Merge branch 'systemport-padding-and-TSB-insertion'
[linux-2.6-block.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
CommitLineData
9ad1a374
MB
1/* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/init.h>
34#include <linux/module.h>
35#include <linux/of_platform.h>
36#include <linux/of_mdio.h>
37#include <linux/of_net.h>
38#include <linux/io.h>
39#include <linux/if_arp.h>
40#include <linux/if_vlan.h>
41#include <linux/icmp.h>
42#include <linux/ip.h>
43#include <linux/ipv6.h>
44#include <linux/udp.h>
45#include <linux/tcp.h>
46#include <linux/net.h>
47#include <linux/skbuff.h>
48#include <linux/etherdevice.h>
49#include <linux/if_ether.h>
50#include <linux/highmem.h>
51#include <linux/percpu.h>
52#include <linux/dma-mapping.h>
53#include <linux/sort.h>
54#include <soc/fsl/bman.h>
55#include <soc/fsl/qman.h>
56
57#include "fman.h"
58#include "fman_port.h"
59#include "mac.h"
60#include "dpaa_eth.h"
61
eb11ddf3
MB
62/* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63 * using trace events only need to #include <trace/events/sched.h>
64 */
65#define CREATE_TRACE_POINTS
66#include "dpaa_eth_trace.h"
67
9ad1a374
MB
68static int debug = -1;
69module_param(debug, int, 0444);
70MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72static u16 tx_timeout = 1000;
73module_param(tx_timeout, ushort, 0444);
74MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76#define FM_FD_STAT_RX_ERRORS \
77 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
78 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
80 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 FM_FD_ERR_PRS_HDR_ERR)
82
83#define FM_FD_STAT_TX_ERRORS \
84 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87#define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 NETIF_MSG_IFDOWN)
90
91#define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92/* Ingress congestion threshold on FMan ports
93 * The size in bytes of the ingress tail-drop threshold on FMan ports.
94 * Traffic piling up above this value will be rejected by QMan and discarded
95 * by FMan.
96 */
97
98/* Size in bytes of the FQ taildrop threshold */
99#define DPAA_FQ_TD 0x200000
100
101#define DPAA_CS_THRESHOLD_1G 0x06000000
102/* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103 * The size in bytes of the egress Congestion State notification threshold on
104 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106 * and the larger the frame size, the more acute the problem.
107 * So we have to find a balance between these factors:
108 * - avoiding the device staying congested for a prolonged time (risking
109 * the netdev watchdog to fire - see also the tx_timeout module param);
110 * - affecting performance of protocols such as TCP, which otherwise
111 * behave well under the congestion notification mechanism;
112 * - preventing the Tx cores from tightly-looping (as if the congestion
113 * threshold was too low to be effective);
114 * - running out of memory if the CS threshold is set too high.
115 */
116
117#define DPAA_CS_THRESHOLD_10G 0x10000000
118/* The size in bytes of the egress Congestion State notification threshold on
119 * 10G ports, range 0x1000 .. 0x10000000
120 */
121
122/* Largest value that the FQD's OAL field can hold */
123#define FSL_QMAN_MAX_OAL 127
124
125/* Default alignment for start of data in an Rx FD */
126#define DPAA_FD_DATA_ALIGNMENT 16
127
128/* Values for the L3R field of the FM Parse Results
129 */
130/* L3 Type field: First IP Present IPv4 */
131#define FM_L3_PARSE_RESULT_IPV4 0x8000
132/* L3 Type field: First IP Present IPv6 */
133#define FM_L3_PARSE_RESULT_IPV6 0x4000
134/* Values for the L4R field of the FM Parse Results */
135/* L4 Type field: UDP */
136#define FM_L4_PARSE_RESULT_UDP 0x40
137/* L4 Type field: TCP */
138#define FM_L4_PARSE_RESULT_TCP 0x20
139
140#define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
141#define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
142
143#define FSL_DPAA_BPID_INV 0xff
144#define FSL_DPAA_ETH_MAX_BUF_COUNT 128
145#define FSL_DPAA_ETH_REFILL_THRESHOLD 80
146
147#define DPAA_TX_PRIV_DATA_SIZE 16
148#define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
149#define DPAA_TIME_STAMP_SIZE 8
150#define DPAA_HASH_RESULTS_SIZE 8
151#define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \
152 dpaa_rx_extra_headroom)
153
154#define DPAA_ETH_RX_QUEUES 128
155
156#define DPAA_ENQUEUE_RETRIES 100000
157
158enum port_type {RX, TX};
159
160struct fm_port_fqs {
161 struct dpaa_fq *tx_defq;
162 struct dpaa_fq *tx_errq;
163 struct dpaa_fq *rx_defq;
164 struct dpaa_fq *rx_errq;
165};
166
167/* All the dpa bps in use at any moment */
168static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
169
170/* The raw buffer size must be cacheline aligned */
171#define DPAA_BP_RAW_SIZE 4096
172/* When using more than one buffer pool, the raw sizes are as follows:
173 * 1 bp: 4KB
174 * 2 bp: 2KB, 4KB
175 * 3 bp: 1KB, 2KB, 4KB
176 * 4 bp: 1KB, 2KB, 4KB, 8KB
177 */
178static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
179{
180 size_t res = DPAA_BP_RAW_SIZE / 4;
181 u8 i;
182
183 for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
184 res *= 2;
185 return res;
186}
187
188/* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
189 * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
190 * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
191 * half-page-aligned buffers, so we reserve some more space for start-of-buffer
192 * alignment.
193 */
194#define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
195
196static int dpaa_max_frm;
197
198static int dpaa_rx_extra_headroom;
199
200#define dpaa_get_max_mtu() \
201 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
202
203static int dpaa_netdev_init(struct net_device *net_dev,
204 const struct net_device_ops *dpaa_ops,
205 u16 tx_timeout)
206{
207 struct dpaa_priv *priv = netdev_priv(net_dev);
208 struct device *dev = net_dev->dev.parent;
209 struct dpaa_percpu_priv *percpu_priv;
210 const u8 *mac_addr;
211 int i, err;
212
213 /* Although we access another CPU's private data here
214 * we do it at initialization so it is safe
215 */
216 for_each_possible_cpu(i) {
217 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218 percpu_priv->net_dev = net_dev;
219 }
220
221 net_dev->netdev_ops = dpaa_ops;
222 mac_addr = priv->mac_dev->addr;
223
224 net_dev->mem_start = priv->mac_dev->res->start;
225 net_dev->mem_end = priv->mac_dev->res->end;
226
227 net_dev->min_mtu = ETH_MIN_MTU;
228 net_dev->max_mtu = dpaa_get_max_mtu();
229
230 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231 NETIF_F_LLTX);
232
233 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235 * For conformity, we'll still declare GSO explicitly.
236 */
237 net_dev->features |= NETIF_F_GSO;
238
239 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
240 /* we do not want shared skbs on TX */
241 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
242
243 net_dev->features |= net_dev->hw_features;
244 net_dev->vlan_features = net_dev->features;
245
246 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
247 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
248
b0cdb168
MB
249 net_dev->ethtool_ops = &dpaa_ethtool_ops;
250
9ad1a374
MB
251 net_dev->needed_headroom = priv->tx_headroom;
252 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
253
254 /* start without the RUNNING flag, phylib controls it later */
255 netif_carrier_off(net_dev);
256
257 err = register_netdev(net_dev);
258 if (err < 0) {
259 dev_err(dev, "register_netdev() = %d\n", err);
260 return err;
261 }
262
263 return 0;
264}
265
266static int dpaa_stop(struct net_device *net_dev)
267{
268 struct mac_device *mac_dev;
269 struct dpaa_priv *priv;
270 int i, err, error;
271
272 priv = netdev_priv(net_dev);
273 mac_dev = priv->mac_dev;
274
275 netif_tx_stop_all_queues(net_dev);
276 /* Allow the Fman (Tx) port to process in-flight frames before we
277 * try switching it off.
278 */
279 usleep_range(5000, 10000);
280
281 err = mac_dev->stop(mac_dev);
282 if (err < 0)
283 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
284 err);
285
286 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
287 error = fman_port_disable(mac_dev->port[i]);
288 if (error)
289 err = error;
290 }
291
292 if (net_dev->phydev)
293 phy_disconnect(net_dev->phydev);
294 net_dev->phydev = NULL;
295
296 return err;
297}
298
299static void dpaa_tx_timeout(struct net_device *net_dev)
300{
301 struct dpaa_percpu_priv *percpu_priv;
302 const struct dpaa_priv *priv;
303
304 priv = netdev_priv(net_dev);
305 percpu_priv = this_cpu_ptr(priv->percpu_priv);
306
307 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
308 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
309
310 percpu_priv->stats.tx_errors++;
311}
312
313/* Calculates the statistics for the given device by adding the statistics
314 * collected by each CPU.
