e1000e: fix legacy interrupt handling in i219
[linux-block.git] / drivers / net / ethernet / intel / e1000e / netdev.c
CommitLineData
e78b80b1
DE
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
bc7f75fa 21
8544b9f7
BA
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
bc7f75fa
AK
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/vmalloc.h>
29#include <linux/pagemap.h>
30#include <linux/delay.h>
31#include <linux/netdevice.h>
9fb7a5f7 32#include <linux/interrupt.h>
bc7f75fa
AK
33#include <linux/tcp.h>
34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
bc7f75fa
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
bc7f75fa
AK
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/cpu.h>
41#include <linux/smp.h>
e8db0be1 42#include <linux/pm_qos.h>
23606cf5 43#include <linux/pm_runtime.h>
111b9dc5 44#include <linux/aer.h>
70c71606 45#include <linux/prefetch.h>
bc7f75fa
AK
46
47#include "e1000.h"
48
b3ccf267 49#define DRV_EXTRAVERSION "-k"
c14c643b 50
8defe713 51#define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
bc7f75fa
AK
52char e1000e_driver_name[] = "e1000e";
53const char e1000e_driver_version[] = DRV_VERSION;
54
b3f4d599 55#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56static int debug = -1;
57module_param(debug, int, 0);
58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
bc7f75fa
AK
60static const struct e1000_info *e1000_info_tbl[] = {
61 [board_82571] = &e1000_82571_info,
62 [board_82572] = &e1000_82572_info,
63 [board_82573] = &e1000_82573_info,
4662e82b 64 [board_82574] = &e1000_82574_info,
8c81c9c3 65 [board_82583] = &e1000_82583_info,
bc7f75fa
AK
66 [board_80003es2lan] = &e1000_es2_info,
67 [board_ich8lan] = &e1000_ich8_info,
68 [board_ich9lan] = &e1000_ich9_info,
f4187b56 69 [board_ich10lan] = &e1000_ich10_info,
a4f58f54 70 [board_pchlan] = &e1000_pch_info,
d3738bb8 71 [board_pch2lan] = &e1000_pch2_info,
2fbe4526 72 [board_pch_lpt] = &e1000_pch_lpt_info,
79849ebc 73 [board_pch_spt] = &e1000_pch_spt_info,
bc7f75fa
AK
74};
75
84f4ee90
TI
76struct e1000_reg_info {
77 u32 ofs;
78 char *name;
79};
80
84f4ee90 81static const struct e1000_reg_info e1000_reg_info_tbl[] = {
84f4ee90
TI
82 /* General Registers */
83 {E1000_CTRL, "CTRL"},
84 {E1000_STATUS, "STATUS"},
85 {E1000_CTRL_EXT, "CTRL_EXT"},
86
87 /* Interrupt Registers */
88 {E1000_ICR, "ICR"},
89
af667a29 90 /* Rx Registers */
84f4ee90 91 {E1000_RCTL, "RCTL"},
1e36052e
BA
92 {E1000_RDLEN(0), "RDLEN"},
93 {E1000_RDH(0), "RDH"},
94 {E1000_RDT(0), "RDT"},
84f4ee90
TI
95 {E1000_RDTR, "RDTR"},
96 {E1000_RXDCTL(0), "RXDCTL"},
97 {E1000_ERT, "ERT"},
1e36052e
BA
98 {E1000_RDBAL(0), "RDBAL"},
99 {E1000_RDBAH(0), "RDBAH"},
84f4ee90
TI
100 {E1000_RDFH, "RDFH"},
101 {E1000_RDFT, "RDFT"},
102 {E1000_RDFHS, "RDFHS"},
103 {E1000_RDFTS, "RDFTS"},
104 {E1000_RDFPC, "RDFPC"},
105
af667a29 106 /* Tx Registers */
84f4ee90 107 {E1000_TCTL, "TCTL"},
1e36052e
BA
108 {E1000_TDBAL(0), "TDBAL"},
109 {E1000_TDBAH(0), "TDBAH"},
110 {E1000_TDLEN(0), "TDLEN"},
111 {E1000_TDH(0), "TDH"},
112 {E1000_TDT(0), "TDT"},
84f4ee90
TI
113 {E1000_TIDV, "TIDV"},
114 {E1000_TXDCTL(0), "TXDCTL"},
115 {E1000_TADV, "TADV"},
116 {E1000_TARC(0), "TARC"},
117 {E1000_TDFH, "TDFH"},
118 {E1000_TDFT, "TDFT"},
119 {E1000_TDFHS, "TDFHS"},
120 {E1000_TDFTS, "TDFTS"},
121 {E1000_TDFPC, "TDFPC"},
122
123 /* List Terminator */
f36bb6ca 124 {0, NULL}
84f4ee90
TI
125};
126
c6f3148c
AK
127/**
128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129 * @hw: pointer to the HW structure
130 *
131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
132 * be accessing the registers at the same time. Normally, this is handled in
133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134 * accesses later than it should which could result in the register to have
135 * an incorrect value. Workaround this by checking the FWSM register which
136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137 * and try again a number of times.
138 **/
139s32 __ew32_prepare(struct e1000_hw *hw)
140{
141 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142
143 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144 udelay(50);
145
146 return i;
147}
148
149void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150{
151 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152 __ew32_prepare(hw);
153
154 writel(val, hw->hw_addr + reg);
155}
156
e921eb1a 157/**
84f4ee90 158 * e1000_regdump - register printout routine
e921eb1a
BA
159 * @hw: pointer to the HW structure
160 * @reginfo: pointer to the register info table
161 **/
84f4ee90
TI
162static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163{
164 int n = 0;
165 char rname[16];
166 u32 regs[8];
167
168 switch (reginfo->ofs) {
169 case E1000_RXDCTL(0):
170 for (n = 0; n < 2; n++)
171 regs[n] = __er32(hw, E1000_RXDCTL(n));
172 break;
173 case E1000_TXDCTL(0):
174 for (n = 0; n < 2; n++)
175 regs[n] = __er32(hw, E1000_TXDCTL(n));
176 break;
177 case E1000_TARC(0):
178 for (n = 0; n < 2; n++)
179 regs[n] = __er32(hw, E1000_TARC(n));
180 break;
181 default:
ef456f85
JK
182 pr_info("%-15s %08x\n",
183 reginfo->name, __er32(hw, reginfo->ofs));
84f4ee90
TI
184 return;
185 }
186
187 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
ef456f85 188 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
84f4ee90
TI
189}
190
f0c5dadf
ET
191static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192 struct e1000_buffer *bi)
193{
194 int i;
195 struct e1000_ps_page *ps_page;
196
197 for (i = 0; i < adapter->rx_ps_pages; i++) {
198 ps_page = &bi->ps_pages[i];
199
200 if (ps_page->page) {
201 pr_info("packet dump for ps_page %d:\n", i);
202 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203 16, 1, page_address(ps_page->page),
204 PAGE_SIZE, true);
205 }
206 }
207}
208
e921eb1a 209/**
af667a29 210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
e921eb1a
BA
211 * @adapter: board private structure
212 **/
84f4ee90
TI
213static void e1000e_dump(struct e1000_adapter *adapter)
214{
215 struct net_device *netdev = adapter->netdev;
216 struct e1000_hw *hw = &adapter->hw;
217 struct e1000_reg_info *reginfo;
218 struct e1000_ring *tx_ring = adapter->tx_ring;
219 struct e1000_tx_desc *tx_desc;
af667a29 220 struct my_u0 {
e885d762
BA
221 __le64 a;
222 __le64 b;
af667a29 223 } *u0;
84f4ee90
TI
224 struct e1000_buffer *buffer_info;
225 struct e1000_ring *rx_ring = adapter->rx_ring;
226 union e1000_rx_desc_packet_split *rx_desc_ps;
5f450212 227 union e1000_rx_desc_extended *rx_desc;
af667a29 228 struct my_u1 {
e885d762
BA
229 __le64 a;
230 __le64 b;
231 __le64 c;
232 __le64 d;
af667a29 233 } *u1;
84f4ee90
TI
234 u32 staterr;
235 int i = 0;
236
237 if (!netif_msg_hw(adapter))
238 return;
239
240 /* Print netdevice Info */
241 if (netdev) {
242 dev_info(&adapter->pdev->dev, "Net device Info\n");
ef456f85 243 pr_info("Device Name state trans_start last_rx\n");
e5fe2541
BA
244 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245 netdev->state, netdev->trans_start, netdev->last_rx);
84f4ee90
TI
246 }
247
248 /* Print Registers */
249 dev_info(&adapter->pdev->dev, "Register Dump\n");
ef456f85 250 pr_info(" Register Name Value\n");
84f4ee90
TI
251 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252 reginfo->name; reginfo++) {
253 e1000_regdump(hw, reginfo);
254 }
255
af667a29 256 /* Print Tx Ring Summary */
84f4ee90 257 if (!netdev || !netif_running(netdev))
fe1e980f 258 return;
84f4ee90 259
af667a29 260 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
ef456f85 261 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
84f4ee90 262 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
ef456f85
JK
263 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 0, tx_ring->next_to_use, tx_ring->next_to_clean,
265 (unsigned long long)buffer_info->dma,
266 buffer_info->length,
267 buffer_info->next_to_watch,
268 (unsigned long long)buffer_info->time_stamp);
84f4ee90 269
af667a29 270 /* Print Tx Ring */
84f4ee90
TI
271 if (!netif_msg_tx_done(adapter))
272 goto rx_ring_summary;
273
af667a29 274 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
84f4ee90
TI
275
276 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277 *
278 * Legacy Transmit Descriptor
279 * +--------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
281 * +--------------------------------------------------------------+
282 * 8 | Special | CSS | Status | CMD | CSO | Length |
283 * +--------------------------------------------------------------+
284 * 63 48 47 36 35 32 31 24 23 16 15 0
285 *
286 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 * 63 48 47 40 39 32 31 16 15 8 7 0
288 * +----------------------------------------------------------------+
289 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
290 * +----------------------------------------------------------------+
291 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
292 * +----------------------------------------------------------------+
293 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
294 *
295 * Extended Data Descriptor (DTYP=0x1)
296 * +----------------------------------------------------------------+
297 * 0 | Buffer Address [63:0] |
298 * +----------------------------------------------------------------+
299 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
300 * +----------------------------------------------------------------+
301 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
302 */
ef456f85
JK
303 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
304 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
305 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
84f4ee90 306 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
ef456f85 307 const char *next_desc;
84f4ee90
TI
308 tx_desc = E1000_TX_DESC(*tx_ring, i);
309 buffer_info = &tx_ring->buffer_info[i];
310 u0 = (struct my_u0 *)tx_desc;
84f4ee90 311 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
ef456f85 312 next_desc = " NTC/U";
84f4ee90 313 else if (i == tx_ring->next_to_use)
ef456f85 314 next_desc = " NTU";
84f4ee90 315 else if (i == tx_ring->next_to_clean)
ef456f85 316 next_desc = " NTC";
84f4ee90 317 else
ef456f85
JK
318 next_desc = "";
319 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
320 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
322 i,
323 (unsigned long long)le64_to_cpu(u0->a),
324 (unsigned long long)le64_to_cpu(u0->b),
325 (unsigned long long)buffer_info->dma,
326 buffer_info->length, buffer_info->next_to_watch,
327 (unsigned long long)buffer_info->time_stamp,
328 buffer_info->skb, next_desc);
84f4ee90 329
f0c5dadf 330 if (netif_msg_pktdata(adapter) && buffer_info->skb)
84f4ee90 331 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
f0c5dadf
ET
332 16, 1, buffer_info->skb->data,
333 buffer_info->skb->len, true);
84f4ee90
TI
334 }
335
af667a29 336 /* Print Rx Ring Summary */
84f4ee90 337rx_ring_summary:
af667a29 338 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
ef456f85
JK
339 pr_info("Queue [NTU] [NTC]\n");
340 pr_info(" %5d %5X %5X\n",
341 0, rx_ring->next_to_use, rx_ring->next_to_clean);
84f4ee90 342
af667a29 343 /* Print Rx Ring */
84f4ee90 344 if (!netif_msg_rx_status(adapter))
fe1e980f 345 return;
84f4ee90 346
af667a29 347 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
84f4ee90
TI
348 switch (adapter->rx_ps_pages) {
349 case 1:
350 case 2:
351 case 3:
352 /* [Extended] Packet Split Receive Descriptor Format
353 *
354 * +-----------------------------------------------------+
355 * 0 | Buffer Address 0 [63:0] |
356 * +-----------------------------------------------------+
357 * 8 | Buffer Address 1 [63:0] |
358 * +-----------------------------------------------------+
359 * 16 | Buffer Address 2 [63:0] |
360 * +-----------------------------------------------------+
361 * 24 | Buffer Address 3 [63:0] |
362 * +-----------------------------------------------------+
363 */
ef456f85 364 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
84f4ee90
TI
365 /* [Extended] Receive Descriptor (Write-Back) Format
366 *
367 * 63 48 47 32 31 13 12 8 7 4 3 0
368 * +------------------------------------------------------+
369 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
370 * | Checksum | Ident | | Queue | | Type |
371 * +------------------------------------------------------+
372 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 * +------------------------------------------------------+
374 * 63 48 47 32 31 20 19 0
375 */
ef456f85 376 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
84f4ee90 377 for (i = 0; i < rx_ring->count; i++) {
ef456f85 378 const char *next_desc;
84f4ee90
TI
379 buffer_info = &rx_ring->buffer_info[i];
380 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381 u1 = (struct my_u1 *)rx_desc_ps;
382 staterr =
af667a29 383 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
ef456f85
JK
384
385 if (i == rx_ring->next_to_use)
386 next_desc = " NTU";
387 else if (i == rx_ring->next_to_clean)
388 next_desc = " NTC";
389 else
390 next_desc = "";
391
84f4ee90
TI
392 if (staterr & E1000_RXD_STAT_DD) {
393 /* Descriptor Done */
ef456f85
JK
394 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395 "RWB", i,
396 (unsigned long long)le64_to_cpu(u1->a),
397 (unsigned long long)le64_to_cpu(u1->b),
398 (unsigned long long)le64_to_cpu(u1->c),
399 (unsigned long long)le64_to_cpu(u1->d),
400 buffer_info->skb, next_desc);
84f4ee90 401 } else {
ef456f85
JK
402 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
403 "R ", i,
404 (unsigned long long)le64_to_cpu(u1->a),
405 (unsigned long long)le64_to_cpu(u1->b),
406 (unsigned long long)le64_to_cpu(u1->c),
407 (unsigned long long)le64_to_cpu(u1->d),
408 (unsigned long long)buffer_info->dma,
409 buffer_info->skb, next_desc);
84f4ee90
TI
410
411 if (netif_msg_pktdata(adapter))
f0c5dadf
ET
412 e1000e_dump_ps_pages(adapter,
413 buffer_info);
84f4ee90 414 }
84f4ee90
TI
415 }
416 break;
417 default:
418 case 0:
5f450212 419 /* Extended Receive Descriptor (Read) Format
84f4ee90 420 *
5f450212
BA
421 * +-----------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +-----------------------------------------------------+
424 * 8 | Reserved |
425 * +-----------------------------------------------------+
84f4ee90 426 */
ef456f85 427 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
5f450212
BA
428 /* Extended Receive Descriptor (Write-Back) Format
429 *
430 * 63 48 47 32 31 24 23 4 3 0
431 * +------------------------------------------------------+
432 * | RSS Hash | | | |
433 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
434 * | Packet | IP | | | Type |
435 * | Checksum | Ident | | | |
436 * +------------------------------------------------------+
437 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 * +------------------------------------------------------+
439 * 63 48 47 32 31 20 19 0
440 */
ef456f85 441 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
5f450212
BA
442
443 for (i = 0; i < rx_ring->count; i++) {
ef456f85
JK
444 const char *next_desc;
445
84f4ee90 446 buffer_info = &rx_ring->buffer_info[i];
5f450212
BA
447 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448 u1 = (struct my_u1 *)rx_desc;
449 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
ef456f85
JK
450
451 if (i == rx_ring->next_to_use)
452 next_desc = " NTU";
453 else if (i == rx_ring->next_to_clean)
454 next_desc = " NTC";
455 else
456 next_desc = "";
457
5f450212
BA
458 if (staterr & E1000_RXD_STAT_DD) {
459 /* Descriptor Done */
ef456f85
JK
460 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
461 "RWB", i,
462 (unsigned long long)le64_to_cpu(u1->a),
463 (unsigned long long)le64_to_cpu(u1->b),
464 buffer_info->skb, next_desc);
5f450212 465 } else {
ef456f85
JK
466 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
467 "R ", i,
468 (unsigned long long)le64_to_cpu(u1->a),
469 (unsigned long long)le64_to_cpu(u1->b),
470 (unsigned long long)buffer_info->dma,
471 buffer_info->skb, next_desc);
5f450212 472
f0c5dadf
ET
473 if (netif_msg_pktdata(adapter) &&
474 buffer_info->skb)
5f450212
BA
475 print_hex_dump(KERN_INFO, "",
476 DUMP_PREFIX_ADDRESS, 16,
477 1,
f0c5dadf 478 buffer_info->skb->data,
5f450212
BA
479 adapter->rx_buffer_len,
480 true);
481 }
84f4ee90
TI
482 }
483 }
84f4ee90
TI
484}
485
bc7f75fa
AK
486/**
487 * e1000_desc_unused - calculate if we have unused descriptors
488 **/
489static int e1000_desc_unused(struct e1000_ring *ring)
490{
491 if (ring->next_to_clean > ring->next_to_use)
492 return ring->next_to_clean - ring->next_to_use - 1;
493
494 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495}
496
b67e1913
BA
497/**
498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499 * @adapter: board private structure
500 * @hwtstamps: time stamp structure to update
501 * @systim: unsigned 64bit system time value.
502 *
503 * Convert the system time value stored in the RX/TXSTMP registers into a
504 * hwtstamp which can be used by the upper level time stamping functions.
505 *
506 * The 'systim_lock' spinlock is used to protect the consistency of the
507 * system time value. This is needed because reading the 64 bit time
508 * value involves reading two 32 bit registers. The first read latches the
509 * value.
510 **/
511static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512 struct skb_shared_hwtstamps *hwtstamps,
513 u64 systim)
514{
515 u64 ns;
516 unsigned long flags;
517
518 spin_lock_irqsave(&adapter->systim_lock, flags);
519 ns = timecounter_cyc2time(&adapter->tc, systim);
520 spin_unlock_irqrestore(&adapter->systim_lock, flags);
521
522 memset(hwtstamps, 0, sizeof(*hwtstamps));
523 hwtstamps->hwtstamp = ns_to_ktime(ns);
524}
525
526/**
527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528 * @adapter: board private structure
529 * @status: descriptor extended error and status field
530 * @skb: particular skb to include time stamp
531 *
532 * If the time stamp is valid, convert it into the timecounter ns value
533 * and store that result into the shhwtstamps structure which is passed
534 * up the network stack.
535 **/
536static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537 struct sk_buff *skb)
538{
539 struct e1000_hw *hw = &adapter->hw;
540 u64 rxstmp;
541
542 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543 !(status & E1000_RXDEXT_STATERR_TST) ||
544 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545 return;
546
547 /* The Rx time stamp registers contain the time stamp. No other
548 * received packet will be time stamped until the Rx time stamp
549 * registers are read. Because only one packet can be time stamped
550 * at a time, the register values must belong to this packet and
551 * therefore none of the other additional attributes need to be
552 * compared.
553 */
554 rxstmp = (u64)er32(RXSTMPL);
555 rxstmp |= (u64)er32(RXSTMPH) << 32;
556 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557
558 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559}
560
bc7f75fa 561/**
ad68076e 562 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa 563 * @adapter: board private structure
b67e1913 564 * @staterr: descriptor extended error and status field as written by hardware
bc7f75fa
AK
565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566 * @skb: pointer to sk_buff to be indicated to stack
567 **/
568static void e1000_receive_skb(struct e1000_adapter *adapter,
af667a29 569 struct net_device *netdev, struct sk_buff *skb,
b67e1913 570 u32 staterr, __le16 vlan)
bc7f75fa 571{
86d70e53 572 u16 tag = le16_to_cpu(vlan);
b67e1913
BA
573
574 e1000e_rx_hwtstamp(adapter, staterr, skb);
575
bc7f75fa
AK
576 skb->protocol = eth_type_trans(skb, netdev);
577
b67e1913 578 if (staterr & E1000_RXD_STAT_VP)
86a9bad3 579 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
86d70e53
JK
580
581 napi_gro_receive(&adapter->napi, skb);
bc7f75fa
AK
582}
583
584/**
af667a29 585 * e1000_rx_checksum - Receive Checksum Offload
afd12939
BA
586 * @adapter: board private structure
587 * @status_err: receive descriptor status and error fields
588 * @csum: receive descriptor csum field
589 * @sk_buff: socket buffer with received data
bc7f75fa
AK
590 **/
591static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
2e1706f2 592 struct sk_buff *skb)
bc7f75fa
AK
593{
594 u16 status = (u16)status_err;
595 u8 errors = (u8)(status_err >> 24);
bc8acf2c
ED
596
597 skb_checksum_none_assert(skb);
bc7f75fa 598
afd12939
BA
599 /* Rx checksum disabled */
600 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601 return;
602
bc7f75fa
AK
603 /* Ignore Checksum bit is set */
604 if (status & E1000_RXD_STAT_IXSM)
605 return;
afd12939 606
2e1706f2
BA
607 /* TCP/UDP checksum error bit or IP checksum error bit is set */
608 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
bc7f75fa
AK
609 /* let the stack verify checksum errors */
610 adapter->hw_csum_err++;
611 return;
612 }
613
614 /* TCP/UDP Checksum has not been calculated */
615 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616 return;
617
618 /* It must be a TCP or UDP packet with a valid checksum */
2e1706f2 619 skb->ip_summed = CHECKSUM_UNNECESSARY;
bc7f75fa
AK
620 adapter->hw_csum_good++;
621}
622
55aa6985 623static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
c6e7f51e 624{
55aa6985 625 struct e1000_adapter *adapter = rx_ring->adapter;
c6e7f51e 626 struct e1000_hw *hw = &adapter->hw;
bdc125f7
BA
627 s32 ret_val = __ew32_prepare(hw);
628
629 writel(i, rx_ring->tail);
c6e7f51e 630
bdc125f7 631 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
c6e7f51e 632 u32 rctl = er32(RCTL);
6cf08d1c 633
c6e7f51e
BA
634 ew32(RCTL, rctl & ~E1000_RCTL_EN);
635 e_err("ME firmware caused invalid RDT - resetting\n");
636 schedule_work(&adapter->reset_task);
637 }
638}
639
55aa6985 640static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
c6e7f51e 641{
55aa6985 642 struct e1000_adapter *adapter = tx_ring->adapter;
c6e7f51e 643 struct e1000_hw *hw = &adapter->hw;
bdc125f7 644 s32 ret_val = __ew32_prepare(hw);
c6e7f51e 645
bdc125f7
BA
646 writel(i, tx_ring->tail);
647
648 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
c6e7f51e 649 u32 tctl = er32(TCTL);
6cf08d1c 650
c6e7f51e
BA
651 ew32(TCTL, tctl & ~E1000_TCTL_EN);
652 e_err("ME firmware caused invalid TDT - resetting\n");
653 schedule_work(&adapter->reset_task);
654 }
655}
656
bc7f75fa 657/**
5f450212 658 * e1000_alloc_rx_buffers - Replace used receive buffers
55aa6985 659 * @rx_ring: Rx descriptor ring
bc7f75fa 660 **/
55aa6985 661static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
c2fed996 662 int cleaned_count, gfp_t gfp)
bc7f75fa 663{
55aa6985 664 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
665 struct net_device *netdev = adapter->netdev;
666 struct pci_dev *pdev = adapter->pdev;
5f450212 667 union e1000_rx_desc_extended *rx_desc;
bc7f75fa
AK
668 struct e1000_buffer *buffer_info;
669 struct sk_buff *skb;
670 unsigned int i;
89d71a66 671 unsigned int bufsz = adapter->rx_buffer_len;
bc7f75fa
AK
672
673 i = rx_ring->next_to_use;
674 buffer_info = &rx_ring->buffer_info[i];
675
676 while (cleaned_count--) {
677 skb = buffer_info->skb;
678 if (skb) {
679 skb_trim(skb, 0);
680 goto map_skb;
681 }
682
c2fed996 683 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
bc7f75fa
AK
684 if (!skb) {
685 /* Better luck next round */
686 adapter->alloc_rx_buff_failed++;
687 break;
688 }
689
bc7f75fa
AK
690 buffer_info->skb = skb;
691map_skb:
0be3f55f 692 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
bc7f75fa 693 adapter->rx_buffer_len,
0be3f55f
NN
694 DMA_FROM_DEVICE);
695 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
af667a29 696 dev_err(&pdev->dev, "Rx DMA map failed\n");
bc7f75fa
AK
697 adapter->rx_dma_failed++;
698 break;
699 }
700
5f450212
BA
701 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
bc7f75fa 703
50849d79 704 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
e921eb1a 705 /* Force memory writes to complete before letting h/w
50849d79
TH
706 * know there are new descriptors to fetch. (Only
707 * applicable for weak-ordered memory model archs,
708 * such as IA-64).
709 */
710 wmb();
c6e7f51e 711 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 712 e1000e_update_rdt_wa(rx_ring, i);
c6e7f51e 713 else
c5083cf6 714 writel(i, rx_ring->tail);
50849d79 715 }
bc7f75fa
AK
716 i++;
717 if (i == rx_ring->count)
718 i = 0;
719 buffer_info = &rx_ring->buffer_info[i];
720 }
721
50849d79 722 rx_ring->next_to_use = i;
bc7f75fa
AK
723}
724
725/**
726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
55aa6985 727 * @rx_ring: Rx descriptor ring
bc7f75fa 728 **/
55aa6985 729static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
c2fed996 730 int cleaned_count, gfp_t gfp)
bc7f75fa 731{
55aa6985 732 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
733 struct net_device *netdev = adapter->netdev;
734 struct pci_dev *pdev = adapter->pdev;
735 union e1000_rx_desc_packet_split *rx_desc;
bc7f75fa
AK
736 struct e1000_buffer *buffer_info;
737 struct e1000_ps_page *ps_page;
738 struct sk_buff *skb;
739 unsigned int i, j;
740
741 i = rx_ring->next_to_use;
742 buffer_info = &rx_ring->buffer_info[i];
743
744 while (cleaned_count--) {
745 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746
747 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
748 ps_page = &buffer_info->ps_pages[j];
749 if (j >= adapter->rx_ps_pages) {
750 /* all unused desc entries get hw null ptr */
af667a29
BA
751 rx_desc->read.buffer_addr[j + 1] =
752 ~cpu_to_le64(0);
47f44e40
AK
753 continue;
754 }
755 if (!ps_page->page) {
c2fed996 756 ps_page->page = alloc_page(gfp);
bc7f75fa 757 if (!ps_page->page) {
47f44e40
AK
758 adapter->alloc_rx_buff_failed++;
759 goto no_buffers;
760 }
0be3f55f
NN
761 ps_page->dma = dma_map_page(&pdev->dev,
762 ps_page->page,
763 0, PAGE_SIZE,
764 DMA_FROM_DEVICE);
765 if (dma_mapping_error(&pdev->dev,
766 ps_page->dma)) {
47f44e40 767 dev_err(&adapter->pdev->dev,
af667a29 768 "Rx DMA page map failed\n");
47f44e40
AK
769 adapter->rx_dma_failed++;
770 goto no_buffers;
bc7f75fa 771 }
bc7f75fa 772 }
e921eb1a 773 /* Refresh the desc even if buffer_addrs
47f44e40
AK
774 * didn't change because each write-back
775 * erases this info.
776 */
af667a29
BA
777 rx_desc->read.buffer_addr[j + 1] =
778 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
779 }
780
e5fe2541 781 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
c2fed996 782 gfp);
bc7f75fa
AK
783
784 if (!skb) {
785 adapter->alloc_rx_buff_failed++;
786 break;
787 }
788
bc7f75fa 789 buffer_info->skb = skb;
0be3f55f 790 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
bc7f75fa 791 adapter->rx_ps_bsize0,
0be3f55f
NN
792 DMA_FROM_DEVICE);
793 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
af667a29 794 dev_err(&pdev->dev, "Rx DMA map failed\n");
bc7f75fa
AK
795 adapter->rx_dma_failed++;
796 /* cleanup skb */
797 dev_kfree_skb_any(skb);
798 buffer_info->skb = NULL;
799 break;
800 }
801
802 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803
50849d79 804 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
e921eb1a 805 /* Force memory writes to complete before letting h/w
50849d79
TH
806 * know there are new descriptors to fetch. (Only
807 * applicable for weak-ordered memory model archs,
808 * such as IA-64).
809 */
810 wmb();
c6e7f51e 811 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 812 e1000e_update_rdt_wa(rx_ring, i << 1);
c6e7f51e 813 else
c5083cf6 814 writel(i << 1, rx_ring->tail);
50849d79
TH
815 }
816
bc7f75fa
AK
817 i++;
818 if (i == rx_ring->count)
819 i = 0;
820 buffer_info = &rx_ring->buffer_info[i];
821 }
822
823no_buffers:
50849d79 824 rx_ring->next_to_use = i;
bc7f75fa
AK
825}
826
97ac8cae
BA
827/**
828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
55aa6985 829 * @rx_ring: Rx descriptor ring
97ac8cae
BA
830 * @cleaned_count: number of buffers to allocate this pass
831 **/
832
55aa6985 833static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
c2fed996 834 int cleaned_count, gfp_t gfp)
97ac8cae 835{
55aa6985 836 struct e1000_adapter *adapter = rx_ring->adapter;
97ac8cae
BA
837 struct net_device *netdev = adapter->netdev;
838 struct pci_dev *pdev = adapter->pdev;
5f450212 839 union e1000_rx_desc_extended *rx_desc;
97ac8cae
BA
840 struct e1000_buffer *buffer_info;
841 struct sk_buff *skb;
842 unsigned int i;
2a2293b9 843 unsigned int bufsz = 256 - 16; /* for skb_reserve */
97ac8cae
BA
844
845 i = rx_ring->next_to_use;
846 buffer_info = &rx_ring->buffer_info[i];
847
848 while (cleaned_count--) {
849 skb = buffer_info->skb;
850 if (skb) {
851 skb_trim(skb, 0);
852 goto check_page;
853 }
854
c2fed996 855 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
97ac8cae
BA
856 if (unlikely(!skb)) {
857 /* Better luck next round */
858 adapter->alloc_rx_buff_failed++;
859 break;
860 }
861
97ac8cae
BA
862 buffer_info->skb = skb;
863check_page:
864 /* allocate a new page if necessary */
865 if (!buffer_info->page) {
c2fed996 866 buffer_info->page = alloc_page(gfp);
97ac8cae
BA
867 if (unlikely(!buffer_info->page)) {
868 adapter->alloc_rx_buff_failed++;
869 break;
870 }
871 }
872
37287fae 873 if (!buffer_info->dma) {
0be3f55f 874 buffer_info->dma = dma_map_page(&pdev->dev,
f0ff4398
BA
875 buffer_info->page, 0,
876 PAGE_SIZE,
0be3f55f 877 DMA_FROM_DEVICE);
37287fae
CP
878 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879 adapter->alloc_rx_buff_failed++;
880 break;
881 }
882 }
97ac8cae 883
5f450212
BA
884 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
97ac8cae
BA
886
887 if (unlikely(++i == rx_ring->count))
888 i = 0;
889 buffer_info = &rx_ring->buffer_info[i];
890 }
891
892 if (likely(rx_ring->next_to_use != i)) {
893 rx_ring->next_to_use = i;
894 if (unlikely(i-- == 0))
895 i = (rx_ring->count - 1);
896
897 /* Force memory writes to complete before letting h/w
898 * know there are new descriptors to fetch. (Only
899 * applicable for weak-ordered memory model archs,
e921eb1a
BA
900 * such as IA-64).
