e1000e: Cleanup to fix checkpatch missing blank lines
[linux-block.git] / drivers / net / ethernet / intel / e1000e / 82571.c
CommitLineData
e78b80b1
DE
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
bc7f75fa 21
e921eb1a 22/* 82571EB Gigabit Ethernet Controller
1605927f 23 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 24 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
25 * 82571EB Dual Port Gigabit Mezzanine Adapter
26 * 82571EB Quad Port Gigabit Mezzanine Adapter
27 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
28 * 82572EI Gigabit Ethernet Controller (Copper)
29 * 82572EI Gigabit Ethernet Controller (Fiber)
30 * 82572EI Gigabit Ethernet Controller
31 * 82573V Gigabit Ethernet Controller (Copper)
32 * 82573E Gigabit Ethernet Controller (Copper)
33 * 82573L Gigabit Ethernet Controller
4662e82b 34 * 82574L Gigabit Network Connection
8c81c9c3 35 * 82583V Gigabit Network Connection
bc7f75fa
AK
36 */
37
bc7f75fa
AK
38#include "e1000.h"
39
bc7f75fa
AK
40static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
41static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
42static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 43static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
44static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
45 u16 words, u16 *data);
46static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
47static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
bc7f75fa 48static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
4662e82b
BA
49static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
50static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 51static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 52static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
1b98c2bb
BA
53static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
54static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
55static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
77996d1d
BA
56static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
57static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
bc7f75fa
AK
58
59/**
60 * e1000_init_phy_params_82571 - Init PHY func ptrs.
61 * @hw: pointer to the HW structure
bc7f75fa
AK
62 **/
63static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
64{
65 struct e1000_phy_info *phy = &hw->phy;
66 s32 ret_val;
67
318a94d6 68 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
69 phy->type = e1000_phy_none;
70 return 0;
71 }
72
e80bd1d1
BA
73 phy->addr = 1;
74 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
75 phy->reset_delay_us = 100;
bc7f75fa 76
e80bd1d1
BA
77 phy->ops.power_up = e1000_power_up_phy_copper;
78 phy->ops.power_down = e1000_power_down_phy_copper_82571;
17f208de 79
bc7f75fa
AK
80 switch (hw->mac.type) {
81 case e1000_82571:
82 case e1000_82572:
e80bd1d1 83 phy->type = e1000_phy_igp_2;
bc7f75fa
AK
84 break;
85 case e1000_82573:
e80bd1d1 86 phy->type = e1000_phy_m88;
bc7f75fa 87 break;
4662e82b 88 case e1000_82574:
8c81c9c3 89 case e1000_82583:
e80bd1d1 90 phy->type = e1000_phy_bm;
1b98c2bb
BA
91 phy->ops.acquire = e1000_get_hw_semaphore_82574;
92 phy->ops.release = e1000_put_hw_semaphore_82574;
77996d1d
BA
93 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
94 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
4662e82b 95 break;
bc7f75fa
AK
96 default:
97 return -E1000_ERR_PHY;
98 break;
99 }
100
101 /* This can only be done after all function pointers are setup. */
102 ret_val = e1000_get_phy_id_82571(hw);
dd93f95e
BA
103 if (ret_val) {
104 e_dbg("Error getting PHY ID\n");
105 return ret_val;
106 }
bc7f75fa
AK
107
108 /* Verify phy id */
109 switch (hw->mac.type) {
110 case e1000_82571:
111 case e1000_82572:
112 if (phy->id != IGP01E1000_I_PHY_ID)
dd93f95e 113 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
114 break;
115 case e1000_82573:
116 if (phy->id != M88E1111_I_PHY_ID)
dd93f95e 117 ret_val = -E1000_ERR_PHY;
bc7f75fa 118 break;
4662e82b 119 case e1000_82574:
8c81c9c3 120 case e1000_82583:
4662e82b 121 if (phy->id != BME1000_E_PHY_ID_R2)
dd93f95e 122 ret_val = -E1000_ERR_PHY;
4662e82b 123 break;
bc7f75fa 124 default:
dd93f95e 125 ret_val = -E1000_ERR_PHY;
bc7f75fa
AK
126 break;
127 }
128
dd93f95e
BA
129 if (ret_val)
130 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
131
132 return ret_val;
bc7f75fa
AK
133}
134
135/**
136 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
137 * @hw: pointer to the HW structure
bc7f75fa
AK
138 **/
139static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
140{
141 struct e1000_nvm_info *nvm = &hw->nvm;
142 u32 eecd = er32(EECD);
143 u16 size;
144
145 nvm->opcode_bits = 8;
146 nvm->delay_usec = 1;
147 switch (nvm->override) {
148 case e1000_nvm_override_spi_large:
149 nvm->page_size = 32;
150 nvm->address_bits = 16;
151 break;
152 case e1000_nvm_override_spi_small:
153 nvm->page_size = 8;
154 nvm->address_bits = 8;
155 break;
156 default:
157 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
158 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
159 break;
160 }
161
162 switch (hw->mac.type) {
163 case e1000_82573:
4662e82b 164 case e1000_82574:
8c81c9c3 165 case e1000_82583:
bc7f75fa
AK
166 if (((eecd >> 15) & 0x3) == 0x3) {
167 nvm->type = e1000_nvm_flash_hw;
168 nvm->word_size = 2048;
e921eb1a 169 /* Autonomous Flash update bit must be cleared due
bc7f75fa
AK
170 * to Flash update issue.
171 */
172 eecd &= ~E1000_EECD_AUPDEN;
173 ew32(EECD, eecd);
174 break;
175 }
176 /* Fall Through */
177 default:
ad68076e 178 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa 179 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
17e813ec 180 E1000_EECD_SIZE_EX_SHIFT);
e921eb1a 181 /* Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
182 * for setting word_size.
183 */
184 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
185
186 /* EEPROM access above 16k is unsupported */
187 if (size > 14)
188 size = 14;
e80bd1d1 189 nvm->word_size = 1 << size;
bc7f75fa
AK
190 break;
191 }
192
1b98c2bb
BA
193 /* Function Pointers */
194 switch (hw->mac.type) {
195 case e1000_82574:
196 case e1000_82583:
197 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
198 nvm->ops.release = e1000_put_hw_semaphore_82574;
199 break;
200 default:
201 break;
202 }
203
bc7f75fa
AK
204 return 0;
205}
206
207/**
208 * e1000_init_mac_params_82571 - Init MAC func ptrs.
209 * @hw: pointer to the HW structure
bc7f75fa 210 **/
ec34c170 211static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
bc7f75fa 212{
bc7f75fa 213 struct e1000_mac_info *mac = &hw->mac;
23a2d1b2
DG
214 u32 swsm = 0;
215 u32 swsm2 = 0;
216 bool force_clear_smbi = false;
bc7f75fa 217
66092f59 218 /* Set media type and media-dependent function pointers */
ec34c170 219 switch (hw->adapter->pdev->device) {
bc7f75fa
AK
220 case E1000_DEV_ID_82571EB_FIBER:
221 case E1000_DEV_ID_82572EI_FIBER:
222 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 223 hw->phy.media_type = e1000_media_type_fiber;
66092f59
BA
224 mac->ops.setup_physical_interface =
225 e1000_setup_fiber_serdes_link_82571;
226 mac->ops.check_for_link = e1000e_check_for_fiber_link;
227 mac->ops.get_link_up_info =
228 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
229 break;
230 case E1000_DEV_ID_82571EB_SERDES:
040babf9
AK
231 case E1000_DEV_ID_82571EB_SERDES_DUAL:
232 case E1000_DEV_ID_82571EB_SERDES_QUAD:
66092f59 233 case E1000_DEV_ID_82572EI_SERDES:
318a94d6 234 hw->phy.media_type = e1000_media_type_internal_serdes;
66092f59
BA
235 mac->ops.setup_physical_interface =
236 e1000_setup_fiber_serdes_link_82571;
237 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
238 mac->ops.get_link_up_info =
239 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
240 break;
241 default:
318a94d6 242 hw->phy.media_type = e1000_media_type_copper;
66092f59
BA
243 mac->ops.setup_physical_interface =
244 e1000_setup_copper_link_82571;
245 mac->ops.check_for_link = e1000e_check_for_copper_link;
246 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
bc7f75fa
AK
247 break;
248 }
249
250 /* Set mta register count */
251 mac->mta_reg_count = 128;
252 /* Set rar entry count */
253 mac->rar_entry_count = E1000_RAR_ENTRIES;
f464ba87
BA
254 /* Adaptive IFS supported */
255 mac->adaptive_ifs = true;
bc7f75fa 256
66092f59 257 /* MAC-specific function pointers */
4662e82b 258 switch (hw->mac.type) {
f4d2dd4c 259 case e1000_82573:
66092f59
BA
260 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
261 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
262 mac->ops.led_on = e1000e_led_on_generic;
263 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
264
265 /* FWSM register */
266 mac->has_fwsm = true;
e921eb1a 267 /* ARC supported; valid only if manageability features are
a65a4a0d
BA
268 * enabled.
