Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/linville...
[linux-2.6-block.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
0abb6eb1 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
3d41e30a 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
d0bb53e1 30#include <net/ip6_checksum.h>
5377a416 31#include <linux/io.h>
70c71606 32#include <linux/prefetch.h>
5622e404
JP
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
5377a416 35
1da177e4 36char e1000_driver_name[] = "e1000";
3ad2cc67 37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
ab08853f 38#define DRV_VERSION "7.3.21-k8-NAPI"
abec42a4
SH
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
1da177e4
LT
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
a3aa1884 49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
1da177e4
LT
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
2648345f 69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
1da177e4
LT
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
b7ee49db 84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
b7ee49db 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
5377a416 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
1da177e4
LT
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
35574764
NN
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
35574764
NN
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
3ad2cc67 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
35574764 102 struct e1000_tx_ring *txdr);
3ad2cc67 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
35574764 104 struct e1000_rx_ring *rxdr);
3ad2cc67 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
35574764 106 struct e1000_tx_ring *tx_ring);
3ad2cc67 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
35574764
NN
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
1da177e4
LT
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void __devexit e1000_remove(struct pci_dev *pdev);
581d708e 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
1da177e4
LT
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
581d708e
MC
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
db0ce50d 128static void e1000_set_rx_mode(struct net_device *netdev);
5cf42fcd 129static void e1000_update_phy_info_task(struct work_struct *work);
a4010afe 130static void e1000_watchdog(struct work_struct *work);
5cf42fcd 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
3b29a56d
SH
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
1da177e4
LT
134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
7d12e780 137static irqreturn_t e1000_intr(int irq, void *data);
c3033b01
JP
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
bea3348e 140static int e1000_clean(struct napi_struct *napi, int budget);
c3033b01
JP
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
edbbb3ca
JB
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
581d708e 147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
edbbb3ca 148 struct e1000_rx_ring *rx_ring,
72d64a43 149 int cleaned_count);
edbbb3ca
JB
150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
1da177e4
LT
153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
1da177e4
LT
156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158static void e1000_tx_timeout(struct net_device *dev);
65f27f38 159static void e1000_reset_task(struct work_struct *work);
1da177e4 160static void e1000_smartspeed(struct e1000_adapter *adapter);
e619d523
AK
161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
1da177e4 163
5622e404 164static bool e1000_vlan_used(struct e1000_adapter *adapter);
c8f44aff
MM
165static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
8e586137
JP
167static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
168static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
1da177e4
LT
169static void e1000_restore_vlan(struct e1000_adapter *adapter);
170
6fdfef16 171#ifdef CONFIG_PM
b43fcd7d 172static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
1da177e4
LT
173static int e1000_resume(struct pci_dev *pdev);
174#endif
c653e635 175static void e1000_shutdown(struct pci_dev *pdev);
1da177e4
LT
176
177#ifdef CONFIG_NET_POLL_CONTROLLER
178/* for netdump / net console */
179static void e1000_netpoll (struct net_device *netdev);
180#endif
181
1f753861
JB
182#define COPYBREAK_DEFAULT 256
183static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
184module_param(copybreak, uint, 0644);
185MODULE_PARM_DESC(copybreak,
186 "Maximum size of packet that is copied to a new buffer on receive");
187
9026729b
AK
188static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
189 pci_channel_state_t state);
190static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
191static void e1000_io_resume(struct pci_dev *pdev);
192
193static struct pci_error_handlers e1000_err_handler = {
194 .error_detected = e1000_io_error_detected,
195 .slot_reset = e1000_io_slot_reset,
196 .resume = e1000_io_resume,
197};
24025e4e 198
1da177e4
LT
199static struct pci_driver e1000_driver = {
200 .name = e1000_driver_name,
201 .id_table = e1000_pci_tbl,
202 .probe = e1000_probe,
203 .remove = __devexit_p(e1000_remove),
c4e24f01 204#ifdef CONFIG_PM
25985edc 205 /* Power Management Hooks */
1da177e4 206 .suspend = e1000_suspend,
c653e635 207 .resume = e1000_resume,
1da177e4 208#endif
9026729b
AK
209 .shutdown = e1000_shutdown,
210 .err_handler = &e1000_err_handler
1da177e4
LT
211};
212
213MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
214MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
215MODULE_LICENSE("GPL");
216MODULE_VERSION(DRV_VERSION);
217
218static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
219module_param(debug, int, 0);
220MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
221
675ad473
ET
222/**
223 * e1000_get_hw_dev - return device
224 * used by hardware layer to print debugging information
225 *
226 **/
227struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
228{
229 struct e1000_adapter *adapter = hw->back;
230 return adapter->netdev;
231}
232
1da177e4
LT
233/**
234 * e1000_init_module - Driver Registration Routine
235 *
236 * e1000_init_module is the first routine called when the driver is
237 * loaded. All it does is register with the PCI subsystem.
238 **/
239
64798845 240static int __init e1000_init_module(void)
1da177e4
LT
241{
242 int ret;
675ad473 243 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
1da177e4 244
675ad473 245 pr_info("%s\n", e1000_copyright);
1da177e4 246
29917620 247 ret = pci_register_driver(&e1000_driver);
1f753861
JB
248 if (copybreak != COPYBREAK_DEFAULT) {
249 if (copybreak == 0)
675ad473 250 pr_info("copybreak disabled\n");
1f753861 251 else
675ad473
ET
252 pr_info("copybreak enabled for "
253 "packets <= %u bytes\n", copybreak);
1f753861 254 }
1da177e4
LT
255 return ret;
256}
257
258module_init(e1000_init_module);
259
260/**
261 * e1000_exit_module - Driver Exit Cleanup Routine
262 *
263 * e1000_exit_module is called just before the driver is removed
264 * from memory.
265 **/
266
64798845 267static void __exit e1000_exit_module(void)
1da177e4 268{
1da177e4
LT
269 pci_unregister_driver(&e1000_driver);
270}
271
272module_exit(e1000_exit_module);
273
2db10a08
AK
274static int e1000_request_irq(struct e1000_adapter *adapter)
275{
276 struct net_device *netdev = adapter->netdev;
3e18826c 277 irq_handler_t handler = e1000_intr;
e94bd23f
AK
278 int irq_flags = IRQF_SHARED;
279 int err;
2db10a08 280
e94bd23f
AK
281 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
282 netdev);
283 if (err) {
feb8f478 284 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
e94bd23f 285 }
2db10a08
AK
286
287 return err;
288}
289
290static void e1000_free_irq(struct e1000_adapter *adapter)
291{
292 struct net_device *netdev = adapter->netdev;
293
294 free_irq(adapter->pdev->irq, netdev);
2db10a08
AK
295}
296
1da177e4
LT
297/**
298 * e1000_irq_disable - Mask off interrupt generation on the NIC
299 * @adapter: board private structure
300 **/
301
64798845 302static void e1000_irq_disable(struct e1000_adapter *adapter)
1da177e4 303{
1dc32918
JP
304 struct e1000_hw *hw = &adapter->hw;
305
306 ew32(IMC, ~0);
307 E1000_WRITE_FLUSH();
1da177e4
LT
308 synchronize_irq(adapter->pdev->irq);
309}
310
311/**
312 * e1000_irq_enable - Enable default interrupt generation settings
313 * @adapter: board private structure
314 **/
315
64798845 316static void e1000_irq_enable(struct e1000_adapter *adapter)
1da177e4 317{
1dc32918
JP
318 struct e1000_hw *hw = &adapter->hw;
319
320 ew32(IMS, IMS_ENABLE_MASK);
321 E1000_WRITE_FLUSH();
1da177e4 322}
3ad2cc67 323
64798845 324static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2d7edb92 325{
1dc32918 326 struct e1000_hw *hw = &adapter->hw;
2d7edb92 327 struct net_device *netdev = adapter->netdev;
1dc32918 328 u16 vid = hw->mng_cookie.vlan_id;
406874a7 329 u16 old_vid = adapter->mng_vlan_id;
96838a40 330
5622e404
JP
331 if (!e1000_vlan_used(adapter))
332 return;
333
334 if (!test_bit(vid, adapter->active_vlans)) {
335 if (hw->mng_cookie.status &
336 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
337 e1000_vlan_rx_add_vid(netdev, vid);
c5f226fe 338 adapter->mng_vlan_id = vid;
5622e404
JP
339 } else {
340 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
341 }
342 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
343 (vid != old_vid) &&
344 !test_bit(old_vid, adapter->active_vlans))
345 e1000_vlan_rx_kill_vid(netdev, old_vid);
346 } else {
347 adapter->mng_vlan_id = vid;
2d7edb92
MC
348 }
349}
b55ccb35 350
64798845 351static void e1000_init_manageability(struct e1000_adapter *adapter)
0fccd0e9 352{
1dc32918
JP
353 struct e1000_hw *hw = &adapter->hw;
354
0fccd0e9 355 if (adapter->en_mng_pt) {
1dc32918 356 u32 manc = er32(MANC);
0fccd0e9
JG
357
358 /* disable hardware interception of ARP */
359 manc &= ~(E1000_MANC_ARP_EN);
360
1dc32918 361 ew32(MANC, manc);
0fccd0e9
JG
362 }
363}
364
64798845 365static void e1000_release_manageability(struct e1000_adapter *adapter)
0fccd0e9 366{
1dc32918
JP
367 struct e1000_hw *hw = &adapter->hw;
368
0fccd0e9 369 if (adapter->en_mng_pt) {
1dc32918 370 u32 manc = er32(MANC);
0fccd0e9
JG
371
372 /* re-enable hardware interception of ARP */
373 manc |= E1000_MANC_ARP_EN;
374
1dc32918 375 ew32(MANC, manc);
0fccd0e9
JG
376 }
377}
378
e0aac5a2
AK
379/**
380 * e1000_configure - configure the hardware for RX and TX
381 * @adapter = private board structure
382 **/
383static void e1000_configure(struct e1000_adapter *adapter)
1da177e4
LT
384{
385 struct net_device *netdev = adapter->netdev;
2db10a08 386 int i;
1da177e4 387
db0ce50d 388 e1000_set_rx_mode(netdev);
1da177e4
LT
389
390 e1000_restore_vlan(adapter);
0fccd0e9 391 e1000_init_manageability(adapter);
1da177e4
LT
392
393 e1000_configure_tx(adapter);
394 e1000_setup_rctl(adapter);
395 e1000_configure_rx(adapter);
72d64a43
JK
396 /* call E1000_DESC_UNUSED which always leaves
397 * at least 1 descriptor unused to make sure
398 * next_to_use != next_to_clean */
f56799ea 399 for (i = 0; i < adapter->num_rx_queues; i++) {
72d64a43 400 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
a292ca6e
JK
401 adapter->alloc_rx_buf(adapter, ring,
402 E1000_DESC_UNUSED(ring));
f56799ea 403 }
e0aac5a2
AK
404}
405
406int e1000_up(struct e1000_adapter *adapter)
407{
1dc32918
JP
408 struct e1000_hw *hw = &adapter->hw;
409
e0aac5a2
AK
410 /* hardware has been reset, we need to reload some things */
411 e1000_configure(adapter);
412
413 clear_bit(__E1000_DOWN, &adapter->flags);
7bfa4816 414
bea3348e 415 napi_enable(&adapter->napi);
c3570acb 416
5de55624
MC
417 e1000_irq_enable(adapter);
418
4cb9be7a
JB
419 netif_wake_queue(adapter->netdev);
420
79f3d399 421 /* fire a link change interrupt to start the watchdog */
1dc32918 422 ew32(ICS, E1000_ICS_LSC);
1da177e4
LT
423 return 0;
424}
425
79f05bf0
AK
426/**
427 * e1000_power_up_phy - restore link in case the phy was powered down
428 * @adapter: address of board private structure
429 *
430 * The phy may be powered down to save power and turn off link when the
431 * driver is unloaded and wake on lan is not enabled (among others)
432 * *** this routine MUST be followed by a call to e1000_reset ***
433 *
434 **/
435
d658266e 436void e1000_power_up_phy(struct e1000_adapter *adapter)
79f05bf0 437{
1dc32918 438 struct e1000_hw *hw = &adapter->hw;
406874a7 439 u16 mii_reg = 0;
79f05bf0
AK
440
441 /* Just clear the power down bit to wake the phy back up */
1dc32918 442 if (hw->media_type == e1000_media_type_copper) {
79f05bf0
AK
443 /* according to the manual, the phy will retain its
444 * settings across a power-down/up cycle */
1dc32918 445 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
79f05bf0 446 mii_reg &= ~MII_CR_POWER_DOWN;
1dc32918 447 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
79f05bf0
AK
448 }
449}
450
451static void e1000_power_down_phy(struct e1000_adapter *adapter)
452{
1dc32918
JP
453 struct e1000_hw *hw = &adapter->hw;
454
61c2505f 455 /* Power down the PHY so no link is implied when interface is down *
c3033b01 456 * The PHY cannot be powered down if any of the following is true *
79f05bf0
AK
457 * (a) WoL is enabled
458 * (b) AMT is active
459 * (c) SoL/IDER session is active */
1dc32918
JP
460 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
461 hw->media_type == e1000_media_type_copper) {
406874a7 462 u16 mii_reg = 0;
61c2505f 463
1dc32918 464 switch (hw->mac_type) {
61c2505f
BA
465 case e1000_82540:
466 case e1000_82545:
467 case e1000_82545_rev_3:
468 case e1000_82546:
5377a416 469 case e1000_ce4100:
61c2505f
BA
470 case e1000_82546_rev_3:
471 case e1000_82541:
472 case e1000_82541_rev_2:
473 case e1000_82547:
474 case e1000_82547_rev_2:
1dc32918 475 if (er32(MANC) & E1000_MANC_SMBUS_EN)
61c2505f
BA
476 goto out;
477 break;
61c2505f
BA
478 default:
479 goto out;
480 }
1dc32918 481 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
79f05bf0 482 mii_reg |= MII_CR_POWER_DOWN;
1dc32918 483 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
4e0d8f7d 484 msleep(1);
79f05bf0 485 }
61c2505f
BA
486out:
487 return;
79f05bf0
AK
488}
489
a4010afe
JB
490static void e1000_down_and_stop(struct e1000_adapter *adapter)
491{
492 set_bit(__E1000_DOWN, &adapter->flags);
493 cancel_work_sync(&adapter->reset_task);
494 cancel_delayed_work_sync(&adapter->watchdog_task);
495 cancel_delayed_work_sync(&adapter->phy_info_task);
496 cancel_delayed_work_sync(&adapter->fifo_stall_task);
497}
498
64798845 499void e1000_down(struct e1000_adapter *adapter)
1da177e4 500{
a6c42322 501 struct e1000_hw *hw = &adapter->hw;
1da177e4 502 struct net_device *netdev = adapter->netdev;
a6c42322 503 u32 rctl, tctl;
1da177e4 504
1314bbf3 505
a6c42322
JB
506 /* disable receives in the hardware */
507 rctl = er32(RCTL);
508 ew32(RCTL, rctl & ~E1000_RCTL_EN);
509 /* flush and sleep below */
510
51851073 511 netif_tx_disable(netdev);
a6c42322
JB
512
513 /* disable transmits in the hardware */
514 tctl = er32(TCTL);
515 tctl &= ~E1000_TCTL_EN;
516 ew32(TCTL, tctl);
517 /* flush both disables and wait for them to finish */
518 E1000_WRITE_FLUSH();
519 msleep(10);
520
bea3348e 521 napi_disable(&adapter->napi);
c3570acb 522
1da177e4 523 e1000_irq_disable(adapter);
c1605eb3 524
ab08853f
AC
525 /*
526 * Setting DOWN must be after irq_disable to prevent
527 * a screaming interrupt. Setting DOWN also prevents
a4010afe 528 * tasks from rescheduling.
ab08853f 529 */
a4010afe 530 e1000_down_and_stop(adapter);
1da177e4 531
1da177e4
LT
532 adapter->link_speed = 0;
533 adapter->link_duplex = 0;
534 netif_carrier_off(netdev);
1da177e4
LT
535
536 e1000_reset(adapter);
581d708e
MC
537 e1000_clean_all_tx_rings(adapter);
538 e1000_clean_all_rx_rings(adapter);
1da177e4 539}
1da177e4 540
38df7a39 541static void e1000_reinit_safe(struct e1000_adapter *adapter)
338c15e4
JB
542{
543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
544 msleep(1);
0ef4eedc 545 mutex_lock(&adapter->mutex);
338c15e4
JB
546 e1000_down(adapter);
547 e1000_up(adapter);
0ef4eedc 548 mutex_unlock(&adapter->mutex);
338c15e4
JB
549 clear_bit(__E1000_RESETTING, &adapter->flags);
550}
551
64798845 552void e1000_reinit_locked(struct e1000_adapter *adapter)
2db10a08 553{
338c15e4
JB
554 /* if rtnl_lock is not held the call path is bogus */
555 ASSERT_RTNL();
2db10a08
AK
556 WARN_ON(in_interrupt());
557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558 msleep(1);
559 e1000_down(adapter);
560 e1000_up(adapter);
561 clear_bit(__E1000_RESETTING, &adapter->flags);
1da177e4
LT
562}
563
64798845 564void e1000_reset(struct e1000_adapter *adapter)
1da177e4 565{
1dc32918 566 struct e1000_hw *hw = &adapter->hw;
406874a7 567 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
c3033b01 568 bool legacy_pba_adjust = false;
b7cb8c2c 569 u16 hwm;
1da177e4
LT
570
571 /* Repartition Pba for greater than 9k mtu
572 * To take effect CTRL.RST is required.
573 */
574
1dc32918 575 switch (hw->mac_type) {
018ea44e
BA
576 case e1000_82542_rev2_0:
577 case e1000_82542_rev2_1:
578 case e1000_82543:
579 case e1000_82544:
580 case e1000_82540:
581 case e1000_82541:
582 case e1000_82541_rev_2:
c3033b01 583 legacy_pba_adjust = true;
018ea44e
BA
584 pba = E1000_PBA_48K;
585 break;
586 case e1000_82545:
587 case e1000_82545_rev_3:
588 case e1000_82546:
5377a416 589 case e1000_ce4100:
018ea44e
BA
590 case e1000_82546_rev_3:
591 pba = E1000_PBA_48K;
592 break;
2d7edb92 593 case e1000_82547:
0e6ef3e0 594 case e1000_82547_rev_2:
c3033b01 595 legacy_pba_adjust = true;
2d7edb92
MC
596 pba = E1000_PBA_30K;
597 break;
018ea44e
BA
598 case e1000_undefined:
599 case e1000_num_macs:
2d7edb92
MC
600 break;
601 }
602
c3033b01 603 if (legacy_pba_adjust) {
b7cb8c2c 604 if (hw->max_frame_size > E1000_RXBUFFER_8192)
018ea44e 605 pba -= 8; /* allocate more FIFO for Tx */
2d7edb92 606
1dc32918 607 if (hw->mac_type == e1000_82547) {
018ea44e
BA
608 adapter->tx_fifo_head = 0;
609 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610 adapter->tx_fifo_size =
611 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612 atomic_set(&adapter->tx_fifo_stall, 0);
613 }
b7cb8c2c 614 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
018ea44e 615 /* adjust PBA for jumbo frames */
1dc32918 616 ew32(PBA, pba);
018ea44e
BA
617
618 /* To maintain wire speed transmits, the Tx FIFO should be
b7cb8c2c 619 * large enough to accommodate two full transmit packets,
018ea44e 620 * rounded up to the next 1KB and expressed in KB. Likewise,
b7cb8c2c 621 * the Rx FIFO should be large enough to accommodate at least
018ea44e
BA
622 * one full receive packet and is similarly rounded up and
623 * expressed in KB. */
1dc32918 624 pba = er32(PBA);
018ea44e
BA
625 /* upper 16 bits has Tx packet buffer allocation size in KB */
626 tx_space = pba >> 16;
627 /* lower 16 bits has Rx packet buffer allocation size in KB */
628 pba &= 0xffff;
b7cb8c2c
JB
629 /*
630 * the tx fifo also stores 16 bytes of information about the tx
631 * but don't include ethernet FCS because hardware appends it
632 */
633 min_tx_space = (hw->max_frame_size +
634 sizeof(struct e1000_tx_desc) -
635 ETH_FCS_LEN) * 2;
9099cfb9 636 min_tx_space = ALIGN(min_tx_space, 1024);
018ea44e 637 min_tx_space >>= 10;
b7cb8c2c
JB
638 /* software strips receive CRC, so leave room for it */
639 min_rx_space = hw->max_frame_size;
9099cfb9 640 min_rx_space = ALIGN(min_rx_space, 1024);
018ea44e
BA
641 min_rx_space >>= 10;
642
643 /* If current Tx allocation is less than the min Tx FIFO size,
644 * and the min Tx FIFO size is less than the current Rx FIFO
645 * allocation, take space away from current Rx allocation */
646 if (tx_space < min_tx_space &&
647 ((min_tx_space - tx_space) < pba)) {
648 pba = pba - (min_tx_space - tx_space);
649
650 /* PCI/PCIx hardware has PBA alignment constraints */
1dc32918 651 switch (hw->mac_type) {
018ea44e
BA
652 case e1000_82545 ... e1000_82546_rev_3:
653 pba &= ~(E1000_PBA_8K - 1);
654 break;
655 default:
656 break;
657 }
658
659 /* if short on rx space, rx wins and must trump tx
660 * adjustment or use Early Receive if available */
1532ecea
JB
661 if (pba < min_rx_space)
662 pba = min_rx_space;
018ea44e 663 }
1da177e4 664 }
2d7edb92 665
1dc32918 666 ew32(PBA, pba);
1da177e4 667
b7cb8c2c
JB
668 /*
669 * flow control settings:
670 * The high water mark must be low enough to fit one full frame
671 * (or the size used for early receive) above it in the Rx FIFO.
