Merge branch 'virtio_net-xdp-refine'
[linux-2.6-block.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
CommitLineData
9ad1a374
MB
1/* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/init.h>
34#include <linux/module.h>
35#include <linux/of_platform.h>
36#include <linux/of_mdio.h>
37#include <linux/of_net.h>
38#include <linux/io.h>
39#include <linux/if_arp.h>
40#include <linux/if_vlan.h>
41#include <linux/icmp.h>
42#include <linux/ip.h>
43#include <linux/ipv6.h>
44#include <linux/udp.h>
45#include <linux/tcp.h>
46#include <linux/net.h>
47#include <linux/skbuff.h>
48#include <linux/etherdevice.h>
49#include <linux/if_ether.h>
50#include <linux/highmem.h>
51#include <linux/percpu.h>
52#include <linux/dma-mapping.h>
53#include <linux/sort.h>
54#include <soc/fsl/bman.h>
55#include <soc/fsl/qman.h>
56
57#include "fman.h"
58#include "fman_port.h"
59#include "mac.h"
60#include "dpaa_eth.h"
61
eb11ddf3
MB
62/* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63 * using trace events only need to #include <trace/events/sched.h>
64 */
65#define CREATE_TRACE_POINTS
66#include "dpaa_eth_trace.h"
67
9ad1a374
MB
68static int debug = -1;
69module_param(debug, int, 0444);
70MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72static u16 tx_timeout = 1000;
73module_param(tx_timeout, ushort, 0444);
74MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76#define FM_FD_STAT_RX_ERRORS \
77 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
78 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
80 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 FM_FD_ERR_PRS_HDR_ERR)
82
83#define FM_FD_STAT_TX_ERRORS \
84 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87#define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 NETIF_MSG_IFDOWN)
90
91#define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92/* Ingress congestion threshold on FMan ports
93 * The size in bytes of the ingress tail-drop threshold on FMan ports.
94 * Traffic piling up above this value will be rejected by QMan and discarded
95 * by FMan.
96 */
97
98/* Size in bytes of the FQ taildrop threshold */
99#define DPAA_FQ_TD 0x200000
100
101#define DPAA_CS_THRESHOLD_1G 0x06000000
102/* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103 * The size in bytes of the egress Congestion State notification threshold on
104 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106 * and the larger the frame size, the more acute the problem.
107 * So we have to find a balance between these factors:
108 * - avoiding the device staying congested for a prolonged time (risking
109 * the netdev watchdog to fire - see also the tx_timeout module param);
110 * - affecting performance of protocols such as TCP, which otherwise
111 * behave well under the congestion notification mechanism;
112 * - preventing the Tx cores from tightly-looping (as if the congestion
113 * threshold was too low to be effective);
114 * - running out of memory if the CS threshold is set too high.
115 */
116
117#define DPAA_CS_THRESHOLD_10G 0x10000000
118/* The size in bytes of the egress Congestion State notification threshold on
119 * 10G ports, range 0x1000 .. 0x10000000
120 */
121
122/* Largest value that the FQD's OAL field can hold */
123#define FSL_QMAN_MAX_OAL 127
124
125/* Default alignment for start of data in an Rx FD */
126#define DPAA_FD_DATA_ALIGNMENT 16
127
128/* Values for the L3R field of the FM Parse Results
129 */
130/* L3 Type field: First IP Present IPv4 */
131#define FM_L3_PARSE_RESULT_IPV4 0x8000
132/* L3 Type field: First IP Present IPv6 */
133#define FM_L3_PARSE_RESULT_IPV6 0x4000
134/* Values for the L4R field of the FM Parse Results */
135/* L4 Type field: UDP */
136#define FM_L4_PARSE_RESULT_UDP 0x40
137/* L4 Type field: TCP */
138#define FM_L4_PARSE_RESULT_TCP 0x20
139
5accb282
MB
140/* FD status field indicating whether the FM Parser has attempted to validate
141 * the L4 csum of the frame.
142 * Note that having this bit set doesn't necessarily imply that the checksum
143 * is valid. One would have to check the parse results to find that out.
144 */
145#define FM_FD_STAT_L4CV 0x00000004
146
9ad1a374
MB
147#define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
148#define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
149
150#define FSL_DPAA_BPID_INV 0xff
151#define FSL_DPAA_ETH_MAX_BUF_COUNT 128
152#define FSL_DPAA_ETH_REFILL_THRESHOLD 80
153
154#define DPAA_TX_PRIV_DATA_SIZE 16
155#define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
156#define DPAA_TIME_STAMP_SIZE 8
157#define DPAA_HASH_RESULTS_SIZE 8
158#define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \
159 dpaa_rx_extra_headroom)
160
161#define DPAA_ETH_RX_QUEUES 128
162
163#define DPAA_ENQUEUE_RETRIES 100000
164
165enum port_type {RX, TX};
166
167struct fm_port_fqs {
168 struct dpaa_fq *tx_defq;
169 struct dpaa_fq *tx_errq;
170 struct dpaa_fq *rx_defq;
171 struct dpaa_fq *rx_errq;
172};
173
174/* All the dpa bps in use at any moment */
175static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
176
177/* The raw buffer size must be cacheline aligned */
178#define DPAA_BP_RAW_SIZE 4096
179/* When using more than one buffer pool, the raw sizes are as follows:
180 * 1 bp: 4KB
181 * 2 bp: 2KB, 4KB
182 * 3 bp: 1KB, 2KB, 4KB
183 * 4 bp: 1KB, 2KB, 4KB, 8KB
184 */
185static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
186{
187 size_t res = DPAA_BP_RAW_SIZE / 4;
188 u8 i;
189
190 for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
191 res *= 2;
192 return res;
193}
194
195/* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
196 * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
197 * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
198 * half-page-aligned buffers, so we reserve some more space for start-of-buffer
199 * alignment.
200 */
201#define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
202
203static int dpaa_max_frm;
204
205static int dpaa_rx_extra_headroom;
206
207#define dpaa_get_max_mtu() \
208 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
209
210static int dpaa_netdev_init(struct net_device *net_dev,
211 const struct net_device_ops *dpaa_ops,
212 u16 tx_timeout)
213{
214 struct dpaa_priv *priv = netdev_priv(net_dev);
215 struct device *dev = net_dev->dev.parent;
216 struct dpaa_percpu_priv *percpu_priv;
217 const u8 *mac_addr;
218 int i, err;
219
220 /* Although we access another CPU's private data here
221 * we do it at initialization so it is safe
222 */
223 for_each_possible_cpu(i) {
224 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
225 percpu_priv->net_dev = net_dev;
226 }
227
228 net_dev->netdev_ops = dpaa_ops;
229 mac_addr = priv->mac_dev->addr;
230
231 net_dev->mem_start = priv->mac_dev->res->start;
232 net_dev->mem_end = priv->mac_dev->res->end;
233
234 net_dev->min_mtu = ETH_MIN_MTU;
235 net_dev->max_mtu = dpaa_get_max_mtu();
236
237 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
238 NETIF_F_LLTX);
239
240 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
241 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
242 * For conformity, we'll still declare GSO explicitly.
243 */
244 net_dev->features |= NETIF_F_GSO;
5accb282 245 net_dev->features |= NETIF_F_RXCSUM;
9ad1a374
MB
246
247 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
248 /* we do not want shared skbs on TX */
249 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
250
251 net_dev->features |= net_dev->hw_features;
252 net_dev->vlan_features = net_dev->features;
253
254 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
255 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
256
b0cdb168
MB
257 net_dev->ethtool_ops = &dpaa_ethtool_ops;
258
9ad1a374
MB
259 net_dev->needed_headroom = priv->tx_headroom;
260 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
261
262 /* start without the RUNNING flag, phylib controls it later */
263 netif_carrier_off(net_dev);
264
265 err = register_netdev(net_dev);
266 if (err < 0) {
267 dev_err(dev, "register_netdev() = %d\n", err);
268 return err;
269 }
270
271 return 0;
272}
273
274static int dpaa_stop(struct net_device *net_dev)
275{
276 struct mac_device *mac_dev;
277 struct dpaa_priv *priv;
278 int i, err, error;
279
280 priv = netdev_priv(net_dev);
281 mac_dev = priv->mac_dev;
282
283 netif_tx_stop_all_queues(net_dev);
284 /* Allow the Fman (Tx) port to process in-flight frames before we
285 * try switching it off.
286 */
287 usleep_range(5000, 10000);
288
289 err = mac_dev->stop(mac_dev);
290 if (err < 0)
291 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
292 err);
293
294 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
295 error = fman_port_disable(mac_dev->port[i]);
296 if (error)
297 err = error;
298 }
299
300 if (net_dev->phydev)
301 phy_disconnect(net_dev->phydev);
302 net_dev->phydev = NULL;
303
304 return err;
305}
306
307static void dpaa_tx_timeout(struct net_device *net_dev)
308{
309 struct dpaa_percpu_priv *percpu_priv;
310 const struct dpaa_priv *priv;
311
312 priv = netdev_priv(net_dev);
313 percpu_priv = this_cpu_ptr(priv->percpu_priv);
314
315 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
316 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
317
318 percpu_priv->stats.tx_errors++;
319}
320
321/* Calculates the statistics for the given device by adding the statistics
322 * collected by each CPU.