315 */
316static struct rtnl_link_stats64 *dpaa_get_stats64(struct net_device *net_dev,
317 struct rtnl_link_stats64 *s)
318{
319 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
320 struct dpaa_priv *priv = netdev_priv(net_dev);
321 struct dpaa_percpu_priv *percpu_priv;
322 u64 *netstats = (u64 *)s;
323 u64 *cpustats;
324 int i, j;
325
326 for_each_possible_cpu(i) {
327 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
328
329 cpustats = (u64 *)&percpu_priv->stats;
330
331 /* add stats from all CPUs */
332 for (j = 0; j < numstats; j++)
333 netstats[j] += cpustats[j];
334 }
335
336 return s;
337}
338
339static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
340{
341 struct platform_device *of_dev;
342 struct dpaa_eth_data *eth_data;
343 struct device *dpaa_dev, *dev;
344 struct device_node *mac_node;
345 struct mac_device *mac_dev;
346
347 dpaa_dev = &pdev->dev;
348 eth_data = dpaa_dev->platform_data;
349 if (!eth_data)
350 return ERR_PTR(-ENODEV);
351
352 mac_node = eth_data->mac_node;
353
354 of_dev = of_find_device_by_node(mac_node);
355 if (!of_dev) {
356 dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n",
357 mac_node->full_name);
358 of_node_put(mac_node);
359 return ERR_PTR(-EINVAL);
360 }
361 of_node_put(mac_node);
362
363 dev = &of_dev->dev;
364
365 mac_dev = dev_get_drvdata(dev);
366 if (!mac_dev) {
367 dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
368 dev_name(dev));
369 return ERR_PTR(-EINVAL);
370 }
371
372 return mac_dev;
373}
374
375static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
376{
377 const struct dpaa_priv *priv;
378 struct mac_device *mac_dev;
379 struct sockaddr old_addr;
380 int err;
381
382 priv = netdev_priv(net_dev);
383
384 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
385
386 err = eth_mac_addr(net_dev, addr);
387 if (err < 0) {
388 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
389 return err;
390 }
391
392 mac_dev = priv->mac_dev;
393
394 err = mac_dev->change_addr(mac_dev->fman_mac,
395 (enet_addr_t *)net_dev->dev_addr);
396 if (err < 0) {
397 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
398 err);
399 /* reverting to previous address */
400 eth_mac_addr(net_dev, &old_addr);
401
402 return err;
403 }
404
405 return 0;
406}
407
408static void dpaa_set_rx_mode(struct net_device *net_dev)
409{
410 const struct dpaa_priv *priv;
411 int err;
412
413 priv = netdev_priv(net_dev);
414
415 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
416 priv->mac_dev->promisc = !priv->mac_dev->promisc;
417 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
418 priv->mac_dev->promisc);
419 if (err < 0)
420 netif_err(priv, drv, net_dev,
421 "mac_dev->set_promisc() = %d\n",
422 err);
423 }
424
425 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
426 if (err < 0)
427 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
428 err);
429}
430
431static struct dpaa_bp *dpaa_bpid2pool(int bpid)
432{
433 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
434 return NULL;
435
436 return dpaa_bp_array[bpid];
437}
438
439/* checks if this bpool is already allocated */
440static bool dpaa_bpid2pool_use(int bpid)
441{
442 if (dpaa_bpid2pool(bpid)) {
443 atomic_inc(&dpaa_bp_array[bpid]->refs);
444 return true;
445 }
446
447 return false;
448}
449
450/* called only once per bpid by dpaa_bp_alloc_pool() */
451static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
452{
453 dpaa_bp_array[bpid] = dpaa_bp;
454 atomic_set(&dpaa_bp->refs, 1);
455}
456
457static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
458{
459 int err;
460
461 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
462 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
463 __func__);
464 return -EINVAL;
465 }
466
467 /* If the pool is already specified, we only create one per bpid */
468 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
469 dpaa_bpid2pool_use(dpaa_bp->bpid))
470 return 0;
471
472 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
473 dpaa_bp->pool = bman_new_pool();
474 if (!dpaa_bp->pool) {
475 pr_err("%s: bman_new_pool() failed\n",
476 __func__);
477 return -ENODEV;
478 }
479
480 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
481 }
482
483 if (dpaa_bp->seed_cb) {
484 err = dpaa_bp->seed_cb(dpaa_bp);
485 if (err)
486 goto pool_seed_failed;
487 }
488
489 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
490
491 return 0;
492
493pool_seed_failed:
494 pr_err("%s: pool seeding failed\n", __func__);
495 bman_free_pool(dpaa_bp->pool);
496
497 return err;
498}
499
500/* remove and free all the buffers from the given buffer pool */
501static void dpaa_bp_drain(struct dpaa_bp *bp)
502{
503 u8 num = 8;
504 int ret;
505
506 do {
507 struct bm_buffer bmb[8];
508 int i;
509
510 ret = bman_acquire(bp->pool, bmb, num);
511 if (ret < 0) {
512 if (num == 8) {
513 /* we have less than 8 buffers left;
514 * drain them one by one
515 */
516 num = 1;
517 ret = 1;
518 continue;
519 } else {
520 /* Pool is fully drained */
521 break;
522 }
523 }
524
525 if (bp->free_buf_cb)
526 for (i = 0; i < num; i++)
527 bp->free_buf_cb(bp, &bmb[i]);
528 } while (ret > 0);
529}
530
531static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
532{
533 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
534
535 /* the mapping between bpid and dpaa_bp is done very late in the
536 * allocation procedure; if something failed before the mapping, the bp
537 * was not configured, therefore we don't need the below instructions
538 */
539 if (!bp)
540 return;
541
542 if (!atomic_dec_and_test(&bp->refs))
543 return;
544
545 if (bp->free_buf_cb)
546 dpaa_bp_drain(bp);
547
548 dpaa_bp_array[bp->bpid] = NULL;
549 bman_free_pool(bp->pool);
550}
551
552static void dpaa_bps_free(struct dpaa_priv *priv)
553{
554 int i;
555
556 for (i = 0; i < DPAA_BPS_NUM; i++)
557 dpaa_bp_free(priv->dpaa_bps[i]);
558}
559
560/* Use multiple WQs for FQ assignment:
561 * - Tx Confirmation queues go to WQ1.
562 * - Rx Error and Tx Error queues go to WQ2 (giving them a better chance
563 * to be scheduled, in case there are many more FQs in WQ3).
564 * - Rx Default and Tx queues go to WQ3 (no differentiation between
565 * Rx and Tx traffic).
566 * This ensures that Tx-confirmed buffers are timely released. In particular,
567 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
568 * are greatly outnumbered by other FQs in the system, while
569 * dequeue scheduling is round-robin.
570 */
571static inline void dpaa_assign_wq(struct dpaa_fq *fq)
572{
573 switch (fq->fq_type) {
574 case FQ_TYPE_TX_CONFIRM:
575 case FQ_TYPE_TX_CONF_MQ:
576 fq->wq = 1;
577 break;
578 case FQ_TYPE_RX_ERROR:
579 case FQ_TYPE_TX_ERROR:
580 fq->wq = 2;
581 break;
582 case FQ_TYPE_RX_DEFAULT:
583 case FQ_TYPE_TX:
584 fq->wq = 3;
585 break;
586 default:
587 WARN(1, "Invalid FQ type %d for FQID %d!\n",
588 fq->fq_type, fq->fqid);
589 }
590}
591
592static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
593 u32 start, u32 count,
594 struct list_head *list,
595 enum dpaa_fq_type fq_type)
596{
597 struct dpaa_fq *dpaa_fq;
598 int i;
599
600 dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
601 GFP_KERNEL);
602 if (!dpaa_fq)
603 return NULL;
604
605 for (i = 0; i < count; i++) {
606 dpaa_fq[i].fq_type = fq_type;
607 dpaa_fq[i].fqid = start ? start + i : 0;
608 list_add_tail(&dpaa_fq[i].list, list);
609 }
610
611 for (i = 0; i < count; i++)
612 dpaa_assign_wq(dpaa_fq + i);
613
614 return dpaa_fq;
615}
616
617static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
618 struct fm_port_fqs *port_fqs)
619{
620 struct dpaa_fq *dpaa_fq;
621
622 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
623 if (!dpaa_fq)
624 goto fq_alloc_failed;
625
626 port_fqs->rx_errq = &dpaa_fq[0];
627
628 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
629 if (!dpaa_fq)
630 goto fq_alloc_failed;
631
632 port_fqs->rx_defq = &dpaa_fq[0];
633
634 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
635 goto fq_alloc_failed;
636
637 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
638 if (!dpaa_fq)
639 goto fq_alloc_failed;
640
641 port_fqs->tx_errq = &dpaa_fq[0];
642
643 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
644 if (!dpaa_fq)
645 goto fq_alloc_failed;
646
647 port_fqs->tx_defq = &dpaa_fq[0];
648
649 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
650 goto fq_alloc_failed;
651
652 return 0;
653
654fq_alloc_failed:
655 dev_err(dev, "dpaa_fq_alloc() failed\n");
656 return -ENOMEM;
657}
658
659static u32 rx_pool_channel;
660static DEFINE_SPINLOCK(rx_pool_channel_init);
661
662static int dpaa_get_channel(void)
663{
664 spin_lock(&rx_pool_channel_init);
665 if (!rx_pool_channel) {
666 u32 pool;
667 int ret;
668
669 ret = qman_alloc_pool(&pool);
670
671 if (!ret)
672 rx_pool_channel = pool;
673 }
674 spin_unlock(&rx_pool_channel_init);
675 if (!rx_pool_channel)
676 return -ENOMEM;
677 return rx_pool_channel;
678}
679
680static void dpaa_release_channel(void)
681{
682 qman_release_pool(rx_pool_channel);
683}
684
685static void dpaa_eth_add_channel(u16 channel)
686{
687 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
688 const cpumask_t *cpus = qman_affine_cpus();
689 struct qman_portal *portal;
690 int cpu;
691
692 for_each_cpu(cpu, cpus) {
693 portal = qman_get_affine_portal(cpu);
694 qman_p_static_dequeue_add(portal, pool);
695 }
696}
697
698/* Congestion group state change notification callback.
699 * Stops the device's egress queues while they are congested and
700 * wakes them upon exiting congested state.
701 * Also updates some CGR-related stats.
702 */
703static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
704 int congested)
705{
706 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
707 struct dpaa_priv, cgr_data.cgr);
708
b0ce0d02
MB
709 if (congested) {
710 priv->cgr_data.congestion_start_jiffies = jiffies;
9ad1a374 711 netif_tx_stop_all_queues(priv->net_dev);
b0ce0d02
MB
712 priv->cgr_data.cgr_congested_count++;
713 } else {
714 priv->cgr_data.congested_jiffies +=
715 (jiffies - priv->cgr_data.congestion_start_jiffies);
9ad1a374 716 netif_tx_wake_all_queues(priv->net_dev);
b0ce0d02 717 }
9ad1a374
MB
718}
719
720static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
721{
722 struct qm_mcc_initcgr initcgr;
723 u32 cs_th;
724 int err;
725
726 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
727 if (err < 0) {
728 if (netif_msg_drv(priv))
729 pr_err("%s: Error %d allocating CGR ID\n",
730 __func__, err);
731 goto out_error;
732 }
733 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
734
735 /* Enable Congestion State Change Notifications and CS taildrop */
7d6f8dc0 736 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
9ad1a374
MB
737 initcgr.cgr.cscn_en = QM_CGR_EN;
738
739 /* Set different thresholds based on the MAC speed.
740 * This may turn suboptimal if the MAC is reconfigured at a speed
741 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
742 * In such cases, we ought to reconfigure the threshold, too.