672 * Set it to the lower of:
673 * - 90% of the Rx FIFO size, and
674 * - the full Rx FIFO size minus the early receive size (for parts
675 * with ERT support assuming ERT set to E1000_ERT_2048), or
676 * - the full Rx FIFO size minus one full frame
677 */
678 hwm = min(((pba << 10) * 9 / 10),
679 ((pba << 10) - hw->max_frame_size));
680
681 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
682 hw->fc_low_water = hw->fc_high_water - 8;
edbbb3ca 683 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
1dc32918
JP
684 hw->fc_send_xon = 1;
685 hw->fc = hw->original_fc;
1da177e4 686
2d7edb92 687 /* Allow time for pending master requests to run */
1dc32918
JP
688 e1000_reset_hw(hw);
689 if (hw->mac_type >= e1000_82544)
690 ew32(WUC, 0);
09ae3e88 691
1dc32918 692 if (e1000_init_hw(hw))
feb8f478 693 e_dev_err("Hardware Error\n");
2d7edb92 694 e1000_update_mng_vlan(adapter);
3d5460a0
JB
695
696 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
1dc32918 697 if (hw->mac_type >= e1000_82544 &&
1dc32918
JP
698 hw->autoneg == 1 &&
699 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
700 u32 ctrl = er32(CTRL);
3d5460a0
JB
701 /* clear phy power management bit if we are in gig only mode,
702 * which if enabled will attempt negotiation to 100Mb, which
703 * can cause a loss of link at power off or driver unload */
704 ctrl &= ~E1000_CTRL_SWDPIN3;
1dc32918 705 ew32(CTRL, ctrl);
3d5460a0
JB
706 }
707
1da177e4 708 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1dc32918 709 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
1da177e4 710
1dc32918
JP
711 e1000_reset_adaptive(hw);
712 e1000_phy_get_info(hw, &adapter->phy_info);
9a53a202 713
0fccd0e9 714 e1000_release_manageability(adapter);
1da177e4
LT
715}
716
67b3c27c
AK
717/**
718 * Dump the eeprom for users having checksum issues
719 **/
b4ea895d 720static void e1000_dump_eeprom(struct e1000_adapter *adapter)
67b3c27c
AK
721{
722 struct net_device *netdev = adapter->netdev;
723 struct ethtool_eeprom eeprom;
724 const struct ethtool_ops *ops = netdev->ethtool_ops;
725 u8 *data;
726 int i;
727 u16 csum_old, csum_new = 0;
728
729 eeprom.len = ops->get_eeprom_len(netdev);
730 eeprom.offset = 0;
731
732 data = kmalloc(eeprom.len, GFP_KERNEL);
733 if (!data) {
675ad473 734 pr_err("Unable to allocate memory to dump EEPROM data\n");
67b3c27c
AK
735 return;
736 }
737
738 ops->get_eeprom(netdev, &eeprom, data);
739
740 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
741 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
742 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
743 csum_new += data[i] + (data[i + 1] << 8);
744 csum_new = EEPROM_SUM - csum_new;
745
675ad473
ET
746 pr_err("/*********************/\n");
747 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
748 pr_err("Calculated : 0x%04x\n", csum_new);
67b3c27c 749
675ad473
ET
750 pr_err("Offset Values\n");
751 pr_err("======== ======\n");
67b3c27c
AK
752 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
753
675ad473
ET
754 pr_err("Include this output when contacting your support provider.\n");
755 pr_err("This is not a software error! Something bad happened to\n");
756 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
757 pr_err("result in further problems, possibly loss of data,\n");
758 pr_err("corruption or system hangs!\n");
759 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
760 pr_err("which is invalid and requires you to set the proper MAC\n");
761 pr_err("address manually before continuing to enable this network\n");
762 pr_err("device. Please inspect the EEPROM dump and report the\n");
763 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
764 pr_err("/*********************/\n");
67b3c27c
AK
765
766 kfree(data);
767}
768
81250297
TI
769/**
770 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
771 * @pdev: PCI device information struct
772 *
773 * Return true if an adapter needs ioport resources
774 **/
775static int e1000_is_need_ioport(struct pci_dev *pdev)
776{
777 switch (pdev->device) {
778 case E1000_DEV_ID_82540EM:
779 case E1000_DEV_ID_82540EM_LOM:
780 case E1000_DEV_ID_82540EP:
781 case E1000_DEV_ID_82540EP_LOM:
782 case E1000_DEV_ID_82540EP_LP:
783 case E1000_DEV_ID_82541EI:
784 case E1000_DEV_ID_82541EI_MOBILE:
785 case E1000_DEV_ID_82541ER:
786 case E1000_DEV_ID_82541ER_LOM:
787 case E1000_DEV_ID_82541GI:
788 case E1000_DEV_ID_82541GI_LF:
789 case E1000_DEV_ID_82541GI_MOBILE:
790 case E1000_DEV_ID_82544EI_COPPER:
791 case E1000_DEV_ID_82544EI_FIBER:
792 case E1000_DEV_ID_82544GC_COPPER:
793 case E1000_DEV_ID_82544GC_LOM:
794 case E1000_DEV_ID_82545EM_COPPER:
795 case E1000_DEV_ID_82545EM_FIBER:
796 case E1000_DEV_ID_82546EB_COPPER:
797 case E1000_DEV_ID_82546EB_FIBER:
798 case E1000_DEV_ID_82546EB_QUAD_COPPER:
799 return true;
800 default:
801 return false;
802 }
803}
804
c8f44aff
MM
805static netdev_features_t e1000_fix_features(struct net_device *netdev,
806 netdev_features_t features)
5622e404
JP
807{
808 /*
809 * Since there is no support for separate rx/tx vlan accel
810 * enable/disable make sure tx flag is always in same state as rx.
811 */
812 if (features & NETIF_F_HW_VLAN_RX)
813 features |= NETIF_F_HW_VLAN_TX;
814 else
815 features &= ~NETIF_F_HW_VLAN_TX;
816
817 return features;
818}
819
c8f44aff
MM
820static int e1000_set_features(struct net_device *netdev,
821 netdev_features_t features)
e97d3207
MM
822{
823 struct e1000_adapter *adapter = netdev_priv(netdev);
c8f44aff 824 netdev_features_t changed = features ^ netdev->features;
e97d3207 825
5622e404
JP
826 if (changed & NETIF_F_HW_VLAN_RX)
827 e1000_vlan_mode(netdev, features);
828
e97d3207
MM
829 if (!(changed & NETIF_F_RXCSUM))
830 return 0;
831
832 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
833
834 if (netif_running(netdev))
835 e1000_reinit_locked(adapter);
836 else
837 e1000_reset(adapter);
838
839 return 0;
840}
841
0e7614bc
SH
842static const struct net_device_ops e1000_netdev_ops = {
843 .ndo_open = e1000_open,
844 .ndo_stop = e1000_close,
00829823 845 .ndo_start_xmit = e1000_xmit_frame,
0e7614bc
SH
846 .ndo_get_stats = e1000_get_stats,
847 .ndo_set_rx_mode = e1000_set_rx_mode,
848 .ndo_set_mac_address = e1000_set_mac,
5622e404 849 .ndo_tx_timeout = e1000_tx_timeout,
0e7614bc
SH
850 .ndo_change_mtu = e1000_change_mtu,
851 .ndo_do_ioctl = e1000_ioctl,
852 .ndo_validate_addr = eth_validate_addr,
0e7614bc
SH
853 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
854 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
855#ifdef CONFIG_NET_POLL_CONTROLLER
856 .ndo_poll_controller = e1000_netpoll,
857#endif
5622e404
JP
858 .ndo_fix_features = e1000_fix_features,
859 .ndo_set_features = e1000_set_features,
0e7614bc
SH
860};
861
e508be17
JB
862/**
863 * e1000_init_hw_struct - initialize members of hw struct
864 * @adapter: board private struct
865 * @hw: structure used by e1000_hw.c
866 *
867 * Factors out initialization of the e1000_hw struct to its own function
868 * that can be called very early at init (just after struct allocation).
869 * Fields are initialized based on PCI device information and
870 * OS network device settings (MTU size).
871 * Returns negative error codes if MAC type setup fails.
872 */
873static int e1000_init_hw_struct(struct e1000_adapter *adapter,
874 struct e1000_hw *hw)
875{
876 struct pci_dev *pdev = adapter->pdev;
877
878 /* PCI config space info */
879 hw->vendor_id = pdev->vendor;
880 hw->device_id = pdev->device;
881 hw->subsystem_vendor_id = pdev->subsystem_vendor;
882 hw->subsystem_id = pdev->subsystem_device;
883 hw->revision_id = pdev->revision;
884
885 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
886
887 hw->max_frame_size = adapter->netdev->mtu +
888 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
889 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
890
891 /* identify the MAC */
892 if (e1000_set_mac_type(hw)) {
893 e_err(probe, "Unknown MAC Type\n");
894 return -EIO;
895 }
896
897 switch (hw->mac_type) {
898 default:
899 break;
900 case e1000_82541:
901 case e1000_82547:
902 case e1000_82541_rev_2:
903 case e1000_82547_rev_2:
904 hw->phy_init_script = 1;
905 break;
906 }
907
908 e1000_set_media_type(hw);
909 e1000_get_bus_info(hw);
910
911 hw->wait_autoneg_complete = false;
912 hw->tbi_compatibility_en = true;
913 hw->adaptive_ifs = true;
914
915 /* Copper options */
916
917 if (hw->media_type == e1000_media_type_copper) {
918 hw->mdix = AUTO_ALL_MODES;
919 hw->disable_polarity_correction = false;
920 hw->master_slave = E1000_MASTER_SLAVE;
921 }
922
923 return 0;
924}
925
1da177e4
LT
926/**
927 * e1000_probe - Device Initialization Routine
928 * @pdev: PCI device information struct
929 * @ent: entry in e1000_pci_tbl
930 *
931 * Returns 0 on success, negative on failure
932 *
933 * e1000_probe initializes an adapter identified by a pci_dev structure.
934 * The OS initialization, configuring of the adapter private structure,
935 * and a hardware reset occur.
936 **/
1dc32918
JP
937static int __devinit e1000_probe(struct pci_dev *pdev,
938 const struct pci_device_id *ent)
1da177e4
LT
939{
940 struct net_device *netdev;
941 struct e1000_adapter *adapter;
1dc32918 942 struct e1000_hw *hw;
2d7edb92 943
1da177e4 944 static int cards_found = 0;
120cd576 945 static int global_quad_port_a = 0; /* global ksp3 port a indication */
2d7edb92 946 int i, err, pci_using_dac;
406874a7 947 u16 eeprom_data = 0;
5377a416 948 u16 tmp = 0;
406874a7 949 u16 eeprom_apme_mask = E1000_EEPROM_APME;
81250297 950 int bars, need_ioport;
0795af57 951
81250297
TI
952 /* do not allocate ioport bars when not needed */
953 need_ioport = e1000_is_need_ioport(pdev);
954 if (need_ioport) {
955 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
956 err = pci_enable_device(pdev);
957 } else {
958 bars = pci_select_bars(pdev, IORESOURCE_MEM);
4d7155b9 959 err = pci_enable_device_mem(pdev);
81250297 960 }
c7be73bc 961 if (err)
1da177e4
LT
962 return err;
963
81250297 964 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
c7be73bc 965 if (err)
6dd62ab0 966 goto err_pci_reg;
1da177e4
LT
967
968 pci_set_master(pdev);
dbb5aaeb
NN
969 err = pci_save_state(pdev);
970 if (err)
971 goto err_alloc_etherdev;
1da177e4 972
6dd62ab0 973 err = -ENOMEM;
1da177e4 974 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6dd62ab0 975 if (!netdev)
1da177e4 976 goto err_alloc_etherdev;
1da177e4 977
1da177e4
LT
978 SET_NETDEV_DEV(netdev, &pdev->dev);
979
980 pci_set_drvdata(pdev, netdev);
60490fe0 981 adapter = netdev_priv(netdev);
1da177e4
LT
982 adapter->netdev = netdev;
983 adapter->pdev = pdev;
1da177e4 984 adapter->msg_enable = (1 << debug) - 1;
81250297
TI
985 adapter->bars = bars;
986 adapter->need_ioport = need_ioport;
1da177e4 987
1dc32918
JP
988 hw = &adapter->hw;
989 hw->back = adapter;
990
6dd62ab0 991 err = -EIO;
275f165f 992 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1dc32918 993 if (!hw->hw_addr)
1da177e4 994 goto err_ioremap;
1da177e4 995
81250297
TI
996 if (adapter->need_ioport) {
997 for (i = BAR_1; i <= BAR_5; i++) {
998 if (pci_resource_len(pdev, i) == 0)
999 continue;
1000 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1001 hw->io_base = pci_resource_start(pdev, i);
1002 break;
1003 }
1da177e4
LT
1004 }
1005 }
1006
e508be17
JB
1007 /* make ready for any if (hw->...) below */
1008 err = e1000_init_hw_struct(adapter, hw);
1009 if (err)
1010 goto err_sw_init;
1011
1012 /*
1013 * there is a workaround being applied below that limits
1014 * 64-bit DMA addresses to 64-bit hardware. There are some
1015 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1016 */
1017 pci_using_dac = 0;
1018 if ((hw->bus_type == e1000_bus_type_pcix) &&
1019 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1020 /*
1021 * according to DMA-API-HOWTO, coherent calls will always
1022 * succeed if the set call did
1023 */
1024 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1025 pci_using_dac = 1;
e508be17 1026 } else {
19a0b67a
DN
1027 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1028 if (err) {
1029 pr_err("No usable DMA config, aborting\n");
1030 goto err_dma;
1031 }
1032 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
e508be17
JB
1033 }
1034
0e7614bc 1035 netdev->netdev_ops = &e1000_netdev_ops;
1da177e4 1036 e1000_set_ethtool_ops(netdev);
1da177e4 1037 netdev->watchdog_timeo = 5 * HZ;
bea3348e 1038 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
0e7614bc 1039
0eb5a34c 1040 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1da177e4 1041
1da177e4
LT
1042 adapter->bd_number = cards_found;
1043
1044 /* setup the private structure */
1045
c7be73bc
JP
1046 err = e1000_sw_init(adapter);
1047 if (err)
1da177e4
LT
1048 goto err_sw_init;
1049
6dd62ab0 1050 err = -EIO;
5377a416 1051 if (hw->mac_type == e1000_ce4100) {
13acde8f
FF
1052 hw->ce4100_gbe_mdio_base_virt =
1053 ioremap(pci_resource_start(pdev, BAR_1),
5377a416
DB
1054 pci_resource_len(pdev, BAR_1));
1055
13acde8f 1056 if (!hw->ce4100_gbe_mdio_base_virt)
5377a416
DB
1057 goto err_mdio_ioremap;
1058 }
2d7edb92 1059
1dc32918 1060 if (hw->mac_type >= e1000_82543) {
e97d3207 1061 netdev->hw_features = NETIF_F_SG |
5622e404
JP
1062 NETIF_F_HW_CSUM |
1063 NETIF_F_HW_VLAN_RX;
e97d3207 1064 netdev->features = NETIF_F_HW_VLAN_TX |
1da177e4
LT
1065 NETIF_F_HW_VLAN_FILTER;
1066 }
1067
1dc32918
JP
1068 if ((hw->mac_type >= e1000_82544) &&
1069 (hw->mac_type != e1000_82547))
e97d3207
MM
1070 netdev->hw_features |= NETIF_F_TSO;
1071
1072 netdev->features |= netdev->hw_features;
1073 netdev->hw_features |= NETIF_F_RXCSUM;
2d7edb92 1074
7b872a55 1075 if (pci_using_dac) {
1da177e4 1076 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1077 netdev->vlan_features |= NETIF_F_HIGHDMA;
1078 }
1da177e4 1079
20501a69 1080 netdev->vlan_features |= NETIF_F_TSO;
20501a69
PM
1081 netdev->vlan_features |= NETIF_F_HW_CSUM;
1082 netdev->vlan_features |= NETIF_F_SG;
1083
01789349
JP
1084 netdev->priv_flags |= IFF_UNICAST_FLT;
1085
1dc32918 1086 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
2d7edb92 1087
cd94dd0b 1088 /* initialize eeprom parameters */
1dc32918 1089 if (e1000_init_eeprom_params(hw)) {
feb8f478 1090 e_err(probe, "EEPROM initialization failed\n");
6dd62ab0 1091 goto err_eeprom;
cd94dd0b
AK
1092 }
1093
96838a40 1094 /* before reading the EEPROM, reset the controller to
1da177e4 1095 * put the device in a known good starting state */
96838a40 1096
1dc32918 1097 e1000_reset_hw(hw);
1da177e4
LT
1098
1099 /* make sure the EEPROM is good */
1dc32918 1100 if (e1000_validate_eeprom_checksum(hw) < 0) {
feb8f478 1101 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
67b3c27c
AK
1102 e1000_dump_eeprom(adapter);
1103 /*
1104 * set MAC address to all zeroes to invalidate and temporary
1105 * disable this device for the user. This blocks regular
1106 * traffic while still permitting ethtool ioctls from reaching
1107 * the hardware as well as allowing the user to run the
1108 * interface after manually setting a hw addr using
1109 * `ip set address`
1110 */
1dc32918 1111 memset(hw->mac_addr, 0, netdev->addr_len);
67b3c27c
AK
1112 } else {
1113 /* copy the MAC address out of the EEPROM */
1dc32918 1114 if (e1000_read_mac_addr(hw))
feb8f478 1115 e_err(probe, "EEPROM Read Error\n");
1da177e4 1116 }
67b3c27c 1117 /* don't block initalization here due to bad MAC address */
1dc32918
JP
1118 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1119 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1da177e4 1120
67b3c27c 1121 if (!is_valid_ether_addr(netdev->perm_addr))
feb8f478 1122 e_err(probe, "Invalid MAC Address\n");
1da177e4 1123
1da177e4 1124
a4010afe
JB
1125 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1126 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1127 e1000_82547_tx_fifo_stall_task);
1128 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
65f27f38 1129 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1da177e4 1130
1da177e4
LT
1131 e1000_check_options(adapter);
1132
1133 /* Initial Wake on LAN setting
1134 * If APM wake is enabled in the EEPROM,
1135 * enable the ACPI Magic Packet filter
1136 */
1137
1dc32918 1138 switch (hw->mac_type) {
1da177e4
LT
1139 case e1000_82542_rev2_0:
1140 case e1000_82542_rev2_1:
1141 case e1000_82543:
1142 break;
1143 case e1000_82544:
1dc32918 1144 e1000_read_eeprom(hw,
1da177e4
LT
1145 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1146 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1147 break;
1148 case e1000_82546:
1149 case e1000_82546_rev_3:
1dc32918
JP
1150 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1151 e1000_read_eeprom(hw,
1da177e4
LT
1152 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1153 break;
1154 }
1155 /* Fall Through */
1156 default:
1dc32918 1157 e1000_read_eeprom(hw,
1da177e4
LT
1158 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1159 break;
1160 }
96838a40 1161 if (eeprom_data & eeprom_apme_mask)
120cd576
JB
1162 adapter->eeprom_wol |= E1000_WUFC_MAG;
1163
1164 /* now that we have the eeprom settings, apply the special cases
1165 * where the eeprom may be wrong or the board simply won't support
1166 * wake on lan on a particular port */
1167 switch (pdev->device) {
1168 case E1000_DEV_ID_82546GB_PCIE:
1169 adapter->eeprom_wol = 0;
1170 break;
1171 case E1000_DEV_ID_82546EB_FIBER:
1172 case E1000_DEV_ID_82546GB_FIBER:
120cd576
JB
1173 /* Wake events only supported on port A for dual fiber
1174 * regardless of eeprom setting */
1dc32918 1175 if (er32(STATUS) & E1000_STATUS_FUNC_1)
120cd576
JB
1176 adapter->eeprom_wol = 0;
1177 break;
1178 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1179 /* if quad port adapter, disable WoL on all but port A */
1180 if (global_quad_port_a != 0)
1181 adapter->eeprom_wol = 0;
1182 else
3db1cd5c 1183 adapter->quad_port_a = true;
120cd576
JB
1184 /* Reset for multiple quad port adapters */
1185 if (++global_quad_port_a == 4)
1186 global_quad_port_a = 0;
1187 break;
1188 }
1189
1190 /* initialize the wol settings based on the eeprom settings */
1191 adapter->wol = adapter->eeprom_wol;
de126489 1192 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1da177e4 1193
5377a416
DB
1194 /* Auto detect PHY address */
1195 if (hw->mac_type == e1000_ce4100) {
1196 for (i = 0; i < 32; i++) {
1197 hw->phy_addr = i;
1198 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1199 if (tmp == 0 || tmp == 0xFF) {
1200 if (i == 31)
1201 goto err_eeprom;
1202 continue;
1203 } else
1204 break;
1205 }
1206 }
1207
675ad473
ET
1208 /* reset the hardware with the new settings */
1209 e1000_reset(adapter);
1210
1211 strcpy(netdev->name, "eth%d");
1212 err = register_netdev(netdev);
1213 if (err)
1214 goto err_register;
1215
5622e404
JP
1216 e1000_vlan_mode(netdev, netdev->features);
1217
fb3d47d4 1218 /* print bus type/speed/width info */
feb8f478 1219 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
7837e58c
JP
1220 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1221 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1222 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1223 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1224 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1225 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1226 netdev->dev_addr);
1314bbf3 1227
eb62efd2
JB
1228 /* carrier off reporting is important to ethtool even BEFORE open */
1229 netif_carrier_off(netdev);
1230
feb8f478 1231 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1da177e4
LT
1232
1233 cards_found++;
1234 return 0;
1235
1236err_register:
6dd62ab0 1237err_eeprom:
1532ecea 1238 e1000_phy_hw_reset(hw);
6dd62ab0 1239
1dc32918
JP
1240 if (hw->flash_address)
1241 iounmap(hw->flash_address);
6dd62ab0
VA
1242 kfree(adapter->tx_ring);
1243 kfree(adapter->rx_ring);
e508be17 1244err_dma:
1da177e4 1245err_sw_init:
5377a416 1246err_mdio_ioremap:
13acde8f 1247 iounmap(hw->ce4100_gbe_mdio_base_virt);
1dc32918 1248 iounmap(hw->hw_addr);
1da177e4
LT
1249err_ioremap:
1250 free_netdev(netdev);
1251err_alloc_etherdev:
81250297 1252 pci_release_selected_regions(pdev, bars);
6dd62ab0 1253err_pci_reg:
6dd62ab0 1254 pci_disable_device(pdev);
1da177e4
LT
1255 return err;
1256}
1257
1258/**
1259 * e1000_remove - Device Removal Routine
1260 * @pdev: PCI device information struct
1261 *
1262 * e1000_remove is called by the PCI subsystem to alert the driver
1263 * that it should release a PCI device. The could be caused by a
1264 * Hot-Plug event, or because the driver is going to be removed from
1265 * memory.
1266 **/
1267
64798845 1268static void __devexit e1000_remove(struct pci_dev *pdev)
1da177e4
LT
1269{
1270 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 1271 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1272 struct e1000_hw *hw = &adapter->hw;
1da177e4 1273
a4010afe 1274 e1000_down_and_stop(adapter);
0fccd0e9 1275 e1000_release_manageability(adapter);
1da177e4 1276
bea3348e
SH
1277 unregister_netdev(netdev);
1278
1532ecea 1279 e1000_phy_hw_reset(hw);
1da177e4 1280
24025e4e
MC
1281 kfree(adapter->tx_ring);
1282 kfree(adapter->rx_ring);
24025e4e 1283
1c26750c 1284 if (hw->mac_type == e1000_ce4100)
13acde8f 1285 iounmap(hw->ce4100_gbe_mdio_base_virt);
1dc32918
JP
1286 iounmap(hw->hw_addr);
1287 if (hw->flash_address)
1288 iounmap(hw->flash_address);
81250297 1289 pci_release_selected_regions(pdev, adapter->bars);
1da177e4
LT
1290
1291 free_netdev(netdev);
1292
1293 pci_disable_device(pdev);
1294}
1295
1296/**
1297 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1298 * @adapter: board private structure to initialize
1299 *
1300 * e1000_sw_init initializes the Adapter private data structure.
e508be17 1301 * e1000_init_hw_struct MUST be called before this function
1da177e4
LT
1302 **/
1303
64798845 1304static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1da177e4 1305{
eb0f8054 1306 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1da177e4 1307
f56799ea
JK
1308 adapter->num_tx_queues = 1;
1309 adapter->num_rx_queues = 1;
581d708e
MC
1310
1311 if (e1000_alloc_queues(adapter)) {
feb8f478 1312 e_err(probe, "Unable to allocate memory for queues\n");
581d708e
MC
1313 return -ENOMEM;
1314 }
1315
47313054 1316 /* Explicitly disable IRQ since the NIC can be in any state. */
47313054
HX
1317 e1000_irq_disable(adapter);
1318
1da177e4 1319 spin_lock_init(&adapter->stats_lock);
0ef4eedc 1320 mutex_init(&adapter->mutex);
1da177e4 1321
1314bbf3
AK
1322 set_bit(__E1000_DOWN, &adapter->flags);
1323
1da177e4
LT
1324 return 0;
1325}
1326
581d708e
MC
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
3e1d7cd2 1332 * number of queues at compile-time.