323 */
bc1f4470 324static void dpaa_get_stats64(struct net_device *net_dev,
325 struct rtnl_link_stats64 *s)
9ad1a374
MB
326{
327 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
328 struct dpaa_priv *priv = netdev_priv(net_dev);
329 struct dpaa_percpu_priv *percpu_priv;
330 u64 *netstats = (u64 *)s;
331 u64 *cpustats;
332 int i, j;
333
334 for_each_possible_cpu(i) {
335 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
336
337 cpustats = (u64 *)&percpu_priv->stats;
338
339 /* add stats from all CPUs */
340 for (j = 0; j < numstats; j++)
341 netstats[j] += cpustats[j];
342 }
9ad1a374
MB
343}
344
a5fcf8a6
JP
345static int dpaa_setup_tc(struct net_device *net_dev, u32 handle,
346 u32 chain_index, __be16 proto, struct tc_to_netdev *tc)
2ea08f82
CG
347{
348 struct dpaa_priv *priv = netdev_priv(net_dev);
56f36acd 349 u8 num_tc;
2ea08f82
CG
350 int i;
351
352 if (tc->type != TC_SETUP_MQPRIO)
353 return -EINVAL;
354
56f36acd
AN
355 tc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
356 num_tc = tc->mqprio->num_tc;
357
358 if (num_tc == priv->num_tc)
2ea08f82
CG
359 return 0;
360
56f36acd 361 if (!num_tc) {
2ea08f82
CG
362 netdev_reset_tc(net_dev);
363 goto out;
364 }
365
56f36acd 366 if (num_tc > DPAA_TC_NUM) {
2ea08f82
CG
367 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
368 DPAA_TC_NUM);
369 return -EINVAL;
370 }
371
56f36acd 372 netdev_set_num_tc(net_dev, num_tc);
2ea08f82 373
56f36acd 374 for (i = 0; i < num_tc; i++)
2ea08f82
CG
375 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
376 i * DPAA_TC_TXQ_NUM);
377
378out:
56f36acd 379 priv->num_tc = num_tc ? : 1;
2ea08f82
CG
380 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
381 return 0;
382}
383
9ad1a374
MB
384static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
385{
386 struct platform_device *of_dev;
387 struct dpaa_eth_data *eth_data;
388 struct device *dpaa_dev, *dev;
389 struct device_node *mac_node;
390 struct mac_device *mac_dev;
391
392 dpaa_dev = &pdev->dev;
393 eth_data = dpaa_dev->platform_data;
394 if (!eth_data)
395 return ERR_PTR(-ENODEV);
396
397 mac_node = eth_data->mac_node;
398
399 of_dev = of_find_device_by_node(mac_node);
400 if (!of_dev) {
401 dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n",
402 mac_node->full_name);
403 of_node_put(mac_node);
404 return ERR_PTR(-EINVAL);
405 }
406 of_node_put(mac_node);
407
408 dev = &of_dev->dev;
409
410 mac_dev = dev_get_drvdata(dev);
411 if (!mac_dev) {
412 dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
413 dev_name(dev));
414 return ERR_PTR(-EINVAL);
415 }
416
417 return mac_dev;
418}
419
420static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
421{
422 const struct dpaa_priv *priv;
423 struct mac_device *mac_dev;
424 struct sockaddr old_addr;
425 int err;
426
427 priv = netdev_priv(net_dev);
428
429 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
430
431 err = eth_mac_addr(net_dev, addr);
432 if (err < 0) {
433 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
434 return err;
435 }
436
437 mac_dev = priv->mac_dev;
438
439 err = mac_dev->change_addr(mac_dev->fman_mac,
440 (enet_addr_t *)net_dev->dev_addr);
441 if (err < 0) {
442 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
443 err);
444 /* reverting to previous address */
445 eth_mac_addr(net_dev, &old_addr);
446
447 return err;
448 }
449
450 return 0;
451}
452
453static void dpaa_set_rx_mode(struct net_device *net_dev)
454{
455 const struct dpaa_priv *priv;
456 int err;
457
458 priv = netdev_priv(net_dev);
459
460 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
461 priv->mac_dev->promisc = !priv->mac_dev->promisc;
462 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
463 priv->mac_dev->promisc);
464 if (err < 0)
465 netif_err(priv, drv, net_dev,
466 "mac_dev->set_promisc() = %d\n",
467 err);
468 }
469
470 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
471 if (err < 0)
472 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
473 err);
474}
475
476static struct dpaa_bp *dpaa_bpid2pool(int bpid)
477{
478 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
479 return NULL;
480
481 return dpaa_bp_array[bpid];
482}
483
484/* checks if this bpool is already allocated */
485static bool dpaa_bpid2pool_use(int bpid)
486{
487 if (dpaa_bpid2pool(bpid)) {
488 atomic_inc(&dpaa_bp_array[bpid]->refs);
489 return true;
490 }
491
492 return false;
493}
494
495/* called only once per bpid by dpaa_bp_alloc_pool() */
496static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
497{
498 dpaa_bp_array[bpid] = dpaa_bp;
499 atomic_set(&dpaa_bp->refs, 1);
500}
501
502static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
503{
504 int err;
505
506 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
507 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
508 __func__);
509 return -EINVAL;
510 }
511
512 /* If the pool is already specified, we only create one per bpid */
513 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
514 dpaa_bpid2pool_use(dpaa_bp->bpid))
515 return 0;
516
517 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
518 dpaa_bp->pool = bman_new_pool();
519 if (!dpaa_bp->pool) {
520 pr_err("%s: bman_new_pool() failed\n",
521 __func__);
522 return -ENODEV;
523 }
524
525 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
526 }
527
528 if (dpaa_bp->seed_cb) {
529 err = dpaa_bp->seed_cb(dpaa_bp);
530 if (err)
531 goto pool_seed_failed;
532 }
533
534 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
535
536 return 0;
537
538pool_seed_failed:
539 pr_err("%s: pool seeding failed\n", __func__);
540 bman_free_pool(dpaa_bp->pool);
541
542 return err;
543}
544
545/* remove and free all the buffers from the given buffer pool */
546static void dpaa_bp_drain(struct dpaa_bp *bp)
547{
548 u8 num = 8;
549 int ret;
550
551 do {
552 struct bm_buffer bmb[8];
553 int i;
554
555 ret = bman_acquire(bp->pool, bmb, num);
556 if (ret < 0) {
557 if (num == 8) {
558 /* we have less than 8 buffers left;
559 * drain them one by one
560 */
561 num = 1;
562 ret = 1;
563 continue;
564 } else {
565 /* Pool is fully drained */
566 break;
567 }
568 }
569
570 if (bp->free_buf_cb)
571 for (i = 0; i < num; i++)
572 bp->free_buf_cb(bp, &bmb[i]);
573 } while (ret > 0);
574}
575
576static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
577{
578 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
579
580 /* the mapping between bpid and dpaa_bp is done very late in the
581 * allocation procedure; if something failed before the mapping, the bp
582 * was not configured, therefore we don't need the below instructions
583 */
584 if (!bp)
585 return;
586
587 if (!atomic_dec_and_test(&bp->refs))
588 return;
589
590 if (bp->free_buf_cb)
591 dpaa_bp_drain(bp);
592
593 dpaa_bp_array[bp->bpid] = NULL;
594 bman_free_pool(bp->pool);
595}
596
597static void dpaa_bps_free(struct dpaa_priv *priv)
598{
599 int i;
600
601 for (i = 0; i < DPAA_BPS_NUM; i++)
602 dpaa_bp_free(priv->dpaa_bps[i]);
603}
604
605/* Use multiple WQs for FQ assignment:
606 * - Tx Confirmation queues go to WQ1.
c44efa1d
CG
607 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
608 * to be scheduled, in case there are many more FQs in WQ6).
609 * - Rx Default goes to WQ6.
610 * - Tx queues go to different WQs depending on their priority. Equal
611 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
612 * WQ0 (highest priority).
9ad1a374
MB
613 * This ensures that Tx-confirmed buffers are timely released. In particular,
614 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
615 * are greatly outnumbered by other FQs in the system, while
616 * dequeue scheduling is round-robin.
617 */
c44efa1d 618static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
9ad1a374
MB
619{
620 switch (fq->fq_type) {
621 case FQ_TYPE_TX_CONFIRM:
622 case FQ_TYPE_TX_CONF_MQ:
623 fq->wq = 1;
624 break;
625 case FQ_TYPE_RX_ERROR:
626 case FQ_TYPE_TX_ERROR:
c44efa1d 627 fq->wq = 5;
9ad1a374
MB
628 break;
629 case FQ_TYPE_RX_DEFAULT:
c44efa1d
CG
630 fq->wq = 6;
631 break;
9ad1a374 632 case FQ_TYPE_TX:
c44efa1d
CG
633 switch (idx / DPAA_TC_TXQ_NUM) {
634 case 0:
635 /* Low priority (best effort) */
636 fq->wq = 6;
637 break;
638 case 1:
639 /* Medium priority */
640 fq->wq = 2;
641 break;
642 case 2:
643 /* High priority */
644 fq->wq = 1;
645 break;
646 case 3:
647 /* Very high priority */
648 fq->wq = 0;
649 break;
650 default:
651 WARN(1, "Too many TX FQs: more than %d!\n",
652 DPAA_ETH_TXQ_NUM);
653 }
9ad1a374
MB
654 break;
655 default:
656 WARN(1, "Invalid FQ type %d for FQID %d!\n",
657 fq->fq_type, fq->fqid);
658 }
659}
660
661static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
662 u32 start, u32 count,
663 struct list_head *list,
664 enum dpaa_fq_type fq_type)
665{
666 struct dpaa_fq *dpaa_fq;
667 int i;
668
669 dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
670 GFP_KERNEL);
671 if (!dpaa_fq)
672 return NULL;
673
674 for (i = 0; i < count; i++) {
675 dpaa_fq[i].fq_type = fq_type;
676 dpaa_fq[i].fqid = start ? start + i : 0;
677 list_add_tail(&dpaa_fq[i].list, list);
678 }
679
680 for (i = 0; i < count; i++)
c44efa1d 681 dpaa_assign_wq(dpaa_fq + i, i);
9ad1a374
MB
682
683 return dpaa_fq;
684}
685
686static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
687 struct fm_port_fqs *port_fqs)
688{
689 struct dpaa_fq *dpaa_fq;
690
691 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
692 if (!dpaa_fq)
693 goto fq_alloc_failed;
694
695 port_fqs->rx_errq = &dpaa_fq[0];
696
697 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
698 if (!dpaa_fq)
699 goto fq_alloc_failed;
700
701 port_fqs->rx_defq = &dpaa_fq[0];
702
703 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
704 goto fq_alloc_failed;
705
706 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
707 if (!dpaa_fq)
708 goto fq_alloc_failed;
709
710 port_fqs->tx_errq = &dpaa_fq[0];
711
712 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
713 if (!dpaa_fq)
714 goto fq_alloc_failed;
715
716 port_fqs->tx_defq = &dpaa_fq[0];
717
718 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
719 goto fq_alloc_failed;
720
721 return 0;
722
723fq_alloc_failed:
724 dev_err(dev, "dpaa_fq_alloc() failed\n");
725 return -ENOMEM;
726}
727
728static u32 rx_pool_channel;
729static DEFINE_SPINLOCK(rx_pool_channel_init);
730
731static int dpaa_get_channel(void)
732{
733 spin_lock(&rx_pool_channel_init);
734 if (!rx_pool_channel) {
735 u32 pool;
736 int ret;
737
738 ret = qman_alloc_pool(&pool);
739
740 if (!ret)
741 rx_pool_channel = pool;
742 }
743 spin_unlock(&rx_pool_channel_init);
744 if (!rx_pool_channel)
745 return -ENOMEM;
746 return rx_pool_channel;
747}
748
749static void dpaa_release_channel(void)
750{
751 qman_release_pool(rx_pool_channel);
752}
753
754static void dpaa_eth_add_channel(u16 channel)
755{
756 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
757 const cpumask_t *cpus = qman_affine_cpus();
758 struct qman_portal *portal;
759 int cpu;
760
761 for_each_cpu(cpu, cpus) {
762 portal = qman_get_affine_portal(cpu);
763 qman_p_static_dequeue_add(portal, pool);
764 }
765}
766
767/* Congestion group state change notification callback.
768 * Stops the device's egress queues while they are congested and
769 * wakes them upon exiting congested state.
770 * Also updates some CGR-related stats.