269 */
04499ec4
BA
270 mac->arc_subsystem_valid = !!(er32(FWSM) &
271 E1000_FWSM_MODE_MASK);
f4d2dd4c 272 break;
4662e82b 273 case e1000_82574:
8c81c9c3 274 case e1000_82583:
66092f59
BA
275 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
276 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
277 mac->ops.led_on = e1000_led_on_82574;
4662e82b
BA
278 break;
279 default:
66092f59
BA
280 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
281 mac->ops.led_on = e1000e_led_on_generic;
282 mac->ops.blink_led = e1000e_blink_led_generic;
a65a4a0d
BA
283
284 /* FWSM register */
285 mac->has_fwsm = true;
4662e82b
BA
286 break;
287 }
288
e921eb1a 289 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
b595076a 290 * first NVM or PHY access. This should be done for single-port
23a2d1b2
DG
291 * devices, and for one port only on dual-port devices so that
292 * for those devices we can still use the SMBI lock to synchronize
293 * inter-port accesses to the PHY & NVM.
294 */
295 switch (hw->mac.type) {
296 case e1000_82571:
297 case e1000_82572:
298 swsm2 = er32(SWSM2);
299
300 if (!(swsm2 & E1000_SWSM2_LOCK)) {
301 /* Only do this for the first interface on this card */
66092f59 302 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
23a2d1b2 303 force_clear_smbi = true;
66092f59 304 } else {
23a2d1b2 305 force_clear_smbi = false;
66092f59 306 }
23a2d1b2
DG
307 break;
308 default:
309 force_clear_smbi = true;
310 break;
311 }
312
313 if (force_clear_smbi) {
314 /* Make sure SWSM.SMBI is clear */
315 swsm = er32(SWSM);
316 if (swsm & E1000_SWSM_SMBI) {
317 /* This bit should not be set on a first interface, and
318 * indicates that the bootagent or EFI code has
319 * improperly left this bit enabled
320 */
3bb99fe2 321 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
322 }
323 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
324 }
325
e921eb1a
BA
326 /* Initialize device specific counter of SMBI acquisition timeouts. */
327 hw->dev_spec.e82571.smb_counter = 0;
23a2d1b2 328
bc7f75fa
AK
329 return 0;
330}
331
69e3fd8c 332static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
333{
334 struct e1000_hw *hw = &adapter->hw;
e80bd1d1 335 static int global_quad_port_a; /* global port a indication */
bc7f75fa 336 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
337 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
338 s32 rc;
339
ec34c170 340 rc = e1000_init_mac_params_82571(hw);
bc7f75fa
AK
341 if (rc)
342 return rc;
343
344 rc = e1000_init_nvm_params_82571(hw);
345 if (rc)
346 return rc;
347
348 rc = e1000_init_phy_params_82571(hw);
349 if (rc)
350 return rc;
351
352 /* tag quad port adapters first, it's used below */
353 switch (pdev->device) {
354 case E1000_DEV_ID_82571EB_QUAD_COPPER:
355 case E1000_DEV_ID_82571EB_QUAD_FIBER:
356 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 357 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
358 adapter->flags |= FLAG_IS_QUAD_PORT;
359 /* mark the first port */
360 if (global_quad_port_a == 0)
361 adapter->flags |= FLAG_IS_QUAD_PORT_A;
362 /* Reset for multiple quad port adapters */
363 global_quad_port_a++;
364 if (global_quad_port_a == 4)
365 global_quad_port_a = 0;
366 break;
367 default:
368 break;
369 }
370
371 switch (adapter->hw.mac.type) {
372 case e1000_82571:
373 /* these dual ports don't have WoL on port B at all */
374 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
375 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
376 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
377 (is_port_b))
378 adapter->flags &= ~FLAG_HAS_WOL;
379 /* quad ports only support WoL on port A */
380 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 381 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 382 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
383 /* Does not support WoL on any port */
384 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
385 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa 386 break;
bc7f75fa
AK
387 case e1000_82573:
388 if (pdev->device == E1000_DEV_ID_82573L) {
6f461f6c
BA
389 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
390 adapter->max_hw_frame_size = DEFAULT_JUMBO;
bc7f75fa
AK
391 }
392 break;
393 default:
394 break;
395 }
396
397 return 0;
398}
399
400/**
401 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
402 * @hw: pointer to the HW structure
403 *
404 * Reads the PHY registers and stores the PHY ID and possibly the PHY
405 * revision in the hardware structure.
406 **/
407static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
408{
409 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
410 s32 ret_val;
411 u16 phy_id = 0;
bc7f75fa
AK
412
413 switch (hw->mac.type) {
414 case e1000_82571:
415 case e1000_82572:
e921eb1a 416 /* The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
417 * In this case, we cannot access the PHY until the
418 * configuration is done. So we explicitly set the
ad68076e
BA
419 * PHY ID.
420 */
bc7f75fa
AK
421 phy->id = IGP01E1000_I_PHY_ID;
422 break;
423 case e1000_82573:
424 return e1000e_get_phy_id(hw);
425 break;
4662e82b 426 case e1000_82574:
8c81c9c3 427 case e1000_82583:
c2ade1a4 428 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
4662e82b
BA
429 if (ret_val)
430 return ret_val;
431
432 phy->id = (u32)(phy_id << 16);
ce43a216 433 usleep_range(20, 40);
c2ade1a4 434 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
4662e82b
BA
435 if (ret_val)
436 return ret_val;
437
438 phy->id |= (u32)(phy_id);
439 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
440 break;
bc7f75fa
AK
441 default:
442 return -E1000_ERR_PHY;
443 break;
444 }
445
446 return 0;
447}
448
449/**
450 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
451 * @hw: pointer to the HW structure
452 *
453 * Acquire the HW semaphore to access the PHY or NVM
454 **/
455static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
456{
457 u32 swsm;
23a2d1b2
DG
458 s32 sw_timeout = hw->nvm.word_size + 1;
459 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
460 s32 i = 0;
461
e921eb1a 462 /* If we have timedout 3 times on trying to acquire
23a2d1b2
DG
463 * the inter-port SMBI semaphore, there is old code
464 * operating on the other port, and it is not
465 * releasing SMBI. Modify the number of times that
466 * we try for the semaphore to interwork with this
467 * older code.
468 */
469 if (hw->dev_spec.e82571.smb_counter > 2)
470 sw_timeout = 1;
471
472 /* Get the SW semaphore */
473 while (i < sw_timeout) {
474 swsm = er32(SWSM);
475 if (!(swsm & E1000_SWSM_SMBI))
476 break;
477
ce43a216 478 usleep_range(50, 100);
23a2d1b2
DG
479 i++;
480 }
481
482 if (i == sw_timeout) {
3bb99fe2 483 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
484 hw->dev_spec.e82571.smb_counter++;
485 }
bc7f75fa 486 /* Get the FW semaphore. */
23a2d1b2 487 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
488 swsm = er32(SWSM);
489 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
490
491 /* Semaphore acquired if bit latched */
492 if (er32(SWSM) & E1000_SWSM_SWESMBI)
493 break;
494
ce43a216 495 usleep_range(50, 100);
bc7f75fa
AK
496 }
497
23a2d1b2 498 if (i == fw_timeout) {
bc7f75fa 499 /* Release semaphores */
23a2d1b2 500 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 501 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
502 return -E1000_ERR_NVM;
503 }
504
505 return 0;
506}
507
508/**
509 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
510 * @hw: pointer to the HW structure
511 *
512 * Release hardware semaphore used to access the PHY or NVM
513 **/
514static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
515{
516 u32 swsm;
517
518 swsm = er32(SWSM);
23a2d1b2 519 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
520 ew32(SWSM, swsm);
521}
fc830b78 522
1b98c2bb
BA
523/**
524 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
525 * @hw: pointer to the HW structure
526 *
527 * Acquire the HW semaphore during reset.
528 *
529 **/
530static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
531{
532 u32 extcnf_ctrl;
1b98c2bb
BA
533 s32 i = 0;
534
535 extcnf_ctrl = er32(EXTCNF_CTRL);
1b98c2bb 536 do {
7dbbe5d5 537 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
1b98c2bb
BA
538 ew32(EXTCNF_CTRL, extcnf_ctrl);
539 extcnf_ctrl = er32(EXTCNF_CTRL);
540
541 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
542 break;
543
1bba4386 544 usleep_range(2000, 4000);
1b98c2bb
BA
545 i++;
546 } while (i < MDIO_OWNERSHIP_TIMEOUT);
547
548 if (i == MDIO_OWNERSHIP_TIMEOUT) {
549 /* Release semaphores */
550 e1000_put_hw_semaphore_82573(hw);
551 e_dbg("Driver can't access the PHY\n");
5015e53a 552 return -E1000_ERR_PHY;
1b98c2bb
BA
553 }
554
5015e53a 555 return 0;
1b98c2bb
BA
556}
557
558/**
559 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
560 * @hw: pointer to the HW structure
561 *
562 * Release hardware semaphore used during reset.