901 */
97ac8cae 902 wmb();
c6e7f51e 903 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
55aa6985 904 e1000e_update_rdt_wa(rx_ring, i);
c6e7f51e 905 else
c5083cf6 906 writel(i, rx_ring->tail);
97ac8cae
BA
907 }
908}
909
70495a50
BA
910static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911 struct sk_buff *skb)
912{
913 if (netdev->features & NETIF_F_RXHASH)
e25909bc 914 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
70495a50
BA
915}
916
bc7f75fa 917/**
55aa6985
BA
918 * e1000_clean_rx_irq - Send received data up the network stack
919 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
920 *
921 * the return value indicates whether actual cleaning was done, there
922 * is no guarantee that everything was cleaned
923 **/
55aa6985
BA
924static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925 int work_to_do)
bc7f75fa 926{
55aa6985 927 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
928 struct net_device *netdev = adapter->netdev;
929 struct pci_dev *pdev = adapter->pdev;
3bb99fe2 930 struct e1000_hw *hw = &adapter->hw;
5f450212 931 union e1000_rx_desc_extended *rx_desc, *next_rxd;
bc7f75fa 932 struct e1000_buffer *buffer_info, *next_buffer;
5f450212 933 u32 length, staterr;
bc7f75fa
AK
934 unsigned int i;
935 int cleaned_count = 0;
3db1cd5c 936 bool cleaned = false;
bc7f75fa
AK
937 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938
939 i = rx_ring->next_to_clean;
5f450212
BA
940 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
bc7f75fa
AK
942 buffer_info = &rx_ring->buffer_info[i];
943
5f450212 944 while (staterr & E1000_RXD_STAT_DD) {
bc7f75fa 945 struct sk_buff *skb;
bc7f75fa
AK
946
947 if (*work_done >= work_to_do)
948 break;
949 (*work_done)++;
837a1dba 950 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
bc7f75fa 951
bc7f75fa
AK
952 skb = buffer_info->skb;
953 buffer_info->skb = NULL;
954
955 prefetch(skb->data - NET_IP_ALIGN);
956
957 i++;
958 if (i == rx_ring->count)
959 i = 0;
5f450212 960 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
bc7f75fa
AK
961 prefetch(next_rxd);
962
963 next_buffer = &rx_ring->buffer_info[i];
964
3db1cd5c 965 cleaned = true;
bc7f75fa 966 cleaned_count++;
e5fe2541
BA
967 dma_unmap_single(&pdev->dev, buffer_info->dma,
968 adapter->rx_buffer_len, DMA_FROM_DEVICE);
bc7f75fa
AK
969 buffer_info->dma = 0;
970
5f450212 971 length = le16_to_cpu(rx_desc->wb.upper.length);
bc7f75fa 972
e921eb1a 973 /* !EOP means multiple descriptors were used to store a single
b94b5028
JB
974 * packet, if that's the case we need to toss it. In fact, we
975 * need to toss every packet with the EOP bit clear and the
976 * next frame that _does_ have the EOP bit set, as it is by
977 * definition only a frame fragment
978 */
5f450212 979 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
b94b5028
JB
980 adapter->flags2 |= FLAG2_IS_DISCARDING;
981
982 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
bc7f75fa 983 /* All receives must fit into a single buffer */
3bb99fe2 984 e_dbg("Receive packet consumed multiple buffers\n");
bc7f75fa
AK
985 /* recycle */
986 buffer_info->skb = skb;
5f450212 987 if (staterr & E1000_RXD_STAT_EOP)
b94b5028 988 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
989 goto next_desc;
990 }
991
cf955e6c
BG
992 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993 !(netdev->features & NETIF_F_RXALL))) {
bc7f75fa
AK
994 /* recycle */
995 buffer_info->skb = skb;
996 goto next_desc;
997 }
998
eb7c3adb 999 /* adjust length to remove Ethernet CRC */
0184039a
BG
1000 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001 /* If configured to store CRC, don't subtract FCS,
1002 * but keep the FCS bytes out of the total_rx_bytes
1003 * counter
1004 */
1005 if (netdev->features & NETIF_F_RXFCS)
1006 total_rx_bytes -= 4;
1007 else
1008 length -= 4;
1009 }
eb7c3adb 1010
bc7f75fa
AK
1011 total_rx_bytes += length;
1012 total_rx_packets++;
1013
e921eb1a 1014 /* code added for copybreak, this should improve
bc7f75fa 1015 * performance for small packets with large amounts
ad68076e
BA
1016 * of reassembly being done in the stack
1017 */
bc7f75fa
AK
1018 if (length < copybreak) {
1019 struct sk_buff *new_skb =
67fd893e 1020 napi_alloc_skb(&adapter->napi, length);
bc7f75fa 1021 if (new_skb) {
808ff676
BA
1022 skb_copy_to_linear_data_offset(new_skb,
1023 -NET_IP_ALIGN,
1024 (skb->data -
1025 NET_IP_ALIGN),
1026 (length +
1027 NET_IP_ALIGN));
bc7f75fa
AK
1028 /* save the skb in buffer_info as good */
1029 buffer_info->skb = skb;
1030 skb = new_skb;
1031 }
1032 /* else just continue with the old one */
1033 }
1034 /* end copybreak code */
1035 skb_put(skb, length);
1036
1037 /* Receive Checksum Offload */
2e1706f2 1038 e1000_rx_checksum(adapter, staterr, skb);
bc7f75fa 1039
70495a50
BA
1040 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
5f450212
BA
1042 e1000_receive_skb(adapter, netdev, skb, staterr,
1043 rx_desc->wb.upper.vlan);
bc7f75fa
AK
1044
1045next_desc:
5f450212 1046 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
bc7f75fa
AK
1047
1048 /* return some buffers to hardware, one at a time is too slow */
1049 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
55aa6985 1050 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1051 GFP_ATOMIC);
bc7f75fa
AK
1052 cleaned_count = 0;
1053 }
1054
1055 /* use prefetched values */
1056 rx_desc = next_rxd;
1057 buffer_info = next_buffer;
5f450212
BA
1058
1059 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
bc7f75fa
AK
1060 }
1061 rx_ring->next_to_clean = i;
1062
1063 cleaned_count = e1000_desc_unused(rx_ring);
1064 if (cleaned_count)
55aa6985 1065 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
bc7f75fa 1066
bc7f75fa 1067 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 1068 adapter->total_rx_packets += total_rx_packets;
bc7f75fa
AK
1069 return cleaned;
1070}
1071
55aa6985
BA
1072static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073 struct e1000_buffer *buffer_info)
bc7f75fa 1074{
55aa6985
BA
1075 struct e1000_adapter *adapter = tx_ring->adapter;
1076
03b1320d
AD
1077 if (buffer_info->dma) {
1078 if (buffer_info->mapped_as_page)
0be3f55f
NN
1079 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080 buffer_info->length, DMA_TO_DEVICE);
03b1320d 1081 else
0be3f55f
NN
1082 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083 buffer_info->length, DMA_TO_DEVICE);
03b1320d
AD
1084 buffer_info->dma = 0;
1085 }
bc7f75fa
AK
1086 if (buffer_info->skb) {
1087 dev_kfree_skb_any(buffer_info->skb);
1088 buffer_info->skb = NULL;
1089 }
1b7719c4 1090 buffer_info->time_stamp = 0;
bc7f75fa
AK
1091}
1092
41cec6f1 1093static void e1000_print_hw_hang(struct work_struct *work)
bc7f75fa 1094{
41cec6f1 1095 struct e1000_adapter *adapter = container_of(work,
f0ff4398
BA
1096 struct e1000_adapter,
1097 print_hang_task);
09357b00 1098 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1099 struct e1000_ring *tx_ring = adapter->tx_ring;
1100 unsigned int i = tx_ring->next_to_clean;
1101 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
41cec6f1
BA
1103 struct e1000_hw *hw = &adapter->hw;
1104 u16 phy_status, phy_1000t_status, phy_ext_status;
1105 u16 pci_status;
1106
615b32af
JB
1107 if (test_bit(__E1000_DOWN, &adapter->state))
1108 return;
1109
e5fe2541 1110 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
e921eb1a 1111 /* May be block on write-back, flush and detect again
09357b00
JK
1112 * flush pending descriptor writebacks to memory
1113 */
1114 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 /* execute the writes immediately */
1116 e1e_flush();
e921eb1a 1117 /* Due to rare timing issues, write to TIDV again to ensure
bf03085f
MV
1118 * the write is successful
1119 */
1120 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121 /* execute the writes immediately */
1122 e1e_flush();
09357b00
JK
1123 adapter->tx_hang_recheck = true;
1124 return;
1125 }
09357b00 1126 adapter->tx_hang_recheck = false;
d9554e96
DE
1127
1128 if (er32(TDH(0)) == er32(TDT(0))) {
1129 e_dbg("false hang detected, ignoring\n");
1130 return;
1131 }
1132
1133 /* Real hang detected */
09357b00
JK
1134 netif_stop_queue(netdev);
1135
c2ade1a4
BA
1136 e1e_rphy(hw, MII_BMSR, &phy_status);
1137 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
bc7f75fa 1139
41cec6f1
BA
1140 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142 /* detected Hardware unit hang */
1143 e_err("Detected Hardware Unit Hang:\n"
44defeb3
JK
1144 " TDH <%x>\n"
1145 " TDT <%x>\n"
1146 " next_to_use <%x>\n"
1147 " next_to_clean <%x>\n"
1148 "buffer_info[next_to_clean]:\n"
1149 " time_stamp <%lx>\n"
1150 " next_to_watch <%x>\n"
1151 " jiffies <%lx>\n"
41cec6f1
BA
1152 " next_to_watch.status <%x>\n"
1153 "MAC Status <%x>\n"
1154 "PHY Status <%x>\n"
1155 "PHY 1000BASE-T Status <%x>\n"
1156 "PHY Extended Status <%x>\n"
1157 "PCI Status <%x>\n",
e5fe2541
BA
1158 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161 phy_status, phy_1000t_status, phy_ext_status, pci_status);
7c0427ee 1162
d9554e96
DE
1163 e1000e_dump(adapter);
1164
7c0427ee
BA
1165 /* Suggest workaround for known h/w issue */
1166 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167 e_err("Try turning off Tx pause (flow control) via ethtool\n");
bc7f75fa
AK
1168}
1169
b67e1913
BA
1170/**
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1173 *
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb. The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1177 */
1178static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179{
1180 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181 tx_hwtstamp_work);
1182 struct e1000_hw *hw = &adapter->hw;
1183
b67e1913
BA
1184 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185 struct skb_shared_hwtstamps shhwtstamps;
1186 u64 txstmp;
1187
1188 txstmp = er32(TXSTMPL);
1189 txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195 adapter->tx_hwtstamp_skb = NULL;
59c871c5
JK
1196 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 + adapter->tx_timeout_factor * HZ)) {
1198 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 adapter->tx_hwtstamp_skb = NULL;
1200 adapter->tx_hwtstamp_timeouts++;
c5ffe7e1 1201 e_warn("clearing Tx timestamp hang\n");
b67e1913
BA
1202 } else {
1203 /* reschedule to check later */
1204 schedule_work(&adapter->tx_hwtstamp_work);
1205 }
1206}
1207
bc7f75fa
AK
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
55aa6985 1210 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
55aa6985 1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
bc7f75fa 1216{
55aa6985 1217 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
1218 struct net_device *netdev = adapter->netdev;
1219 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
1220 struct e1000_tx_desc *tx_desc, *eop_desc;
1221 struct e1000_buffer *buffer_info;
1222 unsigned int i, eop;
1223 unsigned int count = 0;
bc7f75fa 1224 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3f0cfa3b 1225 unsigned int bytes_compl = 0, pkts_compl = 0;
bc7f75fa
AK
1226
1227 i = tx_ring->next_to_clean;
1228 eop = tx_ring->buffer_info[i].next_to_watch;
1229 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
12d04a3c
AD
1231 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 (count < tx_ring->count)) {
a86043c2 1233 bool cleaned = false;
6cf08d1c 1234
837a1dba 1235 dma_rmb(); /* read buffer_info after eop_desc */
a86043c2 1236 for (; !cleaned; count++) {
bc7f75fa
AK
1237 tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 buffer_info = &tx_ring->buffer_info[i];
1239 cleaned = (i == eop);
1240
1241 if (cleaned) {
9ed318d5
TH
1242 total_tx_packets += buffer_info->segs;
1243 total_tx_bytes += buffer_info->bytecount;
3f0cfa3b
TH
1244 if (buffer_info->skb) {
1245 bytes_compl += buffer_info->skb->len;
1246 pkts_compl++;
1247 }
bc7f75fa
AK
1248 }
1249
55aa6985 1250 e1000_put_txbuf(tx_ring, buffer_info);
bc7f75fa
AK
1251 tx_desc->upper.data = 0;
1252
1253 i++;
1254 if (i == tx_ring->count)
1255 i = 0;
1256 }
1257
dac87619
TL
1258 if (i == tx_ring->next_to_use)
1259 break;
bc7f75fa
AK
1260 eop = tx_ring->buffer_info[i].next_to_watch;
1261 eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
1262 }
1263
1264 tx_ring->next_to_clean = i;
1265
3f0cfa3b
TH
1266 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
bc7f75fa 1268#define TX_WAKE_THRESHOLD 32
a86043c2
JB
1269 if (count && netif_carrier_ok(netdev) &&
1270 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
bc7f75fa
AK
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1273 */
1274 smp_mb();
1275
1276 if (netif_queue_stopped(netdev) &&
1277 !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 netif_wake_queue(netdev);
1279 ++adapter->restart_queue;
1280 }
1281 }
1282
1283 if (adapter->detect_tx_hung) {
e921eb1a 1284 /* Detect a transmit hang in hardware, this serializes the
41cec6f1
BA
1285 * check with the clearing of time_stamp and movement of i
1286 */
3db1cd5c 1287 adapter->detect_tx_hung = false;
12d04a3c
AD
1288 if (tx_ring->buffer_info[i].time_stamp &&
1289 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
8e95a202 1290 + (adapter->tx_timeout_factor * HZ)) &&
09357b00 1291 !(er32(STATUS) & E1000_STATUS_TXOFF))
41cec6f1 1292 schedule_work(&adapter->print_hang_task);
09357b00
JK
1293 else
1294 adapter->tx_hang_recheck = false;
bc7f75fa
AK
1295 }
1296 adapter->total_tx_bytes += total_tx_bytes;
1297 adapter->total_tx_packets += total_tx_packets;
807540ba 1298 return count < tx_ring->count;
bc7f75fa
AK
1299}
1300
bc7f75fa
AK
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
55aa6985 1303 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
1304 *
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1307 **/
55aa6985
BA
1308static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 int work_to_do)
bc7f75fa 1310{
55aa6985 1311 struct e1000_adapter *adapter = rx_ring->adapter;
3bb99fe2 1312 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
1313 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 struct net_device *netdev = adapter->netdev;
1315 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1316 struct e1000_buffer *buffer_info, *next_buffer;
1317 struct e1000_ps_page *ps_page;
1318 struct sk_buff *skb;
1319 unsigned int i, j;
1320 u32 length, staterr;
1321 int cleaned_count = 0;
3db1cd5c 1322 bool cleaned = false;
bc7f75fa
AK
1323 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325 i = rx_ring->next_to_clean;
1326 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 buffer_info = &rx_ring->buffer_info[i];
1329
1330 while (staterr & E1000_RXD_STAT_DD) {
1331 if (*work_done >= work_to_do)
1332 break;
1333 (*work_done)++;
1334 skb = buffer_info->skb;
837a1dba 1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
bc7f75fa
AK
1336
1337 /* in the packet split case this is header only */
1338 prefetch(skb->data - NET_IP_ALIGN);
1339
1340 i++;
1341 if (i == rx_ring->count)
1342 i = 0;
1343 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 prefetch(next_rxd);
1345
1346 next_buffer = &rx_ring->buffer_info[i];
1347
3db1cd5c 1348 cleaned = true;
bc7f75fa 1349 cleaned_count++;
0be3f55f 1350 dma_unmap_single(&pdev->dev, buffer_info->dma,
af667a29 1351 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
bc7f75fa
AK
1352 buffer_info->dma = 0;
1353
af667a29 1354 /* see !EOP comment in other Rx routine */
b94b5028
JB
1355 if (!(staterr & E1000_RXD_STAT_EOP))
1356 adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
ef456f85 1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
bc7f75fa 1360 dev_kfree_skb_irq(skb);
b94b5028
JB
1361 if (staterr & E1000_RXD_STAT_EOP)
1362 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa
AK
1363 goto next_desc;
1364 }
1365
cf955e6c
BG
1366 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 !(netdev->features & NETIF_F_RXALL))) {
bc7f75fa
AK
1368 dev_kfree_skb_irq(skb);
1369 goto next_desc;
1370 }
1371
1372 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374 if (!length) {
ef456f85 1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
bc7f75fa
AK
1376 dev_kfree_skb_irq(skb);
1377 goto next_desc;
1378 }
1379
1380 /* Good Receive */
1381 skb_put(skb, length);
1382
1383 {
e921eb1a 1384 /* this looks ugly, but it seems compiler issues make
0e15df49
BA
1385 * it more efficient than reusing j
1386 */
1387 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
bc7f75fa 1388
e921eb1a 1389 /* page alloc/put takes too long and effects small
0e15df49
BA
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
ad68076e 1393 */
0e15df49
BA
1394 if (l1 && (l1 <= copybreak) &&
1395 ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 u8 *vaddr;
1397
1398 ps_page = &buffer_info->ps_pages[0];
1399
e921eb1a 1400 /* there is no documentation about how to call
0e15df49
BA
1401 * kmap_atomic, so we can't hold the mapping
1402 * very long
1403 */
1404 dma_sync_single_for_cpu(&pdev->dev,
1405 ps_page->dma,
1406 PAGE_SIZE,
1407 DMA_FROM_DEVICE);
9f393834 1408 vaddr = kmap_atomic(ps_page->page);
0e15df49 1409 memcpy(skb_tail_pointer(skb), vaddr, l1);
9f393834 1410 kunmap_atomic(vaddr);
0e15df49
BA
1411 dma_sync_single_for_device(&pdev->dev,
1412 ps_page->dma,
1413 PAGE_SIZE,
1414 DMA_FROM_DEVICE);
1415
1416 /* remove the CRC */
0184039a
BG
1417 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 if (!(netdev->features & NETIF_F_RXFCS))
1419 l1 -= 4;
1420 }
0e15df49
BA
1421
1422 skb_put(skb, l1);
1423 goto copydone;
e80bd1d1 1424 } /* if */
bc7f75fa
AK
1425 }
1426
1427 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429 if (!length)
1430 break;
1431
47f44e40 1432 ps_page = &buffer_info->ps_pages[j];
0be3f55f
NN
1433 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 DMA_FROM_DEVICE);
bc7f75fa
AK
1435 ps_page->dma = 0;
1436 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 ps_page->page = NULL;
1438 skb->len += length;
1439 skb->data_len += length;
98a045d7 1440 skb->truesize += PAGE_SIZE;
bc7f75fa
AK
1441 }
1442
eb7c3adb
JK
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1445 */
0184039a
BG
1446 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 if (!(netdev->features & NETIF_F_RXFCS))
1448 pskb_trim(skb, skb->len - 4);
1449 }
eb7c3adb 1450
bc7f75fa
AK
1451copydone:
1452 total_rx_bytes += skb->len;
1453 total_rx_packets++;
1454
2e1706f2 1455 e1000_rx_checksum(adapter, staterr, skb);
bc7f75fa 1456
70495a50
BA
1457 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
bc7f75fa 1459 if (rx_desc->wb.upper.header_status &
17e813ec 1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
bc7f75fa
AK
1461 adapter->rx_hdr_split++;
1462
b67e1913
BA
1463 e1000_receive_skb(adapter, netdev, skb, staterr,
1464 rx_desc->wb.middle.vlan);
bc7f75fa
AK
1465
1466next_desc:
1467 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 buffer_info->skb = NULL;
1469
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
55aa6985 1472 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1473 GFP_ATOMIC);
bc7f75fa
AK
1474 cleaned_count = 0;
1475 }
1476
1477 /* use prefetched values */
1478 rx_desc = next_rxd;
1479 buffer_info = next_buffer;
1480
1481 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482 }
1483 rx_ring->next_to_clean = i;
1484
1485 cleaned_count = e1000_desc_unused(rx_ring);
1486 if (cleaned_count)
55aa6985 1487 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
bc7f75fa 1488
bc7f75fa 1489 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 1490 adapter->total_rx_packets += total_rx_packets;
bc7f75fa
AK
1491 return cleaned;
1492}
1493
97ac8cae
BA
1494/**
1495 * e1000_consume_page - helper function
1496 **/
1497static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
66501f56 1498 u16 length)
97ac8cae
BA
1499{
1500 bi->page = NULL;
1501 skb->len += length;
1502 skb->data_len += length;
98a045d7 1503 skb->truesize += PAGE_SIZE;
97ac8cae
BA
1504}
1505
1506/**
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1509 *
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1512 **/
55aa6985
BA
1513static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514 int work_to_do)
97ac8cae 1515{
55aa6985 1516 struct e1000_adapter *adapter = rx_ring->adapter;
97ac8cae
BA
1517 struct net_device *netdev = adapter->netdev;
1518 struct pci_dev *pdev = adapter->pdev;
5f450212 1519 union e1000_rx_desc_extended *rx_desc, *next_rxd;
97ac8cae 1520 struct e1000_buffer *buffer_info, *next_buffer;
5f450212 1521 u32 length, staterr;
97ac8cae
BA
1522 unsigned int i;
1523 int cleaned_count = 0;
1524 bool cleaned = false;
362e20ca 1525 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
17e813ec 1526 struct skb_shared_info *shinfo;
97ac8cae
BA
1527
1528 i = rx_ring->next_to_clean;
5f450212
BA
1529 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
97ac8cae
BA
1531 buffer_info = &rx_ring->buffer_info[i];
1532
5f450212 1533 while (staterr & E1000_RXD_STAT_DD) {
97ac8cae 1534 struct sk_buff *skb;
97ac8cae
BA
1535
1536 if (*work_done >= work_to_do)
1537 break;
1538 (*work_done)++;
837a1dba 1539 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
97ac8cae 1540
97ac8cae
BA
1541 skb = buffer_info->skb;
1542 buffer_info->skb = NULL;
1543
1544 ++i;
1545 if (i == rx_ring->count)
1546 i = 0;
5f450212 1547 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
97ac8cae
BA
1548 prefetch(next_rxd);
1549
1550 next_buffer = &rx_ring->buffer_info[i];
1551
1552 cleaned = true;
1553 cleaned_count++;
0be3f55f
NN
1554 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555 DMA_FROM_DEVICE);
97ac8cae
BA
1556 buffer_info->dma = 0;
1557
5f450212 1558 length = le16_to_cpu(rx_desc->wb.upper.length);
97ac8cae
BA
1559
1560 /* errors is only valid for DD + EOP descriptors */
5f450212 1561 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
cf955e6c
BG
1562 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563 !(netdev->features & NETIF_F_RXALL)))) {
5f450212
BA
1564 /* recycle both page and skb */
1565 buffer_info->skb = skb;
1566 /* an error means any chain goes out the window too */
1567 if (rx_ring->rx_skb_top)
1568 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569 rx_ring->rx_skb_top = NULL;
1570 goto next_desc;
97ac8cae 1571 }
f0f1a172 1572#define rxtop (rx_ring->rx_skb_top)
5f450212 1573 if (!(staterr & E1000_RXD_STAT_EOP)) {
97ac8cae
BA
1574 /* this descriptor is only the beginning (or middle) */
1575 if (!rxtop) {
1576 /* this is the beginning of a chain */
1577 rxtop = skb;
1578 skb_fill_page_desc(rxtop, 0, buffer_info->page,
f0ff4398 1579 0, length);
97ac8cae
BA
1580 } else {
1581 /* this is the middle of a chain */
17e813ec
BA
1582 shinfo = skb_shinfo(rxtop);
1583 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584 buffer_info->page, 0,
1585 length);
97ac8cae
BA
1586 /* re-use the skb, only consumed the page */
1587 buffer_info->skb = skb;
1588 }
1589 e1000_consume_page(buffer_info, rxtop, length);
1590 goto next_desc;
1591 } else {
1592 if (rxtop) {
1593 /* end of the chain */
17e813ec
BA
1594 shinfo = skb_shinfo(rxtop);
1595 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596 buffer_info->page, 0,
1597 length);
97ac8cae 1598 /* re-use the current skb, we only consumed the
e921eb1a
BA
1599 * page
1600 */
97ac8cae
BA
1601 buffer_info->skb = skb;
1602 skb = rxtop;
1603 rxtop = NULL;
1604 e1000_consume_page(buffer_info, skb, length);
1605 } else {
1606 /* no chain, got EOP, this buf is the packet
e921eb1a
BA
1607 * copybreak to save the put_page/alloc_page
1608 */
97ac8cae
BA
1609 if (length <= copybreak &&
1610 skb_tailroom(skb) >= length) {
1611 u8 *vaddr;
4679026d 1612 vaddr = kmap_atomic(buffer_info->page);
97ac8cae
BA
1613 memcpy(skb_tail_pointer(skb), vaddr,
1614 length);
4679026d 1615 kunmap_atomic(vaddr);
97ac8cae 1616 /* re-use the page, so don't erase
e921eb1a
BA
1617 * buffer_info->page
1618 */
97ac8cae
BA
1619 skb_put(skb, length);
1620 } else {
1621 skb_fill_page_desc(skb, 0,
f0ff4398
BA
1622 buffer_info->page, 0,
1623 length);
97ac8cae 1624 e1000_consume_page(buffer_info, skb,
f0ff4398 1625 length);
97ac8cae
BA
1626 }
1627 }
1628 }
1629
2e1706f2
BA
1630 /* Receive Checksum Offload */
1631 e1000_rx_checksum(adapter, staterr, skb);
97ac8cae 1632
70495a50
BA
1633 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
97ac8cae
BA
1635 /* probably a little skewed due to removing CRC */
1636 total_rx_bytes += skb->len;
1637 total_rx_packets++;
1638
1639 /* eth type trans needs skb->data to point to something */
1640 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1641 e_err("pskb_may_pull failed.\n");
ef5ab89c 1642 dev_kfree_skb_irq(skb);
97ac8cae
BA
1643 goto next_desc;
1644 }
1645
5f450212
BA
1646 e1000_receive_skb(adapter, netdev, skb, staterr,
1647 rx_desc->wb.upper.vlan);
97ac8cae
BA
1648
1649next_desc:
5f450212 1650 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
97ac8cae
BA
1651
1652 /* return some buffers to hardware, one at a time is too slow */
1653 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
55aa6985 1654 adapter->alloc_rx_buf(rx_ring, cleaned_count,
c2fed996 1655 GFP_ATOMIC);
97ac8cae
BA
1656 cleaned_count = 0;
1657 }
1658
1659 /* use prefetched values */
1660 rx_desc = next_rxd;
1661 buffer_info = next_buffer;
5f450212
BA
1662
1663 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
97ac8cae
BA
1664 }
1665 rx_ring->next_to_clean = i;
1666
1667 cleaned_count = e1000_desc_unused(rx_ring);
1668 if (cleaned_count)
55aa6985 1669 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
97ac8cae
BA
1670
1671 adapter->total_rx_bytes += total_rx_bytes;
1672 adapter->total_rx_packets += total_rx_packets;
97ac8cae
BA
1673 return cleaned;
1674}
1675
bc7f75fa
AK
1676/**
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
55aa6985 1678 * @rx_ring: Rx descriptor ring
bc7f75fa 1679 **/
55aa6985 1680static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
bc7f75fa 1681{
55aa6985 1682 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa
AK
1683 struct e1000_buffer *buffer_info;
1684 struct e1000_ps_page *ps_page;
1685 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1686 unsigned int i, j;
1687
1688 /* Free all the Rx ring sk_buffs */
1689 for (i = 0; i < rx_ring->count; i++) {
1690 buffer_info = &rx_ring->buffer_info[i];
1691 if (buffer_info->dma) {
1692 if (adapter->clean_rx == e1000_clean_rx_irq)
0be3f55f 1693 dma_unmap_single(&pdev->dev, buffer_info->dma,
bc7f75fa 1694 adapter->rx_buffer_len,
0be3f55f 1695 DMA_FROM_DEVICE);
97ac8cae 1696 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
0be3f55f 1697 dma_unmap_page(&pdev->dev, buffer_info->dma,
f0ff4398 1698 PAGE_SIZE, DMA_FROM_DEVICE);
bc7f75fa 1699 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
0be3f55f 1700 dma_unmap_single(&pdev->dev, buffer_info->dma,
bc7f75fa 1701 adapter->rx_ps_bsize0,
0be3f55f 1702 DMA_FROM_DEVICE);
bc7f75fa
AK
1703 buffer_info->dma = 0;
1704 }
1705
97ac8cae
BA
1706 if (buffer_info->page) {
1707 put_page(buffer_info->page);
1708 buffer_info->page = NULL;
1709 }
1710
bc7f75fa
AK
1711 if (buffer_info->skb) {
1712 dev_kfree_skb(buffer_info->skb);
1713 buffer_info->skb = NULL;
1714 }
1715
1716 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1717 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1718 if (!ps_page->page)
1719 break;
0be3f55f
NN
1720 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721 DMA_FROM_DEVICE);
bc7f75fa
AK
1722 ps_page->dma = 0;
1723 put_page(ps_page->page);
1724 ps_page->page = NULL;
1725 }
1726 }
1727
1728 /* there also may be some cached data from a chained receive */
1729 if (rx_ring->rx_skb_top) {
1730 dev_kfree_skb(rx_ring->rx_skb_top);
1731 rx_ring->rx_skb_top = NULL;
1732 }
1733
bc7f75fa
AK
1734 /* Zero out the descriptor ring */
1735 memset(rx_ring->desc, 0, rx_ring->size);
1736
1737 rx_ring->next_to_clean = 0;
1738 rx_ring->next_to_use = 0;
b94b5028 1739 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
bc7f75fa 1740
c5083cf6 1741 writel(0, rx_ring->head);
b485dbae 1742 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
bdc125f7
BA
1743 e1000e_update_rdt_wa(rx_ring, 0);
1744 else
1745 writel(0, rx_ring->tail);
bc7f75fa
AK
1746}
1747
a8f88ff5
JB
1748static void e1000e_downshift_workaround(struct work_struct *work)
1749{
1750 struct e1000_adapter *adapter = container_of(work,
17e813ec
BA
1751 struct e1000_adapter,
1752 downshift_task);
a8f88ff5 1753
615b32af
JB
1754 if (test_bit(__E1000_DOWN, &adapter->state))
1755 return;
1756
a8f88ff5
JB
1757 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1758}
1759
bc7f75fa
AK
1760/**
1761 * e1000_intr_msi - Interrupt Handler
1762 * @irq: interrupt number
1763 * @data: pointer to a network interface device structure
1764 **/
8bb62869 1765static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
bc7f75fa
AK
1766{
1767 struct net_device *netdev = data;
1768 struct e1000_adapter *adapter = netdev_priv(netdev);
1769 struct e1000_hw *hw = &adapter->hw;
1770 u32 icr = er32(ICR);
1771
e921eb1a 1772 /* read ICR disables interrupts using IAM */
573cca8c 1773 if (icr & E1000_ICR_LSC) {
f92518dd 1774 hw->mac.get_link_status = true;
e921eb1a 1775 /* ICH8 workaround-- Call gig speed drop workaround on cable
ad68076e
BA
1776 * disconnect (LSC) before accessing any PHY registers
1777 */
bc7f75fa
AK
1778 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1779 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1780 schedule_work(&adapter->downshift_task);
bc7f75fa 1781
e921eb1a 1782 /* 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1783 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1784 * adapter in watchdog
1785 */
bc7f75fa
AK
1786 if (netif_carrier_ok(netdev) &&
1787 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1788 /* disable receives */
1789 u32 rctl = er32(RCTL);
6cf08d1c 1790
bc7f75fa 1791 ew32(RCTL, rctl & ~E1000_RCTL_EN);
12d43f7d 1792 adapter->flags |= FLAG_RESTART_NOW;
bc7f75fa
AK
1793 }
1794 /* guard against interrupt when we're going down */
1795 if (!test_bit(__E1000_DOWN, &adapter->state))
1796 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1797 }
1798
94fb848b 1799 /* Reset on uncorrectable ECC error */
79849ebc
DE
1800 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1801 (hw->mac.type == e1000_pch_spt))) {
94fb848b
BA
1802 u32 pbeccsts = er32(PBECCSTS);
1803
1804 adapter->corr_errors +=
1805 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1806 adapter->uncorr_errors +=
1807 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1808 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1809
1810 /* Do the reset outside of interrupt context */
1811 schedule_work(&adapter->reset_task);
1812
1813 /* return immediately since reset is imminent */
1814 return IRQ_HANDLED;
1815 }
1816
288379f0 1817 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1818 adapter->total_tx_bytes = 0;
1819 adapter->total_tx_packets = 0;
1820 adapter->total_rx_bytes = 0;
1821 adapter->total_rx_packets = 0;
288379f0 1822 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1823 }
1824
1825 return IRQ_HANDLED;
1826}
1827
1828/**
1829 * e1000_intr - Interrupt Handler
1830 * @irq: interrupt number
1831 * @data: pointer to a network interface device structure
1832 **/
8bb62869 1833static irqreturn_t e1000_intr(int __always_unused irq, void *data)
bc7f75fa
AK
1834{
1835 struct net_device *netdev = data;
1836 struct e1000_adapter *adapter = netdev_priv(netdev);
1837 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1838 u32 rctl, icr = er32(ICR);
4662e82b 1839
a68ea775 1840 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
e80bd1d1 1841 return IRQ_NONE; /* Not our interrupt */
bc7f75fa 1842
e921eb1a 1843 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
ad68076e
BA
1844 * not set, then the adapter didn't send an interrupt
1845 */
bc7f75fa
AK
1846 if (!(icr & E1000_ICR_INT_ASSERTED))
1847 return IRQ_NONE;
1848
e921eb1a 1849 /* Interrupt Auto-Mask...upon reading ICR,
ad68076e
BA
1850 * interrupts are masked. No need for the
1851 * IMC write
1852 */
bc7f75fa 1853
573cca8c 1854 if (icr & E1000_ICR_LSC) {
f92518dd 1855 hw->mac.get_link_status = true;
e921eb1a 1856 /* ICH8 workaround-- Call gig speed drop workaround on cable
ad68076e
BA
1857 * disconnect (LSC) before accessing any PHY registers
1858 */
bc7f75fa
AK
1859 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1860 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1861 schedule_work(&adapter->downshift_task);
bc7f75fa 1862
e921eb1a 1863 /* 80003ES2LAN workaround--
bc7f75fa
AK
1864 * For packet buffer work-around on link down event;
1865 * disable receives here in the ISR and
1866 * reset adapter in watchdog
1867 */
1868 if (netif_carrier_ok(netdev) &&
1869 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1870 /* disable receives */
1871 rctl = er32(RCTL);
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
12d43f7d 1873 adapter->flags |= FLAG_RESTART_NOW;
bc7f75fa
AK
1874 }
1875 /* guard against interrupt when we're going down */
1876 if (!test_bit(__E1000_DOWN, &adapter->state))
1877 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1878 }
1879
94fb848b 1880 /* Reset on uncorrectable ECC error */
79849ebc
DE
1881 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1882 (hw->mac.type == e1000_pch_spt))) {
94fb848b
BA
1883 u32 pbeccsts = er32(PBECCSTS);
1884
1885 adapter->corr_errors +=
1886 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1887 adapter->uncorr_errors +=
1888 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1889 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1890
1891 /* Do the reset outside of interrupt context */
1892 schedule_work(&adapter->reset_task);
1893
1894 /* return immediately since reset is imminent */
1895 return IRQ_HANDLED;
1896 }
1897
288379f0 1898 if (napi_schedule_prep(&adapter->napi)) {
bc7f75fa
AK
1899 adapter->total_tx_bytes = 0;
1900 adapter->total_tx_packets = 0;
1901 adapter->total_rx_bytes = 0;
1902 adapter->total_rx_packets = 0;
288379f0 1903 __napi_schedule(&adapter->napi);
bc7f75fa
AK
1904 }
1905
1906 return IRQ_HANDLED;
1907}
1908
8bb62869 1909static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
4662e82b
BA
1910{
1911 struct net_device *netdev = data;
1912 struct e1000_adapter *adapter = netdev_priv(netdev);
1913 struct e1000_hw *hw = &adapter->hw;
1914 u32 icr = er32(ICR);
1915
1916 if (!(icr & E1000_ICR_INT_ASSERTED)) {
a3c69fef
JB
1917 if (!test_bit(__E1000_DOWN, &adapter->state))
1918 ew32(IMS, E1000_IMS_OTHER);
4662e82b
BA
1919 return IRQ_NONE;
1920 }
1921
1922 if (icr & adapter->eiac_mask)
1923 ew32(ICS, (icr & adapter->eiac_mask));
1924
1925 if (icr & E1000_ICR_OTHER) {
1926 if (!(icr & E1000_ICR_LSC))
1927 goto no_link_interrupt;
f92518dd 1928 hw->mac.get_link_status = true;
4662e82b
BA
1929 /* guard against interrupt when we're going down */
1930 if (!test_bit(__E1000_DOWN, &adapter->state))
1931 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1932 }
1933
1934no_link_interrupt:
a3c69fef
JB
1935 if (!test_bit(__E1000_DOWN, &adapter->state))
1936 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
4662e82b
BA
1937
1938 return IRQ_HANDLED;
1939}
1940
8bb62869 1941static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
4662e82b
BA
1942{
1943 struct net_device *netdev = data;
1944 struct e1000_adapter *adapter = netdev_priv(netdev);
1945 struct e1000_hw *hw = &adapter->hw;
1946 struct e1000_ring *tx_ring = adapter->tx_ring;
1947
4662e82b
BA
1948 adapter->total_tx_bytes = 0;
1949 adapter->total_tx_packets = 0;
1950
55aa6985 1951 if (!e1000_clean_tx_irq(tx_ring))
4662e82b
BA
1952 /* Ring was not completely cleaned, so fire another interrupt */
1953 ew32(ICS, tx_ring->ims_val);
1954
1955 return IRQ_HANDLED;
1956}
1957
8bb62869 1958static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
4662e82b
BA
1959{
1960 struct net_device *netdev = data;
1961 struct e1000_adapter *adapter = netdev_priv(netdev);
55aa6985 1962 struct e1000_ring *rx_ring = adapter->rx_ring;
4662e82b
BA
1963
1964 /* Write the ITR value calculated at the end of the
1965 * previous interrupt.