743 */
744 if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
745 cs_th = DPAA_CS_THRESHOLD_10G;
746 else
747 cs_th = DPAA_CS_THRESHOLD_1G;
748 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
749
7d6f8dc0 750 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
9ad1a374
MB
751 initcgr.cgr.cstd_en = QM_CGR_EN;
752
753 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
754 &initcgr);
755 if (err < 0) {
756 if (netif_msg_drv(priv))
757 pr_err("%s: Error %d creating CGR with ID %d\n",
758 __func__, err, priv->cgr_data.cgr.cgrid);
759 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
760 goto out_error;
761 }
762 if (netif_msg_drv(priv))
763 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
764 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
765 priv->cgr_data.cgr.chan);
766
767out_error:
768 return err;
769}
770
771static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
772 struct dpaa_fq *fq,
773 const struct qman_fq *template)
774{
775 fq->fq_base = *template;
776 fq->net_dev = priv->net_dev;
777
778 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
779 fq->channel = priv->channel;
780}
781
782static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
783 struct dpaa_fq *fq,
784 struct fman_port *port,
785 const struct qman_fq *template)
786{
787 fq->fq_base = *template;
788 fq->net_dev = priv->net_dev;
789
790 if (port) {
791 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
792 fq->channel = (u16)fman_port_get_qman_channel_id(port);
793 } else {
794 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
795 }
796}
797
798static void dpaa_fq_setup(struct dpaa_priv *priv,
799 const struct dpaa_fq_cbs *fq_cbs,
800 struct fman_port *tx_port)
801{
802 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu;
803 const cpumask_t *affine_cpus = qman_affine_cpus();
804 u16 portals[NR_CPUS];
805 struct dpaa_fq *fq;
806
807 for_each_cpu(cpu, affine_cpus)
808 portals[num_portals++] = qman_affine_channel(cpu);
809 if (num_portals == 0)
810 dev_err(priv->net_dev->dev.parent,
811 "No Qman software (affine) channels found");
812
813 /* Initialize each FQ in the list */
814 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
815 switch (fq->fq_type) {
816 case FQ_TYPE_RX_DEFAULT:
817 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
818 break;
819 case FQ_TYPE_RX_ERROR:
820 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
821 break;
822 case FQ_TYPE_TX:
823 dpaa_setup_egress(priv, fq, tx_port,
824 &fq_cbs->egress_ern);
825 /* If we have more Tx queues than the number of cores,
826 * just ignore the extra ones.
827 */
828 if (egress_cnt < DPAA_ETH_TXQ_NUM)
829 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
830 break;
831 case FQ_TYPE_TX_CONF_MQ:
832 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
833 /* fall through */
834 case FQ_TYPE_TX_CONFIRM:
835 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
836 break;
837 case FQ_TYPE_TX_ERROR:
838 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
839 break;
840 default:
841 dev_warn(priv->net_dev->dev.parent,
842 "Unknown FQ type detected!\n");
843 break;
844 }
845 }
846
847 /* Make sure all CPUs receive a corresponding Tx queue. */
848 while (egress_cnt < DPAA_ETH_TXQ_NUM) {
849 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
850 if (fq->fq_type != FQ_TYPE_TX)
851 continue;
852 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
853 if (egress_cnt == DPAA_ETH_TXQ_NUM)
854 break;
855 }
856 }
857}
858
859static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
860 struct qman_fq *tx_fq)
861{
862 int i;
863
864 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
865 if (priv->egress_fqs[i] == tx_fq)
866 return i;
867
868 return -EINVAL;
869}
870
871static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
872{
873 const struct dpaa_priv *priv;
874 struct qman_fq *confq = NULL;
875 struct qm_mcc_initfq initfq;
876 struct device *dev;
877 struct qman_fq *fq;
878 int queue_id;
879 int err;
880
881 priv = netdev_priv(dpaa_fq->net_dev);
882 dev = dpaa_fq->net_dev->dev.parent;
883
884 if (dpaa_fq->fqid == 0)
885 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
886
887 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
888
889 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
890 if (err) {
891 dev_err(dev, "qman_create_fq() failed\n");
892 return err;
893 }
894 fq = &dpaa_fq->fq_base;
895
896 if (dpaa_fq->init) {
897 memset(&initfq, 0, sizeof(initfq));
898
7d6f8dc0 899 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
9ad1a374 900 /* Note: we may get to keep an empty FQ in cache */
7d6f8dc0 901 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
9ad1a374
MB
902
903 /* Try to reduce the number of portal interrupts for
904 * Tx Confirmation FQs.
905 */
906 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
7d6f8dc0 907 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE);
9ad1a374
MB
908
909 /* FQ placement */
7d6f8dc0 910 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
9ad1a374
MB
911
912 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
913
914 /* Put all egress queues in a congestion group of their own.
915 * Sensu stricto, the Tx confirmation queues are Rx FQs,
916 * rather than Tx - but they nonetheless account for the
917 * memory footprint on behalf of egress traffic. We therefore
918 * place them in the netdev's CGR, along with the Tx FQs.
919 */
920 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
921 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
922 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
7d6f8dc0
CM
923 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
924 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
9ad1a374
MB
925 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
926 /* Set a fixed overhead accounting, in an attempt to
927 * reduce the impact of fixed-size skb shells and the
928 * driver's needed headroom on system memory. This is
929 * especially the case when the egress traffic is
930 * composed of small datagrams.
931 * Unfortunately, QMan's OAL value is capped to an
932 * insufficient value, but even that is better than
933 * no overhead accounting at all.
934 */
7d6f8dc0 935 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
9ad1a374
MB
936 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
937 qm_fqd_set_oal(&initfq.fqd,
938 min(sizeof(struct sk_buff) +
939 priv->tx_headroom,
940 (size_t)FSL_QMAN_MAX_OAL));
941 }
942
943 if (td_enable) {
7d6f8dc0 944 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
9ad1a374 945 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
7d6f8dc0 946 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
9ad1a374
MB
947 }
948
949 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
950 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
951 if (queue_id >= 0)
952 confq = priv->conf_fqs[queue_id];
953 if (confq) {
7d6f8dc0
CM
954 initfq.we_mask |=
955 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
9ad1a374
MB
956 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
957 * A2V=1 (contextA A2 field is valid)
958 * A0V=1 (contextA A0 field is valid)
959 * B0V=1 (contextB field is valid)
960 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
961 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
962 */
7d6f8dc0
CM
963 qm_fqd_context_a_set64(&initfq.fqd,
964 0x1e00000080000000ULL);
9ad1a374
MB
965 }
966 }
967
968 /* Put all the ingress queues in our "ingress CGR". */
969 if (priv->use_ingress_cgr &&
970 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
971 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) {
7d6f8dc0
CM
972 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
973 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
9ad1a374
MB
974 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
975 /* Set a fixed overhead accounting, just like for the
976 * egress CGR.
977 */
7d6f8dc0 978 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
9ad1a374
MB
979 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
980 qm_fqd_set_oal(&initfq.fqd,
981 min(sizeof(struct sk_buff) +
982 priv->tx_headroom,
983 (size_t)FSL_QMAN_MAX_OAL));
984 }
985
986 /* Initialization common to all ingress queues */
987 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
7d6f8dc0
CM
988 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
989 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE);
9ad1a374
MB
990 initfq.fqd.context_a.stashing.exclusive =
991 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
992 QM_STASHING_EXCL_ANNOTATION;
993 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
994 DIV_ROUND_UP(sizeof(struct qman_fq),
995 64));
996 }
997
998 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
999 if (err < 0) {
1000 dev_err(dev, "qman_init_fq(%u) = %d\n",
1001 qman_fq_fqid(fq), err);
1002 qman_destroy_fq(fq);
1003 return err;
1004 }
1005 }
1006
1007 dpaa_fq->fqid = qman_fq_fqid(fq);
1008
1009 return 0;
1010}
1011
1012static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1013{
1014 const struct dpaa_priv *priv;
1015 struct dpaa_fq *dpaa_fq;
1016 int err, error;
1017
1018 err = 0;
1019
1020 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1021 priv = netdev_priv(dpaa_fq->net_dev);
1022
1023 if (dpaa_fq->init) {
1024 err = qman_retire_fq(fq, NULL);
1025 if (err < 0 && netif_msg_drv(priv))
1026 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1027 qman_fq_fqid(fq), err);
1028
1029 error = qman_oos_fq(fq);
1030 if (error < 0 && netif_msg_drv(priv)) {
1031 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1032 qman_fq_fqid(fq), error);
1033 if (err >= 0)
1034 err = error;
1035 }
1036 }
1037
1038 qman_destroy_fq(fq);
1039 list_del(&dpaa_fq->list);
1040
1041 return err;
1042}
1043
1044static int dpaa_fq_free(struct device *dev, struct list_head *list)
1045{
1046 struct dpaa_fq *dpaa_fq, *tmp;
1047 int err, error;
1048
1049 err = 0;
1050 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1051 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1052 if (error < 0 && err >= 0)
1053 err = error;
1054 }
1055
1056 return err;
1057}
1058
1059static void dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1060 struct dpaa_fq *defq,
1061 struct dpaa_buffer_layout *buf_layout)
1062{
1063 struct fman_buffer_prefix_content buf_prefix_content;
1064 struct fman_port_params params;
1065 int err;
1066
1067 memset(&params, 0, sizeof(params));
1068 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1069
1070 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1071 buf_prefix_content.pass_prs_result = true;
1072 buf_prefix_content.pass_hash_result = true;
1073 buf_prefix_content.pass_time_stamp = false;
1074 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1075
1076 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1077 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1078
1079 err = fman_port_config(port, &params);