581d708e
MC
1333 **/
1334
64798845 1335static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
581d708e 1336{
1c7e5b12
YB
1337 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1338 sizeof(struct e1000_tx_ring), GFP_KERNEL);
581d708e
MC
1339 if (!adapter->tx_ring)
1340 return -ENOMEM;
581d708e 1341
1c7e5b12
YB
1342 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1343 sizeof(struct e1000_rx_ring), GFP_KERNEL);
581d708e
MC
1344 if (!adapter->rx_ring) {
1345 kfree(adapter->tx_ring);
1346 return -ENOMEM;
1347 }
581d708e 1348
581d708e
MC
1349 return E1000_SUCCESS;
1350}
1351
1da177e4
LT
1352/**
1353 * e1000_open - Called when a network interface is made active
1354 * @netdev: network interface device structure
1355 *
1356 * Returns 0 on success, negative value on failure
1357 *
1358 * The open entry point is called when a network interface is made
1359 * active by the system (IFF_UP). At this point all resources needed
1360 * for transmit and receive operations are allocated, the interrupt
a4010afe 1361 * handler is registered with the OS, the watchdog task is started,
1da177e4
LT
1362 * and the stack is notified that the interface is ready.
1363 **/
1364
64798845 1365static int e1000_open(struct net_device *netdev)
1da177e4 1366{
60490fe0 1367 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1368 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
1369 int err;
1370
2db10a08 1371 /* disallow open during test */
1314bbf3 1372 if (test_bit(__E1000_TESTING, &adapter->flags))
2db10a08
AK
1373 return -EBUSY;
1374
eb62efd2
JB
1375 netif_carrier_off(netdev);
1376
1da177e4 1377 /* allocate transmit descriptors */
e0aac5a2
AK
1378 err = e1000_setup_all_tx_resources(adapter);
1379 if (err)
1da177e4
LT
1380 goto err_setup_tx;
1381
1382 /* allocate receive descriptors */
e0aac5a2 1383 err = e1000_setup_all_rx_resources(adapter);
b5bf28cd 1384 if (err)
e0aac5a2 1385 goto err_setup_rx;
b5bf28cd 1386
79f05bf0
AK
1387 e1000_power_up_phy(adapter);
1388
2d7edb92 1389 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1dc32918 1390 if ((hw->mng_cookie.status &
2d7edb92
MC
1391 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1392 e1000_update_mng_vlan(adapter);
1393 }
1da177e4 1394
e0aac5a2
AK
1395 /* before we allocate an interrupt, we must be ready to handle it.
1396 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1397 * as soon as we call pci_request_irq, so we have to setup our
1398 * clean_rx handler before we do so. */
1399 e1000_configure(adapter);
1400
1401 err = e1000_request_irq(adapter);
1402 if (err)
1403 goto err_req_irq;
1404
1405 /* From here on the code is the same as e1000_up() */
1406 clear_bit(__E1000_DOWN, &adapter->flags);
1407
bea3348e 1408 napi_enable(&adapter->napi);
47313054 1409
e0aac5a2
AK
1410 e1000_irq_enable(adapter);
1411
076152d5
BH
1412 netif_start_queue(netdev);
1413
e0aac5a2 1414 /* fire a link status change interrupt to start the watchdog */
1dc32918 1415 ew32(ICS, E1000_ICS_LSC);
e0aac5a2 1416
1da177e4
LT
1417 return E1000_SUCCESS;
1418
b5bf28cd 1419err_req_irq:
e0aac5a2 1420 e1000_power_down_phy(adapter);
581d708e 1421 e1000_free_all_rx_resources(adapter);
1da177e4 1422err_setup_rx:
581d708e 1423 e1000_free_all_tx_resources(adapter);
1da177e4
LT
1424err_setup_tx:
1425 e1000_reset(adapter);
1426
1427 return err;
1428}
1429
1430/**
1431 * e1000_close - Disables a network interface
1432 * @netdev: network interface device structure
1433 *
1434 * Returns 0, this is not allowed to fail
1435 *
1436 * The close entry point is called when an interface is de-activated
1437 * by the OS. The hardware is still under the drivers control, but
1438 * needs to be disabled. A global MAC reset is issued to stop the
1439 * hardware, and all transmit and receive resources are freed.
1440 **/
1441
64798845 1442static int e1000_close(struct net_device *netdev)
1da177e4 1443{
60490fe0 1444 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1445 struct e1000_hw *hw = &adapter->hw;
1da177e4 1446
2db10a08 1447 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1da177e4 1448 e1000_down(adapter);
79f05bf0 1449 e1000_power_down_phy(adapter);
2db10a08 1450 e1000_free_irq(adapter);
1da177e4 1451
581d708e
MC
1452 e1000_free_all_tx_resources(adapter);
1453 e1000_free_all_rx_resources(adapter);
1da177e4 1454
4666560a
BA
1455 /* kill manageability vlan ID if supported, but not if a vlan with
1456 * the same ID is registered on the host OS (let 8021q kill it) */
1dc32918 1457 if ((hw->mng_cookie.status &
4666560a 1458 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5622e404 1459 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
2d7edb92
MC
1460 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1461 }
b55ccb35 1462
1da177e4
LT
1463 return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
2d7edb92
MC
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1da177e4 1471 **/
64798845
JP
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 unsigned long len)
1da177e4 1474{
1dc32918 1475 struct e1000_hw *hw = &adapter->hw;
e982f17c 1476 unsigned long begin = (unsigned long)start;
1da177e4
LT
1477 unsigned long end = begin + len;
1478
2648345f
MC
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23 */
1dc32918 1481 if (hw->mac_type == e1000_82545 ||
5377a416 1482 hw->mac_type == e1000_ce4100 ||
1dc32918 1483 hw->mac_type == e1000_82546) {
c3033b01 1484 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1da177e4
LT
1485 }
1486
c3033b01 1487 return true;
1da177e4
LT
1488}
1489
1490/**
1491 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492 * @adapter: board private structure
581d708e 1493 * @txdr: tx descriptor ring (for a specific queue) to setup
1da177e4
LT
1494 *
1495 * Return 0 on success, negative on failure
1496 **/
1497
64798845
JP
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 struct e1000_tx_ring *txdr)
1da177e4 1500{
1da177e4
LT
1501 struct pci_dev *pdev = adapter->pdev;
1502 int size;
1503
1504 size = sizeof(struct e1000_buffer) * txdr->count;
89bf67f1 1505 txdr->buffer_info = vzalloc(size);
96838a40 1506 if (!txdr->buffer_info) {
feb8f478
ET
1507 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1508 "ring\n");
1da177e4
LT
1509 return -ENOMEM;
1510 }
1da177e4
LT
1511
1512 /* round up to nearest 4K */
1513
1514 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
9099cfb9 1515 txdr->size = ALIGN(txdr->size, 4096);
1da177e4 1516
b16f53be
NN
1517 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1518 GFP_KERNEL);
96838a40 1519 if (!txdr->desc) {
1da177e4 1520setup_tx_desc_die:
1da177e4 1521 vfree(txdr->buffer_info);
feb8f478
ET
1522 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1523 "ring\n");
1da177e4
LT
1524 return -ENOMEM;
1525 }
1526
2648345f 1527 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1528 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1529 void *olddesc = txdr->desc;
1530 dma_addr_t olddma = txdr->dma;
feb8f478 1531 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
675ad473 1532 txdr->size, txdr->desc);
2648345f 1533 /* Try again, without freeing the previous */
b16f53be
NN
1534 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1535 &txdr->dma, GFP_KERNEL);
2648345f 1536 /* Failed allocation, critical failure */
96838a40 1537 if (!txdr->desc) {
b16f53be
NN
1538 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 olddma);
1da177e4
LT
1540 goto setup_tx_desc_die;
1541 }
1542
1543 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544 /* give up */
b16f53be
NN
1545 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1546 txdr->dma);
1547 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1548 olddma);
feb8f478 1549 e_err(probe, "Unable to allocate aligned memory "
675ad473 1550 "for the transmit descriptor ring\n");
1da177e4
LT
1551 vfree(txdr->buffer_info);
1552 return -ENOMEM;
1553 } else {
2648345f 1554 /* Free old allocation, new allocation was successful */
b16f53be
NN
1555 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1556 olddma);
1da177e4
LT
1557 }
1558 }
1559 memset(txdr->desc, 0, txdr->size);
1560
1561 txdr->next_to_use = 0;
1562 txdr->next_to_clean = 0;
1563
1564 return 0;
1565}
1566
581d708e
MC
1567/**
1568 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1569 * (Descriptors) for all queues
1570 * @adapter: board private structure
1571 *
581d708e
MC
1572 * Return 0 on success, negative on failure
1573 **/
1574
64798845 1575int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
581d708e
MC
1576{
1577 int i, err = 0;
1578
f56799ea 1579 for (i = 0; i < adapter->num_tx_queues; i++) {
581d708e
MC
1580 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1581 if (err) {
feb8f478 1582 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
3fbbc72e
VA
1583 for (i-- ; i >= 0; i--)
1584 e1000_free_tx_resources(adapter,
1585 &adapter->tx_ring[i]);
581d708e
MC
1586 break;
1587 }
1588 }
1589
1590 return err;
1591}
1592
1da177e4
LT
1593/**
1594 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1595 * @adapter: board private structure
1596 *
1597 * Configure the Tx unit of the MAC after a reset.
1598 **/
1599
64798845 1600static void e1000_configure_tx(struct e1000_adapter *adapter)
1da177e4 1601{
406874a7 1602 u64 tdba;
581d708e 1603 struct e1000_hw *hw = &adapter->hw;
1532ecea 1604 u32 tdlen, tctl, tipg;
406874a7 1605 u32 ipgr1, ipgr2;
1da177e4
LT
1606
1607 /* Setup the HW Tx Head and Tail descriptor pointers */
1608
f56799ea 1609 switch (adapter->num_tx_queues) {
24025e4e
MC
1610 case 1:
1611 default:
581d708e
MC
1612 tdba = adapter->tx_ring[0].dma;
1613 tdlen = adapter->tx_ring[0].count *
1614 sizeof(struct e1000_tx_desc);
1dc32918
JP
1615 ew32(TDLEN, tdlen);
1616 ew32(TDBAH, (tdba >> 32));
1617 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1618 ew32(TDT, 0);
1619 ew32(TDH, 0);
6a951698
AK
1620 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1621 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
24025e4e
MC
1622 break;
1623 }
1da177e4
LT
1624
1625 /* Set the default values for the Tx Inter Packet Gap timer */
1532ecea 1626 if ((hw->media_type == e1000_media_type_fiber ||
d89b6c67 1627 hw->media_type == e1000_media_type_internal_serdes))
0fadb059
JK
1628 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1629 else
1630 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1631
581d708e 1632 switch (hw->mac_type) {
1da177e4
LT
1633 case e1000_82542_rev2_0:
1634 case e1000_82542_rev2_1:
1635 tipg = DEFAULT_82542_TIPG_IPGT;
0fadb059
JK
1636 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1637 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1da177e4
LT
1638 break;
1639 default:
0fadb059
JK
1640 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1641 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1642 break;
1da177e4 1643 }
0fadb059
JK
1644 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1645 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1dc32918 1646 ew32(TIPG, tipg);
1da177e4
LT
1647
1648 /* Set the Tx Interrupt Delay register */
1649
1dc32918 1650 ew32(TIDV, adapter->tx_int_delay);
581d708e 1651 if (hw->mac_type >= e1000_82540)
1dc32918 1652 ew32(TADV, adapter->tx_abs_int_delay);
1da177e4
LT
1653
1654 /* Program the Transmit Control Register */
1655
1dc32918 1656 tctl = er32(TCTL);
1da177e4 1657 tctl &= ~E1000_TCTL_CT;
7e6c9861 1658 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1da177e4
LT
1659 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1660
581d708e 1661 e1000_config_collision_dist(hw);
1da177e4
LT
1662
1663 /* Setup Transmit Descriptor Settings for eop descriptor */
6a042dab
JB
1664 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1665
1666 /* only set IDE if we are delaying interrupts using the timers */
1667 if (adapter->tx_int_delay)
1668 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1da177e4 1669
581d708e 1670 if (hw->mac_type < e1000_82543)
1da177e4
LT
1671 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1672 else
1673 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1674
1675 /* Cache if we're 82544 running in PCI-X because we'll
1676 * need this to apply a workaround later in the send path. */
581d708e
MC
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
3db1cd5c 1679 adapter->pcix_82544 = true;
7e6c9861 1680
1dc32918 1681 ew32(TCTL, tctl);
7e6c9861 1682
1da177e4
LT
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
581d708e 1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1da177e4
LT
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692
64798845
JP
1693static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1694 struct e1000_rx_ring *rxdr)
1da177e4 1695{
1da177e4 1696 struct pci_dev *pdev = adapter->pdev;
2d7edb92 1697 int size, desc_len;
1da177e4
LT
1698
1699 size = sizeof(struct e1000_buffer) * rxdr->count;
89bf67f1 1700 rxdr->buffer_info = vzalloc(size);
581d708e 1701 if (!rxdr->buffer_info) {
feb8f478
ET
1702 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1703 "ring\n");
1da177e4
LT
1704 return -ENOMEM;
1705 }
1da177e4 1706
1532ecea 1707 desc_len = sizeof(struct e1000_rx_desc);
2d7edb92 1708
1da177e4
LT
1709 /* Round up to nearest 4K */
1710
2d7edb92 1711 rxdr->size = rxdr->count * desc_len;
9099cfb9 1712 rxdr->size = ALIGN(rxdr->size, 4096);
1da177e4 1713
b16f53be
NN
1714 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715 GFP_KERNEL);
1da177e4 1716
581d708e 1717 if (!rxdr->desc) {
feb8f478
ET
1718 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1719 "ring\n");
1da177e4 1720setup_rx_desc_die:
1da177e4
LT
1721 vfree(rxdr->buffer_info);
1722 return -ENOMEM;
1723 }
1724
2648345f 1725 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1726 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 void *olddesc = rxdr->desc;
1728 dma_addr_t olddma = rxdr->dma;
feb8f478 1729 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
675ad473 1730 rxdr->size, rxdr->desc);
2648345f 1731 /* Try again, without freeing the previous */
b16f53be
NN
1732 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1733 &rxdr->dma, GFP_KERNEL);
2648345f 1734 /* Failed allocation, critical failure */
581d708e 1735 if (!rxdr->desc) {
b16f53be
NN
1736 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 olddma);
feb8f478
ET
1738 e_err(probe, "Unable to allocate memory for the Rx "
1739 "descriptor ring\n");
1da177e4
LT
1740 goto setup_rx_desc_die;
1741 }
1742
1743 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1744 /* give up */
b16f53be
NN
1745 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1746 rxdr->dma);
1747 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1748 olddma);
feb8f478
ET
1749 e_err(probe, "Unable to allocate aligned memory for "
1750 "the Rx descriptor ring\n");
581d708e 1751 goto setup_rx_desc_die;
1da177e4 1752 } else {
2648345f 1753 /* Free old allocation, new allocation was successful */
b16f53be
NN
1754 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 olddma);
1da177e4
LT
1756 }
1757 }
1758 memset(rxdr->desc, 0, rxdr->size);
1759
1760 rxdr->next_to_clean = 0;
1761 rxdr->next_to_use = 0;
edbbb3ca 1762 rxdr->rx_skb_top = NULL;
1da177e4
LT
1763
1764 return 0;
1765}
1766
581d708e
MC
1767/**
1768 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1769 * (Descriptors) for all queues
1770 * @adapter: board private structure
1771 *
581d708e
MC
1772 * Return 0 on success, negative on failure
1773 **/
1774
64798845 1775int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
581d708e
MC
1776{
1777 int i, err = 0;
1778
f56799ea 1779 for (i = 0; i < adapter->num_rx_queues; i++) {
581d708e
MC
1780 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1781 if (err) {
feb8f478 1782 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
3fbbc72e
VA
1783 for (i-- ; i >= 0; i--)
1784 e1000_free_rx_resources(adapter,
1785 &adapter->rx_ring[i]);
581d708e
MC
1786 break;
1787 }
1788 }
1789
1790 return err;
1791}
1792
1da177e4 1793/**
2648345f 1794 * e1000_setup_rctl - configure the receive control registers
1da177e4
LT
1795 * @adapter: Board private structure
1796 **/
64798845 1797static void e1000_setup_rctl(struct e1000_adapter *adapter)
1da177e4 1798{
1dc32918 1799 struct e1000_hw *hw = &adapter->hw;
630b25cd 1800 u32 rctl;
1da177e4 1801
1dc32918 1802 rctl = er32(RCTL);
1da177e4
LT
1803
1804 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1805
d5bc77a2
DN
1806 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1807 E1000_RCTL_RDMTS_HALF |
1dc32918 1808 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1da177e4 1809
1dc32918 1810 if (hw->tbi_compatibility_on == 1)
1da177e4
LT
1811 rctl |= E1000_RCTL_SBP;
1812 else
1813 rctl &= ~E1000_RCTL_SBP;
1814
2d7edb92
MC
1815 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1816 rctl &= ~E1000_RCTL_LPE;
1817 else
1818 rctl |= E1000_RCTL_LPE;
1819
1da177e4 1820 /* Setup buffer sizes */
9e2feace
AK
1821 rctl &= ~E1000_RCTL_SZ_4096;
1822 rctl |= E1000_RCTL_BSEX;
1823 switch (adapter->rx_buffer_len) {
a1415ee6
JK
1824 case E1000_RXBUFFER_2048:
1825 default:
1826 rctl |= E1000_RCTL_SZ_2048;
1827 rctl &= ~E1000_RCTL_BSEX;
1828 break;
1829 case E1000_RXBUFFER_4096:
1830 rctl |= E1000_RCTL_SZ_4096;
1831 break;
1832 case E1000_RXBUFFER_8192:
1833 rctl |= E1000_RCTL_SZ_8192;
1834 break;
1835 case E1000_RXBUFFER_16384:
1836 rctl |= E1000_RCTL_SZ_16384;
1837 break;
2d7edb92
MC
1838 }
1839
1dc32918 1840 ew32(RCTL, rctl);
1da177e4
LT
1841}
1842
1843/**
1844 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1845 * @adapter: board private structure
1846 *
1847 * Configure the Rx unit of the MAC after a reset.