1966 */
55aa6985
BA
1967 if (rx_ring->set_itr) {
1968 writel(1000000000 / (rx_ring->itr_val * 256),
1969 rx_ring->itr_register);
1970 rx_ring->set_itr = 0;
4662e82b
BA
1971 }
1972
288379f0 1973 if (napi_schedule_prep(&adapter->napi)) {
4662e82b
BA
1974 adapter->total_rx_bytes = 0;
1975 adapter->total_rx_packets = 0;
288379f0 1976 __napi_schedule(&adapter->napi);
4662e82b
BA
1977 }
1978 return IRQ_HANDLED;
1979}
1980
1981/**
1982 * e1000_configure_msix - Configure MSI-X hardware
1983 *
1984 * e1000_configure_msix sets up the hardware to properly
1985 * generate MSI-X interrupts.
1986 **/
1987static void e1000_configure_msix(struct e1000_adapter *adapter)
1988{
1989 struct e1000_hw *hw = &adapter->hw;
1990 struct e1000_ring *rx_ring = adapter->rx_ring;
1991 struct e1000_ring *tx_ring = adapter->tx_ring;
1992 int vector = 0;
1993 u32 ctrl_ext, ivar = 0;
1994
1995 adapter->eiac_mask = 0;
1996
1997 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998 if (hw->mac.type == e1000_82574) {
1999 u32 rfctl = er32(RFCTL);
6cf08d1c 2000
4662e82b
BA
2001 rfctl |= E1000_RFCTL_ACK_DIS;
2002 ew32(RFCTL, rfctl);
2003 }
2004
4662e82b
BA
2005 /* Configure Rx vector */
2006 rx_ring->ims_val = E1000_IMS_RXQ0;
2007 adapter->eiac_mask |= rx_ring->ims_val;
2008 if (rx_ring->itr_val)
2009 writel(1000000000 / (rx_ring->itr_val * 256),
c5083cf6 2010 rx_ring->itr_register);
4662e82b 2011 else
c5083cf6 2012 writel(1, rx_ring->itr_register);
4662e82b
BA
2013 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014
2015 /* Configure Tx vector */
2016 tx_ring->ims_val = E1000_IMS_TXQ0;
2017 vector++;
2018 if (tx_ring->itr_val)
2019 writel(1000000000 / (tx_ring->itr_val * 256),
c5083cf6 2020 tx_ring->itr_register);
4662e82b 2021 else
c5083cf6 2022 writel(1, tx_ring->itr_register);
4662e82b
BA
2023 adapter->eiac_mask |= tx_ring->ims_val;
2024 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025
2026 /* set vector for Other Causes, e.g. link changes */
2027 vector++;
2028 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029 if (rx_ring->itr_val)
2030 writel(1000000000 / (rx_ring->itr_val * 256),
2031 hw->hw_addr + E1000_EITR_82574(vector));
2032 else
2033 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034
2035 /* Cause Tx interrupts on every write back */
2036 ivar |= (1 << 31);
2037
2038 ew32(IVAR, ivar);
2039
2040 /* enable MSI-X PBA support */
2041 ctrl_ext = er32(CTRL_EXT);
2042 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2043
2044 /* Auto-Mask Other interrupts upon ICR read */
4662e82b
BA
2045 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2046 ctrl_ext |= E1000_CTRL_EXT_EIAME;
2047 ew32(CTRL_EXT, ctrl_ext);
2048 e1e_flush();
2049}
2050
2051void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2052{
2053 if (adapter->msix_entries) {
2054 pci_disable_msix(adapter->pdev);
2055 kfree(adapter->msix_entries);
2056 adapter->msix_entries = NULL;
2057 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2058 pci_disable_msi(adapter->pdev);
2059 adapter->flags &= ~FLAG_MSI_ENABLED;
2060 }
4662e82b
BA
2061}
2062
2063/**
2064 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2065 *
2066 * Attempt to configure interrupts using the best available
2067 * capabilities of the hardware and kernel.
2068 **/
2069void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2070{
2071 int err;
8e86acd7 2072 int i;
4662e82b
BA
2073
2074 switch (adapter->int_mode) {
2075 case E1000E_INT_MODE_MSIX:
2076 if (adapter->flags & FLAG_HAS_MSIX) {
8e86acd7
JK
2077 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2078 adapter->msix_entries = kcalloc(adapter->num_vectors,
17e813ec
BA
2079 sizeof(struct
2080 msix_entry),
2081 GFP_KERNEL);
4662e82b 2082 if (adapter->msix_entries) {
0cc7c959
AG
2083 struct e1000_adapter *a = adapter;
2084
8e86acd7 2085 for (i = 0; i < adapter->num_vectors; i++)
4662e82b
BA
2086 adapter->msix_entries[i].entry = i;
2087
0cc7c959
AG
2088 err = pci_enable_msix_range(a->pdev,
2089 a->msix_entries,
2090 a->num_vectors,
2091 a->num_vectors);
2092 if (err > 0)
4662e82b
BA
2093 return;
2094 }
2095 /* MSI-X failed, so fall through and try MSI */
ef456f85 2096 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
4662e82b
BA
2097 e1000e_reset_interrupt_capability(adapter);
2098 }
2099 adapter->int_mode = E1000E_INT_MODE_MSI;
2100 /* Fall through */
2101 case E1000E_INT_MODE_MSI:
2102 if (!pci_enable_msi(adapter->pdev)) {
2103 adapter->flags |= FLAG_MSI_ENABLED;
2104 } else {
2105 adapter->int_mode = E1000E_INT_MODE_LEGACY;
ef456f85 2106 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
4662e82b
BA
2107 }
2108 /* Fall through */
2109 case E1000E_INT_MODE_LEGACY:
2110 /* Don't do anything; this is the system default */
2111 break;
2112 }
8e86acd7
JK
2113
2114 /* store the number of vectors being used */
2115 adapter->num_vectors = 1;
4662e82b
BA
2116}
2117
2118/**
2119 * e1000_request_msix - Initialize MSI-X interrupts
2120 *
2121 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2122 * kernel.
2123 **/
2124static int e1000_request_msix(struct e1000_adapter *adapter)
2125{
2126 struct net_device *netdev = adapter->netdev;
2127 int err = 0, vector = 0;
2128
2129 if (strlen(netdev->name) < (IFNAMSIZ - 5))
79f5e840
BA
2130 snprintf(adapter->rx_ring->name,
2131 sizeof(adapter->rx_ring->name) - 1,
2132 "%s-rx-0", netdev->name);
4662e82b
BA
2133 else
2134 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2135 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2136 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
4662e82b
BA
2137 netdev);
2138 if (err)
5015e53a 2139 return err;
c5083cf6
BA
2140 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2141 E1000_EITR_82574(vector);
4662e82b
BA
2142 adapter->rx_ring->itr_val = adapter->itr;
2143 vector++;
2144
2145 if (strlen(netdev->name) < (IFNAMSIZ - 5))
79f5e840
BA
2146 snprintf(adapter->tx_ring->name,
2147 sizeof(adapter->tx_ring->name) - 1,
2148 "%s-tx-0", netdev->name);
4662e82b
BA
2149 else
2150 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2151 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2152 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
4662e82b
BA
2153 netdev);
2154 if (err)
5015e53a 2155 return err;
c5083cf6
BA
2156 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2157 E1000_EITR_82574(vector);
4662e82b
BA
2158 adapter->tx_ring->itr_val = adapter->itr;
2159 vector++;
2160
2161 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 2162 e1000_msix_other, 0, netdev->name, netdev);
4662e82b 2163 if (err)
5015e53a 2164 return err;
4662e82b
BA
2165
2166 e1000_configure_msix(adapter);
5015e53a 2167
4662e82b 2168 return 0;
4662e82b
BA
2169}
2170
f8d59f78
BA
2171/**
2172 * e1000_request_irq - initialize interrupts
2173 *
2174 * Attempts to configure interrupts using the best available
2175 * capabilities of the hardware and kernel.
2176 **/
bc7f75fa
AK
2177static int e1000_request_irq(struct e1000_adapter *adapter)
2178{
2179 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
2180 int err;
2181
4662e82b
BA
2182 if (adapter->msix_entries) {
2183 err = e1000_request_msix(adapter);
2184 if (!err)
2185 return err;
2186 /* fall back to MSI */
2187 e1000e_reset_interrupt_capability(adapter);
2188 adapter->int_mode = E1000E_INT_MODE_MSI;
2189 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2190 }
4662e82b 2191 if (adapter->flags & FLAG_MSI_ENABLED) {
a0607fd3 2192 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
4662e82b
BA
2193 netdev->name, netdev);
2194 if (!err)
2195 return err;
bc7f75fa 2196
4662e82b
BA
2197 /* fall back to legacy interrupt */
2198 e1000e_reset_interrupt_capability(adapter);
2199 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
2200 }
2201
a0607fd3 2202 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
4662e82b
BA
2203 netdev->name, netdev);
2204 if (err)
2205 e_err("Unable to allocate interrupt, Error: %d\n", err);
2206
bc7f75fa
AK
2207 return err;
2208}
2209
2210static void e1000_free_irq(struct e1000_adapter *adapter)
2211{
2212 struct net_device *netdev = adapter->netdev;
2213
4662e82b
BA
2214 if (adapter->msix_entries) {
2215 int vector = 0;
2216
2217 free_irq(adapter->msix_entries[vector].vector, netdev);
2218 vector++;
2219
2220 free_irq(adapter->msix_entries[vector].vector, netdev);
2221 vector++;
2222
2223 /* Other Causes interrupt vector */
2224 free_irq(adapter->msix_entries[vector].vector, netdev);
2225 return;
bc7f75fa 2226 }
4662e82b
BA
2227
2228 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
2229}
2230
2231/**
2232 * e1000_irq_disable - Mask off interrupt generation on the NIC
2233 **/
2234static void e1000_irq_disable(struct e1000_adapter *adapter)
2235{
2236 struct e1000_hw *hw = &adapter->hw;
2237
bc7f75fa 2238 ew32(IMC, ~0);
4662e82b
BA
2239 if (adapter->msix_entries)
2240 ew32(EIAC_82574, 0);
bc7f75fa 2241 e1e_flush();
8e86acd7
JK
2242
2243 if (adapter->msix_entries) {
2244 int i;
6cf08d1c 2245
8e86acd7
JK
2246 for (i = 0; i < adapter->num_vectors; i++)
2247 synchronize_irq(adapter->msix_entries[i].vector);
2248 } else {
2249 synchronize_irq(adapter->pdev->irq);
2250 }
bc7f75fa
AK
2251}
2252
2253/**
2254 * e1000_irq_enable - Enable default interrupt generation settings
2255 **/
2256static void e1000_irq_enable(struct e1000_adapter *adapter)
2257{
2258 struct e1000_hw *hw = &adapter->hw;
2259
4662e82b
BA
2260 if (adapter->msix_entries) {
2261 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2262 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
79849ebc
DE
2263 } else if ((hw->mac.type == e1000_pch_lpt) ||
2264 (hw->mac.type == e1000_pch_spt)) {
94fb848b 2265 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
4662e82b
BA
2266 } else {
2267 ew32(IMS, IMS_ENABLE_MASK);
2268 }
74ef9c39 2269 e1e_flush();
bc7f75fa
AK
2270}
2271
2272/**
31dbe5b4 2273 * e1000e_get_hw_control - get control of the h/w from f/w
bc7f75fa
AK
2274 * @adapter: address of board private structure
2275 *
31dbe5b4 2276 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
2277 * For ASF and Pass Through versions of f/w this means that
2278 * the driver is loaded. For AMT version (only with 82573)
2279 * of the f/w this means that the network i/f is open.
2280 **/
31dbe5b4 2281void e1000e_get_hw_control(struct e1000_adapter *adapter)
bc7f75fa
AK
2282{
2283 struct e1000_hw *hw = &adapter->hw;
2284 u32 ctrl_ext;
2285 u32 swsm;
2286
2287 /* Let firmware know the driver has taken over */
2288 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2289 swsm = er32(SWSM);
2290 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2291 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2292 ctrl_ext = er32(CTRL_EXT);
ad68076e 2293 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
2294 }
2295}
2296
2297/**
31dbe5b4 2298 * e1000e_release_hw_control - release control of the h/w to f/w
bc7f75fa
AK
2299 * @adapter: address of board private structure
2300 *
31dbe5b4 2301 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
2302 * For ASF and Pass Through versions of f/w this means that the
2303 * driver is no longer loaded. For AMT version (only with 82573) i
2304 * of the f/w this means that the network i/f is closed.
2305 *
2306 **/
31dbe5b4 2307void e1000e_release_hw_control(struct e1000_adapter *adapter)
bc7f75fa
AK
2308{
2309 struct e1000_hw *hw = &adapter->hw;
2310 u32 ctrl_ext;
2311 u32 swsm;
2312
2313 /* Let firmware taken over control of h/w */
2314 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2315 swsm = er32(SWSM);
2316 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2317 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2318 ctrl_ext = er32(CTRL_EXT);
ad68076e 2319 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
2320 }
2321}
2322
bc7f75fa 2323/**
49ce9c2c 2324 * e1000_alloc_ring_dma - allocate memory for a ring structure
bc7f75fa
AK
2325 **/
2326static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2327 struct e1000_ring *ring)
2328{
2329 struct pci_dev *pdev = adapter->pdev;
2330
2331 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2332 GFP_KERNEL);
2333 if (!ring->desc)
2334 return -ENOMEM;
2335
2336 return 0;
2337}
2338
2339/**
2340 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
55aa6985 2341 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
2342 *
2343 * Return 0 on success, negative on failure
2344 **/
55aa6985 2345int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
bc7f75fa 2346{
55aa6985 2347 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
2348 int err = -ENOMEM, size;
2349
2350 size = sizeof(struct e1000_buffer) * tx_ring->count;
89bf67f1 2351 tx_ring->buffer_info = vzalloc(size);
bc7f75fa
AK
2352 if (!tx_ring->buffer_info)
2353 goto err;
bc7f75fa
AK
2354
2355 /* round up to nearest 4K */
2356 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2357 tx_ring->size = ALIGN(tx_ring->size, 4096);
2358
2359 err = e1000_alloc_ring_dma(adapter, tx_ring);
2360 if (err)
2361 goto err;
2362
2363 tx_ring->next_to_use = 0;
2364 tx_ring->next_to_clean = 0;
bc7f75fa
AK
2365
2366 return 0;
2367err:
2368 vfree(tx_ring->buffer_info);
44defeb3 2369 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
2370 return err;
2371}
2372
2373/**
2374 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
55aa6985 2375 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
2376 *
2377 * Returns 0 on success, negative on failure
2378 **/
55aa6985 2379int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
bc7f75fa 2380{
55aa6985 2381 struct e1000_adapter *adapter = rx_ring->adapter;
47f44e40
AK
2382 struct e1000_buffer *buffer_info;
2383 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
2384
2385 size = sizeof(struct e1000_buffer) * rx_ring->count;
89bf67f1 2386 rx_ring->buffer_info = vzalloc(size);
bc7f75fa
AK
2387 if (!rx_ring->buffer_info)
2388 goto err;
bc7f75fa 2389
47f44e40
AK
2390 for (i = 0; i < rx_ring->count; i++) {
2391 buffer_info = &rx_ring->buffer_info[i];
2392 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2393 sizeof(struct e1000_ps_page),
2394 GFP_KERNEL);
2395 if (!buffer_info->ps_pages)
2396 goto err_pages;
2397 }
bc7f75fa
AK
2398
2399 desc_len = sizeof(union e1000_rx_desc_packet_split);
2400
2401 /* Round up to nearest 4K */
2402 rx_ring->size = rx_ring->count * desc_len;
2403 rx_ring->size = ALIGN(rx_ring->size, 4096);
2404
2405 err = e1000_alloc_ring_dma(adapter, rx_ring);
2406 if (err)
47f44e40 2407 goto err_pages;
bc7f75fa
AK
2408
2409 rx_ring->next_to_clean = 0;
2410 rx_ring->next_to_use = 0;
2411 rx_ring->rx_skb_top = NULL;
2412
2413 return 0;
47f44e40
AK
2414
2415err_pages:
2416 for (i = 0; i < rx_ring->count; i++) {
2417 buffer_info = &rx_ring->buffer_info[i];
2418 kfree(buffer_info->ps_pages);
2419 }
bc7f75fa
AK
2420err:
2421 vfree(rx_ring->buffer_info);
e9262447 2422 e_err("Unable to allocate memory for the receive descriptor ring\n");
bc7f75fa
AK
2423 return err;
2424}
2425
2426/**
2427 * e1000_clean_tx_ring - Free Tx Buffers
55aa6985 2428 * @tx_ring: Tx descriptor ring
bc7f75fa 2429 **/
55aa6985 2430static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
bc7f75fa 2431{
55aa6985 2432 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
2433 struct e1000_buffer *buffer_info;
2434 unsigned long size;
2435 unsigned int i;
2436
2437 for (i = 0; i < tx_ring->count; i++) {
2438 buffer_info = &tx_ring->buffer_info[i];
55aa6985 2439 e1000_put_txbuf(tx_ring, buffer_info);
bc7f75fa
AK
2440 }
2441
3f0cfa3b 2442 netdev_reset_queue(adapter->netdev);
bc7f75fa
AK
2443 size = sizeof(struct e1000_buffer) * tx_ring->count;
2444 memset(tx_ring->buffer_info, 0, size);
2445
2446 memset(tx_ring->desc, 0, tx_ring->size);
2447
2448 tx_ring->next_to_use = 0;
2449 tx_ring->next_to_clean = 0;
2450
c5083cf6 2451 writel(0, tx_ring->head);
b485dbae 2452 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
bdc125f7
BA
2453 e1000e_update_tdt_wa(tx_ring, 0);
2454 else
2455 writel(0, tx_ring->tail);
bc7f75fa
AK
2456}
2457
2458/**
2459 * e1000e_free_tx_resources - Free Tx Resources per Queue
55aa6985 2460 * @tx_ring: Tx descriptor ring
bc7f75fa
AK
2461 *
2462 * Free all transmit software resources
2463 **/
55aa6985 2464void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
bc7f75fa 2465{
55aa6985 2466 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa 2467 struct pci_dev *pdev = adapter->pdev;
bc7f75fa 2468
55aa6985 2469 e1000_clean_tx_ring(tx_ring);
bc7f75fa
AK
2470
2471 vfree(tx_ring->buffer_info);
2472 tx_ring->buffer_info = NULL;
2473
2474 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2475 tx_ring->dma);
2476 tx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000e_free_rx_resources - Free Rx Resources
55aa6985 2481 * @rx_ring: Rx descriptor ring
bc7f75fa
AK
2482 *
2483 * Free all receive software resources
2484 **/
55aa6985 2485void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
bc7f75fa 2486{
55aa6985 2487 struct e1000_adapter *adapter = rx_ring->adapter;
bc7f75fa 2488 struct pci_dev *pdev = adapter->pdev;
47f44e40 2489 int i;
bc7f75fa 2490
55aa6985 2491 e1000_clean_rx_ring(rx_ring);
bc7f75fa 2492
b1cdfead 2493 for (i = 0; i < rx_ring->count; i++)
47f44e40 2494 kfree(rx_ring->buffer_info[i].ps_pages);
47f44e40 2495
bc7f75fa
AK
2496 vfree(rx_ring->buffer_info);
2497 rx_ring->buffer_info = NULL;
2498
bc7f75fa
AK
2499 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2500 rx_ring->dma);
2501 rx_ring->desc = NULL;
2502}
2503
2504/**
2505 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
2506 * @adapter: pointer to adapter
2507 * @itr_setting: current adapter->itr
2508 * @packets: the number of packets during this measurement interval
2509 * @bytes: the number of bytes during this measurement interval
2510 *
bc7f75fa
AK
2511 * Stores a new ITR value based on packets and byte
2512 * counts during the last interrupt. The advantage of per interrupt
2513 * computation is faster updates and more accurate ITR for the current
2514 * traffic pattern. Constants in this function were computed
2515 * based on theoretical maximum wire speed and thresholds were set based
2516 * on testing data as well as attempting to minimize response time
4662e82b
BA
2517 * while increasing bulk throughput. This functionality is controlled
2518 * by the InterruptThrottleRate module parameter.
bc7f75fa 2519 **/
8bb62869 2520static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
bc7f75fa
AK
2521{
2522 unsigned int retval = itr_setting;
2523
2524 if (packets == 0)
5015e53a 2525 return itr_setting;
bc7f75fa
AK
2526
2527 switch (itr_setting) {
2528 case lowest_latency:
2529 /* handle TSO and jumbo frames */
362e20ca 2530 if (bytes / packets > 8000)
bc7f75fa 2531 retval = bulk_latency;
b1cdfead 2532 else if ((packets < 5) && (bytes > 512))
bc7f75fa 2533 retval = low_latency;
bc7f75fa 2534 break;
e80bd1d1 2535 case low_latency: /* 50 usec aka 20000 ints/s */
bc7f75fa
AK
2536 if (bytes > 10000) {
2537 /* this if handles the TSO accounting */
362e20ca 2538 if (bytes / packets > 8000)
bc7f75fa 2539 retval = bulk_latency;
362e20ca 2540 else if ((packets < 10) || ((bytes / packets) > 1200))
bc7f75fa 2541 retval = bulk_latency;
b1cdfead 2542 else if ((packets > 35))
bc7f75fa 2543 retval = lowest_latency;
362e20ca 2544 } else if (bytes / packets > 2000) {
bc7f75fa
AK
2545 retval = bulk_latency;
2546 } else if (packets <= 2 && bytes < 512) {
2547 retval = lowest_latency;
2548 }
2549 break;
e80bd1d1 2550 case bulk_latency: /* 250 usec aka 4000 ints/s */
bc7f75fa 2551 if (bytes > 25000) {
b1cdfead 2552 if (packets > 35)
bc7f75fa 2553 retval = low_latency;
bc7f75fa
AK
2554 } else if (bytes < 6000) {
2555 retval = low_latency;
2556 }
2557 break;
2558 }
2559
bc7f75fa
AK
2560 return retval;
2561}
2562
2563static void e1000_set_itr(struct e1000_adapter *adapter)
2564{
bc7f75fa
AK
2565 u16 current_itr;
2566 u32 new_itr = adapter->itr;
2567
2568 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569 if (adapter->link_speed != SPEED_1000) {
2570 current_itr = 0;
2571 new_itr = 4000;
2572 goto set_itr_now;
2573 }
2574
828bac87
BA
2575 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2576 new_itr = 0;
2577 goto set_itr_now;
2578 }
2579
8bb62869
BA
2580 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2581 adapter->total_tx_packets,
2582 adapter->total_tx_bytes);
bc7f75fa
AK
2583 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2584 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2585 adapter->tx_itr = low_latency;
2586
8bb62869
BA
2587 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2588 adapter->total_rx_packets,
2589 adapter->total_rx_bytes);
bc7f75fa
AK
2590 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2591 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2592 adapter->rx_itr = low_latency;
2593
2594 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2595
bc7f75fa 2596 /* counts and packets in update_itr are dependent on these numbers */
33550cec 2597 switch (current_itr) {
bc7f75fa
AK
2598 case lowest_latency:
2599 new_itr = 70000;
2600 break;
2601 case low_latency:
e80bd1d1 2602 new_itr = 20000; /* aka hwitr = ~200 */
bc7f75fa
AK
2603 break;
2604 case bulk_latency:
2605 new_itr = 4000;
2606 break;
2607 default:
2608 break;
2609 }
2610
2611set_itr_now:
2612 if (new_itr != adapter->itr) {
e921eb1a 2613 /* this attempts to bias the interrupt rate towards Bulk
bc7f75fa 2614 * by adding intermediate steps when interrupt rate is
ad68076e
BA
2615 * increasing
2616 */
bc7f75fa 2617 new_itr = new_itr > adapter->itr ?
f0ff4398 2618 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
bc7f75fa 2619 adapter->itr = new_itr;
4662e82b
BA
2620 adapter->rx_ring->itr_val = new_itr;
2621 if (adapter->msix_entries)
2622 adapter->rx_ring->set_itr = 1;
2623 else
e3d14b08 2624 e1000e_write_itr(adapter, new_itr);
bc7f75fa
AK
2625 }
2626}
2627
22a4cca2
MV
2628/**
2629 * e1000e_write_itr - write the ITR value to the appropriate registers
2630 * @adapter: address of board private structure
2631 * @itr: new ITR value to program
2632 *
2633 * e1000e_write_itr determines if the adapter is in MSI-X mode
2634 * and, if so, writes the EITR registers with the ITR value.
2635 * Otherwise, it writes the ITR value into the ITR register.
2636 **/
2637void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2638{
2639 struct e1000_hw *hw = &adapter->hw;
2640 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2641
2642 if (adapter->msix_entries) {
2643 int vector;
2644
2645 for (vector = 0; vector < adapter->num_vectors; vector++)
2646 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2647 } else {
2648 ew32(ITR, new_itr);
2649 }
2650}
2651
4662e82b
BA
2652/**
2653 * e1000_alloc_queues - Allocate memory for all rings
2654 * @adapter: board private structure to initialize
2655 **/
9f9a12f8 2656static int e1000_alloc_queues(struct e1000_adapter *adapter)
4662e82b 2657{
55aa6985
BA
2658 int size = sizeof(struct e1000_ring);
2659
2660 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
4662e82b
BA
2661 if (!adapter->tx_ring)
2662 goto err;
55aa6985
BA
2663 adapter->tx_ring->count = adapter->tx_ring_count;
2664 adapter->tx_ring->adapter = adapter;
4662e82b 2665
55aa6985 2666 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
4662e82b
BA
2667 if (!adapter->rx_ring)
2668 goto err;
55aa6985
BA
2669 adapter->rx_ring->count = adapter->rx_ring_count;
2670 adapter->rx_ring->adapter = adapter;
4662e82b
BA
2671
2672 return 0;
2673err:
2674 e_err("Unable to allocate memory for queues\n");
2675 kfree(adapter->rx_ring);
2676 kfree(adapter->tx_ring);
2677 return -ENOMEM;
2678}
2679
bc7f75fa 2680/**
c58c8a78 2681 * e1000e_poll - NAPI Rx polling callback
ad68076e 2682 * @napi: struct associated with this polling callback
c58c8a78 2683 * @weight: number of packets driver is allowed to process this poll
bc7f75fa 2684 **/
c58c8a78 2685static int e1000e_poll(struct napi_struct *napi, int weight)
bc7f75fa 2686{
c58c8a78
BA
2687 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2688 napi);
4662e82b 2689 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 2690 struct net_device *poll_dev = adapter->netdev;
679e8a0f 2691 int tx_cleaned = 1, work_done = 0;
bc7f75fa 2692
4cf1653a 2693 adapter = netdev_priv(poll_dev);
bc7f75fa 2694
c58c8a78
BA
2695 if (!adapter->msix_entries ||
2696 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2697 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
4662e82b 2698
c58c8a78 2699 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
d2c7ddd6 2700
12d04a3c 2701 if (!tx_cleaned)
c58c8a78 2702 work_done = weight;
bc7f75fa 2703
c58c8a78
BA
2704 /* If weight not fully consumed, exit the polling mode */
2705 if (work_done < weight) {
bc7f75fa
AK
2706 if (adapter->itr_setting & 3)
2707 e1000_set_itr(adapter);
288379f0 2708 napi_complete(napi);
a3c69fef
JB
2709 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2710 if (adapter->msix_entries)
2711 ew32(IMS, adapter->rx_ring->ims_val);
2712 else
2713 e1000_irq_enable(adapter);
2714 }
bc7f75fa
AK
2715 }
2716
2717 return work_done;
2718}
2719
80d5c368 2720static int e1000_vlan_rx_add_vid(struct net_device *netdev,
603cdca9 2721 __always_unused __be16 proto, u16 vid)
bc7f75fa
AK
2722{
2723 struct e1000_adapter *adapter = netdev_priv(netdev);
2724 struct e1000_hw *hw = &adapter->hw;
2725 u32 vfta, index;
2726
2727 /* don't update vlan cookie if already programmed */
2728 if ((adapter->hw.mng_cookie.status &
2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730 (vid == adapter->mng_vlan_id))
8e586137 2731 return 0;
caaddaf8 2732
bc7f75fa 2733 /* add VID to filter table */
caaddaf8
BA
2734 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735 index = (vid >> 5) & 0x7F;
2736 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737 vfta |= (1 << (vid & 0x1F));
2738 hw->mac.ops.write_vfta(hw, index, vfta);
2739 }
86d70e53
JK
2740
2741 set_bit(vid, adapter->active_vlans);
8e586137
JP
2742
2743 return 0;
bc7f75fa
AK
2744}
2745
80d5c368 2746static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
603cdca9 2747 __always_unused __be16 proto, u16 vid)
bc7f75fa
AK
2748{
2749 struct e1000_adapter *adapter = netdev_priv(netdev);
2750 struct e1000_hw *hw = &adapter->hw;
2751 u32 vfta, index;
2752
bc7f75fa
AK
2753 if ((adapter->hw.mng_cookie.status &
2754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755 (vid == adapter->mng_vlan_id)) {
2756 /* release control to f/w */
31dbe5b4 2757 e1000e_release_hw_control(adapter);
8e586137 2758 return 0;
bc7f75fa
AK
2759 }
2760
2761 /* remove VID from filter table */
caaddaf8
BA
2762 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 index = (vid >> 5) & 0x7F;
2764 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765 vfta &= ~(1 << (vid & 0x1F));
2766 hw->mac.ops.write_vfta(hw, index, vfta);
2767 }
86d70e53
JK
2768
2769 clear_bit(vid, adapter->active_vlans);
8e586137
JP
2770
2771 return 0;
bc7f75fa
AK
2772}
2773
86d70e53
JK
2774/**
2775 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776 * @adapter: board private structure to initialize
2777 **/
2778static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
bc7f75fa
AK
2779{
2780 struct net_device *netdev = adapter->netdev;
86d70e53
JK
2781 struct e1000_hw *hw = &adapter->hw;
2782 u32 rctl;
bc7f75fa 2783
86d70e53
JK
2784 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 /* disable VLAN receive filtering */
2786 rctl = er32(RCTL);
2787 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788 ew32(RCTL, rctl);
2789
2790 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
80d5c368
PM
2791 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792 adapter->mng_vlan_id);
86d70e53 2793 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
bc7f75fa 2794 }
bc7f75fa
AK
2795 }
2796}
2797
86d70e53
JK
2798/**
2799 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800 * @adapter: board private structure to initialize
2801 **/
2802static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803{
2804 struct e1000_hw *hw = &adapter->hw;
2805 u32 rctl;
2806
2807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808 /* enable VLAN receive filtering */
2809 rctl = er32(RCTL);
2810 rctl |= E1000_RCTL_VFE;
2811 rctl &= ~E1000_RCTL_CFIEN;
2812 ew32(RCTL, rctl);
2813 }
2814}
bc7f75fa 2815
86d70e53
JK
2816/**
2817 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2818 * @adapter: board private structure to initialize
2819 **/
2820static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
bc7f75fa 2821{
bc7f75fa 2822 struct e1000_hw *hw = &adapter->hw;
86d70e53 2823 u32 ctrl;
bc7f75fa 2824
86d70e53
JK
2825 /* disable VLAN tag insert/strip */
2826 ctrl = er32(CTRL);
2827 ctrl &= ~E1000_CTRL_VME;
2828 ew32(CTRL, ctrl);
2829}
bc7f75fa 2830
86d70e53
JK
2831/**
2832 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833 * @adapter: board private structure to initialize
2834 **/
2835static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836{
2837 struct e1000_hw *hw = &adapter->hw;
2838 u32 ctrl;
bc7f75fa 2839
86d70e53
JK
2840 /* enable VLAN tag insert/strip */
2841 ctrl = er32(CTRL);
2842 ctrl |= E1000_CTRL_VME;
2843 ew32(CTRL, ctrl);
2844}
bc7f75fa 2845
86d70e53
JK
2846static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847{
2848 struct net_device *netdev = adapter->netdev;
2849 u16 vid = adapter->hw.mng_cookie.vlan_id;
2850 u16 old_vid = adapter->mng_vlan_id;
2851
e5fe2541 2852 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
80d5c368 2853 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
86d70e53 2854 adapter->mng_vlan_id = vid;
bc7f75fa
AK
2855 }
2856
86d70e53 2857 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
80d5c368 2858 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
bc7f75fa
AK
2859}
2860
2861static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862{
2863 u16 vid;
2864
80d5c368 2865 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
bc7f75fa 2866
86d70e53 2867 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 2868 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
bc7f75fa
AK
2869}
2870
cd791618 2871static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
bc7f75fa
AK
2872{
2873 struct e1000_hw *hw = &adapter->hw;
cd791618 2874 u32 manc, manc2h, mdef, i, j;
bc7f75fa
AK
2875
2876 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877 return;
2878
2879 manc = er32(MANC);
2880
e921eb1a 2881 /* enable receiving management packets to the host. this will probably
bc7f75fa 2882 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2883 * the packets will be handled on SMBUS
2884 */
bc7f75fa
AK
2885 manc |= E1000_MANC_EN_MNG2HOST;
2886 manc2h = er32(MANC2H);
cd791618
BA
2887
2888 switch (hw->mac.type) {
2889 default:
2890 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891 break;
2892 case e1000_82574:
2893 case e1000_82583:
e921eb1a 2894 /* Check if IPMI pass-through decision filter already exists;
cd791618
BA
2895 * if so, enable it.