771 */
772static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
773 int congested)
774{
775 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
776 struct dpaa_priv, cgr_data.cgr);
777
b0ce0d02
MB
778 if (congested) {
779 priv->cgr_data.congestion_start_jiffies = jiffies;
9ad1a374 780 netif_tx_stop_all_queues(priv->net_dev);
b0ce0d02
MB
781 priv->cgr_data.cgr_congested_count++;
782 } else {
783 priv->cgr_data.congested_jiffies +=
784 (jiffies - priv->cgr_data.congestion_start_jiffies);
9ad1a374 785 netif_tx_wake_all_queues(priv->net_dev);
b0ce0d02 786 }
9ad1a374
MB
787}
788
789static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
790{
791 struct qm_mcc_initcgr initcgr;
792 u32 cs_th;
793 int err;
794
795 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
796 if (err < 0) {
797 if (netif_msg_drv(priv))
798 pr_err("%s: Error %d allocating CGR ID\n",
799 __func__, err);
800 goto out_error;
801 }
802 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
803
804 /* Enable Congestion State Change Notifications and CS taildrop */
0fbb0f24 805 memset(&initcgr, 0, sizeof(initcgr));
7d6f8dc0 806 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
9ad1a374
MB
807 initcgr.cgr.cscn_en = QM_CGR_EN;
808
809 /* Set different thresholds based on the MAC speed.
810 * This may turn suboptimal if the MAC is reconfigured at a speed
811 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
812 * In such cases, we ought to reconfigure the threshold, too.
813 */
814 if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
815 cs_th = DPAA_CS_THRESHOLD_10G;
816 else
817 cs_th = DPAA_CS_THRESHOLD_1G;
818 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
819
7d6f8dc0 820 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
9ad1a374
MB
821 initcgr.cgr.cstd_en = QM_CGR_EN;
822
823 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
824 &initcgr);
825 if (err < 0) {
826 if (netif_msg_drv(priv))
827 pr_err("%s: Error %d creating CGR with ID %d\n",
828 __func__, err, priv->cgr_data.cgr.cgrid);
829 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
830 goto out_error;
831 }
832 if (netif_msg_drv(priv))
833 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
834 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
835 priv->cgr_data.cgr.chan);
836
837out_error:
838 return err;
839}
840
841static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
842 struct dpaa_fq *fq,
843 const struct qman_fq *template)
844{
845 fq->fq_base = *template;
846 fq->net_dev = priv->net_dev;
847
848 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
849 fq->channel = priv->channel;
850}
851
852static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
853 struct dpaa_fq *fq,
854 struct fman_port *port,
855 const struct qman_fq *template)
856{
857 fq->fq_base = *template;
858 fq->net_dev = priv->net_dev;
859
860 if (port) {
861 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
862 fq->channel = (u16)fman_port_get_qman_channel_id(port);
863 } else {
864 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
865 }
866}
867
868static void dpaa_fq_setup(struct dpaa_priv *priv,
869 const struct dpaa_fq_cbs *fq_cbs,
870 struct fman_port *tx_port)
871{
872 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu;
873 const cpumask_t *affine_cpus = qman_affine_cpus();
874 u16 portals[NR_CPUS];
875 struct dpaa_fq *fq;
876
877 for_each_cpu(cpu, affine_cpus)
878 portals[num_portals++] = qman_affine_channel(cpu);
879 if (num_portals == 0)
880 dev_err(priv->net_dev->dev.parent,
881 "No Qman software (affine) channels found");
882
883 /* Initialize each FQ in the list */
884 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
885 switch (fq->fq_type) {
886 case FQ_TYPE_RX_DEFAULT:
887 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
888 break;
889 case FQ_TYPE_RX_ERROR:
890 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
891 break;
892 case FQ_TYPE_TX:
893 dpaa_setup_egress(priv, fq, tx_port,
894 &fq_cbs->egress_ern);
895 /* If we have more Tx queues than the number of cores,
896 * just ignore the extra ones.
897 */
898 if (egress_cnt < DPAA_ETH_TXQ_NUM)
899 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
900 break;
901 case FQ_TYPE_TX_CONF_MQ:
902 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
903 /* fall through */
904 case FQ_TYPE_TX_CONFIRM:
905 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
906 break;
907 case FQ_TYPE_TX_ERROR:
908 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
909 break;
910 default:
911 dev_warn(priv->net_dev->dev.parent,
912 "Unknown FQ type detected!\n");
913 break;
914 }
915 }
916
917 /* Make sure all CPUs receive a corresponding Tx queue. */
918 while (egress_cnt < DPAA_ETH_TXQ_NUM) {
919 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
920 if (fq->fq_type != FQ_TYPE_TX)
921 continue;
922 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
923 if (egress_cnt == DPAA_ETH_TXQ_NUM)
924 break;
925 }
926 }
927}
928
929static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
930 struct qman_fq *tx_fq)
931{
932 int i;
933
934 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
935 if (priv->egress_fqs[i] == tx_fq)
936 return i;
937
938 return -EINVAL;
939}
940
941static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
942{
943 const struct dpaa_priv *priv;
944 struct qman_fq *confq = NULL;
945 struct qm_mcc_initfq initfq;
946 struct device *dev;
947 struct qman_fq *fq;
948 int queue_id;
949 int err;
950
951 priv = netdev_priv(dpaa_fq->net_dev);
952 dev = dpaa_fq->net_dev->dev.parent;
953
954 if (dpaa_fq->fqid == 0)
955 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
956
957 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
958
959 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
960 if (err) {
961 dev_err(dev, "qman_create_fq() failed\n");
962 return err;
963 }
964 fq = &dpaa_fq->fq_base;
965
966 if (dpaa_fq->init) {
967 memset(&initfq, 0, sizeof(initfq));
968
7d6f8dc0 969 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
9ad1a374 970 /* Note: we may get to keep an empty FQ in cache */
7d6f8dc0 971 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
9ad1a374
MB
972
973 /* Try to reduce the number of portal interrupts for
974 * Tx Confirmation FQs.
975 */
976 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
58b7bd0f 977 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
9ad1a374
MB
978
979 /* FQ placement */
7d6f8dc0 980 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
9ad1a374
MB
981
982 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
983
984 /* Put all egress queues in a congestion group of their own.
985 * Sensu stricto, the Tx confirmation queues are Rx FQs,
986 * rather than Tx - but they nonetheless account for the
987 * memory footprint on behalf of egress traffic. We therefore
988 * place them in the netdev's CGR, along with the Tx FQs.
989 */
990 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
991 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
992 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
7d6f8dc0
CM
993 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
994 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
9ad1a374
MB
995 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
996 /* Set a fixed overhead accounting, in an attempt to
997 * reduce the impact of fixed-size skb shells and the
998 * driver's needed headroom on system memory. This is
999 * especially the case when the egress traffic is
1000 * composed of small datagrams.
1001 * Unfortunately, QMan's OAL value is capped to an
1002 * insufficient value, but even that is better than
1003 * no overhead accounting at all.
1004 */
7d6f8dc0 1005 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
9ad1a374
MB
1006 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1007 qm_fqd_set_oal(&initfq.fqd,
1008 min(sizeof(struct sk_buff) +
1009 priv->tx_headroom,
1010 (size_t)FSL_QMAN_MAX_OAL));
1011 }
1012
1013 if (td_enable) {
7d6f8dc0 1014 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
9ad1a374 1015 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
7d6f8dc0 1016 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
9ad1a374
MB
1017 }
1018
1019 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1020 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1021 if (queue_id >= 0)
1022 confq = priv->conf_fqs[queue_id];
1023 if (confq) {
7d6f8dc0
CM
1024 initfq.we_mask |=
1025 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
9ad1a374
MB
1026 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1027 * A2V=1 (contextA A2 field is valid)
1028 * A0V=1 (contextA A0 field is valid)
1029 * B0V=1 (contextB field is valid)
1030 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1031 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1032 */
7d6f8dc0
CM
1033 qm_fqd_context_a_set64(&initfq.fqd,
1034 0x1e00000080000000ULL);
9ad1a374
MB
1035 }
1036 }
1037
1038 /* Put all the ingress queues in our "ingress CGR". */
1039 if (priv->use_ingress_cgr &&
1040 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1041 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) {
7d6f8dc0
CM
1042 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1043 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
9ad1a374
MB
1044 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1045 /* Set a fixed overhead accounting, just like for the
1046 * egress CGR.
