e1000e: Correct link check logic for 82571 serdes
[linux-2.6-block.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
f5e261e6 4 Copyright(c) 1999 - 2012 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
d3738bb8
BA
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
bc7f75fa
AK
57 */
58
bc7f75fa
AK
59#include "e1000.h"
60
61#define ICH_FLASH_GFPREG 0x0000
62#define ICH_FLASH_HSFSTS 0x0004
63#define ICH_FLASH_HSFCTL 0x0006
64#define ICH_FLASH_FADDR 0x0008
65#define ICH_FLASH_FDATA0 0x0010
4a770358 66#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
67
68#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73
74#define ICH_CYCLE_READ 0
75#define ICH_CYCLE_WRITE 2
76#define ICH_CYCLE_ERASE 3
77
78#define FLASH_GFPREG_BASE_MASK 0x1FFF
79#define FLASH_SECTOR_ADDR_SHIFT 12
80
81#define ICH_FLASH_SEG_SIZE_256 256
82#define ICH_FLASH_SEG_SIZE_4K 4096
83#define ICH_FLASH_SEG_SIZE_8K 8192
84#define ICH_FLASH_SEG_SIZE_64K 65536
85
86
87#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
6dfaa769
BA
88/* FW established a valid mode */
89#define E1000_ICH_FWSM_FW_VALID 0x00008000
bc7f75fa
AK
90
91#define E1000_ICH_MNG_IAMT_MODE 0x2
92
93#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
97
98#define E1000_ICH_NVM_SIG_WORD 0x13
99#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
100#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
102
103#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104
105#define E1000_FEXTNVM_SW_CONFIG 1
106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
62bc813e
BA
108#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000
109#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000
110
831bd2e6
BA
111#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
112#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
113#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
114
bc7f75fa
AK
115#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
116
117#define E1000_ICH_RAR_ENTRIES 7
69e1e019 118#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
2fbe4526 119#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */
bc7f75fa
AK
120
121#define PHY_PAGE_SHIFT 5
122#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
123 ((reg) & MAX_PHY_REG_ADDRESS))
124#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
125#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
126
127#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
128#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
129#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
130
a4f58f54
BA
131#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
132
53ac5a88
BA
133#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
134
2fbe4526
BA
135/* SMBus Control Phy Register */
136#define CV_SMB_CTRL PHY_REG(769, 23)
137#define CV_SMB_CTRL_FORCE_SMBUS 0x0001
138
f523d211
BA
139/* SMBus Address Phy Register */
140#define HV_SMB_ADDR PHY_REG(768, 26)
8395ae83 141#define HV_SMB_ADDR_MASK 0x007F
f523d211
BA
142#define HV_SMB_ADDR_PEC_EN 0x0200
143#define HV_SMB_ADDR_VALID 0x0080
2fbe4526
BA
144#define HV_SMB_ADDR_FREQ_MASK 0x1100
145#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8
146#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12
f523d211 147
d3738bb8
BA
148/* PHY Power Management Control */
149#define HV_PM_CTRL PHY_REG(770, 17)
36ceeb43 150#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100
d3738bb8 151
e52997f9 152/* PHY Low Power Idle Control */
0ed013e2
BA
153#define I82579_LPI_CTRL PHY_REG(772, 20)
154#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
155#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
e52997f9 156
1effb45c
BA
157/* EMI Registers */
158#define I82579_EMI_ADDR 0x10
159#define I82579_EMI_DATA 0x11
160#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
4d24136c
BA
161#define I82579_MSE_THRESHOLD 0x084F /* Mean Square Error Threshold */
162#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */
2fbe4526
BA
163#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */
164#define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */
165#define I217_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE supported */
166
167/* Intel Rapid Start Technology Support */
6d7407bf 168#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70)
2fbe4526
BA
169#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080
170#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28)
6d7407bf 171#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000
2fbe4526 172#define I217_CGFREG PHY_REG(772, 29)
6d7407bf 173#define I217_CGFREG_ENABLE_MTA_RESET 0x0002
2fbe4526 174#define I217_MEMPWR PHY_REG(772, 26)
6d7407bf 175#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
1effb45c 176
f523d211
BA
177/* Strapping Option Register - RO */
178#define E1000_STRAP 0x0000C
179#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
180#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
2fbe4526
BA
181#define E1000_STRAP_SMT_FREQ_MASK 0x00003000
182#define E1000_STRAP_SMT_FREQ_SHIFT 12
f523d211 183
fa2ce13c
BA
184/* OEM Bits Phy Register */
185#define HV_OEM_BITS PHY_REG(768, 25)
186#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 187#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
188#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
189
1d5846b9
BA
190#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
191#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
192
fddaa1af
BA
193/* KMRN Mode Control */
194#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
195#define HV_KMRN_MDIO_SLOW 0x0400
196
1d2101a7
BA
197/* KMRN FIFO Control and Status */
198#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
199#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
200#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
201
bc7f75fa
AK
202/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
203/* Offset 04h HSFSTS */
204union ich8_hws_flash_status {
205 struct ich8_hsfsts {
206 u16 flcdone :1; /* bit 0 Flash Cycle Done */
207 u16 flcerr :1; /* bit 1 Flash Cycle Error */
208 u16 dael :1; /* bit 2 Direct Access error Log */
209 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
210 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
211 u16 reserved1 :2; /* bit 13:6 Reserved */
212 u16 reserved2 :6; /* bit 13:6 Reserved */
213 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
214 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
215 } hsf_status;
216 u16 regval;
217};
218
219/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
220/* Offset 06h FLCTL */
221union ich8_hws_flash_ctrl {
222 struct ich8_hsflctl {
223 u16 flcgo :1; /* 0 Flash Cycle Go */
224 u16 flcycle :2; /* 2:1 Flash Cycle */
225 u16 reserved :5; /* 7:3 Reserved */
226 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
227 u16 flockdn :6; /* 15:10 Reserved */
228 } hsf_ctrl;
229 u16 regval;
230};
231
232/* ICH Flash Region Access Permissions */
233union ich8_hws_flash_regacc {
234 struct ich8_flracc {
235 u32 grra :8; /* 0:7 GbE region Read Access */
236 u32 grwa :8; /* 8:15 GbE region Write Access */
237 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
238 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
239 } hsf_flregacc;
240 u16 regval;
241};
242
4a770358
BA
243/* ICH Flash Protected Region */
244union ich8_flash_protected_range {
245 struct ich8_pr {
246 u32 base:13; /* 0:12 Protected Range Base */
247 u32 reserved1:2; /* 13:14 Reserved */
248 u32 rpe:1; /* 15 Read Protection Enable */
249 u32 limit:13; /* 16:28 Protected Range Limit */
250 u32 reserved2:2; /* 29:30 Reserved */
251 u32 wpe:1; /* 31 Write Protection Enable */
252 } range;
253 u32 regval;
254};
255
bc7f75fa
AK
256static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
257static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
258static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
259static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
260static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
261 u32 offset, u8 byte);
f4187b56
BA
262static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
263 u8 *data);
bc7f75fa
AK
264static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
265 u16 *data);
266static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
267 u8 size, u16 *data);
268static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
269static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 270static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
271static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
272static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
273static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
274static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
275static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
276static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
277static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
278static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 279static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
17f208de 280static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
f523d211 281static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1d5846b9 282static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fddaa1af 283static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
eb7700dc
BA
284static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
285static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
69e1e019 286static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
2fbe4526 287static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
831bd2e6 288static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
605c82ba 289static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
bc7f75fa
AK
290
291static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
292{
293 return readw(hw->flash_address + reg);
294}
295
296static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
297{
298 return readl(hw->flash_address + reg);
299}
300
301static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
302{
303 writew(val, hw->flash_address + reg);
304}
305
306static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
307{
308 writel(val, hw->flash_address + reg);
309}
310
311#define er16flash(reg) __er16flash(hw, (reg))
312#define er32flash(reg) __er32flash(hw, (reg))
0e15df49
BA
313#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
314#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
bc7f75fa 315
cb17aab9
BA
316/**
317 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
318 * @hw: pointer to the HW structure
319 *
320 * Test access to the PHY registers by reading the PHY ID registers. If
321 * the PHY ID is already known (e.g. resume path) compare it with known ID,
322 * otherwise assume the read PHY ID is correct if it is valid.
323 *
324 * Assumes the sw/fw/hw semaphore is already acquired.
325 **/
326static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
99730e4c 327{
cb17aab9
BA
328 u16 phy_reg;
329 u32 phy_id;
62bc813e 330
f1430d69 331 e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
cb17aab9 332 phy_id = (u32)(phy_reg << 16);
f1430d69 333 e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
cb17aab9
BA
334 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
335
336 if (hw->phy.id) {
337 if (hw->phy.id == phy_id)
338 return true;
339 } else {
340 if ((phy_id != 0) && (phy_id != PHY_REVISION_MASK))
341 hw->phy.id = phy_id;
342 return true;
343 }
344
345 return false;
346}
347
348/**
349 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
350 * @hw: pointer to the HW structure
351 *
352 * Workarounds/flow necessary for PHY initialization during driver load
353 * and resume paths.
354 **/
355static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
356{
357 u32 mac_reg, fwsm = er32(FWSM);
358 s32 ret_val;
2fbe4526 359 u16 phy_reg;
cb17aab9
BA
360
361 ret_val = hw->phy.ops.acquire(hw);
362 if (ret_val) {
363 e_dbg("Failed to initialize PHY flow\n");
364 return ret_val;
365 }
366
367 /*
368 * The MAC-PHY interconnect may be in SMBus mode. If the PHY is
369 * inaccessible and resetting the PHY is not blocked, toggle the
370 * LANPHYPC Value bit to force the interconnect to PCIe mode.
371 */
372 switch (hw->mac.type) {
2fbe4526
BA
373 case e1000_pch_lpt:
374 if (e1000_phy_is_accessible_pchlan(hw))
375 break;
376
377 /*
378 * Before toggling LANPHYPC, see if PHY is accessible by
379 * forcing MAC to SMBus mode first.
380 */
381 mac_reg = er32(CTRL_EXT);
382 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
383 ew32(CTRL_EXT, mac_reg);
384
385 /* fall-through */
cb17aab9
BA
386 case e1000_pch2lan:
387 /*
388 * Gate automatic PHY configuration by hardware on
389 * non-managed 82579
390 */
2fbe4526
BA
391 if ((hw->mac.type == e1000_pch2lan) &&
392 !(fwsm & E1000_ICH_FWSM_FW_VALID))
cb17aab9
BA
393 e1000_gate_hw_phy_config_ich8lan(hw, true);
394
2fbe4526
BA
395 if (e1000_phy_is_accessible_pchlan(hw)) {
396 if (hw->mac.type == e1000_pch_lpt) {
397 /* Unforce SMBus mode in PHY */
398 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
399 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
400 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
401
402 /* Unforce SMBus mode in MAC */
403 mac_reg = er32(CTRL_EXT);
404 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
405 ew32(CTRL_EXT, mac_reg);
406 }
cb17aab9 407 break;
2fbe4526 408 }
cb17aab9
BA
409
410 /* fall-through */
411 case e1000_pchlan:
412 if ((hw->mac.type == e1000_pchlan) &&
413 (fwsm & E1000_ICH_FWSM_FW_VALID))
414 break;
415
416 if (hw->phy.ops.check_reset_block(hw)) {
417 e_dbg("Required LANPHYPC toggle blocked by ME\n");
418 break;
419 }
420
421 e_dbg("Toggling LANPHYPC\n");
422
423 /* Set Phy Config Counter to 50msec */
424 mac_reg = er32(FEXTNVM3);
425 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
426 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
427 ew32(FEXTNVM3, mac_reg);
428
429 /* Toggle LANPHYPC Value bit */
430 mac_reg = er32(CTRL);
431 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
432 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
433 ew32(CTRL, mac_reg);
434 e1e_flush();
435 udelay(10);
436 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
437 ew32(CTRL, mac_reg);
438 e1e_flush();
2fbe4526
BA
439 if (hw->mac.type < e1000_pch_lpt) {
440 msleep(50);
441 } else {
442 u16 count = 20;
443 do {
444 usleep_range(5000, 10000);
445 } while (!(er32(CTRL_EXT) &
446 E1000_CTRL_EXT_LPCD) && count--);
447 }
cb17aab9
BA
448 break;
449 default:
450 break;
451 }
452
453 hw->phy.ops.release(hw);
454
455 /*
456 * Reset the PHY before any access to it. Doing so, ensures
457 * that the PHY is in a known good state before we read/write
458 * PHY registers. The generic reset is sufficient here,
459 * because we haven't determined the PHY type yet.
460 */
461 ret_val = e1000e_phy_hw_reset_generic(hw);
462
463 /* Ungate automatic PHY configuration on non-managed 82579 */
464 if ((hw->mac.type == e1000_pch2lan) &&
465 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
466 usleep_range(10000, 20000);
467 e1000_gate_hw_phy_config_ich8lan(hw, false);
468 }
469
470 return ret_val;
99730e4c
BA
471}
472
a4f58f54
BA
473/**
474 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
475 * @hw: pointer to the HW structure
476 *
477 * Initialize family-specific PHY parameters and function pointers.
478 **/
479static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
480{
481 struct e1000_phy_info *phy = &hw->phy;
482 s32 ret_val = 0;
483
484 phy->addr = 1;
485 phy->reset_delay_us = 100;
486
2b6b168d 487 phy->ops.set_page = e1000_set_page_igp;
94d8186a
BA
488 phy->ops.read_reg = e1000_read_phy_reg_hv;
489 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
2b6b168d 490 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
fa2ce13c
BA
491 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
492 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
493 phy->ops.write_reg = e1000_write_phy_reg_hv;
494 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
2b6b168d 495 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
17f208de
BA
496 phy->ops.power_up = e1000_power_up_phy_copper;
497 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
a4f58f54
BA
498 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
499
cb17aab9 500 phy->id = e1000_phy_unknown;
627c8a04 501
cb17aab9
BA
502 ret_val = e1000_init_phy_workarounds_pchlan(hw);
503 if (ret_val)
504 return ret_val;
605c82ba 505
cb17aab9
BA
506 if (phy->id == e1000_phy_unknown)
507 switch (hw->mac.type) {
508 default:
509 ret_val = e1000e_get_phy_id(hw);
510 if (ret_val)
511 return ret_val;
512 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
513 break;
514 /* fall-through */
515 case e1000_pch2lan:
2fbe4526 516 case e1000_pch_lpt:
cb17aab9
BA
517 /*
518 * In case the PHY needs to be in mdio slow mode,
519 * set slow mode and try to get the PHY id again.
520 */
521 ret_val = e1000_set_mdio_slow_mode_hv(hw);
522 if (ret_val)
523 return ret_val;
524 ret_val = e1000e_get_phy_id(hw);
525 if (ret_val)
526 return ret_val;
664dc878 527 break;
cb17aab9 528 }
a4f58f54
BA
529 phy->type = e1000e_get_phy_type_from_id(phy->id);
530
0be84010
BA
531 switch (phy->type) {
532 case e1000_phy_82577:
d3738bb8 533 case e1000_phy_82579:
2fbe4526 534 case e1000_phy_i217:
a4f58f54
BA
535 phy->ops.check_polarity = e1000_check_polarity_82577;
536 phy->ops.force_speed_duplex =
6cc7aaed 537 e1000_phy_force_speed_duplex_82577;
0be84010 538 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
539 phy->ops.get_info = e1000_get_phy_info_82577;
540 phy->ops.commit = e1000e_phy_sw_reset;
eab50ffb 541 break;
0be84010
BA
542 case e1000_phy_82578:
543 phy->ops.check_polarity = e1000_check_polarity_m88;
544 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
545 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
546 phy->ops.get_info = e1000e_get_phy_info_m88;
547 break;
548 default:
549 ret_val = -E1000_ERR_PHY;
550 break;
a4f58f54
BA
551 }
552
553 return ret_val;
554}
555
bc7f75fa
AK
556/**
557 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
558 * @hw: pointer to the HW structure
559 *
560 * Initialize family-specific PHY parameters and function pointers.
561 **/
562static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
563{
564 struct e1000_phy_info *phy = &hw->phy;
565 s32 ret_val;
566 u16 i = 0;
567
568 phy->addr = 1;
569 phy->reset_delay_us = 100;
570
17f208de
BA
571 phy->ops.power_up = e1000_power_up_phy_copper;
572 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
573
97ac8cae
BA
574 /*
575 * We may need to do this twice - once for IGP and if that fails,
576 * we'll set BM func pointers and try again
577 */
578 ret_val = e1000e_determine_phy_address(hw);
579 if (ret_val) {
94d8186a
BA
580 phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae 582 ret_val = e1000e_determine_phy_address(hw);
9b71b419
BA
583 if (ret_val) {
584 e_dbg("Cannot determine PHY addr. Erroring out\n");
97ac8cae 585 return ret_val;
9b71b419 586 }
97ac8cae
BA
587 }
588
bc7f75fa
AK
589 phy->id = 0;
590 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
591 (i++ < 100)) {
1bba4386 592 usleep_range(1000, 2000);
bc7f75fa
AK
593 ret_val = e1000e_get_phy_id(hw);
594 if (ret_val)
595 return ret_val;
596 }
597
598 /* Verify phy id */
599 switch (phy->id) {
600 case IGP03E1000_E_PHY_ID:
601 phy->type = e1000_phy_igp_3;
602 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
603 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
604 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0be84010
BA
605 phy->ops.get_info = e1000e_get_phy_info_igp;
606 phy->ops.check_polarity = e1000_check_polarity_igp;
607 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
bc7f75fa
AK
608 break;
609 case IFE_E_PHY_ID:
610 case IFE_PLUS_E_PHY_ID:
611 case IFE_C_E_PHY_ID:
612 phy->type = e1000_phy_ife;
613 phy->autoneg_mask = E1000_ALL_NOT_GIG;
0be84010
BA
614 phy->ops.get_info = e1000_get_phy_info_ife;
615 phy->ops.check_polarity = e1000_check_polarity_ife;
616 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
bc7f75fa 617 break;
97ac8cae
BA
618 case BME1000_E_PHY_ID:
619 phy->type = e1000_phy_bm;
620 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
621 phy->ops.read_reg = e1000e_read_phy_reg_bm;
622 phy->ops.write_reg = e1000e_write_phy_reg_bm;
623 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
624 phy->ops.get_info = e1000e_get_phy_info_m88;
625 phy->ops.check_polarity = e1000_check_polarity_m88;
626 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
97ac8cae 627 break;
bc7f75fa
AK
628 default:
629 return -E1000_ERR_PHY;
630 break;
631 }
632
633 return 0;
634}
635
636/**
637 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
638 * @hw: pointer to the HW structure
639 *
640 * Initialize family-specific NVM parameters and function
641 * pointers.