1080 if (err)
1081 pr_err("%s: fman_port_config failed\n", __func__);
1082
1083 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1084 if (err)
1085 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1086 __func__);
1087
1088 err = fman_port_init(port);
1089 if (err)
1090 pr_err("%s: fm_port_init failed\n", __func__);
1091}
1092
1093static void dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1094 size_t count, struct dpaa_fq *errq,
1095 struct dpaa_fq *defq,
1096 struct dpaa_buffer_layout *buf_layout)
1097{
1098 struct fman_buffer_prefix_content buf_prefix_content;
1099 struct fman_port_rx_params *rx_p;
1100 struct fman_port_params params;
1101 int i, err;
1102
1103 memset(&params, 0, sizeof(params));
1104 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1105
1106 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1107 buf_prefix_content.pass_prs_result = true;
1108 buf_prefix_content.pass_hash_result = true;
1109 buf_prefix_content.pass_time_stamp = false;
1110 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1111
1112 rx_p = &params.specific_params.rx_params;
1113 rx_p->err_fqid = errq->fqid;
1114 rx_p->dflt_fqid = defq->fqid;
1115
1116 count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1117 rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1118 for (i = 0; i < count; i++) {
1119 rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid;
1120 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1121 }
1122
1123 err = fman_port_config(port, &params);
1124 if (err)
1125 pr_err("%s: fman_port_config failed\n", __func__);
1126
1127 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1128 if (err)
1129 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1130 __func__);
1131
1132 err = fman_port_init(port);
1133 if (err)
1134 pr_err("%s: fm_port_init failed\n", __func__);
1135}
1136
1137static void dpaa_eth_init_ports(struct mac_device *mac_dev,
1138 struct dpaa_bp **bps, size_t count,
1139 struct fm_port_fqs *port_fqs,
1140 struct dpaa_buffer_layout *buf_layout,
1141 struct device *dev)
1142{
1143 struct fman_port *rxport = mac_dev->port[RX];
1144 struct fman_port *txport = mac_dev->port[TX];
1145
1146 dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1147 port_fqs->tx_defq, &buf_layout[TX]);
1148 dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1149 port_fqs->rx_defq, &buf_layout[RX]);
1150}
1151
1152static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1153 struct bm_buffer *bmb, int cnt)
1154{
1155 int err;
1156
1157 err = bman_release(dpaa_bp->pool, bmb, cnt);
1158 /* Should never occur, address anyway to avoid leaking the buffers */
1159 if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1160 while (cnt-- > 0)
1161 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1162
1163 return cnt;
1164}
1165
1166static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1167{
1168 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1169 struct dpaa_bp *dpaa_bp;
1170 int i = 0, j;
1171
1172 memset(bmb, 0, sizeof(bmb));
1173
1174 do {
1175 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1176 if (!dpaa_bp)
1177 return;
1178
1179 j = 0;
1180 do {
1181 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1182
1183 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1184
1185 j++; i++;
1186 } while (j < ARRAY_SIZE(bmb) &&
1187 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1188 sgt[i - 1].bpid == sgt[i].bpid);
1189
1190 dpaa_bman_release(dpaa_bp, bmb, j);
1191 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1192}
1193
1194static void dpaa_fd_release(const struct net_device *net_dev,
1195 const struct qm_fd *fd)
1196{
1197 struct qm_sg_entry *sgt;
1198 struct dpaa_bp *dpaa_bp;
1199 struct bm_buffer bmb;
1200 dma_addr_t addr;
1201 void *vaddr;
1202
1203 bmb.data = 0;
1204 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1205
1206 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1207 if (!dpaa_bp)
1208 return;
1209
1210 if (qm_fd_get_format(fd) == qm_fd_sg) {
1211 vaddr = phys_to_virt(qm_fd_addr(fd));
1212 sgt = vaddr + qm_fd_get_offset(fd);
1213
1214 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1215 DMA_FROM_DEVICE);
1216
1217 dpaa_release_sgt_members(sgt);
1218
1219 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1220 DMA_FROM_DEVICE);
1221 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1222 dev_err(dpaa_bp->dev, "DMA mapping failed");
1223 return;
1224 }
1225 bm_buffer_set64(&bmb, addr);
1226 }
1227
1228 dpaa_bman_release(dpaa_bp, &bmb, 1);
1229}
1230
b0ce0d02
MB
1231static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1232 const union qm_mr_entry *msg)
1233{
1234 switch (msg->ern.rc & QM_MR_RC_MASK) {
1235 case QM_MR_RC_CGR_TAILDROP:
1236 percpu_priv->ern_cnt.cg_tdrop++;
1237 break;
1238 case QM_MR_RC_WRED:
1239 percpu_priv->ern_cnt.wred++;
1240 break;
1241 case QM_MR_RC_ERROR:
1242 percpu_priv->ern_cnt.err_cond++;
1243 break;
1244 case QM_MR_RC_ORPWINDOW_EARLY:
1245 percpu_priv->ern_cnt.early_window++;
1246 break;
1247 case QM_MR_RC_ORPWINDOW_LATE:
1248 percpu_priv->ern_cnt.late_window++;
1249 break;
1250 case QM_MR_RC_FQ_TAILDROP:
1251 percpu_priv->ern_cnt.fq_tdrop++;
1252 break;
1253 case QM_MR_RC_ORPWINDOW_RETIRED:
1254 percpu_priv->ern_cnt.fq_retired++;
1255 break;
1256 case QM_MR_RC_ORP_ZERO:
1257 percpu_priv->ern_cnt.orp_zero++;
1258 break;
1259 }
1260}
1261
9ad1a374
MB
1262/* Turn on HW checksum computation for this outgoing frame.
1263 * If the current protocol is not something we support in this regard
1264 * (or if the stack has already computed the SW checksum), we do nothing.
1265 *
1266 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1267 * otherwise.
1268 *
1269 * Note that this function may modify the fd->cmd field and the skb data buffer
1270 * (the Parse Results area).
1271 */
1272static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1273 struct sk_buff *skb,
1274 struct qm_fd *fd,
1275 char *parse_results)
1276{
1277 struct fman_prs_result *parse_result;
1278 u16 ethertype = ntohs(skb->protocol);
1279 struct ipv6hdr *ipv6h = NULL;
1280 struct iphdr *iph;
1281 int retval = 0;
1282 u8 l4_proto;
1283
1284 if (skb->ip_summed != CHECKSUM_PARTIAL)
1285 return 0;
1286
1287 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1288 * L4 alone from the FM configuration anyway.
1289 */
1290
1291 /* Fill in some fields of the Parse Results array, so the FMan
1292 * can find them as if they came from the FMan Parser.
1293 */
1294 parse_result = (struct fman_prs_result *)parse_results;
1295
1296 /* If we're dealing with VLAN, get the real Ethernet type */
1297 if (ethertype == ETH_P_8021Q) {
1298 /* We can't always assume the MAC header is set correctly
1299 * by the stack, so reset to beginning of skb->data
1300 */
1301 skb_reset_mac_header(skb);
1302 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1303 }
1304
1305 /* Fill in the relevant L3 parse result fields
1306 * and read the L4 protocol type
1307 */
1308 switch (ethertype) {
1309 case ETH_P_IP:
1310 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1311 iph = ip_hdr(skb);
1312 WARN_ON(!iph);
1313 l4_proto = iph->protocol;
1314 break;
1315 case ETH_P_IPV6:
1316 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1317 ipv6h = ipv6_hdr(skb);
1318 WARN_ON(!ipv6h);
1319 l4_proto = ipv6h->nexthdr;
1320 break;
1321 default:
1322 /* We shouldn't even be here */
1323 if (net_ratelimit())
1324 netif_alert(priv, tx_err, priv->net_dev,
1325 "Can't compute HW csum for L3 proto 0x%x\n",
1326 ntohs(skb->protocol));
1327 retval = -EIO;
1328 goto return_error;
1329 }
1330
1331 /* Fill in the relevant L4 parse result fields */
1332 switch (l4_proto) {
1333 case IPPROTO_UDP:
1334 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1335 break;
1336 case IPPROTO_TCP:
1337 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1338 break;
1339 default:
1340 if (net_ratelimit())
1341 netif_alert(priv, tx_err, priv->net_dev,
1342 "Can't compute HW csum for L4 proto 0x%x\n",
1343 l4_proto);
1344 retval = -EIO;
1345 goto return_error;
1346 }
1347
1348 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1349 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1350 parse_result->l4_off = (u8)skb_transport_offset(skb);
1351
1352 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
7d6f8dc0 1353 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
9ad1a374
MB
1354
1355 /* On P1023 and similar platforms fd->cmd interpretation could
1356 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1357 * is not set so we do not need to check; in the future, if/when
1358 * using context_a we need to check this bit
1359 */
1360
1361return_error:
1362 return retval;
1363}
1364
1365static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1366{
1367 struct device *dev = dpaa_bp->dev;
1368 struct bm_buffer bmb[8];
1369 dma_addr_t addr;
1370 void *new_buf;
1371 u8 i;
1372
1373 for (i = 0; i < 8; i++) {
1374 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1375 if (unlikely(!new_buf)) {
1376 dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1377 dpaa_bp->raw_size);
1378 goto release_previous_buffs;
1379 }
1380 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1381
1382 addr = dma_map_single(dev, new_buf,
1383 dpaa_bp->size, DMA_FROM_DEVICE);
1384 if (unlikely(dma_mapping_error(dev, addr))) {
1385 dev_err(dpaa_bp->dev, "DMA map failed");
1386 goto release_previous_buffs;
1387 }
1388
1389 bmb[i].data = 0;
1390 bm_buffer_set64(&bmb[i], addr);
1391 }
1392
1393release_bufs:
1394 return dpaa_bman_release(dpaa_bp, bmb, i);
1395
1396release_previous_buffs:
1397 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1398
1399 bm_buffer_set64(&bmb[i], 0);
1400 /* Avoid releasing a completely null buffer; bman_release() requires
1401 * at least one buffer.
1402 */
1403 if (likely(i))
1404 goto release_bufs;
1405
1406 return 0;
1407}
1408
1409static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1410{
1411 int i;
1412
1413 /* Give each CPU an allotment of "config_count" buffers */
1414 for_each_possible_cpu(i) {
1415 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1416 int j;
1417
1418 /* Although we access another CPU's counters here
1419 * we do it at boot time so it is safe
1420 */
1421 for (j = 0; j < dpaa_bp->config_count; j += 8)
1422 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1423 }
1424 return 0;
1425}
1426
1427/* Add buffers/(pages) for Rx processing whenever bpool count falls below
1428 * REFILL_THRESHOLD.
1429 */
1430static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1431{
1432 int count = *countptr;
1433 int new_bufs;
1434
1435 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1436 do {
1437 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1438 if (unlikely(!new_bufs)) {
1439 /* Avoid looping forever if we've temporarily
1440 * run out of memory. We'll try again at the
1441 * next NAPI cycle.