1848 **/
1849
64798845 1850static void e1000_configure_rx(struct e1000_adapter *adapter)
1da177e4 1851{
406874a7 1852 u64 rdba;
581d708e 1853 struct e1000_hw *hw = &adapter->hw;
1532ecea 1854 u32 rdlen, rctl, rxcsum;
2d7edb92 1855
edbbb3ca
JB
1856 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1857 rdlen = adapter->rx_ring[0].count *
1858 sizeof(struct e1000_rx_desc);
1859 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1860 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1861 } else {
1862 rdlen = adapter->rx_ring[0].count *
1863 sizeof(struct e1000_rx_desc);
1864 adapter->clean_rx = e1000_clean_rx_irq;
1865 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1866 }
1da177e4
LT
1867
1868 /* disable receives while setting up the descriptors */
1dc32918
JP
1869 rctl = er32(RCTL);
1870 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1da177e4
LT
1871
1872 /* set the Receive Delay Timer Register */
1dc32918 1873 ew32(RDTR, adapter->rx_int_delay);
1da177e4 1874
581d708e 1875 if (hw->mac_type >= e1000_82540) {
1dc32918 1876 ew32(RADV, adapter->rx_abs_int_delay);
835bb129 1877 if (adapter->itr_setting != 0)
1dc32918 1878 ew32(ITR, 1000000000 / (adapter->itr * 256));
1da177e4
LT
1879 }
1880
581d708e
MC
1881 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1882 * the Base and Length of the Rx Descriptor Ring */
f56799ea 1883 switch (adapter->num_rx_queues) {
24025e4e
MC
1884 case 1:
1885 default:
581d708e 1886 rdba = adapter->rx_ring[0].dma;
1dc32918
JP
1887 ew32(RDLEN, rdlen);
1888 ew32(RDBAH, (rdba >> 32));
1889 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1890 ew32(RDT, 0);
1891 ew32(RDH, 0);
6a951698
AK
1892 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1893 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
581d708e 1894 break;
24025e4e
MC
1895 }
1896
1da177e4 1897 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
581d708e 1898 if (hw->mac_type >= e1000_82543) {
1dc32918 1899 rxcsum = er32(RXCSUM);
630b25cd 1900 if (adapter->rx_csum)
2d7edb92 1901 rxcsum |= E1000_RXCSUM_TUOFL;
630b25cd 1902 else
2d7edb92 1903 /* don't need to clear IPPCSE as it defaults to 0 */
630b25cd 1904 rxcsum &= ~E1000_RXCSUM_TUOFL;
1dc32918 1905 ew32(RXCSUM, rxcsum);
1da177e4
LT
1906 }
1907
1908 /* Enable Receives */
d5bc77a2 1909 ew32(RCTL, rctl | E1000_RCTL_EN);
1da177e4
LT
1910}
1911
1912/**
581d708e 1913 * e1000_free_tx_resources - Free Tx Resources per Queue
1da177e4 1914 * @adapter: board private structure
581d708e 1915 * @tx_ring: Tx descriptor ring for a specific queue
1da177e4
LT
1916 *
1917 * Free all transmit software resources
1918 **/
1919
64798845
JP
1920static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 struct e1000_tx_ring *tx_ring)
1da177e4
LT
1922{
1923 struct pci_dev *pdev = adapter->pdev;
1924
581d708e 1925 e1000_clean_tx_ring(adapter, tx_ring);
1da177e4 1926
581d708e
MC
1927 vfree(tx_ring->buffer_info);
1928 tx_ring->buffer_info = NULL;
1da177e4 1929
b16f53be
NN
1930 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 tx_ring->dma);
1da177e4 1932
581d708e
MC
1933 tx_ring->desc = NULL;
1934}
1935
1936/**
1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938 * @adapter: board private structure
1939 *
1940 * Free all transmit software resources
1941 **/
1942
64798845 1943void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
581d708e
MC
1944{
1945 int i;
1946
f56799ea 1947 for (i = 0; i < adapter->num_tx_queues; i++)
581d708e 1948 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1da177e4
LT
1949}
1950
64798845
JP
1951static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1952 struct e1000_buffer *buffer_info)
1da177e4 1953{
602c0554
AD
1954 if (buffer_info->dma) {
1955 if (buffer_info->mapped_as_page)
b16f53be
NN
1956 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1957 buffer_info->length, DMA_TO_DEVICE);
602c0554 1958 else
b16f53be 1959 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
602c0554 1960 buffer_info->length,
b16f53be 1961 DMA_TO_DEVICE);
602c0554
AD
1962 buffer_info->dma = 0;
1963 }
a9ebadd6 1964 if (buffer_info->skb) {
1da177e4 1965 dev_kfree_skb_any(buffer_info->skb);
a9ebadd6
JB
1966 buffer_info->skb = NULL;
1967 }
37e73df8 1968 buffer_info->time_stamp = 0;
a9ebadd6 1969 /* buffer_info must be completely set up in the transmit path */
1da177e4
LT
1970}
1971
1972/**
1973 * e1000_clean_tx_ring - Free Tx Buffers
1974 * @adapter: board private structure
581d708e 1975 * @tx_ring: ring to be cleaned
1da177e4
LT
1976 **/
1977
64798845
JP
1978static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1979 struct e1000_tx_ring *tx_ring)
1da177e4 1980{
1dc32918 1981 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
1982 struct e1000_buffer *buffer_info;
1983 unsigned long size;
1984 unsigned int i;
1985
1986 /* Free all the Tx ring sk_buffs */
1987
96838a40 1988 for (i = 0; i < tx_ring->count; i++) {
1da177e4
LT
1989 buffer_info = &tx_ring->buffer_info[i];
1990 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1991 }
1992
1993 size = sizeof(struct e1000_buffer) * tx_ring->count;
1994 memset(tx_ring->buffer_info, 0, size);
1995
1996 /* Zero out the descriptor ring */
1997
1998 memset(tx_ring->desc, 0, tx_ring->size);
1999
2000 tx_ring->next_to_use = 0;
2001 tx_ring->next_to_clean = 0;
3db1cd5c 2002 tx_ring->last_tx_tso = false;
1da177e4 2003
1dc32918
JP
2004 writel(0, hw->hw_addr + tx_ring->tdh);
2005 writel(0, hw->hw_addr + tx_ring->tdt);
581d708e
MC
2006}
2007
2008/**
2009 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2010 * @adapter: board private structure
2011 **/
2012
64798845 2013static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
581d708e
MC
2014{
2015 int i;
2016
f56799ea 2017 for (i = 0; i < adapter->num_tx_queues; i++)
581d708e 2018 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1da177e4
LT
2019}
2020
2021/**
2022 * e1000_free_rx_resources - Free Rx Resources
2023 * @adapter: board private structure
581d708e 2024 * @rx_ring: ring to clean the resources from
1da177e4
LT
2025 *
2026 * Free all receive software resources
2027 **/
2028
64798845
JP
2029static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2030 struct e1000_rx_ring *rx_ring)
1da177e4 2031{
1da177e4
LT
2032 struct pci_dev *pdev = adapter->pdev;
2033
581d708e 2034 e1000_clean_rx_ring(adapter, rx_ring);
1da177e4
LT
2035
2036 vfree(rx_ring->buffer_info);
2037 rx_ring->buffer_info = NULL;
2038
b16f53be
NN
2039 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2040 rx_ring->dma);
1da177e4
LT
2041
2042 rx_ring->desc = NULL;
2043}
2044
2045/**
581d708e 2046 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1da177e4 2047 * @adapter: board private structure
581d708e
MC
2048 *
2049 * Free all receive software resources
2050 **/
2051
64798845 2052void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
581d708e
MC
2053{
2054 int i;
2055
f56799ea 2056 for (i = 0; i < adapter->num_rx_queues; i++)
581d708e
MC
2057 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058}
2059
2060/**
2061 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2062 * @adapter: board private structure
2063 * @rx_ring: ring to free buffers from
1da177e4
LT
2064 **/
2065
64798845
JP
2066static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2067 struct e1000_rx_ring *rx_ring)
1da177e4 2068{
1dc32918 2069 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
2070 struct e1000_buffer *buffer_info;
2071 struct pci_dev *pdev = adapter->pdev;
2072 unsigned long size;
630b25cd 2073 unsigned int i;
1da177e4
LT
2074
2075 /* Free all the Rx ring sk_buffs */
96838a40 2076 for (i = 0; i < rx_ring->count; i++) {
1da177e4 2077 buffer_info = &rx_ring->buffer_info[i];
edbbb3ca
JB
2078 if (buffer_info->dma &&
2079 adapter->clean_rx == e1000_clean_rx_irq) {
b16f53be 2080 dma_unmap_single(&pdev->dev, buffer_info->dma,
edbbb3ca 2081 buffer_info->length,
b16f53be 2082 DMA_FROM_DEVICE);
edbbb3ca
JB
2083 } else if (buffer_info->dma &&
2084 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
b16f53be
NN
2085 dma_unmap_page(&pdev->dev, buffer_info->dma,
2086 buffer_info->length,
2087 DMA_FROM_DEVICE);
679be3ba 2088 }
1da177e4 2089
679be3ba 2090 buffer_info->dma = 0;
edbbb3ca
JB
2091 if (buffer_info->page) {
2092 put_page(buffer_info->page);
2093 buffer_info->page = NULL;
2094 }
679be3ba 2095 if (buffer_info->skb) {
1da177e4
LT
2096 dev_kfree_skb(buffer_info->skb);
2097 buffer_info->skb = NULL;
997f5cbd 2098 }
1da177e4
LT
2099 }
2100
edbbb3ca
JB
2101 /* there also may be some cached data from a chained receive */
2102 if (rx_ring->rx_skb_top) {
2103 dev_kfree_skb(rx_ring->rx_skb_top);
2104 rx_ring->rx_skb_top = NULL;
2105 }
2106
1da177e4
LT
2107 size = sizeof(struct e1000_buffer) * rx_ring->count;
2108 memset(rx_ring->buffer_info, 0, size);
2109
2110 /* Zero out the descriptor ring */
1da177e4
LT
2111 memset(rx_ring->desc, 0, rx_ring->size);
2112
2113 rx_ring->next_to_clean = 0;
2114 rx_ring->next_to_use = 0;
2115
1dc32918
JP
2116 writel(0, hw->hw_addr + rx_ring->rdh);
2117 writel(0, hw->hw_addr + rx_ring->rdt);
581d708e
MC
2118}
2119
2120/**
2121 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2122 * @adapter: board private structure
2123 **/
2124
64798845 2125static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
581d708e
MC
2126{
2127 int i;
2128
f56799ea 2129 for (i = 0; i < adapter->num_rx_queues; i++)
581d708e 2130 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1da177e4
LT
2131}
2132
2133/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2134 * and memory write and invalidate disabled for certain operations
2135 */
64798845 2136static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
1da177e4 2137{
1dc32918 2138 struct e1000_hw *hw = &adapter->hw;
1da177e4 2139 struct net_device *netdev = adapter->netdev;
406874a7 2140 u32 rctl;
1da177e4 2141
1dc32918 2142 e1000_pci_clear_mwi(hw);
1da177e4 2143
1dc32918 2144 rctl = er32(RCTL);
1da177e4 2145 rctl |= E1000_RCTL_RST;
1dc32918
JP
2146 ew32(RCTL, rctl);
2147 E1000_WRITE_FLUSH();
1da177e4
LT
2148 mdelay(5);
2149
96838a40 2150 if (netif_running(netdev))
581d708e 2151 e1000_clean_all_rx_rings(adapter);
1da177e4
LT
2152}
2153
64798845 2154static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
1da177e4 2155{
1dc32918 2156 struct e1000_hw *hw = &adapter->hw;
1da177e4 2157 struct net_device *netdev = adapter->netdev;
406874a7 2158 u32 rctl;
1da177e4 2159
1dc32918 2160 rctl = er32(RCTL);
1da177e4 2161 rctl &= ~E1000_RCTL_RST;
1dc32918
JP
2162 ew32(RCTL, rctl);
2163 E1000_WRITE_FLUSH();
1da177e4
LT
2164 mdelay(5);
2165
1dc32918
JP
2166 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2167 e1000_pci_set_mwi(hw);
1da177e4 2168
96838a40 2169 if (netif_running(netdev)) {
72d64a43
JK
2170 /* No need to loop, because 82542 supports only 1 queue */
2171 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
7c4d3367 2172 e1000_configure_rx(adapter);
72d64a43 2173 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
1da177e4
LT
2174 }
2175}
2176
2177/**
2178 * e1000_set_mac - Change the Ethernet Address of the NIC
2179 * @netdev: network interface device structure
2180 * @p: pointer to an address structure
2181 *
2182 * Returns 0 on success, negative on failure
2183 **/
2184
64798845 2185static int e1000_set_mac(struct net_device *netdev, void *p)
1da177e4 2186{
60490fe0 2187 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 2188 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
2189 struct sockaddr *addr = p;
2190
96838a40 2191 if (!is_valid_ether_addr(addr->sa_data))
1da177e4
LT
2192 return -EADDRNOTAVAIL;
2193
2194 /* 82542 2.0 needs to be in reset to write receive address registers */
2195
1dc32918 2196 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2197 e1000_enter_82542_rst(adapter);
2198
2199 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1dc32918 2200 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
1da177e4 2201
1dc32918 2202 e1000_rar_set(hw, hw->mac_addr, 0);
1da177e4 2203
1dc32918 2204 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2205 e1000_leave_82542_rst(adapter);
2206
2207 return 0;
2208}
2209
2210/**
db0ce50d 2211 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
1da177e4
LT
2212 * @netdev: network interface device structure
2213 *
db0ce50d
PM
2214 * The set_rx_mode entry point is called whenever the unicast or multicast
2215 * address lists or the network interface flags are updated. This routine is
2216 * responsible for configuring the hardware for proper unicast, multicast,
1da177e4
LT
2217 * promiscuous mode, and all-multi behavior.
2218 **/
2219
64798845 2220static void e1000_set_rx_mode(struct net_device *netdev)
1da177e4 2221{
60490fe0 2222 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 2223 struct e1000_hw *hw = &adapter->hw;
ccffad25
JP
2224 struct netdev_hw_addr *ha;
2225 bool use_uc = false;
406874a7
JP
2226 u32 rctl;
2227 u32 hash_value;
868d5309 2228 int i, rar_entries = E1000_RAR_ENTRIES;
1532ecea 2229 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
81c52285
JB
2230 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2231
2232 if (!mcarray) {
feb8f478 2233 e_err(probe, "memory allocation failed\n");
81c52285
JB
2234 return;
2235 }
cd94dd0b 2236
2648345f
MC
2237 /* Check for Promiscuous and All Multicast modes */
2238
1dc32918 2239 rctl = er32(RCTL);
1da177e4 2240
96838a40 2241 if (netdev->flags & IFF_PROMISC) {
1da177e4 2242 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2243 rctl &= ~E1000_RCTL_VFE;
1da177e4 2244 } else {
1532ecea 2245 if (netdev->flags & IFF_ALLMULTI)
746b9f02 2246 rctl |= E1000_RCTL_MPE;
1532ecea 2247 else
746b9f02 2248 rctl &= ~E1000_RCTL_MPE;
1532ecea 2249 /* Enable VLAN filter if there is a VLAN */
5622e404 2250 if (e1000_vlan_used(adapter))
1532ecea 2251 rctl |= E1000_RCTL_VFE;
db0ce50d
PM
2252 }
2253
32e7bfc4 2254 if (netdev_uc_count(netdev) > rar_entries - 1) {
db0ce50d
PM
2255 rctl |= E1000_RCTL_UPE;
2256 } else if (!(netdev->flags & IFF_PROMISC)) {
2257 rctl &= ~E1000_RCTL_UPE;
ccffad25 2258 use_uc = true;
1da177e4
LT
2259 }
2260
1dc32918 2261 ew32(RCTL, rctl);
1da177e4
LT
2262
2263 /* 82542 2.0 needs to be in reset to write receive address registers */
2264
96838a40 2265 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2266 e1000_enter_82542_rst(adapter);
2267
db0ce50d
PM
2268 /* load the first 14 addresses into the exact filters 1-14. Unicast
2269 * addresses take precedence to avoid disabling unicast filtering
2270 * when possible.
2271 *
b595076a 2272 * RAR 0 is used for the station MAC address
1da177e4
LT
2273 * if there are not 14 addresses, go ahead and clear the filters
2274 */
ccffad25
JP
2275 i = 1;
2276 if (use_uc)
32e7bfc4 2277 netdev_for_each_uc_addr(ha, netdev) {
ccffad25
JP
2278 if (i == rar_entries)
2279 break;
2280 e1000_rar_set(hw, ha->addr, i++);
2281 }
2282
22bedad3 2283 netdev_for_each_mc_addr(ha, netdev) {
7a81e9f3
JP
2284 if (i == rar_entries) {
2285 /* load any remaining addresses into the hash table */
2286 u32 hash_reg, hash_bit, mta;
22bedad3 2287 hash_value = e1000_hash_mc_addr(hw, ha->addr);
7a81e9f3
JP
2288 hash_reg = (hash_value >> 5) & 0x7F;
2289 hash_bit = hash_value & 0x1F;
2290 mta = (1 << hash_bit);
2291 mcarray[hash_reg] |= mta;
10886af5 2292 } else {
22bedad3 2293 e1000_rar_set(hw, ha->addr, i++);
1da177e4
LT
2294 }
2295 }
2296
7a81e9f3
JP
2297 for (; i < rar_entries; i++) {
2298 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2299 E1000_WRITE_FLUSH();
2300 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2301 E1000_WRITE_FLUSH();
1da177e4
LT
2302 }
2303
81c52285
JB
2304 /* write the hash table completely, write from bottom to avoid
2305 * both stupid write combining chipsets, and flushing each write */
2306 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2307 /*
2308 * If we are on an 82544 has an errata where writing odd
2309 * offsets overwrites the previous even offset, but writing
2310 * backwards over the range solves the issue by always
2311 * writing the odd offset first
2312 */
2313 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2314 }
2315 E1000_WRITE_FLUSH();
2316
96838a40 2317 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4 2318 e1000_leave_82542_rst(adapter);
81c52285
JB
2319
2320 kfree(mcarray);
1da177e4
LT
2321}
2322
a4010afe
JB
2323/**
2324 * e1000_update_phy_info_task - get phy info
2325 * @work: work struct contained inside adapter struct
2326 *
2327 * Need to wait a few seconds after link up to get diagnostic information from
2328 * the phy
2329 */
5cf42fcd
JB
2330static void e1000_update_phy_info_task(struct work_struct *work)
2331{
2332 struct e1000_adapter *adapter = container_of(work,
a4010afe
JB
2333 struct e1000_adapter,
2334 phy_info_task.work);
0ef4eedc
JB
2335 if (test_bit(__E1000_DOWN, &adapter->flags))
2336 return;
2337 mutex_lock(&adapter->mutex);
a4010afe 2338 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
0ef4eedc 2339 mutex_unlock(&adapter->mutex);
1da177e4
LT
2340}
2341
5cf42fcd
JB
2342/**
2343 * e1000_82547_tx_fifo_stall_task - task to complete work
2344 * @work: work struct contained inside adapter struct
2345 **/
2346static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2347{
2348 struct e1000_adapter *adapter = container_of(work,
a4010afe
JB
2349 struct e1000_adapter,
2350 fifo_stall_task.work);
1dc32918 2351 struct e1000_hw *hw = &adapter->hw;
1da177e4 2352 struct net_device *netdev = adapter->netdev;
406874a7 2353 u32 tctl;
1da177e4 2354
0ef4eedc
JB
2355 if (test_bit(__E1000_DOWN, &adapter->flags))
2356 return;
2357 mutex_lock(&adapter->mutex);
96838a40 2358 if (atomic_read(&adapter->tx_fifo_stall)) {
1dc32918
JP
2359 if ((er32(TDT) == er32(TDH)) &&
2360 (er32(TDFT) == er32(TDFH)) &&
2361 (er32(TDFTS) == er32(TDFHS))) {
2362 tctl = er32(TCTL);
2363 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2364 ew32(TDFT, adapter->tx_head_addr);
2365 ew32(TDFH, adapter->tx_head_addr);
2366 ew32(TDFTS, adapter->tx_head_addr);
2367 ew32(TDFHS, adapter->tx_head_addr);
2368 ew32(TCTL, tctl);
2369 E1000_WRITE_FLUSH();
1da177e4
LT
2370
2371 adapter->tx_fifo_head = 0;
2372 atomic_set(&adapter->tx_fifo_stall, 0);
2373 netif_wake_queue(netdev);
baa34745 2374 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
a4010afe 2375 schedule_delayed_work(&adapter->fifo_stall_task, 1);
1da177e4
LT
2376 }
2377 }
0ef4eedc 2378 mutex_unlock(&adapter->mutex);
1da177e4
LT
2379}
2380
b548192a 2381bool e1000_has_link(struct e1000_adapter *adapter)
be0f0719
JB
2382{
2383 struct e1000_hw *hw = &adapter->hw;
2384 bool link_active = false;
be0f0719 2385
6d9e5130
NS
2386 /* get_link_status is set on LSC (link status) interrupt or rx
2387 * sequence error interrupt (except on intel ce4100).
2388 * get_link_status will stay false until the
2389 * e1000_check_for_link establishes link for copper adapters
2390 * ONLY
be0f0719
JB
2391 */
2392 switch (hw->media_type) {
2393 case e1000_media_type_copper:
6d9e5130
NS
2394 if (hw->mac_type == e1000_ce4100)
2395 hw->get_link_status = 1;
be0f0719 2396 if (hw->get_link_status) {
120a5d0d 2397 e1000_check_for_link(hw);
be0f0719
JB
2398 link_active = !hw->get_link_status;
2399 } else {
2400 link_active = true;
2401 }
2402 break;
2403 case e1000_media_type_fiber:
120a5d0d 2404 e1000_check_for_link(hw);
be0f0719
JB
2405 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2406 break;
2407 case e1000_media_type_internal_serdes:
120a5d0d 2408 e1000_check_for_link(hw);
be0f0719
JB
2409 link_active = hw->serdes_has_link;
2410 break;
2411 default:
2412 break;
2413 }
2414
2415 return link_active;
2416}
2417
1da177e4 2418/**
a4010afe
JB
2419 * e1000_watchdog - work function
2420 * @work: work struct contained inside adapter struct
1da177e4 2421 **/
a4010afe 2422static void e1000_watchdog(struct work_struct *work)
1da177e4 2423{
a4010afe
JB
2424 struct e1000_adapter *adapter = container_of(work,
2425 struct e1000_adapter,
2426 watchdog_task.work);
1dc32918 2427 struct e1000_hw *hw = &adapter->hw;
1da177e4 2428 struct net_device *netdev = adapter->netdev;
545c67c0 2429 struct e1000_tx_ring *txdr = adapter->tx_ring;
406874a7 2430 u32 link, tctl;
90fb5135 2431
0ef4eedc
JB
2432 if (test_bit(__E1000_DOWN, &adapter->flags))
2433 return;
2434
2435 mutex_lock(&adapter->mutex);
be0f0719
JB
2436 link = e1000_has_link(adapter);
2437 if ((netif_carrier_ok(netdev)) && link)
2438 goto link_up;
1da177e4 2439
96838a40
JB
2440 if (link) {
2441 if (!netif_carrier_ok(netdev)) {
406874a7 2442 u32 ctrl;
c3033b01 2443 bool txb2b = true;
be0f0719 2444 /* update snapshot of PHY registers on LSC */
1dc32918 2445 e1000_get_speed_and_duplex(hw,
1da177e4
LT
2446 &adapter->link_speed,
2447 &adapter->link_duplex);
2448
1dc32918 2449 ctrl = er32(CTRL);
675ad473
ET
2450 pr_info("%s NIC Link is Up %d Mbps %s, "
2451 "Flow Control: %s\n",
2452 netdev->name,
2453 adapter->link_speed,
2454 adapter->link_duplex == FULL_DUPLEX ?
2455 "Full Duplex" : "Half Duplex",
2456 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2457 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2458 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2459 E1000_CTRL_TFCE) ? "TX" : "None")));
1da177e4 2460
39ca5f03 2461 /* adjust timeout factor according to speed/duplex */
66a2b0a3 2462 adapter->tx_timeout_factor = 1;
7e6c9861
JK
2463 switch (adapter->link_speed) {
2464 case SPEED_10:
c3033b01 2465 txb2b = false;
be0f0719 2466 adapter->tx_timeout_factor = 16;
7e6c9861
JK
2467 break;
2468 case SPEED_100:
c3033b01 2469 txb2b = false;
7e6c9861
JK
2470 /* maybe add some timeout factor ? */
2471 break;
2472 }
2473
1532ecea 2474 /* enable transmits in the hardware */
1dc32918 2475 tctl = er32(TCTL);
7e6c9861 2476 tctl |= E1000_TCTL_EN;
1dc32918 2477 ew32(TCTL, tctl);
66a2b0a3 2478
1da177e4 2479 netif_carrier_on(netdev);
baa34745 2480 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe
JB
2481 schedule_delayed_work(&adapter->phy_info_task,
2482 2 * HZ);
1da177e4
LT
2483 adapter->smartspeed = 0;
2484 }
2485 } else {
96838a40 2486 if (netif_carrier_ok(netdev)) {
1da177e4
LT
2487 adapter->link_speed = 0;
2488 adapter->link_duplex = 0;
675ad473
ET
2489 pr_info("%s NIC Link is Down\n",
2490 netdev->name);
1da177e4 2491 netif_carrier_off(netdev);
baa34745
JB
2492
2493 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe
JB
2494 schedule_delayed_work(&adapter->phy_info_task,
2495 2 * HZ);
1da177e4
LT
2496 }
2497
2498 e1000_smartspeed(adapter);
2499 }
2500
be0f0719 2501link_up:
1da177e4
LT
2502 e1000_update_stats(adapter);
2503
1dc32918 2504 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1da177e4 2505 adapter->tpt_old = adapter->stats.tpt;
1dc32918 2506 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
1da177e4
LT
2507 adapter->colc_old = adapter->stats.colc;
2508
2509 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2510 adapter->gorcl_old = adapter->stats.gorcl;
2511 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2512 adapter->gotcl_old = adapter->stats.gotcl;
2513
1dc32918 2514 e1000_update_adaptive(hw);
1da177e4 2515
f56799ea 2516 if (!netif_carrier_ok(netdev)) {
581d708e 2517 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1da177e4
LT
2518 /* We've lost link, so the controller stops DMA,
2519 * but we've got queued Tx work that's never going
2520 * to get done, so reset controller to flush Tx.
2521 * (Do the reset outside of interrupt context). */
87041639
JK
2522 adapter->tx_timeout_count++;
2523 schedule_work(&adapter->reset_task);
0ef4eedc
JB
2524 /* exit immediately since reset is imminent */
2525 goto unlock;
1da177e4
LT
2526 }
2527 }
2528
eab2abf5
JB
2529 /* Simple mode for Interrupt Throttle Rate (ITR) */
2530 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 /*
2532 * Symmetric Tx/Rx gets a reduced ITR=2000;
2533 * Total asymmetrical Tx or Rx gets ITR=8000;
2534 * everyone else is between 2000-8000.
2535 */
2536 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2537 u32 dif = (adapter->gotcl > adapter->gorcl ?