2896 */
2897 for (i = 0, j = 0; i < 8; i++) {
2898 mdef = er32(MDEF(i));
2899
2900 /* Ignore filters with anything other than IPMI ports */
3b21b508 2901 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
cd791618
BA
2902 continue;
2903
2904 /* Enable this decision filter in MANC2H */
2905 if (mdef)
2906 manc2h |= (1 << i);
2907
2908 j |= mdef;
2909 }
2910
2911 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912 break;
2913
2914 /* Create new decision filter in an empty filter */
2915 for (i = 0, j = 0; i < 8; i++)
2916 if (er32(MDEF(i)) == 0) {
2917 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918 E1000_MDEF_PORT_664));
2919 manc2h |= (1 << 1);
2920 j++;
2921 break;
2922 }
2923
2924 if (!j)
2925 e_warn("Unable to create IPMI pass-through filter\n");
2926 break;
2927 }
2928
bc7f75fa
AK
2929 ew32(MANC2H, manc2h);
2930 ew32(MANC, manc);
2931}
2932
2933/**
af667a29 2934 * e1000_configure_tx - Configure Transmit Unit after Reset
bc7f75fa
AK
2935 * @adapter: board private structure
2936 *
2937 * Configure the Tx unit of the MAC after a reset.
2938 **/
2939static void e1000_configure_tx(struct e1000_adapter *adapter)
2940{
2941 struct e1000_hw *hw = &adapter->hw;
2942 struct e1000_ring *tx_ring = adapter->tx_ring;
2943 u64 tdba;
e7e834aa 2944 u32 tdlen, tctl, tarc;
bc7f75fa
AK
2945
2946 /* Setup the HW Tx Head and Tail descriptor pointers */
2947 tdba = tx_ring->dma;
2948 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1e36052e
BA
2949 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950 ew32(TDBAH(0), (tdba >> 32));
2951 ew32(TDLEN(0), tdlen);
2952 ew32(TDH(0), 0);
2953 ew32(TDT(0), 0);
2954 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
bc7f75fa 2956
bc7f75fa
AK
2957 /* Set the Tx Interrupt Delay register */
2958 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2959 /* Tx irq moderation */
bc7f75fa
AK
2960 ew32(TADV, adapter->tx_abs_int_delay);
2961
3a3b7586
JB
2962 if (adapter->flags2 & FLAG2_DMA_BURST) {
2963 u32 txdctl = er32(TXDCTL(0));
6cf08d1c 2964
3a3b7586
JB
2965 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2966 E1000_TXDCTL_WTHRESH);
e921eb1a 2967 /* set up some performance related parameters to encourage the
3a3b7586
JB
2968 * hardware to use the bus more efficiently in bursts, depends
2969 * on the tx_int_delay to be enabled,
8edc0e62 2970 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
3a3b7586
JB
2971 * hthresh = 1 ==> prefetch when one or more available
2972 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2973 * BEWARE: this seems to work but should be considered first if
af667a29 2974 * there are Tx hangs or other Tx related bugs
3a3b7586
JB
2975 */
2976 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2977 ew32(TXDCTL(0), txdctl);
3a3b7586 2978 }
56032be7
BA
2979 /* erratum work around: set txdctl the same for both queues */
2980 ew32(TXDCTL(1), er32(TXDCTL(0)));
3a3b7586 2981
e7e834aa
DE
2982 /* Program the Transmit Control Register */
2983 tctl = er32(TCTL);
2984 tctl &= ~E1000_TCTL_CT;
2985 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2986 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2987
bc7f75fa 2988 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2989 tarc = er32(TARC(0));
e921eb1a 2990 /* set the speed mode bit, we'll clear it if we're not at
ad68076e
BA
2991 * gigabit link later
2992 */
bc7f75fa
AK
2993#define SPEED_MODE_BIT (1 << 21)
2994 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2995 ew32(TARC(0), tarc);
bc7f75fa
AK
2996 }
2997
2998 /* errata: program both queues to unweighted RR */
2999 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 3000 tarc = er32(TARC(0));
bc7f75fa 3001 tarc |= 1;
e9ec2c0f
JK
3002 ew32(TARC(0), tarc);
3003 tarc = er32(TARC(1));
bc7f75fa 3004 tarc |= 1;
e9ec2c0f 3005 ew32(TARC(1), tarc);
bc7f75fa
AK
3006 }
3007
bc7f75fa
AK
3008 /* Setup Transmit Descriptor Settings for eop descriptor */
3009 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3010
3011 /* only set IDE if we are delaying interrupts using the timers */
3012 if (adapter->tx_int_delay)
3013 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3014
3015 /* enable Report Status bit */
3016 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3017
e7e834aa
DE
3018 ew32(TCTL, tctl);
3019
57cde763 3020 hw->mac.ops.config_collision_dist(hw);
79849ebc
DE
3021
3022 /* SPT Si errata workaround to avoid data corruption */
3023 if (hw->mac.type == e1000_pch_spt) {
3024 u32 reg_val;
3025
3026 reg_val = er32(IOSFPC);
3027 reg_val |= E1000_RCTL_RDMTS_HEX;
3028 ew32(IOSFPC, reg_val);
3029
3030 reg_val = er32(TARC(0));
3031 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3032 ew32(TARC(0), reg_val);
3033 }
bc7f75fa
AK
3034}
3035
3036/**
3037 * e1000_setup_rctl - configure the receive control registers
3038 * @adapter: Board private structure
3039 **/
3040#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3041 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3042static void e1000_setup_rctl(struct e1000_adapter *adapter)
3043{
3044 struct e1000_hw *hw = &adapter->hw;
3045 u32 rctl, rfctl;
bc7f75fa
AK
3046 u32 pages = 0;
3047
b20a7744
DE
3048 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3049 * If jumbo frames not set, program related MAC/PHY registers
3050 * to h/w defaults
3051 */
3052 if (hw->mac.type >= e1000_pch2lan) {
3053 s32 ret_val;
3054
3055 if (adapter->netdev->mtu > ETH_DATA_LEN)
3056 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3057 else
3058 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3059
3060 if (ret_val)
3061 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3062 }
a1ce6473 3063
bc7f75fa
AK
3064 /* Program MC offset vector base */
3065 rctl = er32(RCTL);
3066 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3067 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
f0ff4398
BA
3068 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3069 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
bc7f75fa
AK
3070
3071 /* Do not Store bad packets */
3072 rctl &= ~E1000_RCTL_SBP;
3073
3074 /* Enable Long Packet receive */
3075 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3076 rctl &= ~E1000_RCTL_LPE;
3077 else
3078 rctl |= E1000_RCTL_LPE;
3079
eb7c3adb
JK
3080 /* Some systems expect that the CRC is included in SMBUS traffic. The
3081 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3082 * host memory when this is enabled
3083 */
3084 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3085 rctl |= E1000_RCTL_SECRC;
5918bd88 3086
a4f58f54
BA
3087 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3088 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3089 u16 phy_data;
3090
3091 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3092 phy_data &= 0xfff8;
3093 phy_data |= (1 << 2);
3094 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3095
3096 e1e_rphy(hw, 22, &phy_data);
3097 phy_data &= 0x0fff;
3098 phy_data |= (1 << 14);
3099 e1e_wphy(hw, 0x10, 0x2823);
3100 e1e_wphy(hw, 0x11, 0x0003);
3101 e1e_wphy(hw, 22, phy_data);
3102 }
3103
bc7f75fa
AK
3104 /* Setup buffer sizes */
3105 rctl &= ~E1000_RCTL_SZ_4096;
3106 rctl |= E1000_RCTL_BSEX;
3107 switch (adapter->rx_buffer_len) {
bc7f75fa
AK
3108 case 2048:
3109 default:
3110 rctl |= E1000_RCTL_SZ_2048;
3111 rctl &= ~E1000_RCTL_BSEX;
3112 break;
3113 case 4096:
3114 rctl |= E1000_RCTL_SZ_4096;
3115 break;
3116 case 8192:
3117 rctl |= E1000_RCTL_SZ_8192;
3118 break;
3119 case 16384:
3120 rctl |= E1000_RCTL_SZ_16384;
3121 break;
3122 }
3123
5f450212
BA
3124 /* Enable Extended Status in all Receive Descriptors */
3125 rfctl = er32(RFCTL);
3126 rfctl |= E1000_RFCTL_EXTEN;
f6bd5577 3127 ew32(RFCTL, rfctl);
5f450212 3128
e921eb1a 3129 /* 82571 and greater support packet-split where the protocol
bc7f75fa
AK
3130 * header is placed in skb->data and the packet data is
3131 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3132 * In the case of a non-split, skb->data is linearly filled,
3133 * followed by the page buffers. Therefore, skb->data is
3134 * sized to hold the largest protocol header.
3135 *
3136 * allocations using alloc_page take too long for regular MTU
3137 * so only enable packet split for jumbo frames
3138 *
3139 * Using pages when the page size is greater than 16k wastes
3140 * a lot of memory, since we allocate 3 pages at all times
3141 * per packet.
3142 */
bc7f75fa 3143 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
79d4e908 3144 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 3145 adapter->rx_ps_pages = pages;
97ac8cae
BA
3146 else
3147 adapter->rx_ps_pages = 0;
bc7f75fa
AK
3148
3149 if (adapter->rx_ps_pages) {
90da0669
BA
3150 u32 psrctl = 0;
3151
140a7480
AK
3152 /* Enable Packet split descriptors */
3153 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa 3154
e5fe2541 3155 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
bc7f75fa
AK
3156
3157 switch (adapter->rx_ps_pages) {
3158 case 3:
e5fe2541
BA
3159 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3160 /* fall-through */
bc7f75fa 3161 case 2:
e5fe2541
BA
3162 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3163 /* fall-through */
bc7f75fa 3164 case 1:
e5fe2541 3165 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
bc7f75fa
AK
3166 break;
3167 }
3168
3169 ew32(PSRCTL, psrctl);
3170 }
3171
cf955e6c
BG
3172 /* This is useful for sniffing bad packets. */
3173 if (adapter->netdev->features & NETIF_F_RXALL) {
3174 /* UPE and MPE will be handled by normal PROMISC logic
e921eb1a
BA
3175 * in e1000e_set_rx_mode
3176 */
e80bd1d1
BA
3177 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3178 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3179 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
cf955e6c 3180
e80bd1d1
BA
3181 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3182 E1000_RCTL_DPF | /* Allow filtered pause */
3183 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
cf955e6c
BG
3184 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3185 * and that breaks VLANs.
3186 */
3187 }
3188
bc7f75fa 3189 ew32(RCTL, rctl);
318a94d6 3190 /* just started the receive unit, no need to restart */
12d43f7d 3191 adapter->flags &= ~FLAG_RESTART_NOW;
bc7f75fa
AK
3192}
3193
3194/**
3195 * e1000_configure_rx - Configure Receive Unit after Reset
3196 * @adapter: board private structure
3197 *
3198 * Configure the Rx unit of the MAC after a reset.
3199 **/
3200static void e1000_configure_rx(struct e1000_adapter *adapter)
3201{
3202 struct e1000_hw *hw = &adapter->hw;
3203 struct e1000_ring *rx_ring = adapter->rx_ring;
3204 u64 rdba;
3205 u32 rdlen, rctl, rxcsum, ctrl_ext;
3206
3207 if (adapter->rx_ps_pages) {
3208 /* this is a 32 byte descriptor */
3209 rdlen = rx_ring->count *
af667a29 3210 sizeof(union e1000_rx_desc_packet_split);
bc7f75fa
AK
3211 adapter->clean_rx = e1000_clean_rx_irq_ps;
3212 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae 3213 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
5f450212 3214 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
97ac8cae
BA
3215 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3216 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 3217 } else {
5f450212 3218 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
bc7f75fa
AK
3219 adapter->clean_rx = e1000_clean_rx_irq;
3220 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3221 }
3222
3223 /* disable receives while setting up the descriptors */
3224 rctl = er32(RCTL);
7f99ae63
BA
3225 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3226 ew32(RCTL, rctl & ~E1000_RCTL_EN);
bc7f75fa 3227 e1e_flush();
1bba4386 3228 usleep_range(10000, 20000);
bc7f75fa 3229
3a3b7586 3230 if (adapter->flags2 & FLAG2_DMA_BURST) {
e921eb1a 3231 /* set the writeback threshold (only takes effect if the RDTR
3a3b7586 3232 * is set). set GRAN=1 and write back up to 0x4 worth, and
af667a29 3233 * enable prefetching of 0x20 Rx descriptors
3a3b7586
JB
3234 * granularity = 01
3235 * wthresh = 04,
3236 * hthresh = 04,
3237 * pthresh = 0x20
3238 */
3239 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3240 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3241
e921eb1a 3242 /* override the delay timers for enabling bursting, only if
3a3b7586
JB
3243 * the value was not set by the user via module options
3244 */
3245 if (adapter->rx_int_delay == DEFAULT_RDTR)
3246 adapter->rx_int_delay = BURST_RDTR;
3247 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3248 adapter->rx_abs_int_delay = BURST_RADV;
3249 }
3250
bc7f75fa
AK
3251 /* set the Receive Delay Timer Register */
3252 ew32(RDTR, adapter->rx_int_delay);
3253
3254 /* irq moderation */
3255 ew32(RADV, adapter->rx_abs_int_delay);
828bac87 3256 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
22a4cca2 3257 e1000e_write_itr(adapter, adapter->itr);
bc7f75fa
AK
3258
3259 ctrl_ext = er32(CTRL_EXT);
bc7f75fa
AK
3260 /* Auto-Mask interrupts upon ICR access */
3261 ctrl_ext |= E1000_CTRL_EXT_IAME;
3262 ew32(IAM, 0xffffffff);
3263 ew32(CTRL_EXT, ctrl_ext);
3264 e1e_flush();
3265
e921eb1a 3266 /* Setup the HW Rx Head and Tail Descriptor Pointers and
ad68076e
BA
3267 * the Base and Length of the Rx Descriptor Ring
3268 */
bc7f75fa 3269 rdba = rx_ring->dma;
1e36052e
BA
3270 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271 ew32(RDBAH(0), (rdba >> 32));
3272 ew32(RDLEN(0), rdlen);
3273 ew32(RDH(0), 0);
3274 ew32(RDT(0), 0);
3275 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
bc7f75fa
AK
3277
3278 /* Enable Receive Checksum Offload for TCP and UDP */
3279 rxcsum = er32(RXCSUM);
2e1706f2 3280 if (adapter->netdev->features & NETIF_F_RXCSUM)
bc7f75fa 3281 rxcsum |= E1000_RXCSUM_TUOFL;
2e1706f2 3282 else
bc7f75fa 3283 rxcsum &= ~E1000_RXCSUM_TUOFL;
bc7f75fa
AK
3284 ew32(RXCSUM, rxcsum);
3285
3e35d991
BA
3286 /* With jumbo frames, excessive C-state transition latencies result
3287 * in dropped transactions.
3288 */
3289 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3290 u32 lat =
3291 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3292 adapter->max_frame_size) * 8 / 1000;
3293
3294 if (adapter->flags & FLAG_IS_ICH) {
53ec5498 3295 u32 rxdctl = er32(RXDCTL(0));
6cf08d1c 3296
53ec5498 3297 ew32(RXDCTL(0), rxdctl | 0x3);
53ec5498 3298 }
3e35d991 3299
e2c65448 3300 pm_qos_update_request(&adapter->pm_qos_req, lat);
3e35d991 3301 } else {
e2c65448 3302 pm_qos_update_request(&adapter->pm_qos_req,
3e35d991 3303 PM_QOS_DEFAULT_VALUE);
97ac8cae 3304 }
bc7f75fa
AK
3305
3306 /* Enable Receives */
3307 ew32(RCTL, rctl);
3308}
3309
3310/**
ef9b965a
JB
3311 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312 * @netdev: network interface device structure
bc7f75fa 3313 *
ef9b965a
JB
3314 * Writes multicast address list to the MTA hash table.
3315 * Returns: -ENOMEM on failure
3316 * 0 on no addresses written
3317 * X on writing X addresses to MTA
3318 */
3319static int e1000e_write_mc_addr_list(struct net_device *netdev)
3320{
3321 struct e1000_adapter *adapter = netdev_priv(netdev);
3322 struct e1000_hw *hw = &adapter->hw;
3323 struct netdev_hw_addr *ha;
3324 u8 *mta_list;
3325 int i;
3326
3327 if (netdev_mc_empty(netdev)) {
3328 /* nothing to program, so clear mc list */
3329 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3330 return 0;
3331 }
3332
3333 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3334 if (!mta_list)
3335 return -ENOMEM;
3336
3337 /* update_mc_addr_list expects a packed array of only addresses. */
3338 i = 0;
3339 netdev_for_each_mc_addr(ha, netdev)
f0ff4398 3340 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
ef9b965a
JB
3341
3342 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3343 kfree(mta_list);
3344
3345 return netdev_mc_count(netdev);
3346}
3347
3348/**
3349 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350 * @netdev: network interface device structure
bc7f75fa 3351 *
ef9b965a
JB
3352 * Writes unicast address list to the RAR table.
3353 * Returns: -ENOMEM on failure/insufficient address space
3354 * 0 on no addresses written
3355 * X on writing X addresses to the RAR table
bc7f75fa 3356 **/
ef9b965a 3357static int e1000e_write_uc_addr_list(struct net_device *netdev)
bc7f75fa 3358{
ef9b965a
JB
3359 struct e1000_adapter *adapter = netdev_priv(netdev);
3360 struct e1000_hw *hw = &adapter->hw;
b3e5bf1f 3361 unsigned int rar_entries;
ef9b965a
JB
3362 int count = 0;
3363
b3e5bf1f
DE
3364 rar_entries = hw->mac.ops.rar_get_count(hw);
3365
ef9b965a
JB
3366 /* save a rar entry for our hardware address */
3367 rar_entries--;
3368
3369 /* save a rar entry for the LAA workaround */
3370 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3371 rar_entries--;
3372
3373 /* return ENOMEM indicating insufficient memory for addresses */
3374 if (netdev_uc_count(netdev) > rar_entries)
3375 return -ENOMEM;
3376
3377 if (!netdev_uc_empty(netdev) && rar_entries) {
3378 struct netdev_hw_addr *ha;
3379
e921eb1a 3380 /* write the addresses in reverse order to avoid write
ef9b965a
JB
3381 * combining
3382 */
3383 netdev_for_each_uc_addr(ha, netdev) {
b3e5bf1f
DE
3384 int rval;
3385
ef9b965a
JB
3386 if (!rar_entries)
3387 break;
b3e5bf1f
DE
3388 rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3389 if (rval < 0)
3390 return -ENOMEM;
ef9b965a
JB
3391 count++;
3392 }
3393 }
3394
3395 /* zero out the remaining RAR entries not used above */
3396 for (; rar_entries > 0; rar_entries--) {
3397 ew32(RAH(rar_entries), 0);
3398 ew32(RAL(rar_entries), 0);
3399 }
3400 e1e_flush();
3401
3402 return count;
bc7f75fa
AK
3403}
3404
3405/**
ef9b965a 3406 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
bc7f75fa
AK
3407 * @netdev: network interface device structure
3408 *
ef9b965a
JB
3409 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410 * address list or the network interface flags are updated. This routine is
3411 * responsible for configuring the hardware for proper unicast, multicast,
bc7f75fa
AK
3412 * promiscuous mode, and all-multi behavior.
3413 **/
ef9b965a 3414static void e1000e_set_rx_mode(struct net_device *netdev)
bc7f75fa
AK
3415{
3416 struct e1000_adapter *adapter = netdev_priv(netdev);
3417 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 3418 u32 rctl;
bc7f75fa 3419
63eb48f1
DE
3420 if (pm_runtime_suspended(netdev->dev.parent))
3421 return;
3422
bc7f75fa 3423 /* Check for Promiscuous and All Multicast modes */
bc7f75fa
AK
3424 rctl = er32(RCTL);
3425
ef9b965a
JB
3426 /* clear the affected bits */
3427 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3428
bc7f75fa
AK
3429 if (netdev->flags & IFF_PROMISC) {
3430 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
86d70e53
JK
3431 /* Do not hardware filter VLANs in promisc mode */
3432 e1000e_vlan_filter_disable(adapter);
bc7f75fa 3433 } else {
ef9b965a 3434 int count;
3d3a1676 3435
746b9f02
PM
3436 if (netdev->flags & IFF_ALLMULTI) {
3437 rctl |= E1000_RCTL_MPE;
746b9f02 3438 } else {
e921eb1a 3439 /* Write addresses to the MTA, if the attempt fails
ef9b965a
JB
3440 * then we should just turn on promiscuous mode so
3441 * that we can at least receive multicast traffic
3442 */
3443 count = e1000e_write_mc_addr_list(netdev);
3444 if (count < 0)
3445 rctl |= E1000_RCTL_MPE;
746b9f02 3446 }
86d70e53 3447 e1000e_vlan_filter_enable(adapter);
e921eb1a 3448 /* Write addresses to available RAR registers, if there is not
ef9b965a
JB
3449 * sufficient space to store all the addresses then enable
3450 * unicast promiscuous mode
bc7f75fa 3451 */
ef9b965a
JB
3452 count = e1000e_write_uc_addr_list(netdev);
3453 if (count < 0)
3454 rctl |= E1000_RCTL_UPE;
bc7f75fa 3455 }
86d70e53 3456
ef9b965a
JB
3457 ew32(RCTL, rctl);
3458
f646968f 3459 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
86d70e53
JK
3460 e1000e_vlan_strip_enable(adapter);
3461 else
3462 e1000e_vlan_strip_disable(adapter);
bc7f75fa
AK
3463}
3464
70495a50
BA
3465static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3466{
3467 struct e1000_hw *hw = &adapter->hw;
3468 u32 mrqc, rxcsum;
5c8d19da 3469 u32 rss_key[10];
70495a50 3470 int i;
70495a50 3471
5c8d19da 3472 netdev_rss_key_fill(rss_key, sizeof(rss_key));
70495a50 3473 for (i = 0; i < 10; i++)
5c8d19da 3474 ew32(RSSRK(i), rss_key[i]);
70495a50
BA
3475
3476 /* Direct all traffic to queue 0 */
3477 for (i = 0; i < 32; i++)
3478 ew32(RETA(i), 0);
3479
e921eb1a 3480 /* Disable raw packet checksumming so that RSS hash is placed in
70495a50
BA
3481 * descriptor on writeback.
3482 */
3483 rxcsum = er32(RXCSUM);
3484 rxcsum |= E1000_RXCSUM_PCSD;
3485
3486 ew32(RXCSUM, rxcsum);
3487
3488 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490 E1000_MRQC_RSS_FIELD_IPV6 |
3491 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493
3494 ew32(MRQC, mrqc);
3495}
3496
b67e1913
BA
3497/**
3498 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499 * @adapter: board private structure
3500 * @timinca: pointer to returned time increment attributes
3501 *
3502 * Get attributes for incrementing the System Time Register SYSTIML/H at
3503 * the default base frequency, and set the cyclecounter shift value.
3504 **/
d89777bf 3505s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
b67e1913
BA
3506{
3507 struct e1000_hw *hw = &adapter->hw;
3508 u32 incvalue, incperiod, shift;
3509
79849ebc
DE
3510 /* Make sure clock is enabled on I217/I218/I219 before checking
3511 * the frequency
3512 */
3513 if (((hw->mac.type == e1000_pch_lpt) ||
3514 (hw->mac.type == e1000_pch_spt)) &&
b67e1913
BA
3515 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517 u32 fextnvm7 = er32(FEXTNVM7);
3518
3519 if (!(fextnvm7 & (1 << 0))) {
3520 ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3521 e1e_flush();
3522 }
3523 }
3524
3525 switch (hw->mac.type) {
3526 case e1000_pch2lan:
3527 case e1000_pch_lpt:
79849ebc
DE
3528 case e1000_pch_spt:
3529 /* On I217, I218 and I219, the clock frequency is 25MHz
3530 * or 96MHz as indicated by the System Clock Frequency
3531 * Indication
b67e1913 3532 */
79849ebc
DE
3533 if (((hw->mac.type != e1000_pch_lpt) &&
3534 (hw->mac.type != e1000_pch_spt)) ||
b67e1913
BA
3535 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3536 /* Stable 96MHz frequency */
3537 incperiod = INCPERIOD_96MHz;
3538 incvalue = INCVALUE_96MHz;
3539 shift = INCVALUE_SHIFT_96MHz;
3540 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3541 break;
3542 }
3543 /* fall-through */
3544 case e1000_82574:
3545 case e1000_82583:
3546 /* Stable 25MHz frequency */
3547 incperiod = INCPERIOD_25MHz;
3548 incvalue = INCVALUE_25MHz;
3549 shift = INCVALUE_SHIFT_25MHz;
3550 adapter->cc.shift = shift;
3551 break;
3552 default:
3553 return -EINVAL;
3554 }
3555
3556 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3557 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3558
3559 return 0;
3560}
3561
3562/**
3563 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3564 * @adapter: board private structure
3565 *
3566 * Outgoing time stamping can be enabled and disabled. Play nice and
3567 * disable it when requested, although it shouldn't cause any overhead
3568 * when no packet needs it. At most one packet in the queue may be
3569 * marked for time stamping, otherwise it would be impossible to tell
3570 * for sure to which packet the hardware time stamp belongs.
3571 *
3572 * Incoming time stamping has to be configured via the hardware filters.
3573 * Not all combinations are supported, in particular event type has to be
3574 * specified. Matching the kind of event packet is not supported, with the
3575 * exception of "all V2 events regardless of level 2 or 4".
3576 **/
62d7e3a2
BH
3577static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3578 struct hwtstamp_config *config)
b67e1913
BA
3579{
3580 struct e1000_hw *hw = &adapter->hw;
b67e1913
BA
3581 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3582 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
d89777bf
BA
3583 u32 rxmtrl = 0;
3584 u16 rxudp = 0;
3585 bool is_l4 = false;
3586 bool is_l2 = false;
b67e1913
BA
3587 u32 regval;
3588 s32 ret_val;
3589
3590 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3591 return -EINVAL;
3592
3593 /* flags reserved for future extensions - must be zero */
3594 if (config->flags)
3595 return -EINVAL;
3596
3597 switch (config->tx_type) {
3598 case HWTSTAMP_TX_OFF:
3599 tsync_tx_ctl = 0;
3600 break;
3601 case HWTSTAMP_TX_ON:
3602 break;
3603 default:
3604 return -ERANGE;
3605 }
3606
3607 switch (config->rx_filter) {
3608 case HWTSTAMP_FILTER_NONE:
3609 tsync_rx_ctl = 0;
3610 break;
d89777bf
BA
3611 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3612 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3613 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3614 is_l4 = true;
3615 break;
3616 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3617 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3618 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3619 is_l4 = true;
3620 break;
3621 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3622 /* Also time stamps V2 L2 Path Delay Request/Response */
3623 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3624 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3625 is_l2 = true;
3626 break;
3627 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3628 /* Also time stamps V2 L2 Path Delay Request/Response. */
3629 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3630 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3631 is_l2 = true;
3632 break;
3633 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3634 /* Hardware cannot filter just V2 L4 Sync messages;
3635 * fall-through to V2 (both L2 and L4) Sync.
3636 */
3637 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3638 /* Also time stamps V2 Path Delay Request/Response. */
3639 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3640 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3641 is_l2 = true;
3642 is_l4 = true;
3643 break;
3644 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3645 /* Hardware cannot filter just V2 L4 Delay Request messages;
3646 * fall-through to V2 (both L2 and L4) Delay Request.
3647 */
3648 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3649 /* Also time stamps V2 Path Delay Request/Response. */
3650 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3651 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3652 is_l2 = true;
3653 is_l4 = true;
3654 break;
3655 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3656 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3657 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3658 * fall-through to all V2 (both L2 and L4) Events.
3659 */
3660 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3661 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3662 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3663 is_l2 = true;
3664 is_l4 = true;
3665 break;
3666 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3667 /* For V1, the hardware can only filter Sync messages or
3668 * Delay Request messages but not both so fall-through to
3669 * time stamp all packets.
3670 */
b67e1913 3671 case HWTSTAMP_FILTER_ALL:
d89777bf
BA
3672 is_l2 = true;
3673 is_l4 = true;
b67e1913
BA
3674 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3675 config->rx_filter = HWTSTAMP_FILTER_ALL;
3676 break;
3677 default:
3678 return -ERANGE;
3679 }
3680
62d7e3a2
BH
3681 adapter->hwtstamp_config = *config;
3682
b67e1913
BA
3683 /* enable/disable Tx h/w time stamping */
3684 regval = er32(TSYNCTXCTL);
3685 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3686 regval |= tsync_tx_ctl;
3687 ew32(TSYNCTXCTL, regval);
3688 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3689 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3690 e_err("Timesync Tx Control register not set as expected\n");
3691 return -EAGAIN;
3692 }
3693
3694 /* enable/disable Rx h/w time stamping */
3695 regval = er32(TSYNCRXCTL);
3696 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3697 regval |= tsync_rx_ctl;
3698 ew32(TSYNCRXCTL, regval);
3699 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3700 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3701 (regval & (E1000_TSYNCRXCTL_ENABLED |
3702 E1000_TSYNCRXCTL_TYPE_MASK))) {
3703 e_err("Timesync Rx Control register not set as expected\n");
3704 return -EAGAIN;
3705 }
3706
d89777bf
BA
3707 /* L2: define ethertype filter for time stamped packets */
3708 if (is_l2)
3709 rxmtrl |= ETH_P_1588;
3710
3711 /* define which PTP packets get time stamped */
3712 ew32(RXMTRL, rxmtrl);
3713
3714 /* Filter by destination port */
3715 if (is_l4) {
3716 rxudp = PTP_EV_PORT;
3717 cpu_to_be16s(&rxudp);
3718 }
3719 ew32(RXUDP, rxudp);
3720
3721 e1e_flush();
3722
b67e1913 3723 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
70806a7f
BA
3724 er32(RXSTMPH);
3725 er32(TXSTMPH);
b67e1913
BA
3726
3727 /* Get and set the System Time Register SYSTIM base frequency */
3728 ret_val = e1000e_get_base_timinca(adapter, &regval);
3729 if (ret_val)
3730 return ret_val;
3731 ew32(TIMINCA, regval);
3732
3733 /* reset the ns time counter */
3734 timecounter_init(&adapter->tc, &adapter->cc,
3735 ktime_to_ns(ktime_get_real()));
3736
3737 return 0;
3738}
3739
bc7f75fa 3740/**
ad68076e 3741 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
3742 * @adapter: private board structure
3743 **/
3744static void e1000_configure(struct e1000_adapter *adapter)
3745{
55aa6985
BA
3746 struct e1000_ring *rx_ring = adapter->rx_ring;
3747
ef9b965a 3748 e1000e_set_rx_mode(adapter->netdev);
bc7f75fa
AK
3749
3750 e1000_restore_vlan(adapter);
cd791618 3751 e1000_init_manageability_pt(adapter);
bc7f75fa
AK
3752
3753 e1000_configure_tx(adapter);
70495a50
BA
3754
3755 if (adapter->netdev->features & NETIF_F_RXHASH)
3756 e1000e_setup_rss_hash(adapter);
bc7f75fa
AK
3757 e1000_setup_rctl(adapter);
3758 e1000_configure_rx(adapter);
55aa6985 3759 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
bc7f75fa
AK
3760}
3761
3762/**
3763 * e1000e_power_up_phy - restore link in case the phy was powered down
3764 * @adapter: address of board private structure
3765 *
3766 * The phy may be powered down to save power and turn off link when the
3767 * driver is unloaded and wake on lan is not enabled (among others)
3768 * *** this routine MUST be followed by a call to e1000e_reset ***
3769 **/
3770void e1000e_power_up_phy(struct e1000_adapter *adapter)
3771{
17f208de
BA
3772 if (adapter->hw.phy.ops.power_up)
3773 adapter->hw.phy.ops.power_up(&adapter->hw);
bc7f75fa
AK
3774
3775 adapter->hw.mac.ops.setup_link(&adapter->hw);
3776}
3777
3778/**
3779 * e1000_power_down_phy - Power down the PHY
3780 *
17f208de
BA
3781 * Power down the PHY so no link is implied when interface is down.
3782 * The PHY cannot be powered down if management or WoL is active.
bc7f75fa
AK
3783 */
3784static void e1000_power_down_phy(struct e1000_adapter *adapter)
3785{
17f208de
BA
3786 if (adapter->hw.phy.ops.power_down)
3787 adapter->hw.phy.ops.power_down(&adapter->hw);
bc7f75fa
AK
3788}
3789
ad851fbb
YL
3790/**
3791 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3792 *
3793 * We want to clear all pending descriptors from the TX ring.
3794 * zeroing happens when the HW reads the regs. We assign the ring itself as
3795 * the data of the next descriptor. We don't care about the data we are about
3796 * to reset the HW.