1442 */
1443 break;
1444 }
1445 count += new_bufs;
1446 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1447
1448 *countptr = count;
1449 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1450 return -ENOMEM;
1451 }
1452
1453 return 0;
1454}
1455
1456static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1457{
1458 struct dpaa_bp *dpaa_bp;
1459 int *countptr;
1460 int res, i;
1461
1462 for (i = 0; i < DPAA_BPS_NUM; i++) {
1463 dpaa_bp = priv->dpaa_bps[i];
1464 if (!dpaa_bp)
1465 return -EINVAL;
1466 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1467 res = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1468 if (res)
1469 return res;
1470 }
1471 return 0;
1472}
1473
1474/* Cleanup function for outgoing frame descriptors that were built on Tx path,
1475 * either contiguous frames or scatter/gather ones.
1476 * Skb freeing is not handled here.
1477 *
1478 * This function may be called on error paths in the Tx function, so guard
1479 * against cases when not all fd relevant fields were filled in.
1480 *
1481 * Return the skb backpointer, since for S/G frames the buffer containing it
1482 * gets freed here.
1483 */
1484static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1485 const struct qm_fd *fd)
1486{
1487 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1488 struct device *dev = priv->net_dev->dev.parent;
1489 dma_addr_t addr = qm_fd_addr(fd);
1490 const struct qm_sg_entry *sgt;
1491 struct sk_buff **skbh, *skb;
1492 int nr_frags, i;
1493
1494 skbh = (struct sk_buff **)phys_to_virt(addr);
1495 skb = *skbh;
1496
1497 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1498 nr_frags = skb_shinfo(skb)->nr_frags;
1499 dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1500 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1501 dma_dir);
1502
1503 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1504 * it's from lowmem.
1505 */
1506 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1507
1508 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1509 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1510 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1511
1512 /* remaining pages were mapped with skb_frag_dma_map() */
1513 for (i = 1; i < nr_frags; i++) {
1514 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1515
1516 dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1517 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1518 }
1519
1520 /* Free the page frag that we allocated on Tx */
1521 skb_free_frag(phys_to_virt(addr));
1522 } else {
1523 dma_unmap_single(dev, addr,
1524 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1525 }
1526
1527 return skb;
1528}
1529
1530/* Build a linear skb around the received buffer.
1531 * We are guaranteed there is enough room at the end of the data buffer to
1532 * accommodate the shared info area of the skb.
1533 */
1534static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1535 const struct qm_fd *fd)
1536{
1537 ssize_t fd_off = qm_fd_get_offset(fd);
1538 dma_addr_t addr = qm_fd_addr(fd);
1539 struct dpaa_bp *dpaa_bp;
1540 struct sk_buff *skb;
1541 void *vaddr;
1542
1543 vaddr = phys_to_virt(addr);
1544 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1545
1546 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1547 if (!dpaa_bp)
1548 goto free_buffer;
1549
1550 skb = build_skb(vaddr, dpaa_bp->size +
1551 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1552 if (unlikely(!skb)) {
1553 WARN_ONCE(1, "Build skb failure on Rx\n");
1554 goto free_buffer;
1555 }
1556 WARN_ON(fd_off != priv->rx_headroom);
1557 skb_reserve(skb, fd_off);
1558 skb_put(skb, qm_fd_get_length(fd));
1559
1560 skb->ip_summed = CHECKSUM_NONE;
1561
1562 return skb;
1563
1564free_buffer:
1565 skb_free_frag(vaddr);
1566 return NULL;
1567}
1568
1569/* Build an skb with the data of the first S/G entry in the linear portion and
1570 * the rest of the frame as skb fragments.
1571 *
1572 * The page fragment holding the S/G Table is recycled here.
1573 */
1574static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1575 const struct qm_fd *fd)
1576{
1577 ssize_t fd_off = qm_fd_get_offset(fd);
1578 dma_addr_t addr = qm_fd_addr(fd);
1579 const struct qm_sg_entry *sgt;
1580 struct page *page, *head_page;
1581 struct dpaa_bp *dpaa_bp;
1582 void *vaddr, *sg_vaddr;
1583 int frag_off, frag_len;
1584 struct sk_buff *skb;
1585 dma_addr_t sg_addr;
1586 int page_offset;
1587 unsigned int sz;
1588 int *count_ptr;
1589 int i;
1590
1591 vaddr = phys_to_virt(addr);
1592 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1593
1594 /* Iterate through the SGT entries and add data buffers to the skb */
1595 sgt = vaddr + fd_off;
1596 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1597 /* Extension bit is not supported */
1598 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1599
1600 sg_addr = qm_sg_addr(&sgt[i]);
1601 sg_vaddr = phys_to_virt(sg_addr);
1602 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1603 SMP_CACHE_BYTES));
1604
1605 /* We may use multiple Rx pools */
1606 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1607 if (!dpaa_bp)
1608 goto free_buffers;
1609
1610 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1611 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1612 DMA_FROM_DEVICE);
1613 if (i == 0) {
1614 sz = dpaa_bp->size +
1615 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1616 skb = build_skb(sg_vaddr, sz);
1617 if (WARN_ON(unlikely(!skb)))
1618 goto free_buffers;
1619
1620 skb->ip_summed = CHECKSUM_NONE;
1621
1622 /* Make sure forwarded skbs will have enough space
1623 * on Tx, if extra headers are added.
1624 */
1625 WARN_ON(fd_off != priv->rx_headroom);
1626 skb_reserve(skb, fd_off);
1627 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1628 } else {
1629 /* Not the first S/G entry; all data from buffer will
1630 * be added in an skb fragment; fragment index is offset
1631 * by one since first S/G entry was incorporated in the
1632 * linear part of the skb.
1633 *
1634 * Caution: 'page' may be a tail page.
1635 */
1636 page = virt_to_page(sg_vaddr);
1637 head_page = virt_to_head_page(sg_vaddr);
1638
1639 /* Compute offset in (possibly tail) page */
1640 page_offset = ((unsigned long)sg_vaddr &
1641 (PAGE_SIZE - 1)) +
1642 (page_address(page) - page_address(head_page));
1643 /* page_offset only refers to the beginning of sgt[i];
1644 * but the buffer itself may have an internal offset.
1645 */
1646 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1647 frag_len = qm_sg_entry_get_len(&sgt[i]);
1648 /* skb_add_rx_frag() does no checking on the page; if
1649 * we pass it a tail page, we'll end up with
1650 * bad page accounting and eventually with segafults.
1651 */
1652 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1653 frag_len, dpaa_bp->size);
1654 }
1655 /* Update the pool count for the current {cpu x bpool} */
1656 (*count_ptr)--;
1657
1658 if (qm_sg_entry_is_final(&sgt[i]))
1659 break;
1660 }
1661 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1662
1663 /* free the SG table buffer */
1664 skb_free_frag(vaddr);
1665
1666 return skb;
1667
1668free_buffers:
1669 /* compensate sw bpool counter changes */
1670 for (i--; i > 0; i--) {
1671 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1672 if (dpaa_bp) {
1673 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1674 (*count_ptr)++;
1675 }
1676 }
1677 /* free all the SG entries */
1678 for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1679 sg_addr = qm_sg_addr(&sgt[i]);
1680 sg_vaddr = phys_to_virt(sg_addr);
1681 skb_free_frag(sg_vaddr);
1682 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1683 if (dpaa_bp) {
1684 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1685 (*count_ptr)--;
1686 }
1687
1688 if (qm_sg_entry_is_final(&sgt[i]))
1689 break;
1690 }
1691 /* free the SGT fragment */
1692 skb_free_frag(vaddr);
1693
1694 return NULL;
1695}
1696
1697static int skb_to_contig_fd(struct dpaa_priv *priv,
1698 struct sk_buff *skb, struct qm_fd *fd,
1699 int *offset)
1700{
1701 struct net_device *net_dev = priv->net_dev;
1702 struct device *dev = net_dev->dev.parent;
1703 enum dma_data_direction dma_dir;
1704 unsigned char *buffer_start;
1705 struct sk_buff **skbh;
1706 dma_addr_t addr;
1707 int err;
1708
1709 /* We are guaranteed to have at least tx_headroom bytes
1710 * available, so just use that for offset.
1711 */
1712 fd->bpid = FSL_DPAA_BPID_INV;
1713 buffer_start = skb->data - priv->tx_headroom;
1714 dma_dir = DMA_TO_DEVICE;
1715
1716 skbh = (struct sk_buff **)buffer_start;
1717 *skbh = skb;
1718
1719 /* Enable L3/L4 hardware checksum computation.
1720 *
1721 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1722 * need to write into the skb.
1723 */
1724 err = dpaa_enable_tx_csum(priv, skb, fd,
1725 ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1726 if (unlikely(err < 0)) {
1727 if (net_ratelimit())
1728 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1729 err);
1730 return err;
1731 }
1732
1733 /* Fill in the rest of the FD fields */
1734 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
7d6f8dc0 1735 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
9ad1a374
MB
1736
1737 /* Map the entire buffer size that may be seen by FMan, but no more */
1738 addr = dma_map_single(dev, skbh,
1739 skb_tail_pointer(skb) - buffer_start, dma_dir);
1740 if (unlikely(dma_mapping_error(dev, addr))) {
1741 if (net_ratelimit())
1742 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1743 return -EINVAL;
1744 }
1745 qm_fd_addr_set64(fd, addr);
1746
1747 return 0;
1748}
1749
1750static int skb_to_sg_fd(struct dpaa_priv *priv,
1751 struct sk_buff *skb, struct qm_fd *fd)
1752{
1753 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1754 const int nr_frags = skb_shinfo(skb)->nr_frags;
1755 struct net_device *net_dev = priv->net_dev;
1756 struct device *dev = net_dev->dev.parent;
1757 struct qm_sg_entry *sgt;
1758 struct sk_buff **skbh;
1759 int i, j, err, sz;
1760 void *buffer_start;
1761 skb_frag_t *frag;
1762 dma_addr_t addr;
1763 size_t frag_len;
1764 void *sgt_buf;
1765
1766 /* get a page frag to store the SGTable */
1767 sz = SKB_DATA_ALIGN(priv->tx_headroom +
1768 sizeof(struct qm_sg_entry) * (1 + nr_frags));
1769 sgt_buf = netdev_alloc_frag(sz);
1770 if (unlikely(!sgt_buf)) {
1771 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1772 sz);
1773 return -ENOMEM;
1774 }
1775
1776 /* Enable L3/L4 hardware checksum computation.