2538 adapter->gotcl - adapter->gorcl :
2539 adapter->gorcl - adapter->gotcl) / 10000;
2540 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2541
2542 ew32(ITR, 1000000000 / (itr * 256));
2543 }
2544
1da177e4 2545 /* Cause software interrupt to ensure rx ring is cleaned */
1dc32918 2546 ew32(ICS, E1000_ICS_RXDMT0);
1da177e4 2547
2648345f 2548 /* Force detection of hung controller every watchdog period */
c3033b01 2549 adapter->detect_tx_hung = true;
1da177e4 2550
a4010afe 2551 /* Reschedule the task */
baa34745 2552 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe 2553 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
0ef4eedc
JB
2554
2555unlock:
2556 mutex_unlock(&adapter->mutex);
1da177e4
LT
2557}
2558
835bb129
JB
2559enum latency_range {
2560 lowest_latency = 0,
2561 low_latency = 1,
2562 bulk_latency = 2,
2563 latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
8fce4731
JB
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
835bb129
JB
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
835bb129
JB
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
64798845 2584 u16 itr_setting, int packets, int bytes)
835bb129
JB
2585{
2586 unsigned int retval = itr_setting;
2587 struct e1000_hw *hw = &adapter->hw;
2588
2589 if (unlikely(hw->mac_type < e1000_82540))
2590 goto update_itr_done;
2591
2592 if (packets == 0)
2593 goto update_itr_done;
2594
835bb129
JB
2595 switch (itr_setting) {
2596 case lowest_latency:
2b65326e
JB
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 5) && (bytes > 512))
835bb129
JB
2601 retval = low_latency;
2602 break;
2603 case low_latency: /* 50 usec aka 20000 ints/s */
2604 if (bytes > 10000) {
2b65326e
JB
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes/packets > 8000)
2607 retval = bulk_latency;
2608 else if ((packets < 10) || ((bytes/packets) > 1200))
835bb129
JB
2609 retval = bulk_latency;
2610 else if ((packets > 35))
2611 retval = lowest_latency;
2b65326e
JB
2612 } else if (bytes/packets > 2000)
2613 retval = bulk_latency;
2614 else if (packets <= 2 && bytes < 512)
835bb129
JB
2615 retval = lowest_latency;
2616 break;
2617 case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 if (bytes > 25000) {
2619 if (packets > 35)
2620 retval = low_latency;
2b65326e
JB
2621 } else if (bytes < 6000) {
2622 retval = low_latency;
835bb129
JB
2623 }
2624 break;
2625 }
2626
2627update_itr_done:
2628 return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
2634 u16 current_itr;
2635 u32 new_itr = adapter->itr;
835bb129
JB
2636
2637 if (unlikely(hw->mac_type < e1000_82540))
2638 return;
2639
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 current_itr = 0;
2643 new_itr = 4000;
2644 goto set_itr_now;
2645 }
2646
2647 adapter->tx_itr = e1000_update_itr(adapter,
2648 adapter->tx_itr,
2649 adapter->total_tx_packets,
2650 adapter->total_tx_bytes);
2b65326e
JB
2651 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2652 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2653 adapter->tx_itr = low_latency;
2654
835bb129
JB
2655 adapter->rx_itr = e1000_update_itr(adapter,
2656 adapter->rx_itr,
2657 adapter->total_rx_packets,
2658 adapter->total_rx_bytes);
2b65326e
JB
2659 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2660 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2661 adapter->rx_itr = low_latency;
835bb129
JB
2662
2663 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2664
835bb129
JB
2665 switch (current_itr) {
2666 /* counts and packets in update_itr are dependent on these numbers */
2667 case lowest_latency:
2668 new_itr = 70000;
2669 break;
2670 case low_latency:
2671 new_itr = 20000; /* aka hwitr = ~200 */
2672 break;
2673 case bulk_latency:
2674 new_itr = 4000;
2675 break;
2676 default:
2677 break;
2678 }
2679
2680set_itr_now:
2681 if (new_itr != adapter->itr) {
2682 /* this attempts to bias the interrupt rate towards Bulk
2683 * by adding intermediate steps when interrupt rate is
2684 * increasing */
2685 new_itr = new_itr > adapter->itr ?
2686 min(adapter->itr + (new_itr >> 2), new_itr) :
2687 new_itr;
2688 adapter->itr = new_itr;
1dc32918 2689 ew32(ITR, 1000000000 / (new_itr * 256));
835bb129 2690 }
835bb129
JB
2691}
2692
1da177e4
LT
2693#define E1000_TX_FLAGS_CSUM 0x00000001
2694#define E1000_TX_FLAGS_VLAN 0x00000002
2695#define E1000_TX_FLAGS_TSO 0x00000004
2d7edb92 2696#define E1000_TX_FLAGS_IPV4 0x00000008
1da177e4
LT
2697#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT 16
2699
64798845
JP
2700static int e1000_tso(struct e1000_adapter *adapter,
2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
1da177e4 2702{
1da177e4 2703 struct e1000_context_desc *context_desc;
545c67c0 2704 struct e1000_buffer *buffer_info;
1da177e4 2705 unsigned int i;
406874a7
JP
2706 u32 cmd_length = 0;
2707 u16 ipcse = 0, tucse, mss;
2708 u8 ipcss, ipcso, tucss, tucso, hdr_len;
1da177e4
LT
2709 int err;
2710
89114afd 2711 if (skb_is_gso(skb)) {
1da177e4
LT
2712 if (skb_header_cloned(skb)) {
2713 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714 if (err)
2715 return err;
2716 }
2717
ab6a5bb6 2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
7967168c 2719 mss = skb_shinfo(skb)->gso_size;
60828236 2720 if (skb->protocol == htons(ETH_P_IP)) {
eddc9ec5
ACM
2721 struct iphdr *iph = ip_hdr(skb);
2722 iph->tot_len = 0;
2723 iph->check = 0;
aa8223c7
ACM
2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 iph->daddr, 0,
2726 IPPROTO_TCP,
2727 0);
2d7edb92 2728 cmd_length = E1000_TXD_CMD_IP;
ea2ae17d 2729 ipcse = skb_transport_offset(skb) - 1;
e15fdd03 2730 } else if (skb->protocol == htons(ETH_P_IPV6)) {
0660e03f 2731 ipv6_hdr(skb)->payload_len = 0;
aa8223c7 2732 tcp_hdr(skb)->check =
0660e03f
ACM
2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 &ipv6_hdr(skb)->daddr,
2735 0, IPPROTO_TCP, 0);
2d7edb92 2736 ipcse = 0;
2d7edb92 2737 }
bbe735e4 2738 ipcss = skb_network_offset(skb);
eddc9ec5 2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
ea2ae17d 2740 tucss = skb_transport_offset(skb);
aa8223c7 2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
1da177e4
LT
2742 tucse = 0;
2743
2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2d7edb92 2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1da177e4 2746
581d708e
MC
2747 i = tx_ring->next_to_use;
2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
545c67c0 2749 buffer_info = &tx_ring->buffer_info[i];
1da177e4
LT
2750
2751 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2752 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2754 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
545c67c0 2761 buffer_info->time_stamp = jiffies;
a9ebadd6 2762 buffer_info->next_to_watch = i;
545c67c0 2763
581d708e
MC
2764 if (++i == tx_ring->count) i = 0;
2765 tx_ring->next_to_use = i;
1da177e4 2766
c3033b01 2767 return true;
1da177e4 2768 }
c3033b01 2769 return false;
1da177e4
LT
2770}
2771
64798845
JP
2772static bool e1000_tx_csum(struct e1000_adapter *adapter,
2773 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
1da177e4
LT
2774{
2775 struct e1000_context_desc *context_desc;
545c67c0 2776 struct e1000_buffer *buffer_info;
1da177e4 2777 unsigned int i;
406874a7 2778 u8 css;
3ed30676 2779 u32 cmd_len = E1000_TXD_CMD_DEXT;
1da177e4 2780
3ed30676
DG
2781 if (skb->ip_summed != CHECKSUM_PARTIAL)
2782 return false;
1da177e4 2783
3ed30676 2784 switch (skb->protocol) {
09640e63 2785 case cpu_to_be16(ETH_P_IP):
3ed30676
DG
2786 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2787 cmd_len |= E1000_TXD_CMD_TCP;
2788 break;
09640e63 2789 case cpu_to_be16(ETH_P_IPV6):
3ed30676
DG
2790 /* XXX not handling all IPV6 headers */
2791 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2792 cmd_len |= E1000_TXD_CMD_TCP;
2793 break;
2794 default:
2795 if (unlikely(net_ratelimit()))
feb8f478
ET
2796 e_warn(drv, "checksum_partial proto=%x!\n",
2797 skb->protocol);
3ed30676
DG
2798 break;
2799 }
1da177e4 2800
0d0b1672 2801 css = skb_checksum_start_offset(skb);
1da177e4 2802
3ed30676
DG
2803 i = tx_ring->next_to_use;
2804 buffer_info = &tx_ring->buffer_info[i];
2805 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
545c67c0 2806
3ed30676
DG
2807 context_desc->lower_setup.ip_config = 0;
2808 context_desc->upper_setup.tcp_fields.tucss = css;
2809 context_desc->upper_setup.tcp_fields.tucso =
2810 css + skb->csum_offset;
2811 context_desc->upper_setup.tcp_fields.tucse = 0;
2812 context_desc->tcp_seg_setup.data = 0;
2813 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
1da177e4 2814
3ed30676
DG
2815 buffer_info->time_stamp = jiffies;
2816 buffer_info->next_to_watch = i;
1da177e4 2817
3ed30676
DG
2818 if (unlikely(++i == tx_ring->count)) i = 0;
2819 tx_ring->next_to_use = i;
2820
2821 return true;
1da177e4
LT
2822}
2823
2824#define E1000_MAX_TXD_PWR 12
2825#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2826
64798845
JP
2827static int e1000_tx_map(struct e1000_adapter *adapter,
2828 struct e1000_tx_ring *tx_ring,
2829 struct sk_buff *skb, unsigned int first,
2830 unsigned int max_per_txd, unsigned int nr_frags,
2831 unsigned int mss)
1da177e4 2832{
1dc32918 2833 struct e1000_hw *hw = &adapter->hw;
602c0554 2834 struct pci_dev *pdev = adapter->pdev;
37e73df8 2835 struct e1000_buffer *buffer_info;
d20b606c 2836 unsigned int len = skb_headlen(skb);
602c0554 2837 unsigned int offset = 0, size, count = 0, i;
31c15a2f 2838 unsigned int f, bytecount, segs;
1da177e4
LT
2839
2840 i = tx_ring->next_to_use;
2841
96838a40 2842 while (len) {
37e73df8 2843 buffer_info = &tx_ring->buffer_info[i];
1da177e4 2844 size = min(len, max_per_txd);
fd803241
JK
2845 /* Workaround for Controller erratum --
2846 * descriptor for non-tso packet in a linear SKB that follows a
2847 * tso gets written back prematurely before the data is fully
0f15a8fa 2848 * DMA'd to the controller */
fd803241 2849 if (!skb->data_len && tx_ring->last_tx_tso &&
89114afd 2850 !skb_is_gso(skb)) {
3db1cd5c 2851 tx_ring->last_tx_tso = false;
fd803241
JK
2852 size -= 4;
2853 }
2854
1da177e4
LT
2855 /* Workaround for premature desc write-backs
2856 * in TSO mode. Append 4-byte sentinel desc */
96838a40 2857 if (unlikely(mss && !nr_frags && size == len && size > 8))
1da177e4 2858 size -= 4;
97338bde
MC
2859 /* work-around for errata 10 and it applies
2860 * to all controllers in PCI-X mode
2861 * The fix is to make sure that the first descriptor of a
2862 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2863 */
1dc32918 2864 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
97338bde
MC
2865 (size > 2015) && count == 0))
2866 size = 2015;
96838a40 2867
1da177e4
LT
2868 /* Workaround for potential 82544 hang in PCI-X. Avoid
2869 * terminating buffers within evenly-aligned dwords. */
96838a40 2870 if (unlikely(adapter->pcix_82544 &&
1da177e4
LT
2871 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2872 size > 4))
2873 size -= 4;
2874
2875 buffer_info->length = size;
cdd7549e 2876 /* set time_stamp *before* dma to help avoid a possible race */
1da177e4 2877 buffer_info->time_stamp = jiffies;
602c0554 2878 buffer_info->mapped_as_page = false;
b16f53be
NN
2879 buffer_info->dma = dma_map_single(&pdev->dev,
2880 skb->data + offset,
2881 size, DMA_TO_DEVICE);
2882 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
602c0554 2883 goto dma_error;
a9ebadd6 2884 buffer_info->next_to_watch = i;
1da177e4
LT
2885
2886 len -= size;
2887 offset += size;
2888 count++;
37e73df8
AD
2889 if (len) {
2890 i++;
2891 if (unlikely(i == tx_ring->count))
2892 i = 0;
2893 }
1da177e4
LT
2894 }
2895
96838a40 2896 for (f = 0; f < nr_frags; f++) {
9e903e08 2897 const struct skb_frag_struct *frag;
1da177e4
LT
2898
2899 frag = &skb_shinfo(skb)->frags[f];
9e903e08 2900 len = skb_frag_size(frag);
877749bf 2901 offset = 0;
1da177e4 2902
96838a40 2903 while (len) {
877749bf 2904 unsigned long bufend;
37e73df8
AD
2905 i++;
2906 if (unlikely(i == tx_ring->count))
2907 i = 0;
2908
1da177e4
LT
2909 buffer_info = &tx_ring->buffer_info[i];
2910 size = min(len, max_per_txd);
1da177e4
LT
2911 /* Workaround for premature desc write-backs
2912 * in TSO mode. Append 4-byte sentinel desc */
96838a40 2913 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
1da177e4 2914 size -= 4;
1da177e4
LT
2915 /* Workaround for potential 82544 hang in PCI-X.
2916 * Avoid terminating buffers within evenly-aligned
2917 * dwords. */
877749bf
IC
2918 bufend = (unsigned long)
2919 page_to_phys(skb_frag_page(frag));
2920 bufend += offset + size - 1;
96838a40 2921 if (unlikely(adapter->pcix_82544 &&
877749bf
IC
2922 !(bufend & 4) &&
2923 size > 4))
1da177e4
LT
2924 size -= 4;
2925
2926 buffer_info->length = size;
1da177e4 2927 buffer_info->time_stamp = jiffies;
602c0554 2928 buffer_info->mapped_as_page = true;
877749bf
IC
2929 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2930 offset, size, DMA_TO_DEVICE);
b16f53be 2931 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
602c0554 2932 goto dma_error;
a9ebadd6 2933 buffer_info->next_to_watch = i;
1da177e4
LT
2934
2935 len -= size;
2936 offset += size;
2937 count++;
1da177e4
LT
2938 }
2939 }
2940
31c15a2f
DN
2941 segs = skb_shinfo(skb)->gso_segs ?: 1;
2942 /* multiply data chunks by size of headers */
2943 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2944
1da177e4 2945 tx_ring->buffer_info[i].skb = skb;
31c15a2f
DN
2946 tx_ring->buffer_info[i].segs = segs;
2947 tx_ring->buffer_info[i].bytecount = bytecount;
1da177e4
LT
2948 tx_ring->buffer_info[first].next_to_watch = i;
2949
2950 return count;
602c0554
AD
2951
2952dma_error:
2953 dev_err(&pdev->dev, "TX DMA map failed\n");
2954 buffer_info->dma = 0;
c1fa347f 2955 if (count)
602c0554 2956 count--;
c1fa347f
RK
2957
2958 while (count--) {
2959 if (i==0)
602c0554 2960 i += tx_ring->count;
c1fa347f 2961 i--;
602c0554
AD
2962 buffer_info = &tx_ring->buffer_info[i];
2963 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2964 }
2965
2966 return 0;
1da177e4
LT
2967}
2968
64798845
JP
2969static void e1000_tx_queue(struct e1000_adapter *adapter,
2970 struct e1000_tx_ring *tx_ring, int tx_flags,
2971 int count)
1da177e4 2972{
1dc32918 2973 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
2974 struct e1000_tx_desc *tx_desc = NULL;
2975 struct e1000_buffer *buffer_info;
406874a7 2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1da177e4
LT
2977 unsigned int i;
2978
96838a40 2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1da177e4
LT
2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 E1000_TXD_CMD_TSE;
2d7edb92
MC
2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
96838a40 2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2d7edb92 2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
1da177e4
LT
2986 }
2987
96838a40 2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1da177e4
LT
2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 }
2992
96838a40 2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1da177e4
LT
2994 txd_lower |= E1000_TXD_CMD_VLE;
2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 }
2997
2998 i = tx_ring->next_to_use;
2999
96838a40 3000 while (count--) {
1da177e4
LT
3001 buffer_info = &tx_ring->buffer_info[i];
3002 tx_desc = E1000_TX_DESC(*tx_ring, i);
3003 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004 tx_desc->lower.data =
3005 cpu_to_le32(txd_lower | buffer_info->length);
3006 tx_desc->upper.data = cpu_to_le32(txd_upper);
96838a40 3007 if (unlikely(++i == tx_ring->count)) i = 0;
1da177e4
LT
3008 }
3009
3010 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3011
3012 /* Force memory writes to complete before letting h/w
3013 * know there are new descriptors to fetch. (Only
3014 * applicable for weak-ordered memory model archs,
3015 * such as IA-64). */
3016 wmb();
3017
3018 tx_ring->next_to_use = i;
1dc32918 3019 writel(i, hw->hw_addr + tx_ring->tdt);
2ce9047f
JB
3020 /* we need this if more than one processor can write to our tail
3021 * at a time, it syncronizes IO on IA64/Altix systems */
3022 mmiowb();
1da177e4
LT
3023}
3024
3025/**
3026 * 82547 workaround to avoid controller hang in half-duplex environment.
3027 * The workaround is to avoid queuing a large packet that would span
3028 * the internal Tx FIFO ring boundary by notifying the stack to resend
3029 * the packet at a later time. This gives the Tx FIFO an opportunity to
3030 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3031 * to the beginning of the Tx FIFO.
3032 **/
3033
3034#define E1000_FIFO_HDR 0x10
3035#define E1000_82547_PAD_LEN 0x3E0
3036
64798845
JP
3037static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3038 struct sk_buff *skb)
1da177e4 3039{
406874a7
JP
3040 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3041 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
1da177e4 3042
9099cfb9 3043 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
1da177e4 3044
96838a40 3045 if (adapter->link_duplex != HALF_DUPLEX)
1da177e4
LT
3046 goto no_fifo_stall_required;
3047
96838a40 3048 if (atomic_read(&adapter->tx_fifo_stall))
1da177e4
LT
3049 return 1;
3050
96838a40 3051 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1da177e4
LT
3052 atomic_set(&adapter->tx_fifo_stall, 1);
3053 return 1;
3054 }
3055
3056no_fifo_stall_required:
3057 adapter->tx_fifo_head += skb_fifo_len;
96838a40 3058 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1da177e4
LT
3059 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3060 return 0;
3061}
3062
65c7973f
JB
3063static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3064{
3065 struct e1000_adapter *adapter = netdev_priv(netdev);
3066 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3067
3068 netif_stop_queue(netdev);
3069 /* Herbert's original patch had:
3070 * smp_mb__after_netif_stop_queue();
3071 * but since that doesn't exist yet, just open code it. */
3072 smp_mb();
3073
3074 /* We need to check again in a case another CPU has just
3075 * made room available. */
3076 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3077 return -EBUSY;
3078
3079 /* A reprieve! */
3080 netif_start_queue(netdev);
fcfb1224 3081 ++adapter->restart_queue;
65c7973f
JB
3082 return 0;
3083}
3084
3085static int e1000_maybe_stop_tx(struct net_device *netdev,
3086 struct e1000_tx_ring *tx_ring, int size)
3087{
3088 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3089 return 0;
3090 return __e1000_maybe_stop_tx(netdev, size);
3091}
3092
1da177e4 3093#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3b29a56d
SH
3094static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3095 struct net_device *netdev)
1da177e4 3096{
60490fe0 3097 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 3098 struct e1000_hw *hw = &adapter->hw;
581d708e 3099 struct e1000_tx_ring *tx_ring;
1da177e4
LT
3100 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3101 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3102 unsigned int tx_flags = 0;
e743d313 3103 unsigned int len = skb_headlen(skb);
6d1e3aa7
KK
3104 unsigned int nr_frags;
3105 unsigned int mss;
1da177e4 3106 int count = 0;
76c224bc 3107 int tso;
1da177e4 3108 unsigned int f;
1da177e4 3109
65c7973f
JB
3110 /* This goes back to the question of how to logically map a tx queue
3111 * to a flow. Right now, performance is impacted slightly negatively
3112 * if using multiple tx queues. If the stack breaks away from a
3113 * single qdisc implementation, we can look at this again. */
581d708e 3114 tx_ring = adapter->tx_ring;
24025e4e 3115
581d708e 3116 if (unlikely(skb->len <= 0)) {
1da177e4
LT
3117 dev_kfree_skb_any(skb);
3118 return NETDEV_TX_OK;
3119 }
3120
7967168c 3121 mss = skb_shinfo(skb)->gso_size;
76c224bc 3122 /* The controller does a simple calculation to
1da177e4
LT
3123 * make sure there is enough room in the FIFO before
3124 * initiating the DMA for each buffer. The calc is:
3125 * 4 = ceil(buffer len/mss). To make sure we don't
3126 * overrun the FIFO, adjust the max buffer len if mss
3127 * drops. */
96838a40 3128 if (mss) {
406874a7 3129 u8 hdr_len;
1da177e4
LT
3130 max_per_txd = min(mss << 2, max_per_txd);
3131 max_txd_pwr = fls(max_per_txd) - 1;
9a3056da 3132
ab6a5bb6 3133 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
6d1e3aa7 3134 if (skb->data_len && hdr_len == len) {
1dc32918 3135 switch (hw->mac_type) {
9f687888 3136 unsigned int pull_size;
683a2aa3
HX
3137 case e1000_82544:
3138 /* Make sure we have room to chop off 4 bytes,
3139 * and that the end alignment will work out to
3140 * this hardware's requirements
3141 * NOTE: this is a TSO only workaround
3142 * if end byte alignment not correct move us
3143 * into the next dword */
27a884dc 3144 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
683a2aa3
HX
3145 break;
3146 /* fall through */
9f687888
JK
3147 pull_size = min((unsigned int)4, skb->data_len);
3148 if (!__pskb_pull_tail(skb, pull_size)) {
feb8f478
ET
3149 e_err(drv, "__pskb_pull_tail "
3150 "failed.\n");
9f687888 3151 dev_kfree_skb_any(skb);
749dfc70 3152 return NETDEV_TX_OK;
9f687888 3153 }
e743d313 3154 len = skb_headlen(skb);
9f687888
JK
3155 break;
3156 default:
3157 /* do nothing */
3158 break;
d74bbd3b 3159 }
9a3056da 3160 }
1da177e4
LT
3161 }
3162
9a3056da 3163 /* reserve a descriptor for the offload context */
84fa7933 3164 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
1da177e4 3165 count++;
2648345f 3166 count++;
fd803241 3167
fd803241 3168 /* Controller Erratum workaround */
89114afd 3169 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
fd803241 3170 count++;
fd803241 3171
1da177e4
LT
3172 count += TXD_USE_COUNT(len, max_txd_pwr);
3173
96838a40 3174 if (adapter->pcix_82544)
1da177e4
LT
3175 count++;
3176
96838a40 3177 /* work-around for errata 10 and it applies to all controllers
97338bde
MC
3178 * in PCI-X mode, so add one more descriptor to the count
3179 */
1dc32918 3180 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
97338bde
MC
3181 (len > 2015)))
3182 count++;
3183
1da177e4 3184 nr_frags = skb_shinfo(skb)->nr_frags;
96838a40 3185 for (f = 0; f < nr_frags; f++)
9e903e08 3186 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
1da177e4 3187 max_txd_pwr);
96838a40 3188 if (adapter->pcix_82544)
1da177e4
LT
3189 count += nr_frags;
3190
1da177e4
LT
3191 /* need: count + 2 desc gap to keep tail from touching
3192 * head, otherwise try next time */
8017943e 3193 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
1da177e4 3194 return NETDEV_TX_BUSY;
1da177e4 3195
a4010afe
JB
3196 if (unlikely((hw->mac_type == e1000_82547) &&
3197 (e1000_82547_fifo_workaround(adapter, skb)))) {
3198 netif_stop_queue(netdev);
3199 if (!test_bit(__E1000_DOWN, &adapter->flags))
3200 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3201 return NETDEV_TX_BUSY;
1da177e4
LT
3202 }
3203
5622e404 3204 if (vlan_tx_tag_present(skb)) {
1da177e4
LT
3205 tx_flags |= E1000_TX_FLAGS_VLAN;
3206 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3207 }
3208
581d708e 3209 first = tx_ring->next_to_use;
96838a40 3210
581d708e 3211 tso = e1000_tso(adapter, tx_ring, skb);
1da177e4
LT
3212 if (tso < 0) {
3213 dev_kfree_skb_any(skb);
3214 return NETDEV_TX_OK;
3215 }
3216
fd803241 3217 if (likely(tso)) {
8fce4731 3218 if (likely(hw->mac_type != e1000_82544))
3db1cd5c 3219 tx_ring->last_tx_tso = true;
1da177e4 3220 tx_flags |= E1000_TX_FLAGS_TSO;
fd803241 3221 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
1da177e4
LT
3222 tx_flags |= E1000_TX_FLAGS_CSUM;
3223
60828236 3224 if (likely(skb->protocol == htons(ETH_P_IP)))
2d7edb92
MC
3225 tx_flags |= E1000_TX_FLAGS_IPV4;
3226
37e73df8
AD
3227 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3228 nr_frags, mss);
1da177e4 3229
37e73df8
AD
3230 if (count) {
3231 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
37e73df8
AD
3232 /* Make sure there is space in the ring for the next send. */
3233 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
1da177e4 3234
37e73df8
AD
3235 } else {
3236 dev_kfree_skb_any(skb);
3237 tx_ring->buffer_info[first].time_stamp = 0;
3238 tx_ring->next_to_use = first;
3239 }
1da177e4 3240
1da177e4
LT
3241 return NETDEV_TX_OK;
3242}
3243
3244/**
3245 * e1000_tx_timeout - Respond to a Tx Hang
3246 * @netdev: network interface device structure
3247 **/
3248
64798845 3249static void e1000_tx_timeout(struct net_device *netdev)
1da177e4 3250{
60490fe0 3251 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3252
3253 /* Do the reset outside of interrupt context */
87041639
JK
3254 adapter->tx_timeout_count++;
3255 schedule_work(&adapter->reset_task);
1da177e4
LT
3256}
3257
64798845 3258static void e1000_reset_task(struct work_struct *work)
1da177e4 3259{
65f27f38
DH
3260 struct e1000_adapter *adapter =
3261 container_of(work, struct e1000_adapter, reset_task);
1da177e4 3262
0ef4eedc
JB
3263 if (test_bit(__E1000_DOWN, &adapter->flags))
3264 return;
338c15e4 3265 e1000_reinit_safe(adapter);
1da177e4
LT
3266}
3267
3268/**
3269 * e1000_get_stats - Get System Network Statistics
3270 * @netdev: network interface device structure
3271 *
3272 * Returns the address of the device statistics structure.
a4010afe 3273 * The statistics are actually updated from the watchdog.