1047 */
7d6f8dc0 1048 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
9ad1a374
MB
1049 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1050 qm_fqd_set_oal(&initfq.fqd,
1051 min(sizeof(struct sk_buff) +
1052 priv->tx_headroom,
1053 (size_t)FSL_QMAN_MAX_OAL));
1054 }
1055
1056 /* Initialization common to all ingress queues */
1057 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
7d6f8dc0 1058 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
7fe1e290
MB
1059 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1060 QM_FQCTRL_CTXASTASHING);
9ad1a374
MB
1061 initfq.fqd.context_a.stashing.exclusive =
1062 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1063 QM_STASHING_EXCL_ANNOTATION;
1064 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1065 DIV_ROUND_UP(sizeof(struct qman_fq),
1066 64));
1067 }
1068
1069 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1070 if (err < 0) {
1071 dev_err(dev, "qman_init_fq(%u) = %d\n",
1072 qman_fq_fqid(fq), err);
1073 qman_destroy_fq(fq);
1074 return err;
1075 }
1076 }
1077
1078 dpaa_fq->fqid = qman_fq_fqid(fq);
1079
1080 return 0;
1081}
1082
1083static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1084{
1085 const struct dpaa_priv *priv;
1086 struct dpaa_fq *dpaa_fq;
1087 int err, error;
1088
1089 err = 0;
1090
1091 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1092 priv = netdev_priv(dpaa_fq->net_dev);
1093
1094 if (dpaa_fq->init) {
1095 err = qman_retire_fq(fq, NULL);
1096 if (err < 0 && netif_msg_drv(priv))
1097 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1098 qman_fq_fqid(fq), err);
1099
1100 error = qman_oos_fq(fq);
1101 if (error < 0 && netif_msg_drv(priv)) {
1102 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1103 qman_fq_fqid(fq), error);
1104 if (err >= 0)
1105 err = error;
1106 }
1107 }
1108
1109 qman_destroy_fq(fq);
1110 list_del(&dpaa_fq->list);
1111
1112 return err;
1113}
1114
1115static int dpaa_fq_free(struct device *dev, struct list_head *list)
1116{
1117 struct dpaa_fq *dpaa_fq, *tmp;
1118 int err, error;
1119
1120 err = 0;
1121 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1122 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1123 if (error < 0 && err >= 0)
1124 err = error;
1125 }
1126
1127 return err;
1128}
1129
7f8a6a1b
MB
1130static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1131 struct dpaa_fq *defq,
1132 struct dpaa_buffer_layout *buf_layout)
9ad1a374
MB
1133{
1134 struct fman_buffer_prefix_content buf_prefix_content;
1135 struct fman_port_params params;
1136 int err;
1137
1138 memset(&params, 0, sizeof(params));
1139 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1140
1141 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1142 buf_prefix_content.pass_prs_result = true;
1143 buf_prefix_content.pass_hash_result = true;
1144 buf_prefix_content.pass_time_stamp = false;
1145 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1146
1147 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1148 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1149
1150 err = fman_port_config(port, &params);
7f8a6a1b 1151 if (err) {
9ad1a374 1152 pr_err("%s: fman_port_config failed\n", __func__);
7f8a6a1b
MB
1153 return err;
1154 }
9ad1a374
MB
1155
1156 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
7f8a6a1b 1157 if (err) {
9ad1a374
MB
1158 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1159 __func__);
7f8a6a1b
MB
1160 return err;
1161 }
9ad1a374
MB
1162
1163 err = fman_port_init(port);
1164 if (err)
1165 pr_err("%s: fm_port_init failed\n", __func__);
7f8a6a1b
MB
1166
1167 return err;
9ad1a374
MB
1168}
1169
7f8a6a1b
MB
1170static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1171 size_t count, struct dpaa_fq *errq,
1172 struct dpaa_fq *defq,
1173 struct dpaa_buffer_layout *buf_layout)
9ad1a374
MB
1174{
1175 struct fman_buffer_prefix_content buf_prefix_content;
1176 struct fman_port_rx_params *rx_p;
1177 struct fman_port_params params;
1178 int i, err;
1179
1180 memset(&params, 0, sizeof(params));
1181 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1182
1183 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1184 buf_prefix_content.pass_prs_result = true;
1185 buf_prefix_content.pass_hash_result = true;
1186 buf_prefix_content.pass_time_stamp = false;
1187 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1188
1189 rx_p = &params.specific_params.rx_params;
1190 rx_p->err_fqid = errq->fqid;
1191 rx_p->dflt_fqid = defq->fqid;
1192
1193 count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1194 rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1195 for (i = 0; i < count; i++) {
1196 rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid;
1197 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1198 }
1199
1200 err = fman_port_config(port, &params);
7f8a6a1b 1201 if (err) {
9ad1a374 1202 pr_err("%s: fman_port_config failed\n", __func__);
7f8a6a1b
MB
1203 return err;
1204 }
9ad1a374
MB
1205
1206 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
7f8a6a1b 1207 if (err) {
9ad1a374
MB
1208 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1209 __func__);
7f8a6a1b
MB
1210 return err;
1211 }
9ad1a374
MB
1212
1213 err = fman_port_init(port);
1214 if (err)
1215 pr_err("%s: fm_port_init failed\n", __func__);
7f8a6a1b
MB
1216
1217 return err;
9ad1a374
MB
1218}
1219
7f8a6a1b
MB
1220static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1221 struct dpaa_bp **bps, size_t count,
1222 struct fm_port_fqs *port_fqs,
1223 struct dpaa_buffer_layout *buf_layout,
1224 struct device *dev)
9ad1a374
MB
1225{
1226 struct fman_port *rxport = mac_dev->port[RX];
1227 struct fman_port *txport = mac_dev->port[TX];
7f8a6a1b 1228 int err;
9ad1a374 1229
7f8a6a1b
MB
1230 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1231 port_fqs->tx_defq, &buf_layout[TX]);
1232 if (err)
1233 return err;
1234
1235 err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1236 port_fqs->rx_defq, &buf_layout[RX]);
1237
1238 return err;
9ad1a374
MB
1239}
1240
1241static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1242 struct bm_buffer *bmb, int cnt)
1243{
1244 int err;
1245
1246 err = bman_release(dpaa_bp->pool, bmb, cnt);
1247 /* Should never occur, address anyway to avoid leaking the buffers */
1248 if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1249 while (cnt-- > 0)
1250 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1251
1252 return cnt;
1253}
1254
1255static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1256{
1257 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1258 struct dpaa_bp *dpaa_bp;
1259 int i = 0, j;
1260
1261 memset(bmb, 0, sizeof(bmb));
1262
1263 do {
1264 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1265 if (!dpaa_bp)
1266 return;
1267
1268 j = 0;
1269 do {
1270 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1271
1272 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1273
1274 j++; i++;
1275 } while (j < ARRAY_SIZE(bmb) &&
1276 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1277 sgt[i - 1].bpid == sgt[i].bpid);
1278
1279 dpaa_bman_release(dpaa_bp, bmb, j);
1280 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1281}
1282
1283static void dpaa_fd_release(const struct net_device *net_dev,
1284 const struct qm_fd *fd)
1285{
1286 struct qm_sg_entry *sgt;
1287 struct dpaa_bp *dpaa_bp;
1288 struct bm_buffer bmb;
1289 dma_addr_t addr;
1290 void *vaddr;
1291
1292 bmb.data = 0;
1293 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1294
1295 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1296 if (!dpaa_bp)
1297 return;
1298
1299 if (qm_fd_get_format(fd) == qm_fd_sg) {
1300 vaddr = phys_to_virt(qm_fd_addr(fd));
1301 sgt = vaddr + qm_fd_get_offset(fd);
1302
1303 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1304 DMA_FROM_DEVICE);
1305
1306 dpaa_release_sgt_members(sgt);
1307
1308 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1309 DMA_FROM_DEVICE);
1310 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1311 dev_err(dpaa_bp->dev, "DMA mapping failed");
1312 return;
1313 }
1314 bm_buffer_set64(&bmb, addr);
1315 }
1316
1317 dpaa_bman_release(dpaa_bp, &bmb, 1);
1318}
1319
b0ce0d02
MB
1320static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1321 const union qm_mr_entry *msg)
1322{
1323 switch (msg->ern.rc & QM_MR_RC_MASK) {
1324 case QM_MR_RC_CGR_TAILDROP:
1325 percpu_priv->ern_cnt.cg_tdrop++;
1326 break;
1327 case QM_MR_RC_WRED:
1328 percpu_priv->ern_cnt.wred++;
1329 break;
1330 case QM_MR_RC_ERROR:
1331 percpu_priv->ern_cnt.err_cond++;
1332 break;
1333 case QM_MR_RC_ORPWINDOW_EARLY:
1334 percpu_priv->ern_cnt.early_window++;
1335 break;
1336 case QM_MR_RC_ORPWINDOW_LATE:
1337 percpu_priv->ern_cnt.late_window++;
1338 break;
1339 case QM_MR_RC_FQ_TAILDROP:
1340 percpu_priv->ern_cnt.fq_tdrop++;
1341 break;
1342 case QM_MR_RC_ORPWINDOW_RETIRED:
1343 percpu_priv->ern_cnt.fq_retired++;
1344 break;
1345 case QM_MR_RC_ORP_ZERO:
1346 percpu_priv->ern_cnt.orp_zero++;
1347 break;
1348 }
1349}
1350
9ad1a374
MB
1351/* Turn on HW checksum computation for this outgoing frame.
1352 * If the current protocol is not something we support in this regard
1353 * (or if the stack has already computed the SW checksum), we do nothing.
1354 *
1355 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1356 * otherwise.
1357 *
1358 * Note that this function may modify the fd->cmd field and the skb data buffer
1359 * (the Parse Results area).
1360 */
1361static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1362 struct sk_buff *skb,
1363 struct qm_fd *fd,
1364 char *parse_results)
1365{
1366 struct fman_prs_result *parse_result;
1367 u16 ethertype = ntohs(skb->protocol);
1368 struct ipv6hdr *ipv6h = NULL;
1369 struct iphdr *iph;
1370 int retval = 0;
1371 u8 l4_proto;
1372
1373 if (skb->ip_summed != CHECKSUM_PARTIAL)
1374 return 0;
1375
1376 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1377 * L4 alone from the FM configuration anyway.
1378 */
1379
1380 /* Fill in some fields of the Parse Results array, so the FMan
1381 * can find them as if they came from the FMan Parser.
1382 */
1383 parse_result = (struct fman_prs_result *)parse_results;
1384
1385 /* If we're dealing with VLAN, get the real Ethernet type */
1386 if (ethertype == ETH_P_8021Q) {
1387 /* We can't always assume the MAC header is set correctly
1388 * by the stack, so reset to beginning of skb->data
1389 */
1390 skb_reset_mac_header(skb);
1391 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1392 }
1393
1394 /* Fill in the relevant L3 parse result fields
1395 * and read the L4 protocol type
1396 */
1397 switch (ethertype) {
1398 case ETH_P_IP:
1399 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1400 iph = ip_hdr(skb);
1401 WARN_ON(!iph);
1402 l4_proto = iph->protocol;
1403 break;
1404 case ETH_P_IPV6:
1405 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1406 ipv6h = ipv6_hdr(skb);
1407 WARN_ON(!ipv6h);
1408 l4_proto = ipv6h->nexthdr;
1409 break;
1410 default:
1411 /* We shouldn't even be here */
1412 if (net_ratelimit())
1413 netif_alert(priv, tx_err, priv->net_dev,
1414 "Can't compute HW csum for L3 proto 0x%x\n",
1415 ntohs(skb->protocol));
1416 retval = -EIO;
1417 goto return_error;
1418 }
1419
1420 /* Fill in the relevant L4 parse result fields */
1421 switch (l4_proto) {
1422 case IPPROTO_UDP:
1423 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1424 break;
1425 case IPPROTO_TCP:
1426 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1427 break;
1428 default:
1429 if (net_ratelimit())
1430 netif_alert(priv, tx_err, priv->net_dev,
1431 "Can't compute HW csum for L4 proto 0x%x\n",
1432 l4_proto);
1433 retval = -EIO;
1434 goto return_error;
1435 }
1436
1437 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1438 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1439 parse_result->l4_off = (u8)skb_transport_offset(skb);
1440
1441 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
7d6f8dc0 1442 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
9ad1a374
MB
1443
1444 /* On P1023 and similar platforms fd->cmd interpretation could
1445 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1446 * is not set so we do not need to check; in the future, if/when
1447 * using context_a we need to check this bit
1448 */
1449
1450return_error:
1451 return retval;
1452}
1453
1454static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1455{
1456 struct device *dev = dpaa_bp->dev;
1457 struct bm_buffer bmb[8];
1458 dma_addr_t addr;
1459 void *new_buf;
1460 u8 i;
1461
1462 for (i = 0; i < 8; i++) {
1463 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1464 if (unlikely(!new_buf)) {
1465 dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1466 dpaa_bp->raw_size);
1467 goto release_previous_buffs;
1468 }
1469 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1470
1471 addr = dma_map_single(dev, new_buf,
1472 dpaa_bp->size, DMA_FROM_DEVICE);
1473 if (unlikely(dma_mapping_error(dev, addr))) {
1474 dev_err(dpaa_bp->dev, "DMA map failed");
1475 goto release_previous_buffs;
1476 }
1477
1478 bmb[i].data = 0;
1479 bm_buffer_set64(&bmb[i], addr);
1480 }
1481
1482release_bufs:
1483 return dpaa_bman_release(dpaa_bp, bmb, i);
1484
1485release_previous_buffs:
1486 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1487
1488 bm_buffer_set64(&bmb[i], 0);
1489 /* Avoid releasing a completely null buffer; bman_release() requires
1490 * at least one buffer.