1777 *
1778 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1779 * need to write into the skb.
1780 */
1781 err = dpaa_enable_tx_csum(priv, skb, fd,
1782 sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1783 if (unlikely(err < 0)) {
1784 if (net_ratelimit())
1785 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1786 err);
1787 goto csum_failed;
1788 }
1789
1790 sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1791 qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1792 sgt[0].bpid = FSL_DPAA_BPID_INV;
1793 sgt[0].offset = 0;
1794 addr = dma_map_single(dev, skb->data,
1795 skb_headlen(skb), dma_dir);
1796 if (unlikely(dma_mapping_error(dev, addr))) {
1797 dev_err(dev, "DMA mapping failed");
1798 err = -EINVAL;
1799 goto sg0_map_failed;
1800 }
1801 qm_sg_entry_set64(&sgt[0], addr);
1802
1803 /* populate the rest of SGT entries */
1804 frag = &skb_shinfo(skb)->frags[0];
1805 frag_len = frag->size;
1806 for (i = 1; i <= nr_frags; i++, frag++) {
1807 WARN_ON(!skb_frag_page(frag));
1808 addr = skb_frag_dma_map(dev, frag, 0,
1809 frag_len, dma_dir);
1810 if (unlikely(dma_mapping_error(dev, addr))) {
1811 dev_err(dev, "DMA mapping failed");
1812 err = -EINVAL;
1813 goto sg_map_failed;
1814 }
1815
1816 qm_sg_entry_set_len(&sgt[i], frag_len);
1817 sgt[i].bpid = FSL_DPAA_BPID_INV;
1818 sgt[i].offset = 0;
1819
1820 /* keep the offset in the address */
1821 qm_sg_entry_set64(&sgt[i], addr);
1822 frag_len = frag->size;
1823 }
1824 qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1825
1826 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1827
1828 /* DMA map the SGT page */
1829 buffer_start = (void *)sgt - priv->tx_headroom;
1830 skbh = (struct sk_buff **)buffer_start;
1831 *skbh = skb;
1832
1833 addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1834 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1835 dma_dir);
1836 if (unlikely(dma_mapping_error(dev, addr))) {
1837 dev_err(dev, "DMA mapping failed");
1838 err = -EINVAL;
1839 goto sgt_map_failed;
1840 }
1841
1842 fd->bpid = FSL_DPAA_BPID_INV;
7d6f8dc0 1843 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
9ad1a374
MB
1844 qm_fd_addr_set64(fd, addr);
1845
1846 return 0;
1847
1848sgt_map_failed:
1849sg_map_failed:
1850 for (j = 0; j < i; j++)
1851 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1852 qm_sg_entry_get_len(&sgt[j]), dma_dir);
1853sg0_map_failed:
1854csum_failed:
1855 skb_free_frag(sgt_buf);
1856
1857 return err;
1858}
1859
1860static inline int dpaa_xmit(struct dpaa_priv *priv,
1861 struct rtnl_link_stats64 *percpu_stats,
1862 int queue,
1863 struct qm_fd *fd)
1864{
1865 struct qman_fq *egress_fq;
1866 int err, i;
1867
1868 egress_fq = priv->egress_fqs[queue];
1869 if (fd->bpid == FSL_DPAA_BPID_INV)
7d6f8dc0 1870 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
9ad1a374 1871
eb11ddf3
MB
1872 /* Trace this Tx fd */
1873 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
1874
9ad1a374
MB
1875 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
1876 err = qman_enqueue(egress_fq, fd);
1877 if (err != -EBUSY)
1878 break;
1879 }
1880
1881 if (unlikely(err < 0)) {
1882 percpu_stats->tx_errors++;
1883 percpu_stats->tx_fifo_errors++;
1884 return err;
1885 }
1886
1887 percpu_stats->tx_packets++;
1888 percpu_stats->tx_bytes += qm_fd_get_length(fd);
1889
1890 return 0;
1891}
1892
1893static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1894{
1895 const int queue_mapping = skb_get_queue_mapping(skb);
1896 bool nonlinear = skb_is_nonlinear(skb);
1897 struct rtnl_link_stats64 *percpu_stats;
1898 struct dpaa_percpu_priv *percpu_priv;
1899 struct dpaa_priv *priv;
1900 struct qm_fd fd;
1901 int offset = 0;
1902 int err = 0;
1903
1904 priv = netdev_priv(net_dev);
1905 percpu_priv = this_cpu_ptr(priv->percpu_priv);
1906 percpu_stats = &percpu_priv->stats;
1907
1908 qm_fd_clear_fd(&fd);
1909
1910 if (!nonlinear) {
1911 /* We're going to store the skb backpointer at the beginning
1912 * of the data buffer, so we need a privately owned skb
1913 *
1914 * We've made sure skb is not shared in dev->priv_flags,
1915 * we need to verify the skb head is not cloned
1916 */
1917 if (skb_cow_head(skb, priv->tx_headroom))
1918 goto enomem;
1919
1920 WARN_ON(skb_is_nonlinear(skb));
1921 }
1922
1923 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
1924 * make sure we don't feed FMan with more fragments than it supports.
1925 */
1926 if (nonlinear &&
1927 likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
1928 /* Just create a S/G fd based on the skb */
1929 err = skb_to_sg_fd(priv, skb, &fd);
b0ce0d02 1930 percpu_priv->tx_frag_skbuffs++;
9ad1a374
MB
1931 } else {
1932 /* If the egress skb contains more fragments than we support
1933 * we have no choice but to linearize it ourselves.
1934 */
1935 if (unlikely(nonlinear) && __skb_linearize(skb))
1936 goto enomem;
1937
1938 /* Finally, create a contig FD from this skb */
1939 err = skb_to_contig_fd(priv, skb, &fd, &offset);
1940 }
1941 if (unlikely(err < 0))
1942 goto skb_to_fd_failed;
1943
1944 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
1945 return NETDEV_TX_OK;
1946
1947 dpaa_cleanup_tx_fd(priv, &fd);
1948skb_to_fd_failed:
1949enomem:
1950 percpu_stats->tx_errors++;
1951 dev_kfree_skb(skb);
1952 return NETDEV_TX_OK;
1953}
1954
1955static void dpaa_rx_error(struct net_device *net_dev,
1956 const struct dpaa_priv *priv,
1957 struct dpaa_percpu_priv *percpu_priv,
1958 const struct qm_fd *fd,
1959 u32 fqid)
1960{
1961 if (net_ratelimit())
1962 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
7d6f8dc0 1963 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
9ad1a374
MB
1964
1965 percpu_priv->stats.rx_errors++;
1966
7d6f8dc0 1967 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
b0ce0d02 1968 percpu_priv->rx_errors.dme++;
7d6f8dc0 1969 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
b0ce0d02 1970 percpu_priv->rx_errors.fpe++;
7d6f8dc0 1971 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
b0ce0d02 1972 percpu_priv->rx_errors.fse++;
7d6f8dc0 1973 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
b0ce0d02
MB
1974 percpu_priv->rx_errors.phe++;
1975
9ad1a374
MB
1976 dpaa_fd_release(net_dev, fd);
1977}
1978
1979static void dpaa_tx_error(struct net_device *net_dev,
1980 const struct dpaa_priv *priv,
1981 struct dpaa_percpu_priv *percpu_priv,
1982 const struct qm_fd *fd,
1983 u32 fqid)
1984{
1985 struct sk_buff *skb;
1986
1987 if (net_ratelimit())
1988 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
7d6f8dc0 1989 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
9ad1a374
MB
1990
1991 percpu_priv->stats.tx_errors++;
1992
1993 skb = dpaa_cleanup_tx_fd(priv, fd);
1994 dev_kfree_skb(skb);
1995}
1996
1997static int dpaa_eth_poll(struct napi_struct *napi, int budget)
1998{
1999 struct dpaa_napi_portal *np =
2000 container_of(napi, struct dpaa_napi_portal, napi);
2001
2002 int cleaned = qman_p_poll_dqrr(np->p, budget);
2003
2004 if (cleaned < budget) {
2005 napi_complete(napi);
2006 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2007
2008 } else if (np->down) {
2009 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2010 }
2011
2012 return cleaned;
2013}
2014
2015static void dpaa_tx_conf(struct net_device *net_dev,
2016 const struct dpaa_priv *priv,
2017 struct dpaa_percpu_priv *percpu_priv,
2018 const struct qm_fd *fd,
2019 u32 fqid)
2020{
2021 struct sk_buff *skb;
2022
7d6f8dc0 2023 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
9ad1a374
MB
2024 if (net_ratelimit())
2025 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
7d6f8dc0
CM
2026 be32_to_cpu(fd->status) &
2027 FM_FD_STAT_TX_ERRORS);
9ad1a374
MB
2028
2029 percpu_priv->stats.tx_errors++;
2030 }
2031
b0ce0d02
MB
2032 percpu_priv->tx_confirm++;
2033
9ad1a374
MB
2034 skb = dpaa_cleanup_tx_fd(priv, fd);
2035
2036 consume_skb(skb);
2037}
2038
2039static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2040 struct qman_portal *portal)
2041{
2042 if (unlikely(in_irq() || !in_serving_softirq())) {
2043 /* Disable QMan IRQ and invoke NAPI */
2044 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2045
2046 percpu_priv->np.p = portal;
2047 napi_schedule(&percpu_priv->np.napi);
b0ce0d02 2048 percpu_priv->in_interrupt++;
9ad1a374
MB
2049 return 1;
2050 }
2051 return 0;
2052}
2053
2054static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2055 struct qman_fq *fq,
2056 const struct qm_dqrr_entry *dq)
2057{
2058 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2059 struct dpaa_percpu_priv *percpu_priv;
2060 struct net_device *net_dev;
2061 struct dpaa_bp *dpaa_bp;
2062 struct dpaa_priv *priv;
2063
2064 net_dev = dpaa_fq->net_dev;
2065 priv = netdev_priv(net_dev);
2066 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2067 if (!dpaa_bp)
2068 return qman_cb_dqrr_consume;
2069
2070 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2071
2072 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2073 return qman_cb_dqrr_stop;
2074
2075 if (dpaa_eth_refill_bpools(priv))
2076 /* Unable to refill the buffer pool due to insufficient
2077 * system memory. Just release the frame back into the pool,
2078 * otherwise we'll soon end up with an empty buffer pool.