642 **/
643static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
644{
645 struct e1000_nvm_info *nvm = &hw->nvm;
646 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 647 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
648 u16 i;
649
ad68076e 650 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 651 if (!hw->flash_address) {
3bb99fe2 652 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
653 return -E1000_ERR_CONFIG;
654 }
655
656 nvm->type = e1000_nvm_flash_sw;
657
658 gfpreg = er32flash(ICH_FLASH_GFPREG);
659
ad68076e
BA
660 /*
661 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 662 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
663 * the overall size.
664 */
bc7f75fa
AK
665 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
666 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
667
668 /* flash_base_addr is byte-aligned */
669 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
670
ad68076e
BA
671 /*
672 * find total size of the NVM, then cut in half since the total
673 * size represents two separate NVM banks.
674 */
bc7f75fa
AK
675 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
676 << FLASH_SECTOR_ADDR_SHIFT;
677 nvm->flash_bank_size /= 2;
678 /* Adjust to word count */
679 nvm->flash_bank_size /= sizeof(u16);
680
681 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
682
683 /* Clear shadow ram */
684 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 685 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
686 dev_spec->shadow_ram[i].value = 0xFFFF;
687 }
688
689 return 0;
690}
691
692/**
693 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
694 * @hw: pointer to the HW structure
695 *
696 * Initialize family-specific MAC parameters and function
697 * pointers.
698 **/
ec34c170 699static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
bc7f75fa 700{
bc7f75fa
AK
701 struct e1000_mac_info *mac = &hw->mac;
702
703 /* Set media type function pointer */
318a94d6 704 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
705
706 /* Set mta register count */
707 mac->mta_reg_count = 32;
708 /* Set rar entry count */
709 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
710 if (mac->type == e1000_ich8lan)
711 mac->rar_entry_count--;
a65a4a0d
BA
712 /* FWSM register */
713 mac->has_fwsm = true;
714 /* ARC subsystem not supported */
715 mac->arc_subsystem_valid = false;
f464ba87
BA
716 /* Adaptive IFS supported */
717 mac->adaptive_ifs = true;
bc7f75fa 718
2fbe4526 719 /* LED and other operations */
a4f58f54
BA
720 switch (mac->type) {
721 case e1000_ich8lan:
722 case e1000_ich9lan:
723 case e1000_ich10lan:
eb7700dc
BA
724 /* check management mode */
725 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
a4f58f54 726 /* ID LED init */
d1964eb1 727 mac->ops.id_led_init = e1000e_id_led_init_generic;
dbf80dcb
BA
728 /* blink LED */
729 mac->ops.blink_led = e1000e_blink_led_generic;
a4f58f54
BA
730 /* setup LED */
731 mac->ops.setup_led = e1000e_setup_led_generic;
732 /* cleanup LED */
733 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
734 /* turn on/off LED */
735 mac->ops.led_on = e1000_led_on_ich8lan;
736 mac->ops.led_off = e1000_led_off_ich8lan;
737 break;
d3738bb8 738 case e1000_pch2lan:
69e1e019
BA
739 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
740 mac->ops.rar_set = e1000_rar_set_pch2lan;
741 /* fall-through */
2fbe4526 742 case e1000_pch_lpt:
69e1e019 743 case e1000_pchlan:
eb7700dc
BA
744 /* check management mode */
745 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
a4f58f54
BA
746 /* ID LED init */
747 mac->ops.id_led_init = e1000_id_led_init_pchlan;
748 /* setup LED */
749 mac->ops.setup_led = e1000_setup_led_pchlan;
750 /* cleanup LED */
751 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
752 /* turn on/off LED */
753 mac->ops.led_on = e1000_led_on_pchlan;
754 mac->ops.led_off = e1000_led_off_pchlan;
755 break;
756 default:
757 break;
758 }
759
2fbe4526
BA
760 if (mac->type == e1000_pch_lpt) {
761 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
762 mac->ops.rar_set = e1000_rar_set_pch_lpt;
763 }
764
bc7f75fa
AK
765 /* Enable PCS Lock-loss workaround for ICH8 */
766 if (mac->type == e1000_ich8lan)
564ea9bb 767 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa 768
2fbe4526
BA
769 /*
770 * Gate automatic PHY configuration by hardware on managed
771 * 82579 and i217
772 */
773 if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
605c82ba
BA
774 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
775 e1000_gate_hw_phy_config_ich8lan(hw, true);
d3738bb8 776
bc7f75fa
AK
777 return 0;
778}
779
e52997f9
BA
780/**
781 * e1000_set_eee_pchlan - Enable/disable EEE support
782 * @hw: pointer to the HW structure
783 *
784 * Enable/disable EEE based on setting in dev_spec structure. The bits in
785 * the LPI Control register will remain set only if/when link is up.
786 **/
787static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
788{
2fbe4526 789 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
e52997f9
BA
790 s32 ret_val = 0;
791 u16 phy_reg;
792
2fbe4526
BA
793 if ((hw->phy.type != e1000_phy_82579) &&
794 (hw->phy.type != e1000_phy_i217))
5015e53a 795 return 0;
e52997f9
BA
796
797 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
798 if (ret_val)
5015e53a 799 return ret_val;
e52997f9 800
2fbe4526 801 if (dev_spec->eee_disable)
e52997f9
BA
802 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
803 else
804 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
805
2fbe4526
BA
806 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
807 if (ret_val)
808 return ret_val;
809
810 if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
811 /* Save off link partner's EEE ability */
812 ret_val = hw->phy.ops.acquire(hw);
813 if (ret_val)
814 return ret_val;
815 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
816 I217_EEE_LP_ABILITY);
817 if (ret_val)
818 goto release;
819 e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
820
821 /*
822 * EEE is not supported in 100Half, so ignore partner's EEE
823 * in 100 ability if full-duplex is not advertised.
824 */
825 e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
826 if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
827 dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
828release:
829 hw->phy.ops.release(hw);
830 }
831
832 return 0;
e52997f9
BA
833}
834
7d3cabbc
BA
835/**
836 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
837 * @hw: pointer to the HW structure
838 *
839 * Checks to see of the link status of the hardware has changed. If a
840 * change in link status has been detected, then we read the PHY registers
841 * to get the current speed/duplex if link exists.
842 **/
843static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
844{
845 struct e1000_mac_info *mac = &hw->mac;
846 s32 ret_val;
847 bool link;
1d2101a7 848 u16 phy_reg;
7d3cabbc
BA
849
850 /*
851 * We only want to go out to the PHY registers to see if Auto-Neg
852 * has completed and/or if our link status has changed. The
853 * get_link_status flag is set upon receiving a Link Status
854 * Change or Rx Sequence Error interrupt.
855 */
5015e53a
BA
856 if (!mac->get_link_status)
857 return 0;
7d3cabbc 858
7d3cabbc
BA
859 /*
860 * First we want to see if the MII Status Register reports
861 * link. If so, then we want to get the current speed/duplex
862 * of the PHY.
863 */
864 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
865 if (ret_val)
5015e53a 866 return ret_val;
7d3cabbc 867
1d5846b9
BA
868 if (hw->mac.type == e1000_pchlan) {
869 ret_val = e1000_k1_gig_workaround_hv(hw, link);
870 if (ret_val)
5015e53a 871 return ret_val;
1d5846b9
BA
872 }
873
2fbe4526
BA
874 /* Clear link partner's EEE ability */
875 hw->dev_spec.ich8lan.eee_lp_ability = 0;
876
7d3cabbc 877 if (!link)
5015e53a 878 return 0; /* No link detected */
7d3cabbc
BA
879
880 mac->get_link_status = false;
881
1d2101a7
BA
882 switch (hw->mac.type) {
883 case e1000_pch2lan:
831bd2e6
BA
884 ret_val = e1000_k1_workaround_lv(hw);
885 if (ret_val)
5015e53a 886 return ret_val;
1d2101a7
BA
887 /* fall-thru */
888 case e1000_pchlan:
889 if (hw->phy.type == e1000_phy_82578) {
890 ret_val = e1000_link_stall_workaround_hv(hw);
891 if (ret_val)
5015e53a 892 return ret_val;
1d2101a7
BA
893 }
894
895 /*
896 * Workaround for PCHx parts in half-duplex:
897 * Set the number of preambles removed from the packet
898 * when it is passed from the PHY to the MAC to prevent
899 * the MAC from misinterpreting the packet type.
900 */
901 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
902 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
903
904 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
905 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
906
907 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
908 break;
909 default:
910 break;
831bd2e6
BA
911 }
912
7d3cabbc
BA
913 /*
914 * Check if there was DownShift, must be checked
915 * immediately after link-up
916 */
917 e1000e_check_downshift(hw);
918
e52997f9
BA
919 /* Enable/Disable EEE after link up */
920 ret_val = e1000_set_eee_pchlan(hw);
921 if (ret_val)
5015e53a 922 return ret_val;
e52997f9 923
7d3cabbc
BA
924 /*
925 * If we are forcing speed/duplex, then we simply return since
926 * we have already determined whether we have link or not.
927 */
5015e53a
BA
928 if (!mac->autoneg)
929 return -E1000_ERR_CONFIG;
7d3cabbc
BA
930
931 /*
932 * Auto-Neg is enabled. Auto Speed Detection takes care
933 * of MAC speed/duplex configuration. So we only need to
934 * configure Collision Distance in the MAC.
935 */
57cde763 936 mac->ops.config_collision_dist(hw);
7d3cabbc
BA
937
938 /*
939 * Configure Flow Control now that Auto-Neg has completed.
940 * First, we need to restore the desired flow control
941 * settings because we may have had to re-autoneg with a
942 * different link partner.
943 */
944 ret_val = e1000e_config_fc_after_link_up(hw);
945 if (ret_val)
3bb99fe2 946 e_dbg("Error configuring flow control\n");
7d3cabbc 947
7d3cabbc
BA
948 return ret_val;
949}
950
69e3fd8c 951static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
952{
953 struct e1000_hw *hw = &adapter->hw;
954 s32 rc;
955
ec34c170 956 rc = e1000_init_mac_params_ich8lan(hw);
bc7f75fa
AK
957 if (rc)
958 return rc;
959
960 rc = e1000_init_nvm_params_ich8lan(hw);
961 if (rc)
962 return rc;
963
d3738bb8
BA
964 switch (hw->mac.type) {
965 case e1000_ich8lan:
966 case e1000_ich9lan:
967 case e1000_ich10lan:
a4f58f54 968 rc = e1000_init_phy_params_ich8lan(hw);
d3738bb8
BA
969 break;
970 case e1000_pchlan:
971 case e1000_pch2lan:
2fbe4526 972 case e1000_pch_lpt:
d3738bb8
BA
973 rc = e1000_init_phy_params_pchlan(hw);
974 break;
975 default:
976 break;
977 }
bc7f75fa
AK
978 if (rc)
979 return rc;
980
23e4f061
BA
981 /*
982 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
983 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
984 */
985 if ((adapter->hw.phy.type == e1000_phy_ife) ||
986 ((adapter->hw.mac.type >= e1000_pch2lan) &&
987 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
2adc55c9
BA
988 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
989 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
dbf80dcb
BA
990
991 hw->mac.ops.blink_led = NULL;
2adc55c9
BA
992 }
993
bc7f75fa 994 if ((adapter->hw.mac.type == e1000_ich8lan) &&
462d5994 995 (adapter->hw.phy.type != e1000_phy_ife))
bc7f75fa
AK
996 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
997
c6e7f51e
BA
998 /* Enable workaround for 82579 w/ ME enabled */
999 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1000 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1001 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1002
5a86f28f
BA
1003 /* Disable EEE by default until IEEE802.3az spec is finalized */
1004 if (adapter->flags2 & FLAG2_HAS_EEE)
1005 adapter->hw.dev_spec.ich8lan.eee_disable = true;
1006
bc7f75fa
AK
1007 return 0;
1008}
1009
717d438d 1010static DEFINE_MUTEX(nvm_mutex);
717d438d 1011
ca15df58
BA
1012/**
1013 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1014 * @hw: pointer to the HW structure
1015 *
1016 * Acquires the mutex for performing NVM operations.
1017 **/
1018static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1019{
1020 mutex_lock(&nvm_mutex);
1021
1022 return 0;
1023}
1024
1025/**
1026 * e1000_release_nvm_ich8lan - Release NVM mutex
1027 * @hw: pointer to the HW structure
1028 *
1029 * Releases the mutex used while performing NVM operations.
1030 **/
1031static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1032{
1033 mutex_unlock(&nvm_mutex);
ca15df58
BA
1034}
1035
bc7f75fa
AK
1036/**
1037 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1038 * @hw: pointer to the HW structure
1039 *
ca15df58
BA
1040 * Acquires the software control flag for performing PHY and select
1041 * MAC CSR accesses.
bc7f75fa
AK
1042 **/
1043static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1044{
373a88d7
BA
1045 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1046 s32 ret_val = 0;
bc7f75fa 1047
a90b412c
BA
1048 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1049 &hw->adapter->state)) {
34c9ef8b 1050 e_dbg("contention for Phy access\n");
a90b412c
BA
1051 return -E1000_ERR_PHY;
1052 }
717d438d 1053
bc7f75fa
AK
1054 while (timeout) {
1055 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
1056 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1057 break;
bc7f75fa 1058
373a88d7
BA
1059 mdelay(1);
1060 timeout--;
1061 }
1062
1063 if (!timeout) {
a90b412c 1064 e_dbg("SW has already locked the resource.\n");
373a88d7
BA
1065 ret_val = -E1000_ERR_CONFIG;
1066 goto out;
1067 }
1068
53ac5a88 1069 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
1070
1071 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1072 ew32(EXTCNF_CTRL, extcnf_ctrl);
1073
1074 while (timeout) {
1075 extcnf_ctrl = er32(EXTCNF_CTRL);
1076 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1077 break;
a4f58f54 1078
bc7f75fa
AK
1079 mdelay(1);
1080 timeout--;
1081 }
1082
1083 if (!timeout) {
434f1392 1084 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
a90b412c 1085 er32(FWSM), extcnf_ctrl);
2e2e8d53
BA
1086 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1087 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
1088 ret_val = -E1000_ERR_CONFIG;
1089 goto out;
bc7f75fa
AK
1090 }
1091
373a88d7
BA
1092out:
1093 if (ret_val)
a90b412c 1094 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
373a88d7
BA
1095
1096 return ret_val;
bc7f75fa
AK
1097}
1098
1099/**
1100 * e1000_release_swflag_ich8lan - Release software control flag
1101 * @hw: pointer to the HW structure
1102 *
ca15df58
BA
1103 * Releases the software control flag for performing PHY and select
1104 * MAC CSR accesses.
bc7f75fa
AK
1105 **/
1106static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1107{
1108 u32 extcnf_ctrl;
1109
1110 extcnf_ctrl = er32(EXTCNF_CTRL);
c5caf482
BA
1111
1112 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1113 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1114 ew32(EXTCNF_CTRL, extcnf_ctrl);
1115 } else {
1116 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1117 }
717d438d 1118
a90b412c 1119 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
bc7f75fa
AK
1120}
1121
4662e82b
BA
1122/**
1123 * e1000_check_mng_mode_ich8lan - Checks management mode
1124 * @hw: pointer to the HW structure
1125 *
eb7700dc 1126 * This checks if the adapter has any manageability enabled.
4662e82b
BA
1127 * This is a function pointer entry point only called by read/write
1128 * routines for the PHY and NVM parts.
1129 **/
1130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1131{
a708dd88
BA
1132 u32 fwsm;
1133
1134 fwsm = er32(FWSM);
eb7700dc
BA
1135 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1136 ((fwsm & E1000_FWSM_MODE_MASK) ==
1137 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1138}
4662e82b 1139
eb7700dc
BA
1140/**
1141 * e1000_check_mng_mode_pchlan - Checks management mode
1142 * @hw: pointer to the HW structure
1143 *
1144 * This checks if the adapter has iAMT enabled.
1145 * This is a function pointer entry point only called by read/write
1146 * routines for the PHY and NVM parts.
1147 **/
1148static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1149{
1150 u32 fwsm;
1151
1152 fwsm = er32(FWSM);
1153 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1154 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
4662e82b
BA
1155}
1156
69e1e019
BA
1157/**
1158 * e1000_rar_set_pch2lan - Set receive address register
1159 * @hw: pointer to the HW structure
1160 * @addr: pointer to the receive address
1161 * @index: receive address array register
1162 *
1163 * Sets the receive address array register at index to the address passed
1164 * in by addr. For 82579, RAR[0] is the base address register that is to
1165 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1166 * Use SHRA[0-3] in place of those reserved for ME.
1167 **/
1168static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1169{
1170 u32 rar_low, rar_high;
1171
1172 /*
1173 * HW expects these in little endian so we reverse the byte order
1174 * from network order (big endian) to little endian
1175 */
1176 rar_low = ((u32)addr[0] |
1177 ((u32)addr[1] << 8) |
1178 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1179
1180 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1181
1182 /* If MAC address zero, no need to set the AV bit */
1183 if (rar_low || rar_high)
1184 rar_high |= E1000_RAH_AV;
1185
1186 if (index == 0) {
1187 ew32(RAL(index), rar_low);
1188 e1e_flush();
1189 ew32(RAH(index), rar_high);
1190 e1e_flush();
1191 return;
1192 }
1193
1194 if (index < hw->mac.rar_entry_count) {
1195 s32 ret_val;
1196
1197 ret_val = e1000_acquire_swflag_ich8lan(hw);
1198 if (ret_val)
1199 goto out;
1200
1201 ew32(SHRAL(index - 1), rar_low);
1202 e1e_flush();
1203 ew32(SHRAH(index - 1), rar_high);
1204 e1e_flush();
1205
1206 e1000_release_swflag_ich8lan(hw);
1207
1208 /* verify the register updates */
1209 if ((er32(SHRAL(index - 1)) == rar_low) &&
1210 (er32(SHRAH(index - 1)) == rar_high))
1211 return;
1212
1213 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1214 (index - 1), er32(FWSM));
1215 }
1216
1217out:
1218 e_dbg("Failed to write receive address at index %d\n", index);
1219}
1220
2fbe4526
BA
1221/**
1222 * e1000_rar_set_pch_lpt - Set receive address registers
1223 * @hw: pointer to the HW structure
1224 * @addr: pointer to the receive address
1225 * @index: receive address array register
1226 *
1227 * Sets the receive address register array at index to the address passed
1228 * in by addr. For LPT, RAR[0] is the base address register that is to
1229 * contain the MAC address. SHRA[0-10] are the shared receive address
1230 * registers that are shared between the Host and manageability engine (ME).
