udelay(nvm->delay_usec);
211 eecd &= ~E1000_EECD_CS;
212 ew32(EECD, eecd);
213 e1e_flush();
214 udelay(nvm->delay_usec);
215 }
216}
217
218/**
219 * e1000_stop_nvm - Terminate EEPROM command
220 * @hw: pointer to the HW structure
221 *
222 * Terminates the current command by inverting the EEPROM's chip select pin.
223 **/
224static void e1000_stop_nvm(struct e1000_hw *hw)
225{
226 u32 eecd;
227
228 eecd = er32(EECD);
229 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
230 /* Pull CS high */
231 eecd |= E1000_EECD_CS;
232 e1000_lower_eec_clk(hw, &eecd);
233 }
234}
235
236/**
237 * e1000e_release_nvm - Release exclusive access to EEPROM
238 * @hw: pointer to the HW structure
239 *
240 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
241 **/
242void e1000e_release_nvm(struct e1000_hw *hw)
243{
244 u32 eecd;
245
246 e1000_stop_nvm(hw);
247
248 eecd = er32(EECD);
249 eecd &= ~E1000_EECD_REQ;
250 ew32(EECD, eecd);
251}
252
253/**
254 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
255 * @hw: pointer to the HW structure
256 *
257 * Setups the EEPROM for reading and writing.
258 **/
259static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
260{
261 struct e1000_nvm_info *nvm = &hw->nvm;
262 u32 eecd = er32(EECD);
263 u8 spi_stat_reg;
264
265 if (nvm->type == e1000_nvm_eeprom_spi) {
266 u16 timeout = NVM_MAX_RETRY_SPI;
267
268 /* Clear SK and CS */
269 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
270 ew32(EECD, eecd);
271 e1e_flush();
272 udelay(1);
273
e921eb1a 274 /* Read "Status Register" repeatedly until the LSB is cleared.
fe2ddfb5
BA
275 * The EEPROM will signal that the command has been completed
276 * by clearing bit 0 of the internal status register. If it's
277 * not cleared within 'timeout', then error out.
278 */
279 while (timeout) {
280 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
281 hw->nvm.opcode_bits);
282 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
283 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
284 break;
285
286 udelay(5);
287 e1000_standby_nvm(hw);
288 timeout--;
289 }
290
291 if (!timeout) {
292 e_dbg("SPI NVM Status error\n");
293 return -E1000_ERR_NVM;
294 }
295 }
296
297 return 0;
298}
299
300/**
301 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
302 * @hw: pointer to the HW structure
303 * @offset: offset of word in the EEPROM to read
304 * @words: number of words to read
305 * @data: word read from the EEPROM
306 *
307 * Reads a 16 bit word from the EEPROM using the EERD register.
308 **/
309s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
310{
311 struct e1000_nvm_info *nvm = &hw->nvm;
312 u32 i, eerd = 0;
313 s32 ret_val = 0;
314
e921eb1a 315 /* A check for invalid values: offset too large, too many words,
fe2ddfb5
BA
316 * too many words for the offset, and not enough words.
317 */
318 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
319 (words == 0)) {
320 e_dbg("nvm parameter(s) out of bounds\n");
321 return -E1000_ERR_NVM;
322 }
323
324 for (i = 0; i < words; i++) {
325 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
326 E1000_NVM_RW_REG_START;
327
328 ew32(EERD, eerd);
329 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
330 if (ret_val)
331 break;
332
333 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
334 }
335
336 return ret_val;
337}
338
339/**
340 * e1000e_write_nvm_spi - Write to EEPROM using SPI
341 * @hw: pointer to the HW structure
342 * @offset: offset within the EEPROM to be written to
343 * @words: number of words to write
344 * @data: 16 bit word(s) to be written to the EEPROM
345 *
346 * Writes data to EEPROM at offset using SPI interface.
347 *
348 * If e1000e_update_nvm_checksum is not called after this function , the
349 * EEPROM will most likely contain an invalid checksum.
350 **/
351s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
352{
353 struct e1000_nvm_info *nvm = &hw->nvm;
635ab564 354 s32 ret_val = -E1000_ERR_NVM;
fe2ddfb5
BA
355 u16 widx = 0;
356
e921eb1a 357 /* A check for invalid values: offset too large, too many words,
fe2ddfb5
BA
358 * and not enough words.