1da177e4
LT
3274 **/
3275
64798845 3276static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
1da177e4 3277{
6b7660cd 3278 /* only return the current stats */
5fe31def 3279 return &netdev->stats;
1da177e4
LT
3280}
3281
3282/**
3283 * e1000_change_mtu - Change the Maximum Transfer Unit
3284 * @netdev: network interface device structure
3285 * @new_mtu: new value for maximum frame size
3286 *
3287 * Returns 0 on success, negative on failure
3288 **/
3289
64798845 3290static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
1da177e4 3291{
60490fe0 3292 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 3293 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3294 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3295
96838a40
JB
3296 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3297 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
feb8f478 3298 e_err(probe, "Invalid MTU setting\n");
1da177e4 3299 return -EINVAL;
2d7edb92 3300 }
1da177e4 3301
997f5cbd 3302 /* Adapter-specific max frame size limits. */
1dc32918 3303 switch (hw->mac_type) {
9e2feace 3304 case e1000_undefined ... e1000_82542_rev2_1:
b7cb8c2c 3305 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
feb8f478 3306 e_err(probe, "Jumbo Frames not supported.\n");
2d7edb92 3307 return -EINVAL;
2d7edb92 3308 }
997f5cbd 3309 break;
997f5cbd
JK
3310 default:
3311 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3312 break;
1da177e4
LT
3313 }
3314
3d6114e7
JB
3315 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3316 msleep(1);
3317 /* e1000_down has a dependency on max_frame_size */
3318 hw->max_frame_size = max_frame;
3319 if (netif_running(netdev))
3320 e1000_down(adapter);
3321
87f5032e 3322 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
9e2feace 3323 * means we reserve 2 more, this pushes us to allocate from the next
edbbb3ca
JB
3324 * larger slab size.
3325 * i.e. RXBUFFER_2048 --> size-4096 slab
3326 * however with the new *_jumbo_rx* routines, jumbo receives will use
3327 * fragmented skbs */
9e2feace 3328
9926146b 3329 if (max_frame <= E1000_RXBUFFER_2048)
9e2feace 3330 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
edbbb3ca
JB
3331 else
3332#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
9e2feace 3333 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
edbbb3ca
JB
3334#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3335 adapter->rx_buffer_len = PAGE_SIZE;
3336#endif
9e2feace
AK
3337
3338 /* adjust allocation if LPE protects us, and we aren't using SBP */
1dc32918 3339 if (!hw->tbi_compatibility_on &&
b7cb8c2c 3340 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
9e2feace
AK
3341 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3342 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
997f5cbd 3343
675ad473
ET
3344 pr_info("%s changing MTU from %d to %d\n",
3345 netdev->name, netdev->mtu, new_mtu);
2d7edb92
MC
3346 netdev->mtu = new_mtu;
3347
2db10a08 3348 if (netif_running(netdev))
3d6114e7
JB
3349 e1000_up(adapter);
3350 else
3351 e1000_reset(adapter);
3352
3353 clear_bit(__E1000_RESETTING, &adapter->flags);
1da177e4 3354
1da177e4
LT
3355 return 0;
3356}
3357
3358/**
3359 * e1000_update_stats - Update the board statistics counters
3360 * @adapter: board private structure
3361 **/
3362
64798845 3363void e1000_update_stats(struct e1000_adapter *adapter)
1da177e4 3364{
5fe31def 3365 struct net_device *netdev = adapter->netdev;
1da177e4 3366 struct e1000_hw *hw = &adapter->hw;
282f33c9 3367 struct pci_dev *pdev = adapter->pdev;
1da177e4 3368 unsigned long flags;
406874a7 3369 u16 phy_tmp;
1da177e4
LT
3370
3371#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3372
282f33c9
LV
3373 /*
3374 * Prevent stats update while adapter is being reset, or if the pci
3375 * connection is down.
3376 */
9026729b 3377 if (adapter->link_speed == 0)
282f33c9 3378 return;
81b1955e 3379 if (pci_channel_offline(pdev))
9026729b
AK
3380 return;
3381
1da177e4
LT
3382 spin_lock_irqsave(&adapter->stats_lock, flags);
3383
828d055f 3384 /* these counters are modified from e1000_tbi_adjust_stats,
1da177e4
LT
3385 * called from the interrupt context, so they must only
3386 * be written while holding adapter->stats_lock
3387 */
3388
1dc32918
JP
3389 adapter->stats.crcerrs += er32(CRCERRS);
3390 adapter->stats.gprc += er32(GPRC);
3391 adapter->stats.gorcl += er32(GORCL);
3392 adapter->stats.gorch += er32(GORCH);
3393 adapter->stats.bprc += er32(BPRC);
3394 adapter->stats.mprc += er32(MPRC);
3395 adapter->stats.roc += er32(ROC);
3396
1532ecea
JB
3397 adapter->stats.prc64 += er32(PRC64);
3398 adapter->stats.prc127 += er32(PRC127);
3399 adapter->stats.prc255 += er32(PRC255);
3400 adapter->stats.prc511 += er32(PRC511);
3401 adapter->stats.prc1023 += er32(PRC1023);
3402 adapter->stats.prc1522 += er32(PRC1522);
1dc32918
JP
3403
3404 adapter->stats.symerrs += er32(SYMERRS);
3405 adapter->stats.mpc += er32(MPC);
3406 adapter->stats.scc += er32(SCC);
3407 adapter->stats.ecol += er32(ECOL);
3408 adapter->stats.mcc += er32(MCC);
3409 adapter->stats.latecol += er32(LATECOL);
3410 adapter->stats.dc += er32(DC);
3411 adapter->stats.sec += er32(SEC);
3412 adapter->stats.rlec += er32(RLEC);
3413 adapter->stats.xonrxc += er32(XONRXC);
3414 adapter->stats.xontxc += er32(XONTXC);
3415 adapter->stats.xoffrxc += er32(XOFFRXC);
3416 adapter->stats.xofftxc += er32(XOFFTXC);
3417 adapter->stats.fcruc += er32(FCRUC);
3418 adapter->stats.gptc += er32(GPTC);
3419 adapter->stats.gotcl += er32(GOTCL);
3420 adapter->stats.gotch += er32(GOTCH);
3421 adapter->stats.rnbc += er32(RNBC);
3422 adapter->stats.ruc += er32(RUC);
3423 adapter->stats.rfc += er32(RFC);
3424 adapter->stats.rjc += er32(RJC);
3425 adapter->stats.torl += er32(TORL);
3426 adapter->stats.torh += er32(TORH);
3427 adapter->stats.totl += er32(TOTL);
3428 adapter->stats.toth += er32(TOTH);
3429 adapter->stats.tpr += er32(TPR);
3430
1532ecea
JB
3431 adapter->stats.ptc64 += er32(PTC64);
3432 adapter->stats.ptc127 += er32(PTC127);
3433 adapter->stats.ptc255 += er32(PTC255);
3434 adapter->stats.ptc511 += er32(PTC511);
3435 adapter->stats.ptc1023 += er32(PTC1023);
3436 adapter->stats.ptc1522 += er32(PTC1522);
1dc32918
JP
3437
3438 adapter->stats.mptc += er32(MPTC);
3439 adapter->stats.bptc += er32(BPTC);
1da177e4
LT
3440
3441 /* used for adaptive IFS */
3442
1dc32918 3443 hw->tx_packet_delta = er32(TPT);
1da177e4 3444 adapter->stats.tpt += hw->tx_packet_delta;
1dc32918 3445 hw->collision_delta = er32(COLC);
1da177e4
LT
3446 adapter->stats.colc += hw->collision_delta;
3447
96838a40 3448 if (hw->mac_type >= e1000_82543) {
1dc32918
JP
3449 adapter->stats.algnerrc += er32(ALGNERRC);
3450 adapter->stats.rxerrc += er32(RXERRC);
3451 adapter->stats.tncrs += er32(TNCRS);
3452 adapter->stats.cexterr += er32(CEXTERR);
3453 adapter->stats.tsctc += er32(TSCTC);
3454 adapter->stats.tsctfc += er32(TSCTFC);
1da177e4
LT
3455 }
3456
3457 /* Fill out the OS statistics structure */
5fe31def
AK
3458 netdev->stats.multicast = adapter->stats.mprc;
3459 netdev->stats.collisions = adapter->stats.colc;
1da177e4
LT
3460
3461 /* Rx Errors */
3462
87041639
JK
3463 /* RLEC on some newer hardware can be incorrect so build
3464 * our own version based on RUC and ROC */
5fe31def 3465 netdev->stats.rx_errors = adapter->stats.rxerrc +
1da177e4 3466 adapter->stats.crcerrs + adapter->stats.algnerrc +
87041639
JK
3467 adapter->stats.ruc + adapter->stats.roc +
3468 adapter->stats.cexterr;
49559854 3469 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
5fe31def
AK
3470 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3471 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3472 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3473 netdev->stats.rx_missed_errors = adapter->stats.mpc;
1da177e4
LT
3474
3475 /* Tx Errors */
49559854 3476 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
5fe31def
AK
3477 netdev->stats.tx_errors = adapter->stats.txerrc;
3478 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3479 netdev->stats.tx_window_errors = adapter->stats.latecol;
3480 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
1dc32918 3481 if (hw->bad_tx_carr_stats_fd &&
167fb284 3482 adapter->link_duplex == FULL_DUPLEX) {
5fe31def 3483 netdev->stats.tx_carrier_errors = 0;
167fb284
JG
3484 adapter->stats.tncrs = 0;
3485 }
1da177e4
LT
3486
3487 /* Tx Dropped needs to be maintained elsewhere */
3488
3489 /* Phy Stats */
96838a40
JB
3490 if (hw->media_type == e1000_media_type_copper) {
3491 if ((adapter->link_speed == SPEED_1000) &&
1da177e4
LT
3492 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3493 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3494 adapter->phy_stats.idle_errors += phy_tmp;
3495 }
3496
96838a40 3497 if ((hw->mac_type <= e1000_82546) &&
1da177e4
LT
3498 (hw->phy_type == e1000_phy_m88) &&
3499 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3500 adapter->phy_stats.receive_errors += phy_tmp;
3501 }
3502
15e376b4 3503 /* Management Stats */
1dc32918
JP
3504 if (hw->has_smbus) {
3505 adapter->stats.mgptc += er32(MGTPTC);
3506 adapter->stats.mgprc += er32(MGTPRC);
3507 adapter->stats.mgpdc += er32(MGTPDC);
15e376b4
JG
3508 }
3509
1da177e4
LT
3510 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3511}
9ac98284 3512
1da177e4
LT
3513/**
3514 * e1000_intr - Interrupt Handler
3515 * @irq: interrupt number
3516 * @data: pointer to a network interface device structure
1da177e4
LT
3517 **/
3518
64798845 3519static irqreturn_t e1000_intr(int irq, void *data)
1da177e4
LT
3520{
3521 struct net_device *netdev = data;
60490fe0 3522 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 3523 struct e1000_hw *hw = &adapter->hw;
1532ecea 3524 u32 icr = er32(ICR);
c3570acb 3525
4c11b8ad 3526 if (unlikely((!icr)))
835bb129
JB
3527 return IRQ_NONE; /* Not our interrupt */
3528
4c11b8ad
JB
3529 /*
3530 * we might have caused the interrupt, but the above
3531 * read cleared it, and just in case the driver is
3532 * down there is nothing to do so return handled
3533 */
3534 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3535 return IRQ_HANDLED;
3536
96838a40 3537 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
1da177e4 3538 hw->get_link_status = 1;
1314bbf3
AK
3539 /* guard against interrupt when we're going down */
3540 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe 3541 schedule_delayed_work(&adapter->watchdog_task, 1);
1da177e4
LT
3542 }
3543
1532ecea
JB
3544 /* disable interrupts, without the synchronize_irq bit */
3545 ew32(IMC, ~0);
3546 E1000_WRITE_FLUSH();
3547
288379f0 3548 if (likely(napi_schedule_prep(&adapter->napi))) {
835bb129
JB
3549 adapter->total_tx_bytes = 0;
3550 adapter->total_tx_packets = 0;
3551 adapter->total_rx_bytes = 0;
3552 adapter->total_rx_packets = 0;
288379f0 3553 __napi_schedule(&adapter->napi);
a6c42322 3554 } else {
90fb5135
AK
3555 /* this really should not happen! if it does it is basically a
3556 * bug, but not a hard error, so enable ints and continue */
a6c42322
JB
3557 if (!test_bit(__E1000_DOWN, &adapter->flags))
3558 e1000_irq_enable(adapter);
3559 }
1da177e4 3560
1da177e4
LT
3561 return IRQ_HANDLED;
3562}
3563
1da177e4
LT
3564/**
3565 * e1000_clean - NAPI Rx polling callback
3566 * @adapter: board private structure
3567 **/
64798845 3568static int e1000_clean(struct napi_struct *napi, int budget)
1da177e4 3569{
bea3348e 3570 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
650b5a5c 3571 int tx_clean_complete = 0, work_done = 0;
581d708e 3572
650b5a5c 3573 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
581d708e 3574
650b5a5c 3575 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
581d708e 3576
650b5a5c 3577 if (!tx_clean_complete)
d2c7ddd6
DM
3578 work_done = budget;
3579
53e52c72
DM
3580 /* If budget not fully consumed, exit the polling mode */
3581 if (work_done < budget) {
835bb129
JB
3582 if (likely(adapter->itr_setting & 3))
3583 e1000_set_itr(adapter);
288379f0 3584 napi_complete(napi);
a6c42322
JB
3585 if (!test_bit(__E1000_DOWN, &adapter->flags))
3586 e1000_irq_enable(adapter);
1da177e4
LT
3587 }
3588
bea3348e 3589 return work_done;
1da177e4
LT
3590}
3591
1da177e4
LT
3592/**
3593 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3594 * @adapter: board private structure
3595 **/
64798845
JP
3596static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3597 struct e1000_tx_ring *tx_ring)
1da177e4 3598{
1dc32918 3599 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3600 struct net_device *netdev = adapter->netdev;
3601 struct e1000_tx_desc *tx_desc, *eop_desc;
3602 struct e1000_buffer *buffer_info;
3603 unsigned int i, eop;
2a1af5d7 3604 unsigned int count = 0;
835bb129 3605 unsigned int total_tx_bytes=0, total_tx_packets=0;
1da177e4
LT
3606
3607 i = tx_ring->next_to_clean;
3608 eop = tx_ring->buffer_info[i].next_to_watch;
3609 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3610
ccfb342c
AD
3611 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3612 (count < tx_ring->count)) {
843f4267 3613 bool cleaned = false;
2d0bb1c1 3614 rmb(); /* read buffer_info after eop_desc */
843f4267 3615 for ( ; !cleaned; count++) {
1da177e4
LT
3616 tx_desc = E1000_TX_DESC(*tx_ring, i);
3617 buffer_info = &tx_ring->buffer_info[i];
3618 cleaned = (i == eop);
3619
835bb129 3620 if (cleaned) {
31c15a2f
DN
3621 total_tx_packets += buffer_info->segs;
3622 total_tx_bytes += buffer_info->bytecount;
835bb129 3623 }
fd803241 3624 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
a9ebadd6 3625 tx_desc->upper.data = 0;
1da177e4 3626
96838a40 3627 if (unlikely(++i == tx_ring->count)) i = 0;
1da177e4 3628 }
581d708e 3629
1da177e4
LT
3630 eop = tx_ring->buffer_info[i].next_to_watch;
3631 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3632 }
3633
3634 tx_ring->next_to_clean = i;
3635
77b2aad5 3636#define TX_WAKE_THRESHOLD 32
843f4267 3637 if (unlikely(count && netif_carrier_ok(netdev) &&
65c7973f
JB
3638 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3639 /* Make sure that anybody stopping the queue after this
3640 * sees the new next_to_clean.