1231 **/
1232static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1233{
1234 u32 rar_low, rar_high;
1235 u32 wlock_mac;
1236
1237 /*
1238 * HW expects these in little endian so we reverse the byte order
1239 * from network order (big endian) to little endian
1240 */
1241 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1242 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1243
1244 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1245
1246 /* If MAC address zero, no need to set the AV bit */
1247 if (rar_low || rar_high)
1248 rar_high |= E1000_RAH_AV;
1249
1250 if (index == 0) {
1251 ew32(RAL(index), rar_low);
1252 e1e_flush();
1253 ew32(RAH(index), rar_high);
1254 e1e_flush();
1255 return;
1256 }
1257
1258 /*
1259 * The manageability engine (ME) can lock certain SHRAR registers that
1260 * it is using - those registers are unavailable for use.
1261 */
1262 if (index < hw->mac.rar_entry_count) {
1263 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1264 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1265
1266 /* Check if all SHRAR registers are locked */
1267 if (wlock_mac == 1)
1268 goto out;
1269
1270 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1271 s32 ret_val;
1272
1273 ret_val = e1000_acquire_swflag_ich8lan(hw);
1274
1275 if (ret_val)
1276 goto out;
1277
1278 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1279 e1e_flush();
1280 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1281 e1e_flush();
1282
1283 e1000_release_swflag_ich8lan(hw);
1284
1285 /* verify the register updates */
1286 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1287 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1288 return;
1289 }
1290 }
1291
1292out:
1293 e_dbg("Failed to write receive address at index %d\n", index);
1294}
1295
bc7f75fa
AK
1296/**
1297 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1298 * @hw: pointer to the HW structure
1299 *
1300 * Checks if firmware is blocking the reset of the PHY.
1301 * This is a function pointer entry point only called by
1302 * reset routines.
1303 **/
1304static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1305{
1306 u32 fwsm;
1307
1308 fwsm = er32(FWSM);
1309
1310 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1311}
1312
8395ae83
BA
1313/**
1314 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1315 * @hw: pointer to the HW structure
1316 *
1317 * Assumes semaphore already acquired.
1318 *
1319 **/
1320static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1321{
1322 u16 phy_data;
1323 u32 strap = er32(STRAP);
2fbe4526
BA
1324 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1325 E1000_STRAP_SMT_FREQ_SHIFT;
8395ae83
BA
1326 s32 ret_val = 0;
1327
1328 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1329
1330 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1331 if (ret_val)
5015e53a 1332 return ret_val;
8395ae83
BA
1333
1334 phy_data &= ~HV_SMB_ADDR_MASK;
1335 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1336 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
8395ae83 1337
2fbe4526
BA
1338 if (hw->phy.type == e1000_phy_i217) {
1339 /* Restore SMBus frequency */
1340 if (freq--) {
1341 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1342 phy_data |= (freq & (1 << 0)) <<
1343 HV_SMB_ADDR_FREQ_LOW_SHIFT;
1344 phy_data |= (freq & (1 << 1)) <<
1345 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1346 } else {
1347 e_dbg("Unsupported SMB frequency in PHY\n");
1348 }
1349 }
1350
5015e53a 1351 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
8395ae83
BA
1352}
1353
f523d211
BA
1354/**
1355 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1356 * @hw: pointer to the HW structure
1357 *
1358 * SW should configure the LCD from the NVM extended configuration region
1359 * as a workaround for certain parts.
1360 **/
1361static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1362{
1363 struct e1000_phy_info *phy = &hw->phy;
1364 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
8b802a7e 1365 s32 ret_val = 0;
f523d211
BA
1366 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1367
f523d211
BA
1368 /*
1369 * Initialize the PHY from the NVM on ICH platforms. This
1370 * is needed due to an issue where the NVM configuration is
1371 * not properly autoloaded after power transitions.
1372 * Therefore, after each PHY reset, we will load the
1373 * configuration data out of the NVM manually.
1374 */
3f0c16e8
BA
1375 switch (hw->mac.type) {
1376 case e1000_ich8lan:
1377 if (phy->type != e1000_phy_igp_3)
1378 return ret_val;
1379
5f3eed6f
BA
1380 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1381 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
3f0c16e8
BA
1382 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1383 break;
1384 }
1385 /* Fall-thru */
1386 case e1000_pchlan:
d3738bb8 1387 case e1000_pch2lan:
2fbe4526 1388 case e1000_pch_lpt:
8b802a7e 1389 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
3f0c16e8
BA
1390 break;
1391 default:
1392 return ret_val;
1393 }
1394
1395 ret_val = hw->phy.ops.acquire(hw);
1396 if (ret_val)
1397 return ret_val;
8b802a7e
BA
1398
1399 data = er32(FEXTNVM);
1400 if (!(data & sw_cfg_mask))
75ce1532 1401 goto release;
f523d211 1402
8b802a7e
BA
1403 /*
1404 * Make sure HW does not configure LCD from PHY
1405 * extended configuration before SW configuration
1406 */
1407 data = er32(EXTCNF_CTRL);
2fbe4526
BA
1408 if ((hw->mac.type < e1000_pch2lan) &&
1409 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1410 goto release;
8b802a7e
BA
1411
1412 cnf_size = er32(EXTCNF_SIZE);
1413 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1414 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1415 if (!cnf_size)
75ce1532 1416 goto release;
8b802a7e
BA
1417
1418 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1419 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1420
2fbe4526
BA
1421 if (((hw->mac.type == e1000_pchlan) &&
1422 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1423 (hw->mac.type > e1000_pchlan)) {
f523d211 1424 /*
8b802a7e
BA
1425 * HW configures the SMBus address and LEDs when the
1426 * OEM and LCD Write Enable bits are set in the NVM.
1427 * When both NVM bits are cleared, SW will configure
1428 * them instead.
f523d211 1429 */
8395ae83 1430 ret_val = e1000_write_smbus_addr(hw);
8b802a7e 1431 if (ret_val)
75ce1532 1432 goto release;
f523d211 1433
8b802a7e
BA
1434 data = er32(LEDCTL);
1435 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1436 (u16)data);
1437 if (ret_val)
75ce1532 1438 goto release;
8b802a7e 1439 }
f523d211 1440
8b802a7e
BA
1441 /* Configure LCD from extended configuration region. */
1442
1443 /* cnf_base_addr is in DWORD */
1444 word_addr = (u16)(cnf_base_addr << 1);
1445
1446 for (i = 0; i < cnf_size; i++) {
1447 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1448 &reg_data);
1449 if (ret_val)
75ce1532 1450 goto release;
8b802a7e
BA
1451
1452 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1453 1, &reg_addr);
1454 if (ret_val)
75ce1532 1455 goto release;
8b802a7e
BA
1456
1457 /* Save off the PHY page for future writes. */
1458 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1459 phy_page = reg_data;
1460 continue;
f523d211 1461 }
8b802a7e
BA
1462
1463 reg_addr &= PHY_REG_MASK;
1464 reg_addr |= phy_page;
1465
f1430d69 1466 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
8b802a7e 1467 if (ret_val)
75ce1532 1468 goto release;
f523d211
BA
1469 }
1470
75ce1532 1471release:
94d8186a 1472 hw->phy.ops.release(hw);
f523d211
BA
1473 return ret_val;
1474}
1475
1d5846b9
BA
1476/**
1477 * e1000_k1_gig_workaround_hv - K1 Si workaround
1478 * @hw: pointer to the HW structure
1479 * @link: link up bool flag
1480 *
1481 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1482 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1483 * If link is down, the function will restore the default K1 setting located
1484 * in the NVM.
1485 **/
1486static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1487{
1488 s32 ret_val = 0;
1489 u16 status_reg = 0;
1490 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1491
1492 if (hw->mac.type != e1000_pchlan)
5015e53a 1493 return 0;
1d5846b9
BA
1494
1495 /* Wrap the whole flow with the sw flag */
94d8186a 1496 ret_val = hw->phy.ops.acquire(hw);
1d5846b9 1497 if (ret_val)
5015e53a 1498 return ret_val;
1d5846b9
BA
1499
1500 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1501 if (link) {
1502 if (hw->phy.type == e1000_phy_82578) {
f1430d69
BA
1503 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1504 &status_reg);
1d5846b9
BA
1505 if (ret_val)
1506 goto release;
1507
1508 status_reg &= BM_CS_STATUS_LINK_UP |
1509 BM_CS_STATUS_RESOLVED |
1510 BM_CS_STATUS_SPEED_MASK;
1511
1512 if (status_reg == (BM_CS_STATUS_LINK_UP |
1513 BM_CS_STATUS_RESOLVED |
1514 BM_CS_STATUS_SPEED_1000))
1515 k1_enable = false;
1516 }
1517
1518 if (hw->phy.type == e1000_phy_82577) {
f1430d69 1519 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1d5846b9
BA
1520 if (ret_val)
1521 goto release;
1522
1523 status_reg &= HV_M_STATUS_LINK_UP |
1524 HV_M_STATUS_AUTONEG_COMPLETE |
1525 HV_M_STATUS_SPEED_MASK;
1526
1527 if (status_reg == (HV_M_STATUS_LINK_UP |
1528 HV_M_STATUS_AUTONEG_COMPLETE |
1529 HV_M_STATUS_SPEED_1000))
1530 k1_enable = false;
1531 }
1532
1533 /* Link stall fix for link up */
f1430d69 1534 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1d5846b9
BA
1535 if (ret_val)
1536 goto release;
1537
1538 } else {
1539 /* Link stall fix for link down */
f1430d69 1540 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1d5846b9
BA
1541 if (ret_val)
1542 goto release;
1543 }
1544
1545 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1546
1547release:
94d8186a 1548 hw->phy.ops.release(hw);
5015e53a 1549
1d5846b9
BA
1550 return ret_val;
1551}
1552
1553/**
1554 * e1000_configure_k1_ich8lan - Configure K1 power state
1555 * @hw: pointer to the HW structure
1556 * @enable: K1 state to configure
1557 *
1558 * Configure the K1 power state based on the provided parameter.
1559 * Assumes semaphore already acquired.
1560 *
1561 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1562 **/
bb436b20 1563s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9
BA
1564{
1565 s32 ret_val = 0;
1566 u32 ctrl_reg = 0;
1567 u32 ctrl_ext = 0;
1568 u32 reg = 0;
1569 u16 kmrn_reg = 0;
1570
3d3a1676
BA
1571 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1572 &kmrn_reg);
1d5846b9 1573 if (ret_val)
5015e53a 1574 return ret_val;
1d5846b9
BA
1575
1576 if (k1_enable)
1577 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1578 else
1579 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1580
3d3a1676
BA
1581 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1582 kmrn_reg);
1d5846b9 1583 if (ret_val)
5015e53a 1584 return ret_val;
1d5846b9
BA
1585
1586 udelay(20);
1587 ctrl_ext = er32(CTRL_EXT);
1588 ctrl_reg = er32(CTRL);
1589
1590 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1591 reg |= E1000_CTRL_FRCSPD;
1592 ew32(CTRL, reg);
1593
1594 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
945a5151 1595 e1e_flush();
1d5846b9
BA
1596 udelay(20);
1597 ew32(CTRL, ctrl_reg);
1598 ew32(CTRL_EXT, ctrl_ext);
945a5151 1599 e1e_flush();
1d5846b9
BA
1600 udelay(20);
1601
5015e53a 1602 return 0;
1d5846b9
BA
1603}
1604
f523d211
BA
1605/**
1606 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1607 * @hw: pointer to the HW structure
1608 * @d0_state: boolean if entering d0 or d3 device state
1609 *
1610 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1611 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1612 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1613 **/
1614static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1615{
1616 s32 ret_val = 0;
1617 u32 mac_reg;
1618 u16 oem_reg;
1619
2fbe4526 1620 if (hw->mac.type < e1000_pchlan)
f523d211
BA
1621 return ret_val;
1622
94d8186a 1623 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1624 if (ret_val)
1625 return ret_val;
1626
2fbe4526 1627 if (hw->mac.type == e1000_pchlan) {
d3738bb8
BA
1628 mac_reg = er32(EXTCNF_CTRL);
1629 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
75ce1532 1630 goto release;
d3738bb8 1631 }
f523d211
BA
1632
1633 mac_reg = er32(FEXTNVM);
1634 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
75ce1532 1635 goto release;
f523d211
BA
1636
1637 mac_reg = er32(PHY_CTRL);
1638
f1430d69 1639 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211 1640 if (ret_val)
75ce1532 1641 goto release;
f523d211
BA
1642
1643 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1644
1645 if (d0_state) {
1646 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1647 oem_reg |= HV_OEM_BITS_GBE_DIS;
1648
1649 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1650 oem_reg |= HV_OEM_BITS_LPLU;
1651 } else {
03299e46
BA
1652 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1653 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
f523d211
BA
1654 oem_reg |= HV_OEM_BITS_GBE_DIS;
1655
03299e46
BA
1656 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1657 E1000_PHY_CTRL_NOND0A_LPLU))
f523d211
BA
1658 oem_reg |= HV_OEM_BITS_LPLU;
1659 }
03299e46 1660
92fe1733
BA
1661 /* Set Restart auto-neg to activate the bits */
1662 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1663 !hw->phy.ops.check_reset_block(hw))
1664 oem_reg |= HV_OEM_BITS_RESTART_AN;
1665
f1430d69 1666 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
f523d211 1667
75ce1532 1668release:
94d8186a 1669 hw->phy.ops.release(hw);
f523d211
BA
1670
1671 return ret_val;
1672}
1673
1674
fddaa1af
BA
1675/**
1676 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1677 * @hw: pointer to the HW structure
1678 **/
1679static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1680{
1681 s32 ret_val;
1682 u16 data;
1683
1684 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1685 if (ret_val)
1686 return ret_val;
1687
1688 data |= HV_KMRN_MDIO_SLOW;
1689
1690 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1691
1692 return ret_val;
1693}
1694
a4f58f54
BA
1695/**
1696 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1697 * done after every PHY reset.
1698 **/
1699static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1700{
1701 s32 ret_val = 0;
baf86c9d 1702 u16 phy_data;
a4f58f54
BA
1703
1704 if (hw->mac.type != e1000_pchlan)
5015e53a 1705 return 0;
a4f58f54 1706
fddaa1af
BA
1707 /* Set MDIO slow mode before any other MDIO access */
1708 if (hw->phy.type == e1000_phy_82577) {
1709 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1710 if (ret_val)
5015e53a 1711 return ret_val;
fddaa1af
BA
1712 }
1713
a4f58f54
BA
1714 if (((hw->phy.type == e1000_phy_82577) &&
1715 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1716 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1717 /* Disable generation of early preamble */
1718 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1719 if (ret_val)
1720 return ret_val;
1721
1722 /* Preamble tuning for SSC */
1d2101a7 1723 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
a4f58f54
BA
1724 if (ret_val)
1725 return ret_val;
1726 }
1727
1728 if (hw->phy.type == e1000_phy_82578) {
1729 /*
1730 * Return registers to default by doing a soft reset then
1731 * writing 0x3140 to the control register.
1732 */
1733 if (hw->phy.revision < 2) {
1734 e1000e_phy_sw_reset(hw);
1735 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1736 }
1737 }
1738
1739 /* Select page 0 */
94d8186a 1740 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1741 if (ret_val)
1742 return ret_val;
1d5846b9 1743
a4f58f54 1744 hw->phy.addr = 1;
1d5846b9 1745 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
baf86c9d 1746 hw->phy.ops.release(hw);
1d5846b9 1747 if (ret_val)
5015e53a 1748 return ret_val;
a4f58f54 1749
1d5846b9
BA
1750 /*
1751 * Configure the K1 Si workaround during phy reset assuming there is
1752 * link so that it disables K1 if link is in 1Gbps.