563 *
564 **/
565static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
566{
567 u32 extcnf_ctrl;
568
569 extcnf_ctrl = er32(EXTCNF_CTRL);
570 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
571 ew32(EXTCNF_CTRL, extcnf_ctrl);
572}
573
574static DEFINE_MUTEX(swflag_mutex);
575
576/**
577 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
578 * @hw: pointer to the HW structure
579 *
580 * Acquire the HW semaphore to access the PHY or NVM.
581 *
582 **/
583static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
584{
585 s32 ret_val;
586
587 mutex_lock(&swflag_mutex);
588 ret_val = e1000_get_hw_semaphore_82573(hw);
589 if (ret_val)
590 mutex_unlock(&swflag_mutex);
591 return ret_val;
592}
593
594/**
595 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
596 * @hw: pointer to the HW structure
597 *
598 * Release hardware semaphore used to access the PHY or NVM
599 *
600 **/
601static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
602{
603 e1000_put_hw_semaphore_82573(hw);
604 mutex_unlock(&swflag_mutex);
605}
bc7f75fa 606
77996d1d
BA
607/**
608 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
609 * @hw: pointer to the HW structure
610 * @active: true to enable LPLU, false to disable
611 *
612 * Sets the LPLU D0 state according to the active flag.
613 * LPLU will not be activated unless the
614 * device autonegotiation advertisement meets standards of
615 * either 10 or 10/100 or 10/100/1000 at all duplexes.
616 * This is a function pointer entry point only called by
617 * PHY setup routines.
618 **/
619static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
620{
efc38d2a 621 u32 data = er32(POEMB);
77996d1d
BA
622
623 if (active)
624 data |= E1000_PHY_CTRL_D0A_LPLU;
625 else
626 data &= ~E1000_PHY_CTRL_D0A_LPLU;
627
628 ew32(POEMB, data);
629 return 0;
630}
631
632/**
633 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
634 * @hw: pointer to the HW structure
635 * @active: boolean used to enable/disable lplu
636 *
637 * The low power link up (lplu) state is set to the power management level D3
638 * when active is true, else clear lplu for D3. LPLU
639 * is used during Dx states where the power conservation is most important.
640 * During driver activity, SmartSpeed should be enabled so performance is
641 * maintained.
642 **/
643static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
644{
efc38d2a 645 u32 data = er32(POEMB);
77996d1d
BA
646
647 if (!active) {
648 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
649 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
650 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
651 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
652 data |= E1000_PHY_CTRL_NOND0A_LPLU;
653 }
654
655 ew32(POEMB, data);
656 return 0;
657}
658
bc7f75fa
AK
659/**
660 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
661 * @hw: pointer to the HW structure
662 *
663 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
664 * Then for non-82573 hardware, set the EEPROM access request bit and wait
665 * for EEPROM access grant bit. If the access grant bit is not set, release
666 * hardware semaphore.
667 **/
668static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
669{
670 s32 ret_val;
671
672 ret_val = e1000_get_hw_semaphore_82571(hw);
673 if (ret_val)
674 return ret_val;
675
8c81c9c3
AD
676 switch (hw->mac.type) {
677 case e1000_82573:
8c81c9c3
AD
678 break;
679 default:
bc7f75fa 680 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
681 break;
682 }
bc7f75fa
AK
683
684 if (ret_val)
685 e1000_put_hw_semaphore_82571(hw);
686
687 return ret_val;
688}
689
690/**
691 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
692 * @hw: pointer to the HW structure
693 *
694 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
695 **/
696static void e1000_release_nvm_82571(struct e1000_hw *hw)
697{
698 e1000e_release_nvm(hw);
699 e1000_put_hw_semaphore_82571(hw);
700}
701
702/**
703 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
704 * @hw: pointer to the HW structure
705 * @offset: offset within the EEPROM to be written to
706 * @words: number of words to write
707 * @data: 16 bit word(s) to be written to the EEPROM
708 *
709 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
710 *
711 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 712 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
713 **/
714static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
715 u16 *data)
716{
717 s32 ret_val;
718
719 switch (hw->mac.type) {
720 case e1000_82573:
4662e82b 721 case e1000_82574:
8c81c9c3 722 case e1000_82583:
bc7f75fa
AK
723 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
724 break;
725 case e1000_82571:
726 case e1000_82572:
727 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
728 break;
729 default:
730 ret_val = -E1000_ERR_NVM;
731 break;
732 }
733
734 return ret_val;
735}
736
737/**
738 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
739 * @hw: pointer to the HW structure
740 *
741 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
742 * up to the checksum. Then calculates the EEPROM checksum and writes the
743 * value to the EEPROM.
744 **/
745static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
746{
747 u32 eecd;
748 s32 ret_val;
749 u16 i;
750
751 ret_val = e1000e_update_nvm_checksum_generic(hw);
752 if (ret_val)
753 return ret_val;
754
e921eb1a 755 /* If our nvm is an EEPROM, then we're done
ad68076e
BA
756 * otherwise, commit the checksum to the flash NVM.
757 */
bc7f75fa 758 if (hw->nvm.type != e1000_nvm_flash_hw)
82607255 759 return 0;
bc7f75fa
AK
760
761 /* Check for pending operations. */
762 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 763 usleep_range(1000, 2000);
04499ec4 764 if (!(er32(EECD) & E1000_EECD_FLUPD))
bc7f75fa
AK
765 break;
766 }
767
768 if (i == E1000_FLASH_UPDATES)
769 return -E1000_ERR_NVM;
770
771 /* Reset the firmware if using STM opcode. */
772 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
e921eb1a 773 /* The enabling of and the actual reset must be done
bc7f75fa
AK
774 * in two write cycles.
775 */
776 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
777 e1e_flush();
778 ew32(HICR, E1000_HICR_FW_RESET);
779 }
780
781 /* Commit the write to flash */
782 eecd = er32(EECD) | E1000_EECD_FLUPD;
783 ew32(EECD, eecd);
784
785 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
1bba4386 786 usleep_range(1000, 2000);
04499ec4 787 if (!(er32(EECD) & E1000_EECD_FLUPD))
bc7f75fa
AK
788 break;
789 }
790
791 if (i == E1000_FLASH_UPDATES)
792 return -E1000_ERR_NVM;
793
794 return 0;
795}
796
797/**
798 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
799 * @hw: pointer to the HW structure
800 *
801 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
802 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
803 **/
804static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
805{
806 if (hw->nvm.type == e1000_nvm_flash_hw)
807 e1000_fix_nvm_checksum_82571(hw);
808
809 return e1000e_validate_nvm_checksum_generic(hw);
810}
811
812/**
813 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
814 * @hw: pointer to the HW structure
815 * @offset: offset within the EEPROM to be written to
816 * @words: number of words to write
817 * @data: 16 bit word(s) to be written to the EEPROM
818 *
819 * After checking for invalid values, poll the EEPROM to ensure the previous
820 * command has completed before trying to write the next word. After write
821 * poll for completion.
822 *
823 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 824 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
825 **/
826static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
827 u16 words, u16 *data)
828{
829 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 830 u32 i, eewr = 0;
bc7f75fa
AK
831 s32 ret_val = 0;
832
e921eb1a 833 /* A check for invalid values: offset too large, too many words,
ad68076e
BA
834 * and not enough words.
835 */
bc7f75fa
AK
836 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
837 (words == 0)) {
3bb99fe2 838 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
839 return -E1000_ERR_NVM;
840 }
841
842 for (i = 0; i < words; i++) {
f0ff4398 843 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
362e20ca 844 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
f0ff4398 845 E1000_NVM_RW_REG_START);
bc7f75fa
AK
846
847 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
848 if (ret_val)
849 break;
850
851 ew32(EEWR, eewr);
852
853 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
854 if (ret_val)
855 break;
856 }
857
858 return ret_val;
859}
860
861/**
862 * e1000_get_cfg_done_82571 - Poll for configuration done
863 * @hw: pointer to the HW structure
864 *
865 * Reads the management control register for the config done bit to be set.