1491 */
1492 if (likely(i))
1493 goto release_bufs;
1494
1495 return 0;
1496}
1497
1498static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1499{
1500 int i;
1501
1502 /* Give each CPU an allotment of "config_count" buffers */
1503 for_each_possible_cpu(i) {
1504 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1505 int j;
1506
1507 /* Although we access another CPU's counters here
1508 * we do it at boot time so it is safe
1509 */
1510 for (j = 0; j < dpaa_bp->config_count; j += 8)
1511 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1512 }
1513 return 0;
1514}
1515
1516/* Add buffers/(pages) for Rx processing whenever bpool count falls below
1517 * REFILL_THRESHOLD.
1518 */
1519static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1520{
1521 int count = *countptr;
1522 int new_bufs;
1523
1524 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1525 do {
1526 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1527 if (unlikely(!new_bufs)) {
1528 /* Avoid looping forever if we've temporarily
1529 * run out of memory. We'll try again at the
1530 * next NAPI cycle.
1531 */
1532 break;
1533 }
1534 count += new_bufs;
1535 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1536
1537 *countptr = count;
1538 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1539 return -ENOMEM;
1540 }
1541
1542 return 0;
1543}
1544
1545static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1546{
1547 struct dpaa_bp *dpaa_bp;
1548 int *countptr;
1549 int res, i;
1550
1551 for (i = 0; i < DPAA_BPS_NUM; i++) {
1552 dpaa_bp = priv->dpaa_bps[i];
1553 if (!dpaa_bp)
1554 return -EINVAL;
1555 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1556 res = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1557 if (res)
1558 return res;
1559 }
1560 return 0;
1561}
1562
1563/* Cleanup function for outgoing frame descriptors that were built on Tx path,
1564 * either contiguous frames or scatter/gather ones.
1565 * Skb freeing is not handled here.
1566 *
1567 * This function may be called on error paths in the Tx function, so guard
1568 * against cases when not all fd relevant fields were filled in.
1569 *
1570 * Return the skb backpointer, since for S/G frames the buffer containing it
1571 * gets freed here.
1572 */
1573static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1574 const struct qm_fd *fd)
1575{
1576 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1577 struct device *dev = priv->net_dev->dev.parent;
1578 dma_addr_t addr = qm_fd_addr(fd);
1579 const struct qm_sg_entry *sgt;
1580 struct sk_buff **skbh, *skb;
1581 int nr_frags, i;
1582
1583 skbh = (struct sk_buff **)phys_to_virt(addr);
1584 skb = *skbh;
1585
1586 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1587 nr_frags = skb_shinfo(skb)->nr_frags;
1588 dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1589 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1590 dma_dir);
1591
1592 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1593 * it's from lowmem.
1594 */
1595 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1596
1597 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1598 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1599 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1600
1601 /* remaining pages were mapped with skb_frag_dma_map() */
1602 for (i = 1; i < nr_frags; i++) {
1603 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1604
1605 dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1606 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1607 }
1608
1609 /* Free the page frag that we allocated on Tx */
1610 skb_free_frag(phys_to_virt(addr));
1611 } else {
1612 dma_unmap_single(dev, addr,
1613 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1614 }
1615
1616 return skb;
1617}
1618
5accb282
MB
1619static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1620{
1621 /* The parser has run and performed L4 checksum validation.
1622 * We know there were no parser errors (and implicitly no
1623 * L4 csum error), otherwise we wouldn't be here.
1624 */
1625 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1626 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1627 return CHECKSUM_UNNECESSARY;
1628
1629 /* We're here because either the parser didn't run or the L4 checksum
1630 * was not verified. This may include the case of a UDP frame with
1631 * checksum zero or an L4 proto other than TCP/UDP
1632 */
1633 return CHECKSUM_NONE;
1634}
1635
9ad1a374
MB
1636/* Build a linear skb around the received buffer.
1637 * We are guaranteed there is enough room at the end of the data buffer to
1638 * accommodate the shared info area of the skb.
1639 */
1640static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1641 const struct qm_fd *fd)
1642{
1643 ssize_t fd_off = qm_fd_get_offset(fd);
1644 dma_addr_t addr = qm_fd_addr(fd);
1645 struct dpaa_bp *dpaa_bp;
1646 struct sk_buff *skb;
1647 void *vaddr;
1648
1649 vaddr = phys_to_virt(addr);
1650 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1651
1652 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1653 if (!dpaa_bp)
1654 goto free_buffer;
1655
1656 skb = build_skb(vaddr, dpaa_bp->size +
1657 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1658 if (unlikely(!skb)) {
1659 WARN_ONCE(1, "Build skb failure on Rx\n");
1660 goto free_buffer;
1661 }
1662 WARN_ON(fd_off != priv->rx_headroom);
1663 skb_reserve(skb, fd_off);
1664 skb_put(skb, qm_fd_get_length(fd));
1665
5accb282 1666 skb->ip_summed = rx_csum_offload(priv, fd);
9ad1a374
MB
1667
1668 return skb;
1669
1670free_buffer:
1671 skb_free_frag(vaddr);
1672 return NULL;
1673}
1674
1675/* Build an skb with the data of the first S/G entry in the linear portion and
1676 * the rest of the frame as skb fragments.
1677 *
1678 * The page fragment holding the S/G Table is recycled here.
1679 */
1680static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1681 const struct qm_fd *fd)
1682{
1683 ssize_t fd_off = qm_fd_get_offset(fd);
1684 dma_addr_t addr = qm_fd_addr(fd);
1685 const struct qm_sg_entry *sgt;
1686 struct page *page, *head_page;
1687 struct dpaa_bp *dpaa_bp;
1688 void *vaddr, *sg_vaddr;
1689 int frag_off, frag_len;
1690 struct sk_buff *skb;
1691 dma_addr_t sg_addr;
1692 int page_offset;
1693 unsigned int sz;
1694 int *count_ptr;
1695 int i;
1696
1697 vaddr = phys_to_virt(addr);
1698 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1699
1700 /* Iterate through the SGT entries and add data buffers to the skb */
1701 sgt = vaddr + fd_off;
1702 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1703 /* Extension bit is not supported */
1704 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1705
1706 sg_addr = qm_sg_addr(&sgt[i]);
1707 sg_vaddr = phys_to_virt(sg_addr);
1708 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1709 SMP_CACHE_BYTES));
1710
1711 /* We may use multiple Rx pools */
1712 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1713 if (!dpaa_bp)
1714 goto free_buffers;
1715
1716 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1717 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1718 DMA_FROM_DEVICE);
1719 if (i == 0) {
1720 sz = dpaa_bp->size +
1721 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1722 skb = build_skb(sg_vaddr, sz);
1723 if (WARN_ON(unlikely(!skb)))
1724 goto free_buffers;
1725
5accb282 1726 skb->ip_summed = rx_csum_offload(priv, fd);
9ad1a374
MB
1727
1728 /* Make sure forwarded skbs will have enough space
1729 * on Tx, if extra headers are added.
1730 */
1731 WARN_ON(fd_off != priv->rx_headroom);
1732 skb_reserve(skb, fd_off);
1733 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1734 } else {
1735 /* Not the first S/G entry; all data from buffer will
1736 * be added in an skb fragment; fragment index is offset
1737 * by one since first S/G entry was incorporated in the
1738 * linear part of the skb.
1739 *
1740 * Caution: 'page' may be a tail page.
1741 */
1742 page = virt_to_page(sg_vaddr);
1743 head_page = virt_to_head_page(sg_vaddr);
1744
1745 /* Compute offset in (possibly tail) page */
1746 page_offset = ((unsigned long)sg_vaddr &
1747 (PAGE_SIZE - 1)) +
1748 (page_address(page) - page_address(head_page));
1749 /* page_offset only refers to the beginning of sgt[i];
1750 * but the buffer itself may have an internal offset.
1751 */
1752 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1753 frag_len = qm_sg_entry_get_len(&sgt[i]);
1754 /* skb_add_rx_frag() does no checking on the page; if
1755 * we pass it a tail page, we'll end up with
1756 * bad page accounting and eventually with segafults.
1757 */
1758 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1759 frag_len, dpaa_bp->size);
1760 }
1761 /* Update the pool count for the current {cpu x bpool} */
1762 (*count_ptr)--;
1763
1764 if (qm_sg_entry_is_final(&sgt[i]))
1765 break;
1766 }
1767 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1768
1769 /* free the SG table buffer */
1770 skb_free_frag(vaddr);
1771
1772 return skb;
1773
1774free_buffers:
1775 /* compensate sw bpool counter changes */
785f3577 1776 for (i--; i >= 0; i--) {
9ad1a374
MB
1777 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1778 if (dpaa_bp) {
1779 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1780 (*count_ptr)++;
1781 }
1782 }
1783 /* free all the SG entries */
1784 for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1785 sg_addr = qm_sg_addr(&sgt[i]);
1786 sg_vaddr = phys_to_virt(sg_addr);
1787 skb_free_frag(sg_vaddr);
1788 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1789 if (dpaa_bp) {
1790 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1791 (*count_ptr)--;
1792 }
1793
1794 if (qm_sg_entry_is_final(&sgt[i]))
1795 break;
1796 }
1797 /* free the SGT fragment */
1798 skb_free_frag(vaddr);
1799
1800 return NULL;
1801}
1802
1803static int skb_to_contig_fd(struct dpaa_priv *priv,
1804 struct sk_buff *skb, struct qm_fd *fd,
1805 int *offset)
1806{
1807 struct net_device *net_dev = priv->net_dev;
1808 struct device *dev = net_dev->dev.parent;
1809 enum dma_data_direction dma_dir;
1810 unsigned char *buffer_start;
1811 struct sk_buff **skbh;
1812 dma_addr_t addr;
1813 int err;
1814
1815 /* We are guaranteed to have at least tx_headroom bytes
1816 * available, so just use that for offset.
1817 */
1818 fd->bpid = FSL_DPAA_BPID_INV;
1819 buffer_start = skb->data - priv->tx_headroom;
1820 dma_dir = DMA_TO_DEVICE;
1821
1822 skbh = (struct sk_buff **)buffer_start;
1823 *skbh = skb;
1824
1825 /* Enable L3/L4 hardware checksum computation.
1826 *
1827 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1828 * need to write into the skb.