1753 */
1754 ret_val = e1000_k1_gig_workaround_hv(hw, true);
baf86c9d 1755 if (ret_val)
5015e53a 1756 return ret_val;
1d5846b9 1757
baf86c9d
BA
1758 /* Workaround for link disconnects on a busy hub in half duplex */
1759 ret_val = hw->phy.ops.acquire(hw);
1760 if (ret_val)
5015e53a 1761 return ret_val;
f1430d69 1762 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
baf86c9d
BA
1763 if (ret_val)
1764 goto release;
f1430d69 1765 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
baf86c9d
BA
1766release:
1767 hw->phy.ops.release(hw);
5015e53a 1768
a4f58f54
BA
1769 return ret_val;
1770}
1771
d3738bb8
BA
1772/**
1773 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1774 * @hw: pointer to the HW structure
1775 **/
1776void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1777{
1778 u32 mac_reg;
2b6b168d
BA
1779 u16 i, phy_reg = 0;
1780 s32 ret_val;
1781
1782 ret_val = hw->phy.ops.acquire(hw);
1783 if (ret_val)
1784 return;
1785 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1786 if (ret_val)
1787 goto release;
d3738bb8
BA
1788
1789 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1790 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1791 mac_reg = er32(RAL(i));
2b6b168d
BA
1792 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1793 (u16)(mac_reg & 0xFFFF));
1794 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1795 (u16)((mac_reg >> 16) & 0xFFFF));
1796
d3738bb8 1797 mac_reg = er32(RAH(i));
2b6b168d
BA
1798 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1799 (u16)(mac_reg & 0xFFFF));
1800 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1801 (u16)((mac_reg & E1000_RAH_AV)
1802 >> 16));
d3738bb8 1803 }
2b6b168d
BA
1804
1805 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1806
1807release:
1808 hw->phy.ops.release(hw);
d3738bb8
BA
1809}
1810
d3738bb8
BA
1811/**
1812 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1813 * with 82579 PHY
1814 * @hw: pointer to the HW structure
1815 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1816 **/
1817s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1818{
1819 s32 ret_val = 0;
1820 u16 phy_reg, data;
1821 u32 mac_reg;
1822 u16 i;
1823
2fbe4526 1824 if (hw->mac.type < e1000_pch2lan)
5015e53a 1825 return 0;
d3738bb8
BA
1826
1827 /* disable Rx path while enabling/disabling workaround */
1828 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1829 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1830 if (ret_val)
5015e53a 1831 return ret_val;
d3738bb8
BA
1832
1833 if (enable) {
1834 /*
1835 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1836 * SHRAL/H) and initial CRC values to the MAC
1837 */
1838 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1839 u8 mac_addr[ETH_ALEN] = {0};
1840 u32 addr_high, addr_low;
1841
1842 addr_high = er32(RAH(i));
1843 if (!(addr_high & E1000_RAH_AV))
1844 continue;
1845 addr_low = er32(RAL(i));
1846 mac_addr[0] = (addr_low & 0xFF);
1847 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1848 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1849 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1850 mac_addr[4] = (addr_high & 0xFF);
1851 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1852
fe46f58f 1853 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
d3738bb8
BA
1854 }
1855
1856 /* Write Rx addresses to the PHY */
1857 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1858
1859 /* Enable jumbo frame workaround in the MAC */
1860 mac_reg = er32(FFLT_DBG);
1861 mac_reg &= ~(1 << 14);
1862 mac_reg |= (7 << 15);
1863 ew32(FFLT_DBG, mac_reg);
1864
1865 mac_reg = er32(RCTL);
1866 mac_reg |= E1000_RCTL_SECRC;
1867 ew32(RCTL, mac_reg);
1868
1869 ret_val = e1000e_read_kmrn_reg(hw,
1870 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1871 &data);
1872 if (ret_val)
5015e53a 1873 return ret_val;
d3738bb8
BA
1874 ret_val = e1000e_write_kmrn_reg(hw,
1875 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1876 data | (1 << 0));
1877 if (ret_val)
5015e53a 1878 return ret_val;
d3738bb8
BA
1879 ret_val = e1000e_read_kmrn_reg(hw,
1880 E1000_KMRNCTRLSTA_HD_CTRL,
1881 &data);
1882 if (ret_val)
5015e53a 1883 return ret_val;
d3738bb8
BA
1884 data &= ~(0xF << 8);
1885 data |= (0xB << 8);
1886 ret_val = e1000e_write_kmrn_reg(hw,
1887 E1000_KMRNCTRLSTA_HD_CTRL,
1888 data);
1889 if (ret_val)
5015e53a 1890 return ret_val;
d3738bb8
BA
1891
1892 /* Enable jumbo frame workaround in the PHY */
d3738bb8
BA
1893 e1e_rphy(hw, PHY_REG(769, 23), &data);
1894 data &= ~(0x7F << 5);
1895 data |= (0x37 << 5);
1896 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1897 if (ret_val)
5015e53a 1898 return ret_val;
d3738bb8
BA
1899 e1e_rphy(hw, PHY_REG(769, 16), &data);
1900 data &= ~(1 << 13);
d3738bb8
BA
1901 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1902 if (ret_val)
5015e53a 1903 return ret_val;
d3738bb8
BA
1904 e1e_rphy(hw, PHY_REG(776, 20), &data);
1905 data &= ~(0x3FF << 2);
1906 data |= (0x1A << 2);
1907 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1908 if (ret_val)
5015e53a 1909 return ret_val;
b64e9dd5 1910 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
d3738bb8 1911 if (ret_val)
5015e53a 1912 return ret_val;
d3738bb8
BA
1913 e1e_rphy(hw, HV_PM_CTRL, &data);
1914 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1915 if (ret_val)
5015e53a 1916 return ret_val;
d3738bb8
BA
1917 } else {
1918 /* Write MAC register values back to h/w defaults */
1919 mac_reg = er32(FFLT_DBG);
1920 mac_reg &= ~(0xF << 14);
1921 ew32(FFLT_DBG, mac_reg);
1922
1923 mac_reg = er32(RCTL);
1924 mac_reg &= ~E1000_RCTL_SECRC;
a1ce6473 1925 ew32(RCTL, mac_reg);
d3738bb8
BA
1926
1927 ret_val = e1000e_read_kmrn_reg(hw,
1928 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1929 &data);
1930 if (ret_val)
5015e53a 1931 return ret_val;
d3738bb8
BA
1932 ret_val = e1000e_write_kmrn_reg(hw,
1933 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1934 data & ~(1 << 0));
1935 if (ret_val)
5015e53a 1936 return ret_val;
d3738bb8
BA
1937 ret_val = e1000e_read_kmrn_reg(hw,
1938 E1000_KMRNCTRLSTA_HD_CTRL,
1939 &data);
1940 if (ret_val)
5015e53a 1941 return ret_val;
d3738bb8
BA
1942 data &= ~(0xF << 8);
1943 data |= (0xB << 8);
1944 ret_val = e1000e_write_kmrn_reg(hw,
1945 E1000_KMRNCTRLSTA_HD_CTRL,
1946 data);
1947 if (ret_val)
5015e53a 1948 return ret_val;
d3738bb8
BA
1949
1950 /* Write PHY register values back to h/w defaults */
d3738bb8
BA
1951 e1e_rphy(hw, PHY_REG(769, 23), &data);
1952 data &= ~(0x7F << 5);
1953 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1954 if (ret_val)
5015e53a 1955 return ret_val;
d3738bb8 1956 e1e_rphy(hw, PHY_REG(769, 16), &data);
d3738bb8
BA
1957 data |= (1 << 13);
1958 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1959 if (ret_val)
5015e53a 1960 return ret_val;
d3738bb8
BA
1961 e1e_rphy(hw, PHY_REG(776, 20), &data);
1962 data &= ~(0x3FF << 2);
1963 data |= (0x8 << 2);
1964 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1965 if (ret_val)
5015e53a 1966 return ret_val;
d3738bb8
BA
1967 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1968 if (ret_val)
5015e53a 1969 return ret_val;
d3738bb8
BA
1970 e1e_rphy(hw, HV_PM_CTRL, &data);
1971 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1972 if (ret_val)
5015e53a 1973 return ret_val;
d3738bb8
BA
1974 }
1975
1976 /* re-enable Rx path after enabling/disabling workaround */
5015e53a 1977 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
d3738bb8
BA
1978}
1979
1980/**
1981 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1982 * done after every PHY reset.
1983 **/
1984static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1985{
1986 s32 ret_val = 0;
1987
1988 if (hw->mac.type != e1000_pch2lan)
5015e53a 1989 return 0;
d3738bb8
BA
1990
1991 /* Set MDIO slow mode before any other MDIO access */
1992 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1993
4d24136c
BA
1994 ret_val = hw->phy.ops.acquire(hw);
1995 if (ret_val)
5015e53a 1996 return ret_val;
f1430d69 1997 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
4d24136c
BA
1998 if (ret_val)
1999 goto release;
2000 /* set MSE higher to enable link to stay up when noise is high */
f1430d69 2001 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
4d24136c
BA
2002 if (ret_val)
2003 goto release;
f1430d69 2004 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
4d24136c
BA
2005 if (ret_val)
2006 goto release;
2007 /* drop link after 5 times MSE threshold was reached */
f1430d69 2008 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
4d24136c
BA
2009release:
2010 hw->phy.ops.release(hw);
2011
d3738bb8
BA
2012 return ret_val;
2013}
2014
831bd2e6
BA
2015/**
2016 * e1000_k1_gig_workaround_lv - K1 Si workaround
2017 * @hw: pointer to the HW structure
2018 *
2019 * Workaround to set the K1 beacon duration for 82579 parts
2020 **/
2021static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2022{
2023 s32 ret_val = 0;
2024 u16 status_reg = 0;
2025 u32 mac_reg;
0ed013e2 2026 u16 phy_reg;
831bd2e6
BA
2027
2028 if (hw->mac.type != e1000_pch2lan)
5015e53a 2029 return 0;
831bd2e6
BA
2030
2031 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2032 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2033 if (ret_val)
5015e53a 2034 return ret_val;
831bd2e6
BA
2035
2036 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2037 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2038 mac_reg = er32(FEXTNVM4);
2039 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2040
0ed013e2
BA
2041 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2042 if (ret_val)
5015e53a 2043 return ret_val;
0ed013e2
BA
2044
2045 if (status_reg & HV_M_STATUS_SPEED_1000) {
36ceeb43
BA
2046 u16 pm_phy_reg;
2047
831bd2e6 2048 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
0ed013e2 2049 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
36ceeb43
BA
2050 /* LV 1G Packet drop issue wa */
2051 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2052 if (ret_val)
2053 return ret_val;
2054 pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2055 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2056 if (ret_val)
2057 return ret_val;
0ed013e2 2058 } else {
831bd2e6 2059 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
0ed013e2
BA
2060 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2061 }
831bd2e6 2062 ew32(FEXTNVM4, mac_reg);
0ed013e2 2063 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
831bd2e6
BA
2064 }
2065
831bd2e6
BA
2066 return ret_val;
2067}
2068
605c82ba
BA
2069/**
2070 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2071 * @hw: pointer to the HW structure
2072 * @gate: boolean set to true to gate, false to ungate
2073 *
2074 * Gate/ungate the automatic PHY configuration via hardware; perform
2075 * the configuration via software instead.
2076 **/
2077static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2078{
2079 u32 extcnf_ctrl;
2080
2fbe4526 2081 if (hw->mac.type < e1000_pch2lan)
605c82ba
BA
2082 return;
2083
2084 extcnf_ctrl = er32(EXTCNF_CTRL);
2085
2086 if (gate)
2087 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2088 else
2089 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2090
2091 ew32(EXTCNF_CTRL, extcnf_ctrl);
605c82ba
BA
2092}
2093
fc0c7760
BA
2094/**
2095 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2096 * @hw: pointer to the HW structure
2097 *
2098 * Check the appropriate indication the MAC has finished configuring the
2099 * PHY after a software reset.
2100 **/
2101static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2102{
2103 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2104
2105 /* Wait for basic configuration completes before proceeding */
2106 do {
2107 data = er32(STATUS);
2108 data &= E1000_STATUS_LAN_INIT_DONE;
2109 udelay(100);
2110 } while ((!data) && --loop);
2111
2112 /*
2113 * If basic configuration is incomplete before the above loop
2114 * count reaches 0, loading the configuration from NVM will
2115 * leave the PHY in a bad state possibly resulting in no link.
2116 */
2117 if (loop == 0)
3bb99fe2 2118 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
2119
2120 /* Clear the Init Done bit for the next init event */
2121 data = er32(STATUS);
2122 data &= ~E1000_STATUS_LAN_INIT_DONE;
2123 ew32(STATUS, data);
2124}
2125
bc7f75fa 2126/**
e98cac44 2127 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
bc7f75fa 2128 * @hw: pointer to the HW structure
bc7f75fa 2129 **/
e98cac44 2130static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
bc7f75fa 2131{
f523d211
BA
2132 s32 ret_val = 0;
2133 u16 reg;
bc7f75fa 2134
44abd5c1 2135 if (hw->phy.ops.check_reset_block(hw))
5015e53a 2136 return 0;
fc0c7760 2137
5f3eed6f 2138 /* Allow time for h/w to get to quiescent state after reset */
1bba4386 2139 usleep_range(10000, 20000);
5f3eed6f 2140
fddaa1af 2141 /* Perform any necessary post-reset workarounds */
e98cac44
BA
2142 switch (hw->mac.type) {
2143 case e1000_pchlan:
a4f58f54
BA
2144 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2145 if (ret_val)
5015e53a 2146 return ret_val;
e98cac44 2147 break;
d3738bb8
BA
2148 case e1000_pch2lan:
2149 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2150 if (ret_val)
5015e53a 2151 return ret_val;
d3738bb8 2152 break;
e98cac44
BA
2153 default:
2154 break;
a4f58f54
BA
2155 }
2156
3ebfc7c9
BA
2157 /* Clear the host wakeup bit after lcd reset */
2158 if (hw->mac.type >= e1000_pchlan) {
2159 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2160 reg &= ~BM_WUC_HOST_WU_BIT;
2161 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2162 }
db2932ec 2163
f523d211
BA
2164 /* Configure the LCD with the extended configuration region in NVM */
2165 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2166 if (ret_val)
5015e53a 2167 return ret_val;
bc7f75fa 2168
f523d211 2169 /* Configure the LCD with the OEM bits in NVM */
e98cac44 2170 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 2171
1effb45c
BA
2172 if (hw->mac.type == e1000_pch2lan) {
2173 /* Ungate automatic PHY configuration on non-managed 82579 */
2174 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1bba4386 2175 usleep_range(10000, 20000);
1effb45c
BA
2176 e1000_gate_hw_phy_config_ich8lan(hw, false);
2177 }
2178
2179 /* Set EEE LPI Update Timer to 200usec */
2180 ret_val = hw->phy.ops.acquire(hw);
2181 if (ret_val)
5015e53a 2182 return ret_val;
f1430d69
BA
2183 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2184 I82579_LPI_UPDATE_TIMER);
5015e53a 2185 if (!ret_val)
f1430d69 2186 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
1effb45c 2187 hw->phy.ops.release(hw);
605c82ba
BA
2188 }
2189
e98cac44
BA
2190 return ret_val;
2191}
2192
2193/**
2194 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2195 * @hw: pointer to the HW structure
2196 *
2197 * Resets the PHY
2198 * This is a function pointer entry point called by drivers
2199 * or other shared routines.
2200 **/
2201static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2202{
2203 s32 ret_val = 0;
2204
605c82ba
BA
2205 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2206 if ((hw->mac.type == e1000_pch2lan) &&
2207 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2208 e1000_gate_hw_phy_config_ich8lan(hw, true);
2209
e98cac44
BA
2210 ret_val = e1000e_phy_hw_reset_generic(hw);
2211 if (ret_val)
5015e53a 2212 return ret_val;
e98cac44 2213
5015e53a 2214 return e1000_post_phy_reset_ich8lan(hw);
bc7f75fa
AK
2215}
2216
fa2ce13c
BA
2217/**
2218 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2219 * @hw: pointer to the HW structure
2220 * @active: true to enable LPLU, false to disable
2221 *
2222 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2223 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2224 * the phy speed. This function will manually set the LPLU bit and restart
2225 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2226 * since it configures the same bit.
2227 **/
2228static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2229{
2230 s32 ret_val = 0;
2231 u16 oem_reg;
2232
2233 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2234 if (ret_val)
5015e53a 2235 return ret_val;
fa2ce13c
BA
2236
2237 if (active)
2238 oem_reg |= HV_OEM_BITS_LPLU;
2239 else
2240 oem_reg &= ~HV_OEM_BITS_LPLU;
2241
44abd5c1 2242 if (!hw->phy.ops.check_reset_block(hw))
464c85e3
BA
2243 oem_reg |= HV_OEM_BITS_RESTART_AN;
2244
5015e53a 2245 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
fa2ce13c
BA
2246}
2247
bc7f75fa
AK
2248/**
2249 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2250 * @hw: pointer to the HW structure
564ea9bb 2251 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
2252 *
2253 * Sets the LPLU D0 state according to the active flag. When
2254 * activating LPLU this function also disables smart speed
2255 * and vice versa. LPLU will not be activated unless the
2256 * device autonegotiation advertisement meets standards of
2257 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2258 * This is a function pointer entry point only called by
2259 * PHY setup routines.
2260 **/
2261static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2262{
2263 struct e1000_phy_info *phy = &hw->phy;
2264 u32 phy_ctrl;
2265 s32 ret_val = 0;
2266 u16 data;
2267
97ac8cae 2268 if (phy->type == e1000_phy_ife)
82607255 2269 return 0;
bc7f75fa
AK
2270
2271 phy_ctrl = er32(PHY_CTRL);
2272
2273 if (active) {
2274 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2275 ew32(PHY_CTRL, phy_ctrl);
2276
60f1292f
BA
2277 if (phy->type != e1000_phy_igp_3)
2278 return 0;
2279
ad68076e
BA
2280 /*
2281 * Call gig speed drop workaround on LPLU before accessing
2282 * any PHY registers
2283 */
60f1292f 2284 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
2285 e1000e_gig_downshift_workaround_ich8lan(hw);
2286
2287 /* When LPLU is enabled, we should disable SmartSpeed */
2288 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2289 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2290 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2291 if (ret_val)
2292 return ret_val;
2293 } else {
2294 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2295 ew32(PHY_CTRL, phy_ctrl);
2296
60f1292f
BA
2297 if (phy->type != e1000_phy_igp_3)
2298 return 0;
2299
ad68076e
BA
2300 /*
2301 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
2302 * during Dx states where the power conservation is most
2303 * important. During driver activity we should enable
ad68076e
BA
2304 * SmartSpeed, so performance is maintained.
2305 */
bc7f75fa
AK
2306 if (phy->smart_speed == e1000_smart_speed_on) {
2307 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2308 &data);
bc7f75fa
AK
2309 if (ret_val)
2310 return ret_val;
2311
2312 data |= IGP01E1000_PSCFR_SMART_SPEED;
2313 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2314 data);
bc7f75fa
AK
2315 if (ret_val)
2316 return ret_val;
2317 } else if (phy->smart_speed == e1000_smart_speed_off) {
2318 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2319 &data);
bc7f75fa
AK
2320 if (ret_val)
2321 return ret_val;
2322
2323 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2324 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 2325 data);
bc7f75fa
AK
2326 if (ret_val)
2327 return ret_val;
2328 }
2329 }
2330
2331 return 0;
2332}
2333
2334/**
2335 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2336 * @hw: pointer to the HW structure
564ea9bb 2337 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
2338 *
2339 * Sets the LPLU D3 state according to the active flag. When
2340 * activating LPLU this function also disables smart speed
2341 * and vice versa. LPLU will not be activated unless the
2342 * device autonegotiation advertisement meets standards of
2343 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2344 * This is a function pointer entry point only called by
2345 * PHY setup routines.
2346 **/
2347static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2348{
2349 struct e1000_phy_info *phy = &hw->phy;
2350 u32 phy_ctrl;
d7eb3384 2351 s32 ret_val = 0;
bc7f75fa
AK
2352 u16 data;
2353
2354 phy_ctrl = er32(PHY_CTRL);
2355
2356 if (!active) {
2357 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2358 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
2359
2360 if (phy->type != e1000_phy_igp_3)
2361 return 0;
2362
ad68076e
BA
2363 /*
2364 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
2365 * during Dx states where the power conservation is most
2366 * important. During driver activity we should enable
ad68076e
BA
2367 * SmartSpeed, so performance is maintained.
