tls: return -EFAULT if copy_to_user() fails
[linux-block.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
b72a32da 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
56d36be4
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
56d36be4
DM
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
f612b815 38#include "t4_values.h"
56d36be4 39#include "t4fw_api.h"
a69265e9 40#include "t4fw_version.h"
56d36be4
DM
41
42/**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
51 *
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
56 */
de498c89
RD
57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
59{
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
62
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
67 }
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
72 }
73}
74
75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
77{
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
80}
81
82/**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
88 *
89 * Sets a register field specified by the supplied mask to the
90 * given value.
91 */
92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
94{
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
99}
100
101/**
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
109 *
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
112 */
f2b7e78d 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
116{
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
121 }
122}
123
13ee15d3
VP
124/**
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
132 *
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
135 */
136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
139{
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
143 }
144}
145
0abfd152
HS
146/*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153{
3ccc6cf7
HS
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
0abfd152
HS
160
161 if (is_t4(adap->params.chip))
f061de42 162 req |= LOCALCFG_F;
0abfd152 163
f061de42
HS
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0abfd152
HS
166
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
171 */
f061de42 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0abfd152
HS
173}
174
31d55c2d
HS
175/*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
183static void t4_report_fw_error(struct adapter *adap)
184{
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
194 };
195 u32 pcie_fw;
196
f061de42
HS
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
31d55c2d 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
b2e1a3f0 200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
31d55c2d
HS
201}
202
56d36be4
DM
203/*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 u32 mbox_addr)
208{
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211}
212
213/*
214 * Handle a FW assertion reported in a mailbox.
215 */
216static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217{
218 struct fw_debug_cmd asrt;
219
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
f404f80c
HS
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
56d36be4
DM
225}
226
7f080c3f
HS
227/**
228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229 * @adapter: the adapter
230 * @cmd: the Firmware Mailbox Command or Reply
231 * @size: command length in bytes
232 * @access: the time (ms) needed to access the Firmware Mailbox
233 * @execute: the time (ms) the command spent being executed
234 */
235static void t4_record_mbox(struct adapter *adapter,
236 const __be64 *cmd, unsigned int size,
237 int access, int execute)
56d36be4 238{
7f080c3f
HS
239 struct mbox_cmd_log *log = adapter->mbox_log;
240 struct mbox_cmd *entry;
241 int i;
242
243 entry = mbox_cmd_log_entry(log, log->cursor++);
244 if (log->cursor == log->size)
245 log->cursor = 0;
246
247 for (i = 0; i < size / 8; i++)
248 entry->cmd[i] = be64_to_cpu(cmd[i]);
249 while (i < MBOX_LEN / 8)
250 entry->cmd[i++] = 0;
251 entry->timestamp = jiffies;
252 entry->seqno = log->seqno++;
253 entry->access = access;
254 entry->execute = execute;
56d36be4
DM
255}
256
257/**
01b69614 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
56d36be4
DM
259 * @adap: the adapter
260 * @mbox: index of the mailbox to use
261 * @cmd: the command to write
262 * @size: command length in bytes
263 * @rpl: where to optionally store the reply
264 * @sleep_ok: if true we may sleep while awaiting command completion
01b69614 265 * @timeout: time to wait for command to finish before timing out
56d36be4
DM
266 *
267 * Sends the given command to FW through the selected mailbox and waits
268 * for the FW to execute the command. If @rpl is not %NULL it is used to
269 * store the FW's reply to the command. The command and its optional
270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
271 * to respond. @sleep_ok determines whether we may sleep while awaiting
272 * the response. If sleeping is allowed we use progressive backoff
273 * otherwise we spin.
274 *
275 * The return value is 0 on success or a negative errno on failure. A
276 * failure can happen either because we are not able to execute the
277 * command or FW executes it but signals an error. In the latter case
278 * the return value is the error code indicated by FW (negated).