3641 */
3642 smp_mb();
cdd7549e
JB
3643
3644 if (netif_queue_stopped(netdev) &&
3645 !(test_bit(__E1000_DOWN, &adapter->flags))) {
77b2aad5 3646 netif_wake_queue(netdev);
fcfb1224
JB
3647 ++adapter->restart_queue;
3648 }
77b2aad5 3649 }
2648345f 3650
581d708e 3651 if (adapter->detect_tx_hung) {
2648345f 3652 /* Detect a transmit hang in hardware, this serializes the
1da177e4 3653 * check with the clearing of time_stamp and movement of i */
c3033b01 3654 adapter->detect_tx_hung = false;
cdd7549e
JB
3655 if (tx_ring->buffer_info[eop].time_stamp &&
3656 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
8e95a202
JP
3657 (adapter->tx_timeout_factor * HZ)) &&
3658 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
70b8f1e1
MC
3659
3660 /* detected Tx unit hang */
feb8f478 3661 e_err(drv, "Detected Tx Unit Hang\n"
675ad473
ET
3662 " Tx Queue <%lu>\n"
3663 " TDH <%x>\n"
3664 " TDT <%x>\n"
3665 " next_to_use <%x>\n"
3666 " next_to_clean <%x>\n"
3667 "buffer_info[next_to_clean]\n"
3668 " time_stamp <%lx>\n"
3669 " next_to_watch <%x>\n"
3670 " jiffies <%lx>\n"
3671 " next_to_watch.status <%x>\n",
7bfa4816
JK
3672 (unsigned long)((tx_ring - adapter->tx_ring) /
3673 sizeof(struct e1000_tx_ring)),
1dc32918
JP
3674 readl(hw->hw_addr + tx_ring->tdh),
3675 readl(hw->hw_addr + tx_ring->tdt),
70b8f1e1 3676 tx_ring->next_to_use,
392137fa 3677 tx_ring->next_to_clean,
cdd7549e 3678 tx_ring->buffer_info[eop].time_stamp,
70b8f1e1
MC
3679 eop,
3680 jiffies,
3681 eop_desc->upper.fields.status);
1da177e4 3682 netif_stop_queue(netdev);
70b8f1e1 3683 }
1da177e4 3684 }
835bb129
JB
3685 adapter->total_tx_bytes += total_tx_bytes;
3686 adapter->total_tx_packets += total_tx_packets;
5fe31def
AK
3687 netdev->stats.tx_bytes += total_tx_bytes;
3688 netdev->stats.tx_packets += total_tx_packets;
807540ba 3689 return count < tx_ring->count;
1da177e4
LT
3690}
3691
3692/**
3693 * e1000_rx_checksum - Receive Checksum Offload for 82543
2d7edb92
MC
3694 * @adapter: board private structure
3695 * @status_err: receive descriptor status and error fields
3696 * @csum: receive descriptor csum field
3697 * @sk_buff: socket buffer with received data
1da177e4
LT
3698 **/
3699
64798845
JP
3700static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3701 u32 csum, struct sk_buff *skb)
1da177e4 3702{
1dc32918 3703 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
3704 u16 status = (u16)status_err;
3705 u8 errors = (u8)(status_err >> 24);
bc8acf2c
ED
3706
3707 skb_checksum_none_assert(skb);
2d7edb92 3708
1da177e4 3709 /* 82543 or newer only */
1dc32918 3710 if (unlikely(hw->mac_type < e1000_82543)) return;
1da177e4 3711 /* Ignore Checksum bit is set */
96838a40 3712 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
2d7edb92 3713 /* TCP/UDP checksum error bit is set */
96838a40 3714 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
1da177e4 3715 /* let the stack verify checksum errors */
1da177e4 3716 adapter->hw_csum_err++;
2d7edb92
MC
3717 return;
3718 }
3719 /* TCP/UDP Checksum has not been calculated */
1532ecea
JB
3720 if (!(status & E1000_RXD_STAT_TCPCS))
3721 return;
3722
2d7edb92
MC
3723 /* It must be a TCP or UDP packet with a valid checksum */
3724 if (likely(status & E1000_RXD_STAT_TCPCS)) {
1da177e4
LT
3725 /* TCP checksum is good */
3726 skb->ip_summed = CHECKSUM_UNNECESSARY;
1da177e4 3727 }
2d7edb92 3728 adapter->hw_csum_good++;
1da177e4
LT
3729}
3730
edbbb3ca
JB
3731/**
3732 * e1000_consume_page - helper function
3733 **/
3734static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3735 u16 length)
3736{
3737 bi->page = NULL;
3738 skb->len += length;
3739 skb->data_len += length;
ed64b3cc 3740 skb->truesize += PAGE_SIZE;
edbbb3ca
JB
3741}
3742
3743/**
3744 * e1000_receive_skb - helper function to handle rx indications
3745 * @adapter: board private structure
3746 * @status: descriptor status field as written by hardware
3747 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3748 * @skb: pointer to sk_buff to be indicated to stack
3749 */
3750static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3751 __le16 vlan, struct sk_buff *skb)
3752{
6a08d194
JB
3753 skb->protocol = eth_type_trans(skb, adapter->netdev);
3754
5622e404
JP
3755 if (status & E1000_RXD_STAT_VP) {
3756 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3757
3758 __vlan_hwaccel_put_tag(skb, vid);
3759 }
3760 napi_gro_receive(&adapter->napi, skb);
edbbb3ca
JB
3761}
3762
3763/**
3764 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3765 * @adapter: board private structure
3766 * @rx_ring: ring to clean
3767 * @work_done: amount of napi work completed this call
3768 * @work_to_do: max amount of work allowed for this call to do
3769 *
3770 * the return value indicates whether actual cleaning was done, there
3771 * is no guarantee that everything was cleaned
3772 */
3773static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3774 struct e1000_rx_ring *rx_ring,
3775 int *work_done, int work_to_do)
3776{
3777 struct e1000_hw *hw = &adapter->hw;
3778 struct net_device *netdev = adapter->netdev;
3779 struct pci_dev *pdev = adapter->pdev;
3780 struct e1000_rx_desc *rx_desc, *next_rxd;
3781 struct e1000_buffer *buffer_info, *next_buffer;
3782 unsigned long irq_flags;
3783 u32 length;
3784 unsigned int i;
3785 int cleaned_count = 0;
3786 bool cleaned = false;
3787 unsigned int total_rx_bytes=0, total_rx_packets=0;
3788
3789 i = rx_ring->next_to_clean;
3790 rx_desc = E1000_RX_DESC(*rx_ring, i);
3791 buffer_info = &rx_ring->buffer_info[i];
3792
3793 while (rx_desc->status & E1000_RXD_STAT_DD) {
3794 struct sk_buff *skb;
3795 u8 status;
3796
3797 if (*work_done >= work_to_do)
3798 break;
3799 (*work_done)++;
2d0bb1c1 3800 rmb(); /* read descriptor and rx_buffer_info after status DD */
edbbb3ca
JB
3801
3802 status = rx_desc->status;
3803 skb = buffer_info->skb;
3804 buffer_info->skb = NULL;
3805
3806 if (++i == rx_ring->count) i = 0;
3807 next_rxd = E1000_RX_DESC(*rx_ring, i);
3808 prefetch(next_rxd);
3809
3810 next_buffer = &rx_ring->buffer_info[i];
3811
3812 cleaned = true;
3813 cleaned_count++;
b16f53be
NN
3814 dma_unmap_page(&pdev->dev, buffer_info->dma,
3815 buffer_info->length, DMA_FROM_DEVICE);
edbbb3ca
JB
3816 buffer_info->dma = 0;
3817
3818 length = le16_to_cpu(rx_desc->length);
3819
3820 /* errors is only valid for DD + EOP descriptors */
3821 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3822 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3823 u8 last_byte = *(skb->data + length - 1);
3824 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3825 last_byte)) {
3826 spin_lock_irqsave(&adapter->stats_lock,
3827 irq_flags);
3828 e1000_tbi_adjust_stats(hw, &adapter->stats,
3829 length, skb->data);
3830 spin_unlock_irqrestore(&adapter->stats_lock,
3831 irq_flags);
3832 length--;
3833 } else {
3834 /* recycle both page and skb */
3835 buffer_info->skb = skb;
3836 /* an error means any chain goes out the window
3837 * too */
3838 if (rx_ring->rx_skb_top)
3839 dev_kfree_skb(rx_ring->rx_skb_top);
3840 rx_ring->rx_skb_top = NULL;
3841 goto next_desc;
3842 }
3843 }
3844
3845#define rxtop rx_ring->rx_skb_top
3846 if (!(status & E1000_RXD_STAT_EOP)) {
3847 /* this descriptor is only the beginning (or middle) */
3848 if (!rxtop) {
3849 /* this is the beginning of a chain */
3850 rxtop = skb;
3851 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3852 0, length);
3853 } else {
3854 /* this is the middle of a chain */
3855 skb_fill_page_desc(rxtop,
3856 skb_shinfo(rxtop)->nr_frags,
3857 buffer_info->page, 0, length);
3858 /* re-use the skb, only consumed the page */
3859 buffer_info->skb = skb;
3860 }
3861 e1000_consume_page(buffer_info, rxtop, length);
3862 goto next_desc;
3863 } else {
3864 if (rxtop) {
3865 /* end of the chain */
3866 skb_fill_page_desc(rxtop,
3867 skb_shinfo(rxtop)->nr_frags,
3868 buffer_info->page, 0, length);
3869 /* re-use the current skb, we only consumed the
3870 * page */
3871 buffer_info->skb = skb;
3872 skb = rxtop;
3873 rxtop = NULL;
3874 e1000_consume_page(buffer_info, skb, length);
3875 } else {
3876 /* no chain, got EOP, this buf is the packet
3877 * copybreak to save the put_page/alloc_page */
3878 if (length <= copybreak &&
3879 skb_tailroom(skb) >= length) {
3880 u8 *vaddr;
3881 vaddr = kmap_atomic(buffer_info->page,
3882 KM_SKB_DATA_SOFTIRQ);
3883 memcpy(skb_tail_pointer(skb), vaddr, length);
3884 kunmap_atomic(vaddr,
3885 KM_SKB_DATA_SOFTIRQ);
3886 /* re-use the page, so don't erase
3887 * buffer_info->page */
3888 skb_put(skb, length);
3889 } else {
3890 skb_fill_page_desc(skb, 0,
3891 buffer_info->page, 0,
3892 length);
3893 e1000_consume_page(buffer_info, skb,
3894 length);
3895 }
3896 }
3897 }
3898
3899 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3900 e1000_rx_checksum(adapter,
3901 (u32)(status) |
3902 ((u32)(rx_desc->errors) << 24),
3903 le16_to_cpu(rx_desc->csum), skb);
3904
3905 pskb_trim(skb, skb->len - 4);
3906
3907 /* probably a little skewed due to removing CRC */
3908 total_rx_bytes += skb->len;
3909 total_rx_packets++;
3910
3911 /* eth type trans needs skb->data to point to something */
3912 if (!pskb_may_pull(skb, ETH_HLEN)) {
feb8f478 3913 e_err(drv, "pskb_may_pull failed.\n");
edbbb3ca
JB
3914 dev_kfree_skb(skb);
3915 goto next_desc;
3916 }
3917
edbbb3ca
JB
3918 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3919
3920next_desc:
3921 rx_desc->status = 0;
3922
3923 /* return some buffers to hardware, one at a time is too slow */
3924 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3925 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3926 cleaned_count = 0;
3927 }
3928
3929 /* use prefetched values */
3930 rx_desc = next_rxd;
3931 buffer_info = next_buffer;
3932 }
3933 rx_ring->next_to_clean = i;
3934
3935 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3936 if (cleaned_count)
3937 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3938
3939 adapter->total_rx_packets += total_rx_packets;
3940 adapter->total_rx_bytes += total_rx_bytes;
5fe31def
AK
3941 netdev->stats.rx_bytes += total_rx_bytes;
3942 netdev->stats.rx_packets += total_rx_packets;
edbbb3ca
JB
3943 return cleaned;
3944}
3945
57bf6eef
JP
3946/*
3947 * this should improve performance for small packets with large amounts
3948 * of reassembly being done in the stack
3949 */
3950static void e1000_check_copybreak(struct net_device *netdev,
3951 struct e1000_buffer *buffer_info,
3952 u32 length, struct sk_buff **skb)
3953{
3954 struct sk_buff *new_skb;
3955
3956 if (length > copybreak)
3957 return;
3958
3959 new_skb = netdev_alloc_skb_ip_align(netdev, length);
3960 if (!new_skb)
3961 return;
3962
3963 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3964 (*skb)->data - NET_IP_ALIGN,
3965 length + NET_IP_ALIGN);
3966 /* save the skb in buffer_info as good */
3967 buffer_info->skb = *skb;
3968 *skb = new_skb;
3969}
3970
1da177e4 3971/**
2d7edb92 3972 * e1000_clean_rx_irq - Send received data up the network stack; legacy
1da177e4 3973 * @adapter: board private structure
edbbb3ca
JB
3974 * @rx_ring: ring to clean
3975 * @work_done: amount of napi work completed this call
3976 * @work_to_do: max amount of work allowed for this call to do
3977 */
64798845
JP
3978static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3979 struct e1000_rx_ring *rx_ring,
3980 int *work_done, int work_to_do)
1da177e4 3981{
1dc32918 3982 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3983 struct net_device *netdev = adapter->netdev;
3984 struct pci_dev *pdev = adapter->pdev;
86c3d59f
JB
3985 struct e1000_rx_desc *rx_desc, *next_rxd;
3986 struct e1000_buffer *buffer_info, *next_buffer;
1da177e4 3987 unsigned long flags;
406874a7 3988 u32 length;
1da177e4 3989 unsigned int i;
72d64a43 3990 int cleaned_count = 0;
c3033b01 3991 bool cleaned = false;
835bb129 3992 unsigned int total_rx_bytes=0, total_rx_packets=0;
1da177e4
LT
3993
3994 i = rx_ring->next_to_clean;
3995 rx_desc = E1000_RX_DESC(*rx_ring, i);
b92ff8ee 3996 buffer_info = &rx_ring->buffer_info[i];
1da177e4 3997
b92ff8ee 3998 while (rx_desc->status & E1000_RXD_STAT_DD) {
24f476ee 3999 struct sk_buff *skb;
a292ca6e 4000 u8 status;
90fb5135 4001
96838a40 4002 if (*work_done >= work_to_do)
1da177e4
LT
4003 break;
4004 (*work_done)++;
2d0bb1c1 4005 rmb(); /* read descriptor and rx_buffer_info after status DD */
c3570acb 4006
a292ca6e 4007 status = rx_desc->status;
b92ff8ee 4008 skb = buffer_info->skb;
86c3d59f
JB
4009 buffer_info->skb = NULL;
4010
30320be8
JK
4011 prefetch(skb->data - NET_IP_ALIGN);
4012
86c3d59f
JB
4013 if (++i == rx_ring->count) i = 0;
4014 next_rxd = E1000_RX_DESC(*rx_ring, i);
30320be8
JK
4015 prefetch(next_rxd);
4016
86c3d59f 4017 next_buffer = &rx_ring->buffer_info[i];
86c3d59f 4018
c3033b01 4019 cleaned = true;
72d64a43 4020 cleaned_count++;
b16f53be
NN
4021 dma_unmap_single(&pdev->dev, buffer_info->dma,
4022 buffer_info->length, DMA_FROM_DEVICE);
679be3ba 4023 buffer_info->dma = 0;
1da177e4 4024
1da177e4 4025 length = le16_to_cpu(rx_desc->length);
ea30e119 4026 /* !EOP means multiple descriptors were used to store a single
40a14dea
JB
4027 * packet, if thats the case we need to toss it. In fact, we
4028 * to toss every packet with the EOP bit clear and the next
4029 * frame that _does_ have the EOP bit set, as it is by
4030 * definition only a frame fragment
4031 */
4032 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4033 adapter->discarding = true;
4034
4035 if (adapter->discarding) {
a1415ee6 4036 /* All receives must fit into a single buffer */
feb8f478 4037 e_dbg("Receive packet consumed multiple buffers\n");
864c4e45 4038 /* recycle */
8fc897b0 4039 buffer_info->skb = skb;
40a14dea
JB
4040 if (status & E1000_RXD_STAT_EOP)
4041 adapter->discarding = false;
1da177e4
LT
4042 goto next_desc;
4043 }
4044
96838a40 4045 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
edbbb3ca 4046 u8 last_byte = *(skb->data + length - 1);
1dc32918
JP
4047 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4048 last_byte)) {
1da177e4 4049 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4050 e1000_tbi_adjust_stats(hw, &adapter->stats,
1da177e4
LT
4051 length, skb->data);
4052 spin_unlock_irqrestore(&adapter->stats_lock,
4053 flags);
4054 length--;
4055 } else {
9e2feace
AK
4056 /* recycle */
4057 buffer_info->skb = skb;
1da177e4
LT
4058 goto next_desc;
4059 }
1cb5821f 4060 }
1da177e4 4061
d2a1e213
JB
4062 /* adjust length to remove Ethernet CRC, this must be
4063 * done after the TBI_ACCEPT workaround above */
4064 length -= 4;
4065
835bb129
JB
4066 /* probably a little skewed due to removing CRC */
4067 total_rx_bytes += length;
4068 total_rx_packets++;
4069
57bf6eef
JP
4070 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4071
996695de 4072 skb_put(skb, length);
1da177e4
LT
4073
4074 /* Receive Checksum Offload */
a292ca6e 4075 e1000_rx_checksum(adapter,
406874a7
JP
4076 (u32)(status) |
4077 ((u32)(rx_desc->errors) << 24),
c3d7a3a4 4078 le16_to_cpu(rx_desc->csum), skb);
96838a40 4079
edbbb3ca 4080 e1000_receive_skb(adapter, status, rx_desc->special, skb);
c3570acb 4081
1da177e4
LT
4082next_desc:
4083 rx_desc->status = 0;
1da177e4 4084
72d64a43
JK
4085 /* return some buffers to hardware, one at a time is too slow */
4086 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4087 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4088 cleaned_count = 0;
4089 }
4090
30320be8 4091 /* use prefetched values */
86c3d59f
JB
4092 rx_desc = next_rxd;
4093 buffer_info = next_buffer;
1da177e4 4094 }
1da177e4 4095 rx_ring->next_to_clean = i;
72d64a43
JK
4096
4097 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4098 if (cleaned_count)
4099 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
2d7edb92 4100
835bb129
JB
4101 adapter->total_rx_packets += total_rx_packets;
4102 adapter->total_rx_bytes += total_rx_bytes;
5fe31def
AK
4103 netdev->stats.rx_bytes += total_rx_bytes;
4104 netdev->stats.rx_packets += total_rx_packets;
2d7edb92
MC
4105 return cleaned;
4106}
4107
edbbb3ca
JB
4108/**
4109 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4110 * @adapter: address of board private structure
4111 * @rx_ring: pointer to receive ring structure
4112 * @cleaned_count: number of buffers to allocate this pass
4113 **/
4114
4115static void
4116e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4117 struct e1000_rx_ring *rx_ring, int cleaned_count)
4118{
4119 struct net_device *netdev = adapter->netdev;
4120 struct pci_dev *pdev = adapter->pdev;
4121 struct e1000_rx_desc *rx_desc;
4122 struct e1000_buffer *buffer_info;
4123 struct sk_buff *skb;
4124 unsigned int i;
89d71a66 4125 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
edbbb3ca
JB
4126
4127 i = rx_ring->next_to_use;
4128 buffer_info = &rx_ring->buffer_info[i];
4129
4130 while (cleaned_count--) {
4131 skb = buffer_info->skb;
4132 if (skb) {
4133 skb_trim(skb, 0);
4134 goto check_page;
4135 }
4136
89d71a66 4137 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
edbbb3ca
JB
4138 if (unlikely(!skb)) {
4139 /* Better luck next round */
4140 adapter->alloc_rx_buff_failed++;
4141 break;
4142 }
4143
4144 /* Fix for errata 23, can't cross 64kB boundary */
4145 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4146 struct sk_buff *oldskb = skb;
feb8f478
ET
4147 e_err(rx_err, "skb align check failed: %u bytes at "
4148 "%p\n", bufsz, skb->data);
edbbb3ca 4149 /* Try again, without freeing the previous */
89d71a66 4150 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
edbbb3ca
JB
4151 /* Failed allocation, critical failure */
4152 if (!skb) {
4153 dev_kfree_skb(oldskb);
4154 adapter->alloc_rx_buff_failed++;
4155 break;
4156 }
4157
4158 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4159 /* give up */
4160 dev_kfree_skb(skb);
4161 dev_kfree_skb(oldskb);
4162 break; /* while (cleaned_count--) */
4163 }
4164
4165 /* Use new allocation */
4166 dev_kfree_skb(oldskb);
4167 }
edbbb3ca
JB
4168 buffer_info->skb = skb;
4169 buffer_info->length = adapter->rx_buffer_len;
4170check_page:
4171 /* allocate a new page if necessary */
4172 if (!buffer_info->page) {
4173 buffer_info->page = alloc_page(GFP_ATOMIC);
4174 if (unlikely(!buffer_info->page)) {
4175 adapter->alloc_rx_buff_failed++;
4176 break;
4177 }
4178 }
4179
b5abb028 4180 if (!buffer_info->dma) {
b16f53be 4181 buffer_info->dma = dma_map_page(&pdev->dev,
edbbb3ca 4182 buffer_info->page, 0,
b16f53be
NN
4183 buffer_info->length,
4184 DMA_FROM_DEVICE);
4185 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
b5abb028
AB
4186 put_page(buffer_info->page);
4187 dev_kfree_skb(skb);
4188 buffer_info->page = NULL;
4189 buffer_info->skb = NULL;
4190 buffer_info->dma = 0;
4191 adapter->alloc_rx_buff_failed++;
4192 break; /* while !buffer_info->skb */
4193 }
4194 }
edbbb3ca
JB
4195
4196 rx_desc = E1000_RX_DESC(*rx_ring, i);
4197 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4198
4199 if (unlikely(++i == rx_ring->count))
4200 i = 0;
4201 buffer_info = &rx_ring->buffer_info[i];
4202 }
4203
4204 if (likely(rx_ring->next_to_use != i)) {
4205 rx_ring->next_to_use = i;
4206 if (unlikely(i-- == 0))
4207 i = (rx_ring->count - 1);
4208
4209 /* Force memory writes to complete before letting h/w
4210 * know there are new descriptors to fetch. (Only
4211 * applicable for weak-ordered memory model archs,
4212 * such as IA-64). */
4213 wmb();
4214 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4215 }
4216}
4217
1da177e4 4218/**
2d7edb92 4219 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
1da177e4
LT
4220 * @adapter: address of board private structure
4221 **/
4222
64798845
JP
4223static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4224 struct e1000_rx_ring *rx_ring,
4225 int cleaned_count)
1da177e4 4226{
1dc32918 4227 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4228 struct net_device *netdev = adapter->netdev;
4229 struct pci_dev *pdev = adapter->pdev;
4230 struct e1000_rx_desc *rx_desc;
4231 struct e1000_buffer *buffer_info;
4232 struct sk_buff *skb;
2648345f 4233 unsigned int i;
89d71a66 4234 unsigned int bufsz = adapter->rx_buffer_len;
1da177e4
LT
4235
4236 i = rx_ring->next_to_use;
4237 buffer_info = &rx_ring->buffer_info[i];
4238
a292ca6e 4239 while (cleaned_count--) {
ca6f7224
CH
4240 skb = buffer_info->skb;
4241 if (skb) {
a292ca6e
JK
4242 skb_trim(skb, 0);
4243 goto map_skb;
4244 }
4245
89d71a66 4246 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
96838a40 4247 if (unlikely(!skb)) {
1da177e4 4248 /* Better luck next round */
72d64a43 4249 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4250 break;
4251 }
4252
2648345f 4253 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
4254 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4255 struct sk_buff *oldskb = skb;
feb8f478
ET
4256 e_err(rx_err, "skb align check failed: %u bytes at "
4257 "%p\n", bufsz, skb->data);
2648345f 4258 /* Try again, without freeing the previous */
89d71a66 4259 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
2648345f 4260 /* Failed allocation, critical failure */
1da177e4
LT
4261 if (!skb) {
4262 dev_kfree_skb(oldskb);
edbbb3ca 4263 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4264 break;
4265 }
2648345f 4266
1da177e4
LT
4267 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4268 /* give up */
4269 dev_kfree_skb(skb);
4270 dev_kfree_skb(oldskb);
edbbb3ca 4271 adapter->alloc_rx_buff_failed++;
1da177e4 4272 break; /* while !buffer_info->skb */
1da177e4 4273 }
ca6f7224
CH
4274
4275 /* Use new allocation */
4276 dev_kfree_skb(oldskb);
1da177e4 4277 }
1da177e4
LT
4278 buffer_info->skb = skb;
4279 buffer_info->length = adapter->rx_buffer_len;
a292ca6e 4280map_skb:
b16f53be 4281 buffer_info->dma = dma_map_single(&pdev->dev,
1da177e4 4282 skb->data,
edbbb3ca 4283 buffer_info->length,
b16f53be
NN
4284 DMA_FROM_DEVICE);
4285 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