866 **/
867static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
868{
869 s32 timeout = PHY_CFG_TIMEOUT;
870
871 while (timeout) {
e5fe2541 872 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
bc7f75fa 873 break;
1bba4386 874 usleep_range(1000, 2000);
bc7f75fa
AK
875 timeout--;
876 }
877 if (!timeout) {
3bb99fe2 878 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
879 return -E1000_ERR_RESET;
880 }
881
882 return 0;
883}
884
885/**
886 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
887 * @hw: pointer to the HW structure
564ea9bb 888 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
889 *
890 * Sets the LPLU D0 state according to the active flag. When activating LPLU
891 * this function also disables smart speed and vice versa. LPLU will not be
892 * activated unless the device autonegotiation advertisement meets standards
893 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
894 * pointer entry point only called by PHY setup routines.
895 **/
896static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
897{
898 struct e1000_phy_info *phy = &hw->phy;
899 s32 ret_val;
900 u16 data;
901
902 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
903 if (ret_val)
904 return ret_val;
905
906 if (active) {
907 data |= IGP02E1000_PM_D0_LPLU;
908 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
909 if (ret_val)
910 return ret_val;
911
912 /* When LPLU is enabled, we should disable SmartSpeed */
913 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
7dbbe5d5
BA
914 if (ret_val)
915 return ret_val;
bc7f75fa
AK
916 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
917 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
918 if (ret_val)
919 return ret_val;
920 } else {
921 data &= ~IGP02E1000_PM_D0_LPLU;
922 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
e921eb1a 923 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
924 * during Dx states where the power conservation is most
925 * important. During driver activity we should enable
ad68076e
BA
926 * SmartSpeed, so performance is maintained.
927 */
bc7f75fa
AK
928 if (phy->smart_speed == e1000_smart_speed_on) {
929 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 930 &data);
bc7f75fa
AK
931 if (ret_val)
932 return ret_val;
933
934 data |= IGP01E1000_PSCFR_SMART_SPEED;
935 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 936 data);
bc7f75fa
AK
937 if (ret_val)
938 return ret_val;
939 } else if (phy->smart_speed == e1000_smart_speed_off) {
940 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 941 &data);
bc7f75fa
AK
942 if (ret_val)
943 return ret_val;
944
945 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
946 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 947 data);
bc7f75fa
AK
948 if (ret_val)
949 return ret_val;
950 }
951 }
952
953 return 0;
954}
955
956/**
957 * e1000_reset_hw_82571 - Reset hardware
958 * @hw: pointer to the HW structure
959 *
fe401674 960 * This resets the hardware into a known state.
bc7f75fa
AK
961 **/
962static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
963{
eca90f55 964 u32 ctrl, ctrl_ext, eecd, tctl;
bc7f75fa 965 s32 ret_val;
bc7f75fa 966
e921eb1a 967 /* Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
968 * on the last TLP read/write transaction when MAC is reset.
969 */
970 ret_val = e1000e_disable_pcie_master(hw);
971 if (ret_val)
3bb99fe2 972 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 973
3bb99fe2 974 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
975 ew32(IMC, 0xffffffff);
976
977 ew32(RCTL, 0);
eca90f55
TD
978 tctl = er32(TCTL);
979 tctl &= ~E1000_TCTL_EN;
980 ew32(TCTL, tctl);
bc7f75fa
AK
981 e1e_flush();
982
1bba4386 983 usleep_range(10000, 20000);
bc7f75fa 984
e921eb1a 985 /* Must acquire the MDIO ownership before MAC reset.
ad68076e
BA
986 * Ownership defaults to firmware after a reset.
987 */
8c81c9c3
AD
988 switch (hw->mac.type) {
989 case e1000_82573:
1b98c2bb
BA
990 ret_val = e1000_get_hw_semaphore_82573(hw);
991 break;
8c81c9c3
AD
992 case e1000_82574:
993 case e1000_82583:
1b98c2bb 994 ret_val = e1000_get_hw_semaphore_82574(hw);
8c81c9c3
AD
995 break;
996 default:
997 break;
bc7f75fa
AK
998 }
999
1000 ctrl = er32(CTRL);
1001
3bb99fe2 1002 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
1003 ew32(CTRL, ctrl | E1000_CTRL_RST);
1004
1b98c2bb
BA
1005 /* Must release MDIO ownership and mutex after MAC reset. */
1006 switch (hw->mac.type) {
35fdb94b
SL
1007 case e1000_82573:
1008 /* Release mutex only if the hw semaphore is acquired */
1009 if (!ret_val)
1010 e1000_put_hw_semaphore_82573(hw);
1011 break;
1b98c2bb
BA
1012 case e1000_82574:
1013 case e1000_82583:
6c1d8b96
AA
1014 /* Release mutex only if the hw semaphore is acquired */
1015 if (!ret_val)
1016 e1000_put_hw_semaphore_82574(hw);
1b98c2bb
BA
1017 break;
1018 default:
1019 break;
1020 }
1021
bc7f75fa 1022 if (hw->nvm.type == e1000_nvm_flash_hw) {
ce43a216 1023 usleep_range(10, 20);
bc7f75fa
AK
1024 ctrl_ext = er32(CTRL_EXT);
1025 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1026 ew32(CTRL_EXT, ctrl_ext);
1027 e1e_flush();
1028 }
1029
1030 ret_val = e1000e_get_auto_rd_done(hw);
1031 if (ret_val)
1032 /* We don't want to continue accessing MAC registers. */
1033 return ret_val;
1034
e921eb1a 1035 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
1036 * Need to wait for Phy configuration completion before accessing
1037 * NVM and Phy.
1038 */
8c81c9c3
AD
1039
1040 switch (hw->mac.type) {
1f56f45d
RA
1041 case e1000_82571:
1042 case e1000_82572:
e921eb1a 1043 /* REQ and GNT bits need to be cleared when using AUTO_RD
1f56f45d
RA
1044 * to access the EEPROM.
1045 */
1046 eecd = er32(EECD);
1047 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1048 ew32(EECD, eecd);
1049 break;
8c81c9c3
AD
1050 case e1000_82573:
1051 case e1000_82574:
1052 case e1000_82583:
bc7f75fa 1053 msleep(25);
8c81c9c3
AD
1054 break;
1055 default:
1056 break;
1057 }
bc7f75fa
AK
1058
1059 /* Clear any pending interrupt events. */
1060 ew32(IMC, 0xffffffff);
dd93f95e 1061 er32(ICR);
bc7f75fa 1062
1aef70ef
BA
1063 if (hw->mac.type == e1000_82571) {
1064 /* Install any alternate MAC address into RAR0 */
1065 ret_val = e1000_check_alt_mac_addr_generic(hw);
1066 if (ret_val)
1067 return ret_val;
608f8a0d 1068
1aef70ef
BA
1069 e1000e_set_laa_state_82571(hw, true);
1070 }
93ca1610 1071
c9523379 1072 /* Reinitialize the 82571 serdes link state machine */
1073 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1074 hw->mac.serdes_link_state = e1000_serdes_link_down;
1075
bc7f75fa
AK
1076 return 0;
1077}
1078
1079/**
1080 * e1000_init_hw_82571 - Initialize hardware
1081 * @hw: pointer to the HW structure
1082 *
1083 * This inits the hardware readying it for operation.
1084 **/
1085static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1086{
1087 struct e1000_mac_info *mac = &hw->mac;
1088 u32 reg_data;
1089 s32 ret_val;
a708dd88 1090 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
1091
1092 e1000_initialize_hw_bits_82571(hw);
1093
1094 /* Initialize identification LED */
d1964eb1 1095 ret_val = mac->ops.id_led_init(hw);
33550cec 1096 /* An error is not fatal and we should not stop init due to this */
de39b752 1097 if (ret_val)
3bb99fe2 1098 e_dbg("Error initializing identification LED\n");
bc7f75fa
AK
1099
1100 /* Disabling VLAN filtering */
3bb99fe2 1101 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 1102 mac->ops.clear_vfta(hw);
bc7f75fa 1103
e921eb1a 1104 /* Setup the receive address.
ad68076e 1105 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
1106 * 82571, we must reserve a RAR for it to work around an issue where
1107 * resetting one port will reload the MAC on the other port.