2368 */
bc7f75fa 2369 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
2370 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2371 &data);
bc7f75fa
AK
2372 if (ret_val)
2373 return ret_val;
2374
2375 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2376 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2377 data);
bc7f75fa
AK
2378 if (ret_val)
2379 return ret_val;
2380 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
2381 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2382 &data);
bc7f75fa
AK
2383 if (ret_val)
2384 return ret_val;
2385
2386 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
2387 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2388 data);
bc7f75fa
AK
2389 if (ret_val)
2390 return ret_val;
2391 }
2392 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2393 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2394 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2395 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2396 ew32(PHY_CTRL, phy_ctrl);
2397
60f1292f
BA
2398 if (phy->type != e1000_phy_igp_3)
2399 return 0;
2400
ad68076e
BA
2401 /*
2402 * Call gig speed drop workaround on LPLU before accessing
2403 * any PHY registers
2404 */
60f1292f 2405 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
2406 e1000e_gig_downshift_workaround_ich8lan(hw);
2407
2408 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 2409 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
2410 if (ret_val)
2411 return ret_val;
2412
2413 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 2414 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
2415 }
2416
d7eb3384 2417 return ret_val;
bc7f75fa
AK
2418}
2419
f4187b56
BA
2420/**
2421 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2422 * @hw: pointer to the HW structure
2423 * @bank: pointer to the variable that returns the active bank
2424 *
2425 * Reads signature byte from the NVM using the flash access registers.
e243455d 2426 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
2427 **/
2428static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2429{
e243455d 2430 u32 eecd;
f4187b56 2431 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
2432 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2433 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d 2434 u8 sig_byte = 0;
f71dde6a 2435 s32 ret_val;
f4187b56 2436
e243455d
BA
2437 switch (hw->mac.type) {
2438 case e1000_ich8lan:
2439 case e1000_ich9lan:
2440 eecd = er32(EECD);
2441 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2442 E1000_EECD_SEC1VAL_VALID_MASK) {
2443 if (eecd & E1000_EECD_SEC1VAL)
2444 *bank = 1;
2445 else
2446 *bank = 0;
2447
2448 return 0;
2449 }
434f1392 2450 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
e243455d
BA
2451 /* fall-thru */
2452 default:
2453 /* set bank to 0 in case flash read fails */
2454 *bank = 0;
2455
2456 /* Check bank 0 */
2457 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2458 &sig_byte);
2459 if (ret_val)
2460 return ret_val;
2461 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2462 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 2463 *bank = 0;
e243455d
BA
2464 return 0;
2465 }
f4187b56 2466
e243455d
BA
2467 /* Check bank 1 */
2468 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2469 bank1_offset,
2470 &sig_byte);
2471 if (ret_val)
2472 return ret_val;
2473 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2474 E1000_ICH_NVM_SIG_VALUE) {
2475 *bank = 1;
2476 return 0;
f4187b56 2477 }
e243455d 2478
3bb99fe2 2479 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 2480 return -E1000_ERR_NVM;
f4187b56 2481 }
f4187b56
BA
2482}
2483
bc7f75fa
AK
2484/**
2485 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2486 * @hw: pointer to the HW structure
2487 * @offset: The offset (in bytes) of the word(s) to read.
2488 * @words: Size of data to read in words
2489 * @data: Pointer to the word(s) to read at offset.
2490 *
2491 * Reads a word(s) from the NVM using the flash access registers.
2492 **/
2493static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2494 u16 *data)
2495{
2496 struct e1000_nvm_info *nvm = &hw->nvm;
2497 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2498 u32 act_offset;
148675a7 2499 s32 ret_val = 0;
f4187b56 2500 u32 bank = 0;
bc7f75fa
AK
2501 u16 i, word;
2502
2503 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2504 (words == 0)) {
3bb99fe2 2505 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
2506 ret_val = -E1000_ERR_NVM;
2507 goto out;
bc7f75fa
AK
2508 }
2509
94d8186a 2510 nvm->ops.acquire(hw);
bc7f75fa 2511
f4187b56 2512 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 2513 if (ret_val) {
3bb99fe2 2514 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
2515 bank = 0;
2516 }
f4187b56
BA
2517
2518 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
2519 act_offset += offset;
2520
148675a7 2521 ret_val = 0;
bc7f75fa 2522 for (i = 0; i < words; i++) {
b9e06f70 2523 if (dev_spec->shadow_ram[offset+i].modified) {
bc7f75fa
AK
2524 data[i] = dev_spec->shadow_ram[offset+i].value;
2525 } else {
2526 ret_val = e1000_read_flash_word_ich8lan(hw,
2527 act_offset + i,
2528 &word);
2529 if (ret_val)
2530 break;
2531 data[i] = word;
2532 }
2533 }
2534
94d8186a 2535 nvm->ops.release(hw);
bc7f75fa 2536
e243455d
BA
2537out:
2538 if (ret_val)
3bb99fe2 2539 e_dbg("NVM read error: %d\n", ret_val);
e243455d 2540
bc7f75fa
AK
2541 return ret_val;
2542}
2543
2544/**
2545 * e1000_flash_cycle_init_ich8lan - Initialize flash
2546 * @hw: pointer to the HW structure
2547 *
2548 * This function does initial flash setup so that a new read/write/erase cycle
2549 * can be started.
2550 **/
2551static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2552{
2553 union ich8_hws_flash_status hsfsts;
2554 s32 ret_val = -E1000_ERR_NVM;
bc7f75fa
AK
2555
2556 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2557
2558 /* Check if the flash descriptor is valid */
04499ec4 2559 if (!hsfsts.hsf_status.fldesvalid) {
434f1392 2560 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
bc7f75fa
AK
2561 return -E1000_ERR_NVM;
2562 }
2563
2564 /* Clear FCERR and DAEL in hw status by writing 1 */
2565 hsfsts.hsf_status.flcerr = 1;
2566 hsfsts.hsf_status.dael = 1;
2567
2568 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2569
ad68076e
BA
2570 /*
2571 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
2572 * bit to check against, in order to start a new cycle or
2573 * FDONE bit should be changed in the hardware so that it
489815ce 2574 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
2575 * indication whether a cycle is in progress or has been
2576 * completed.
2577 */
2578
04499ec4 2579 if (!hsfsts.hsf_status.flcinprog) {
ad68076e
BA
2580 /*
2581 * There is no cycle running at present,
5ff5b664 2582 * so we can start a cycle.
ad68076e
BA
2583 * Begin by setting Flash Cycle Done.
2584 */
bc7f75fa
AK
2585 hsfsts.hsf_status.flcdone = 1;
2586 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2587 ret_val = 0;
2588 } else {
f71dde6a 2589 s32 i;
90da0669 2590
ad68076e 2591 /*
5ff5b664 2592 * Otherwise poll for sometime so the current
ad68076e
BA
2593 * cycle has a chance to end before giving up.
2594 */
bc7f75fa 2595 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
c8243ee0 2596 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2597 if (!hsfsts.hsf_status.flcinprog) {
bc7f75fa
AK
2598 ret_val = 0;
2599 break;
2600 }
2601 udelay(1);
2602 }
9e2d7657 2603 if (!ret_val) {
ad68076e
BA
2604 /*
2605 * Successful in waiting for previous cycle to timeout,
2606 * now set the Flash Cycle Done.
2607 */
bc7f75fa
AK
2608 hsfsts.hsf_status.flcdone = 1;
2609 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2610 } else {
2c73e1fe 2611 e_dbg("Flash controller busy, cannot get access\n");
bc7f75fa
AK
2612 }
2613 }
2614
2615 return ret_val;
2616}
2617
2618/**
2619 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2620 * @hw: pointer to the HW structure
2621 * @timeout: maximum time to wait for completion
2622 *
2623 * This function starts a flash cycle and waits for its completion.
2624 **/
2625static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2626{
2627 union ich8_hws_flash_ctrl hsflctl;
2628 union ich8_hws_flash_status hsfsts;
bc7f75fa
AK
2629 u32 i = 0;
2630
2631 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2632 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2633 hsflctl.hsf_ctrl.flcgo = 1;
2634 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2635
2636 /* wait till FDONE bit is set to 1 */
2637 do {
2638 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2639 if (hsfsts.hsf_status.flcdone)
bc7f75fa
AK
2640 break;
2641 udelay(1);
2642 } while (i++ < timeout);
2643
04499ec4 2644 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
bc7f75fa
AK
2645 return 0;
2646
55920b5e 2647 return -E1000_ERR_NVM;
bc7f75fa
AK
2648}
2649
2650/**
2651 * e1000_read_flash_word_ich8lan - Read word from flash
2652 * @hw: pointer to the HW structure
2653 * @offset: offset to data location
2654 * @data: pointer to the location for storing the data
2655 *
2656 * Reads the flash word at offset into data. Offset is converted
2657 * to bytes before read.
2658 **/
2659static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2660 u16 *data)
2661{
2662 /* Must convert offset into bytes. */
2663 offset <<= 1;
2664
2665 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2666}
2667
f4187b56
BA
2668/**
2669 * e1000_read_flash_byte_ich8lan - Read byte from flash
2670 * @hw: pointer to the HW structure
2671 * @offset: The offset of the byte to read.
2672 * @data: Pointer to a byte to store the value read.
2673 *
2674 * Reads a single byte from the NVM using the flash access registers.
2675 **/
2676static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2677 u8 *data)
2678{
2679 s32 ret_val;
2680 u16 word = 0;
2681
2682 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2683 if (ret_val)
2684 return ret_val;
2685
2686 *data = (u8)word;
2687
2688 return 0;
2689}
2690
bc7f75fa
AK
2691/**
2692 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2693 * @hw: pointer to the HW structure
2694 * @offset: The offset (in bytes) of the byte or word to read.
2695 * @size: Size of data to read, 1=byte 2=word
2696 * @data: Pointer to the word to store the value read.
2697 *
2698 * Reads a byte or word from the NVM using the flash access registers.
2699 **/
2700static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2701 u8 size, u16 *data)
2702{
2703 union ich8_hws_flash_status hsfsts;
2704 union ich8_hws_flash_ctrl hsflctl;
2705 u32 flash_linear_addr;
2706 u32 flash_data = 0;
2707 s32 ret_val = -E1000_ERR_NVM;
2708 u8 count = 0;
2709
2710 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2711 return -E1000_ERR_NVM;
2712
2713 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2714 hw->nvm.flash_base_addr;
2715
2716 do {
2717 udelay(1);
2718 /* Steps */
2719 ret_val = e1000_flash_cycle_init_ich8lan(hw);
9e2d7657 2720 if (ret_val)
bc7f75fa
AK
2721 break;
2722
2723 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2724 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2725 hsflctl.hsf_ctrl.fldbcount = size - 1;
2726 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2727 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2728
2729 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2730
2731 ret_val = e1000_flash_cycle_ich8lan(hw,
2732 ICH_FLASH_READ_COMMAND_TIMEOUT);
2733
ad68076e
BA
2734 /*
2735 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
2736 * and try the whole sequence a few more times, else
2737 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
2738 * least significant byte first msb to lsb
2739 */
9e2d7657 2740 if (!ret_val) {
bc7f75fa 2741 flash_data = er32flash(ICH_FLASH_FDATA0);
b1cdfead 2742 if (size == 1)
bc7f75fa 2743 *data = (u8)(flash_data & 0x000000FF);
b1cdfead 2744 else if (size == 2)
bc7f75fa 2745 *data = (u16)(flash_data & 0x0000FFFF);
bc7f75fa
AK
2746 break;
2747 } else {
ad68076e
BA
2748 /*
2749 * If we've gotten here, then things are probably
bc7f75fa
AK
2750 * completely hosed, but if the error condition is
2751 * detected, it won't hurt to give it another try...
2752 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2753 */
2754 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 2755 if (hsfsts.hsf_status.flcerr) {
bc7f75fa
AK
2756 /* Repeat for some time before giving up. */
2757 continue;
04499ec4 2758 } else if (!hsfsts.hsf_status.flcdone) {
434f1392 2759 e_dbg("Timeout error - flash cycle did not complete.\n");
bc7f75fa
AK
2760 break;
2761 }
2762 }
2763 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2764
2765 return ret_val;
2766}
2767
2768/**
2769 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2770 * @hw: pointer to the HW structure
2771 * @offset: The offset (in bytes) of the word(s) to write.
2772 * @words: Size of data to write in words
2773 * @data: Pointer to the word(s) to write at offset.
2774 *
2775 * Writes a byte or word to the NVM using the flash access registers.
2776 **/
2777static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2778 u16 *data)
2779{
2780 struct e1000_nvm_info *nvm = &hw->nvm;
2781 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
2782 u16 i;
2783
2784 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2785 (words == 0)) {
3bb99fe2 2786 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
2787 return -E1000_ERR_NVM;
2788 }
2789
94d8186a 2790 nvm->ops.acquire(hw);
ca15df58 2791
bc7f75fa 2792 for (i = 0; i < words; i++) {
564ea9bb 2793 dev_spec->shadow_ram[offset+i].modified = true;
bc7f75fa
AK
2794 dev_spec->shadow_ram[offset+i].value = data[i];
2795 }
2796
94d8186a 2797 nvm->ops.release(hw);
ca15df58 2798
bc7f75fa
AK
2799 return 0;
2800}
2801
2802/**
2803 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2804 * @hw: pointer to the HW structure
2805 *
2806 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2807 * which writes the checksum to the shadow ram. The changes in the shadow
2808 * ram are then committed to the EEPROM by processing each bank at a time
2809 * checking for the modified bit and writing only the pending changes.
489815ce 2810 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
2811 * future writes.
2812 **/
2813static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2814{
2815 struct e1000_nvm_info *nvm = &hw->nvm;
2816 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 2817 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
2818 s32 ret_val;
2819 u16 data;
2820
2821 ret_val = e1000e_update_nvm_checksum_generic(hw);
2822 if (ret_val)
e243455d 2823 goto out;
bc7f75fa
AK
2824
2825 if (nvm->type != e1000_nvm_flash_sw)
e243455d 2826 goto out;
bc7f75fa 2827
94d8186a 2828 nvm->ops.acquire(hw);
bc7f75fa 2829
ad68076e
BA
2830 /*
2831 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 2832 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
2833 * is going to be written
2834 */
f4187b56 2835 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 2836 if (ret_val) {
3bb99fe2 2837 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 2838 bank = 0;
e243455d 2839 }
f4187b56
BA
2840
2841 if (bank == 0) {
bc7f75fa
AK
2842 new_bank_offset = nvm->flash_bank_size;
2843 old_bank_offset = 0;
e243455d 2844 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
9c5e209d
BA
2845 if (ret_val)
2846 goto release;
bc7f75fa
AK
2847 } else {
2848 old_bank_offset = nvm->flash_bank_size;
2849 new_bank_offset = 0;
e243455d 2850 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
9c5e209d
BA
2851 if (ret_val)
2852 goto release;
bc7f75fa
AK
2853 }
2854
2855 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
2856 /*
2857 * Determine whether to write the value stored
bc7f75fa 2858 * in the other NVM bank or a modified value stored
ad68076e
BA
2859 * in the shadow RAM
2860 */
bc7f75fa
AK
2861 if (dev_spec->shadow_ram[i].modified) {
2862 data = dev_spec->shadow_ram[i].value;
2863 } else {
e243455d
BA
2864 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2865 old_bank_offset,
2866 &data);
2867 if (ret_val)
2868 break;
bc7f75fa
AK
2869 }
2870
ad68076e
BA
2871 /*
2872 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2873 * (15:14) are 11b until the commit has completed.
2874 * This will allow us to write 10b which indicates the
2875 * signature is valid. We want to do this after the write
2876 * has completed so that we don't mark the segment valid
ad68076e
BA
2877 * while the write is still in progress
2878 */
bc7f75fa
AK
2879 if (i == E1000_ICH_NVM_SIG_WORD)
2880 data |= E1000_ICH_NVM_SIG_MASK;
2881
2882 /* Convert offset to bytes. */
2883 act_offset = (i + new_bank_offset) << 1;
2884
2885 udelay(100);
2886 /* Write the bytes to the new bank. */
2887 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2888 act_offset,
2889 (u8)data);
2890 if (ret_val)
2891 break;
2892
2893 udelay(100);
2894 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2895 act_offset + 1,
2896 (u8)(data >> 8));
2897 if (ret_val)
2898 break;
2899 }
2900
ad68076e
BA
2901 /*
2902 * Don't bother writing the segment valid bits if sector
2903 * programming failed.
2904 */
bc7f75fa 2905 if (ret_val) {
4a770358 2906 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2907 e_dbg("Flash commit failed.\n");
9c5e209d 2908 goto release;
bc7f75fa
AK
2909 }
2910
ad68076e
BA
2911 /*
2912 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2913 * to 10b in word 0x13 , this can be done without an
2914 * erase as well since these bits are 11 to start with
ad68076e
BA
2915 * and we need to change bit 14 to 0b
2916 */
bc7f75fa 2917 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d 2918 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
9c5e209d
BA
2919 if (ret_val)
2920 goto release;
2921
bc7f75fa
AK
2922 data &= 0xBFFF;
2923 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2924 act_offset * 2 + 1,
2925 (u8)(data >> 8));
9c5e209d
BA
2926 if (ret_val)
2927 goto release;
bc7f75fa 2928
ad68076e
BA
2929 /*
2930 * And invalidate the previously valid segment by setting
bc7f75fa
AK
2931 * its signature word (0x13) high_byte to 0b. This can be
2932 * done without an erase because flash erase sets all bits
ad68076e
BA
2933 * to 1's. We can write 1's to 0's without an erase
2934 */
bc7f75fa
AK
2935 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2936 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
9c5e209d
BA
2937 if (ret_val)
2938 goto release;
bc7f75fa
AK
2939
2940 /* Great! Everything worked, we can now clear the cached entries. */
2941 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2942 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2943 dev_spec->shadow_ram[i].value = 0xFFFF;
2944 }
2945
9c5e209d 2946release:
94d8186a 2947 nvm->ops.release(hw);
bc7f75fa 2948
ad68076e
BA
2949 /*
2950 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2951 * until after the next adapter reset.
2952 */
9c5e209d 2953 if (!ret_val) {
e85e3639 2954 nvm->ops.reload(hw);
1bba4386 2955 usleep_range(10000, 20000);
9c5e209d 2956 }
bc7f75fa 2957
e243455d
BA
2958out:
2959 if (ret_val)
3bb99fe2 2960 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2961
bc7f75fa
AK
2962 return ret_val;
2963}
2964
2965/**
2966 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2967 * @hw: pointer to the HW structure
2968 *
2969 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2970 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2971 * calculated, in which case we need to calculate the checksum and set bit 6.