1829 */
1830 err = dpaa_enable_tx_csum(priv, skb, fd,
1831 ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1832 if (unlikely(err < 0)) {
1833 if (net_ratelimit())
1834 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1835 err);
1836 return err;
1837 }
1838
1839 /* Fill in the rest of the FD fields */
1840 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
7d6f8dc0 1841 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
9ad1a374
MB
1842
1843 /* Map the entire buffer size that may be seen by FMan, but no more */
1844 addr = dma_map_single(dev, skbh,
1845 skb_tail_pointer(skb) - buffer_start, dma_dir);
1846 if (unlikely(dma_mapping_error(dev, addr))) {
1847 if (net_ratelimit())
1848 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1849 return -EINVAL;
1850 }
1851 qm_fd_addr_set64(fd, addr);
1852
1853 return 0;
1854}
1855
1856static int skb_to_sg_fd(struct dpaa_priv *priv,
1857 struct sk_buff *skb, struct qm_fd *fd)
1858{
1859 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1860 const int nr_frags = skb_shinfo(skb)->nr_frags;
1861 struct net_device *net_dev = priv->net_dev;
1862 struct device *dev = net_dev->dev.parent;
1863 struct qm_sg_entry *sgt;
1864 struct sk_buff **skbh;
1865 int i, j, err, sz;
1866 void *buffer_start;
1867 skb_frag_t *frag;
1868 dma_addr_t addr;
1869 size_t frag_len;
1870 void *sgt_buf;
1871
1872 /* get a page frag to store the SGTable */
1873 sz = SKB_DATA_ALIGN(priv->tx_headroom +
1874 sizeof(struct qm_sg_entry) * (1 + nr_frags));
1875 sgt_buf = netdev_alloc_frag(sz);
1876 if (unlikely(!sgt_buf)) {
1877 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1878 sz);
1879 return -ENOMEM;
1880 }
1881
1882 /* Enable L3/L4 hardware checksum computation.
1883 *
1884 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1885 * need to write into the skb.
1886 */
1887 err = dpaa_enable_tx_csum(priv, skb, fd,
1888 sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1889 if (unlikely(err < 0)) {
1890 if (net_ratelimit())
1891 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1892 err);
1893 goto csum_failed;
1894 }
1895
1896 sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1897 qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1898 sgt[0].bpid = FSL_DPAA_BPID_INV;
1899 sgt[0].offset = 0;
1900 addr = dma_map_single(dev, skb->data,
1901 skb_headlen(skb), dma_dir);
1902 if (unlikely(dma_mapping_error(dev, addr))) {
1903 dev_err(dev, "DMA mapping failed");
1904 err = -EINVAL;
1905 goto sg0_map_failed;
1906 }
1907 qm_sg_entry_set64(&sgt[0], addr);
1908
1909 /* populate the rest of SGT entries */
1910 frag = &skb_shinfo(skb)->frags[0];
1911 frag_len = frag->size;
1912 for (i = 1; i <= nr_frags; i++, frag++) {
1913 WARN_ON(!skb_frag_page(frag));
1914 addr = skb_frag_dma_map(dev, frag, 0,
1915 frag_len, dma_dir);
1916 if (unlikely(dma_mapping_error(dev, addr))) {
1917 dev_err(dev, "DMA mapping failed");
1918 err = -EINVAL;
1919 goto sg_map_failed;
1920 }
1921
1922 qm_sg_entry_set_len(&sgt[i], frag_len);
1923 sgt[i].bpid = FSL_DPAA_BPID_INV;
1924 sgt[i].offset = 0;
1925
1926 /* keep the offset in the address */
1927 qm_sg_entry_set64(&sgt[i], addr);
1928 frag_len = frag->size;
1929 }
1930 qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1931
1932 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1933
1934 /* DMA map the SGT page */
1935 buffer_start = (void *)sgt - priv->tx_headroom;
1936 skbh = (struct sk_buff **)buffer_start;
1937 *skbh = skb;
1938
1939 addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1940 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1941 dma_dir);
1942 if (unlikely(dma_mapping_error(dev, addr))) {
1943 dev_err(dev, "DMA mapping failed");
1944 err = -EINVAL;
1945 goto sgt_map_failed;
1946 }
1947
1948 fd->bpid = FSL_DPAA_BPID_INV;
7d6f8dc0 1949 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
9ad1a374
MB
1950 qm_fd_addr_set64(fd, addr);
1951
1952 return 0;
1953
1954sgt_map_failed:
1955sg_map_failed:
1956 for (j = 0; j < i; j++)
1957 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1958 qm_sg_entry_get_len(&sgt[j]), dma_dir);
1959sg0_map_failed:
1960csum_failed:
1961 skb_free_frag(sgt_buf);
1962
1963 return err;
1964}
1965
1966static inline int dpaa_xmit(struct dpaa_priv *priv,
1967 struct rtnl_link_stats64 *percpu_stats,
1968 int queue,
1969 struct qm_fd *fd)
1970{
1971 struct qman_fq *egress_fq;
1972 int err, i;
1973
1974 egress_fq = priv->egress_fqs[queue];
1975 if (fd->bpid == FSL_DPAA_BPID_INV)
7d6f8dc0 1976 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
9ad1a374 1977
eb11ddf3
MB
1978 /* Trace this Tx fd */
1979 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
1980
9ad1a374
MB
1981 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
1982 err = qman_enqueue(egress_fq, fd);
1983 if (err != -EBUSY)
1984 break;
1985 }
1986
1987 if (unlikely(err < 0)) {
1988 percpu_stats->tx_errors++;
1989 percpu_stats->tx_fifo_errors++;
1990 return err;
1991 }
1992
1993 percpu_stats->tx_packets++;
1994 percpu_stats->tx_bytes += qm_fd_get_length(fd);
1995
1996 return 0;
1997}
1998
1999static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2000{
2001 const int queue_mapping = skb_get_queue_mapping(skb);
2002 bool nonlinear = skb_is_nonlinear(skb);
2003 struct rtnl_link_stats64 *percpu_stats;
2004 struct dpaa_percpu_priv *percpu_priv;
2005 struct dpaa_priv *priv;
2006 struct qm_fd fd;
2007 int offset = 0;
2008 int err = 0;
2009
2010 priv = netdev_priv(net_dev);
2011 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2012 percpu_stats = &percpu_priv->stats;
2013
2014 qm_fd_clear_fd(&fd);
2015
2016 if (!nonlinear) {
2017 /* We're going to store the skb backpointer at the beginning
2018 * of the data buffer, so we need a privately owned skb
2019 *
2020 * We've made sure skb is not shared in dev->priv_flags,
2021 * we need to verify the skb head is not cloned
2022 */
2023 if (skb_cow_head(skb, priv->tx_headroom))
2024 goto enomem;
2025
2026 WARN_ON(skb_is_nonlinear(skb));
2027 }
2028
2029 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2030 * make sure we don't feed FMan with more fragments than it supports.
2031 */
2032 if (nonlinear &&
2033 likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
2034 /* Just create a S/G fd based on the skb */
2035 err = skb_to_sg_fd(priv, skb, &fd);
b0ce0d02 2036 percpu_priv->tx_frag_skbuffs++;
9ad1a374
MB
2037 } else {
2038 /* If the egress skb contains more fragments than we support
2039 * we have no choice but to linearize it ourselves.
2040 */
2041 if (unlikely(nonlinear) && __skb_linearize(skb))
2042 goto enomem;
2043
2044 /* Finally, create a contig FD from this skb */
2045 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2046 }
2047 if (unlikely(err < 0))
2048 goto skb_to_fd_failed;
2049
2050 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2051 return NETDEV_TX_OK;
2052
2053 dpaa_cleanup_tx_fd(priv, &fd);
2054skb_to_fd_failed:
2055enomem:
2056 percpu_stats->tx_errors++;
2057 dev_kfree_skb(skb);
2058 return NETDEV_TX_OK;
2059}
2060
2061static void dpaa_rx_error(struct net_device *net_dev,
2062 const struct dpaa_priv *priv,
2063 struct dpaa_percpu_priv *percpu_priv,
2064 const struct qm_fd *fd,
2065 u32 fqid)
2066{
2067 if (net_ratelimit())
2068 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
7d6f8dc0 2069 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
9ad1a374
MB
2070
2071 percpu_priv->stats.rx_errors++;
2072
7d6f8dc0 2073 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
b0ce0d02 2074 percpu_priv->rx_errors.dme++;
7d6f8dc0 2075 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
b0ce0d02 2076 percpu_priv->rx_errors.fpe++;
7d6f8dc0 2077 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
b0ce0d02 2078 percpu_priv->rx_errors.fse++;
7d6f8dc0 2079 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
b0ce0d02
MB
2080 percpu_priv->rx_errors.phe++;
2081
9ad1a374
MB
2082 dpaa_fd_release(net_dev, fd);
2083}
2084
2085static void dpaa_tx_error(struct net_device *net_dev,
2086 const struct dpaa_priv *priv,
2087 struct dpaa_percpu_priv *percpu_priv,
2088 const struct qm_fd *fd,
2089 u32 fqid)
2090{
2091 struct sk_buff *skb;
2092
2093 if (net_ratelimit())
2094 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
7d6f8dc0 2095 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
9ad1a374
MB
2096
2097 percpu_priv->stats.tx_errors++;
2098
2099 skb = dpaa_cleanup_tx_fd(priv, fd);
2100 dev_kfree_skb(skb);
2101}
2102
2103static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2104{
2105 struct dpaa_napi_portal *np =
2106 container_of(napi, struct dpaa_napi_portal, napi);
2107
2108 int cleaned = qman_p_poll_dqrr(np->p, budget);
2109
2110 if (cleaned < budget) {
6ad20165 2111 napi_complete_done(napi, cleaned);
9ad1a374
MB
2112 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2113
2114 } else if (np->down) {
2115 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2116 }
2117
2118 return cleaned;
2119}
2120
2121static void dpaa_tx_conf(struct net_device *net_dev,
2122 const struct dpaa_priv *priv,
2123 struct dpaa_percpu_priv *percpu_priv,
2124 const struct qm_fd *fd,
2125 u32 fqid)
2126{
2127 struct sk_buff *skb;
2128
7d6f8dc0 2129 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
9ad1a374
MB
2130 if (net_ratelimit())
2131 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
7d6f8dc0
CM
2132 be32_to_cpu(fd->status) &
2133 FM_FD_STAT_TX_ERRORS);
9ad1a374
MB
2134
2135 percpu_priv->stats.tx_errors++;
2136 }
2137
b0ce0d02
MB
2138 percpu_priv->tx_confirm++;
2139
9ad1a374
MB
2140 skb = dpaa_cleanup_tx_fd(priv, fd);
2141
2142 consume_skb(skb);
2143}
2144
2145static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2146 struct qman_portal *portal)
2147{
2148 if (unlikely(in_irq() || !in_serving_softirq())) {
2149 /* Disable QMan IRQ and invoke NAPI */
2150 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2151
2152 percpu_priv->np.p = portal;
2153 napi_schedule(&percpu_priv->np.napi);
b0ce0d02 2154 percpu_priv->in_interrupt++;
9ad1a374
MB
2155 return 1;
2156 }
2157 return 0;
2158}
2159
2160static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2161 struct qman_fq *fq,
2162 const struct qm_dqrr_entry *dq)
2163{
2164 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2165 struct dpaa_percpu_priv *percpu_priv;
2166 struct net_device *net_dev;
2167 struct dpaa_bp *dpaa_bp;
2168 struct dpaa_priv *priv;
2169
2170 net_dev = dpaa_fq->net_dev;
2171 priv = netdev_priv(net_dev);
2172 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2173 if (!dpaa_bp)
2174 return qman_cb_dqrr_consume;
2175
2176 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2177
2178 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2179 return qman_cb_dqrr_stop;
2180
2181 if (dpaa_eth_refill_bpools(priv))
2182 /* Unable to refill the buffer pool due to insufficient
2183 * system memory. Just release the frame back into the pool,
2184 * otherwise we'll soon end up with an empty buffer pool.