279 */
01b69614
HS
280int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 int size, void *rpl, bool sleep_ok, int timeout)
56d36be4 282{
005b5717 283 static const int delay[] = {
56d36be4
DM
284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 };
286
4055ae5e 287 struct mbox_list entry;
7f080c3f
HS
288 u16 access = 0;
289 u16 execute = 0;
56d36be4
DM
290 u32 v;
291 u64 res;
7f080c3f 292 int i, ms, delay_idx, ret;
56d36be4 293 const __be64 *p = cmd;
89c3a86c
HS
294 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
7f080c3f 296 __be64 cmd_rpl[MBOX_LEN / 8];
f358738b 297 u32 pcie_fw;
56d36be4
DM
298
299 if ((size & 15) || size > MBOX_LEN)
300 return -EINVAL;
301
204dc3c0
DM
302 /*
303 * If the device is off-line, as in EEH, commands will time out.
304 * Fail them early so we don't waste time waiting.
305 */
306 if (adap->pdev->error_state != pci_channel_io_normal)
307 return -EIO;
308
5a20f5cf
HS
309 /* If we have a negative timeout, that implies that we can't sleep. */
310 if (timeout < 0) {
311 sleep_ok = false;
312 timeout = -timeout;
313 }
314
4055ae5e
HS
315 /* Queue ourselves onto the mailbox access list. When our entry is at
316 * the front of the list, we have rights to access the mailbox. So we
317 * wait [for a while] till we're at the front [or bail out with an
318 * EBUSY] ...
319 */
320 spin_lock(&adap->mbox_lock);
321 list_add_tail(&entry.list, &adap->mlist.list);
322 spin_unlock(&adap->mbox_lock);
323
324 delay_idx = 0;
325 ms = delay[0];
326
327 for (i = 0; ; i += ms) {
328 /* If we've waited too long, return a busy indication. This
329 * really ought to be based on our initial position in the
330 * mailbox access list but this is a start. We very rearely
331 * contend on access to the mailbox ...
332 */
3be0679b
HS
333 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
4055ae5e
HS
335 spin_lock(&adap->mbox_lock);
336 list_del(&entry.list);
337 spin_unlock(&adap->mbox_lock);
3be0679b 338 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
4055ae5e
HS
339 t4_record_mbox(adap, cmd, size, access, ret);
340 return ret;
341 }
342
343 /* If we're at the head, break out and start the mailbox
344 * protocol.
345 */
346 if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 list) == &entry)
348 break;
349
350 /* Delay for a bit before checking again ... */
351 if (sleep_ok) {
352 ms = delay[delay_idx]; /* last element may repeat */
353 if (delay_idx < ARRAY_SIZE(delay) - 1)
354 delay_idx++;
355 msleep(ms);
356 } else {
357 mdelay(ms);
358 }
359 }
360
361 /* Loop trying to get ownership of the mailbox. Return an error
362 * if we can't gain ownership.
363 */
89c3a86c 364 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 365 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
7f080c3f 367 if (v != MBOX_OWNER_DRV) {
4055ae5e
HS
368 spin_lock(&adap->mbox_lock);
369 list_del(&entry.list);
370 spin_unlock(&adap->mbox_lock);
7f080c3f
HS
371 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
373 return ret;
374 }
56d36be4 375
7f080c3f
HS
376 /* Copy in the new mailbox command and send it on its way ... */
377 t4_record_mbox(adap, cmd, MBOX_LEN, access, 0);
56d36be4
DM
378 for (i = 0; i < size; i += 8)
379 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380
89c3a86c 381 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
56d36be4
DM
382 t4_read_reg(adap, ctl_reg); /* flush write */
383
384 delay_idx = 0;
385 ms = delay[0];
386
f358738b
HS
387 for (i = 0;
388 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 i < timeout;
390 i += ms) {
56d36be4
DM
391 if (sleep_ok) {
392 ms = delay[delay_idx]; /* last element may repeat */
393 if (delay_idx < ARRAY_SIZE(delay) - 1)
394 delay_idx++;
395 msleep(ms);
396 } else
397 mdelay(ms);
398
399 v = t4_read_reg(adap, ctl_reg);
89c3a86c
HS
400 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 if (!(v & MBMSGVALID_F)) {