3797 */
3798static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3799{
3800 struct e1000_hw *hw = &adapter->hw;
3801 struct e1000_ring *tx_ring = adapter->tx_ring;
3802 struct e1000_tx_desc *tx_desc = NULL;
3803 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3804 u16 size = 512;
3805
3806 tctl = er32(TCTL);
3807 ew32(TCTL, tctl | E1000_TCTL_EN);
3808 tdt = er32(TDT(0));
3809 BUG_ON(tdt != tx_ring->next_to_use);
3810 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3811 tx_desc->buffer_addr = tx_ring->dma;
3812
3813 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3814 tx_desc->upper.data = 0;
3815 /* flush descriptors to memory before notifying the HW */
3816 wmb();
3817 tx_ring->next_to_use++;
3818 if (tx_ring->next_to_use == tx_ring->count)
3819 tx_ring->next_to_use = 0;
3820 ew32(TDT(0), tx_ring->next_to_use);
3821 mmiowb();
3822 usleep_range(200, 250);
3823}
3824
3825/**
3826 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3827 *
3828 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3829 */
3830static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3831{
3832 u32 rctl, rxdctl;
3833 struct e1000_hw *hw = &adapter->hw;
3834
3835 rctl = er32(RCTL);
3836 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3837 e1e_flush();
3838 usleep_range(100, 150);
3839
3840 rxdctl = er32(RXDCTL(0));
3841 /* zero the lower 14 bits (prefetch and host thresholds) */
3842 rxdctl &= 0xffffc000;
3843
3844 /* update thresholds: prefetch threshold to 31, host threshold to 1
3845 * and make sure the granularity is "descriptors" and not "cache lines"
3846 */
3847 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3848
3849 ew32(RXDCTL(0), rxdctl);
3850 /* momentarily enable the RX ring for the changes to take effect */
3851 ew32(RCTL, rctl | E1000_RCTL_EN);
3852 e1e_flush();
3853 usleep_range(100, 150);
3854 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3855}
3856
3857/**
3858 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3859 *
3860 * In i219, the descriptor rings must be emptied before resetting the HW
3861 * or before changing the device state to D3 during runtime (runtime PM).
3862 *
3863 * Failure to do this will cause the HW to enter a unit hang state which can
3864 * only be released by PCI reset on the device
3865 *
3866 */
3867
3868static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3869{
ff917429 3870 u16 hang_state;
ad851fbb
YL
3871 u32 fext_nvm11, tdlen;
3872 struct e1000_hw *hw = &adapter->hw;
3873
3874 /* First, disable MULR fix in FEXTNVM11 */
3875 fext_nvm11 = er32(FEXTNVM11);
3876 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3877 ew32(FEXTNVM11, fext_nvm11);
3878 /* do nothing if we're not in faulty state, or if the queue is empty */
3879 tdlen = er32(TDLEN(0));
ff917429
YL
3880 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3881 &hang_state);
3882 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
ad851fbb
YL
3883 return;
3884 e1000_flush_tx_ring(adapter);
3885 /* recheck, maybe the fault is caused by the rx ring */
ff917429
YL
3886 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3887 &hang_state);
3888 if (hang_state & FLUSH_DESC_REQUIRED)
ad851fbb
YL
3889 e1000_flush_rx_ring(adapter);
3890}
3891
bc7f75fa
AK
3892/**
3893 * e1000e_reset - bring the hardware into a known good state
3894 *
3895 * This function boots the hardware and enables some settings that
3896 * require a configuration cycle of the hardware - those cannot be
3897 * set/changed during runtime. After reset the device needs to be
ad68076e 3898 * properly configured for Rx, Tx etc.
bc7f75fa
AK
3899 */
3900void e1000e_reset(struct e1000_adapter *adapter)
3901{
3902 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 3903 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
3904 struct e1000_hw *hw = &adapter->hw;
3905 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 3906 u32 pba = adapter->pba;
bc7f75fa
AK
3907 u16 hwm;
3908
ad68076e 3909 /* reset Packet Buffer Allocation to default */
318a94d6 3910 ew32(PBA, pba);
df762464 3911
8084b86d 3912 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
e921eb1a 3913 /* To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
3914 * large enough to accommodate two full transmit packets,
3915 * rounded up to the next 1KB and expressed in KB. Likewise,
3916 * the Rx FIFO should be large enough to accommodate at least
3917 * one full receive packet and is similarly rounded up and
ad68076e
BA
3918 * expressed in KB.
3919 */
df762464 3920 pba = er32(PBA);
bc7f75fa 3921 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 3922 tx_space = pba >> 16;
bc7f75fa 3923 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 3924 pba &= 0xffff;
e921eb1a 3925 /* the Tx fifo also stores 16 bytes of information about the Tx
ad68076e 3926 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
3927 */
3928 min_tx_space = (adapter->max_frame_size +
e5fe2541 3929 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
bc7f75fa
AK
3930 min_tx_space = ALIGN(min_tx_space, 1024);
3931 min_tx_space >>= 10;
3932 /* software strips receive CRC, so leave room for it */
318a94d6 3933 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
3934 min_rx_space = ALIGN(min_rx_space, 1024);
3935 min_rx_space >>= 10;
3936
e921eb1a 3937 /* If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 3938 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
3939 * allocation, take space away from current Rx allocation
3940 */
df762464
AK
3941 if ((tx_space < min_tx_space) &&
3942 ((min_tx_space - tx_space) < pba)) {
3943 pba -= min_tx_space - tx_space;
bc7f75fa 3944
e921eb1a 3945 /* if short on Rx space, Rx wins and must trump Tx
419e551c 3946 * adjustment
ad68076e 3947 */
79d4e908 3948 if (pba < min_rx_space)
df762464 3949 pba = min_rx_space;
bc7f75fa 3950 }
df762464
AK
3951
3952 ew32(PBA, pba);
bc7f75fa
AK
3953 }
3954
e921eb1a 3955 /* flow control settings
ad68076e 3956 *
38eb394e 3957 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
3958 * (or the size used for early receive) above it in the Rx FIFO.
3959 * Set it to the lower of:
3960 * - 90% of the Rx FIFO size, and
38eb394e 3961 * - the full Rx FIFO size minus one full frame
ad68076e 3962 */
d3738bb8
BA
3963 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3964 fc->pause_time = 0xFFFF;
3965 else
3966 fc->pause_time = E1000_FC_PAUSE_TIME;
b20caa80 3967 fc->send_xon = true;
d3738bb8
BA
3968 fc->current_mode = fc->requested_mode;
3969
3970 switch (hw->mac.type) {
79d4e908
BA
3971 case e1000_ich9lan:
3972 case e1000_ich10lan:
3973 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3974 pba = 14;
3975 ew32(PBA, pba);
3976 fc->high_water = 0x2800;
3977 fc->low_water = fc->high_water - 8;
3978 break;
3979 }
3980 /* fall-through */
d3738bb8 3981 default:
79d4e908
BA
3982 hwm = min(((pba << 10) * 9 / 10),
3983 ((pba << 10) - adapter->max_frame_size));
d3738bb8 3984
e80bd1d1 3985 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
d3738bb8
BA
3986 fc->low_water = fc->high_water - 8;
3987 break;
3988 case e1000_pchlan:
e921eb1a 3989 /* Workaround PCH LOM adapter hangs with certain network
38eb394e
BA
3990 * loads. If hangs persist, try disabling Tx flow control.
3991 */
3992 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3993 fc->high_water = 0x3500;
e80bd1d1 3994 fc->low_water = 0x1500;
38eb394e
BA
3995 } else {
3996 fc->high_water = 0x5000;
e80bd1d1 3997 fc->low_water = 0x3000;
38eb394e 3998 }
a305595b 3999 fc->refresh_time = 0x1000;
d3738bb8
BA
4000 break;
4001 case e1000_pch2lan:
2fbe4526 4002 case e1000_pch_lpt:
79849ebc 4003 case e1000_pch_spt:
d3738bb8 4004 fc->refresh_time = 0x0400;
347b5201
BA
4005
4006 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4007 fc->high_water = 0x05C20;
4008 fc->low_water = 0x05048;
4009 fc->pause_time = 0x0650;
4010 break;
828bac87 4011 }
347b5201 4012
ce345e08
BA
4013 pba = 14;
4014 ew32(PBA, pba);
347b5201
BA
4015 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4016 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
d3738bb8 4017 break;
38eb394e 4018 }
bc7f75fa 4019
e921eb1a 4020 /* Alignment of Tx data is on an arbitrary byte boundary with the
d821a4c4
BA
4021 * maximum size per Tx descriptor limited only to the transmit
4022 * allocation of the packet buffer minus 96 bytes with an upper
4023 * limit of 24KB due to receive synchronization limitations.
4024 */
4025 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4026 24 << 10);
4027
e921eb1a 4028 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
79d4e908 4029 * fit in receive buffer.
828bac87
BA
4030 */
4031 if (adapter->itr_setting & 0x3) {
79d4e908 4032 if ((adapter->max_frame_size * 2) > (pba << 10)) {
828bac87
BA
4033 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4034 dev_info(&adapter->pdev->dev,
17e813ec 4035 "Interrupt Throttle Rate off\n");
828bac87 4036 adapter->flags2 |= FLAG2_DISABLE_AIM;
22a4cca2 4037 e1000e_write_itr(adapter, 0);
828bac87
BA
4038 }
4039 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4040 dev_info(&adapter->pdev->dev,
17e813ec 4041 "Interrupt Throttle Rate on\n");
828bac87
BA
4042 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4043 adapter->itr = 20000;
22a4cca2 4044 e1000e_write_itr(adapter, adapter->itr);
828bac87
BA
4045 }
4046 }
4047
0ffc5646
YL
4048 if (hw->mac.type == e1000_pch_spt)
4049 e1000_flush_desc_rings(adapter);
bc7f75fa
AK
4050 /* Allow time for pending master requests to run */
4051 mac->ops.reset_hw(hw);
97ac8cae 4052
e921eb1a 4053 /* For parts with AMT enabled, let the firmware know
97ac8cae
BA
4054 * that the network interface is in control
4055 */
c43bc57e 4056 if (adapter->flags & FLAG_HAS_AMT)
31dbe5b4 4057 e1000e_get_hw_control(adapter);
97ac8cae 4058
bc7f75fa
AK
4059 ew32(WUC, 0);
4060
4061 if (mac->ops.init_hw(hw))
44defeb3 4062 e_err("Hardware Error\n");
bc7f75fa
AK
4063
4064 e1000_update_mng_vlan(adapter);
4065
4066 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4067 ew32(VET, ETH_P_8021Q);
4068
4069 e1000e_reset_adaptive(hw);
31dbe5b4 4070
b67e1913 4071 /* initialize systim and reset the ns time counter */
62d7e3a2 4072 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
b67e1913 4073
d495bcb8
BA
4074 /* Set EEE advertisement as appropriate */
4075 if (adapter->flags2 & FLAG2_HAS_EEE) {
4076 s32 ret_val;
4077 u16 adv_addr;
4078
4079 switch (hw->phy.type) {
4080 case e1000_phy_82579:
4081 adv_addr = I82579_EEE_ADVERTISEMENT;
4082 break;
4083 case e1000_phy_i217:
4084 adv_addr = I217_EEE_ADVERTISEMENT;
4085 break;
4086 default:
4087 dev_err(&adapter->pdev->dev,
4088 "Invalid PHY type setting EEE advertisement\n");
4089 return;
4090 }
4091
4092 ret_val = hw->phy.ops.acquire(hw);
4093 if (ret_val) {
4094 dev_err(&adapter->pdev->dev,
4095 "EEE advertisement - unable to acquire PHY\n");
4096 return;
4097 }
4098
4099 e1000_write_emi_reg_locked(hw, adv_addr,
4100 hw->dev_spec.ich8lan.eee_disable ?
4101 0 : adapter->eee_advert);
4102
4103 hw->phy.ops.release(hw);
4104 }
4105
31dbe5b4 4106 if (!netif_running(adapter->netdev) &&
28002099 4107 !test_bit(__E1000_TESTING, &adapter->state))
31dbe5b4 4108 e1000_power_down_phy(adapter);
31dbe5b4 4109
bc7f75fa
AK
4110 e1000_get_phy_info(hw);
4111
918d7197
BA
4112 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4113 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
bc7f75fa 4114 u16 phy_data = 0;
e921eb1a 4115 /* speed up time to link by disabling smart power down, ignore
bc7f75fa 4116 * the return value of this function because there is nothing
ad68076e
BA
4117 * different we would do if it failed
4118 */
bc7f75fa
AK
4119 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4120 phy_data &= ~IGP02E1000_PM_SPD;
4121 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4122 }
ec945cfb
YL
4123 if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4124 u32 reg;
4125
4126 /* Fextnvm7 @ 0xe4[2] = 1 */
4127 reg = er32(FEXTNVM7);
4128 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4129 ew32(FEXTNVM7, reg);
4130 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4131 reg = er32(FEXTNVM9);
4132 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4133 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4134 ew32(FEXTNVM9, reg);
4135 }
4136
bc7f75fa
AK
4137}
4138
4139int e1000e_up(struct e1000_adapter *adapter)
4140{
4141 struct e1000_hw *hw = &adapter->hw;
4142
4143 /* hardware has been reset, we need to reload some things */
4144 e1000_configure(adapter);
4145
4146 clear_bit(__E1000_DOWN, &adapter->state);
4147
4662e82b
BA
4148 if (adapter->msix_entries)
4149 e1000_configure_msix(adapter);
bc7f75fa
AK
4150 e1000_irq_enable(adapter);
4151
400484fa 4152 netif_start_queue(adapter->netdev);
4cb9be7a 4153
bc7f75fa 4154 /* fire a link change interrupt to start the watchdog */
52a9b231
BA
4155 if (adapter->msix_entries)
4156 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4157 else
4158 ew32(ICS, E1000_ICS_LSC);
4159
bc7f75fa
AK
4160 return 0;
4161}
4162
713b3c9e
JB
4163static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4164{
4165 struct e1000_hw *hw = &adapter->hw;
4166
4167 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4168 return;
4169
4170 /* flush pending descriptor writebacks to memory */
4171 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4172 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4173
4174 /* execute the writes immediately */
4175 e1e_flush();
bf03085f 4176
e921eb1a 4177 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
bf03085f
MV
4178 * write is successful
4179 */
4180 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4181 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
713b3c9e
JB
4182
4183 /* execute the writes immediately */
4184 e1e_flush();
4185}
4186
67fd4fcb
JK
4187static void e1000e_update_stats(struct e1000_adapter *adapter);
4188
28002099
DE
4189/**
4190 * e1000e_down - quiesce the device and optionally reset the hardware
4191 * @adapter: board private structure
4192 * @reset: boolean flag to reset the hardware or not
4193 */
4194void e1000e_down(struct e1000_adapter *adapter, bool reset)
bc7f75fa
AK
4195{
4196 struct net_device *netdev = adapter->netdev;
4197 struct e1000_hw *hw = &adapter->hw;
4198 u32 tctl, rctl;
4199
e921eb1a 4200 /* signal that we're down so the interrupt handler does not
ad68076e
BA
4201 * reschedule our watchdog timer
4202 */
bc7f75fa
AK
4203 set_bit(__E1000_DOWN, &adapter->state);
4204
a60a132e
ET
4205 netif_carrier_off(netdev);
4206
bc7f75fa
AK
4207 /* disable receives in the hardware */
4208 rctl = er32(RCTL);
7f99ae63
BA
4209 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4210 ew32(RCTL, rctl & ~E1000_RCTL_EN);
bc7f75fa
AK
4211 /* flush and sleep below */
4212
4cb9be7a 4213 netif_stop_queue(netdev);
bc7f75fa
AK
4214
4215 /* disable transmits in the hardware */
4216 tctl = er32(TCTL);
4217 tctl &= ~E1000_TCTL_EN;
4218 ew32(TCTL, tctl);
7f99ae63 4219
bc7f75fa
AK
4220 /* flush both disables and wait for them to finish */
4221 e1e_flush();
1bba4386 4222 usleep_range(10000, 20000);
bc7f75fa 4223
bc7f75fa
AK
4224 e1000_irq_disable(adapter);
4225
a3b87a4c
BA
4226 napi_synchronize(&adapter->napi);
4227
bc7f75fa
AK
4228 del_timer_sync(&adapter->watchdog_timer);
4229 del_timer_sync(&adapter->phy_info_timer);
4230
67fd4fcb
JK
4231 spin_lock(&adapter->stats64_lock);
4232 e1000e_update_stats(adapter);
4233 spin_unlock(&adapter->stats64_lock);
4234
400484fa 4235 e1000e_flush_descriptors(adapter);
400484fa 4236
bc7f75fa
AK
4237 adapter->link_speed = 0;
4238 adapter->link_duplex = 0;
4239
da1e2046
BA
4240 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4241 if ((hw->mac.type >= e1000_pch2lan) &&
4242 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4243 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4244 e_dbg("failed to disable jumbo frame workaround mode\n");
4245
0ffc5646
YL
4246 if (!pci_channel_offline(adapter->pdev)) {
4247 if (reset)
4248 e1000e_reset(adapter);
4249 else if (hw->mac.type == e1000_pch_spt)
4250 e1000_flush_desc_rings(adapter);
4251 }
4252 e1000_clean_tx_ring(adapter->tx_ring);
4253 e1000_clean_rx_ring(adapter->rx_ring);
bc7f75fa
AK
4254}
4255
4256void e1000e_reinit_locked(struct e1000_adapter *adapter)
4257{
4258 might_sleep();
4259 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
1bba4386 4260 usleep_range(1000, 2000);
28002099 4261 e1000e_down(adapter, true);
bc7f75fa
AK
4262 e1000e_up(adapter);
4263 clear_bit(__E1000_RESETTING, &adapter->state);
4264}
4265
b67e1913
BA
4266/**
4267 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4268 * @cc: cyclecounter structure
4269 **/
4270static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4271{
4272 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4273 cc);
4274 struct e1000_hw *hw = &adapter->hw;
5e7ff970 4275 cycle_t systim, systim_next;
b67e1913
BA
4276
4277 /* latch SYSTIMH on read of SYSTIML */
4278 systim = (cycle_t)er32(SYSTIML);
4279 systim |= (cycle_t)er32(SYSTIMH) << 32;
4280
5e7ff970
TF
4281 if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4282 u64 incvalue, time_delta, rem, temp;
4283 int i;
4284
4285 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4286 * check to see that the time is incrementing at a reasonable
4287 * rate and is a multiple of incvalue
4288 */
4289 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4290 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4291 /* latch SYSTIMH on read of SYSTIML */
4292 systim_next = (cycle_t)er32(SYSTIML);
4293 systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4294
4295 time_delta = systim_next - systim;
4296 temp = time_delta;
4297 rem = do_div(temp, incvalue);
4298
4299 systim = systim_next;
4300
4301 if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4302 (rem == 0))
4303 break;
4304 }
4305 }
b67e1913
BA
4306 return systim;
4307}
4308
bc7f75fa
AK
4309/**
4310 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4311 * @adapter: board private structure to initialize
4312 *
4313 * e1000_sw_init initializes the Adapter private data structure.
4314 * Fields are initialized based on PCI device information and
4315 * OS network device settings (MTU size).
4316 **/
9f9a12f8 4317static int e1000_sw_init(struct e1000_adapter *adapter)
bc7f75fa 4318{
bc7f75fa
AK
4319 struct net_device *netdev = adapter->netdev;
4320
8084b86d 4321 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
bc7f75fa 4322 adapter->rx_ps_bsize0 = 128;
8084b86d 4323 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
318a94d6 4324 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
55aa6985
BA
4325 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4326 adapter->rx_ring_count = E1000_DEFAULT_RXD;
bc7f75fa 4327
67fd4fcb
JK
4328 spin_lock_init(&adapter->stats64_lock);
4329
4662e82b 4330 e1000e_set_interrupt_capability(adapter);
bc7f75fa 4331
4662e82b
BA
4332 if (e1000_alloc_queues(adapter))
4333 return -ENOMEM;
bc7f75fa 4334
b67e1913
BA
4335 /* Setup hardware time stamping cyclecounter */
4336 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4337 adapter->cc.read = e1000e_cyclecounter_read;
4d045b4c 4338 adapter->cc.mask = CYCLECOUNTER_MASK(64);
b67e1913
BA
4339 adapter->cc.mult = 1;
4340 /* cc.shift set in e1000e_get_base_tininca() */
4341
4342 spin_lock_init(&adapter->systim_lock);
4343 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4344 }
4345
bc7f75fa 4346 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
4347 e1000_irq_disable(adapter);
4348
bc7f75fa
AK
4349 set_bit(__E1000_DOWN, &adapter->state);
4350 return 0;
bc7f75fa
AK
4351}
4352
f8d59f78
BA
4353/**
4354 * e1000_intr_msi_test - Interrupt Handler
4355 * @irq: interrupt number
4356 * @data: pointer to a network interface device structure
4357 **/
8bb62869 4358static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
f8d59f78
BA
4359{
4360 struct net_device *netdev = data;
4361 struct e1000_adapter *adapter = netdev_priv(netdev);
4362 struct e1000_hw *hw = &adapter->hw;
4363 u32 icr = er32(ICR);
4364
3bb99fe2 4365 e_dbg("icr is %08X\n", icr);
f8d59f78
BA
4366 if (icr & E1000_ICR_RXSEQ) {
4367 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
e921eb1a 4368 /* Force memory writes to complete before acknowledging the
bc76329d
BA
4369 * interrupt is handled.
4370 */
f8d59f78
BA
4371 wmb();
4372 }
4373
4374 return IRQ_HANDLED;
4375}
4376
4377/**
4378 * e1000_test_msi_interrupt - Returns 0 for successful test
4379 * @adapter: board private struct
4380 *
4381 * code flow taken from tg3.c
4382 **/
4383static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4384{
4385 struct net_device *netdev = adapter->netdev;
4386 struct e1000_hw *hw = &adapter->hw;
4387 int err;
4388
4389 /* poll_enable hasn't been called yet, so don't need disable */
4390 /* clear any pending events */
4391 er32(ICR);
4392
4393 /* free the real vector and request a test handler */
4394 e1000_free_irq(adapter);
4662e82b 4395 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
4396
4397 /* Assume that the test fails, if it succeeds then the test
e921eb1a
BA
4398 * MSI irq handler will unset this flag
4399 */
f8d59f78
BA
4400 adapter->flags |= FLAG_MSI_TEST_FAILED;
4401
4402 err = pci_enable_msi(adapter->pdev);
4403 if (err)
4404 goto msi_test_failed;
4405
a0607fd3 4406 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
f8d59f78
BA
4407 netdev->name, netdev);
4408 if (err) {
4409 pci_disable_msi(adapter->pdev);
4410 goto msi_test_failed;
4411 }
4412
e921eb1a 4413 /* Force memory writes to complete before enabling and firing an
bc76329d
BA
4414 * interrupt.
4415 */
f8d59f78
BA
4416 wmb();
4417
4418 e1000_irq_enable(adapter);
4419
4420 /* fire an unusual interrupt on the test handler */
4421 ew32(ICS, E1000_ICS_RXSEQ);
4422 e1e_flush();
569a3aff 4423 msleep(100);
f8d59f78
BA
4424
4425 e1000_irq_disable(adapter);
4426
bc76329d 4427 rmb(); /* read flags after interrupt has been fired */
f8d59f78
BA
4428
4429 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 4430 adapter->int_mode = E1000E_INT_MODE_LEGACY;
068e8a30 4431 e_info("MSI interrupt test failed, using legacy interrupt.\n");
24b706b2 4432 } else {
068e8a30 4433 e_dbg("MSI interrupt test succeeded!\n");
24b706b2 4434 }
f8d59f78
BA
4435
4436 free_irq(adapter->pdev->irq, netdev);
4437 pci_disable_msi(adapter->pdev);
4438
f8d59f78 4439msi_test_failed:
4662e82b 4440 e1000e_set_interrupt_capability(adapter);
068e8a30 4441 return e1000_request_irq(adapter);
f8d59f78
BA
4442}
4443
4444/**
4445 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4446 * @adapter: board private struct
4447 *
4448 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4449 **/
4450static int e1000_test_msi(struct e1000_adapter *adapter)
4451{
4452 int err;
4453 u16 pci_cmd;
4454
4455 if (!(adapter->flags & FLAG_MSI_ENABLED))
4456 return 0;
4457
4458 /* disable SERR in case the MSI write causes a master abort */
4459 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
36f2407f
DN
4460 if (pci_cmd & PCI_COMMAND_SERR)
4461 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4462 pci_cmd & ~PCI_COMMAND_SERR);
f8d59f78
BA
4463
4464 err = e1000_test_msi_interrupt(adapter);
4465
36f2407f
DN
4466 /* re-enable SERR */
4467 if (pci_cmd & PCI_COMMAND_SERR) {
4468 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4469 pci_cmd |= PCI_COMMAND_SERR;
4470 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4471 }
f8d59f78 4472
f8d59f78
BA
4473 return err;
4474}
4475
bc7f75fa
AK
4476/**
4477 * e1000_open - Called when a network interface is made active
4478 * @netdev: network interface device structure
4479 *
4480 * Returns 0 on success, negative value on failure
4481 *
4482 * The open entry point is called when a network interface is made
4483 * active by the system (IFF_UP). At this point all resources needed
4484 * for transmit and receive operations are allocated, the interrupt
4485 * handler is registered with the OS, the watchdog timer is started,
4486 * and the stack is notified that the interface is ready.
4487 **/
4488static int e1000_open(struct net_device *netdev)
4489{
4490 struct e1000_adapter *adapter = netdev_priv(netdev);
4491 struct e1000_hw *hw = &adapter->hw;
23606cf5 4492 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
4493 int err;
4494
4495 /* disallow open during test */
4496 if (test_bit(__E1000_TESTING, &adapter->state))
4497 return -EBUSY;
4498
23606cf5
RW
4499 pm_runtime_get_sync(&pdev->dev);
4500
9c563d20
JB
4501 netif_carrier_off(netdev);
4502
bc7f75fa 4503 /* allocate transmit descriptors */
55aa6985 4504 err = e1000e_setup_tx_resources(adapter->tx_ring);
bc7f75fa
AK
4505 if (err)
4506 goto err_setup_tx;
4507
4508 /* allocate receive descriptors */
55aa6985 4509 err = e1000e_setup_rx_resources(adapter->rx_ring);
bc7f75fa
AK
4510 if (err)
4511 goto err_setup_rx;
4512
e921eb1a 4513 /* If AMT is enabled, let the firmware know that the network
11b08be8
BA
4514 * interface is now open and reset the part to a known state.
4515 */
4516 if (adapter->flags & FLAG_HAS_AMT) {
31dbe5b4 4517 e1000e_get_hw_control(adapter);
11b08be8
BA
4518 e1000e_reset(adapter);
4519 }
4520
bc7f75fa
AK
4521 e1000e_power_up_phy(adapter);
4522
4523 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
e5fe2541 4524 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
bc7f75fa
AK
4525 e1000_update_mng_vlan(adapter);
4526
79d4e908 4527 /* DMA latency requirement to workaround jumbo issue */
e2c65448 4528 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
3e35d991 4529 PM_QOS_DEFAULT_VALUE);
c128ec29 4530
e921eb1a 4531 /* before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
4532 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4533 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
4534 * clean_rx handler before we do so.
4535 */
bc7f75fa
AK
4536 e1000_configure(adapter);
4537
4538 err = e1000_request_irq(adapter);
4539 if (err)
4540 goto err_req_irq;
4541
e921eb1a 4542 /* Work around PCIe errata with MSI interrupts causing some chipsets to
f8d59f78
BA
4543 * ignore e1000e MSI messages, which means we need to test our MSI
4544 * interrupt now
4545 */
4662e82b 4546 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
4547 err = e1000_test_msi(adapter);
4548 if (err) {
4549 e_err("Interrupt allocation failed\n");
4550 goto err_req_irq;
4551 }
4552 }
4553
bc7f75fa
AK
4554 /* From here on the code is the same as e1000e_up() */
4555 clear_bit(__E1000_DOWN, &adapter->state);
4556
4557 napi_enable(&adapter->napi);
4558
4559 e1000_irq_enable(adapter);
4560
09357b00 4561 adapter->tx_hang_recheck = false;
4cb9be7a 4562 netif_start_queue(netdev);
d55b53ff 4563
66148bab 4564 hw->mac.get_link_status = true;
23606cf5
RW
4565 pm_runtime_put(&pdev->dev);
4566
bc7f75fa 4567 /* fire a link status change interrupt to start the watchdog */
52a9b231
BA
4568 if (adapter->msix_entries)
4569 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4570 else
4571 ew32(ICS, E1000_ICS_LSC);
bc7f75fa
AK
4572
4573 return 0;
4574
4575err_req_irq:
31dbe5b4 4576 e1000e_release_hw_control(adapter);
bc7f75fa 4577 e1000_power_down_phy(adapter);
55aa6985 4578 e1000e_free_rx_resources(adapter->rx_ring);
bc7f75fa 4579err_setup_rx:
55aa6985 4580 e1000e_free_tx_resources(adapter->tx_ring);
bc7f75fa
AK
4581err_setup_tx:
4582 e1000e_reset(adapter);
23606cf5 4583 pm_runtime_put_sync(&pdev->dev);
bc7f75fa
AK
4584
4585 return err;
4586}
4587
4588/**
4589 * e1000_close - Disables a network interface
4590 * @netdev: network interface device structure
4591 *
4592 * Returns 0, this is not allowed to fail
4593 *
4594 * The close entry point is called when an interface is de-activated
4595 * by the OS. The hardware is still under the drivers control, but
4596 * needs to be disabled. A global MAC reset is issued to stop the
4597 * hardware, and all transmit and receive resources are freed.
4598 **/
4599static int e1000_close(struct net_device *netdev)
4600{
4601 struct e1000_adapter *adapter = netdev_priv(netdev);
23606cf5 4602 struct pci_dev *pdev = adapter->pdev;
bb9e44d0
BA
4603 int count = E1000_CHECK_RESET_COUNT;
4604
4605 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4606 usleep_range(10000, 20000);
bc7f75fa
AK
4607
4608 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
23606cf5
RW
4609
4610 pm_runtime_get_sync(&pdev->dev);
4611
4612 if (!test_bit(__E1000_DOWN, &adapter->state)) {
28002099 4613 e1000e_down(adapter, true);
23606cf5 4614 e1000_free_irq(adapter);
63eb48f1
DE
4615
4616 /* Link status message must follow this format */
4617 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
23606cf5 4618 }
a3b87a4c
BA
4619
4620 napi_disable(&adapter->napi);
4621
55aa6985
BA
4622 e1000e_free_tx_resources(adapter->tx_ring);
4623 e1000e_free_rx_resources(adapter->rx_ring);
bc7f75fa 4624
e921eb1a 4625 /* kill manageability vlan ID if supported, but not if a vlan with
ad68076e
BA
4626 * the same ID is registered on the host OS (let 8021q kill it)
4627 */
e5fe2541 4628 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
80d5c368
PM
4629 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4630 adapter->mng_vlan_id);
bc7f75fa 4631
e921eb1a 4632 /* If AMT is enabled, let the firmware know that the network
ad68076e
BA
4633 * interface is now closed
4634 */
31dbe5b4
BA
4635 if ((adapter->flags & FLAG_HAS_AMT) &&
4636 !test_bit(__E1000_TESTING, &adapter->state))
4637 e1000e_release_hw_control(adapter);
bc7f75fa 4638
e2c65448 4639 pm_qos_remove_request(&adapter->pm_qos_req);
c128ec29 4640
23606cf5
RW
4641 pm_runtime_put_sync(&pdev->dev);
4642
bc7f75fa
AK
4643 return 0;
4644}
fc830b78 4645
bc7f75fa
AK
4646/**
4647 * e1000_set_mac - Change the Ethernet Address of the NIC
4648 * @netdev: network interface device structure
4649 * @p: pointer to an address structure
4650 *
4651 * Returns 0 on success, negative on failure
4652 **/
4653static int e1000_set_mac(struct net_device *netdev, void *p)
4654{
4655 struct e1000_adapter *adapter = netdev_priv(netdev);
69e1e019 4656 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
4657 struct sockaddr *addr = p;
4658
4659 if (!is_valid_ether_addr(addr->sa_data))
4660 return -EADDRNOTAVAIL;
4661
4662 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4663 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4664
69e1e019 4665 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
bc7f75fa
AK
4666
4667 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4668 /* activate the work around */
4669 e1000e_set_laa_state_82571(&adapter->hw, 1);
4670
e921eb1a 4671 /* Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
4672 * between the time RAR[0] gets clobbered and the time it
4673 * gets fixed (in e1000_watchdog), the actual LAA is in one
4674 * of the RARs and no incoming packets directed to this port
4675 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
4676 * RAR[14]
4677 */
69e1e019
BA
4678 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4679 adapter->hw.mac.rar_entry_count - 1);
bc7f75fa
AK
4680 }
4681
4682 return 0;
4683}
4684
a8f88ff5
JB
4685/**
4686 * e1000e_update_phy_task - work thread to update phy
4687 * @work: pointer to our work struct
4688 *
4689 * this worker thread exists because we must acquire a
4690 * semaphore to read the phy, which we could msleep while
4691 * waiting for it, and we can't msleep in a timer.
4692 **/
4693static void e1000e_update_phy_task(struct work_struct *work)
4694{
4695 struct e1000_adapter *adapter = container_of(work,
17e813ec
BA
4696 struct e1000_adapter,
4697 update_phy_task);
a03206ed 4698 struct e1000_hw *hw = &adapter->hw;
615b32af
JB
4699
4700 if (test_bit(__E1000_DOWN, &adapter->state))
4701 return;
4702
a03206ed
DE
4703 e1000_get_phy_info(hw);
4704
4705 /* Enable EEE on 82579 after link up */
50844bb7 4706 if (hw->phy.type >= e1000_phy_82579)
a03206ed 4707 e1000_set_eee_pchlan(hw);
a8f88ff5
JB
4708}
4709
e921eb1a
BA
4710/**
4711 * e1000_update_phy_info - timre call-back to update PHY info
4712 * @data: pointer to adapter cast into an unsigned long
4713 *
ad68076e
BA
4714 * Need to wait a few seconds after link up to get diagnostic information from
4715 * the phy
e921eb1a 4716 **/
bc7f75fa
AK
4717static void e1000_update_phy_info(unsigned long data)
4718{
53aa82da 4719 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
615b32af
JB
4720
4721 if (test_bit(__E1000_DOWN, &adapter->state))
4722 return;
4723
a8f88ff5 4724 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
4725}
4726
8c7bbb92
BA
4727/**
4728 * e1000e_update_phy_stats - Update the PHY statistics counters
4729 * @adapter: board private structure
2b6b168d
BA
4730 *
4731 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
8c7bbb92
BA
4732 **/
4733static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4734{
4735 struct e1000_hw *hw = &adapter->hw;
4736 s32 ret_val;
4737 u16 phy_data;
4738
4739 ret_val = hw->phy.ops.acquire(hw);
4740 if (ret_val)
4741 return;
4742
e921eb1a 4743 /* A page set is expensive so check if already on desired page.