2185 */
2186 dpaa_fd_release(net_dev, &dq->fd);
2187 else
2188 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2189
2190 return qman_cb_dqrr_consume;
2191}
2192
2193static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2194 struct qman_fq *fq,
2195 const struct qm_dqrr_entry *dq)
2196{
2197 struct rtnl_link_stats64 *percpu_stats;
2198 struct dpaa_percpu_priv *percpu_priv;
2199 const struct qm_fd *fd = &dq->fd;
2200 dma_addr_t addr = qm_fd_addr(fd);
2201 enum qm_fd_format fd_format;
2202 struct net_device *net_dev;
4529da5b 2203 u32 fd_status;
9ad1a374
MB
2204 struct dpaa_bp *dpaa_bp;
2205 struct dpaa_priv *priv;
2206 unsigned int skb_len;
2207 struct sk_buff *skb;
2208 int *count_ptr;
2209
7d6f8dc0
CM
2210 fd_status = be32_to_cpu(fd->status);
2211 fd_format = qm_fd_get_format(fd);
9ad1a374
MB
2212 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2213 priv = netdev_priv(net_dev);
2214 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2215 if (!dpaa_bp)
2216 return qman_cb_dqrr_consume;
2217
eb11ddf3
MB
2218 /* Trace the Rx fd */
2219 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2220
9ad1a374
MB
2221 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2222 percpu_stats = &percpu_priv->stats;
2223
2224 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2225 return qman_cb_dqrr_stop;
2226
2227 /* Make sure we didn't run out of buffers */
2228 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2229 /* Unable to refill the buffer pool due to insufficient
2230 * system memory. Just release the frame back into the pool,
2231 * otherwise we'll soon end up with an empty buffer pool.
2232 */
2233 dpaa_fd_release(net_dev, &dq->fd);
2234 return qman_cb_dqrr_consume;
2235 }
2236
2237 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2238 if (net_ratelimit())
2239 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2240 fd_status & FM_FD_STAT_RX_ERRORS);
2241
2242 percpu_stats->rx_errors++;
2243 dpaa_fd_release(net_dev, fd);
2244 return qman_cb_dqrr_consume;
2245 }
2246
2247 dpaa_bp = dpaa_bpid2pool(fd->bpid);
2248 if (!dpaa_bp)
2249 return qman_cb_dqrr_consume;
2250
2251 dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2252
2253 /* prefetch the first 64 bytes of the frame or the SGT start */
2254 prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd));
2255
2256 fd_format = qm_fd_get_format(fd);
2257 /* The only FD types that we may receive are contig and S/G */
2258 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2259
2260 /* Account for either the contig buffer or the SGT buffer (depending on
2261 * which case we were in) having been removed from the pool.
2262 */
2263 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2264 (*count_ptr)--;
2265
2266 if (likely(fd_format == qm_fd_contig))
2267 skb = contig_fd_to_skb(priv, fd);
2268 else
2269 skb = sg_fd_to_skb(priv, fd);
2270 if (!skb)
2271 return qman_cb_dqrr_consume;
2272
2273 skb->protocol = eth_type_trans(skb, net_dev);
2274
2275 skb_len = skb->len;
2276
2277 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2278 return qman_cb_dqrr_consume;
2279
2280 percpu_stats->rx_packets++;
2281 percpu_stats->rx_bytes += skb_len;
2282
2283 return qman_cb_dqrr_consume;
2284}
2285
2286static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2287 struct qman_fq *fq,
2288 const struct qm_dqrr_entry *dq)
2289{
2290 struct dpaa_percpu_priv *percpu_priv;
2291 struct net_device *net_dev;
2292 struct dpaa_priv *priv;
2293
2294 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2295 priv = netdev_priv(net_dev);
2296
2297 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2298
2299 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2300 return qman_cb_dqrr_stop;
2301
2302 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2303
2304 return qman_cb_dqrr_consume;
2305}
2306
2307static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2308 struct qman_fq *fq,
2309 const struct qm_dqrr_entry *dq)
2310{
2311 struct dpaa_percpu_priv *percpu_priv;
2312 struct net_device *net_dev;
2313 struct dpaa_priv *priv;
2314
2315 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2316 priv = netdev_priv(net_dev);
2317
eb11ddf3
MB
2318 /* Trace the fd */
2319 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2320
9ad1a374
MB
2321 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2322
2323 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2324 return qman_cb_dqrr_stop;
2325
2326 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2327
2328 return qman_cb_dqrr_consume;
2329}
2330
2331static void egress_ern(struct qman_portal *portal,
2332 struct qman_fq *fq,
2333 const union qm_mr_entry *msg)
2334{
2335 const struct qm_fd *fd = &msg->ern.fd;
2336 struct dpaa_percpu_priv *percpu_priv;
2337 const struct dpaa_priv *priv;
2338 struct net_device *net_dev;
2339 struct sk_buff *skb;
2340
2341 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2342 priv = netdev_priv(net_dev);
2343 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2344
2345 percpu_priv->stats.tx_dropped++;
2346 percpu_priv->stats.tx_fifo_errors++;
b0ce0d02 2347 count_ern(percpu_priv, msg);
9ad1a374
MB
2348
2349 skb = dpaa_cleanup_tx_fd(priv, fd);
2350 dev_kfree_skb_any(skb);
2351}
2352
2353static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2354 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2355 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2356 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2357 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2358 .egress_ern = { .cb = { .ern = egress_ern } }
2359};
2360
2361static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2362{
2363 struct dpaa_percpu_priv *percpu_priv;
2364 int i;
2365
2366 for_each_possible_cpu(i) {
2367 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2368
2369 percpu_priv->np.down = 0;
2370 napi_enable(&percpu_priv->np.napi);
2371 }
2372}
2373
2374static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2375{
2376 struct dpaa_percpu_priv *percpu_priv;
2377 int i;
2378
2379 for_each_possible_cpu(i) {
2380 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2381
2382 percpu_priv->np.down = 1;
2383 napi_disable(&percpu_priv->np.napi);
2384 }
2385}
2386
2387static int dpaa_open(struct net_device *net_dev)
2388{
2389 struct mac_device *mac_dev;
2390 struct dpaa_priv *priv;
2391 int err, i;
2392
2393 priv = netdev_priv(net_dev);
2394 mac_dev = priv->mac_dev;
2395 dpaa_eth_napi_enable(priv);
2396
2397 net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2398 if (!net_dev->phydev) {
2399 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
3fe61f09
MB
2400 err = -ENODEV;
2401 goto phy_init_failed;
9ad1a374
MB
2402 }
2403
2404 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2405 err = fman_port_enable(mac_dev->port[i]);
2406 if (err)
2407 goto mac_start_failed;
2408 }
2409
2410 err = priv->mac_dev->start(mac_dev);
2411 if (err < 0) {
2412 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2413 goto mac_start_failed;
2414 }
2415
2416 netif_tx_start_all_queues(net_dev);
2417
2418 return 0;
2419
2420mac_start_failed:
2421 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2422 fman_port_disable(mac_dev->port[i]);
2423
3fe61f09 2424phy_init_failed:
9ad1a374
MB
2425 dpaa_eth_napi_disable(priv);
2426
2427 return err;
2428}
2429
2430static int dpaa_eth_stop(struct net_device *net_dev)
2431{
2432 struct dpaa_priv *priv;
2433 int err;
2434
2435 err = dpaa_stop(net_dev);
2436
2437 priv = netdev_priv(net_dev);
2438 dpaa_eth_napi_disable(priv);
2439
2440 return err;
2441}
2442
1763413a
MW
2443static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2444{
2445 if (!net_dev->phydev)
2446 return -EINVAL;
2447 return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2448}
2449
9ad1a374
MB
2450static const struct net_device_ops dpaa_ops = {
2451 .ndo_open = dpaa_open,
2452 .ndo_start_xmit = dpaa_start_xmit,
2453 .ndo_stop = dpaa_eth_stop,
2454 .ndo_tx_timeout = dpaa_tx_timeout,
2455 .ndo_get_stats64 = dpaa_get_stats64,
2456 .ndo_set_mac_address = dpaa_set_mac_address,
2457 .ndo_validate_addr = eth_validate_addr,
2458 .ndo_set_rx_mode = dpaa_set_rx_mode,
1763413a 2459 .ndo_do_ioctl = dpaa_ioctl,
2ea08f82 2460 .ndo_setup_tc = dpaa_setup_tc,
9ad1a374
MB
2461};
2462
2463static int dpaa_napi_add(struct net_device *net_dev)
2464{
2465 struct dpaa_priv *priv = netdev_priv(net_dev);
2466 struct dpaa_percpu_priv *percpu_priv;
2467 int cpu;
2468
2469 for_each_possible_cpu(cpu) {
2470 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2471
2472 netif_napi_add(net_dev, &percpu_priv->np.napi,
2473 dpaa_eth_poll, NAPI_POLL_WEIGHT);
2474 }
2475
2476 return 0;
2477}
2478
2479static void dpaa_napi_del(struct net_device *net_dev)
2480{
2481 struct dpaa_priv *priv = netdev_priv(net_dev);
2482 struct dpaa_percpu_priv *percpu_priv;
2483 int cpu;
2484
2485 for_each_possible_cpu(cpu) {
2486 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2487
2488 netif_napi_del(&percpu_priv->np.napi);
2489 }
2490}
2491
2492static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2493 struct bm_buffer *bmb)
2494{
2495 dma_addr_t addr = bm_buf_addr(bmb);
2496
2497 dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2498
2499 skb_free_frag(phys_to_virt(addr));
2500}
2501
2502/* Alloc the dpaa_bp struct and configure default values */
2503static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2504{
2505 struct dpaa_bp *dpaa_bp;
2506
2507 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2508 if (!dpaa_bp)
2509 return ERR_PTR(-ENOMEM);
2510
2511 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2512 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2513 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2514
2515 dpaa_bp->seed_cb = dpaa_bp_seed;
2516 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2517
2518 return dpaa_bp;
2519}
2520
2521/* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2522 * We won't be sending congestion notifications to FMan; for now, we just use
2523 * this CGR to generate enqueue rejections to FMan in order to drop the frames
2524 * before they reach our ingress queues and eat up memory.