56d36be4
DM
402 t4_write_reg(adap, ctl_reg, 0);
403 continue;
404 }
405
7f080c3f
HS
406 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 res = be64_to_cpu(cmd_rpl[0]);
408
e2ac9628 409 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
56d36be4 410 fw_asrt(adap, data_reg);
e2ac9628
HS
411 res = FW_CMD_RETVAL_V(EIO);
412 } else if (rpl) {
7f080c3f 413 memcpy(rpl, cmd_rpl, size);
e2ac9628 414 }
56d36be4 415
56d36be4 416 t4_write_reg(adap, ctl_reg, 0);
7f080c3f
HS
417
418 execute = i + ms;
419 t4_record_mbox(adap, cmd_rpl,
420 MBOX_LEN, access, execute);
4055ae5e
HS
421 spin_lock(&adap->mbox_lock);
422 list_del(&entry.list);
423 spin_unlock(&adap->mbox_lock);
e2ac9628 424 return -FW_CMD_RETVAL_G((int)res);
56d36be4
DM
425 }
426 }
427
f358738b 428 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
7f080c3f 429 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
56d36be4
DM
430 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 *(const u8 *)cmd, mbox);
31d55c2d 432 t4_report_fw_error(adap);
4055ae5e
HS
433 spin_lock(&adap->mbox_lock);
434 list_del(&entry.list);
435 spin_unlock(&adap->mbox_lock);
3be0679b 436 t4_fatal_err(adap);
7f080c3f 437 return ret;
56d36be4
DM
438}
439
01b69614
HS
440int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 void *rpl, bool sleep_ok)
56d36be4 442{
01b69614
HS
443 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
445}
446
bf8ebb67
HS
447static int t4_edc_err_read(struct adapter *adap, int idx)
448{
449 u32 edc_ecc_err_addr_reg;
450 u32 rdata_reg;
451
452 if (is_t4(adap->params.chip)) {
453 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 return 0;
455 }
456 if (idx != 0 && idx != 1) {
457 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 return 0;
459 }
460
461 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463
464 CH_WARN(adap,
465 "edc%d err addr 0x%x: 0x%x.\n",
466 idx, edc_ecc_err_addr_reg,
467 t4_read_reg(adap, edc_ecc_err_addr_reg));
468 CH_WARN(adap,
469 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 rdata_reg,
471 (unsigned long long)t4_read_reg64(adap, rdata_reg),
472 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480
481 return 0;
482}
483
5afc8b84
VP
484/**
485 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486 * @adap: the adapter
fc5ab020 487 * @win: PCI-E Memory Window to use
5afc8b84
VP
488 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489 * @addr: address within indicated memory type
490 * @len: amount of memory to transfer
f01aa633 491 * @hbuf: host memory buffer
fc5ab020 492 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5afc8b84
VP
493 *
494 * Reads/writes an [almost] arbitrary memory region in the firmware: the
fc5ab020
HS
495 * firmware memory address and host buffer must be aligned on 32-bit
496 * boudaries; the length may be arbitrary. The memory is transferred as
497 * a raw byte sequence from/to the firmware's memory. If this memory
498 * contains data structures which contain multi-byte integers, it's the
499 * caller's responsibility to perform appropriate byte order conversions.
5afc8b84 500 */
fc5ab020 501int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
f01aa633 502 u32 len, void *hbuf, int dir)
5afc8b84 503{
fc5ab020
HS
504 u32 pos, offset, resid, memoffset;
505 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
f01aa633 506 u32 *buf;
5afc8b84 507
fc5ab020 508 /* Argument sanity checks ...
5afc8b84 509 */
f01aa633 510 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5afc8b84 511 return -EINVAL;
f01aa633 512 buf = (u32 *)hbuf;
5afc8b84 513
fc5ab020
HS
514 /* It's convenient to be able to handle lengths which aren't a
515 * multiple of 32-bits because we often end up transferring files to
516 * the firmware. So we'll handle that by normalizing the length here
517 * and then handling any residual transfer at the end.