2079 */
2080 dpaa_fd_release(net_dev, &dq->fd);
2081 else
2082 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2083
2084 return qman_cb_dqrr_consume;
2085}
2086
2087static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2088 struct qman_fq *fq,
2089 const struct qm_dqrr_entry *dq)
2090{
2091 struct rtnl_link_stats64 *percpu_stats;
2092 struct dpaa_percpu_priv *percpu_priv;
2093 const struct qm_fd *fd = &dq->fd;
2094 dma_addr_t addr = qm_fd_addr(fd);
2095 enum qm_fd_format fd_format;
2096 struct net_device *net_dev;
2097 u32 fd_status = fd->status;
2098 struct dpaa_bp *dpaa_bp;
2099 struct dpaa_priv *priv;
2100 unsigned int skb_len;
2101 struct sk_buff *skb;
2102 int *count_ptr;
2103
7d6f8dc0
CM
2104 fd_status = be32_to_cpu(fd->status);
2105 fd_format = qm_fd_get_format(fd);
9ad1a374
MB
2106 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2107 priv = netdev_priv(net_dev);
2108 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2109 if (!dpaa_bp)
2110 return qman_cb_dqrr_consume;
2111
eb11ddf3
MB
2112 /* Trace the Rx fd */
2113 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2114
9ad1a374
MB
2115 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2116 percpu_stats = &percpu_priv->stats;
2117
2118 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2119 return qman_cb_dqrr_stop;
2120
2121 /* Make sure we didn't run out of buffers */
2122 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2123 /* Unable to refill the buffer pool due to insufficient
2124 * system memory. Just release the frame back into the pool,
2125 * otherwise we'll soon end up with an empty buffer pool.
2126 */
2127 dpaa_fd_release(net_dev, &dq->fd);
2128 return qman_cb_dqrr_consume;
2129 }
2130
2131 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2132 if (net_ratelimit())
2133 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2134 fd_status & FM_FD_STAT_RX_ERRORS);
2135
2136 percpu_stats->rx_errors++;
2137 dpaa_fd_release(net_dev, fd);
2138 return qman_cb_dqrr_consume;
2139 }
2140
2141 dpaa_bp = dpaa_bpid2pool(fd->bpid);
2142 if (!dpaa_bp)
2143 return qman_cb_dqrr_consume;
2144
2145 dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2146
2147 /* prefetch the first 64 bytes of the frame or the SGT start */
2148 prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd));
2149
2150 fd_format = qm_fd_get_format(fd);
2151 /* The only FD types that we may receive are contig and S/G */
2152 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2153
2154 /* Account for either the contig buffer or the SGT buffer (depending on
2155 * which case we were in) having been removed from the pool.
2156 */
2157 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2158 (*count_ptr)--;
2159
2160 if (likely(fd_format == qm_fd_contig))
2161 skb = contig_fd_to_skb(priv, fd);
2162 else
2163 skb = sg_fd_to_skb(priv, fd);
2164 if (!skb)
2165 return qman_cb_dqrr_consume;
2166
2167 skb->protocol = eth_type_trans(skb, net_dev);
2168
2169 skb_len = skb->len;
2170
2171 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2172 return qman_cb_dqrr_consume;
2173
2174 percpu_stats->rx_packets++;
2175 percpu_stats->rx_bytes += skb_len;
2176
2177 return qman_cb_dqrr_consume;
2178}
2179
2180static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2181 struct qman_fq *fq,
2182 const struct qm_dqrr_entry *dq)
2183{
2184 struct dpaa_percpu_priv *percpu_priv;
2185 struct net_device *net_dev;
2186 struct dpaa_priv *priv;
2187
2188 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2189 priv = netdev_priv(net_dev);
2190
2191 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2192
2193 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2194 return qman_cb_dqrr_stop;
2195
2196 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2197
2198 return qman_cb_dqrr_consume;
2199}
2200
2201static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2202 struct qman_fq *fq,
2203 const struct qm_dqrr_entry *dq)
2204{
2205 struct dpaa_percpu_priv *percpu_priv;
2206 struct net_device *net_dev;
2207 struct dpaa_priv *priv;
2208
2209 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2210 priv = netdev_priv(net_dev);
2211
eb11ddf3
MB
2212 /* Trace the fd */
2213 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2214
9ad1a374
MB
2215 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2216
2217 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2218 return qman_cb_dqrr_stop;
2219
2220 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2221
2222 return qman_cb_dqrr_consume;
2223}
2224
2225static void egress_ern(struct qman_portal *portal,
2226 struct qman_fq *fq,
2227 const union qm_mr_entry *msg)
2228{
2229 const struct qm_fd *fd = &msg->ern.fd;
2230 struct dpaa_percpu_priv *percpu_priv;
2231 const struct dpaa_priv *priv;
2232 struct net_device *net_dev;
2233 struct sk_buff *skb;
2234
2235 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2236 priv = netdev_priv(net_dev);
2237 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2238
2239 percpu_priv->stats.tx_dropped++;
2240 percpu_priv->stats.tx_fifo_errors++;
b0ce0d02 2241 count_ern(percpu_priv, msg);
9ad1a374
MB
2242
2243 skb = dpaa_cleanup_tx_fd(priv, fd);
2244 dev_kfree_skb_any(skb);
2245}
2246
2247static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2248 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2249 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2250 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2251 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2252 .egress_ern = { .cb = { .ern = egress_ern } }
2253};
2254
2255static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2256{
2257 struct dpaa_percpu_priv *percpu_priv;
2258 int i;
2259
2260 for_each_possible_cpu(i) {
2261 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2262
2263 percpu_priv->np.down = 0;
2264 napi_enable(&percpu_priv->np.napi);
2265 }
2266}
2267
2268static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2269{
2270 struct dpaa_percpu_priv *percpu_priv;
2271 int i;
2272
2273 for_each_possible_cpu(i) {
2274 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2275
2276 percpu_priv->np.down = 1;
2277 napi_disable(&percpu_priv->np.napi);
2278 }
2279}
2280
2281static int dpaa_open(struct net_device *net_dev)
2282{
2283 struct mac_device *mac_dev;
2284 struct dpaa_priv *priv;
2285 int err, i;
2286
2287 priv = netdev_priv(net_dev);
2288 mac_dev = priv->mac_dev;
2289 dpaa_eth_napi_enable(priv);
2290
2291 net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2292 if (!net_dev->phydev) {
2293 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2294 return -ENODEV;
2295 }
2296
2297 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2298 err = fman_port_enable(mac_dev->port[i]);
2299 if (err)
2300 goto mac_start_failed;
2301 }
2302
2303 err = priv->mac_dev->start(mac_dev);
2304 if (err < 0) {
2305 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2306 goto mac_start_failed;
2307 }
2308
2309 netif_tx_start_all_queues(net_dev);
2310
2311 return 0;
2312
2313mac_start_failed:
2314 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2315 fman_port_disable(mac_dev->port[i]);
2316
2317 dpaa_eth_napi_disable(priv);
2318
2319 return err;
2320}
2321
2322static int dpaa_eth_stop(struct net_device *net_dev)
2323{
2324 struct dpaa_priv *priv;
2325 int err;
2326
2327 err = dpaa_stop(net_dev);
2328
2329 priv = netdev_priv(net_dev);
2330 dpaa_eth_napi_disable(priv);
2331
2332 return err;
2333}
2334
2335static const struct net_device_ops dpaa_ops = {
2336 .ndo_open = dpaa_open,
2337 .ndo_start_xmit = dpaa_start_xmit,
2338 .ndo_stop = dpaa_eth_stop,
2339 .ndo_tx_timeout = dpaa_tx_timeout,
2340 .ndo_get_stats64 = dpaa_get_stats64,
2341 .ndo_set_mac_address = dpaa_set_mac_address,
2342 .ndo_validate_addr = eth_validate_addr,
2343 .ndo_set_rx_mode = dpaa_set_rx_mode,
2344};
2345
2346static int dpaa_napi_add(struct net_device *net_dev)
2347{
2348 struct dpaa_priv *priv = netdev_priv(net_dev);
2349 struct dpaa_percpu_priv *percpu_priv;
2350 int cpu;
2351
2352 for_each_possible_cpu(cpu) {
2353 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2354
2355 netif_napi_add(net_dev, &percpu_priv->np.napi,
2356 dpaa_eth_poll, NAPI_POLL_WEIGHT);
2357 }
2358
2359 return 0;
2360}
2361
2362static void dpaa_napi_del(struct net_device *net_dev)
2363{
2364 struct dpaa_priv *priv = netdev_priv(net_dev);
2365 struct dpaa_percpu_priv *percpu_priv;
2366 int cpu;
2367
2368 for_each_possible_cpu(cpu) {
2369 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2370
2371 netif_napi_del(&percpu_priv->np.napi);
2372 }
2373}
2374
2375static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2376 struct bm_buffer *bmb)
2377{
2378 dma_addr_t addr = bm_buf_addr(bmb);
2379
2380 dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2381
2382 skb_free_frag(phys_to_virt(addr));
2383}
2384
2385/* Alloc the dpaa_bp struct and configure default values */
2386static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2387{
2388 struct dpaa_bp *dpaa_bp;
2389
2390 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2391 if (!dpaa_bp)
2392 return ERR_PTR(-ENOMEM);
2393
2394 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2395 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2396 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2397
2398 dpaa_bp->seed_cb = dpaa_bp_seed;
2399 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2400
2401 return dpaa_bp;
2402}
2403
2404/* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2405 * We won't be sending congestion notifications to FMan; for now, we just use
2406 * this CGR to generate enqueue rejections to FMan in order to drop the frames
2407 * before they reach our ingress queues and eat up memory.
2408 */
2409static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2410{
2411 struct qm_mcc_initcgr initcgr;
2412 u32 cs_th;
2413 int err;
2414
2415 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2416 if (err < 0) {
2417 if (netif_msg_drv(priv))
2418 pr_err("Error %d allocating CGR ID\n", err);
2419 goto out_error;
2420 }
2421
2422 /* Enable CS TD, but disable Congestion State Change Notifications. */
7d6f8dc0 2423 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
9ad1a374
MB
2424 initcgr.cgr.cscn_en = QM_CGR_EN;
2425 cs_th = DPAA_INGRESS_CS_THRESHOLD;
2426 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2427
7d6f8dc0 2428 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
9ad1a374
MB
2429 initcgr.cgr.cstd_en = QM_CGR_EN;
2430
2431 /* This CGR will be associated with the SWP affined to the current CPU.