1108 */
1109 if (e1000e_get_laa_state_82571(hw))
1110 rar_count--;
1111 e1000e_init_rx_addrs(hw, rar_count);
1112
1113 /* Zero out the Multicast HASH table */
3bb99fe2 1114 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
1115 for (i = 0; i < mac->mta_reg_count; i++)
1116 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1117
1118 /* Setup link and flow control */
1a46b40f 1119 ret_val = mac->ops.setup_link(hw);
bc7f75fa
AK
1120
1121 /* Set the transmit descriptor write-back policy */
e9ec2c0f 1122 reg_data = er32(TXDCTL(0));
f0ff4398 1123 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
e5fe2541 1124 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
e9ec2c0f 1125 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
1126
1127 /* ...for both queues. */
8c81c9c3
AD
1128 switch (mac->type) {
1129 case e1000_82573:
a65a4a0d
BA
1130 e1000e_enable_tx_pkt_filtering(hw);
1131 /* fall through */
8c81c9c3
AD
1132 case e1000_82574:
1133 case e1000_82583:
8c81c9c3
AD
1134 reg_data = er32(GCR);
1135 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1136 ew32(GCR, reg_data);
1137 break;
1138 default:
e9ec2c0f 1139 reg_data = er32(TXDCTL(1));
f0ff4398
BA
1140 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1141 E1000_TXDCTL_FULL_TX_DESC_WB |
1142 E1000_TXDCTL_COUNT_DESC);
e9ec2c0f 1143 ew32(TXDCTL(1), reg_data);
8c81c9c3 1144 break;
bc7f75fa
AK
1145 }
1146
e921eb1a 1147 /* Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1148 * important that we do this after we have tried to establish link
1149 * because the symbol error count will increment wildly if there
1150 * is no link.
1151 */
1152 e1000_clear_hw_cntrs_82571(hw);
1153
1154 return ret_val;
1155}
1156
1157/**
1158 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1159 * @hw: pointer to the HW structure
1160 *
1161 * Initializes required hardware-dependent bits needed for normal operation.
1162 **/
1163static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1164{
1165 u32 reg;
1166
1167 /* Transmit Descriptor Control 0 */
e9ec2c0f 1168 reg = er32(TXDCTL(0));
bc7f75fa 1169 reg |= (1 << 22);
e9ec2c0f 1170 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1171
1172 /* Transmit Descriptor Control 1 */
e9ec2c0f 1173 reg = er32(TXDCTL(1));
bc7f75fa 1174 reg |= (1 << 22);
e9ec2c0f 1175 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1176
1177 /* Transmit Arbitration Control 0 */
e9ec2c0f 1178 reg = er32(TARC(0));
e80bd1d1 1179 reg &= ~(0xF << 27); /* 30:27 */
bc7f75fa
AK
1180 switch (hw->mac.type) {
1181 case e1000_82571:
1182 case e1000_82572:
1183 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1184 break;
d6cb17d5
BA
1185 case e1000_82574:
1186 case e1000_82583:
1187 reg |= (1 << 26);
1188 break;
bc7f75fa
AK
1189 default:
1190 break;
1191 }
e9ec2c0f 1192 ew32(TARC(0), reg);
bc7f75fa
AK
1193
1194 /* Transmit Arbitration Control 1 */
e9ec2c0f 1195 reg = er32(TARC(1));
bc7f75fa
AK
1196 switch (hw->mac.type) {
1197 case e1000_82571:
1198 case e1000_82572:
1199 reg &= ~((1 << 29) | (1 << 30));
1200 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1201 if (er32(TCTL) & E1000_TCTL_MULR)
1202 reg &= ~(1 << 28);
1203 else
1204 reg |= (1 << 28);
e9ec2c0f 1205 ew32(TARC(1), reg);
bc7f75fa
AK
1206 break;
1207 default:
1208 break;
1209 }
1210
1211 /* Device Control */
8c81c9c3
AD
1212 switch (hw->mac.type) {
1213 case e1000_82573:
1214 case e1000_82574:
1215 case e1000_82583:
bc7f75fa
AK
1216 reg = er32(CTRL);
1217 reg &= ~(1 << 29);
1218 ew32(CTRL, reg);
8c81c9c3
AD
1219 break;
1220 default:
1221 break;
bc7f75fa
AK
1222 }
1223
1224 /* Extended Device Control */
8c81c9c3
AD
1225 switch (hw->mac.type) {
1226 case e1000_82573:
1227 case e1000_82574:
1228 case e1000_82583:
bc7f75fa
AK
1229 reg = er32(CTRL_EXT);
1230 reg &= ~(1 << 23);
1231 reg |= (1 << 22);
1232 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1233 break;
1234 default:
1235 break;
bc7f75fa 1236 }
4662e82b 1237
6ea7ae1d
AD
1238 if (hw->mac.type == e1000_82571) {
1239 reg = er32(PBA_ECC);
1240 reg |= E1000_PBA_ECC_CORR_EN;
1241 ew32(PBA_ECC, reg);
1242 }
3d3a1676 1243
e921eb1a 1244 /* Workaround for hardware errata.
5df3f0ea 1245 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1246 */
3d3a1676
BA
1247 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1248 reg = er32(CTRL_EXT);
1249 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1250 ew32(CTRL_EXT, reg);
1251 }
6ea7ae1d 1252
e921eb1a 1253 /* Disable IPv6 extension header parsing because some malformed
f6bd5577
MV
1254 * IPv6 headers can hang the Rx.
1255 */
1256 if (hw->mac.type <= e1000_82573) {
1257 reg = er32(RFCTL);
1258 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1259 ew32(RFCTL, reg);
1260 }
1261
78272bba 1262 /* PCI-Ex Control Registers */
8c81c9c3
AD
1263 switch (hw->mac.type) {
1264 case e1000_82574:
1265 case e1000_82583:
4662e82b
BA
1266 reg = er32(GCR);
1267 reg |= (1 << 22);
1268 ew32(GCR, reg);
78272bba 1269
e921eb1a 1270 /* Workaround for hardware errata.
84efb7b9
BA
1271 * apply workaround for hardware errata documented in errata
1272 * docs Fixes issue where some error prone or unreliable PCIe
1273 * completions are occurring, particularly with ASPM enabled.
af667a29 1274 * Without fix, issue can cause Tx timeouts.
84efb7b9 1275 */
78272bba
JB
1276 reg = er32(GCR2);
1277 reg |= 1;
1278 ew32(GCR2, reg);
8c81c9c3
AD
1279 break;
1280 default:
1281 break;
4662e82b 1282 }
bc7f75fa
AK
1283}
1284
1285/**
caaddaf8 1286 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1287 * @hw: pointer to the HW structure
1288 *
1289 * Clears the register array which contains the VLAN filter table by
1290 * setting all the values to 0.
1291 **/
caaddaf8 1292static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1293{
1294 u32 offset;
1295 u32 vfta_value = 0;
1296 u32 vfta_offset = 0;
1297 u32 vfta_bit_in_reg = 0;
1298
8c81c9c3
AD
1299 switch (hw->mac.type) {
1300 case e1000_82573:
1301 case e1000_82574:
1302 case e1000_82583:
bc7f75fa 1303 if (hw->mng_cookie.vlan_id != 0) {
e921eb1a 1304 /* The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1305 * a single VLAN ID. The following operations
1306 * determine which 32b entry (i.e. offset) into the
1307 * array we want to set the VLAN ID (i.e. bit) of
1308 * the manageability unit.
1309 */
1310 vfta_offset = (hw->mng_cookie.vlan_id >>
1311 E1000_VFTA_ENTRY_SHIFT) &
55c5f55e
BA
1312 E1000_VFTA_ENTRY_MASK;
1313 vfta_bit_in_reg =
1314 1 << (hw->mng_cookie.vlan_id &
1315 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
bc7f75fa 1316 }
8c81c9c3
AD
1317 break;
1318 default:
1319 break;
bc7f75fa
AK
1320 }
1321 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
e921eb1a 1322 /* If the offset we want to clear is the same offset of the
bc7f75fa
AK
1323 * manageability VLAN ID, then clear all bits except that of
1324 * the manageability unit.
1325 */
1326 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1327 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1328 e1e_flush();
1329 }
1330}
1331
4662e82b
BA
1332/**
1333 * e1000_check_mng_mode_82574 - Check manageability is enabled
1334 * @hw: pointer to the HW structure
1335 *
1336 * Reads the NVM Initialization Control Word 2 and returns true
1337 * (>0) if any manageability is enabled, else false (0).
1338 **/
1339static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1340{
1341 u16 data;
1342
1343 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1344 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1345}
1346
1347/**
1348 * e1000_led_on_82574 - Turn LED on
1349 * @hw: pointer to the HW structure
1350 *
1351 * Turn LED on.
1352 **/
1353static s32 e1000_led_on_82574(struct e1000_hw *hw)
1354{
1355 u32 ctrl;
1356 u32 i;
1357
1358 ctrl = hw->mac.ledctl_mode2;
1359 if (!(E1000_STATUS_LU & er32(STATUS))) {
e921eb1a 1360 /* If no link, then turn LED on by setting the invert bit
4662e82b
BA
1361 * for each LED that's "on" (0x0E) in ledctl_mode2.