518 */
519 resid = len & 0x3;
520 len -= resid;
8c357ebd 521
19dd37ba 522 /* Offset into the region of memory which is being accessed
5afc8b84
VP
523 * MEM_EDC0 = 0
524 * MEM_EDC1 = 1
3ccc6cf7
HS
525 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
526 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
5afc8b84 527 */
6559a7e8 528 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
19dd37ba
SR
529 if (mtype != MEM_MC1)
530 memoffset = (mtype * (edc_size * 1024 * 1024));
531 else {
6559a7e8 532 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
7f0b8a56 533 MA_EXT_MEMORY0_BAR_A));
19dd37ba
SR
534 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 }
5afc8b84
VP
536
537 /* Determine the PCIE_MEM_ACCESS_OFFSET */
538 addr = addr + memoffset;
539
fc5ab020
HS
540 /* Each PCI-E Memory Window is programmed with a window size -- or
541 * "aperture" -- which controls the granularity of its mapping onto
542 * adapter memory. We need to grab that aperture in order to know
543 * how to use the specified window. The window is also programmed
544 * with the base address of the Memory Window in BAR0's address
545 * space. For T4 this is an absolute PCI-E Bus Address. For T5
546 * the address is relative to BAR0.
5afc8b84 547 */
fc5ab020 548 mem_reg = t4_read_reg(adap,
f061de42 549 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
fc5ab020 550 win));
f061de42
HS
551 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
fc5ab020
HS
553 if (is_t4(adap->params.chip))
554 mem_base -= adap->t4_bar0;
b2612722 555 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
5afc8b84 556
fc5ab020
HS
557 /* Calculate our initial PCI-E Memory Window Position and Offset into
558 * that Window.
559 */
560 pos = addr & ~(mem_aperture-1);
561 offset = addr - pos;
5afc8b84 562
fc5ab020
HS
563 /* Set up initial PCI-E Memory Window to cover the start of our
564 * transfer. (Read it back to ensure that changes propagate before we
565 * attempt to use the new value.)
566 */
567 t4_write_reg(adap,
f061de42 568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
fc5ab020
HS
569 pos | win_pf);
570 t4_read_reg(adap,
f061de42 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
fc5ab020
HS
572
573 /* Transfer data to/from the adapter as long as there's an integral
574 * number of 32-bit transfers to complete.
f01aa633
HS
575 *
576 * A note on Endianness issues:
577 *
578 * The "register" reads and writes below from/to the PCI-E Memory
579 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 * Little-Endian "swizzel." As a result, if we have the following
581 * data in adapter memory:
582 *
583 * Memory: ... | b0 | b1 | b2 | b3 | ...
584 * Address: i+0 i+1 i+2 i+3
585 *
586 * Then a read of the adapter memory via the PCI-E Memory Window
587 * will yield:
588 *
589 * x = readl(i)
590 * 31 0
591 * [ b3 | b2 | b1 | b0 ]
592 *
593 * If this value is stored into local memory on a Little-Endian system
594 * it will show up correctly in local memory as:
595 *
596 * ( ..., b0, b1, b2, b3, ... )
597 *
598 * But on a Big-Endian system, the store will show up in memory
599 * incorrectly swizzled as:
600 *
601 * ( ..., b3, b2, b1, b0, ... )
602 *
603 * So we need to account for this in the reads and writes to the
604 * PCI-E Memory Window below by undoing the register read/write
605 * swizzels.
fc5ab020
HS
606 */
607 while (len > 0) {
608 if (dir == T4_MEMORY_READ)
f01aa633
HS
609 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 mem_base + offset));
fc5ab020
HS
611 else
612 t4_write_reg(adap, mem_base + offset,
f01aa633 613 (__force u32)cpu_to_le32(*buf++));
fc5ab020
HS
614 offset += sizeof(__be32);
615 len -= sizeof(__be32);
616
617 /* If we've reached the end of our current window aperture,
618 * move the PCI-E Memory Window on to the next. Note that
619 * doing this here after "len" may be 0 allows us to set up
620 * the PCI-E Memory Window for a possible final residual
621 * transfer below ...
5afc8b84 622 */
fc5ab020
HS
623 if (offset == mem_aperture) {
624 pos += mem_aperture;
625 offset = 0;
626 t4_write_reg(adap,
f061de42
HS
627 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 win), pos | win_pf);
fc5ab020 629 t4_read_reg(adap,
f061de42
HS
630 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 win));
5afc8b84 632 }
5afc8b84
VP
633 }
634
fc5ab020
HS
635 /* If the original transfer had a length which wasn't a multiple of
636 * 32-bits, now's where we need to finish off the transfer of the
637 * residual amount. The PCI-E Memory Window has already been moved
638 * above (if necessary) to cover this final transfer.