b5abb028
AB
4286 dev_kfree_skb(skb);
4287 buffer_info->skb = NULL;
4288 buffer_info->dma = 0;
4289 adapter->alloc_rx_buff_failed++;
4290 break; /* while !buffer_info->skb */
4291 }
1da177e4 4292
edbbb3ca
JB
4293 /*
4294 * XXX if it was allocated cleanly it will never map to a
4295 * boundary crossing
4296 */
4297
2648345f
MC
4298 /* Fix for errata 23, can't cross 64kB boundary */
4299 if (!e1000_check_64k_bound(adapter,
4300 (void *)(unsigned long)buffer_info->dma,
4301 adapter->rx_buffer_len)) {
feb8f478
ET
4302 e_err(rx_err, "dma align check failed: %u bytes at "
4303 "%p\n", adapter->rx_buffer_len,
675ad473 4304 (void *)(unsigned long)buffer_info->dma);
1da177e4
LT
4305 dev_kfree_skb(skb);
4306 buffer_info->skb = NULL;
4307
b16f53be 4308 dma_unmap_single(&pdev->dev, buffer_info->dma,
1da177e4 4309 adapter->rx_buffer_len,
b16f53be 4310 DMA_FROM_DEVICE);
679be3ba 4311 buffer_info->dma = 0;
1da177e4 4312
edbbb3ca 4313 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4314 break; /* while !buffer_info->skb */
4315 }
1da177e4
LT
4316 rx_desc = E1000_RX_DESC(*rx_ring, i);
4317 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4318
96838a40
JB
4319 if (unlikely(++i == rx_ring->count))
4320 i = 0;
1da177e4
LT
4321 buffer_info = &rx_ring->buffer_info[i];
4322 }
4323
b92ff8ee
JB
4324 if (likely(rx_ring->next_to_use != i)) {
4325 rx_ring->next_to_use = i;
4326 if (unlikely(i-- == 0))
4327 i = (rx_ring->count - 1);
4328
4329 /* Force memory writes to complete before letting h/w
4330 * know there are new descriptors to fetch. (Only
4331 * applicable for weak-ordered memory model archs,
4332 * such as IA-64). */
4333 wmb();
1dc32918 4334 writel(i, hw->hw_addr + rx_ring->rdt);
b92ff8ee 4335 }
1da177e4
LT
4336}
4337
4338/**
4339 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4340 * @adapter:
4341 **/
4342
64798845 4343static void e1000_smartspeed(struct e1000_adapter *adapter)
1da177e4 4344{
1dc32918 4345 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
4346 u16 phy_status;
4347 u16 phy_ctrl;
1da177e4 4348
1dc32918
JP
4349 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4350 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
1da177e4
LT
4351 return;
4352
96838a40 4353 if (adapter->smartspeed == 0) {
1da177e4
LT
4354 /* If Master/Slave config fault is asserted twice,
4355 * we assume back-to-back */
1dc32918 4356 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
96838a40 4357 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
1dc32918 4358 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
96838a40 4359 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
1dc32918 4360 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
96838a40 4361 if (phy_ctrl & CR_1000T_MS_ENABLE) {
1da177e4 4362 phy_ctrl &= ~CR_1000T_MS_ENABLE;
1dc32918 4363 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1da177e4
LT
4364 phy_ctrl);
4365 adapter->smartspeed++;
1dc32918
JP
4366 if (!e1000_phy_setup_autoneg(hw) &&
4367 !e1000_read_phy_reg(hw, PHY_CTRL,
1da177e4
LT
4368 &phy_ctrl)) {
4369 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4370 MII_CR_RESTART_AUTO_NEG);
1dc32918 4371 e1000_write_phy_reg(hw, PHY_CTRL,
1da177e4
LT
4372 phy_ctrl);
4373 }
4374 }
4375 return;
96838a40 4376 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
1da177e4 4377 /* If still no link, perhaps using 2/3 pair cable */
1dc32918 4378 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
1da177e4 4379 phy_ctrl |= CR_1000T_MS_ENABLE;
1dc32918
JP
4380 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4381 if (!e1000_phy_setup_autoneg(hw) &&
4382 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
1da177e4
LT
4383 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4384 MII_CR_RESTART_AUTO_NEG);
1dc32918 4385 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
1da177e4
LT
4386 }
4387 }
4388 /* Restart process after E1000_SMARTSPEED_MAX iterations */
96838a40 4389 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
1da177e4
LT
4390 adapter->smartspeed = 0;
4391}
4392
4393/**
4394 * e1000_ioctl -
4395 * @netdev:
4396 * @ifreq:
4397 * @cmd:
4398 **/
4399
64798845 4400static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1da177e4
LT
4401{
4402 switch (cmd) {
4403 case SIOCGMIIPHY:
4404 case SIOCGMIIREG:
4405 case SIOCSMIIREG:
4406 return e1000_mii_ioctl(netdev, ifr, cmd);
4407 default:
4408 return -EOPNOTSUPP;
4409 }
4410}
4411
4412/**
4413 * e1000_mii_ioctl -
4414 * @netdev:
4415 * @ifreq:
4416 * @cmd:
4417 **/
4418
64798845
JP
4419static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4420 int cmd)
1da177e4 4421{
60490fe0 4422 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4423 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4424 struct mii_ioctl_data *data = if_mii(ifr);
4425 int retval;
406874a7 4426 u16 mii_reg;
97876fc6 4427 unsigned long flags;
1da177e4 4428
1dc32918 4429 if (hw->media_type != e1000_media_type_copper)
1da177e4
LT
4430 return -EOPNOTSUPP;
4431
4432 switch (cmd) {
4433 case SIOCGMIIPHY:
1dc32918 4434 data->phy_id = hw->phy_addr;
1da177e4
LT
4435 break;
4436 case SIOCGMIIREG:
97876fc6 4437 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4438 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
97876fc6
MC
4439 &data->val_out)) {
4440 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 4441 return -EIO;
97876fc6
MC
4442 }
4443 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4
LT
4444 break;
4445 case SIOCSMIIREG:
96838a40 4446 if (data->reg_num & ~(0x1F))
1da177e4
LT
4447 return -EFAULT;
4448 mii_reg = data->val_in;
97876fc6 4449 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4450 if (e1000_write_phy_reg(hw, data->reg_num,
97876fc6
MC
4451 mii_reg)) {
4452 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 4453 return -EIO;
97876fc6 4454 }
f0163ac4 4455 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1dc32918 4456 if (hw->media_type == e1000_media_type_copper) {
1da177e4
LT
4457 switch (data->reg_num) {
4458 case PHY_CTRL:
96838a40 4459 if (mii_reg & MII_CR_POWER_DOWN)
1da177e4 4460 break;
96838a40 4461 if (mii_reg & MII_CR_AUTO_NEG_EN) {
1dc32918
JP
4462 hw->autoneg = 1;
4463 hw->autoneg_advertised = 0x2F;
1da177e4 4464 } else {
14ad2513 4465 u32 speed;
1da177e4 4466 if (mii_reg & 0x40)
14ad2513 4467 speed = SPEED_1000;
1da177e4 4468 else if (mii_reg & 0x2000)
14ad2513 4469 speed = SPEED_100;
1da177e4 4470 else
14ad2513
DD
4471 speed = SPEED_10;
4472 retval = e1000_set_spd_dplx(
4473 adapter, speed,
4474 ((mii_reg & 0x100)
4475 ? DUPLEX_FULL :
4476 DUPLEX_HALF));
f0163ac4 4477 if (retval)
1da177e4
LT
4478 return retval;
4479 }
2db10a08
AK
4480 if (netif_running(adapter->netdev))
4481 e1000_reinit_locked(adapter);
4482 else
1da177e4
LT
4483 e1000_reset(adapter);
4484 break;
4485 case M88E1000_PHY_SPEC_CTRL:
4486 case M88E1000_EXT_PHY_SPEC_CTRL:
1dc32918 4487 if (e1000_phy_reset(hw))
1da177e4
LT
4488 return -EIO;
4489 break;
4490 }
4491 } else {
4492 switch (data->reg_num) {
4493 case PHY_CTRL:
96838a40 4494 if (mii_reg & MII_CR_POWER_DOWN)
1da177e4 4495 break;
2db10a08
AK
4496 if (netif_running(adapter->netdev))
4497 e1000_reinit_locked(adapter);
4498 else
1da177e4
LT
4499 e1000_reset(adapter);
4500 break;
4501 }
4502 }
4503 break;
4504 default:
4505 return -EOPNOTSUPP;
4506 }
4507 return E1000_SUCCESS;
4508}
4509
64798845 4510void e1000_pci_set_mwi(struct e1000_hw *hw)
1da177e4
LT
4511{
4512 struct e1000_adapter *adapter = hw->back;
2648345f 4513 int ret_val = pci_set_mwi(adapter->pdev);
1da177e4 4514
96838a40 4515 if (ret_val)
feb8f478 4516 e_err(probe, "Error in setting MWI\n");
1da177e4
LT
4517}
4518
64798845 4519void e1000_pci_clear_mwi(struct e1000_hw *hw)
1da177e4
LT
4520{
4521 struct e1000_adapter *adapter = hw->back;
4522
4523 pci_clear_mwi(adapter->pdev);
4524}
4525
64798845 4526int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
007755eb
PO
4527{
4528 struct e1000_adapter *adapter = hw->back;
4529 return pcix_get_mmrbc(adapter->pdev);
4530}
4531
64798845 4532void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
007755eb
PO
4533{
4534 struct e1000_adapter *adapter = hw->back;
4535 pcix_set_mmrbc(adapter->pdev, mmrbc);
4536}
4537
64798845 4538void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
1da177e4
LT
4539{
4540 outl(value, port);
4541}
4542
5622e404
JP
4543static bool e1000_vlan_used(struct e1000_adapter *adapter)
4544{
4545 u16 vid;
4546
4547 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4548 return true;
4549 return false;
4550}
4551
4552static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4553 bool filter_on)
1da177e4 4554{
1dc32918 4555 struct e1000_hw *hw = &adapter->hw;
5622e404 4556 u32 rctl;
1da177e4 4557
9150b76a
JB
4558 if (!test_bit(__E1000_DOWN, &adapter->flags))
4559 e1000_irq_disable(adapter);
1da177e4 4560
5622e404 4561 if (filter_on) {
1532ecea
JB
4562 /* enable VLAN receive filtering */
4563 rctl = er32(RCTL);
4564 rctl &= ~E1000_RCTL_CFIEN;
5622e404 4565 if (!(adapter->netdev->flags & IFF_PROMISC))
1532ecea
JB
4566 rctl |= E1000_RCTL_VFE;
4567 ew32(RCTL, rctl);
4568 e1000_update_mng_vlan(adapter);
1da177e4 4569 } else {
1532ecea
JB
4570 /* disable VLAN receive filtering */
4571 rctl = er32(RCTL);
4572 rctl &= ~E1000_RCTL_VFE;
4573 ew32(RCTL, rctl);
5622e404 4574 }
fd38d7a0 4575
5622e404
JP
4576 if (!test_bit(__E1000_DOWN, &adapter->flags))
4577 e1000_irq_enable(adapter);
4578}
4579
c8f44aff
MM
4580static void e1000_vlan_mode(struct net_device *netdev,
4581 netdev_features_t features)
5622e404
JP
4582{
4583 struct e1000_adapter *adapter = netdev_priv(netdev);
4584 struct e1000_hw *hw = &adapter->hw;
4585 u32 ctrl;
4586
4587 if (!test_bit(__E1000_DOWN, &adapter->flags))
4588 e1000_irq_disable(adapter);
4589
4590 ctrl = er32(CTRL);
4591 if (features & NETIF_F_HW_VLAN_RX) {
4592 /* enable VLAN tag insert/strip */
4593 ctrl |= E1000_CTRL_VME;
4594 } else {
4595 /* disable VLAN tag insert/strip */
4596 ctrl &= ~E1000_CTRL_VME;
1da177e4 4597 }
5622e404 4598 ew32(CTRL, ctrl);
1da177e4 4599
9150b76a
JB
4600 if (!test_bit(__E1000_DOWN, &adapter->flags))
4601 e1000_irq_enable(adapter);
1da177e4
LT
4602}
4603
8e586137 4604static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1da177e4 4605{
60490fe0 4606 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4607 struct e1000_hw *hw = &adapter->hw;
406874a7 4608 u32 vfta, index;
96838a40 4609
1dc32918 4610 if ((hw->mng_cookie.status &
96838a40
JB
4611 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4612 (vid == adapter->mng_vlan_id))
8e586137 4613 return 0;
5622e404
JP
4614
4615 if (!e1000_vlan_used(adapter))
4616 e1000_vlan_filter_on_off(adapter, true);
4617
1da177e4
LT
4618 /* add VID to filter table */
4619 index = (vid >> 5) & 0x7F;
1dc32918 4620 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
1da177e4 4621 vfta |= (1 << (vid & 0x1F));
1dc32918 4622 e1000_write_vfta(hw, index, vfta);
5622e404
JP
4623
4624 set_bit(vid, adapter->active_vlans);
8e586137
JP
4625
4626 return 0;
1da177e4
LT
4627}
4628
8e586137 4629static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1da177e4 4630{
60490fe0 4631 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4632 struct e1000_hw *hw = &adapter->hw;
406874a7 4633 u32 vfta, index;
1da177e4 4634
9150b76a
JB
4635 if (!test_bit(__E1000_DOWN, &adapter->flags))
4636 e1000_irq_disable(adapter);
9150b76a
JB
4637 if (!test_bit(__E1000_DOWN, &adapter->flags))
4638 e1000_irq_enable(adapter);
1da177e4
LT
4639
4640 /* remove VID from filter table */
4641 index = (vid >> 5) & 0x7F;
1dc32918 4642 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
1da177e4 4643 vfta &= ~(1 << (vid & 0x1F));
1dc32918 4644 e1000_write_vfta(hw, index, vfta);
5622e404
JP
4645
4646 clear_bit(vid, adapter->active_vlans);
4647
4648 if (!e1000_vlan_used(adapter))
4649 e1000_vlan_filter_on_off(adapter, false);
8e586137
JP
4650
4651 return 0;
1da177e4
LT
4652}
4653
64798845 4654static void e1000_restore_vlan(struct e1000_adapter *adapter)
1da177e4 4655{
5622e404 4656 u16 vid;
1da177e4 4657
5622e404
JP
4658 if (!e1000_vlan_used(adapter))
4659 return;
4660
4661 e1000_vlan_filter_on_off(adapter, true);
4662 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4663 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1da177e4
LT
4664}
4665
14ad2513 4666int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
1da177e4 4667{
1dc32918
JP
4668 struct e1000_hw *hw = &adapter->hw;
4669
4670 hw->autoneg = 0;
1da177e4 4671
14ad2513
DD
4672 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4673 * for the switch() below to work */
4674 if ((spd & 1) || (dplx & ~1))
4675 goto err_inval;
4676
6921368f 4677 /* Fiber NICs only allow 1000 gbps Full duplex */
1dc32918 4678 if ((hw->media_type == e1000_media_type_fiber) &&
14ad2513
DD
4679 spd != SPEED_1000 &&
4680 dplx != DUPLEX_FULL)
4681 goto err_inval;
6921368f 4682
14ad2513 4683 switch (spd + dplx) {
1da177e4 4684 case SPEED_10 + DUPLEX_HALF:
1dc32918 4685 hw->forced_speed_duplex = e1000_10_half;
1da177e4
LT
4686 break;
4687 case SPEED_10 + DUPLEX_FULL:
1dc32918 4688 hw->forced_speed_duplex = e1000_10_full;
1da177e4
LT
4689 break;
4690 case SPEED_100 + DUPLEX_HALF:
1dc32918 4691 hw->forced_speed_duplex = e1000_100_half;
1da177e4
LT
4692 break;
4693 case SPEED_100 + DUPLEX_FULL:
1dc32918 4694 hw->forced_speed_duplex = e1000_100_full;
1da177e4
LT
4695 break;
4696 case SPEED_1000 + DUPLEX_FULL:
1dc32918
JP
4697 hw->autoneg = 1;
4698 hw->autoneg_advertised = ADVERTISE_1000_FULL;
1da177e4
LT
4699 break;
4700 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4701 default:
14ad2513 4702 goto err_inval;
1da177e4
LT
4703 }
4704 return 0;
14ad2513
DD
4705
4706err_inval:
4707 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4708 return -EINVAL;
1da177e4
LT
4709}
4710
b43fcd7d 4711static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
1da177e4
LT
4712{
4713 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 4714 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4715 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
4716 u32 ctrl, ctrl_ext, rctl, status;
4717 u32 wufc = adapter->wol;
6fdfef16 4718#ifdef CONFIG_PM
240b1710 4719 int retval = 0;
6fdfef16 4720#endif
1da177e4
LT
4721
4722 netif_device_detach(netdev);
4723
2db10a08
AK
4724 if (netif_running(netdev)) {
4725 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1da177e4 4726 e1000_down(adapter);
2db10a08 4727 }
1da177e4 4728
2f82665f 4729#ifdef CONFIG_PM
1d33e9c6 4730 retval = pci_save_state(pdev);
3a3847e0 4731 if (retval)
2f82665f
JB
4732 return retval;
4733#endif
4734
1dc32918 4735 status = er32(STATUS);
96838a40 4736 if (status & E1000_STATUS_LU)
1da177e4
LT
4737 wufc &= ~E1000_WUFC_LNKC;
4738
96838a40 4739 if (wufc) {
1da177e4 4740 e1000_setup_rctl(adapter);
db0ce50d 4741 e1000_set_rx_mode(netdev);
1da177e4
LT
4742
4743 /* turn on all-multi mode if wake on multicast is enabled */
120cd576 4744 if (wufc & E1000_WUFC_MC) {
1dc32918 4745 rctl = er32(RCTL);
1da177e4 4746 rctl |= E1000_RCTL_MPE;
1dc32918 4747 ew32(RCTL, rctl);
1da177e4
LT
4748 }
4749
1dc32918
JP
4750 if (hw->mac_type >= e1000_82540) {
4751 ctrl = er32(CTRL);
1da177e4
LT
4752 /* advertise wake from D3Cold */
4753 #define E1000_CTRL_ADVD3WUC 0x00100000
4754 /* phy power management enable */
4755 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4756 ctrl |= E1000_CTRL_ADVD3WUC |
4757 E1000_CTRL_EN_PHY_PWR_MGMT;
1dc32918 4758 ew32(CTRL, ctrl);
1da177e4
LT
4759 }
4760
1dc32918 4761 if (hw->media_type == e1000_media_type_fiber ||
1532ecea 4762 hw->media_type == e1000_media_type_internal_serdes) {
1da177e4 4763 /* keep the laser running in D3 */
1dc32918 4764 ctrl_ext = er32(CTRL_EXT);
1da177e4 4765 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
1dc32918 4766 ew32(CTRL_EXT, ctrl_ext);
1da177e4
LT
4767 }
4768
1dc32918
JP
4769 ew32(WUC, E1000_WUC_PME_EN);
4770 ew32(WUFC, wufc);
1da177e4 4771 } else {
1dc32918
JP
4772 ew32(WUC, 0);
4773 ew32(WUFC, 0);
1da177e4
LT
4774 }
4775
0fccd0e9
JG
4776 e1000_release_manageability(adapter);
4777
b43fcd7d
RW
4778 *enable_wake = !!wufc;
4779
0fccd0e9 4780 /* make sure adapter isn't asleep if manageability is enabled */
b43fcd7d
RW
4781 if (adapter->en_mng_pt)
4782 *enable_wake = true;
1da177e4 4783
edd106fc
AK
4784 if (netif_running(netdev))
4785 e1000_free_irq(adapter);
4786
1da177e4 4787 pci_disable_device(pdev);
240b1710 4788
1da177e4
LT
4789 return 0;
4790}
4791
2f82665f 4792#ifdef CONFIG_PM
b43fcd7d
RW
4793static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4794{
4795 int retval;
4796 bool wake;
4797
4798 retval = __e1000_shutdown(pdev, &wake);
4799 if (retval)
4800 return retval;
4801
4802 if (wake) {
4803 pci_prepare_to_sleep(pdev);
4804 } else {
4805 pci_wake_from_d3(pdev, false);
4806 pci_set_power_state(pdev, PCI_D3hot);
4807 }
4808
4809 return 0;
4810}
4811
64798845 4812static int e1000_resume(struct pci_dev *pdev)
1da177e4
LT
4813{
4814 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 4815 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4816 struct e1000_hw *hw = &adapter->hw;
406874a7 4817 u32 err;
1da177e4 4818
d0e027db 4819 pci_set_power_state(pdev, PCI_D0);
1d33e9c6 4820 pci_restore_state(pdev);
dbb5aaeb 4821 pci_save_state(pdev);
81250297
TI
4822
4823 if (adapter->need_ioport)
4824 err = pci_enable_device(pdev);
4825 else
4826 err = pci_enable_device_mem(pdev);
c7be73bc 4827 if (err) {
675ad473 4828 pr_err("Cannot enable PCI device from suspend\n");
3d1dd8cb
AK
4829 return err;
4830 }
a4cb847d 4831 pci_set_master(pdev);
1da177e4 4832
d0e027db
AK
4833 pci_enable_wake(pdev, PCI_D3hot, 0);
4834 pci_enable_wake(pdev, PCI_D3cold, 0);
1da177e4 4835
c7be73bc
JP
4836 if (netif_running(netdev)) {
4837 err = e1000_request_irq(adapter);
4838 if (err)
4839 return err;
4840 }
edd106fc
AK
4841
4842 e1000_power_up_phy(adapter);
1da177e4 4843 e1000_reset(adapter);
1dc32918 4844 ew32(WUS, ~0);
1da177e4 4845
0fccd0e9
JG
4846 e1000_init_manageability(adapter);
4847
96838a40 4848 if (netif_running(netdev))
1da177e4
LT
4849 e1000_up(adapter);
4850
4851 netif_device_attach(netdev);
4852
1da177e4
LT
4853 return 0;
4854}
4855#endif
c653e635
AK
4856
4857static void e1000_shutdown(struct pci_dev *pdev)
4858{
b43fcd7d
RW
4859 bool wake;
4860
4861 __e1000_shutdown(pdev, &wake);
4862
4863 if (system_state == SYSTEM_POWER_OFF) {
4864 pci_wake_from_d3(pdev, wake);
4865 pci_set_power_state(pdev, PCI_D3hot);
4866 }
c653e635
AK
4867}
4868
1da177e4
LT
4869#ifdef CONFIG_NET_POLL_CONTROLLER
4870/*
4871 * Polling 'interrupt' - used by things like netconsole to send skbs
4872 * without having to re-enable interrupts. It's not called while
4873 * the interrupt routine is executing.
4874 */
64798845 4875static void e1000_netpoll(struct net_device *netdev)
1da177e4 4876{
60490fe0 4877 struct e1000_adapter *adapter = netdev_priv(netdev);
d3d9e484 4878
1da177e4 4879 disable_irq(adapter->pdev->irq);
7d12e780 4880 e1000_intr(adapter->pdev->irq, netdev);
1da177e4
LT
4881 enable_irq(adapter->pdev->irq);
4882}
4883#endif
4884
9026729b
AK
4885/**
4886 * e1000_io_error_detected - called when PCI error is detected
4887 * @pdev: Pointer to PCI device
120a5d0d 4888 * @state: The current pci connection state
9026729b
AK
4889 *
4890 * This function is called after a PCI bus error affecting
4891 * this device has been detected.
4892 */
64798845
JP
4893static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4894 pci_channel_state_t state)
9026729b
AK
4895{
4896 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 4897 struct e1000_adapter *adapter = netdev_priv(netdev);
9026729b
AK
4898
4899 netif_device_detach(netdev);
4900
eab63302
AD
4901 if (state == pci_channel_io_perm_failure)
4902 return PCI_ERS_RESULT_DISCONNECT;
4903
9026729b
AK
4904 if (netif_running(netdev))
4905 e1000_down(adapter);
72e8d6bb 4906 pci_disable_device(pdev);
9026729b
AK
4907
4908 /* Request a slot slot reset. */
4909 return PCI_ERS_RESULT_NEED_RESET;
4910}
4911
4912/**
4913 * e1000_io_slot_reset - called after the pci bus has been reset.
4914 * @pdev: Pointer to PCI device
4915 *
4916 * Restart the card from scratch, as if from a cold-boot. Implementation
4917 * resembles the first-half of the e1000_resume routine.
4918 */
4919static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4920{
4921 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 4922 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4923 struct e1000_hw *hw = &adapter->hw;
81250297 4924 int err;
9026729b 4925
81250297
TI
4926 if (adapter->need_ioport)
4927 err = pci_enable_device(pdev);
4928 else
4929 err = pci_enable_device_mem(pdev);
4930 if (err) {
675ad473 4931 pr_err("Cannot re-enable PCI device after reset.\n");
9026729b
AK
4932 return PCI_ERS_RESULT_DISCONNECT;
4933 }
4934 pci_set_master(pdev);
4935
dbf38c94
LV
4936 pci_enable_wake(pdev, PCI_D3hot, 0);
4937 pci_enable_wake(pdev, PCI_D3cold, 0);
9026729b 4938
9026729b 4939 e1000_reset(adapter);
1dc32918 4940 ew32(WUS, ~0);
9026729b
AK
4941
4942 return PCI_ERS_RESULT_RECOVERED;
4943}
4944
4945/**
4946 * e1000_io_resume - called when traffic can start flowing again.
4947 * @pdev: Pointer to PCI device
4948 *
4949 * This callback is called when the error recovery driver tells us that
4950 * its OK to resume normal operation. Implementation resembles the
4951 * second-half of the e1000_resume routine.
4952 */
4953static void e1000_io_resume(struct pci_dev *pdev)
4954{
4955 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 4956 struct e1000_adapter *adapter = netdev_priv(netdev);
0fccd0e9
JG
4957
4958 e1000_init_manageability(adapter);
9026729b
AK
4959
4960 if (netif_running(netdev)) {
4961 if (e1000_up(adapter)) {
675ad473 4962 pr_info("can't bring device back up after reset\n");
9026729b
AK
4963 return;
4964 }
4965 }
4966
4967 netif_device_attach(netdev);
9026729b
AK
4968}
4969
1da177e4 4970/* e1000_main.c */