1362 */
1363 for (i = 0; i < 4; i++)
1364 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1365 E1000_LEDCTL_MODE_LED_ON)
1366 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1367 }
1368 ew32(LEDCTL, ctrl);
1369
1370 return 0;
1371}
1372
ff10e13c
CW
1373/**
1374 * e1000_check_phy_82574 - check 82574 phy hung state
1375 * @hw: pointer to the HW structure
1376 *
1377 * Returns whether phy is hung or not
1378 **/
1379bool e1000_check_phy_82574(struct e1000_hw *hw)
1380{
1381 u16 status_1kbt = 0;
1382 u16 receive_errors = 0;
70806a7f 1383 s32 ret_val;
ff10e13c 1384
e921eb1a 1385 /* Read PHY Receive Error counter first, if its is max - all F's then
ff10e13c
CW
1386 * read the Base1000T status register If both are max then PHY is hung.
1387 */
1388 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
ff10e13c 1389 if (ret_val)
5015e53a 1390 return false;
e80bd1d1 1391 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
ff10e13c
CW
1392 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1393 if (ret_val)
5015e53a 1394 return false;
ff10e13c
CW
1395 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1396 E1000_IDLE_ERROR_COUNT_MASK)
5015e53a 1397 return true;
ff10e13c 1398 }
5015e53a
BA
1399
1400 return false;
ff10e13c
CW
1401}
1402
bc7f75fa
AK
1403/**
1404 * e1000_setup_link_82571 - Setup flow control and link settings
1405 * @hw: pointer to the HW structure
1406 *
1407 * Determines which flow control settings to use, then configures flow
1408 * control. Calls the appropriate media-specific link configuration
1409 * function. Assuming the adapter has a valid link partner, a valid link
1410 * should be established. Assumes the hardware has previously been reset
1411 * and the transmitter and receiver are not enabled.
1412 **/
1413static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1414{
e921eb1a 1415 /* 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1416 * the default flow control setting, so we explicitly
1417 * set it to full.
1418 */
8c81c9c3
AD
1419 switch (hw->mac.type) {
1420 case e1000_82573:
1421 case e1000_82574:
1422 case e1000_82583:
1423 if (hw->fc.requested_mode == e1000_fc_default)
1424 hw->fc.requested_mode = e1000_fc_full;
1425 break;
1426 default:
1427 break;
1428 }
bc7f75fa 1429
1a46b40f 1430 return e1000e_setup_link_generic(hw);
bc7f75fa
AK
1431}
1432
1433/**
1434 * e1000_setup_copper_link_82571 - Configure copper link settings
1435 * @hw: pointer to the HW structure
1436 *
1437 * Configures the link for auto-neg or forced speed and duplex. Then we check
1438 * for link, once link is established calls to configure collision distance
1439 * and flow control are called.
1440 **/
1441static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1442{
1443 u32 ctrl;
bc7f75fa
AK
1444 s32 ret_val;
1445
1446 ctrl = er32(CTRL);
1447 ctrl |= E1000_CTRL_SLU;
1448 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1449 ew32(CTRL, ctrl);
1450
1451 switch (hw->phy.type) {
1452 case e1000_phy_m88:
4662e82b 1453 case e1000_phy_bm:
bc7f75fa
AK
1454 ret_val = e1000e_copper_link_setup_m88(hw);
1455 break;
1456 case e1000_phy_igp_2:
1457 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1458 break;
1459 default:
1460 return -E1000_ERR_PHY;
1461 break;
1462 }
1463
1464 if (ret_val)
1465 return ret_val;
1466
7eb61d81 1467 return e1000e_setup_copper_link(hw);
bc7f75fa
AK
1468}
1469
1470/**
1471 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1472 * @hw: pointer to the HW structure
1473 *
1474 * Configures collision distance and flow control for fiber and serdes links.
1475 * Upon successful setup, poll for link.
1476 **/
1477static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1478{
1479 switch (hw->mac.type) {
1480 case e1000_82571:
1481 case e1000_82572:
e921eb1a 1482 /* If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1483 * of reset to take the adapter out of that mode. So we
1484 * have to explicitly take the adapter out of loopback
489815ce 1485 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1486 * if another tool failed to take it out of loopback mode.
1487 */
ad68076e 1488 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1489 break;
1490 default:
1491 break;
1492 }
1493
1494 return e1000e_setup_fiber_serdes_link(hw);
1495}
1496
c9523379 1497/**
1498 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1499 * @hw: pointer to the HW structure
1500 *
1a40d5c1
BA
1501 * Reports the link state as up or down.
1502 *
1503 * If autonegotiation is supported by the link partner, the link state is
1504 * determined by the result of autonegotiation. This is the most likely case.
1505 * If autonegotiation is not supported by the link partner, and the link
1506 * has a valid signal, force the link up.
1507 *
1508 * The link state is represented internally here by 4 states:
1509 *
1510 * 1) down
1511 * 2) autoneg_progress
3ad2f3fb 1512 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1513 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1514 *
c9523379 1515 **/
f6370117 1516static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1517{
1518 struct e1000_mac_info *mac = &hw->mac;
1519 u32 rxcw;
1520 u32 ctrl;
1521 u32 status;
d9c76f99
BA
1522 u32 txcw;
1523 u32 i;
c9523379 1524 s32 ret_val = 0;
1525
1526 ctrl = er32(CTRL);
1527 status = er32(STATUS);
70806a7f 1528 er32(RXCW);
d0efa8f2 1529 /* SYNCH bit and IV bit are sticky */
ce43a216 1530 usleep_range(10, 20);
d0efa8f2 1531 rxcw = er32(RXCW);
c9523379 1532
1533 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
c9523379 1534 /* Receiver is synchronized with no invalid bits. */
1535 switch (mac->serdes_link_state) {
1536 case e1000_serdes_link_autoneg_complete:
1537 if (!(status & E1000_STATUS_LU)) {
e921eb1a 1538 /* We have lost link, retry autoneg before
c9523379 1539 * reporting link failure
1540 */
1541 mac->serdes_link_state =
1542 e1000_serdes_link_autoneg_progress;
1a40d5c1 1543 mac->serdes_has_link = false;
3bb99fe2 1544 e_dbg("AN_UP -> AN_PROG\n");
a82a14f4
BA
1545 } else {
1546 mac->serdes_has_link = true;
c9523379 1547 }
a82a14f4 1548 break;
c9523379 1549
1550 case e1000_serdes_link_forced_up:
e921eb1a 1551 /* If we are receiving /C/ ordered sets, re-enable
c9523379 1552 * auto-negotiation in the TXCW register and disable
1553 * forced link in the Device Control register in an
1554 * attempt to auto-negotiate with our link partner.
1555 */
b7ec70be 1556 if (rxcw & E1000_RXCW_C) {
c9523379 1557 /* Enable autoneg, and unforce link up */
1558 ew32(TXCW, mac->txcw);
1a40d5c1 1559 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1560 mac->serdes_link_state =
1561 e1000_serdes_link_autoneg_progress;
1a40d5c1 1562 mac->serdes_has_link = false;
3bb99fe2 1563 e_dbg("FORCED_UP -> AN_PROG\n");
a82a14f4
BA
1564 } else {
1565 mac->serdes_has_link = true;
c9523379 1566 }
1567 break;
1568
1569 case e1000_serdes_link_autoneg_progress:
1a40d5c1 1570 if (rxcw & E1000_RXCW_C) {
e921eb1a 1571 /* We received /C/ ordered sets, meaning the
1a40d5c1
BA
1572 * link partner has autonegotiated, and we can
1573 * trust the Link Up (LU) status bit.
1574 */
1575 if (status & E1000_STATUS_LU) {
1576 mac->serdes_link_state =
1577 e1000_serdes_link_autoneg_complete;
1578 e_dbg("AN_PROG -> AN_UP\n");
1579 mac->serdes_has_link = true;
1580 } else {
1581 /* Autoneg completed, but failed. */
1582 mac->serdes_link_state =
1583 e1000_serdes_link_down;
1584 e_dbg("AN_PROG -> DOWN\n");
1585 }
c9523379 1586 } else {
e921eb1a 1587 /* The link partner did not autoneg.
1a40d5c1
BA
1588 * Force link up and full duplex, and change
1589 * state to forced.
c9523379 1590 */
1a40d5c1 1591 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1592 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1593 ew32(CTRL, ctrl);
1594
1595 /* Configure Flow Control after link up. */
1a40d5c1 1596 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1597 if (ret_val) {
3bb99fe2 1598 e_dbg("Error config flow control\n");
c9523379 1599 break;
1600 }
1601 mac->serdes_link_state =
1602 e1000_serdes_link_forced_up;
1a40d5c1 1603 mac->serdes_has_link = true;
3bb99fe2 1604 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1605 }
c9523379 1606 break;
1607
1608 case e1000_serdes_link_down:
1609 default:
e921eb1a 1610 /* The link was down but the receiver has now gained
c9523379 1611 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1612 * up.