359 */
360 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
361 (words == 0)) {
362 e_dbg("nvm parameter(s) out of bounds\n");
363 return -E1000_ERR_NVM;
364 }
365
fe2ddfb5
BA
366 while (widx < words) {
367 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
368
635ab564 369 ret_val = nvm->ops.acquire(hw);
ffacd472 370 if (ret_val)
635ab564
BA
371 return ret_val;
372
373 ret_val = e1000_ready_nvm_eeprom(hw);
374 if (ret_val) {
375 nvm->ops.release(hw);
376 return ret_val;
377 }
fe2ddfb5
BA
378
379 e1000_standby_nvm(hw);
380
381 /* Send the WRITE ENABLE command (8 bit opcode) */
382 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
383 nvm->opcode_bits);
384
385 e1000_standby_nvm(hw);
386
e921eb1a 387 /* Some SPI eeproms use the 8th address bit embedded in the
fe2ddfb5
BA
388 * opcode
389 */
390 if ((nvm->address_bits == 8) && (offset >= 128))
391 write_opcode |= NVM_A8_OPCODE_SPI;
392
393 /* Send the Write command (8-bit opcode + addr) */
394 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
395 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
396 nvm->address_bits);
397
398 /* Loop to allow for up to whole page write of eeprom */
399 while (widx < words) {
400 u16 word_out = data[widx];
401 word_out = (word_out >> 8) | (word_out << 8);
402 e1000_shift_out_eec_bits(hw, word_out, 16);
403 widx++;
404
405 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
406 e1000_standby_nvm(hw);
407 break;
408 }
409 }
635ab564
BA
410 usleep_range(10000, 20000);
411 nvm->ops.release(hw);
fe2ddfb5
BA
412 }
413
ffacd472 414 return ret_val;
fe2ddfb5
BA
415}
416
417/**
418 * e1000_read_pba_string_generic - Read device part number
419 * @hw: pointer to the HW structure
420 * @pba_num: pointer to device part number
421 * @pba_num_size: size of part number buffer
422 *
423 * Reads the product board assembly (PBA) number from the EEPROM and stores
424 * the value in pba_num.
425 **/
426s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
427 u32 pba_num_size)
428{
429 s32 ret_val;
430 u16 nvm_data;
431 u16 pba_ptr;
432 u16 offset;
433 u16 length;
434
435 if (pba_num == NULL) {
436 e_dbg("PBA string buffer was null\n");
5015e53a 437 return -E1000_ERR_INVALID_ARGUMENT;
fe2ddfb5
BA
438 }
439
440 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
441 if (ret_val) {
442 e_dbg("NVM Read Error\n");
5015e53a 443 return ret_val;
fe2ddfb5
BA
444 }
445
446 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
447 if (ret_val) {
448 e_dbg("NVM Read Error\n");
5015e53a 449 return ret_val;
fe2ddfb5
BA
450 }
451
e921eb1a 452 /* if nvm_data is not ptr guard the PBA must be in legacy format which
fe2ddfb5
BA
453 * means pba_ptr is actually our second data word for the PBA number
454 * and we can decode it into an ascii string
455 */
456 if (nvm_data != NVM_PBA_PTR_GUARD) {
457 e_dbg("NVM PBA number is not stored as string\n");
458
3a3104e7
BA
459 /* make sure callers buffer is big enough to store the PBA */
460 if (pba_num_size < E1000_PBANUM_LENGTH) {
fe2ddfb5
BA
461 e_dbg("PBA string buffer too small\n");
462 return E1000_ERR_NO_SPACE;
463 }
464
465 /* extract hex string from data and pba_ptr */
466 pba_num[0] = (nvm_data >> 12) & 0xF;
467 pba_num[1] = (nvm_data >> 8) & 0xF;
468 pba_num[2] = (nvm_data >> 4) & 0xF;
469 pba_num[3] = nvm_data & 0xF;
470 pba_num[4] = (pba_ptr >> 12) & 0xF;
471 pba_num[5] = (pba_ptr >> 8) & 0xF;
472 pba_num[6] = '-';
473 pba_num[7] = 0;
474 pba_num[8] = (pba_ptr >> 4) & 0xF;
475 pba_num[9] = pba_ptr & 0xF;
476
477 /* put a null character on the end of our string */
478 pba_num[10] = '\0';
479
480 /* switch all the data but the '-' to hex char */
481 for (offset = 0; offset < 10; offset++) {
482 if (pba_num[offset] < 0xA)
483 pba_num[offset] += '0';
484 else if (pba_num[offset] < 0x10)
485 pba_num[offset] += 'A' - 0xA;
486 }
487
5015e53a 488 return 0;
fe2ddfb5
BA
489 }
490
491 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