2432 * However, we'll place all our ingress FQs in it.
2433 */
2434 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2435 &initcgr);
2436 if (err < 0) {
2437 if (netif_msg_drv(priv))
2438 pr_err("Error %d creating ingress CGR with ID %d\n",
2439 err, priv->ingress_cgr.cgrid);
2440 qman_release_cgrid(priv->ingress_cgr.cgrid);
2441 goto out_error;
2442 }
2443 if (netif_msg_drv(priv))
2444 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2445 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2446
2447 priv->use_ingress_cgr = true;
2448
2449out_error:
2450 return err;
2451}
2452
2453static const struct of_device_id dpaa_match[];
2454
2455static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2456{
2457 u16 headroom;
2458
2459 /* The frame headroom must accommodate:
2460 * - the driver private data area
2461 * - parse results, hash results, timestamp if selected
2462 * If either hash results or time stamp are selected, both will
2463 * be copied to/from the frame headroom, as TS is located between PR and
2464 * HR in the IC and IC copy size has a granularity of 16bytes
2465 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2466 *
2467 * Also make sure the headroom is a multiple of data_align bytes
2468 */
2469 headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2470 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2471
2472 return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2473 DPAA_FD_DATA_ALIGNMENT) :
2474 headroom;
2475}
2476
2477static int dpaa_eth_probe(struct platform_device *pdev)
2478{
2479 struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2480 struct dpaa_percpu_priv *percpu_priv;
2481 struct net_device *net_dev = NULL;
2482 struct dpaa_fq *dpaa_fq, *tmp;
2483 struct dpaa_priv *priv = NULL;
2484 struct fm_port_fqs port_fqs;
2485 struct mac_device *mac_dev;
2486 int err = 0, i, channel;
2487 struct device *dev;
2488
2489 dev = &pdev->dev;
2490
2491 /* Allocate this early, so we can store relevant information in
2492 * the private area
2493 */
2494 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2495 if (!net_dev) {
2496 dev_err(dev, "alloc_etherdev_mq() failed\n");
2497 goto alloc_etherdev_mq_failed;
2498 }
2499
2500 /* Do this here, so we can be verbose early */
2501 SET_NETDEV_DEV(net_dev, dev);
2502 dev_set_drvdata(dev, net_dev);
2503
2504 priv = netdev_priv(net_dev);
2505 priv->net_dev = net_dev;
2506
2507 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2508
2509 mac_dev = dpaa_mac_dev_get(pdev);
2510 if (IS_ERR(mac_dev)) {
2511 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2512 err = PTR_ERR(mac_dev);
2513 goto mac_probe_failed;
2514 }
2515
2516 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2517 * we choose conservatively and let the user explicitly set a higher
2518 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2519 * in the same LAN.
2520 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2521 * start with the maximum allowed.
2522 */
2523 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2524
2525 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2526 net_dev->mtu);
2527
2528 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2529 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2530
2531 /* device used for DMA mapping */
2532 arch_setup_dma_ops(dev, 0, 0, NULL, false);
2533 err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2534 if (err) {
2535 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2536 goto dev_mask_failed;
2537 }
2538
2539 /* bp init */
2540 for (i = 0; i < DPAA_BPS_NUM; i++) {
2541 int err;
2542
2543 dpaa_bps[i] = dpaa_bp_alloc(dev);
2544 if (IS_ERR(dpaa_bps[i]))
2545 return PTR_ERR(dpaa_bps[i]);
2546 /* the raw size of the buffers used for reception */
2547 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2548 /* avoid runtime computations by keeping the usable size here */
2549 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2550 dpaa_bps[i]->dev = dev;
2551
2552 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2553 if (err < 0) {
2554 dpaa_bps_free(priv);
2555 priv->dpaa_bps[i] = NULL;
2556 goto bp_create_failed;
2557 }
2558 priv->dpaa_bps[i] = dpaa_bps[i];
2559 }
2560
2561 INIT_LIST_HEAD(&priv->dpaa_fq_list);
2562
2563 memset(&port_fqs, 0, sizeof(port_fqs));
2564
2565 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2566 if (err < 0) {
2567 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2568 goto fq_probe_failed;
2569 }
2570
2571 priv->mac_dev = mac_dev;
2572
2573 channel = dpaa_get_channel();
2574 if (channel < 0) {
2575 dev_err(dev, "dpaa_get_channel() failed\n");
2576 err = channel;
2577 goto get_channel_failed;
2578 }
2579
2580 priv->channel = (u16)channel;
2581
2582 /* Start a thread that will walk the CPUs with affine portals
2583 * and add this pool channel to each's dequeue mask.
2584 */
2585 dpaa_eth_add_channel(priv->channel);
2586
2587 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2588
2589 /* Create a congestion group for this netdev, with
2590 * dynamically-allocated CGR ID.
2591 * Must be executed after probing the MAC, but before
2592 * assigning the egress FQs to the CGRs.
2593 */
2594 err = dpaa_eth_cgr_init(priv);
2595 if (err < 0) {
2596 dev_err(dev, "Error initializing CGR\n");
2597 goto tx_cgr_init_failed;
2598 }
2599
2600 err = dpaa_ingress_cgr_init(priv);
2601 if (err < 0) {
2602 dev_err(dev, "Error initializing ingress CGR\n");
2603 goto rx_cgr_init_failed;
2604 }
2605
2606 /* Add the FQs to the interface, and make them active */
2607 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2608 err = dpaa_fq_init(dpaa_fq, false);
2609 if (err < 0)
2610 goto fq_alloc_failed;
2611 }
2612
2613 priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2614 priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2615
2616 /* All real interfaces need their ports initialized */
2617 dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2618 &priv->buf_layout[0], dev);
2619
2620 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2621 if (!priv->percpu_priv) {
2622 dev_err(dev, "devm_alloc_percpu() failed\n");
2623 err = -ENOMEM;
2624 goto alloc_percpu_failed;
2625 }
2626 for_each_possible_cpu(i) {
2627 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2628 memset(percpu_priv, 0, sizeof(*percpu_priv));
2629 }
2630
2631 /* Initialize NAPI */
2632 err = dpaa_napi_add(net_dev);
2633 if (err < 0)
2634 goto napi_add_failed;
2635
2636 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2637 if (err < 0)
2638 goto netdev_init_failed;
2639
846a86e2
MB
2640 dpaa_eth_sysfs_init(&net_dev->dev);
2641
9ad1a374
MB
2642 netif_info(priv, probe, net_dev, "Probed interface %s\n",
2643 net_dev->name);
2644
2645 return 0;
2646
2647netdev_init_failed:
2648napi_add_failed:
2649 dpaa_napi_del(net_dev);
2650alloc_percpu_failed:
2651 dpaa_fq_free(dev, &priv->dpaa_fq_list);
2652fq_alloc_failed:
2653 qman_delete_cgr_safe(&priv->ingress_cgr);
2654 qman_release_cgrid(priv->ingress_cgr.cgrid);
2655rx_cgr_init_failed:
2656 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2657 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2658tx_cgr_init_failed:
2659get_channel_failed:
2660 dpaa_bps_free(priv);
2661bp_create_failed:
2662fq_probe_failed:
2663dev_mask_failed:
2664mac_probe_failed:
2665 dev_set_drvdata(dev, NULL);
2666 free_netdev(net_dev);
2667alloc_etherdev_mq_failed:
2668 for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2669 if (atomic_read(&dpaa_bps[i]->refs) == 0)
2670 devm_kfree(dev, dpaa_bps[i]);
2671 }
2672 return err;
2673}
2674
2675static int dpaa_remove(struct platform_device *pdev)
2676{
2677 struct net_device *net_dev;
2678 struct dpaa_priv *priv;
2679 struct device *dev;
2680 int err;
2681
2682 dev = &pdev->dev;
2683 net_dev = dev_get_drvdata(dev);
2684
2685 priv = netdev_priv(net_dev);
2686
846a86e2
MB
2687 dpaa_eth_sysfs_remove(dev);
2688
9ad1a374
MB
2689 dev_set_drvdata(dev, NULL);
2690 unregister_netdev(net_dev);
2691
2692 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2693
2694 qman_delete_cgr_safe(&priv->ingress_cgr);
2695 qman_release_cgrid(priv->ingress_cgr.cgrid);
2696 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2697 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2698
2699 dpaa_napi_del(net_dev);
2700
2701 dpaa_bps_free(priv);
2702
2703 free_netdev(net_dev);
2704
2705 return err;
2706}
2707
2708static struct platform_device_id dpaa_devtype[] = {
2709 {
2710 .name = "dpaa-ethernet",
2711 .driver_data = 0,
2712 }, {
2713 }
2714};
2715MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2716
2717static struct platform_driver dpaa_driver = {
2718 .driver = {
2719 .name = KBUILD_MODNAME,
2720 },
2721 .id_table = dpaa_devtype,
2722 .probe = dpaa_eth_probe,
2723 .remove = dpaa_remove
2724};
2725
2726static int __init dpaa_load(void)
2727{
2728 int err;
2729
2730 pr_debug("FSL DPAA Ethernet driver\n");
2731
2732 /* initialize dpaa_eth mirror values */
2733 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2734 dpaa_max_frm = fman_get_max_frm();
2735
2736 err = platform_driver_register(&dpaa_driver);
2737 if (err < 0)
2738 pr_err("Error, platform_driver_register() = %d\n", err);
2739
2740 return err;
2741}
2742module_init(dpaa_load);
2743
2744static void __exit dpaa_unload(void)
2745{
2746 platform_driver_unregister(&dpaa_driver);
2747
2748 /* Only one channel is used and needs to be released after all
2749 * interfaces are removed
2750 */
2751 dpaa_release_channel();
2752}
2753module_exit(dpaa_unload);
2754
2755MODULE_LICENSE("Dual BSD/GPL");
2756MODULE_DESCRIPTION("FSL DPAA Ethernet driver");