639 */
640 if (resid) {
641 union {
f01aa633 642 u32 word;
fc5ab020
HS
643 char byte[4];
644 } last;
645 unsigned char *bp;
646 int i;
647
c81576c2 648 if (dir == T4_MEMORY_READ) {
f01aa633
HS
649 last.word = le32_to_cpu(
650 (__force __le32)t4_read_reg(adap,
651 mem_base + offset));
fc5ab020
HS
652 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 bp[i] = last.byte[i];
654 } else {
655 last.word = *buf;
656 for (i = resid; i < 4; i++)
657 last.byte[i] = 0;
658 t4_write_reg(adap, mem_base + offset,
f01aa633 659 (__force u32)cpu_to_le32(last.word));
fc5ab020
HS
660 }
661 }
5afc8b84 662
fc5ab020 663 return 0;
5afc8b84
VP
664}
665
b562fc37
HS
666/* Return the specified PCI-E Configuration Space register from our Physical
667 * Function. We try first via a Firmware LDST Command since we prefer to let
668 * the firmware own all of these registers, but if that fails we go for it
669 * directly ourselves.
670 */
671u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672{
673 u32 val, ldst_addrspace;
674
675 /* If fw_attach != 0, construct and send the Firmware LDST Command to
676 * retrieve the specified PCI-E Configuration Space register.
677 */
678 struct fw_ldst_cmd ldst_cmd;
679 int ret;
680
681 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 FW_CMD_REQUEST_F |
685 FW_CMD_READ_F |
686 ldst_addrspace);
687 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 ldst_cmd.u.pcie.ctrl_to_fn =
b2612722 690 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
b562fc37
HS
691 ldst_cmd.u.pcie.r = reg;
692
693 /* If the LDST Command succeeds, return the result, otherwise
694 * fall through to reading it directly ourselves ...
695 */
696 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 &ldst_cmd);
698 if (ret == 0)
699 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 else
701 /* Read the desired Configuration Space register via the PCI-E
702 * Backdoor mechanism.
703 */
704 t4_hw_pci_read_cfg4(adap, reg, &val);
705 return val;
706}
707
708/* Get the window based on base passed to it.
709 * Window aperture is currently unhandled, but there is no use case for it
710 * right now
711 */
712static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 u32 memwin_base)
714{
715 u32 ret;
716
717 if (is_t4(adap->params.chip)) {
718 u32 bar0;
719
720 /* Truncation intentional: we only read the bottom 32-bits of
721 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
722 * mechanism to read BAR0 instead of using
723 * pci_resource_start() because we could be operating from
724 * within a Virtual Machine which is trapping our accesses to
725 * our Configuration Space and we need to set up the PCI-E
726 * Memory Window decoders with the actual addresses which will
727 * be coming across the PCI-E link.
728 */
729 bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 bar0 &= pci_mask;
731 adap->t4_bar0 = bar0;
732
733 ret = bar0 + memwin_base;
734 } else {
735 /* For T5, only relative offset inside the PCIe BAR is passed */
736 ret = memwin_base;
737 }
738 return ret;
739}
740
741/* Get the default utility window (win0) used by everyone */
742u32 t4_get_util_window(struct adapter *adap)
743{
744 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746}
747
748/* Set up memory window for accessing adapter memory ranges. (Read
749 * back MA register to ensure that changes propagate before we attempt
750 * to use the new values.)
751 */
752void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753{
754 t4_write_reg(adap,
755 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 memwin_base | BIR_V(0) |
757 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 t4_read_reg(adap,
759 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760}
761
812034f1
HS
762/**
763 * t4_get_regs_len - return the size of the chips register set
764 * @adapter: the adapter
765 *
766 * Returns the size of the chip's BAR0 register space.