492 if (ret_val) {
493 e_dbg("NVM Read Error\n");
5015e53a 494 return ret_val;
fe2ddfb5
BA
495 }
496
497 if (length == 0xFFFF || length == 0) {
498 e_dbg("NVM PBA number section invalid length\n");
5015e53a 499 return -E1000_ERR_NVM_PBA_SECTION;
fe2ddfb5
BA
500 }
501 /* check if pba_num buffer is big enough */
502 if (pba_num_size < (((u32)length * 2) - 1)) {
503 e_dbg("PBA string buffer too small\n");
5015e53a 504 return -E1000_ERR_NO_SPACE;
fe2ddfb5
BA
505 }
506
507 /* trim pba length from start of string */
508 pba_ptr++;
509 length--;
510
511 for (offset = 0; offset < length; offset++) {
512 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
513 if (ret_val) {
514 e_dbg("NVM Read Error\n");
5015e53a 515 return ret_val;
fe2ddfb5
BA
516 }
517 pba_num[offset * 2] = (u8)(nvm_data >> 8);
518 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
519 }
520 pba_num[offset * 2] = '\0';
521
5015e53a 522 return 0;
fe2ddfb5
BA
523}
524
525/**
526 * e1000_read_mac_addr_generic - Read device MAC address
527 * @hw: pointer to the HW structure
528 *
529 * Reads the device MAC address from the EEPROM and stores the value.
530 * Since devices with two ports use the same EEPROM, we increment the
531 * last bit in the MAC address for the second port.
532 **/
533s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
534{
535 u32 rar_high;
536 u32 rar_low;
537 u16 i;
538
539 rar_high = er32(RAH(0));
540 rar_low = er32(RAL(0));
541
542 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
543 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
544
545 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
546 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
547
548 for (i = 0; i < ETH_ALEN; i++)
549 hw->mac.addr[i] = hw->mac.perm_addr[i];
550
551 return 0;
552}
553
554/**
555 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
556 * @hw: pointer to the HW structure
557 *
558 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
559 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
560 **/
561s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
562{
563 s32 ret_val;
564 u16 checksum = 0;
565 u16 i, nvm_data;
566
567 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
568 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
569 if (ret_val) {
570 e_dbg("NVM Read Error\n");
571 return ret_val;
572 }
573 checksum += nvm_data;
574 }
575
576 if (checksum != (u16)NVM_SUM) {
577 e_dbg("NVM Checksum Invalid\n");
578 return -E1000_ERR_NVM;
579 }
580
581 return 0;
582}
583
584/**
585 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
586 * @hw: pointer to the HW structure
587 *
588 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
589 * up to the checksum. Then calculates the EEPROM checksum and writes the
590 * value to the EEPROM.
591 **/
592s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
593{
594 s32 ret_val;
595 u16 checksum = 0;
596 u16 i, nvm_data;
597
598 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
599 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
600 if (ret_val) {
601 e_dbg("NVM Read Error while updating checksum.\n");
602 return ret_val;
603 }
604 checksum += nvm_data;
605 }
606 checksum = (u16)NVM_SUM - checksum;
607 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
608 if (ret_val)
609 e_dbg("NVM Write Error while updating checksum.\n");
610
611 return ret_val;
612}
613
614/**
e85e3639 615 * e1000e_reload_nvm_generic - Reloads EEPROM
fe2ddfb5
BA
616 * @hw: pointer to the HW structure
617 *
618 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
619 * extended control register.
620 **/
e85e3639 621void e1000e_reload_nvm_generic(struct e1000_hw *hw)
fe2ddfb5
BA
622{
623 u32 ctrl_ext;
624
ce43a216 625 usleep_range(10, 20);
fe2ddfb5
BA
626 ctrl_ext = er32(CTRL_EXT);
627 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
628 ew32(CTRL_EXT, ctrl_ext);
629 e1e_flush();
630}