2972 **/
2973static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2974{
2975 s32 ret_val;
2976 u16 data;
2977
ad68076e
BA
2978 /*
2979 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
2980 * needs to be fixed. This bit is an indication that the NVM
2981 * was prepared by OEM software and did not calculate the
2982 * checksum...a likely scenario.
2983 */
2984 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2985 if (ret_val)
2986 return ret_val;
2987
04499ec4 2988 if (!(data & 0x40)) {
bc7f75fa
AK
2989 data |= 0x40;
2990 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2991 if (ret_val)
2992 return ret_val;
2993 ret_val = e1000e_update_nvm_checksum(hw);
2994 if (ret_val)
2995 return ret_val;
2996 }
2997
2998 return e1000e_validate_nvm_checksum_generic(hw);
2999}
3000
4a770358
BA
3001/**
3002 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3003 * @hw: pointer to the HW structure
3004 *
3005 * To prevent malicious write/erase of the NVM, set it to be read-only
3006 * so that the hardware ignores all write/erase cycles of the NVM via
3007 * the flash control registers. The shadow-ram copy of the NVM will
3008 * still be updated, however any updates to this copy will not stick
3009 * across driver reloads.
3010 **/
3011void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3012{
ca15df58 3013 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
3014 union ich8_flash_protected_range pr0;
3015 union ich8_hws_flash_status hsfsts;
3016 u32 gfpreg;
4a770358 3017
94d8186a 3018 nvm->ops.acquire(hw);
4a770358
BA
3019
3020 gfpreg = er32flash(ICH_FLASH_GFPREG);
3021
3022 /* Write-protect GbE Sector of NVM */
3023 pr0.regval = er32flash(ICH_FLASH_PR0);
3024 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3025 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3026 pr0.range.wpe = true;
3027 ew32flash(ICH_FLASH_PR0, pr0.regval);
3028
3029 /*
3030 * Lock down a subset of GbE Flash Control Registers, e.g.
3031 * PR0 to prevent the write-protection from being lifted.
3032 * Once FLOCKDN is set, the registers protected by it cannot
3033 * be written until FLOCKDN is cleared by a hardware reset.
3034 */
3035 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3036 hsfsts.hsf_status.flockdn = true;
3037 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3038
94d8186a 3039 nvm->ops.release(hw);
4a770358
BA
3040}
3041
bc7f75fa
AK
3042/**
3043 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3044 * @hw: pointer to the HW structure
3045 * @offset: The offset (in bytes) of the byte/word to read.
3046 * @size: Size of data to read, 1=byte 2=word
3047 * @data: The byte(s) to write to the NVM.
3048 *
3049 * Writes one/two bytes to the NVM using the flash access registers.
3050 **/
3051static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3052 u8 size, u16 data)
3053{
3054 union ich8_hws_flash_status hsfsts;
3055 union ich8_hws_flash_ctrl hsflctl;
3056 u32 flash_linear_addr;
3057 u32 flash_data = 0;
3058 s32 ret_val;
3059 u8 count = 0;
3060
3061 if (size < 1 || size > 2 || data > size * 0xff ||
3062 offset > ICH_FLASH_LINEAR_ADDR_MASK)
3063 return -E1000_ERR_NVM;
3064
3065 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3066 hw->nvm.flash_base_addr;
3067
3068 do {
3069 udelay(1);
3070 /* Steps */
3071 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3072 if (ret_val)
3073 break;
3074
3075 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3076 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3077 hsflctl.hsf_ctrl.fldbcount = size -1;
3078 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3079 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3080
3081 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3082
3083 if (size == 1)
3084 flash_data = (u32)data & 0x00FF;
3085 else
3086 flash_data = (u32)data;
3087
3088 ew32flash(ICH_FLASH_FDATA0, flash_data);
3089
ad68076e
BA
3090 /*
3091 * check if FCERR is set to 1 , if set to 1, clear it
3092 * and try the whole sequence a few more times else done
3093 */
bc7f75fa
AK
3094 ret_val = e1000_flash_cycle_ich8lan(hw,
3095 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3096 if (!ret_val)
3097 break;
3098
ad68076e
BA
3099 /*
3100 * If we're here, then things are most likely
bc7f75fa
AK
3101 * completely hosed, but if the error condition
3102 * is detected, it won't hurt to give it another
3103 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3104 */
3105 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 3106 if (hsfsts.hsf_status.flcerr)
bc7f75fa
AK
3107 /* Repeat for some time before giving up. */
3108 continue;
04499ec4 3109 if (!hsfsts.hsf_status.flcdone) {
434f1392 3110 e_dbg("Timeout error - flash cycle did not complete.\n");
bc7f75fa
AK
3111 break;
3112 }
3113 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3114
3115 return ret_val;
3116}
3117
3118/**
3119 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3120 * @hw: pointer to the HW structure
3121 * @offset: The index of the byte to read.
3122 * @data: The byte to write to the NVM.
3123 *
3124 * Writes a single byte to the NVM using the flash access registers.
3125 **/
3126static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3127 u8 data)
3128{
3129 u16 word = (u16)data;
3130
3131 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3132}
3133
3134/**
3135 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3136 * @hw: pointer to the HW structure
3137 * @offset: The offset of the byte to write.
3138 * @byte: The byte to write to the NVM.
3139 *
3140 * Writes a single byte to the NVM using the flash access registers.
3141 * Goes through a retry algorithm before giving up.
3142 **/
3143static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3144 u32 offset, u8 byte)
3145{
3146 s32 ret_val;
3147 u16 program_retries;
3148
3149 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3150 if (!ret_val)
3151 return ret_val;
3152
3153 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 3154 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
3155 udelay(100);
3156 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3157 if (!ret_val)
3158 break;
3159 }
3160 if (program_retries == 100)
3161 return -E1000_ERR_NVM;
3162
3163 return 0;
3164}
3165
3166/**
3167 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3168 * @hw: pointer to the HW structure
3169 * @bank: 0 for first bank, 1 for second bank, etc.
3170 *
3171 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3172 * bank N is 4096 * N + flash_reg_addr.
3173 **/
3174static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3175{
3176 struct e1000_nvm_info *nvm = &hw->nvm;
3177 union ich8_hws_flash_status hsfsts;
3178 union ich8_hws_flash_ctrl hsflctl;
3179 u32 flash_linear_addr;
3180 /* bank size is in 16bit words - adjust to bytes */
3181 u32 flash_bank_size = nvm->flash_bank_size * 2;
3182 s32 ret_val;
3183 s32 count = 0;
a708dd88 3184 s32 j, iteration, sector_size;
bc7f75fa
AK
3185
3186 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3187
ad68076e
BA
3188 /*
3189 * Determine HW Sector size: Read BERASE bits of hw flash status
3190 * register
3191 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
3192 * consecutive sectors. The start index for the nth Hw sector
3193 * can be calculated as = bank * 4096 + n * 256
3194 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3195 * The start index for the nth Hw sector can be calculated
3196 * as = bank * 4096
3197 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3198 * (ich9 only, otherwise error condition)
3199 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3200 */
3201 switch (hsfsts.hsf_status.berasesz) {
3202 case 0:
3203 /* Hw sector size 256 */
3204 sector_size = ICH_FLASH_SEG_SIZE_256;
3205 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3206 break;
3207 case 1:
3208 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 3209 iteration = 1;
bc7f75fa
AK
3210 break;
3211 case 2:
148675a7
BA
3212 sector_size = ICH_FLASH_SEG_SIZE_8K;
3213 iteration = 1;
bc7f75fa
AK
3214 break;
3215 case 3:
3216 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 3217 iteration = 1;
bc7f75fa
AK
3218 break;
3219 default:
3220 return -E1000_ERR_NVM;
3221 }
3222
3223 /* Start with the base address, then add the sector offset. */
3224 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 3225 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
3226
3227 for (j = 0; j < iteration ; j++) {
3228 do {
3229 /* Steps */
3230 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3231 if (ret_val)
3232 return ret_val;
3233
ad68076e
BA
3234 /*
3235 * Write a value 11 (block Erase) in Flash
3236 * Cycle field in hw flash control
3237 */
bc7f75fa
AK
3238 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3239 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3240 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3241
ad68076e
BA
3242 /*
3243 * Write the last 24 bits of an index within the
bc7f75fa
AK
3244 * block into Flash Linear address field in Flash
3245 * Address.
3246 */
3247 flash_linear_addr += (j * sector_size);
3248 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3249
3250 ret_val = e1000_flash_cycle_ich8lan(hw,
3251 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
9e2d7657 3252 if (!ret_val)
bc7f75fa
AK
3253 break;
3254
ad68076e
BA
3255 /*
3256 * Check if FCERR is set to 1. If 1,
bc7f75fa 3257 * clear it and try the whole sequence
ad68076e
BA
3258 * a few more times else Done
3259 */
bc7f75fa 3260 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
04499ec4 3261 if (hsfsts.hsf_status.flcerr)
ad68076e 3262 /* repeat for some time before giving up */
bc7f75fa 3263 continue;
04499ec4 3264 else if (!hsfsts.hsf_status.flcdone)
bc7f75fa
AK
3265 return ret_val;
3266 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3267 }
3268
3269 return 0;
3270}
3271
3272/**
3273 * e1000_valid_led_default_ich8lan - Set the default LED settings
3274 * @hw: pointer to the HW structure
3275 * @data: Pointer to the LED settings
3276 *
3277 * Reads the LED default settings from the NVM to data. If the NVM LED
3278 * settings is all 0's or F's, set the LED default to a valid LED default
3279 * setting.
3280 **/
3281static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3282{
3283 s32 ret_val;
3284
3285 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3286 if (ret_val) {
3bb99fe2 3287 e_dbg("NVM Read Error\n");
bc7f75fa
AK
3288 return ret_val;
3289 }
3290
3291 if (*data == ID_LED_RESERVED_0000 ||
3292 *data == ID_LED_RESERVED_FFFF)
3293 *data = ID_LED_DEFAULT_ICH8LAN;
3294
3295 return 0;
3296}
3297
a4f58f54
BA
3298/**
3299 * e1000_id_led_init_pchlan - store LED configurations
3300 * @hw: pointer to the HW structure
3301 *
3302 * PCH does not control LEDs via the LEDCTL register, rather it uses
3303 * the PHY LED configuration register.
3304 *
3305 * PCH also does not have an "always on" or "always off" mode which
3306 * complicates the ID feature. Instead of using the "on" mode to indicate
d1964eb1 3307 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
a4f58f54
BA
3308 * use "link_up" mode. The LEDs will still ID on request if there is no
3309 * link based on logic in e1000_led_[on|off]_pchlan().
3310 **/
3311static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3312{
3313 struct e1000_mac_info *mac = &hw->mac;
3314 s32 ret_val;
3315 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3316 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3317 u16 data, i, temp, shift;
3318
3319 /* Get default ID LED modes */
3320 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3321 if (ret_val)
5015e53a 3322 return ret_val;
a4f58f54
BA
3323
3324 mac->ledctl_default = er32(LEDCTL);
3325 mac->ledctl_mode1 = mac->ledctl_default;
3326 mac->ledctl_mode2 = mac->ledctl_default;
3327
3328 for (i = 0; i < 4; i++) {
3329 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3330 shift = (i * 5);
3331 switch (temp) {
3332 case ID_LED_ON1_DEF2:
3333 case ID_LED_ON1_ON2:
3334 case ID_LED_ON1_OFF2:
3335 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3336 mac->ledctl_mode1 |= (ledctl_on << shift);
3337 break;
3338 case ID_LED_OFF1_DEF2:
3339 case ID_LED_OFF1_ON2:
3340 case ID_LED_OFF1_OFF2:
3341 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3342 mac->ledctl_mode1 |= (ledctl_off << shift);
3343 break;
3344 default:
3345 /* Do nothing */
3346 break;
3347 }
3348 switch (temp) {
3349 case ID_LED_DEF1_ON2:
3350 case ID_LED_ON1_ON2:
3351 case ID_LED_OFF1_ON2:
3352 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3353 mac->ledctl_mode2 |= (ledctl_on << shift);
3354 break;
3355 case ID_LED_DEF1_OFF2:
3356 case ID_LED_ON1_OFF2:
3357 case ID_LED_OFF1_OFF2:
3358 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3359 mac->ledctl_mode2 |= (ledctl_off << shift);
3360 break;
3361 default:
3362 /* Do nothing */
3363 break;
3364 }
3365 }
3366
5015e53a 3367 return 0;
a4f58f54
BA
3368}
3369
bc7f75fa
AK
3370/**
3371 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3372 * @hw: pointer to the HW structure
3373 *
3374 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3375 * register, so the the bus width is hard coded.
3376 **/
3377static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3378{
3379 struct e1000_bus_info *bus = &hw->bus;
3380 s32 ret_val;
3381
3382 ret_val = e1000e_get_bus_info_pcie(hw);
3383
ad68076e
BA
3384 /*
3385 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
3386 * a configuration space, but do not contain
3387 * PCI Express Capability registers, so bus width
3388 * must be hardcoded.
3389 */
3390 if (bus->width == e1000_bus_width_unknown)
3391 bus->width = e1000_bus_width_pcie_x1;
3392
3393 return ret_val;
3394}
3395
3396/**
3397 * e1000_reset_hw_ich8lan - Reset the hardware
3398 * @hw: pointer to the HW structure
3399 *
3400 * Does a full reset of the hardware which includes a reset of the PHY and
3401 * MAC.
3402 **/
3403static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3404{
1d5846b9 3405 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
62bc813e
BA
3406 u16 kum_cfg;
3407 u32 ctrl, reg;
bc7f75fa
AK
3408 s32 ret_val;
3409
ad68076e
BA
3410 /*
3411 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
3412 * on the last TLP read/write transaction when MAC is reset.
3413 */
3414 ret_val = e1000e_disable_pcie_master(hw);
e98cac44 3415 if (ret_val)
3bb99fe2 3416 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 3417
3bb99fe2 3418 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
3419 ew32(IMC, 0xffffffff);
3420
ad68076e
BA
3421 /*
3422 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
3423 * any pending transactions to complete before we hit the MAC
3424 * with the global reset.
3425 */
3426 ew32(RCTL, 0);
3427 ew32(TCTL, E1000_TCTL_PSP);
3428 e1e_flush();
3429
1bba4386 3430 usleep_range(10000, 20000);
bc7f75fa
AK
3431
3432 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3433 if (hw->mac.type == e1000_ich8lan) {
3434 /* Set Tx and Rx buffer allocation to 8k apiece. */
3435 ew32(PBA, E1000_PBA_8K);
3436 /* Set Packet Buffer Size to 16k. */
3437 ew32(PBS, E1000_PBS_16K);
3438 }
3439
1d5846b9 3440 if (hw->mac.type == e1000_pchlan) {
62bc813e
BA
3441 /* Save the NVM K1 bit setting */
3442 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
1d5846b9
BA
3443 if (ret_val)
3444 return ret_val;
3445
62bc813e 3446 if (kum_cfg & E1000_NVM_K1_ENABLE)
1d5846b9
BA
3447 dev_spec->nvm_k1_enabled = true;
3448 else
3449 dev_spec->nvm_k1_enabled = false;
3450 }
3451
bc7f75fa
AK
3452 ctrl = er32(CTRL);
3453
44abd5c1 3454 if (!hw->phy.ops.check_reset_block(hw)) {
ad68076e 3455 /*
e98cac44 3456 * Full-chip reset requires MAC and PHY reset at the same
bc7f75fa
AK
3457 * time to make sure the interface between MAC and the
3458 * external PHY is reset.
3459 */
3460 ctrl |= E1000_CTRL_PHY_RST;
605c82ba
BA
3461
3462 /*
3463 * Gate automatic PHY configuration by hardware on
3464 * non-managed 82579
3465 */
3466 if ((hw->mac.type == e1000_pch2lan) &&
3467 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3468 e1000_gate_hw_phy_config_ich8lan(hw, true);
bc7f75fa
AK
3469 }
3470 ret_val = e1000_acquire_swflag_ich8lan(hw);
3bb99fe2 3471 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa 3472 ew32(CTRL, (ctrl | E1000_CTRL_RST));
945a5151 3473 /* cannot issue a flush here because it hangs the hardware */
bc7f75fa
AK
3474 msleep(20);
3475
62bc813e
BA
3476 /* Set Phy Config Counter to 50msec */
3477 if (hw->mac.type == e1000_pch2lan) {
3478 reg = er32(FEXTNVM3);
3479 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3480 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3481 ew32(FEXTNVM3, reg);
3482 }
3483
fc0c7760 3484 if (!ret_val)
a90b412c 3485 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
37f40239 3486
e98cac44 3487 if (ctrl & E1000_CTRL_PHY_RST) {
fc0c7760 3488 ret_val = hw->phy.ops.get_cfg_done(hw);
e98cac44 3489 if (ret_val)
5015e53a 3490 return ret_val;
fc0c7760 3491
e98cac44 3492 ret_val = e1000_post_phy_reset_ich8lan(hw);
f523d211 3493 if (ret_val)
5015e53a 3494 return ret_val;
f523d211 3495 }
e98cac44 3496
7d3cabbc
BA
3497 /*
3498 * For PCH, this write will make sure that any noise
3499 * will be detected as a CRC error and be dropped rather than show up
3500 * as a bad packet to the DMA engine.