8c7bbb92
BA
4744 * If not, set to the page with the PHY status registers.
4745 */
2b6b168d 4746 hw->phy.addr = 1;
8c7bbb92
BA
4747 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4748 &phy_data);
4749 if (ret_val)
4750 goto release;
2b6b168d
BA
4751 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4752 ret_val = hw->phy.ops.set_page(hw,
4753 HV_STATS_PAGE << IGP_PAGE_SHIFT);
8c7bbb92
BA
4754 if (ret_val)
4755 goto release;
4756 }
4757
8c7bbb92 4758 /* Single Collision Count */
2b6b168d
BA
4759 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4760 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
8c7bbb92
BA
4761 if (!ret_val)
4762 adapter->stats.scc += phy_data;
4763
4764 /* Excessive Collision Count */
2b6b168d
BA
4765 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4766 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
8c7bbb92
BA
4767 if (!ret_val)
4768 adapter->stats.ecol += phy_data;
4769
4770 /* Multiple Collision Count */
2b6b168d
BA
4771 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4772 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
8c7bbb92
BA
4773 if (!ret_val)
4774 adapter->stats.mcc += phy_data;
4775
4776 /* Late Collision Count */
2b6b168d
BA
4777 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4778 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
8c7bbb92
BA
4779 if (!ret_val)
4780 adapter->stats.latecol += phy_data;
4781
4782 /* Collision Count - also used for adaptive IFS */
2b6b168d
BA
4783 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4784 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
8c7bbb92
BA
4785 if (!ret_val)
4786 hw->mac.collision_delta = phy_data;
4787
4788 /* Defer Count */
2b6b168d
BA
4789 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4790 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
8c7bbb92
BA
4791 if (!ret_val)
4792 adapter->stats.dc += phy_data;
4793
4794 /* Transmit with no CRS */
2b6b168d
BA
4795 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4796 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
8c7bbb92
BA
4797 if (!ret_val)
4798 adapter->stats.tncrs += phy_data;
4799
4800release:
4801 hw->phy.ops.release(hw);
4802}
4803
bc7f75fa
AK
4804/**
4805 * e1000e_update_stats - Update the board statistics counters
4806 * @adapter: board private structure
4807 **/
67fd4fcb 4808static void e1000e_update_stats(struct e1000_adapter *adapter)
bc7f75fa 4809{
7274c20f 4810 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
4811 struct e1000_hw *hw = &adapter->hw;
4812 struct pci_dev *pdev = adapter->pdev;
bc7f75fa 4813
e921eb1a 4814 /* Prevent stats update while adapter is being reset, or if the pci
bc7f75fa
AK
4815 * connection is down.
4816 */
4817 if (adapter->link_speed == 0)
4818 return;
4819 if (pci_channel_offline(pdev))
4820 return;
4821
bc7f75fa
AK
4822 adapter->stats.crcerrs += er32(CRCERRS);
4823 adapter->stats.gprc += er32(GPRC);
7c25769f 4824 adapter->stats.gorc += er32(GORCL);
e80bd1d1 4825 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
4826 adapter->stats.bprc += er32(BPRC);
4827 adapter->stats.mprc += er32(MPRC);
4828 adapter->stats.roc += er32(ROC);
4829
bc7f75fa 4830 adapter->stats.mpc += er32(MPC);
8c7bbb92
BA
4831
4832 /* Half-duplex statistics */
4833 if (adapter->link_duplex == HALF_DUPLEX) {
4834 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4835 e1000e_update_phy_stats(adapter);
4836 } else {
4837 adapter->stats.scc += er32(SCC);
4838 adapter->stats.ecol += er32(ECOL);
4839 adapter->stats.mcc += er32(MCC);
4840 adapter->stats.latecol += er32(LATECOL);
4841 adapter->stats.dc += er32(DC);
4842
4843 hw->mac.collision_delta = er32(COLC);
4844
4845 if ((hw->mac.type != e1000_82574) &&
4846 (hw->mac.type != e1000_82583))
4847 adapter->stats.tncrs += er32(TNCRS);
4848 }
4849 adapter->stats.colc += hw->mac.collision_delta;
a4f58f54 4850 }
8c7bbb92 4851
bc7f75fa
AK
4852 adapter->stats.xonrxc += er32(XONRXC);
4853 adapter->stats.xontxc += er32(XONTXC);
4854 adapter->stats.xoffrxc += er32(XOFFRXC);
4855 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 4856 adapter->stats.gptc += er32(GPTC);
7c25769f 4857 adapter->stats.gotc += er32(GOTCL);
e80bd1d1 4858 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
4859 adapter->stats.rnbc += er32(RNBC);
4860 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
4861
4862 adapter->stats.mptc += er32(MPTC);
4863 adapter->stats.bptc += er32(BPTC);
4864
4865 /* used for adaptive IFS */
4866
4867 hw->mac.tx_packet_delta = er32(TPT);
4868 adapter->stats.tpt += hw->mac.tx_packet_delta;
bc7f75fa
AK
4869
4870 adapter->stats.algnerrc += er32(ALGNERRC);
4871 adapter->stats.rxerrc += er32(RXERRC);
bc7f75fa
AK
4872 adapter->stats.cexterr += er32(CEXTERR);
4873 adapter->stats.tsctc += er32(TSCTC);
4874 adapter->stats.tsctfc += er32(TSCTFC);
4875
bc7f75fa 4876 /* Fill out the OS statistics structure */
7274c20f
AK
4877 netdev->stats.multicast = adapter->stats.mprc;
4878 netdev->stats.collisions = adapter->stats.colc;
bc7f75fa
AK
4879
4880 /* Rx Errors */
4881
e921eb1a 4882 /* RLEC on some newer hardware can be incorrect so build
ad68076e
BA
4883 * our own version based on RUC and ROC
4884 */
7274c20f 4885 netdev->stats.rx_errors = adapter->stats.rxerrc +
f0ff4398
BA
4886 adapter->stats.crcerrs + adapter->stats.algnerrc +
4887 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
7274c20f 4888 netdev->stats.rx_length_errors = adapter->stats.ruc +
f0ff4398 4889 adapter->stats.roc;
7274c20f
AK
4890 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4891 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4892 netdev->stats.rx_missed_errors = adapter->stats.mpc;
bc7f75fa
AK
4893
4894 /* Tx Errors */
f0ff4398 4895 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
7274c20f
AK
4896 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4897 netdev->stats.tx_window_errors = adapter->stats.latecol;
4898 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
bc7f75fa
AK
4899
4900 /* Tx Dropped needs to be maintained elsewhere */
4901
bc7f75fa
AK
4902 /* Management Stats */
4903 adapter->stats.mgptc += er32(MGTPTC);
4904 adapter->stats.mgprc += er32(MGTPRC);
4905 adapter->stats.mgpdc += er32(MGTPDC);
94fb848b
BA
4906
4907 /* Correctable ECC Errors */
79849ebc
DE
4908 if ((hw->mac.type == e1000_pch_lpt) ||
4909 (hw->mac.type == e1000_pch_spt)) {
94fb848b 4910 u32 pbeccsts = er32(PBECCSTS);
6cf08d1c 4911
94fb848b
BA
4912 adapter->corr_errors +=
4913 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4914 adapter->uncorr_errors +=
4915 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4916 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4917 }
bc7f75fa
AK
4918}
4919
7c25769f
BA
4920/**
4921 * e1000_phy_read_status - Update the PHY register status snapshot
4922 * @adapter: board private structure
4923 **/
4924static void e1000_phy_read_status(struct e1000_adapter *adapter)
4925{
4926 struct e1000_hw *hw = &adapter->hw;
4927 struct e1000_phy_regs *phy = &adapter->phy_regs;
7c25769f 4928
97390ab8
BA
4929 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4930 (er32(STATUS) & E1000_STATUS_LU) &&
7c25769f 4931 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
90da0669
BA
4932 int ret_val;
4933
c2ade1a4
BA
4934 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4935 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4936 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4937 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4938 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4939 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4940 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4941 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
7c25769f 4942 if (ret_val)
44defeb3 4943 e_warn("Error reading PHY register\n");
7c25769f 4944 } else {
e921eb1a 4945 /* Do not read PHY registers if link is not up
7c25769f
BA
4946 * Set values to typical power-on defaults
4947 */
4948 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4949 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4950 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4951 BMSR_ERCAP);
4952 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4953 ADVERTISE_ALL | ADVERTISE_CSMA);
4954 phy->lpa = 0;
4955 phy->expansion = EXPANSION_ENABLENPAGE;
4956 phy->ctrl1000 = ADVERTISE_1000FULL;
4957 phy->stat1000 = 0;
4958 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4959 }
7c25769f
BA
4960}
4961
bc7f75fa
AK
4962static void e1000_print_link_info(struct e1000_adapter *adapter)
4963{
bc7f75fa
AK
4964 struct e1000_hw *hw = &adapter->hw;
4965 u32 ctrl = er32(CTRL);
4966
8f12fe86 4967 /* Link status message must follow this format for user tools */
7dbc1672
BA
4968 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4969 adapter->netdev->name, adapter->link_speed,
ef456f85
JK
4970 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4971 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4972 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4973 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
bc7f75fa
AK
4974}
4975
0c6bdb30 4976static bool e1000e_has_link(struct e1000_adapter *adapter)
318a94d6
JK
4977{
4978 struct e1000_hw *hw = &adapter->hw;
3db1cd5c 4979 bool link_active = false;
318a94d6
JK
4980 s32 ret_val = 0;
4981
e921eb1a 4982 /* get_link_status is set on LSC (link status) interrupt or
318a94d6
JK
4983 * Rx sequence error interrupt. get_link_status will stay
4984 * false until the check_for_link establishes link
4985 * for copper adapters ONLY
4986 */
4987 switch (hw->phy.media_type) {
4988 case e1000_media_type_copper:
4989 if (hw->mac.get_link_status) {
4990 ret_val = hw->mac.ops.check_for_link(hw);
4991 link_active = !hw->mac.get_link_status;
4992 } else {
3db1cd5c 4993 link_active = true;
318a94d6
JK
4994 }
4995 break;
4996 case e1000_media_type_fiber:
4997 ret_val = hw->mac.ops.check_for_link(hw);
4998 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4999 break;
5000 case e1000_media_type_internal_serdes:
5001 ret_val = hw->mac.ops.check_for_link(hw);
5002 link_active = adapter->hw.mac.serdes_has_link;
5003 break;
5004 default:
5005 case e1000_media_type_unknown:
5006 break;
5007 }
5008
5009 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5010 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5011 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 5012 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
5013 }
5014
5015 return link_active;
5016}
5017
5018static void e1000e_enable_receives(struct e1000_adapter *adapter)
5019{
5020 /* make sure the receive unit is started */
5021 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
12d43f7d 5022 (adapter->flags & FLAG_RESTART_NOW)) {
318a94d6
JK
5023 struct e1000_hw *hw = &adapter->hw;
5024 u32 rctl = er32(RCTL);
6cf08d1c 5025
318a94d6 5026 ew32(RCTL, rctl | E1000_RCTL_EN);
12d43f7d 5027 adapter->flags &= ~FLAG_RESTART_NOW;
318a94d6
JK
5028 }
5029}
5030
ff10e13c
CW
5031static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5032{
5033 struct e1000_hw *hw = &adapter->hw;
5034
e921eb1a 5035 /* With 82574 controllers, PHY needs to be checked periodically
ff10e13c
CW
5036 * for hung state and reset, if two calls return true
5037 */
5038 if (e1000_check_phy_82574(hw))
5039 adapter->phy_hang_count++;
5040 else
5041 adapter->phy_hang_count = 0;
5042
5043 if (adapter->phy_hang_count > 1) {
5044 adapter->phy_hang_count = 0;
d9554e96 5045 e_dbg("PHY appears hung - resetting\n");
ff10e13c
CW
5046 schedule_work(&adapter->reset_task);
5047 }
5048}
5049
bc7f75fa
AK
5050/**
5051 * e1000_watchdog - Timer Call-back
5052 * @data: pointer to adapter cast into an unsigned long
5053 **/
5054static void e1000_watchdog(unsigned long data)
5055{
53aa82da 5056 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
bc7f75fa
AK
5057
5058 /* Do the rest outside of interrupt context */
5059 schedule_work(&adapter->watchdog_task);
5060
5061 /* TODO: make this use queue_delayed_work() */
5062}
5063
5064static void e1000_watchdog_task(struct work_struct *work)
5065{
5066 struct e1000_adapter *adapter = container_of(work,
17e813ec
BA
5067 struct e1000_adapter,
5068 watchdog_task);
bc7f75fa
AK
5069 struct net_device *netdev = adapter->netdev;
5070 struct e1000_mac_info *mac = &adapter->hw.mac;
75eb0fad 5071 struct e1000_phy_info *phy = &adapter->hw.phy;
bc7f75fa
AK
5072 struct e1000_ring *tx_ring = adapter->tx_ring;
5073 struct e1000_hw *hw = &adapter->hw;
5074 u32 link, tctl;
bc7f75fa 5075
615b32af
JB
5076 if (test_bit(__E1000_DOWN, &adapter->state))
5077 return;
5078
b405e8df 5079 link = e1000e_has_link(adapter);
318a94d6 5080 if ((netif_carrier_ok(netdev)) && link) {
23606cf5
RW
5081 /* Cancel scheduled suspend requests. */
5082 pm_runtime_resume(netdev->dev.parent);
5083
318a94d6 5084 e1000e_enable_receives(adapter);
bc7f75fa 5085 goto link_up;
bc7f75fa
AK
5086 }
5087
5088 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5089 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5090 e1000_update_mng_vlan(adapter);
5091
bc7f75fa
AK
5092 if (link) {
5093 if (!netif_carrier_ok(netdev)) {
3db1cd5c 5094 bool txb2b = true;
23606cf5
RW
5095
5096 /* Cancel scheduled suspend requests. */
5097 pm_runtime_resume(netdev->dev.parent);
5098
318a94d6 5099 /* update snapshot of PHY registers on LSC */
7c25769f 5100 e1000_phy_read_status(adapter);
bc7f75fa 5101 mac->ops.get_link_up_info(&adapter->hw,
17e813ec
BA
5102 &adapter->link_speed,
5103 &adapter->link_duplex);
bc7f75fa 5104 e1000_print_link_info(adapter);
e792cd91
KS
5105
5106 /* check if SmartSpeed worked */
5107 e1000e_check_downshift(hw);
5108 if (phy->speed_downgraded)
5109 netdev_warn(netdev,
5110 "Link Speed was downgraded by SmartSpeed\n");
5111
e921eb1a 5112 /* On supported PHYs, check for duplex mismatch only
f4187b56
BA
5113 * if link has autonegotiated at 10/100 half
5114 */
5115 if ((hw->phy.type == e1000_phy_igp_3 ||
5116 hw->phy.type == e1000_phy_bm) &&
138953bb 5117 hw->mac.autoneg &&
f4187b56
BA
5118 (adapter->link_speed == SPEED_10 ||
5119 adapter->link_speed == SPEED_100) &&
5120 (adapter->link_duplex == HALF_DUPLEX)) {
5121 u16 autoneg_exp;
5122
c2ade1a4 5123 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
f4187b56 5124
c2ade1a4 5125 if (!(autoneg_exp & EXPANSION_NWAY))
ef456f85 5126 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
f4187b56
BA
5127 }
5128
f49c57e1 5129 /* adjust timeout factor according to speed/duplex */
bc7f75fa
AK
5130 adapter->tx_timeout_factor = 1;
5131 switch (adapter->link_speed) {
5132 case SPEED_10:
3db1cd5c 5133 txb2b = false;
10f1b492 5134 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
5135 break;
5136 case SPEED_100:
3db1cd5c 5137 txb2b = false;
4c86e0b9 5138 adapter->tx_timeout_factor = 10;
bc7f75fa
AK
5139 break;
5140 }
5141
e921eb1a 5142 /* workaround: re-program speed mode bit after
ad68076e
BA
5143 * link-up event
5144 */
bc7f75fa
AK
5145 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5146 !txb2b) {
5147 u32 tarc0;
6cf08d1c 5148
e9ec2c0f 5149 tarc0 = er32(TARC(0));
bc7f75fa 5150 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 5151 ew32(TARC(0), tarc0);
bc7f75fa
AK
5152 }
5153
e921eb1a 5154 /* disable TSO for pcie and 10/100 speeds, to avoid
ad68076e
BA
5155 * some hardware issues
5156 */
bc7f75fa
AK
5157 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5158 switch (adapter->link_speed) {
5159 case SPEED_10:
5160 case SPEED_100:
44defeb3 5161 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
5162 netdev->features &= ~NETIF_F_TSO;
5163 netdev->features &= ~NETIF_F_TSO6;
5164 break;
5165 case SPEED_1000:
5166 netdev->features |= NETIF_F_TSO;
5167 netdev->features |= NETIF_F_TSO6;
5168 break;
5169 default:
5170 /* oops */
5171 break;
5172 }
5173 }
5174
e921eb1a 5175 /* enable transmits in the hardware, need to do this
ad68076e
BA
5176 * after setting TARC(0)
5177 */
bc7f75fa
AK
5178 tctl = er32(TCTL);
5179 tctl |= E1000_TCTL_EN;
5180 ew32(TCTL, tctl);
5181
e921eb1a 5182 /* Perform any post-link-up configuration before
75eb0fad
BA
5183 * reporting link up.
5184 */
5185 if (phy->ops.cfg_on_link_up)
5186 phy->ops.cfg_on_link_up(hw);
5187
bc7f75fa 5188 netif_carrier_on(netdev);
bc7f75fa
AK
5189
5190 if (!test_bit(__E1000_DOWN, &adapter->state))
5191 mod_timer(&adapter->phy_info_timer,
5192 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
5193 }
5194 } else {
5195 if (netif_carrier_ok(netdev)) {
5196 adapter->link_speed = 0;
5197 adapter->link_duplex = 0;
8f12fe86 5198 /* Link status message must follow this format */
7dbc1672 5199 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
bc7f75fa 5200 netif_carrier_off(netdev);
bc7f75fa
AK
5201 if (!test_bit(__E1000_DOWN, &adapter->state))
5202 mod_timer(&adapter->phy_info_timer,
5203 round_jiffies(jiffies + 2 * HZ));
5204
d9554e96
DE
5205 /* 8000ES2LAN requires a Rx packet buffer work-around
5206 * on link down event; reset the controller to flush
5207 * the Rx packet buffer.
12d43f7d 5208 */
d9554e96 5209 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
12d43f7d 5210 adapter->flags |= FLAG_RESTART_NOW;
23606cf5
RW
5211 else
5212 pm_schedule_suspend(netdev->dev.parent,
17e813ec 5213 LINK_TIMEOUT);
bc7f75fa
AK
5214 }
5215 }
5216
5217link_up:
67fd4fcb 5218 spin_lock(&adapter->stats64_lock);
bc7f75fa
AK
5219 e1000e_update_stats(adapter);
5220
5221 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5222 adapter->tpt_old = adapter->stats.tpt;
5223 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5224 adapter->colc_old = adapter->stats.colc;
5225
7c25769f
BA
5226 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5227 adapter->gorc_old = adapter->stats.gorc;
5228 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5229 adapter->gotc_old = adapter->stats.gotc;
2084b114 5230 spin_unlock(&adapter->stats64_lock);
bc7f75fa 5231
d9554e96
DE
5232 /* If the link is lost the controller stops DMA, but
5233 * if there is queued Tx work it cannot be done. So
5234 * reset the controller to flush the Tx packet buffers.
5235 */
5236 if (!netif_carrier_ok(netdev) &&
5237 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5238 adapter->flags |= FLAG_RESTART_NOW;
5239
5240 /* If reset is necessary, do it outside of interrupt context. */
12d43f7d 5241 if (adapter->flags & FLAG_RESTART_NOW) {
90da0669
BA
5242 schedule_work(&adapter->reset_task);
5243 /* return immediately since reset is imminent */
5244 return;
bc7f75fa
AK
5245 }
5246
12d43f7d
BA
5247 e1000e_update_adaptive(&adapter->hw);
5248
eab2abf5
JB
5249 /* Simple mode for Interrupt Throttle Rate (ITR) */
5250 if (adapter->itr_setting == 4) {
e921eb1a 5251 /* Symmetric Tx/Rx gets a reduced ITR=2000;
eab2abf5
JB
5252 * Total asymmetrical Tx or Rx gets ITR=8000;
5253 * everyone else is between 2000-8000.
5254 */
5255 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5256 u32 dif = (adapter->gotc > adapter->gorc ?
17e813ec
BA
5257 adapter->gotc - adapter->gorc :
5258 adapter->gorc - adapter->gotc) / 10000;
eab2abf5
JB
5259 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5260
22a4cca2 5261 e1000e_write_itr(adapter, itr);
eab2abf5
JB
5262 }
5263
ad68076e 5264 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
5265 if (adapter->msix_entries)
5266 ew32(ICS, adapter->rx_ring->ims_val);
5267 else
5268 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa 5269
713b3c9e
JB
5270 /* flush pending descriptors to memory before detecting Tx hang */
5271 e1000e_flush_descriptors(adapter);
5272
bc7f75fa 5273 /* Force detection of hung controller every watchdog period */
3db1cd5c 5274 adapter->detect_tx_hung = true;
bc7f75fa 5275
e921eb1a 5276 /* With 82571 controllers, LAA may be overwritten due to controller
ad68076e
BA
5277 * reset from the other port. Set the appropriate LAA in RAR[0]
5278 */
bc7f75fa 5279 if (e1000e_get_laa_state_82571(hw))
69e1e019 5280 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
bc7f75fa 5281
ff10e13c
CW
5282 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5283 e1000e_check_82574_phy_workaround(adapter);
5284
b67e1913
BA
5285 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5286 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5287 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5288 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5289 er32(RXSTMPH);
5290 adapter->rx_hwtstamp_cleared++;
5291 } else {
5292 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5293 }
5294 }
5295
bc7f75fa
AK
5296 /* Reset the timer */
5297 if (!test_bit(__E1000_DOWN, &adapter->state))
5298 mod_timer(&adapter->watchdog_timer,
5299 round_jiffies(jiffies + 2 * HZ));
5300}
5301
5302#define E1000_TX_FLAGS_CSUM 0x00000001
5303#define E1000_TX_FLAGS_VLAN 0x00000002
5304#define E1000_TX_FLAGS_TSO 0x00000004
5305#define E1000_TX_FLAGS_IPV4 0x00000008
943146de 5306#define E1000_TX_FLAGS_NO_FCS 0x00000010
b67e1913 5307#define E1000_TX_FLAGS_HWTSTAMP 0x00000020
bc7f75fa
AK
5308#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5309#define E1000_TX_FLAGS_VLAN_SHIFT 16
5310
47ccd1ed
VY
5311static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5312 __be16 protocol)
bc7f75fa 5313{
bc7f75fa
AK
5314 struct e1000_context_desc *context_desc;
5315 struct e1000_buffer *buffer_info;
5316 unsigned int i;
5317 u32 cmd_length = 0;
70443ae9 5318 u16 ipcse = 0, mss;
bc7f75fa 5319 u8 ipcss, ipcso, tucss, tucso, hdr_len;
bcf1f57f 5320 int err;
bc7f75fa 5321
3d5e33c9
BA
5322 if (!skb_is_gso(skb))
5323 return 0;
bc7f75fa 5324
bcf1f57f
FR
5325 err = skb_cow_head(skb, 0);
5326 if (err < 0)
5327 return err;
bc7f75fa 5328
3d5e33c9
BA
5329 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5330 mss = skb_shinfo(skb)->gso_size;
47ccd1ed 5331 if (protocol == htons(ETH_P_IP)) {
3d5e33c9
BA
5332 struct iphdr *iph = ip_hdr(skb);
5333 iph->tot_len = 0;
5334 iph->check = 0;
5335 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
f0ff4398 5336 0, IPPROTO_TCP, 0);
3d5e33c9
BA
5337 cmd_length = E1000_TXD_CMD_IP;
5338 ipcse = skb_transport_offset(skb) - 1;
8e1e8a47 5339 } else if (skb_is_gso_v6(skb)) {
3d5e33c9
BA
5340 ipv6_hdr(skb)->payload_len = 0;
5341 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
f0ff4398
BA
5342 &ipv6_hdr(skb)->daddr,
5343 0, IPPROTO_TCP, 0);
3d5e33c9
BA
5344 ipcse = 0;
5345 }
5346 ipcss = skb_network_offset(skb);
5347 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5348 tucss = skb_transport_offset(skb);
5349 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3d5e33c9
BA
5350
5351 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
f0ff4398 5352 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3d5e33c9
BA
5353
5354 i = tx_ring->next_to_use;
5355 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5356 buffer_info = &tx_ring->buffer_info[i];
5357
e80bd1d1
BA
5358 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5359 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5360 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3d5e33c9
BA
5361 context_desc->upper_setup.tcp_fields.tucss = tucss;
5362 context_desc->upper_setup.tcp_fields.tucso = tucso;
70443ae9 5363 context_desc->upper_setup.tcp_fields.tucse = 0;
e80bd1d1 5364 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3d5e33c9
BA
5365 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5366 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5367
5368 buffer_info->time_stamp = jiffies;
5369 buffer_info->next_to_watch = i;
5370
5371 i++;
5372 if (i == tx_ring->count)
5373 i = 0;
5374 tx_ring->next_to_use = i;
5375
5376 return 1;
bc7f75fa
AK
5377}
5378
47ccd1ed
VY
5379static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5380 __be16 protocol)
bc7f75fa 5381{
55aa6985 5382 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
5383 struct e1000_context_desc *context_desc;
5384 struct e1000_buffer *buffer_info;
5385 unsigned int i;
5386 u8 css;
af807c82 5387 u32 cmd_len = E1000_TXD_CMD_DEXT;
bc7f75fa 5388
af807c82 5389 if (skb->ip_summed != CHECKSUM_PARTIAL)
3992c8ed 5390 return false;
bc7f75fa 5391
3f518390 5392 switch (protocol) {
09640e63 5393 case cpu_to_be16(ETH_P_IP):
af807c82
DG
5394 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5395 cmd_len |= E1000_TXD_CMD_TCP;
5396 break;
09640e63 5397 case cpu_to_be16(ETH_P_IPV6):
af807c82
DG
5398 /* XXX not handling all IPV6 headers */
5399 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5400 cmd_len |= E1000_TXD_CMD_TCP;
5401 break;
5402 default:
5403 if (unlikely(net_ratelimit()))
5f66f208
AJ
5404 e_warn("checksum_partial proto=%x!\n",
5405 be16_to_cpu(protocol));
af807c82 5406 break;
bc7f75fa
AK
5407 }
5408
0d0b1672 5409 css = skb_checksum_start_offset(skb);
af807c82
DG
5410
5411 i = tx_ring->next_to_use;
5412 buffer_info = &tx_ring->buffer_info[i];
5413 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5414
5415 context_desc->lower_setup.ip_config = 0;
5416 context_desc->upper_setup.tcp_fields.tucss = css;
f0ff4398 5417 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
af807c82
DG
5418 context_desc->upper_setup.tcp_fields.tucse = 0;
5419 context_desc->tcp_seg_setup.data = 0;
5420 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5421
5422 buffer_info->time_stamp = jiffies;
5423 buffer_info->next_to_watch = i;
5424
5425 i++;
5426 if (i == tx_ring->count)
5427 i = 0;
5428 tx_ring->next_to_use = i;
5429
3992c8ed 5430 return true;
bc7f75fa
AK
5431}
5432
55aa6985
BA
5433static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5434 unsigned int first, unsigned int max_per_txd,
d821a4c4 5435 unsigned int nr_frags)
bc7f75fa 5436{
55aa6985 5437 struct e1000_adapter *adapter = tx_ring->adapter;
03b1320d 5438 struct pci_dev *pdev = adapter->pdev;
1b7719c4 5439 struct e1000_buffer *buffer_info;
8ddc951c 5440 unsigned int len = skb_headlen(skb);
03b1320d 5441 unsigned int offset = 0, size, count = 0, i;
9ed318d5 5442 unsigned int f, bytecount, segs;
bc7f75fa
AK
5443
5444 i = tx_ring->next_to_use;
5445
5446 while (len) {
1b7719c4 5447 buffer_info = &tx_ring->buffer_info[i];
bc7f75fa
AK
5448 size = min(len, max_per_txd);
5449
bc7f75fa 5450 buffer_info->length = size;
bc7f75fa 5451 buffer_info->time_stamp = jiffies;
bc7f75fa 5452 buffer_info->next_to_watch = i;
0be3f55f
NN
5453 buffer_info->dma = dma_map_single(&pdev->dev,
5454 skb->data + offset,
af667a29 5455 size, DMA_TO_DEVICE);
03b1320d 5456 buffer_info->mapped_as_page = false;
0be3f55f 5457 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
03b1320d 5458 goto dma_error;
bc7f75fa
AK
5459
5460 len -= size;
5461 offset += size;
03b1320d 5462 count++;
1b7719c4
AD
5463
5464 if (len) {
5465 i++;
5466 if (i == tx_ring->count)
5467 i = 0;
5468 }
bc7f75fa
AK
5469 }
5470
5471 for (f = 0; f < nr_frags; f++) {
9e903e08 5472 const struct skb_frag_struct *frag;
bc7f75fa
AK
5473
5474 frag = &skb_shinfo(skb)->frags[f];
9e903e08 5475 len = skb_frag_size(frag);
877749bf 5476 offset = 0;
bc7f75fa
AK
5477
5478 while (len) {
1b7719c4
AD
5479 i++;
5480 if (i == tx_ring->count)
5481 i = 0;
5482
bc7f75fa
AK
5483 buffer_info = &tx_ring->buffer_info[i];
5484 size = min(len, max_per_txd);
bc7f75fa
AK
5485
5486 buffer_info->length = size;
5487 buffer_info->time_stamp = jiffies;
bc7f75fa 5488 buffer_info->next_to_watch = i;
877749bf 5489 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
17e813ec
BA
5490 offset, size,
5491 DMA_TO_DEVICE);
03b1320d 5492 buffer_info->mapped_as_page = true;
0be3f55f 5493 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
03b1320d 5494 goto dma_error;
bc7f75fa
AK
5495
5496 len -= size;
5497 offset += size;
5498 count++;
bc7f75fa
AK
5499 }
5500 }
5501
af667a29 5502 segs = skb_shinfo(skb)->gso_segs ? : 1;
9ed318d5
TH
5503 /* multiply data chunks by size of headers */
5504 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5505
bc7f75fa 5506 tx_ring->buffer_info[i].skb = skb;
9ed318d5
TH
5507 tx_ring->buffer_info[i].segs = segs;
5508 tx_ring->buffer_info[i].bytecount = bytecount;
bc7f75fa
AK
5509 tx_ring->buffer_info[first].next_to_watch = i;
5510
5511 return count;
03b1320d
AD
5512
5513dma_error:
af667a29 5514 dev_err(&pdev->dev, "Tx DMA map failed\n");
03b1320d 5515 buffer_info->dma = 0;
c1fa347f 5516 if (count)
03b1320d 5517 count--;
c1fa347f
RK
5518
5519 while (count--) {
af667a29 5520 if (i == 0)
03b1320d 5521 i += tx_ring->count;
c1fa347f 5522 i--;
03b1320d 5523 buffer_info = &tx_ring->buffer_info[i];
55aa6985 5524 e1000_put_txbuf(tx_ring, buffer_info);
03b1320d
AD
5525 }
5526
5527 return 0;
bc7f75fa
AK
5528}
5529
55aa6985 5530static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
bc7f75fa 5531{
55aa6985 5532 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa
AK
5533 struct e1000_tx_desc *tx_desc = NULL;
5534 struct e1000_buffer *buffer_info;
5535 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5536 unsigned int i;
5537
5538 if (tx_flags & E1000_TX_FLAGS_TSO) {
5539 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
f0ff4398 5540 E1000_TXD_CMD_TSE;
bc7f75fa
AK
5541 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5542
5543 if (tx_flags & E1000_TX_FLAGS_IPV4)
5544 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5545 }
5546
5547 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5548 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5549 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5550 }
5551
5552 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5553 txd_lower |= E1000_TXD_CMD_VLE;
5554 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5555 }
5556
943146de
BG
5557 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5558 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5559
b67e1913
BA
5560 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5561 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5562 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5563 }
5564
bc7f75fa
AK
5565 i = tx_ring->next_to_use;
5566
36b973df 5567 do {
bc7f75fa
AK
5568 buffer_info = &tx_ring->buffer_info[i];
5569 tx_desc = E1000_TX_DESC(*tx_ring, i);
5570 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
f0ff4398
BA
5571 tx_desc->lower.data = cpu_to_le32(txd_lower |
5572 buffer_info->length);
bc7f75fa
AK
5573 tx_desc->upper.data = cpu_to_le32(txd_upper);
5574
5575 i++;
5576 if (i == tx_ring->count)
5577 i = 0;
36b973df 5578 } while (--count > 0);
bc7f75fa
AK
5579
5580 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5581
943146de
BG
5582 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5583 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5584 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5585
e921eb1a 5586 /* Force memory writes to complete before letting h/w
bc7f75fa
AK
5587 * know there are new descriptors to fetch. (Only
5588 * applicable for weak-ordered memory model archs,
ad68076e
BA
5589 * such as IA-64).
5590 */
bc7f75fa
AK
5591 wmb();
5592
5593 tx_ring->next_to_use = i;
bc7f75fa
AK
5594}
5595
5596#define MINIMUM_DHCP_PACKET_SIZE 282
5597static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5598 struct sk_buff *skb)
5599{
e80bd1d1 5600 struct e1000_hw *hw = &adapter->hw;
bc7f75fa
AK
5601 u16 length, offset;
5602
df8a39de
JP
5603 if (skb_vlan_tag_present(skb) &&
5604 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
d60923c4
BA
5605 (adapter->hw.mng_cookie.status &
5606 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5607 return 0;
bc7f75fa
AK
5608
5609 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5610 return 0;
5611
53aa82da 5612 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
bc7f75fa
AK
5613 return 0;
5614
5615 {
362e20ca 5616 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
bc7f75fa
AK
5617 struct udphdr *udp;
5618
5619 if (ip->protocol != IPPROTO_UDP)
5620 return 0;
5621
5622 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5623 if (ntohs(udp->dest) != 67)
5624 return 0;
5625
5626 offset = (u8 *)udp + 8 - skb->data;
5627 length = skb->len - offset;
5628 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5629 }
5630
5631 return 0;
5632}
5633
55aa6985 5634static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
bc7f75fa 5635{
55aa6985 5636 struct e1000_adapter *adapter = tx_ring->adapter;
bc7f75fa 5637
55aa6985 5638 netif_stop_queue(adapter->netdev);
e921eb1a 5639 /* Herbert's original patch had:
bc7f75fa 5640 * smp_mb__after_netif_stop_queue();
ad68076e
BA
5641 * but since that doesn't exist yet, just open code it.