767 */
768unsigned int t4_get_regs_len(struct adapter *adapter)
769{
770 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771
772 switch (chip_version) {
773 case CHELSIO_T4:
774 return T4_REGMAP_SIZE;
775
776 case CHELSIO_T5:
ab4b583b 777 case CHELSIO_T6:
812034f1
HS
778 return T5_REGMAP_SIZE;
779 }
780
781 dev_err(adapter->pdev_dev,
782 "Unsupported chip version %d\n", chip_version);
783 return 0;
784}
785
786/**
787 * t4_get_regs - read chip registers into provided buffer
788 * @adap: the adapter
789 * @buf: register buffer
790 * @buf_size: size (in bytes) of register buffer
791 *
792 * If the provided register buffer isn't large enough for the chip's
793 * full register range, the register dump will be truncated to the
794 * register buffer's size.
795 */
796void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797{
798 static const unsigned int t4_reg_ranges[] = {
799 0x1008, 0x1108,
8119c018
HS
800 0x1180, 0x1184,
801 0x1190, 0x1194,
802 0x11a0, 0x11a4,
803 0x11b0, 0x11b4,
812034f1
HS
804 0x11fc, 0x123c,
805 0x1300, 0x173c,
806 0x1800, 0x18fc,
8119c018
HS
807 0x3000, 0x30d8,
808 0x30e0, 0x30e4,
809 0x30ec, 0x5910,
810 0x5920, 0x5924,
811 0x5960, 0x5960,
812 0x5968, 0x5968,
813 0x5970, 0x5970,
814 0x5978, 0x5978,
815 0x5980, 0x5980,
816 0x5988, 0x5988,
817 0x5990, 0x5990,
818 0x5998, 0x5998,
819 0x59a0, 0x59d4,
820 0x5a00, 0x5ae0,
821 0x5ae8, 0x5ae8,
822 0x5af0, 0x5af0,
823 0x5af8, 0x5af8,
812034f1
HS
824 0x6000, 0x6098,
825 0x6100, 0x6150,
826 0x6200, 0x6208,
827 0x6240, 0x6248,
8119c018
HS
828 0x6280, 0x62b0,
829 0x62c0, 0x6338,
812034f1
HS
830 0x6370, 0x638c,
831 0x6400, 0x643c,
832 0x6500, 0x6524,
8119c018
HS
833 0x6a00, 0x6a04,
834 0x6a14, 0x6a38,
835 0x6a60, 0x6a70,
836 0x6a78, 0x6a78,
837 0x6b00, 0x6b0c,
838 0x6b1c, 0x6b84,
839 0x6bf0, 0x6bf8,
840 0x6c00, 0x6c0c,
841 0x6c1c, 0x6c84,
842 0x6cf0, 0x6cf8,
843 0x6d00, 0x6d0c,
844 0x6d1c, 0x6d84,
845 0x6df0, 0x6df8,
846 0x6e00, 0x6e0c,
847 0x6e1c, 0x6e84,
848 0x6ef0, 0x6ef8,
849 0x6f00, 0x6f0c,
850 0x6f1c, 0x6f84,
851 0x6ff0, 0x6ff8,
852 0x7000, 0x700c,
853 0x701c, 0x7084,
854 0x70f0, 0x70f8,
855 0x7100, 0x710c,
856 0x711c, 0x7184,
857 0x71f0, 0x71f8,
858 0x7200, 0x720c,
859 0x721c, 0x7284,
860 0x72f0, 0x72f8,
861 0x7300, 0x730c,
862 0x731c, 0x7384,
863 0x73f0, 0x73f8,
864 0x7400, 0x7450,
812034f1 865 0x7500, 0x7530,
8119c018
HS
866 0x7600, 0x760c,
867 0x7614, 0x761c,
812034f1
HS
868 0x7680, 0x76cc,