1613 */
c9523379 1614 ew32(TXCW, mac->txcw);
1a40d5c1 1615 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1616 mac->serdes_link_state =
1617 e1000_serdes_link_autoneg_progress;
a82a14f4 1618 mac->serdes_has_link = false;
3bb99fe2 1619 e_dbg("DOWN -> AN_PROG\n");
c9523379 1620 break;
1621 }
1622 } else {
1623 if (!(rxcw & E1000_RXCW_SYNCH)) {
1624 mac->serdes_has_link = false;
1625 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1626 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1627 } else {
e921eb1a 1628 /* Check several times, if SYNCH bit and CONFIG
18115f82
TD
1629 * bit both are consistently 1 then simply ignore
1630 * the IV bit and restart Autoneg
c9523379 1631 */
d9c76f99 1632 for (i = 0; i < AN_RETRY_COUNT; i++) {
ce43a216 1633 usleep_range(10, 20);
d9c76f99 1634 rxcw = er32(RXCW);
18115f82
TD
1635 if ((rxcw & E1000_RXCW_SYNCH) &&
1636 (rxcw & E1000_RXCW_C))
1637 continue;
1638
1639 if (rxcw & E1000_RXCW_IV) {
d9c76f99
BA
1640 mac->serdes_has_link = false;
1641 mac->serdes_link_state =
1642 e1000_serdes_link_down;
1643 e_dbg("ANYSTATE -> DOWN\n");
1644 break;
1645 }
1646 }
1647
1648 if (i == AN_RETRY_COUNT) {
1649 txcw = er32(TXCW);
1650 txcw |= E1000_TXCW_ANE;
1651 ew32(TXCW, txcw);
1652 mac->serdes_link_state =
1653 e1000_serdes_link_autoneg_progress;
c9523379 1654 mac->serdes_has_link = false;
d9c76f99 1655 e_dbg("ANYSTATE -> AN_PROG\n");
c9523379 1656 }
1657 }
1658 }
1659
1660 return ret_val;
1661}
1662
bc7f75fa
AK
1663/**
1664 * e1000_valid_led_default_82571 - Verify a valid default LED config
1665 * @hw: pointer to the HW structure
1666 * @data: pointer to the NVM (EEPROM)
1667 *
1668 * Read the EEPROM for the current default LED configuration. If the
1669 * LED configuration is not valid, set to a valid LED configuration.
1670 **/
1671static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1672{
1673 s32 ret_val;
1674
1675 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1676 if (ret_val) {
3bb99fe2 1677 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1678 return ret_val;
1679 }
1680
8c81c9c3
AD
1681 switch (hw->mac.type) {
1682 case e1000_82573:
1683 case e1000_82574:
1684 case e1000_82583:
1685 if (*data == ID_LED_RESERVED_F746)
1686 *data = ID_LED_DEFAULT_82573;
1687 break;
1688 default:
1689 if (*data == ID_LED_RESERVED_0000 ||
1690 *data == ID_LED_RESERVED_FFFF)
1691 *data = ID_LED_DEFAULT;
1692 break;
1693 }
bc7f75fa
AK
1694
1695 return 0;
1696}
1697
1698/**
1699 * e1000e_get_laa_state_82571 - Get locally administered address state
1700 * @hw: pointer to the HW structure
1701 *
489815ce 1702 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1703 **/
1704bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1705{
1706 if (hw->mac.type != e1000_82571)
564ea9bb 1707 return false;
bc7f75fa
AK
1708
1709 return hw->dev_spec.e82571.laa_is_present;
1710}
1711
1712/**
1713 * e1000e_set_laa_state_82571 - Set locally administered address state
1714 * @hw: pointer to the HW structure
1715 * @state: enable/disable locally administered address
1716 *
5ff5b664 1717 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1718 **/
1719void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1720{
1721 if (hw->mac.type != e1000_82571)
1722 return;
1723
1724 hw->dev_spec.e82571.laa_is_present = state;
1725
1726 /* If workaround is activated... */
1727 if (state)
e921eb1a 1728 /* Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1729 * between the time RAR[0] gets clobbered and the time it
1730 * gets fixed, the actual LAA is in one of the RARs and no
1731 * incoming packets directed to this port are dropped.
1732 * Eventually the LAA will be in RAR[0] and RAR[14].
1733 */
69e1e019
BA
1734 hw->mac.ops.rar_set(hw, hw->mac.addr,
1735 hw->mac.rar_entry_count - 1);
bc7f75fa
AK
1736}
1737
1738/**
1739 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1740 * @hw: pointer to the HW structure
1741 *
1742 * Verifies that the EEPROM has completed the update. After updating the
1743 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1744 * the checksum fix is not implemented, we need to set the bit and update
1745 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1746 * we need to return bad checksum.
1747 **/
1748static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1749{
1750 struct e1000_nvm_info *nvm = &hw->nvm;
1751 s32 ret_val;
1752 u16 data;
1753
1754 if (nvm->type != e1000_nvm_flash_hw)
1755 return 0;
1756
e921eb1a 1757 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1758 * 10h-12h. Checksum may need to be fixed.
1759 */
1760 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1761 if (ret_val)
1762 return ret_val;
1763
1764 if (!(data & 0x10)) {
e921eb1a 1765 /* Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1766 * when the checksum has already been fixed. If
1767 * the checksum is still wrong and this bit is a
1768 * 1, we need to return bad checksum. Otherwise,
1769 * we need to set this bit to a 1 and update the
1770 * checksum.
1771 */
1772 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1773 if (ret_val)
1774 return ret_val;
1775
1776 if (!(data & 0x8000)) {
1777 data |= 0x8000;
1778 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1779 if (ret_val)
1780 return ret_val;
1781 ret_val = e1000e_update_nvm_checksum(hw);
7dbbe5d5
BA
1782 if (ret_val)
1783 return ret_val;
bc7f75fa
AK
1784 }
1785 }
1786
1787 return 0;
1788}
1789
608f8a0d
BA
1790/**
1791 * e1000_read_mac_addr_82571 - Read device MAC address
1792 * @hw: pointer to the HW structure
1793 **/
1794static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1795{
1aef70ef 1796 if (hw->mac.type == e1000_82571) {
70806a7f 1797 s32 ret_val;
5015e53a 1798
e921eb1a 1799 /* If there's an alternate MAC address place it in RAR0
1aef70ef
BA
1800 * so that it will override the Si installed default perm
1801 * address.
1802 */
1803 ret_val = e1000_check_alt_mac_addr_generic(hw);
1804 if (ret_val)
5015e53a 1805 return ret_val;
1aef70ef 1806 }
608f8a0d 1807
5015e53a 1808 return e1000_read_mac_addr_generic(hw);
608f8a0d
BA
1809}
1810
17f208de
BA
1811/**
1812 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1813 * @hw: pointer to the HW structure
1814 *
1815 * In the case of a PHY power down to save power, or to turn off link during a
1816 * driver unload, or wake on lan is not enabled, remove the link.
1817 **/
1818static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1819{
1820 struct e1000_phy_info *phy = &hw->phy;
1821 struct e1000_mac_info *mac = &hw->mac;
1822
668018d7 1823 if (!phy->ops.check_reset_block)
17f208de
BA
1824 return;
1825
1826 /* If the management interface is not enabled, then power down */
1827 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1828 e1000_power_down_phy_copper(hw);
17f208de
BA
1829}
1830
bc7f75fa
AK
1831/**
1832 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1833 * @hw: pointer to the HW structure
1834 *
1835 * Clears the hardware counters by reading the counter registers.