5642 */
bc7f75fa
AK
5643 smp_mb();
5644
e921eb1a 5645 /* We need to check again in a case another CPU has just
ad68076e
BA
5646 * made room available.
5647 */
55aa6985 5648 if (e1000_desc_unused(tx_ring) < size)
bc7f75fa
AK
5649 return -EBUSY;
5650
5651 /* A reprieve! */
55aa6985 5652 netif_start_queue(adapter->netdev);
bc7f75fa
AK
5653 ++adapter->restart_queue;
5654 return 0;
5655}
5656
55aa6985 5657static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
bc7f75fa 5658{
d821a4c4
BA
5659 BUG_ON(size > tx_ring->count);
5660
55aa6985 5661 if (e1000_desc_unused(tx_ring) >= size)
bc7f75fa 5662 return 0;
55aa6985 5663 return __e1000_maybe_stop_tx(tx_ring, size);
bc7f75fa
AK
5664}
5665
3b29a56d
SH
5666static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5667 struct net_device *netdev)
bc7f75fa
AK
5668{
5669 struct e1000_adapter *adapter = netdev_priv(netdev);
5670 struct e1000_ring *tx_ring = adapter->tx_ring;
5671 unsigned int first;
bc7f75fa 5672 unsigned int tx_flags = 0;
e743d313 5673 unsigned int len = skb_headlen(skb);
4e6c709c
AK
5674 unsigned int nr_frags;
5675 unsigned int mss;
bc7f75fa
AK
5676 int count = 0;
5677 int tso;
5678 unsigned int f;
47ccd1ed 5679 __be16 protocol = vlan_get_protocol(skb);
bc7f75fa
AK
5680
5681 if (test_bit(__E1000_DOWN, &adapter->state)) {
5682 dev_kfree_skb_any(skb);
5683 return NETDEV_TX_OK;
5684 }
5685
5686 if (skb->len <= 0) {
5687 dev_kfree_skb_any(skb);
5688 return NETDEV_TX_OK;
5689 }
5690
e921eb1a 5691 /* The minimum packet size with TCTL.PSP set is 17 bytes so
6e97c170
TD
5692 * pad skb in order to meet this minimum size requirement
5693 */
a94d9e22
AD
5694 if (skb_put_padto(skb, 17))
5695 return NETDEV_TX_OK;
6e97c170 5696
bc7f75fa 5697 mss = skb_shinfo(skb)->gso_size;
bc7f75fa
AK
5698 if (mss) {
5699 u8 hdr_len;
bc7f75fa 5700
e921eb1a 5701 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
ad68076e
BA
5702 * points to just header, pull a few bytes of payload from
5703 * frags into skb->data
5704 */
bc7f75fa 5705 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
e921eb1a 5706 /* we do this workaround for ES2LAN, but it is un-necessary,
ad68076e
BA
5707 * avoiding it could save a lot of cycles
5708 */
4e6c709c 5709 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
5710 unsigned int pull_size;
5711
a2a5b323 5712 pull_size = min_t(unsigned int, 4, skb->data_len);
bc7f75fa 5713 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 5714 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
5715 dev_kfree_skb_any(skb);
5716 return NETDEV_TX_OK;
5717 }
e743d313 5718 len = skb_headlen(skb);
bc7f75fa
AK
5719 }
5720 }
5721
5722 /* reserve a descriptor for the offload context */
5723 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5724 count++;
5725 count++;
5726
d821a4c4 5727 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
bc7f75fa
AK
5728
5729 nr_frags = skb_shinfo(skb)->nr_frags;
5730 for (f = 0; f < nr_frags; f++)
d821a4c4
BA
5731 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5732 adapter->tx_fifo_limit);
bc7f75fa
AK
5733
5734 if (adapter->hw.mac.tx_pkt_filtering)
5735 e1000_transfer_dhcp_info(adapter, skb);
5736
e921eb1a 5737 /* need: count + 2 desc gap to keep tail from touching
ad68076e
BA
5738 * head, otherwise try next time
5739 */
55aa6985 5740 if (e1000_maybe_stop_tx(tx_ring, count + 2))
bc7f75fa 5741 return NETDEV_TX_BUSY;
bc7f75fa 5742
df8a39de 5743 if (skb_vlan_tag_present(skb)) {
bc7f75fa 5744 tx_flags |= E1000_TX_FLAGS_VLAN;
df8a39de
JP
5745 tx_flags |= (skb_vlan_tag_get(skb) <<
5746 E1000_TX_FLAGS_VLAN_SHIFT);
bc7f75fa
AK
5747 }
5748
5749 first = tx_ring->next_to_use;
5750
47ccd1ed 5751 tso = e1000_tso(tx_ring, skb, protocol);
bc7f75fa
AK
5752 if (tso < 0) {
5753 dev_kfree_skb_any(skb);
bc7f75fa
AK
5754 return NETDEV_TX_OK;
5755 }
5756
5757 if (tso)
5758 tx_flags |= E1000_TX_FLAGS_TSO;
47ccd1ed 5759 else if (e1000_tx_csum(tx_ring, skb, protocol))
bc7f75fa
AK
5760 tx_flags |= E1000_TX_FLAGS_CSUM;
5761
e921eb1a 5762 /* Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 5763 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
5764 * no longer assume, we must.
5765 */
47ccd1ed 5766 if (protocol == htons(ETH_P_IP))
bc7f75fa
AK
5767 tx_flags |= E1000_TX_FLAGS_IPV4;
5768
943146de
BG
5769 if (unlikely(skb->no_fcs))
5770 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5771
25985edc 5772 /* if count is 0 then mapping error has occurred */
d821a4c4
BA
5773 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5774 nr_frags);
1b7719c4 5775 if (count) {
6930895d
MK
5776 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5777 (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5778 !adapter->tx_hwtstamp_skb) {
b67e1913
BA
5779 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5780 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5781 adapter->tx_hwtstamp_skb = skb_get(skb);
59c871c5 5782 adapter->tx_hwtstamp_start = jiffies;
b67e1913
BA
5783 schedule_work(&adapter->tx_hwtstamp_work);
5784 } else {
5785 skb_tx_timestamp(skb);
5786 }
80be3129 5787
3f0cfa3b 5788 netdev_sent_queue(netdev, skb->len);
55aa6985 5789 e1000_tx_queue(tx_ring, tx_flags, count);
1b7719c4 5790 /* Make sure there is space in the ring for the next send. */
d821a4c4
BA
5791 e1000_maybe_stop_tx(tx_ring,
5792 (MAX_SKB_FRAGS *
5793 DIV_ROUND_UP(PAGE_SIZE,
5794 adapter->tx_fifo_limit) + 2));
472f31f5
FW
5795
5796 if (!skb->xmit_more ||
5797 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5798 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5799 e1000e_update_tdt_wa(tx_ring,
5800 tx_ring->next_to_use);
5801 else
5802 writel(tx_ring->next_to_use, tx_ring->tail);
5803
5804 /* we need this if more than one processor can write
5805 * to our tail at a time, it synchronizes IO on
5806 *IA64/Altix systems
5807 */
5808 mmiowb();
5809 }
1b7719c4 5810 } else {
bc7f75fa 5811 dev_kfree_skb_any(skb);
1b7719c4
AD
5812 tx_ring->buffer_info[first].time_stamp = 0;
5813 tx_ring->next_to_use = first;
bc7f75fa
AK
5814 }
5815
bc7f75fa
AK
5816 return NETDEV_TX_OK;
5817}
5818
5819/**
5820 * e1000_tx_timeout - Respond to a Tx Hang
5821 * @netdev: network interface device structure
5822 **/
5823static void e1000_tx_timeout(struct net_device *netdev)
5824{
5825 struct e1000_adapter *adapter = netdev_priv(netdev);
5826
5827 /* Do the reset outside of interrupt context */
5828 adapter->tx_timeout_count++;
5829 schedule_work(&adapter->reset_task);
5830}
5831
5832static void e1000_reset_task(struct work_struct *work)
5833{
5834 struct e1000_adapter *adapter;
5835 adapter = container_of(work, struct e1000_adapter, reset_task);
5836
615b32af
JB
5837 /* don't run the task if already down */
5838 if (test_bit(__E1000_DOWN, &adapter->state))
5839 return;
5840
12d43f7d 5841 if (!(adapter->flags & FLAG_RESTART_NOW)) {
affa9dfb 5842 e1000e_dump(adapter);
12d43f7d 5843 e_err("Reset adapter unexpectedly\n");
affa9dfb 5844 }
bc7f75fa
AK
5845 e1000e_reinit_locked(adapter);
5846}
5847
5848/**
67fd4fcb 5849 * e1000_get_stats64 - Get System Network Statistics
bc7f75fa 5850 * @netdev: network interface device structure
67fd4fcb 5851 * @stats: rtnl_link_stats64 pointer
bc7f75fa
AK
5852 *
5853 * Returns the address of the device statistics structure.
bc7f75fa 5854 **/
67fd4fcb 5855struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
66501f56 5856 struct rtnl_link_stats64 *stats)
bc7f75fa 5857{
67fd4fcb
JK
5858 struct e1000_adapter *adapter = netdev_priv(netdev);
5859
5860 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5861 spin_lock(&adapter->stats64_lock);
5862 e1000e_update_stats(adapter);
5863 /* Fill out the OS statistics structure */
5864 stats->rx_bytes = adapter->stats.gorc;
5865 stats->rx_packets = adapter->stats.gprc;
5866 stats->tx_bytes = adapter->stats.gotc;
5867 stats->tx_packets = adapter->stats.gptc;
5868 stats->multicast = adapter->stats.mprc;
5869 stats->collisions = adapter->stats.colc;
5870
5871 /* Rx Errors */
5872
e921eb1a 5873 /* RLEC on some newer hardware can be incorrect so build
67fd4fcb
JK
5874 * our own version based on RUC and ROC
5875 */
5876 stats->rx_errors = adapter->stats.rxerrc +
f0ff4398
BA
5877 adapter->stats.crcerrs + adapter->stats.algnerrc +
5878 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5879 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
67fd4fcb
JK
5880 stats->rx_crc_errors = adapter->stats.crcerrs;
5881 stats->rx_frame_errors = adapter->stats.algnerrc;
5882 stats->rx_missed_errors = adapter->stats.mpc;
5883
5884 /* Tx Errors */
f0ff4398 5885 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
67fd4fcb
JK
5886 stats->tx_aborted_errors = adapter->stats.ecol;
5887 stats->tx_window_errors = adapter->stats.latecol;
5888 stats->tx_carrier_errors = adapter->stats.tncrs;
5889
5890 /* Tx Dropped needs to be maintained elsewhere */
5891
5892 spin_unlock(&adapter->stats64_lock);
5893 return stats;
bc7f75fa
AK
5894}
5895
5896/**
5897 * e1000_change_mtu - Change the Maximum Transfer Unit
5898 * @netdev: network interface device structure
5899 * @new_mtu: new value for maximum frame size
5900 *
5901 * Returns 0 on success, negative on failure
5902 **/
5903static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5904{
5905 struct e1000_adapter *adapter = netdev_priv(netdev);
8084b86d 5906 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
bc7f75fa 5907
2adc55c9 5908 /* Jumbo frame support */
8084b86d 5909 if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
2e1706f2
BA
5910 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5911 e_err("Jumbo Frames not supported.\n");
5912 return -EINVAL;
bc7f75fa
AK
5913 }
5914
2adc55c9 5915 /* Supported frame sizes */
8084b86d 5916 if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
2adc55c9
BA
5917 (max_frame > adapter->max_hw_frame_size)) {
5918 e_err("Unsupported MTU setting\n");
bc7f75fa
AK
5919 return -EINVAL;
5920 }
5921
2fbe4526
BA
5922 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5923 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
a1ce6473
BA
5924 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5925 (new_mtu > ETH_DATA_LEN)) {
2fbe4526 5926 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
a1ce6473
BA
5927 return -EINVAL;
5928 }
5929
bc7f75fa 5930 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
1bba4386 5931 usleep_range(1000, 2000);
610c9928 5932 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
318a94d6 5933 adapter->max_frame_size = max_frame;
610c9928
BA
5934 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5935 netdev->mtu = new_mtu;
63eb48f1
DE
5936
5937 pm_runtime_get_sync(netdev->dev.parent);
5938
bc7f75fa 5939 if (netif_running(netdev))
28002099 5940 e1000e_down(adapter, true);
bc7f75fa 5941
e921eb1a 5942 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
5943 * means we reserve 2 more, this pushes us to allocate from the next
5944 * larger slab size.
ad68076e 5945 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
5946 * However with the new *_jumbo_rx* routines, jumbo receives will use
5947 * fragmented skbs
ad68076e 5948 */
bc7f75fa 5949
9926146b 5950 if (max_frame <= 2048)
bc7f75fa
AK
5951 adapter->rx_buffer_len = 2048;
5952 else
5953 adapter->rx_buffer_len = 4096;
5954
5955 /* adjust allocation if LPE protects us, and we aren't using SBP */
8084b86d
AD
5956 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5957 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
bc7f75fa 5958
bc7f75fa
AK
5959 if (netif_running(netdev))
5960 e1000e_up(adapter);
5961 else
5962 e1000e_reset(adapter);
5963
63eb48f1
DE
5964 pm_runtime_put_sync(netdev->dev.parent);
5965
bc7f75fa
AK
5966 clear_bit(__E1000_RESETTING, &adapter->state);
5967
5968 return 0;
5969}
5970
5971static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5972 int cmd)
5973{
5974 struct e1000_adapter *adapter = netdev_priv(netdev);
5975 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 5976
318a94d6 5977 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
5978 return -EOPNOTSUPP;
5979
5980 switch (cmd) {
5981 case SIOCGMIIPHY:
5982 data->phy_id = adapter->hw.phy.addr;
5983 break;
5984 case SIOCGMIIREG:
b16a002e
BA
5985 e1000_phy_read_status(adapter);
5986
7c25769f
BA
5987 switch (data->reg_num & 0x1F) {
5988 case MII_BMCR:
5989 data->val_out = adapter->phy_regs.bmcr;
5990 break;
5991 case MII_BMSR:
5992 data->val_out = adapter->phy_regs.bmsr;
5993 break;
5994 case MII_PHYSID1:
5995 data->val_out = (adapter->hw.phy.id >> 16);
5996 break;
5997 case MII_PHYSID2:
5998 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5999 break;
6000 case MII_ADVERTISE:
6001 data->val_out = adapter->phy_regs.advertise;
6002 break;
6003 case MII_LPA:
6004 data->val_out = adapter->phy_regs.lpa;
6005 break;
6006 case MII_EXPANSION:
6007 data->val_out = adapter->phy_regs.expansion;
6008 break;
6009 case MII_CTRL1000:
6010 data->val_out = adapter->phy_regs.ctrl1000;
6011 break;
6012 case MII_STAT1000:
6013 data->val_out = adapter->phy_regs.stat1000;
6014 break;
6015 case MII_ESTATUS:
6016 data->val_out = adapter->phy_regs.estatus;
6017 break;
6018 default:
bc7f75fa
AK
6019 return -EIO;
6020 }
bc7f75fa
AK
6021 break;
6022 case SIOCSMIIREG:
6023 default:
6024 return -EOPNOTSUPP;
6025 }
6026 return 0;
6027}
6028
b67e1913
BA
6029/**
6030 * e1000e_hwtstamp_ioctl - control hardware time stamping
6031 * @netdev: network interface device structure
6032 * @ifreq: interface request
6033 *
6034 * Outgoing time stamping can be enabled and disabled. Play nice and
6035 * disable it when requested, although it shouldn't cause any overhead
6036 * when no packet needs it. At most one packet in the queue may be
6037 * marked for time stamping, otherwise it would be impossible to tell
6038 * for sure to which packet the hardware time stamp belongs.
6039 *
6040 * Incoming time stamping has to be configured via the hardware filters.
6041 * Not all combinations are supported, in particular event type has to be
6042 * specified. Matching the kind of event packet is not supported, with the
6043 * exception of "all V2 events regardless of level 2 or 4".
6044 **/
4e8cff64 6045static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
b67e1913
BA
6046{
6047 struct e1000_adapter *adapter = netdev_priv(netdev);
6048 struct hwtstamp_config config;
6049 int ret_val;
6050
6051 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6052 return -EFAULT;
6053
62d7e3a2 6054 ret_val = e1000e_config_hwtstamp(adapter, &config);
b67e1913
BA
6055 if (ret_val)
6056 return ret_val;
6057
d89777bf
BA
6058 switch (config.rx_filter) {
6059 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6060 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6061 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6062 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6063 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6064 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6065 /* With V2 type filters which specify a Sync or Delay Request,
6066 * Path Delay Request/Response messages are also time stamped
6067 * by hardware so notify the caller the requested packets plus
6068 * some others are time stamped.
6069 */
6070 config.rx_filter = HWTSTAMP_FILTER_SOME;
6071 break;
6072 default:
6073 break;
6074 }
6075
b67e1913
BA
6076 return copy_to_user(ifr->ifr_data, &config,
6077 sizeof(config)) ? -EFAULT : 0;
6078}
6079
4e8cff64
BH
6080static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6081{
6082 struct e1000_adapter *adapter = netdev_priv(netdev);
6083
6084 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6085 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6086}
6087
bc7f75fa
AK
6088static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6089{
6090 switch (cmd) {
6091 case SIOCGMIIPHY:
6092 case SIOCGMIIREG:
6093 case SIOCSMIIREG:
6094 return e1000_mii_ioctl(netdev, ifr, cmd);
b67e1913 6095 case SIOCSHWTSTAMP:
4e8cff64
BH
6096 return e1000e_hwtstamp_set(netdev, ifr);
6097 case SIOCGHWTSTAMP:
6098 return e1000e_hwtstamp_get(netdev, ifr);
bc7f75fa
AK
6099 default:
6100 return -EOPNOTSUPP;
6101 }
6102}
6103
a4f58f54
BA
6104static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6105{
6106 struct e1000_hw *hw = &adapter->hw;
74f350ee 6107 u32 i, mac_reg, wuc;
2b6b168d 6108 u16 phy_reg, wuc_enable;
70806a7f 6109 int retval;
a4f58f54
BA
6110
6111 /* copy MAC RARs to PHY RARs */
d3738bb8 6112 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
a4f58f54 6113
2b6b168d
BA
6114 retval = hw->phy.ops.acquire(hw);
6115 if (retval) {
6116 e_err("Could not acquire PHY\n");
6117 return retval;
6118 }
6119
6120 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6121 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6122 if (retval)
75ce1532 6123 goto release;
2b6b168d
BA
6124
6125 /* copy MAC MTA to PHY MTA - only needed for pchlan */
a4f58f54
BA
6126 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6127 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
2b6b168d
BA
6128 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6129 (u16)(mac_reg & 0xFFFF));
6130 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6131 (u16)((mac_reg >> 16) & 0xFFFF));
a4f58f54
BA
6132 }
6133
6134 /* configure PHY Rx Control register */
2b6b168d 6135 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
a4f58f54
BA
6136 mac_reg = er32(RCTL);
6137 if (mac_reg & E1000_RCTL_UPE)
6138 phy_reg |= BM_RCTL_UPE;
6139 if (mac_reg & E1000_RCTL_MPE)
6140 phy_reg |= BM_RCTL_MPE;
6141 phy_reg &= ~(BM_RCTL_MO_MASK);
6142 if (mac_reg & E1000_RCTL_MO_3)
6143 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
17e813ec 6144 << BM_RCTL_MO_SHIFT);
a4f58f54
BA
6145 if (mac_reg & E1000_RCTL_BAM)
6146 phy_reg |= BM_RCTL_BAM;
6147 if (mac_reg & E1000_RCTL_PMCF)
6148 phy_reg |= BM_RCTL_PMCF;
6149 mac_reg = er32(CTRL);
6150 if (mac_reg & E1000_CTRL_RFCE)
6151 phy_reg |= BM_RCTL_RFCE;
2b6b168d 6152 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
a4f58f54 6153
74f350ee
DE
6154 wuc = E1000_WUC_PME_EN;
6155 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6156 wuc |= E1000_WUC_APME;
6157
a4f58f54
BA
6158 /* enable PHY wakeup in MAC register */
6159 ew32(WUFC, wufc);
74f350ee
DE
6160 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6161 E1000_WUC_PME_STATUS | wuc));
a4f58f54
BA
6162
6163 /* configure and enable PHY wakeup in PHY registers */
2b6b168d 6164 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
74f350ee 6165 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
a4f58f54
BA
6166
6167 /* activate PHY wakeup */
2b6b168d
BA
6168 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6169 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
a4f58f54
BA
6170 if (retval)
6171 e_err("Could not set PHY Host Wakeup bit\n");
75ce1532 6172release:
94d8186a 6173 hw->phy.ops.release(hw);
a4f58f54
BA
6174
6175 return retval;
6176}
6177
2a7e19af
DE
6178static void e1000e_flush_lpic(struct pci_dev *pdev)
6179{
6180 struct net_device *netdev = pci_get_drvdata(pdev);
6181 struct e1000_adapter *adapter = netdev_priv(netdev);
6182 struct e1000_hw *hw = &adapter->hw;
6183 u32 ret_val;
6184
6185 pm_runtime_get_sync(netdev->dev.parent);
6186
6187 ret_val = hw->phy.ops.acquire(hw);
6188 if (ret_val)
6189 goto fl_out;
6190
6191 pr_info("EEE TX LPI TIMER: %08X\n",
6192 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6193
6194 hw->phy.ops.release(hw);
6195
6196fl_out:
6197 pm_runtime_put_sync(netdev->dev.parent);
6198}
6199
28002099 6200static int e1000e_pm_freeze(struct device *dev)
bc7f75fa 6201{
28002099 6202 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
bc7f75fa 6203 struct e1000_adapter *adapter = netdev_priv(netdev);
bc7f75fa
AK
6204
6205 netif_device_detach(netdev);
6206
6207 if (netif_running(netdev)) {
bb9e44d0
BA
6208 int count = E1000_CHECK_RESET_COUNT;
6209
6210 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6211 usleep_range(10000, 20000);
6212
bc7f75fa 6213 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
28002099
DE
6214
6215 /* Quiesce the device without resetting the hardware */
6216 e1000e_down(adapter, false);
bc7f75fa
AK
6217 e1000_free_irq(adapter);
6218 }
4662e82b 6219 e1000e_reset_interrupt_capability(adapter);
bc7f75fa 6220
28002099
DE
6221 /* Allow time for pending master requests to run */
6222 e1000e_disable_pcie_master(&adapter->hw);
6223
6224 return 0;
6225}
6226
6227static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6228{
6229 struct net_device *netdev = pci_get_drvdata(pdev);
6230 struct e1000_adapter *adapter = netdev_priv(netdev);
6231 struct e1000_hw *hw = &adapter->hw;
6232 u32 ctrl, ctrl_ext, rctl, status;
6233 /* Runtime suspend should only enable wakeup for link changes */
6234 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6235 int retval = 0;
6236
bc7f75fa
AK
6237 status = er32(STATUS);
6238 if (status & E1000_STATUS_LU)
6239 wufc &= ~E1000_WUFC_LNKC;
6240
6241 if (wufc) {
6242 e1000_setup_rctl(adapter);
ef9b965a 6243 e1000e_set_rx_mode(netdev);
bc7f75fa
AK
6244
6245 /* turn on all-multi mode if wake on multicast is enabled */
6246 if (wufc & E1000_WUFC_MC) {
6247 rctl = er32(RCTL);
6248 rctl |= E1000_RCTL_MPE;
6249 ew32(RCTL, rctl);
6250 }
6251
6252 ctrl = er32(CTRL);
a4f58f54
BA
6253 ctrl |= E1000_CTRL_ADVD3WUC;
6254 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6255 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
bc7f75fa
AK
6256 ew32(CTRL, ctrl);
6257
318a94d6
JK
6258 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6259 adapter->hw.phy.media_type ==
6260 e1000_media_type_internal_serdes) {
bc7f75fa
AK
6261 /* keep the laser running in D3 */
6262 ctrl_ext = er32(CTRL_EXT);
93a23f48 6263 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
bc7f75fa
AK
6264 ew32(CTRL_EXT, ctrl_ext);
6265 }
6266
63eb48f1
DE
6267 if (!runtime)
6268 e1000e_power_up_phy(adapter);
6269
97ac8cae 6270 if (adapter->flags & FLAG_IS_ICH)
99730e4c 6271 e1000_suspend_workarounds_ich8lan(&adapter->hw);
97ac8cae 6272
82776a4b 6273 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
a4f58f54
BA
6274 /* enable wakeup by the PHY */
6275 retval = e1000_init_phy_wakeup(adapter, wufc);
6276 if (retval)
6277 return retval;
6278 } else {
6279 /* enable wakeup by the MAC */
6280 ew32(WUFC, wufc);
6281 ew32(WUC, E1000_WUC_PME_EN);
6282 }
bc7f75fa
AK
6283 } else {
6284 ew32(WUC, 0);
6285 ew32(WUFC, 0);
28002099
DE
6286
6287 e1000_power_down_phy(adapter);
bc7f75fa
AK
6288 }
6289
74f350ee 6290 if (adapter->hw.phy.type == e1000_phy_igp_3) {
bc7f75fa 6291 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
79849ebc
DE
6292 } else if ((hw->mac.type == e1000_pch_lpt) ||
6293 (hw->mac.type == e1000_pch_spt)) {
74f350ee
DE
6294 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6295 /* ULP does not support wake from unicast, multicast
6296 * or broadcast.
6297 */
6298 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6299
6300 if (retval)
6301 return retval;
6302 }
6303
bc7f75fa 6304
e921eb1a 6305 /* Release control of h/w to f/w. If f/w is AMT enabled, this
ad68076e
BA
6306 * would have already happened in close and is redundant.
6307 */
31dbe5b4 6308 e1000e_release_hw_control(adapter);
bc7f75fa 6309
24b41c97
DN
6310 pci_clear_master(pdev);
6311
e921eb1a 6312 /* The pci-e switch on some quad port adapters will report a
005cbdfc
AD
6313 * correctable error when the MAC transitions from D0 to D3. To
6314 * prevent this we need to mask off the correctable errors on the
6315 * downstream port of the pci-e switch.
e8c254c5
LZ
6316 *
6317 * We don't have the associated upstream bridge while assigning
6318 * the PCI device into guest. For example, the KVM on power is
6319 * one of the cases.
005cbdfc
AD
6320 */
6321 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6322 struct pci_dev *us_dev = pdev->bus->self;
005cbdfc
AD
6323 u16 devctl;
6324
e8c254c5
LZ
6325 if (!us_dev)
6326 return 0;
6327
f8c0fcac
JL
6328 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6329 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6330 (devctl & ~PCI_EXP_DEVCTL_CERE));
005cbdfc 6331
66148bab
KK
6332 pci_save_state(pdev);
6333 pci_prepare_to_sleep(pdev);
005cbdfc 6334
f8c0fcac 6335 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
005cbdfc 6336 }
66148bab
KK
6337
6338 return 0;
bc7f75fa
AK
6339}
6340
13129d9b
CW
6341/**
6342 * e1000e_disable_aspm - Disable ASPM states
6343 * @pdev: pointer to PCI device struct
6344 * @state: bit-mask of ASPM states to disable
6345 *
6346 * Some devices *must* have certain ASPM states disabled per hardware errata.
6347 **/
6348static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6f461f6c 6349{
13129d9b
CW
6350 struct pci_dev *parent = pdev->bus->self;
6351 u16 aspm_dis_mask = 0;
6352 u16 pdev_aspmc, parent_aspmc;
6353
6354 switch (state) {
6355 case PCIE_LINK_STATE_L0S:
6356 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6357 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6358 /* fall-through - can't have L1 without L0s */
6359 case PCIE_LINK_STATE_L1:
6360 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6361 break;
6362 default:
6363 return;
6364 }
6365
6366 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6367 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6368
6369 if (parent) {
6370 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6371 &parent_aspmc);
6372 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6373 }
6374
6375 /* Nothing to do if the ASPM states to be disabled already are */
6376 if (!(pdev_aspmc & aspm_dis_mask) &&
6377 (!parent || !(parent_aspmc & aspm_dis_mask)))
6378 return;
6379
6380 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6381 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6382 "L0s" : "",
6383 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6384 "L1" : "");
6385
6386#ifdef CONFIG_PCIEASPM
9f728f53 6387 pci_disable_link_state_locked(pdev, state);
ffe0b2ff 6388
13129d9b
CW
6389 /* Double-check ASPM control. If not disabled by the above, the
6390 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6391 * not enabled); override by writing PCI config space directly.
6392 */
6393 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6394 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6395
6396 if (!(aspm_dis_mask & pdev_aspmc))
6397 return;
6398#endif
ffe0b2ff 6399
e921eb1a 6400 /* Both device and parent should have the same ASPM setting.
6f461f6c 6401 * Disable ASPM in downstream component first and then upstream.
1eae4eb2 6402 */
13129d9b 6403 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6f461f6c 6404
13129d9b
CW
6405 if (parent)
6406 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6407 aspm_dis_mask);
1eae4eb2
AK
6408}
6409
aa338601 6410#ifdef CONFIG_PM
23606cf5 6411static int __e1000_resume(struct pci_dev *pdev)
bc7f75fa
AK
6412{
6413 struct net_device *netdev = pci_get_drvdata(pdev);
6414 struct e1000_adapter *adapter = netdev_priv(netdev);
6415 struct e1000_hw *hw = &adapter->hw;
78cd29d5 6416 u16 aspm_disable_flag = 0;
bc7f75fa 6417
78cd29d5
BA
6418 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6419 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6420 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6421 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6422 if (aspm_disable_flag)
6423 e1000e_disable_aspm(pdev, aspm_disable_flag);
6424
66148bab 6425 pci_set_master(pdev);
6e4f6f6b 6426
2fbe4526 6427 if (hw->mac.type >= e1000_pch2lan)
99730e4c
BA
6428 e1000_resume_workarounds_pchlan(&adapter->hw);
6429
bc7f75fa 6430 e1000e_power_up_phy(adapter);
a4f58f54
BA
6431
6432 /* report the system wakeup cause from S3/S4 */
6433 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6434 u16 phy_data;
6435
6436 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6437 if (phy_data) {
6438 e_info("PHY Wakeup cause - %s\n",
17e813ec
BA
6439 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6440 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6441 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6442 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6443 phy_data & E1000_WUS_LNKC ?
6444 "Link Status Change" : "other");
a4f58f54
BA
6445 }
6446 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6447 } else {
6448 u32 wus = er32(WUS);
6cf08d1c 6449
a4f58f54
BA
6450 if (wus) {
6451 e_info("MAC Wakeup cause - %s\n",
17e813ec
BA
6452 wus & E1000_WUS_EX ? "Unicast Packet" :
6453 wus & E1000_WUS_MC ? "Multicast Packet" :
6454 wus & E1000_WUS_BC ? "Broadcast Packet" :
6455 wus & E1000_WUS_MAG ? "Magic Packet" :
6456 wus & E1000_WUS_LNKC ? "Link Status Change" :
6457 "other");
a4f58f54
BA
6458 }
6459 ew32(WUS, ~0);
6460 }
6461
bc7f75fa 6462 e1000e_reset(adapter);
bc7f75fa 6463
cd791618 6464 e1000_init_manageability_pt(adapter);
bc7f75fa 6465
e921eb1a 6466 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 6467 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
6468 * under the control of the driver.