3501 */
3502 if (hw->mac.type == e1000_pchlan)
3503 ew32(CRC_OFFSET, 0x65656565);
3504
bc7f75fa 3505 ew32(IMC, 0xffffffff);
dd93f95e 3506 er32(ICR);
bc7f75fa 3507
62bc813e
BA
3508 reg = er32(KABGTXD);
3509 reg |= E1000_KABGTXD_BGSQLBIAS;
3510 ew32(KABGTXD, reg);
bc7f75fa 3511
5015e53a 3512 return 0;
bc7f75fa
AK
3513}
3514
3515/**
3516 * e1000_init_hw_ich8lan - Initialize the hardware
3517 * @hw: pointer to the HW structure
3518 *
3519 * Prepares the hardware for transmit and receive by doing the following:
3520 * - initialize hardware bits
3521 * - initialize LED identification
3522 * - setup receive address registers
3523 * - setup flow control
489815ce 3524 * - setup transmit descriptors
bc7f75fa
AK
3525 * - clear statistics
3526 **/
3527static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3528{
3529 struct e1000_mac_info *mac = &hw->mac;
3530 u32 ctrl_ext, txdctl, snoop;
3531 s32 ret_val;
3532 u16 i;
3533
3534 e1000_initialize_hw_bits_ich8lan(hw);
3535
3536 /* Initialize identification LED */
a4f58f54 3537 ret_val = mac->ops.id_led_init(hw);
de39b752 3538 if (ret_val)
3bb99fe2 3539 e_dbg("Error initializing identification LED\n");
de39b752 3540 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
3541
3542 /* Setup the receive address. */
3543 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3544
3545 /* Zero out the Multicast HASH table */
3bb99fe2 3546 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
3547 for (i = 0; i < mac->mta_reg_count; i++)
3548 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3549
fc0c7760
BA
3550 /*
3551 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3ebfc7c9 3552 * the ME. Disable wakeup by clearing the host wakeup bit.
fc0c7760
BA
3553 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3554 */
3555 if (hw->phy.type == e1000_phy_82578) {
3ebfc7c9
BA
3556 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3557 i &= ~BM_WUC_HOST_WU_BIT;
3558 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
fc0c7760
BA
3559 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3560 if (ret_val)
3561 return ret_val;
3562 }
3563
bc7f75fa 3564 /* Setup link and flow control */
1a46b40f 3565 ret_val = mac->ops.setup_link(hw);
bc7f75fa
AK
3566
3567 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 3568 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
3569 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3570 E1000_TXDCTL_FULL_TX_DESC_WB;
3571 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3572 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
3573 ew32(TXDCTL(0), txdctl);
3574 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
3575 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3576 E1000_TXDCTL_FULL_TX_DESC_WB;
3577 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3578 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 3579 ew32(TXDCTL(1), txdctl);
bc7f75fa 3580
ad68076e
BA
3581 /*
3582 * ICH8 has opposite polarity of no_snoop bits.
3583 * By default, we should use snoop behavior.
3584 */
bc7f75fa
AK
3585 if (mac->type == e1000_ich8lan)
3586 snoop = PCIE_ICH8_SNOOP_ALL;
3587 else
3588 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3589 e1000e_set_pcie_no_snoop(hw, snoop);
3590
3591 ctrl_ext = er32(CTRL_EXT);
3592 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3593 ew32(CTRL_EXT, ctrl_ext);
3594
ad68076e
BA
3595 /*
3596 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
3597 * important that we do this after we have tried to establish link
3598 * because the symbol error count will increment wildly if there
3599 * is no link.
3600 */
3601 e1000_clear_hw_cntrs_ich8lan(hw);
3602
e561a705 3603 return ret_val;
bc7f75fa
AK
3604}
3605/**
3606 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3607 * @hw: pointer to the HW structure
3608 *
3609 * Sets/Clears required hardware bits necessary for correctly setting up the
3610 * hardware for transmit and receive.
3611 **/
3612static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3613{
3614 u32 reg;
3615
3616 /* Extended Device Control */
3617 reg = er32(CTRL_EXT);
3618 reg |= (1 << 22);
a4f58f54
BA
3619 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3620 if (hw->mac.type >= e1000_pchlan)
3621 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
3622 ew32(CTRL_EXT, reg);
3623
3624 /* Transmit Descriptor Control 0 */
e9ec2c0f 3625 reg = er32(TXDCTL(0));
bc7f75fa 3626 reg |= (1 << 22);
e9ec2c0f 3627 ew32(TXDCTL(0), reg);
bc7f75fa
AK
3628
3629 /* Transmit Descriptor Control 1 */
e9ec2c0f 3630 reg = er32(TXDCTL(1));
bc7f75fa 3631 reg |= (1 << 22);
e9ec2c0f 3632 ew32(TXDCTL(1), reg);
bc7f75fa
AK
3633
3634 /* Transmit Arbitration Control 0 */
e9ec2c0f 3635 reg = er32(TARC(0));
bc7f75fa
AK
3636 if (hw->mac.type == e1000_ich8lan)
3637 reg |= (1 << 28) | (1 << 29);
3638 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 3639 ew32(TARC(0), reg);
bc7f75fa
AK
3640
3641 /* Transmit Arbitration Control 1 */
e9ec2c0f 3642 reg = er32(TARC(1));
bc7f75fa
AK
3643 if (er32(TCTL) & E1000_TCTL_MULR)
3644 reg &= ~(1 << 28);
3645 else
3646 reg |= (1 << 28);
3647 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 3648 ew32(TARC(1), reg);
bc7f75fa
AK
3649
3650 /* Device Status */
3651 if (hw->mac.type == e1000_ich8lan) {
3652 reg = er32(STATUS);
3653 reg &= ~(1 << 31);
3654 ew32(STATUS, reg);
3655 }
a80483d3
JB
3656
3657 /*
3658 * work-around descriptor data corruption issue during nfs v2 udp
3659 * traffic, just disable the nfs filtering capability
3660 */
3661 reg = er32(RFCTL);
3662 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
f6bd5577
MV
3663
3664 /*
3665 * Disable IPv6 extension header parsing because some malformed
3666 * IPv6 headers can hang the Rx.
3667 */
3668 if (hw->mac.type == e1000_ich8lan)
3669 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
a80483d3 3670 ew32(RFCTL, reg);
bc7f75fa
AK
3671}
3672
3673/**
3674 * e1000_setup_link_ich8lan - Setup flow control and link settings
3675 * @hw: pointer to the HW structure
3676 *
3677 * Determines which flow control settings to use, then configures flow
3678 * control. Calls the appropriate media-specific link configuration
3679 * function. Assuming the adapter has a valid link partner, a valid link
3680 * should be established. Assumes the hardware has previously been reset
3681 * and the transmitter and receiver are not enabled.
3682 **/
3683static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3684{
bc7f75fa
AK
3685 s32 ret_val;
3686
44abd5c1 3687 if (hw->phy.ops.check_reset_block(hw))
bc7f75fa
AK
3688 return 0;
3689
ad68076e
BA
3690 /*
3691 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
3692 * the default flow control setting, so we explicitly
3693 * set it to full.
3694 */
37289d9c
BA
3695 if (hw->fc.requested_mode == e1000_fc_default) {
3696 /* Workaround h/w hang when Tx flow control enabled */
3697 if (hw->mac.type == e1000_pchlan)
3698 hw->fc.requested_mode = e1000_fc_rx_pause;
3699 else
3700 hw->fc.requested_mode = e1000_fc_full;
3701 }
bc7f75fa 3702
5c48ef3e
BA
3703 /*
3704 * Save off the requested flow control mode for use later. Depending
3705 * on the link partner's capabilities, we may or may not use this mode.
3706 */
3707 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 3708
3bb99fe2 3709 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 3710 hw->fc.current_mode);
bc7f75fa
AK
3711
3712 /* Continue to configure the copper link. */
944ce011 3713 ret_val = hw->mac.ops.setup_physical_interface(hw);
bc7f75fa
AK
3714 if (ret_val)
3715 return ret_val;
3716
318a94d6 3717 ew32(FCTTV, hw->fc.pause_time);
a4f58f54 3718 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 3719 (hw->phy.type == e1000_phy_82579) ||
2fbe4526 3720 (hw->phy.type == e1000_phy_i217) ||
a4f58f54 3721 (hw->phy.type == e1000_phy_82577)) {
a305595b
BA
3722 ew32(FCRTV_PCH, hw->fc.refresh_time);
3723
482fed85
BA
3724 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3725 hw->fc.pause_time);
a4f58f54
BA
3726 if (ret_val)
3727 return ret_val;
3728 }
bc7f75fa
AK
3729
3730 return e1000e_set_fc_watermarks(hw);
3731}
3732
3733/**
3734 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3735 * @hw: pointer to the HW structure
3736 *
3737 * Configures the kumeran interface to the PHY to wait the appropriate time
3738 * when polling the PHY, then call the generic setup_copper_link to finish
3739 * configuring the copper link.
3740 **/
3741static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3742{
3743 u32 ctrl;
3744 s32 ret_val;
3745 u16 reg_data;
3746
3747 ctrl = er32(CTRL);
3748 ctrl |= E1000_CTRL_SLU;
3749 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3750 ew32(CTRL, ctrl);
3751
ad68076e
BA
3752 /*
3753 * Set the mac to wait the maximum time between each iteration
bc7f75fa 3754 * and increase the max iterations when polling the phy;
ad68076e
BA
3755 * this fixes erroneous timeouts at 10Mbps.
3756 */
07818950 3757 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
bc7f75fa
AK
3758 if (ret_val)
3759 return ret_val;
07818950
BA
3760 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3761 &reg_data);
bc7f75fa
AK
3762 if (ret_val)
3763 return ret_val;
3764 reg_data |= 0x3F;
07818950
BA
3765 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3766 reg_data);
bc7f75fa
AK
3767 if (ret_val)
3768 return ret_val;
3769
a4f58f54
BA
3770 switch (hw->phy.type) {
3771 case e1000_phy_igp_3:
bc7f75fa
AK
3772 ret_val = e1000e_copper_link_setup_igp(hw);
3773 if (ret_val)
3774 return ret_val;
a4f58f54
BA
3775 break;
3776 case e1000_phy_bm:
3777 case e1000_phy_82578:
97ac8cae
BA
3778 ret_val = e1000e_copper_link_setup_m88(hw);
3779 if (ret_val)
3780 return ret_val;
a4f58f54
BA
3781 break;
3782 case e1000_phy_82577:
d3738bb8 3783 case e1000_phy_82579:
2fbe4526 3784 case e1000_phy_i217:
a4f58f54
BA
3785 ret_val = e1000_copper_link_setup_82577(hw);
3786 if (ret_val)
3787 return ret_val;
3788 break;
3789 case e1000_phy_ife:
482fed85 3790 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
97ac8cae
BA
3791 if (ret_val)
3792 return ret_val;
3793
3794 reg_data &= ~IFE_PMC_AUTO_MDIX;
3795
3796 switch (hw->phy.mdix) {
3797 case 1:
3798 reg_data &= ~IFE_PMC_FORCE_MDIX;
3799 break;
3800 case 2:
3801 reg_data |= IFE_PMC_FORCE_MDIX;
3802 break;
3803 case 0:
3804 default:
3805 reg_data |= IFE_PMC_AUTO_MDIX;
3806 break;
3807 }
482fed85 3808 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
97ac8cae
BA
3809 if (ret_val)
3810 return ret_val;
a4f58f54
BA
3811 break;
3812 default:
3813 break;
97ac8cae 3814 }
3fa82936 3815
bc7f75fa
AK
3816 return e1000e_setup_copper_link(hw);
3817}
3818
3819/**
3820 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3821 * @hw: pointer to the HW structure
3822 * @speed: pointer to store current link speed
3823 * @duplex: pointer to store the current link duplex
3824 *
ad68076e 3825 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
3826 * information and then calls the Kumeran lock loss workaround for links at
3827 * gigabit speeds.
3828 **/
3829static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3830 u16 *duplex)
3831{
3832 s32 ret_val;
3833
3834 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3835 if (ret_val)
3836 return ret_val;
3837
3838 if ((hw->mac.type == e1000_ich8lan) &&
3839 (hw->phy.type == e1000_phy_igp_3) &&
3840 (*speed == SPEED_1000)) {
3841 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3842 }
3843
3844 return ret_val;
3845}
3846
3847/**
3848 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3849 * @hw: pointer to the HW structure
3850 *
3851 * Work-around for 82566 Kumeran PCS lock loss:
3852 * On link status change (i.e. PCI reset, speed change) and link is up and
3853 * speed is gigabit-
3854 * 0) if workaround is optionally disabled do nothing
3855 * 1) wait 1ms for Kumeran link to come up
3856 * 2) check Kumeran Diagnostic register PCS lock loss bit
3857 * 3) if not set the link is locked (all is good), otherwise...
3858 * 4) reset the PHY
3859 * 5) repeat up to 10 times
3860 * Note: this is only called for IGP3 copper when speed is 1gb.
3861 **/
3862static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3863{
3864 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3865 u32 phy_ctrl;
3866 s32 ret_val;
3867 u16 i, data;
3868 bool link;
3869
3870 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3871 return 0;
3872
ad68076e
BA
3873 /*
3874 * Make sure link is up before proceeding. If not just return.
bc7f75fa 3875 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3876 * stability
3877 */
bc7f75fa
AK
3878 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3879 if (!link)
3880 return 0;
3881
3882 for (i = 0; i < 10; i++) {
3883 /* read once to clear */
3884 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3885 if (ret_val)
3886 return ret_val;
3887 /* and again to get new status */
3888 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3889 if (ret_val)
3890 return ret_val;
3891
3892 /* check for PCS lock */
3893 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3894 return 0;
3895
3896 /* Issue PHY reset */
3897 e1000_phy_hw_reset(hw);
3898 mdelay(5);
3899 }
3900 /* Disable GigE link negotiation */
3901 phy_ctrl = er32(PHY_CTRL);
3902 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3903 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3904 ew32(PHY_CTRL, phy_ctrl);
3905
ad68076e
BA
3906 /*
3907 * Call gig speed drop workaround on Gig disable before accessing
3908 * any PHY registers
3909 */
bc7f75fa
AK
3910 e1000e_gig_downshift_workaround_ich8lan(hw);
3911
3912 /* unable to acquire PCS lock */
3913 return -E1000_ERR_PHY;
3914}
3915
3916/**
6e3c8075 3917 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3918 * @hw: pointer to the HW structure
489815ce 3919 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3920 *
564ea9bb
BA
3921 * If ICH8, set the current Kumeran workaround state (enabled - true
3922 * /disabled - false).
bc7f75fa
AK
3923 **/
3924void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3925 bool state)
3926{
3927 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3928
3929 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3930 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3931 return;
3932 }
3933
3934 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3935}
3936
3937/**
3938 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3939 * @hw: pointer to the HW structure
3940 *
3941 * Workaround for 82566 power-down on D3 entry:
3942 * 1) disable gigabit link
3943 * 2) write VR power-down enable
3944 * 3) read it back
3945 * Continue if successful, else issue LCD reset and repeat
3946 **/
3947void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3948{
3949 u32 reg;
3950 u16 data;
3951 u8 retry = 0;
3952
3953 if (hw->phy.type != e1000_phy_igp_3)
3954 return;
3955
3956 /* Try the workaround twice (if needed) */
3957 do {
3958 /* Disable link */
3959 reg = er32(PHY_CTRL);
3960 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3961 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3962 ew32(PHY_CTRL, reg);
3963
ad68076e
BA
3964 /*
3965 * Call gig speed drop workaround on Gig disable before
3966 * accessing any PHY registers
3967 */
bc7f75fa
AK
3968 if (hw->mac.type == e1000_ich8lan)
3969 e1000e_gig_downshift_workaround_ich8lan(hw);
3970
3971 /* Write VR power-down enable */
3972 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3973 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3974 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3975
3976 /* Read it back and test */
3977 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3978 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3979 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3980 break;
3981
3982 /* Issue PHY reset and repeat at most one more time */
3983 reg = er32(CTRL);
3984 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3985 retry++;
3986 } while (retry);
3987}
3988
3989/**
3990 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3991 * @hw: pointer to the HW structure
3992 *
3993 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3994 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3995 * 1) Set Kumeran Near-end loopback
3996 * 2) Clear Kumeran Near-end loopback
462d5994 3997 * Should only be called for ICH8[m] devices with any 1G Phy.
bc7f75fa
AK
3998 **/
3999void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4000{
4001 s32 ret_val;
4002 u16 reg_data;
4003
462d5994 4004 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
bc7f75fa
AK
4005 return;
4006
4007 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4008 &reg_data);
4009 if (ret_val)
4010 return;
4011 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4012 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4013 reg_data);
4014 if (ret_val)
4015 return;
4016 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4017 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4018 reg_data);
4019}
4020
97ac8cae 4021/**
99730e4c 4022 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
97ac8cae
BA
4023 * @hw: pointer to the HW structure
4024 *
4025 * During S0 to Sx transition, it is possible the link remains at gig
4026 * instead of negotiating to a lower speed. Before going to Sx, set
c077a906
BA
4027 * 'Gig Disable' to force link speed negotiation to a lower speed based on
4028 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
4029 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4030 * needs to be written.
2fbe4526
BA
4031 * Parts that support (and are linked to a partner which support) EEE in
4032 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4033 * than 10Mbps w/o EEE.
97ac8cae 4034 **/
99730e4c 4035void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
97ac8cae 4036{
2fbe4526 4037 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
97ac8cae 4038 u32 phy_ctrl;
8395ae83 4039 s32 ret_val;
97ac8cae 4040
17f085df 4041 phy_ctrl = er32(PHY_CTRL);
c077a906 4042 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
2fbe4526
BA
4043 if (hw->phy.type == e1000_phy_i217) {
4044 u16 phy_reg;
4045
4046 ret_val = hw->phy.ops.acquire(hw);
4047 if (ret_val)
4048 goto out;
4049
4050 if (!dev_spec->eee_disable) {
4051 u16 eee_advert;
4052
4053 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4054 I217_EEE_ADVERTISEMENT);
4055 if (ret_val)
4056 goto release;
4057 e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4058
4059 /*
4060 * Disable LPLU if both link partners support 100BaseT
4061 * EEE and 100Full is advertised on both ends of the
4062 * link.
4063 */
4064 if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4065 (dev_spec->eee_lp_ability &
4066 I217_EEE_100_SUPPORTED) &&
4067 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4068 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4069 E1000_PHY_CTRL_NOND0A_LPLU);
4070 }
4071
4072 /*
4073 * For i217 Intel Rapid Start Technology support,
4074 * when the system is going into Sx and no manageability engine
4075 * is present, the driver must configure proxy to reset only on
4076 * power good. LPI (Low Power Idle) state must also reset only
4077 * on power good, as well as the MTA (Multicast table array).
4078 * The SMBus release must also be disabled on LCD reset.
4079 */
4080 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4081
4082 /* Enable proxy to reset only on power good. */
4083 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4084 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4085 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4086
4087 /*
4088 * Set bit enable LPI (EEE) to reset only on
4089 * power good.