1836 **/
1837static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1838{
bc7f75fa
AK
1839 e1000e_clear_hw_cntrs_base(hw);
1840
99673d9b
BA
1841 er32(PRC64);
1842 er32(PRC127);
1843 er32(PRC255);
1844 er32(PRC511);
1845 er32(PRC1023);
1846 er32(PRC1522);
1847 er32(PTC64);
1848 er32(PTC127);
1849 er32(PTC255);
1850 er32(PTC511);
1851 er32(PTC1023);
1852 er32(PTC1522);
1853
1854 er32(ALGNERRC);
1855 er32(RXERRC);
1856 er32(TNCRS);
1857 er32(CEXTERR);
1858 er32(TSCTC);
1859 er32(TSCTFC);
1860
1861 er32(MGTPRC);
1862 er32(MGTPDC);
1863 er32(MGTPTC);
1864
1865 er32(IAC);
1866 er32(ICRXOC);
1867
1868 er32(ICRXPTC);
1869 er32(ICRXATC);
1870 er32(ICTXPTC);
1871 er32(ICTXATC);
1872 er32(ICTXQEC);
1873 er32(ICTXQMTC);
1874 er32(ICRXDMTC);
bc7f75fa
AK
1875}
1876
8ce9d6c7 1877static const struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1878 /* .check_mng_mode: mac type dependent */
bc7f75fa 1879 /* .check_for_link: media type dependent */
d1964eb1 1880 .id_led_init = e1000e_id_led_init_generic,
bc7f75fa
AK
1881 .cleanup_led = e1000e_cleanup_led_generic,
1882 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1883 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1884 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1885 /* .get_link_up_info: media type dependent */
4662e82b 1886 /* .led_on: mac type dependent */
bc7f75fa 1887 .led_off = e1000e_led_off_generic,
ab8932f3 1888 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1889 .write_vfta = e1000_write_vfta_generic,
1890 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1891 .reset_hw = e1000_reset_hw_82571,
1892 .init_hw = e1000_init_hw_82571,
1893 .setup_link = e1000_setup_link_82571,
1894 /* .setup_physical_interface: media type dependent */
a4f58f54 1895 .setup_led = e1000e_setup_led_generic,
57cde763 1896 .config_collision_dist = e1000e_config_collision_dist_generic,
608f8a0d 1897 .read_mac_addr = e1000_read_mac_addr_82571,
69e1e019 1898 .rar_set = e1000e_rar_set_generic,
bc7f75fa
AK
1899};
1900
8ce9d6c7 1901static const struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1902 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1903 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1904 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1905 .commit = NULL,
bc7f75fa
AK
1906 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1907 .get_cfg_done = e1000_get_cfg_done_82571,
1908 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1909 .get_info = e1000e_get_phy_info_igp,
1910 .read_reg = e1000e_read_phy_reg_igp,
1911 .release = e1000_put_hw_semaphore_82571,
1912 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1913 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1914 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1915 .write_reg = e1000e_write_phy_reg_igp,
55c5f55e 1916 .cfg_on_link_up = NULL,
bc7f75fa
AK
1917};
1918
8ce9d6c7 1919static const struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1920 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1921 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1922 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1923 .commit = e1000e_phy_sw_reset,
bc7f75fa 1924 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
fe90849f 1925 .get_cfg_done = e1000e_get_cfg_done_generic,
bc7f75fa 1926 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1927 .get_info = e1000e_get_phy_info_m88,
1928 .read_reg = e1000e_read_phy_reg_m88,
1929 .release = e1000_put_hw_semaphore_82571,
1930 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1931 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1932 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1933 .write_reg = e1000e_write_phy_reg_m88,
55c5f55e 1934 .cfg_on_link_up = NULL,
bc7f75fa
AK
1935};
1936
8ce9d6c7 1937static const struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1938 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1939 .check_polarity = e1000_check_polarity_m88,
4662e82b 1940 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1941 .commit = e1000e_phy_sw_reset,
4662e82b 1942 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
fe90849f 1943 .get_cfg_done = e1000e_get_cfg_done_generic,
4662e82b 1944 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1945 .get_info = e1000e_get_phy_info_m88,
1946 .read_reg = e1000e_read_phy_reg_bm2,
1947 .release = e1000_put_hw_semaphore_82571,
1948 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1949 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1950 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1951 .write_reg = e1000e_write_phy_reg_bm2,
55c5f55e 1952 .cfg_on_link_up = NULL,
4662e82b
BA
1953};
1954
8ce9d6c7 1955static const struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1956 .acquire = e1000_acquire_nvm_82571,
1957 .read = e1000e_read_nvm_eerd,
1958 .release = e1000_release_nvm_82571,
e85e3639 1959 .reload = e1000e_reload_nvm_generic,
94d8186a 1960 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1961 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1962 .validate = e1000_validate_nvm_checksum_82571,
1963 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1964};
1965
8ce9d6c7 1966const struct e1000_info e1000_82571_info = {
bc7f75fa
AK
1967 .mac = e1000_82571,
1968 .flags = FLAG_HAS_HW_VLAN_FILTER
1969 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1970 | FLAG_HAS_WOL
1971 | FLAG_APME_IN_CTRL3
bc7f75fa 1972 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1973 | FLAG_HAS_SMART_POWER_DOWN
1974 | FLAG_RESET_OVERWRITES_LAA /* errata */
1975 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1976 | FLAG_APME_CHECK_PORT_B,
3a3b7586
JB
1977 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1978 | FLAG2_DMA_BURST,
bc7f75fa 1979 .pba = 38,
2adc55c9 1980 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1981 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1982 .mac_ops = &e82571_mac_ops,
1983 .phy_ops = &e82_phy_ops_igp,
1984 .nvm_ops = &e82571_nvm_ops,
1985};
1986
8ce9d6c7 1987const struct e1000_info e1000_82572_info = {
bc7f75fa
AK
1988 .mac = e1000_82572,
1989 .flags = FLAG_HAS_HW_VLAN_FILTER
1990 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1991 | FLAG_HAS_WOL
1992 | FLAG_APME_IN_CTRL3
bc7f75fa 1993 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa 1994 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
3a3b7586
JB
1995 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1996 | FLAG2_DMA_BURST,
bc7f75fa 1997 .pba = 38,
2adc55c9 1998 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1999 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2000 .mac_ops = &e82571_mac_ops,
2001 .phy_ops = &e82_phy_ops_igp,
2002 .nvm_ops = &e82571_nvm_ops,
2003};
2004
8ce9d6c7 2005const struct e1000_info e1000_82573_info = {
bc7f75fa
AK
2006 .mac = e1000_82573,
2007 .flags = FLAG_HAS_HW_VLAN_FILTER
bc7f75fa
AK
2008 | FLAG_HAS_WOL
2009 | FLAG_APME_IN_CTRL3
bc7f75fa
AK
2010 | FLAG_HAS_SMART_POWER_DOWN
2011 | FLAG_HAS_AMT
bc7f75fa 2012 | FLAG_HAS_SWSM_ON_LOAD,
78cd29d5
BA
2013 .flags2 = FLAG2_DISABLE_ASPM_L1
2014 | FLAG2_DISABLE_ASPM_L0S,
bc7f75fa 2015 .pba = 20,
2adc55c9 2016 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 2017 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
2018 .mac_ops = &e82571_mac_ops,
2019 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 2020 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
2021};
2022
8ce9d6c7 2023const struct e1000_info e1000_82574_info = {
4662e82b
BA
2024 .mac = e1000_82574,
2025 .flags = FLAG_HAS_HW_VLAN_FILTER
2026 | FLAG_HAS_MSIX
2027 | FLAG_HAS_JUMBO_FRAMES
2028 | FLAG_HAS_WOL
b67e1913 2029 | FLAG_HAS_HW_TIMESTAMP
4662e82b 2030 | FLAG_APME_IN_CTRL3
4662e82b
BA
2031 | FLAG_HAS_SMART_POWER_DOWN
2032 | FLAG_HAS_AMT
2033 | FLAG_HAS_CTRLEXT_ON_LOAD,
d4a4206e 2034 .flags2 = FLAG2_CHECK_PHY_HANG
7f99ae63 2035 | FLAG2_DISABLE_ASPM_L0S
d4a4206e 2036 | FLAG2_DISABLE_ASPM_L1
2cb7a9cc
MV
2037 | FLAG2_NO_DISABLE_RX
2038 | FLAG2_DMA_BURST,
ed5c2b0b 2039 .pba = 32,
a825e00c 2040 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
2041 .get_variants = e1000_get_variants_82571,
2042 .mac_ops = &e82571_mac_ops,
2043 .phy_ops = &e82_phy_ops_bm,
2044 .nvm_ops = &e82571_nvm_ops,
2045};
2046
8ce9d6c7 2047const struct e1000_info e1000_82583_info = {
8c81c9c3
AD
2048 .mac = e1000_82583,
2049 .flags = FLAG_HAS_HW_VLAN_FILTER
2050 | FLAG_HAS_WOL
b67e1913 2051 | FLAG_HAS_HW_TIMESTAMP
8c81c9c3 2052 | FLAG_APME_IN_CTRL3
8c81c9c3
AD
2053 | FLAG_HAS_SMART_POWER_DOWN
2054 | FLAG_HAS_AMT
a3d72d5d 2055 | FLAG_HAS_JUMBO_FRAMES
8c81c9c3 2056 | FLAG_HAS_CTRLEXT_ON_LOAD,
7f99ae63 2057 .flags2 = FLAG2_DISABLE_ASPM_L0S
b43e867a 2058 | FLAG2_DISABLE_ASPM_L1
7f99ae63 2059 | FLAG2_NO_DISABLE_RX,
ed5c2b0b 2060 .pba = 32,
a3d72d5d 2061 .max_hw_frame_size = DEFAULT_JUMBO,
8c81c9c3
AD
2062 .get_variants = e1000_get_variants_82571,
2063 .mac_ops = &e82571_mac_ops,
2064 .phy_ops = &e82_phy_ops_bm,
2065 .nvm_ops = &e82571_nvm_ops,
2066};