6469 */
c43bc57e 6470 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 6471 e1000e_get_hw_control(adapter);
bc7f75fa
AK
6472
6473 return 0;
6474}
23606cf5 6475
3e7986f6 6476#ifdef CONFIG_PM_SLEEP
28002099
DE
6477static int e1000e_pm_thaw(struct device *dev)
6478{
6479 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6480 struct e1000_adapter *adapter = netdev_priv(netdev);
6481
6482 e1000e_set_interrupt_capability(adapter);
6483 if (netif_running(netdev)) {
6484 u32 err = e1000_request_irq(adapter);
6485
6486 if (err)
6487 return err;
6488
6489 e1000e_up(adapter);
6490 }
6491
6492 netif_device_attach(netdev);
6493
6494 return 0;
6495}
6496
28002099 6497static int e1000e_pm_suspend(struct device *dev)
a0340162
RW
6498{
6499 struct pci_dev *pdev = to_pci_dev(dev);
a0340162 6500
2a7e19af
DE
6501 e1000e_flush_lpic(pdev);
6502
28002099
DE
6503 e1000e_pm_freeze(dev);
6504
66148bab 6505 return __e1000_shutdown(pdev, false);
a0340162
RW
6506}
6507
28002099 6508static int e1000e_pm_resume(struct device *dev)
23606cf5
RW
6509{
6510 struct pci_dev *pdev = to_pci_dev(dev);
28002099 6511 int rc;
23606cf5 6512
28002099
DE
6513 rc = __e1000_resume(pdev);
6514 if (rc)
6515 return rc;
23606cf5 6516
28002099 6517 return e1000e_pm_thaw(dev);
23606cf5 6518}
38a529b5 6519#endif /* CONFIG_PM_SLEEP */
a0340162 6520
63eb48f1 6521static int e1000e_pm_runtime_idle(struct device *dev)
a0340162
RW
6522{
6523 struct pci_dev *pdev = to_pci_dev(dev);
6524 struct net_device *netdev = pci_get_drvdata(pdev);
6525 struct e1000_adapter *adapter = netdev_priv(netdev);
2116bc25 6526 u16 eee_lp;
a0340162 6527
2116bc25
DE
6528 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6529
6530 if (!e1000e_has_link(adapter)) {
6531 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
63eb48f1 6532 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
2116bc25 6533 }
a0340162 6534
63eb48f1 6535 return -EBUSY;
a0340162
RW
6536}
6537
63eb48f1 6538static int e1000e_pm_runtime_resume(struct device *dev)
a0340162
RW
6539{
6540 struct pci_dev *pdev = to_pci_dev(dev);
6541 struct net_device *netdev = pci_get_drvdata(pdev);
6542 struct e1000_adapter *adapter = netdev_priv(netdev);
63eb48f1 6543 int rc;
a0340162 6544
63eb48f1
DE
6545 rc = __e1000_resume(pdev);
6546 if (rc)
6547 return rc;
a0340162 6548
63eb48f1
DE
6549 if (netdev->flags & IFF_UP)
6550 rc = e1000e_up(adapter);
a0340162 6551
63eb48f1 6552 return rc;
a0340162 6553}
23606cf5 6554
63eb48f1 6555static int e1000e_pm_runtime_suspend(struct device *dev)
23606cf5
RW
6556{
6557 struct pci_dev *pdev = to_pci_dev(dev);
6558 struct net_device *netdev = pci_get_drvdata(pdev);
6559 struct e1000_adapter *adapter = netdev_priv(netdev);
6560
63eb48f1
DE
6561 if (netdev->flags & IFF_UP) {
6562 int count = E1000_CHECK_RESET_COUNT;
6563
6564 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6565 usleep_range(10000, 20000);
23606cf5 6566
63eb48f1
DE
6567 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6568
6569 /* Down the device without resetting the hardware */
6570 e1000e_down(adapter, false);
6571 }
6572
6573 if (__e1000_shutdown(pdev, true)) {
6574 e1000e_pm_runtime_resume(dev);
6575 return -EBUSY;
6576 }
6577
6578 return 0;
23606cf5 6579}
aa338601 6580#endif /* CONFIG_PM */
bc7f75fa
AK
6581
6582static void e1000_shutdown(struct pci_dev *pdev)
6583{
2a7e19af
DE
6584 e1000e_flush_lpic(pdev);
6585
28002099
DE
6586 e1000e_pm_freeze(&pdev->dev);
6587
66148bab 6588 __e1000_shutdown(pdev, false);
bc7f75fa
AK
6589}
6590
6591#ifdef CONFIG_NET_POLL_CONTROLLER
147b2c8c 6592
8bb62869 6593static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
147b2c8c
DD
6594{
6595 struct net_device *netdev = data;
6596 struct e1000_adapter *adapter = netdev_priv(netdev);
147b2c8c
DD
6597
6598 if (adapter->msix_entries) {
90da0669
BA
6599 int vector, msix_irq;
6600
147b2c8c
DD
6601 vector = 0;
6602 msix_irq = adapter->msix_entries[vector].vector;
6603 disable_irq(msix_irq);
6604 e1000_intr_msix_rx(msix_irq, netdev);
6605 enable_irq(msix_irq);
6606
6607 vector++;
6608 msix_irq = adapter->msix_entries[vector].vector;
6609 disable_irq(msix_irq);
6610 e1000_intr_msix_tx(msix_irq, netdev);
6611 enable_irq(msix_irq);
6612
6613 vector++;
6614 msix_irq = adapter->msix_entries[vector].vector;
6615 disable_irq(msix_irq);
6616 e1000_msix_other(msix_irq, netdev);
6617 enable_irq(msix_irq);
6618 }
6619
6620 return IRQ_HANDLED;
6621}
6622
e921eb1a
BA
6623/**
6624 * e1000_netpoll
6625 * @netdev: network interface device structure
6626 *
bc7f75fa
AK
6627 * Polling 'interrupt' - used by things like netconsole to send skbs
6628 * without having to re-enable interrupts. It's not called while
6629 * the interrupt routine is executing.
6630 */
6631static void e1000_netpoll(struct net_device *netdev)
6632{
6633 struct e1000_adapter *adapter = netdev_priv(netdev);
6634
147b2c8c
DD
6635 switch (adapter->int_mode) {
6636 case E1000E_INT_MODE_MSIX:
6637 e1000_intr_msix(adapter->pdev->irq, netdev);
6638 break;
6639 case E1000E_INT_MODE_MSI:
6640 disable_irq(adapter->pdev->irq);
6641 e1000_intr_msi(adapter->pdev->irq, netdev);
6642 enable_irq(adapter->pdev->irq);
6643 break;
e80bd1d1 6644 default: /* E1000E_INT_MODE_LEGACY */
147b2c8c
DD
6645 disable_irq(adapter->pdev->irq);
6646 e1000_intr(adapter->pdev->irq, netdev);
6647 enable_irq(adapter->pdev->irq);
6648 break;
6649 }
bc7f75fa
AK
6650}
6651#endif
6652
6653/**
6654 * e1000_io_error_detected - called when PCI error is detected
6655 * @pdev: Pointer to PCI device
6656 * @state: The current pci connection state
6657 *
6658 * This function is called after a PCI bus error affecting
6659 * this device has been detected.
6660 */
6661static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6662 pci_channel_state_t state)
6663{
6664 struct net_device *netdev = pci_get_drvdata(pdev);
6665 struct e1000_adapter *adapter = netdev_priv(netdev);
6666
6667 netif_device_detach(netdev);
6668
c93b5a76
MM
6669 if (state == pci_channel_io_perm_failure)
6670 return PCI_ERS_RESULT_DISCONNECT;
6671
bc7f75fa 6672 if (netif_running(netdev))
28002099 6673 e1000e_down(adapter, true);
bc7f75fa
AK
6674 pci_disable_device(pdev);
6675
6676 /* Request a slot slot reset. */
6677 return PCI_ERS_RESULT_NEED_RESET;
6678}
6679
6680/**
6681 * e1000_io_slot_reset - called after the pci bus has been reset.
6682 * @pdev: Pointer to PCI device
6683 *
6684 * Restart the card from scratch, as if from a cold-boot. Implementation
28002099 6685 * resembles the first-half of the e1000e_pm_resume routine.
bc7f75fa
AK
6686 */
6687static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6688{
6689 struct net_device *netdev = pci_get_drvdata(pdev);
6690 struct e1000_adapter *adapter = netdev_priv(netdev);
6691 struct e1000_hw *hw = &adapter->hw;
78cd29d5 6692 u16 aspm_disable_flag = 0;
6e4f6f6b 6693 int err;
111b9dc5 6694 pci_ers_result_t result;
bc7f75fa 6695
78cd29d5
BA
6696 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6697 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6f461f6c 6698 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
78cd29d5
BA
6699 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6700 if (aspm_disable_flag)
6701 e1000e_disable_aspm(pdev, aspm_disable_flag);
6702
f0f422e5 6703 err = pci_enable_device_mem(pdev);
6e4f6f6b 6704 if (err) {
bc7f75fa
AK
6705 dev_err(&pdev->dev,
6706 "Cannot re-enable PCI device after reset.\n");
111b9dc5
JB
6707 result = PCI_ERS_RESULT_DISCONNECT;
6708 } else {
23606cf5 6709 pdev->state_saved = true;
111b9dc5 6710 pci_restore_state(pdev);
66148bab 6711 pci_set_master(pdev);
bc7f75fa 6712
111b9dc5
JB
6713 pci_enable_wake(pdev, PCI_D3hot, 0);
6714 pci_enable_wake(pdev, PCI_D3cold, 0);
bc7f75fa 6715
111b9dc5
JB
6716 e1000e_reset(adapter);
6717 ew32(WUS, ~0);
6718 result = PCI_ERS_RESULT_RECOVERED;
6719 }
bc7f75fa 6720
111b9dc5
JB
6721 pci_cleanup_aer_uncorrect_error_status(pdev);
6722
6723 return result;
bc7f75fa
AK
6724}
6725
6726/**
6727 * e1000_io_resume - called when traffic can start flowing again.
6728 * @pdev: Pointer to PCI device
6729 *
6730 * This callback is called when the error recovery driver tells us that
6731 * its OK to resume normal operation. Implementation resembles the
28002099 6732 * second-half of the e1000e_pm_resume routine.
bc7f75fa
AK
6733 */
6734static void e1000_io_resume(struct pci_dev *pdev)
6735{
6736 struct net_device *netdev = pci_get_drvdata(pdev);
6737 struct e1000_adapter *adapter = netdev_priv(netdev);
6738
cd791618 6739 e1000_init_manageability_pt(adapter);
bc7f75fa
AK
6740
6741 if (netif_running(netdev)) {
6742 if (e1000e_up(adapter)) {
6743 dev_err(&pdev->dev,
6744 "can't bring device back up after reset\n");
6745 return;
6746 }
6747 }
6748
6749 netif_device_attach(netdev);
6750
e921eb1a 6751 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 6752 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
6753 * under the control of the driver.
6754 */
c43bc57e 6755 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 6756 e1000e_get_hw_control(adapter);
bc7f75fa
AK
6757}
6758
6759static void e1000_print_device_info(struct e1000_adapter *adapter)
6760{
6761 struct e1000_hw *hw = &adapter->hw;
6762 struct net_device *netdev = adapter->netdev;
073287c0
BA
6763 u32 ret_val;
6764 u8 pba_str[E1000_PBANUM_LENGTH];
bc7f75fa
AK
6765
6766 /* print bus type/speed/width info */
a5cc7642 6767 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
44defeb3
JK
6768 /* bus width */
6769 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
f0ff4398 6770 "Width x1"),
44defeb3 6771 /* MAC address */
7c510e4b 6772 netdev->dev_addr);
44defeb3
JK
6773 e_info("Intel(R) PRO/%s Network Connection\n",
6774 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
073287c0
BA
6775 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6776 E1000_PBANUM_LENGTH);
6777 if (ret_val)
f2315bf1 6778 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
073287c0
BA
6779 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6780 hw->mac.type, hw->phy.type, pba_str);
bc7f75fa
AK
6781}
6782
10aa4c04
AK
6783static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6784{
6785 struct e1000_hw *hw = &adapter->hw;
6786 int ret_val;
6787 u16 buf = 0;
6788
6789 if (hw->mac.type != e1000_82573)
6790 return;
6791
6792 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
e885d762
BA
6793 le16_to_cpus(&buf);
6794 if (!ret_val && (!(buf & (1 << 0)))) {
10aa4c04 6795 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
6796 dev_warn(&adapter->pdev->dev,
6797 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04 6798 }
10aa4c04
AK
6799}
6800
55e7fe5b
AD
6801static netdev_features_t e1000_fix_features(struct net_device *netdev,
6802 netdev_features_t features)
6803{
6804 struct e1000_adapter *adapter = netdev_priv(netdev);
6805 struct e1000_hw *hw = &adapter->hw;
6806
6807 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6808 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6809 features &= ~NETIF_F_RXFCS;
6810
6811 return features;
6812}
6813
c8f44aff 6814static int e1000_set_features(struct net_device *netdev,
70495a50 6815 netdev_features_t features)
dc221294
BA
6816{
6817 struct e1000_adapter *adapter = netdev_priv(netdev);
c8f44aff 6818 netdev_features_t changed = features ^ netdev->features;
dc221294
BA
6819
6820 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6821 adapter->flags |= FLAG_TSO_FORCE;
6822
f646968f 6823 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
cf955e6c
BG
6824 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6825 NETIF_F_RXALL)))
dc221294
BA
6826 return 0;
6827
0184039a
BG
6828 if (changed & NETIF_F_RXFCS) {
6829 if (features & NETIF_F_RXFCS) {
6830 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6831 } else {
6832 /* We need to take it back to defaults, which might mean
6833 * stripping is still disabled at the adapter level.
6834 */
6835 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6836 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6837 else
6838 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6839 }
6840 }
6841
70495a50
BA
6842 netdev->features = features;
6843
dc221294
BA
6844 if (netif_running(netdev))
6845 e1000e_reinit_locked(adapter);
6846 else
6847 e1000e_reset(adapter);
6848
6849 return 0;
6850}
6851
651c2466
SH
6852static const struct net_device_ops e1000e_netdev_ops = {
6853 .ndo_open = e1000_open,
6854 .ndo_stop = e1000_close,
00829823 6855 .ndo_start_xmit = e1000_xmit_frame,
67fd4fcb 6856 .ndo_get_stats64 = e1000e_get_stats64,
ef9b965a 6857 .ndo_set_rx_mode = e1000e_set_rx_mode,
651c2466
SH
6858 .ndo_set_mac_address = e1000_set_mac,
6859 .ndo_change_mtu = e1000_change_mtu,
6860 .ndo_do_ioctl = e1000_ioctl,
6861 .ndo_tx_timeout = e1000_tx_timeout,
6862 .ndo_validate_addr = eth_validate_addr,
6863
651c2466
SH
6864 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6865 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6866#ifdef CONFIG_NET_POLL_CONTROLLER
6867 .ndo_poll_controller = e1000_netpoll,
6868#endif
dc221294 6869 .ndo_set_features = e1000_set_features,
55e7fe5b 6870 .ndo_fix_features = e1000_fix_features,
651c2466
SH
6871};
6872
bc7f75fa
AK
6873/**
6874 * e1000_probe - Device Initialization Routine
6875 * @pdev: PCI device information struct
6876 * @ent: entry in e1000_pci_tbl
6877 *
6878 * Returns 0 on success, negative on failure
6879 *
6880 * e1000_probe initializes an adapter identified by a pci_dev structure.
6881 * The OS initialization, configuring of the adapter private structure,
6882 * and a hardware reset occur.
6883 **/
1dd06ae8 6884static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
bc7f75fa
AK
6885{
6886 struct net_device *netdev;
6887 struct e1000_adapter *adapter;
6888 struct e1000_hw *hw;
6889 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
6890 resource_size_t mmio_start, mmio_len;
6891 resource_size_t flash_start, flash_len;
bc7f75fa 6892 static int cards_found;
78cd29d5 6893 u16 aspm_disable_flag = 0;
17e813ec 6894 int bars, i, err, pci_using_dac;
bc7f75fa
AK
6895 u16 eeprom_data = 0;
6896 u16 eeprom_apme_mask = E1000_EEPROM_APME;
491a04d2 6897 s32 rval = 0;
bc7f75fa 6898
78cd29d5
BA
6899 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6900 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6f461f6c 6901 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
78cd29d5
BA
6902 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6903 if (aspm_disable_flag)
6904 e1000e_disable_aspm(pdev, aspm_disable_flag);
6e4f6f6b 6905
f0f422e5 6906 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
6907 if (err)
6908 return err;
6909
6910 pci_using_dac = 0;
718a39eb 6911 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
bc7f75fa 6912 if (!err) {
718a39eb 6913 pci_using_dac = 1;
bc7f75fa 6914 } else {
718a39eb 6915 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
bc7f75fa 6916 if (err) {
718a39eb
RK
6917 dev_err(&pdev->dev,
6918 "No usable DMA configuration, aborting\n");
6919 goto err_dma;
bc7f75fa
AK
6920 }
6921 }
6922
17e813ec
BA
6923 bars = pci_select_bars(pdev, IORESOURCE_MEM);
6924 err = pci_request_selected_regions_exclusive(pdev, bars,
6925 e1000e_driver_name);
bc7f75fa
AK
6926 if (err)
6927 goto err_pci_reg;
6928
68eac460 6929 /* AER (Advanced Error Reporting) hooks */
19d5afd4 6930 pci_enable_pcie_error_reporting(pdev);
68eac460 6931
bc7f75fa 6932 pci_set_master(pdev);
438b365a
BA
6933 /* PCI config space info */
6934 err = pci_save_state(pdev);
6935 if (err)
6936 goto err_alloc_etherdev;
bc7f75fa
AK
6937
6938 err = -ENOMEM;
6939 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6940 if (!netdev)
6941 goto err_alloc_etherdev;
6942
bc7f75fa
AK
6943 SET_NETDEV_DEV(netdev, &pdev->dev);
6944
f85e4dfa
TH
6945 netdev->irq = pdev->irq;
6946
bc7f75fa
AK
6947 pci_set_drvdata(pdev, netdev);
6948 adapter = netdev_priv(netdev);
6949 hw = &adapter->hw;
6950 adapter->netdev = netdev;
6951 adapter->pdev = pdev;
6952 adapter->ei = ei;
6953 adapter->pba = ei->pba;
6954 adapter->flags = ei->flags;
eb7c3adb 6955 adapter->flags2 = ei->flags2;
bc7f75fa
AK
6956 adapter->hw.adapter = adapter;
6957 adapter->hw.mac.type = ei->mac;
2adc55c9 6958 adapter->max_hw_frame_size = ei->max_hw_frame_size;
b3f4d599 6959 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
bc7f75fa
AK
6960
6961 mmio_start = pci_resource_start(pdev, 0);
6962 mmio_len = pci_resource_len(pdev, 0);
6963
6964 err = -EIO;
6965 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6966 if (!adapter->hw.hw_addr)
6967 goto err_ioremap;
6968
6969 if ((adapter->flags & FLAG_HAS_FLASH) &&
1103a631
YL
6970 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
6971 (hw->mac.type < e1000_pch_spt)) {
bc7f75fa
AK
6972 flash_start = pci_resource_start(pdev, 1);
6973 flash_len = pci_resource_len(pdev, 1);
6974 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6975 if (!adapter->hw.flash_address)
6976 goto err_flashmap;
6977 }
6978
d495bcb8
BA
6979 /* Set default EEE advertisement */
6980 if (adapter->flags2 & FLAG2_HAS_EEE)
6981 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6982
bc7f75fa 6983 /* construct the net_device struct */
e80bd1d1 6984 netdev->netdev_ops = &e1000e_netdev_ops;
bc7f75fa 6985 e1000e_set_ethtool_ops(netdev);
e80bd1d1 6986 netdev->watchdog_timeo = 5 * HZ;
c58c8a78 6987 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
f2315bf1 6988 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
bc7f75fa
AK
6989
6990 netdev->mem_start = mmio_start;
6991 netdev->mem_end = mmio_start + mmio_len;
6992
6993 adapter->bd_number = cards_found++;
6994
4662e82b
BA
6995 e1000e_check_options(adapter);
6996
bc7f75fa
AK
6997 /* setup adapter struct */
6998 err = e1000_sw_init(adapter);
6999 if (err)
7000 goto err_sw_init;
7001
bc7f75fa
AK
7002 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7003 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7004 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7005
69e3fd8c 7006 err = ei->get_variants(adapter);
bc7f75fa
AK
7007 if (err)
7008 goto err_hw_init;
7009
4a770358 7010 if ((adapter->flags & FLAG_IS_ICH) &&
152c0a97
YL
7011 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7012 (hw->mac.type < e1000_pch_spt))
4a770358
BA
7013 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7014
bc7f75fa
AK
7015 hw->mac.ops.get_bus_info(&adapter->hw);
7016
318a94d6 7017 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
7018
7019 /* Copper options */
318a94d6 7020 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
7021 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7022 adapter->hw.phy.disable_polarity_correction = 0;
7023 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7024 }
7025
470a5420 7026 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
185095fb
BA
7027 dev_info(&pdev->dev,
7028 "PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa 7029
dc221294
BA
7030 /* Set initial default active device features */
7031 netdev->features = (NETIF_F_SG |
f646968f
PM
7032 NETIF_F_HW_VLAN_CTAG_RX |
7033 NETIF_F_HW_VLAN_CTAG_TX |
dc221294
BA
7034 NETIF_F_TSO |
7035 NETIF_F_TSO6 |
70495a50 7036 NETIF_F_RXHASH |
dc221294
BA
7037 NETIF_F_RXCSUM |
7038 NETIF_F_HW_CSUM);
7039
7040 /* Set user-changeable features (subset of all device features) */
7041 netdev->hw_features = netdev->features;
0184039a 7042 netdev->hw_features |= NETIF_F_RXFCS;
943146de 7043 netdev->priv_flags |= IFF_SUPP_NOFCS;
cf955e6c 7044 netdev->hw_features |= NETIF_F_RXALL;
bc7f75fa
AK
7045
7046 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
f646968f 7047 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
bc7f75fa 7048
dc221294
BA
7049 netdev->vlan_features |= (NETIF_F_SG |
7050 NETIF_F_TSO |
7051 NETIF_F_TSO6 |
7052 NETIF_F_HW_CSUM);
a5136e23 7053
ef9b965a
JB
7054 netdev->priv_flags |= IFF_UNICAST_FLT;
7055
7b872a55 7056 if (pci_using_dac) {
bc7f75fa 7057 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
7058 netdev->vlan_features |= NETIF_F_HIGHDMA;
7059 }
bc7f75fa 7060
bc7f75fa
AK
7061 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7062 adapter->flags |= FLAG_MNG_PT_ENABLED;
7063
e921eb1a 7064 /* before reading the NVM, reset the controller to
ad68076e
BA
7065 * put the device in a known good starting state
7066 */
bc7f75fa
AK
7067 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7068
e921eb1a 7069 /* systems with ASPM and others may see the checksum fail on the first
bc7f75fa
AK
7070 * attempt. Let's give it a few tries
7071 */
7072 for (i = 0;; i++) {
7073 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7074 break;
7075 if (i == 2) {
185095fb 7076 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
7077 err = -EIO;
7078 goto err_eeprom;
7079 }
7080 }
7081
10aa4c04
AK
7082 e1000_eeprom_checks(adapter);
7083
608f8a0d 7084 /* copy the MAC address */
bc7f75fa 7085 if (e1000e_read_mac_addr(&adapter->hw))
185095fb
BA
7086 dev_err(&pdev->dev,
7087 "NVM Read Error while reading MAC address\n");
bc7f75fa
AK
7088
7089 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
bc7f75fa 7090
aaeb6cdf 7091 if (!is_valid_ether_addr(netdev->dev_addr)) {
185095fb 7092 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
aaeb6cdf 7093 netdev->dev_addr);
bc7f75fa
AK
7094 err = -EIO;
7095 goto err_eeprom;
7096 }
7097
7098 init_timer(&adapter->watchdog_timer);
c061b18d 7099 adapter->watchdog_timer.function = e1000_watchdog;
53aa82da 7100 adapter->watchdog_timer.data = (unsigned long)adapter;
bc7f75fa
AK
7101
7102 init_timer(&adapter->phy_info_timer);
c061b18d 7103 adapter->phy_info_timer.function = e1000_update_phy_info;
53aa82da 7104 adapter->phy_info_timer.data = (unsigned long)adapter;
bc7f75fa
AK
7105
7106 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7107 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
7108 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7109 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
41cec6f1 7110 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
bc7f75fa 7111
bc7f75fa
AK
7112 /* Initialize link parameters. User can change them with ethtool */
7113 adapter->hw.mac.autoneg = 1;
3db1cd5c 7114 adapter->fc_autoneg = true;
5c48ef3e
BA
7115 adapter->hw.fc.requested_mode = e1000_fc_default;
7116 adapter->hw.fc.current_mode = e1000_fc_default;
bc7f75fa
AK
7117 adapter->hw.phy.autoneg_advertised = 0x2f;
7118
e921eb1a 7119 /* Initial Wake on LAN setting - If APM wake is enabled in
bc7f75fa
AK
7120 * the EEPROM, enable the ACPI Magic Packet filter
7121 */
7122 if (adapter->flags & FLAG_APME_IN_WUC) {
7123 /* APME bit in EEPROM is mapped to WUC.APME */
7124 eeprom_data = er32(WUC);
7125 eeprom_apme_mask = E1000_WUC_APME;
4def99bb
BA
7126 if ((hw->mac.type > e1000_ich10lan) &&
7127 (eeprom_data & E1000_WUC_PHY_WAKE))
a4f58f54 7128 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
bc7f75fa
AK
7129 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7130 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7131 (adapter->hw.bus.func == 1))
491a04d2
DE
7132 rval = e1000_read_nvm(&adapter->hw,
7133 NVM_INIT_CONTROL3_PORT_B,
7134 1, &eeprom_data);
bc7f75fa 7135 else
491a04d2
DE
7136 rval = e1000_read_nvm(&adapter->hw,
7137 NVM_INIT_CONTROL3_PORT_A,
7138 1, &eeprom_data);
bc7f75fa
AK
7139 }
7140
7141 /* fetch WoL from EEPROM */
491a04d2
DE
7142 if (rval)
7143 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7144 else if (eeprom_data & eeprom_apme_mask)
bc7f75fa
AK
7145 adapter->eeprom_wol |= E1000_WUFC_MAG;
7146
e921eb1a 7147 /* now that we have the eeprom settings, apply the special cases
bc7f75fa
AK
7148 * where the eeprom may be wrong or the board simply won't support
7149 * wake on lan on a particular port
7150 */
7151 if (!(adapter->flags & FLAG_HAS_WOL))
7152 adapter->eeprom_wol = 0;
7153
7154 /* initialize the wol settings based on the eeprom settings */
7155 adapter->wol = adapter->eeprom_wol;
66148bab
KK
7156
7157 /* make sure adapter isn't asleep if manageability is enabled */
7158 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7159 (hw->mac.ops.check_mng_mode(hw)))
7160 device_wakeup_enable(&pdev->dev);
bc7f75fa 7161
84527590 7162 /* save off EEPROM version number */
491a04d2
DE
7163 rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7164
7165 if (rval) {
7166 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7167 adapter->eeprom_vers = 0;
7168 }
84527590 7169
bc7f75fa
AK
7170 /* reset the hardware with the new settings */
7171 e1000e_reset(adapter);
7172
e921eb1a 7173 /* If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 7174 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
7175 * under the control of the driver.
7176 */
c43bc57e 7177 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 7178 e1000e_get_hw_control(adapter);
bc7f75fa 7179
f2315bf1 7180 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
bc7f75fa
AK
7181 err = register_netdev(netdev);
7182 if (err)
7183 goto err_register;
7184
9c563d20
JB
7185 /* carrier off reporting is important to ethtool even BEFORE open */
7186 netif_carrier_off(netdev);
7187
d89777bf
BA
7188 /* init PTP hardware clock */
7189 e1000e_ptp_init(adapter);
7190
bc7f75fa
AK
7191 e1000_print_device_info(adapter);
7192
f3ec4f87
AS
7193 if (pci_dev_run_wake(pdev))
7194 pm_runtime_put_noidle(&pdev->dev);
23606cf5 7195
bc7f75fa
AK
7196 return 0;
7197
7198err_register:
c43bc57e 7199 if (!(adapter->flags & FLAG_HAS_AMT))
31dbe5b4 7200 e1000e_release_hw_control(adapter);
bc7f75fa 7201err_eeprom:
470a5420 7202 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
bc7f75fa 7203 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 7204err_hw_init:
bc7f75fa
AK
7205 kfree(adapter->tx_ring);
7206 kfree(adapter->rx_ring);
7207err_sw_init:
1103a631 7208 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
c43bc57e 7209 iounmap(adapter->hw.flash_address);
e82f54ba 7210 e1000e_reset_interrupt_capability(adapter);
c43bc57e 7211err_flashmap:
bc7f75fa
AK
7212 iounmap(adapter->hw.hw_addr);
7213err_ioremap:
7214 free_netdev(netdev);
7215err_alloc_etherdev:
f0f422e5 7216 pci_release_selected_regions(pdev,
f0ff4398 7217 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
7218err_pci_reg:
7219err_dma:
7220 pci_disable_device(pdev);
7221 return err;
7222}
7223
7224/**
7225 * e1000_remove - Device Removal Routine
7226 * @pdev: PCI device information struct
7227 *
7228 * e1000_remove is called by the PCI subsystem to alert the driver
7229 * that it should release a PCI device. The could be caused by a
7230 * Hot-Plug event, or because the driver is going to be removed from
7231 * memory.
7232 **/
9f9a12f8 7233static void e1000_remove(struct pci_dev *pdev)
bc7f75fa
AK
7234{
7235 struct net_device *netdev = pci_get_drvdata(pdev);
7236 struct e1000_adapter *adapter = netdev_priv(netdev);
23606cf5
RW
7237 bool down = test_bit(__E1000_DOWN, &adapter->state);
7238
d89777bf
BA
7239 e1000e_ptp_remove(adapter);
7240
e921eb1a 7241 /* The timers may be rescheduled, so explicitly disable them
23f333a2 7242 * from being rescheduled.
ad68076e 7243 */
23606cf5
RW
7244 if (!down)
7245 set_bit(__E1000_DOWN, &adapter->state);
bc7f75fa
AK
7246 del_timer_sync(&adapter->watchdog_timer);
7247 del_timer_sync(&adapter->phy_info_timer);
7248
41cec6f1
BA
7249 cancel_work_sync(&adapter->reset_task);
7250 cancel_work_sync(&adapter->watchdog_task);
7251 cancel_work_sync(&adapter->downshift_task);
7252 cancel_work_sync(&adapter->update_phy_task);
7253 cancel_work_sync(&adapter->print_hang_task);
bc7f75fa 7254
b67e1913
BA
7255 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7256 cancel_work_sync(&adapter->tx_hwtstamp_work);
7257 if (adapter->tx_hwtstamp_skb) {
7258 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7259 adapter->tx_hwtstamp_skb = NULL;
7260 }
7261 }
7262
23606cf5
RW
7263 /* Don't lie to e1000_close() down the road. */
7264 if (!down)
7265 clear_bit(__E1000_DOWN, &adapter->state);
17f208de
BA
7266 unregister_netdev(netdev);
7267
f3ec4f87
AS
7268 if (pci_dev_run_wake(pdev))
7269 pm_runtime_get_noresume(&pdev->dev);
23606cf5 7270
e921eb1a 7271 /* Release control of h/w to f/w. If f/w is AMT enabled, this
ad68076e
BA
7272 * would have already happened in close and is redundant.
7273 */
31dbe5b4 7274 e1000e_release_hw_control(adapter);
bc7f75fa 7275
4662e82b 7276 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
7277 kfree(adapter->tx_ring);
7278 kfree(adapter->rx_ring);
7279
7280 iounmap(adapter->hw.hw_addr);
1103a631
YL
7281 if ((adapter->hw.flash_address) &&
7282 (adapter->hw.mac.type < e1000_pch_spt))
bc7f75fa 7283 iounmap(adapter->hw.flash_address);
f0f422e5 7284 pci_release_selected_regions(pdev,
f0ff4398 7285 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
7286
7287 free_netdev(netdev);
7288
111b9dc5 7289 /* AER disable */
19d5afd4 7290 pci_disable_pcie_error_reporting(pdev);
111b9dc5 7291
bc7f75fa
AK
7292 pci_disable_device(pdev);
7293}
7294
7295/* PCI Error Recovery (ERS) */
3646f0e5 7296static const struct pci_error_handlers e1000_err_handler = {
bc7f75fa
AK
7297 .error_detected = e1000_io_error_detected,
7298 .slot_reset = e1000_io_slot_reset,
7299 .resume = e1000_io_resume,
7300};
7301
0e8e842b 7302static const struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
7303 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7304 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7305 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
c29c3ba5
BA
7306 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7307 board_82571 },
bc7f75fa
AK
7308 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7309 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
7310 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7311 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7312 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 7313
bc7f75fa
AK
7314 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7315 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7316 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7317 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 7318
bc7f75fa
AK
7319 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7320 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7321 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 7322
4662e82b 7323 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
bef28b11 7324 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
8c81c9c3 7325 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
4662e82b 7326
bc7f75fa
AK
7327 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7328 board_80003es2lan },
7329 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7330 board_80003es2lan },
7331 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7332 board_80003es2lan },
7333 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7334 board_80003es2lan },
ad68076e 7335
bc7f75fa
AK
7336 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7337 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7338 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7339 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7340 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7341 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7342 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
9e135a2e 7343 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
ad68076e 7344
bc7f75fa
AK
7345 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7346 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7347 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7348 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7349 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 7350 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
7351 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7352 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7353 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7354
7355 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7356 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7357 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 7358
f4187b56
BA
7359 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7360 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
10df0b91 7361 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
f4187b56 7362
a4f58f54
BA
7363 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7364 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7365 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7366 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7367
d3738bb8
BA
7368 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7369 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7370
2fbe4526
BA
7371 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7372 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
16e310ae
BA
7373 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7374 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
91a3d82f
BA
7375 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7376 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7377 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7378 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
79849ebc
DE
7379 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7380 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7381 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7382 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
2fbe4526 7383
f36bb6ca 7384 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
bc7f75fa
AK
7385};
7386MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7387
23606cf5 7388static const struct dev_pm_ops e1000_pm_ops = {
72f72dcc 7389#ifdef CONFIG_PM_SLEEP
28002099
DE
7390 .suspend = e1000e_pm_suspend,
7391 .resume = e1000e_pm_resume,
7392 .freeze = e1000e_pm_freeze,
7393 .thaw = e1000e_pm_thaw,
7394 .poweroff = e1000e_pm_suspend,
7395 .restore = e1000e_pm_resume,
72f72dcc 7396#endif
63eb48f1
DE
7397 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7398 e1000e_pm_runtime_idle)
23606cf5
RW
7399};
7400
bc7f75fa
AK
7401/* PCI Device API Driver */
7402static struct pci_driver e1000_driver = {
7403 .name = e1000e_driver_name,
7404 .id_table = e1000_pci_tbl,
7405 .probe = e1000_probe,
9f9a12f8 7406 .remove = e1000_remove,
f36bb6ca
BA
7407 .driver = {
7408 .pm = &e1000_pm_ops,
7409 },
bc7f75fa
AK
7410 .shutdown = e1000_shutdown,
7411 .err_handler = &e1000_err_handler
7412};
7413
7414/**
7415 * e1000_init_module - Driver Registration Routine
7416 *
7417 * e1000_init_module is the first routine called when the driver is
7418 * loaded. All it does is register with the PCI subsystem.
7419 **/
7420static int __init e1000_init_module(void)
7421{
7422 int ret;
6cf08d1c 7423
8544b9f7
BA
7424 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7425 e1000e_driver_version);
e78b80b1 7426 pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
bc7f75fa 7427 ret = pci_register_driver(&e1000_driver);
53ec5498 7428
bc7f75fa
AK
7429 return ret;
7430}
7431module_init(e1000_init_module);
7432
7433/**
7434 * e1000_exit_module - Driver Exit Cleanup Routine
7435 *
7436 * e1000_exit_module is called just before the driver is removed
7437 * from memory.
7438 **/
7439static void __exit e1000_exit_module(void)
7440{
7441 pci_unregister_driver(&e1000_driver);
7442}
7443module_exit(e1000_exit_module);
7444
bc7f75fa
AK
7445MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7446MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7447MODULE_LICENSE("GPL");
7448MODULE_VERSION(DRV_VERSION);
7449
06c24b91 7450/* netdev.c */