2525 */
2526static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2527{
2528 struct qm_mcc_initcgr initcgr;
2529 u32 cs_th;
2530 int err;
2531
2532 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2533 if (err < 0) {
2534 if (netif_msg_drv(priv))
2535 pr_err("Error %d allocating CGR ID\n", err);
2536 goto out_error;
2537 }
2538
2539 /* Enable CS TD, but disable Congestion State Change Notifications. */
0fbb0f24 2540 memset(&initcgr, 0, sizeof(initcgr));
7d6f8dc0 2541 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
9ad1a374
MB
2542 initcgr.cgr.cscn_en = QM_CGR_EN;
2543 cs_th = DPAA_INGRESS_CS_THRESHOLD;
2544 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2545
7d6f8dc0 2546 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
9ad1a374
MB
2547 initcgr.cgr.cstd_en = QM_CGR_EN;
2548
2549 /* This CGR will be associated with the SWP affined to the current CPU.
2550 * However, we'll place all our ingress FQs in it.
2551 */
2552 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2553 &initcgr);
2554 if (err < 0) {
2555 if (netif_msg_drv(priv))
2556 pr_err("Error %d creating ingress CGR with ID %d\n",
2557 err, priv->ingress_cgr.cgrid);
2558 qman_release_cgrid(priv->ingress_cgr.cgrid);
2559 goto out_error;
2560 }
2561 if (netif_msg_drv(priv))
2562 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2563 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2564
2565 priv->use_ingress_cgr = true;
2566
2567out_error:
2568 return err;
2569}
2570
2571static const struct of_device_id dpaa_match[];
2572
2573static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2574{
2575 u16 headroom;
2576
2577 /* The frame headroom must accommodate:
2578 * - the driver private data area
2579 * - parse results, hash results, timestamp if selected
2580 * If either hash results or time stamp are selected, both will
2581 * be copied to/from the frame headroom, as TS is located between PR and
2582 * HR in the IC and IC copy size has a granularity of 16bytes
2583 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2584 *
2585 * Also make sure the headroom is a multiple of data_align bytes
2586 */
2587 headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2588 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2589
2590 return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2591 DPAA_FD_DATA_ALIGNMENT) :
2592 headroom;
2593}
2594
2595static int dpaa_eth_probe(struct platform_device *pdev)
2596{
2597 struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2598 struct dpaa_percpu_priv *percpu_priv;
2599 struct net_device *net_dev = NULL;
2600 struct dpaa_fq *dpaa_fq, *tmp;
2601 struct dpaa_priv *priv = NULL;
2602 struct fm_port_fqs port_fqs;
2603 struct mac_device *mac_dev;
2604 int err = 0, i, channel;
2605 struct device *dev;
2606
2607 dev = &pdev->dev;
2608
2609 /* Allocate this early, so we can store relevant information in
2610 * the private area
2611 */
2612 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2613 if (!net_dev) {
2614 dev_err(dev, "alloc_etherdev_mq() failed\n");
2615 goto alloc_etherdev_mq_failed;
2616 }
2617
2618 /* Do this here, so we can be verbose early */
2619 SET_NETDEV_DEV(net_dev, dev);
2620 dev_set_drvdata(dev, net_dev);
2621
2622 priv = netdev_priv(net_dev);
2623 priv->net_dev = net_dev;
2624
2625 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2626
2627 mac_dev = dpaa_mac_dev_get(pdev);
2628 if (IS_ERR(mac_dev)) {
2629 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2630 err = PTR_ERR(mac_dev);
2631 goto mac_probe_failed;
2632 }
2633
2634 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2635 * we choose conservatively and let the user explicitly set a higher
2636 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2637 * in the same LAN.
2638 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2639 * start with the maximum allowed.
2640 */
2641 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2642
2643 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2644 net_dev->mtu);
2645
2646 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2647 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2648
2649 /* device used for DMA mapping */
fb52728a 2650 set_dma_ops(dev, get_dma_ops(&pdev->dev));
9ad1a374
MB
2651 err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2652 if (err) {
2653 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2654 goto dev_mask_failed;
2655 }
2656
2657 /* bp init */
2658 for (i = 0; i < DPAA_BPS_NUM; i++) {
2659 int err;
2660
2661 dpaa_bps[i] = dpaa_bp_alloc(dev);
2662 if (IS_ERR(dpaa_bps[i]))
2663 return PTR_ERR(dpaa_bps[i]);
2664 /* the raw size of the buffers used for reception */
2665 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2666 /* avoid runtime computations by keeping the usable size here */
2667 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2668 dpaa_bps[i]->dev = dev;
2669
2670 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2671 if (err < 0) {
2672 dpaa_bps_free(priv);
2673 priv->dpaa_bps[i] = NULL;
2674 goto bp_create_failed;
2675 }
2676 priv->dpaa_bps[i] = dpaa_bps[i];
2677 }
2678
2679 INIT_LIST_HEAD(&priv->dpaa_fq_list);
2680
2681 memset(&port_fqs, 0, sizeof(port_fqs));
2682
2683 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2684 if (err < 0) {
2685 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2686 goto fq_probe_failed;
2687 }
2688
2689 priv->mac_dev = mac_dev;
2690
2691 channel = dpaa_get_channel();
2692 if (channel < 0) {
2693 dev_err(dev, "dpaa_get_channel() failed\n");
2694 err = channel;
2695 goto get_channel_failed;
2696 }
2697
2698 priv->channel = (u16)channel;
2699
2700 /* Start a thread that will walk the CPUs with affine portals
2701 * and add this pool channel to each's dequeue mask.
2702 */
2703 dpaa_eth_add_channel(priv->channel);
2704
2705 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2706
2707 /* Create a congestion group for this netdev, with
2708 * dynamically-allocated CGR ID.
2709 * Must be executed after probing the MAC, but before
2710 * assigning the egress FQs to the CGRs.
2711 */
2712 err = dpaa_eth_cgr_init(priv);
2713 if (err < 0) {
2714 dev_err(dev, "Error initializing CGR\n");
2715 goto tx_cgr_init_failed;
2716 }
2717
2718 err = dpaa_ingress_cgr_init(priv);
2719 if (err < 0) {
2720 dev_err(dev, "Error initializing ingress CGR\n");
2721 goto rx_cgr_init_failed;
2722 }
2723
2724 /* Add the FQs to the interface, and make them active */
2725 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2726 err = dpaa_fq_init(dpaa_fq, false);
2727 if (err < 0)
2728 goto fq_alloc_failed;
2729 }
2730
2731 priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2732 priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2733
2734 /* All real interfaces need their ports initialized */
7f8a6a1b
MB
2735 err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2736 &priv->buf_layout[0], dev);
2737 if (err)
2738 goto init_ports_failed;
9ad1a374
MB
2739
2740 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2741 if (!priv->percpu_priv) {
2742 dev_err(dev, "devm_alloc_percpu() failed\n");
2743 err = -ENOMEM;
2744 goto alloc_percpu_failed;
2745 }
2746 for_each_possible_cpu(i) {
2747 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2748 memset(percpu_priv, 0, sizeof(*percpu_priv));
2749 }
2750
c44efa1d
CG
2751 priv->num_tc = 1;
2752 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2753
9ad1a374
MB
2754 /* Initialize NAPI */
2755 err = dpaa_napi_add(net_dev);
2756 if (err < 0)
2757 goto napi_add_failed;
2758
2759 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2760 if (err < 0)
2761 goto netdev_init_failed;
2762
846a86e2
MB
2763 dpaa_eth_sysfs_init(&net_dev->dev);
2764
9ad1a374
MB
2765 netif_info(priv, probe, net_dev, "Probed interface %s\n",
2766 net_dev->name);
2767
2768 return 0;
2769
2770netdev_init_failed:
2771napi_add_failed:
2772 dpaa_napi_del(net_dev);
2773alloc_percpu_failed:
7f8a6a1b 2774init_ports_failed:
9ad1a374
MB
2775 dpaa_fq_free(dev, &priv->dpaa_fq_list);
2776fq_alloc_failed:
2777 qman_delete_cgr_safe(&priv->ingress_cgr);
2778 qman_release_cgrid(priv->ingress_cgr.cgrid);
2779rx_cgr_init_failed:
2780 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2781 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2782tx_cgr_init_failed:
2783get_channel_failed:
2784 dpaa_bps_free(priv);
2785bp_create_failed:
2786fq_probe_failed:
2787dev_mask_failed:
2788mac_probe_failed:
2789 dev_set_drvdata(dev, NULL);
2790 free_netdev(net_dev);
2791alloc_etherdev_mq_failed:
2792 for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2793 if (atomic_read(&dpaa_bps[i]->refs) == 0)
2794 devm_kfree(dev, dpaa_bps[i]);
2795 }
2796 return err;
2797}
2798
2799static int dpaa_remove(struct platform_device *pdev)
2800{
2801 struct net_device *net_dev;
2802 struct dpaa_priv *priv;
2803 struct device *dev;
2804 int err;
2805
2806 dev = &pdev->dev;
2807 net_dev = dev_get_drvdata(dev);
2808
2809 priv = netdev_priv(net_dev);
2810
846a86e2
MB
2811 dpaa_eth_sysfs_remove(dev);
2812
9ad1a374
MB
2813 dev_set_drvdata(dev, NULL);
2814 unregister_netdev(net_dev);
2815
2816 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2817
2818 qman_delete_cgr_safe(&priv->ingress_cgr);
2819 qman_release_cgrid(priv->ingress_cgr.cgrid);
2820 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2821 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2822
2823 dpaa_napi_del(net_dev);
2824
2825 dpaa_bps_free(priv);
2826
2827 free_netdev(net_dev);
2828
2829 return err;
2830}
2831
2832static struct platform_device_id dpaa_devtype[] = {
2833 {
2834 .name = "dpaa-ethernet",
2835 .driver_data = 0,
2836 }, {
2837 }
2838};
2839MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2840
2841static struct platform_driver dpaa_driver = {
2842 .driver = {
2843 .name = KBUILD_MODNAME,
2844 },
2845 .id_table = dpaa_devtype,
2846 .probe = dpaa_eth_probe,
2847 .remove = dpaa_remove
2848};
2849
2850static int __init dpaa_load(void)
2851{
2852 int err;
2853
2854 pr_debug("FSL DPAA Ethernet driver\n");
2855
2856 /* initialize dpaa_eth mirror values */
2857 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2858 dpaa_max_frm = fman_get_max_frm();
2859
2860 err = platform_driver_register(&dpaa_driver);
2861 if (err < 0)
2862 pr_err("Error, platform_driver_register() = %d\n", err);
2863
2864 return err;
2865}
2866module_init(dpaa_load);
2867
2868static void __exit dpaa_unload(void)
2869{
2870 platform_driver_unregister(&dpaa_driver);
2871
2872 /* Only one channel is used and needs to be released after all
2873 * interfaces are removed
2874 */
2875 dpaa_release_channel();
2876}
2877module_exit(dpaa_unload);
2878
2879MODULE_LICENSE("Dual BSD/GPL");
2880MODULE_DESCRIPTION("FSL DPAA Ethernet driver");