4090 */
4091 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
6d7407bf 4092 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
2fbe4526
BA
4093 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4094
4095 /* Disable the SMB release on LCD reset. */
4096 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
6d7407bf 4097 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
2fbe4526
BA
4098 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4099 }
4100
4101 /*
4102 * Enable MTA to reset for Intel Rapid Start Technology
4103 * Support
4104 */
4105 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
6d7407bf 4106 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
2fbe4526
BA
4107 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4108
4109release:
4110 hw->phy.ops.release(hw);
4111 }
4112out:
17f085df 4113 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 4114
462d5994
BA
4115 if (hw->mac.type == e1000_ich8lan)
4116 e1000e_gig_downshift_workaround_ich8lan(hw);
4117
8395ae83 4118 if (hw->mac.type >= e1000_pchlan) {
ce54afd1 4119 e1000_oem_bits_config_ich8lan(hw, false);
92fe1733
BA
4120
4121 /* Reset PHY to activate OEM bits on 82577/8 */
4122 if (hw->mac.type == e1000_pchlan)
4123 e1000e_phy_hw_reset_generic(hw);
4124
8395ae83
BA
4125 ret_val = hw->phy.ops.acquire(hw);
4126 if (ret_val)
4127 return;
4128 e1000_write_smbus_addr(hw);
4129 hw->phy.ops.release(hw);
4130 }
97ac8cae
BA
4131}
4132
99730e4c
BA
4133/**
4134 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4135 * @hw: pointer to the HW structure
4136 *
4137 * During Sx to S0 transitions on non-managed devices or managed devices
4138 * on which PHY resets are not blocked, if the PHY registers cannot be
4139 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
4140 * the PHY.
2fbe4526 4141 * On i217, setup Intel Rapid Start Technology.
99730e4c
BA
4142 **/
4143void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4144{
90b82984 4145 s32 ret_val;
99730e4c 4146
cb17aab9 4147 if (hw->mac.type < e1000_pch2lan)
99730e4c
BA
4148 return;
4149
cb17aab9 4150 ret_val = e1000_init_phy_workarounds_pchlan(hw);
90b82984 4151 if (ret_val) {
cb17aab9 4152 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
90b82984
BA
4153 return;
4154 }
2fbe4526
BA
4155
4156 /*
4157 * For i217 Intel Rapid Start Technology support when the system
4158 * is transitioning from Sx and no manageability engine is present
4159 * configure SMBus to restore on reset, disable proxy, and enable
4160 * the reset on MTA (Multicast table array).
4161 */
4162 if (hw->phy.type == e1000_phy_i217) {
4163 u16 phy_reg;
4164
4165 ret_val = hw->phy.ops.acquire(hw);
4166 if (ret_val) {
4167 e_dbg("Failed to setup iRST\n");
4168 return;
4169 }
4170
4171 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4172 /*
4173 * Restore clear on SMB if no manageability engine
4174 * is present
4175 */
4176 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4177 if (ret_val)
4178 goto release;
6d7407bf 4179 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
2fbe4526
BA
4180 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4181
4182 /* Disable Proxy */
4183 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4184 }
4185 /* Enable reset on MTA */
4186 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4187 if (ret_val)
4188 goto release;
6d7407bf 4189 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
2fbe4526
BA
4190 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4191release:
4192 if (ret_val)
4193 e_dbg("Error %d in resume workarounds\n", ret_val);
4194 hw->phy.ops.release(hw);
4195 }
99730e4c
BA
4196}
4197
bc7f75fa
AK
4198/**
4199 * e1000_cleanup_led_ich8lan - Restore the default LED operation
4200 * @hw: pointer to the HW structure
4201 *
4202 * Return the LED back to the default configuration.
4203 **/
4204static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4205{
4206 if (hw->phy.type == e1000_phy_ife)
4207 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4208
4209 ew32(LEDCTL, hw->mac.ledctl_default);
4210 return 0;
4211}
4212
4213/**
489815ce 4214 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
4215 * @hw: pointer to the HW structure
4216 *
489815ce 4217 * Turn on the LEDs.
bc7f75fa
AK
4218 **/
4219static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4220{
4221 if (hw->phy.type == e1000_phy_ife)
4222 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4223 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4224
4225 ew32(LEDCTL, hw->mac.ledctl_mode2);
4226 return 0;
4227}
4228
4229/**
489815ce 4230 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
4231 * @hw: pointer to the HW structure
4232 *
489815ce 4233 * Turn off the LEDs.
bc7f75fa
AK
4234 **/
4235static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4236{
4237 if (hw->phy.type == e1000_phy_ife)
4238 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
482fed85
BA
4239 (IFE_PSCL_PROBE_MODE |
4240 IFE_PSCL_PROBE_LEDS_OFF));
bc7f75fa
AK
4241
4242 ew32(LEDCTL, hw->mac.ledctl_mode1);
4243 return 0;
4244}
4245
a4f58f54
BA
4246/**
4247 * e1000_setup_led_pchlan - Configures SW controllable LED
4248 * @hw: pointer to the HW structure
4249 *
4250 * This prepares the SW controllable LED for use.
4251 **/
4252static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4253{
482fed85 4254 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
a4f58f54
BA
4255}
4256
4257/**
4258 * e1000_cleanup_led_pchlan - Restore the default LED operation
4259 * @hw: pointer to the HW structure
4260 *
4261 * Return the LED back to the default configuration.
4262 **/
4263static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4264{
482fed85 4265 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
a4f58f54
BA
4266}
4267
4268/**
4269 * e1000_led_on_pchlan - Turn LEDs on
4270 * @hw: pointer to the HW structure
4271 *
4272 * Turn on the LEDs.
4273 **/
4274static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4275{
4276 u16 data = (u16)hw->mac.ledctl_mode2;
4277 u32 i, led;
4278
4279 /*
4280 * If no link, then turn LED on by setting the invert bit
4281 * for each LED that's mode is "link_up" in ledctl_mode2.
4282 */
4283 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4284 for (i = 0; i < 3; i++) {
4285 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4286 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4287 E1000_LEDCTL_MODE_LINK_UP)
4288 continue;
4289 if (led & E1000_PHY_LED0_IVRT)
4290 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4291 else
4292 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4293 }
4294 }
4295
482fed85 4296 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
4297}
4298
4299/**
4300 * e1000_led_off_pchlan - Turn LEDs off
4301 * @hw: pointer to the HW structure
4302 *
4303 * Turn off the LEDs.
4304 **/
4305static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4306{
4307 u16 data = (u16)hw->mac.ledctl_mode1;
4308 u32 i, led;
4309
4310 /*
4311 * If no link, then turn LED off by clearing the invert bit
4312 * for each LED that's mode is "link_up" in ledctl_mode1.
4313 */
4314 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4315 for (i = 0; i < 3; i++) {
4316 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4317 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4318 E1000_LEDCTL_MODE_LINK_UP)
4319 continue;
4320 if (led & E1000_PHY_LED0_IVRT)
4321 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4322 else
4323 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4324 }
4325 }
4326
482fed85 4327 return e1e_wphy(hw, HV_LED_CONFIG, data);
a4f58f54
BA
4328}
4329
f4187b56 4330/**
e98cac44 4331 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
f4187b56
BA
4332 * @hw: pointer to the HW structure
4333 *
e98cac44
BA
4334 * Read appropriate register for the config done bit for completion status
4335 * and configure the PHY through s/w for EEPROM-less parts.
4336 *
4337 * NOTE: some silicon which is EEPROM-less will fail trying to read the
4338 * config done bit, so only an error is logged and continues. If we were
4339 * to return with error, EEPROM-less silicon would not be able to be reset
4340 * or change link.
f4187b56
BA
4341 **/
4342static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4343{
e98cac44 4344 s32 ret_val = 0;
f4187b56 4345 u32 bank = 0;
e98cac44 4346 u32 status;
f4187b56 4347
e98cac44 4348 e1000e_get_cfg_done(hw);
fc0c7760 4349
e98cac44
BA
4350 /* Wait for indication from h/w that it has completed basic config */
4351 if (hw->mac.type >= e1000_ich10lan) {
4352 e1000_lan_init_done_ich8lan(hw);
4353 } else {
4354 ret_val = e1000e_get_auto_rd_done(hw);
4355 if (ret_val) {
4356 /*
4357 * When auto config read does not complete, do not
4358 * return with an error. This can happen in situations
4359 * where there is no eeprom and prevents getting link.
4360 */
4361 e_dbg("Auto Read Done did not complete\n");
4362 ret_val = 0;
4363 }
fc0c7760
BA
4364 }
4365
e98cac44
BA
4366 /* Clear PHY Reset Asserted bit */
4367 status = er32(STATUS);
4368 if (status & E1000_STATUS_PHYRA)
4369 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4370 else
4371 e_dbg("PHY Reset Asserted not set - needs delay\n");
f4187b56
BA
4372
4373 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
e98cac44 4374 if (hw->mac.type <= e1000_ich9lan) {
04499ec4 4375 if (!(er32(EECD) & E1000_EECD_PRES) &&
f4187b56
BA
4376 (hw->phy.type == e1000_phy_igp_3)) {
4377 e1000e_phy_init_script_igp3(hw);
4378 }
4379 } else {
4380 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4381 /* Maybe we should do a basic PHY config */
3bb99fe2 4382 e_dbg("EEPROM not present\n");
e98cac44 4383 ret_val = -E1000_ERR_CONFIG;
f4187b56
BA
4384 }
4385 }
4386
e98cac44 4387 return ret_val;
f4187b56
BA
4388}
4389
17f208de
BA
4390/**
4391 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4392 * @hw: pointer to the HW structure
4393 *
4394 * In the case of a PHY power down to save power, or to turn off link during a
4395 * driver unload, or wake on lan is not enabled, remove the link.
4396 **/
4397static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4398{
4399 /* If the management interface is not enabled, then power down */
4400 if (!(hw->mac.ops.check_mng_mode(hw) ||
4401 hw->phy.ops.check_reset_block(hw)))
4402 e1000_power_down_phy_copper(hw);
17f208de
BA
4403}
4404
bc7f75fa
AK
4405/**
4406 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4407 * @hw: pointer to the HW structure
4408 *
4409 * Clears hardware counters specific to the silicon family and calls
4410 * clear_hw_cntrs_generic to clear all general purpose counters.
4411 **/
4412static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4413{
a4f58f54 4414 u16 phy_data;
2b6b168d 4415 s32 ret_val;
bc7f75fa
AK
4416
4417 e1000e_clear_hw_cntrs_base(hw);
4418
99673d9b
BA
4419 er32(ALGNERRC);
4420 er32(RXERRC);
4421 er32(TNCRS);
4422 er32(CEXTERR);
4423 er32(TSCTC);
4424 er32(TSCTFC);
bc7f75fa 4425
99673d9b
BA
4426 er32(MGTPRC);
4427 er32(MGTPDC);
4428 er32(MGTPTC);
bc7f75fa 4429
99673d9b
BA
4430 er32(IAC);
4431 er32(ICRXOC);
bc7f75fa 4432
a4f58f54
BA
4433 /* Clear PHY statistics registers */
4434 if ((hw->phy.type == e1000_phy_82578) ||
d3738bb8 4435 (hw->phy.type == e1000_phy_82579) ||
2fbe4526 4436 (hw->phy.type == e1000_phy_i217) ||
a4f58f54 4437 (hw->phy.type == e1000_phy_82577)) {
2b6b168d
BA
4438 ret_val = hw->phy.ops.acquire(hw);
4439 if (ret_val)
4440 return;
4441 ret_val = hw->phy.ops.set_page(hw,
4442 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4443 if (ret_val)
4444 goto release;
4445 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4446 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4447 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4448 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4449 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4450 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4451 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4452 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4453 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4454 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4455 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4456 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4457 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4458 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4459release:
4460 hw->phy.ops.release(hw);
a4f58f54 4461 }
bc7f75fa
AK
4462}
4463
8ce9d6c7 4464static const struct e1000_mac_operations ich8_mac_ops = {
eb7700dc 4465 /* check_mng_mode dependent on mac type */
7d3cabbc 4466 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 4467 /* cleanup_led dependent on mac type */
bc7f75fa
AK
4468 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4469 .get_bus_info = e1000_get_bus_info_ich8lan,
f4d2dd4c 4470 .set_lan_id = e1000_set_lan_id_single_port,
bc7f75fa 4471 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
4472 /* led_on dependent on mac type */
4473 /* led_off dependent on mac type */
e2de3eb6 4474 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
4475 .reset_hw = e1000_reset_hw_ich8lan,
4476 .init_hw = e1000_init_hw_ich8lan,
4477 .setup_link = e1000_setup_link_ich8lan,
4478 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 4479 /* id_led_init dependent on mac type */
57cde763 4480 .config_collision_dist = e1000e_config_collision_dist_generic,
69e1e019 4481 .rar_set = e1000e_rar_set_generic,
bc7f75fa
AK
4482};
4483
8ce9d6c7 4484static const struct e1000_phy_operations ich8_phy_ops = {
94d8186a 4485 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 4486 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 4487 .commit = NULL,
f4187b56 4488 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 4489 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
4490 .read_reg = e1000e_read_phy_reg_igp,
4491 .release = e1000_release_swflag_ich8lan,
4492 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
4493 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4494 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 4495 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
4496};
4497
8ce9d6c7 4498static const struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a
BA
4499 .acquire = e1000_acquire_nvm_ich8lan,
4500 .read = e1000_read_nvm_ich8lan,
4501 .release = e1000_release_nvm_ich8lan,
e85e3639 4502 .reload = e1000e_reload_nvm_generic,
94d8186a 4503 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 4504 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
4505 .validate = e1000_validate_nvm_checksum_ich8lan,
4506 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
4507};
4508
8ce9d6c7 4509const struct e1000_info e1000_ich8_info = {
bc7f75fa
AK
4510 .mac = e1000_ich8lan,
4511 .flags = FLAG_HAS_WOL
97ac8cae 4512 | FLAG_IS_ICH
bc7f75fa
AK
4513 | FLAG_HAS_CTRLEXT_ON_LOAD
4514 | FLAG_HAS_AMT
4515 | FLAG_HAS_FLASH
4516 | FLAG_APME_IN_WUC,
4517 .pba = 8,
2adc55c9 4518 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 4519 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4520 .mac_ops = &ich8_mac_ops,
4521 .phy_ops = &ich8_phy_ops,
4522 .nvm_ops = &ich8_nvm_ops,
4523};
4524
8ce9d6c7 4525const struct e1000_info e1000_ich9_info = {
bc7f75fa
AK
4526 .mac = e1000_ich9lan,
4527 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 4528 | FLAG_IS_ICH
bc7f75fa 4529 | FLAG_HAS_WOL
bc7f75fa
AK
4530 | FLAG_HAS_CTRLEXT_ON_LOAD
4531 | FLAG_HAS_AMT
bc7f75fa
AK
4532 | FLAG_HAS_FLASH
4533 | FLAG_APME_IN_WUC,
7f1557e1 4534 .pba = 18,
2adc55c9 4535 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 4536 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
4537 .mac_ops = &ich8_mac_ops,
4538 .phy_ops = &ich8_phy_ops,
4539 .nvm_ops = &ich8_nvm_ops,
4540};
4541
8ce9d6c7 4542const struct e1000_info e1000_ich10_info = {
f4187b56
BA
4543 .mac = e1000_ich10lan,
4544 .flags = FLAG_HAS_JUMBO_FRAMES
4545 | FLAG_IS_ICH
4546 | FLAG_HAS_WOL
f4187b56
BA
4547 | FLAG_HAS_CTRLEXT_ON_LOAD
4548 | FLAG_HAS_AMT
f4187b56
BA
4549 | FLAG_HAS_FLASH
4550 | FLAG_APME_IN_WUC,
7f1557e1 4551 .pba = 18,
2adc55c9 4552 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
4553 .get_variants = e1000_get_variants_ich8lan,
4554 .mac_ops = &ich8_mac_ops,
4555 .phy_ops = &ich8_phy_ops,
4556 .nvm_ops = &ich8_nvm_ops,
4557};
a4f58f54 4558
8ce9d6c7 4559const struct e1000_info e1000_pch_info = {
a4f58f54
BA
4560 .mac = e1000_pchlan,
4561 .flags = FLAG_IS_ICH
4562 | FLAG_HAS_WOL
a4f58f54
BA
4563 | FLAG_HAS_CTRLEXT_ON_LOAD
4564 | FLAG_HAS_AMT
4565 | FLAG_HAS_FLASH
4566 | FLAG_HAS_JUMBO_FRAMES
38eb394e 4567 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
a4f58f54 4568 | FLAG_APME_IN_WUC,
8c7bbb92 4569 .flags2 = FLAG2_HAS_PHY_STATS,
a4f58f54
BA
4570 .pba = 26,
4571 .max_hw_frame_size = 4096,
4572 .get_variants = e1000_get_variants_ich8lan,
4573 .mac_ops = &ich8_mac_ops,
4574 .phy_ops = &ich8_phy_ops,
4575 .nvm_ops = &ich8_nvm_ops,
4576};
d3738bb8 4577
8ce9d6c7 4578const struct e1000_info e1000_pch2_info = {
d3738bb8
BA
4579 .mac = e1000_pch2lan,
4580 .flags = FLAG_IS_ICH
4581 | FLAG_HAS_WOL
d3738bb8
BA
4582 | FLAG_HAS_CTRLEXT_ON_LOAD
4583 | FLAG_HAS_AMT
4584 | FLAG_HAS_FLASH
4585 | FLAG_HAS_JUMBO_FRAMES
4586 | FLAG_APME_IN_WUC,
e52997f9
BA
4587 .flags2 = FLAG2_HAS_PHY_STATS
4588 | FLAG2_HAS_EEE,
828bac87 4589 .pba = 26,
d3738bb8
BA
4590 .max_hw_frame_size = DEFAULT_JUMBO,
4591 .get_variants = e1000_get_variants_ich8lan,
4592 .mac_ops = &ich8_mac_ops,
4593 .phy_ops = &ich8_phy_ops,
4594 .nvm_ops = &ich8_nvm_ops,
4595};
2fbe4526
BA
4596
4597const struct e1000_info e1000_pch_lpt_info = {
4598 .mac = e1000_pch_lpt,
4599 .flags = FLAG_IS_ICH
4600 | FLAG_HAS_WOL
4601 | FLAG_HAS_CTRLEXT_ON_LOAD
4602 | FLAG_HAS_AMT
4603 | FLAG_HAS_FLASH
4604 | FLAG_HAS_JUMBO_FRAMES
4605 | FLAG_APME_IN_WUC,
4606 .flags2 = FLAG2_HAS_PHY_STATS
4607 | FLAG2_HAS_EEE,
4608 .pba = 26,
4609 .max_hw_frame_size = DEFAULT_JUMBO,
4610 .get_variants = e1000_get_variants_ich8lan,
4611 .mac_ops = &ich8_mac_ops,
4612 .phy_ops = &ich8_phy_ops,
4613 .nvm_ops = &ich8_nvm_ops,
4614};