869 0x7700, 0x7798,
870 0x77c0, 0x77fc,
871 0x7900, 0x79fc,
8119c018
HS
872 0x7b00, 0x7b58,
873 0x7b60, 0x7b84,
874 0x7b8c, 0x7c38,
875 0x7d00, 0x7d38,
876 0x7d40, 0x7d80,
877 0x7d8c, 0x7ddc,
878 0x7de4, 0x7e04,
879 0x7e10, 0x7e1c,
880 0x7e24, 0x7e38,
881 0x7e40, 0x7e44,
882 0x7e4c, 0x7e78,
883 0x7e80, 0x7ea4,
884 0x7eac, 0x7edc,
885 0x7ee8, 0x7efc,
886 0x8dc0, 0x8e04,
887 0x8e10, 0x8e1c,
812034f1 888 0x8e30, 0x8e78,
8119c018
HS
889 0x8ea0, 0x8eb8,
890 0x8ec0, 0x8f6c,
891 0x8fc0, 0x9008,
892 0x9010, 0x9058,
893 0x9060, 0x9060,
894 0x9068, 0x9074,
812034f1 895 0x90fc, 0x90fc,
8119c018
HS
896 0x9400, 0x9408,
897 0x9410, 0x9458,
898 0x9600, 0x9600,
899 0x9608, 0x9638,
900 0x9640, 0x96bc,
812034f1
HS
901 0x9800, 0x9808,
902 0x9820, 0x983c,
903 0x9850, 0x9864,
904 0x9c00, 0x9c6c,
905 0x9c80, 0x9cec,
906 0x9d00, 0x9d6c,
907 0x9d80, 0x9dec,
908 0x9e00, 0x9e6c,
909 0x9e80, 0x9eec,
910 0x9f00, 0x9f6c,
911 0x9f80, 0x9fec,
8119c018
HS
912 0xd004, 0xd004,
913 0xd010, 0xd03c,
812034f1
HS
914 0xdfc0, 0xdfe0,
915 0xe000, 0xea7c,
8119c018 916 0xf000, 0x11190,
812034f1
HS
917 0x19040, 0x1906c,
918 0x19078, 0x19080,
8119c018
HS
919 0x1908c, 0x190e4,
920 0x190f0, 0x190f8,
921 0x19100, 0x19110,
922 0x19120, 0x19124,
923 0x19150, 0x19194,
924 0x1919c, 0x191b0,
812034f1
HS
925 0x191d0, 0x191e8,
926 0x19238, 0x1924c,
8119c018
HS
927 0x193f8, 0x1943c,
928 0x1944c, 0x19474,
929 0x19490, 0x194e0,
930 0x194f0, 0x194f8,
931 0x19800, 0x19c08,
932 0x19c10, 0x19c90,
933 0x19ca0, 0x19ce4,
934 0x19cf0, 0x19d40,
935 0x19d50, 0x19d94,
936 0x19da0, 0x19de8,
937 0x19df0, 0x19e40,
938 0x19e50, 0x19e90,
939 0x19ea0, 0x19f4c,
940 0x1a000, 0x1a004,
941 0x1a010, 0x1a06c,
942 0x1a0b0, 0x1a0e4,
943 0x1a0ec, 0x1a0f4,
944 0x1a100, 0x1a108,
945 0x1a114, 0x1a120,
946 0x1a128, 0x1a130,
947 0x1a138, 0x1a138,
812034f1
HS
948 0x1a190, 0x1a1c4,
949 0x1a1fc, 0x1a1fc,
950 0x1e040, 0x1e04c,
951 0x1e284, 0x1e28c,
952 0x1e2c0, 0x1e2c0,
953 0x1e2e0, 0x1e2e0,
954 0x1e300, 0x1e384,
955 0x1e3c0, 0x1e3c8,
956 0x1e440, 0x1e44c,
957 0x1e684, 0x1e68c,
958 0x1e6c0, 0x1e6c0,
959 0x1e6e0, 0x1e6e0,
960 0x1e700, 0x1e784,
961 0x1e7c0, 0x1e7c8,
962 0x1e840, 0x1e84c,
963 0x1ea84, 0x1ea8c,
964 0x1eac0, 0x1eac0,
965 0x1eae0, 0x1eae0,
966 0x1eb00, 0x1eb84,
967 0x1ebc0, 0x1ebc8,
968 0x1ec40, 0x1ec4c,
969 0x1ee84, 0x1ee8c,
970 0x1eec0, 0x1eec0,
971 0x1eee0, 0x1eee0,
972 0x1ef00, 0x1ef84,
973 0x1efc0, 0x1efc8,
974 0x1f040, 0x1f04c,
975 0x1f284, 0x1f28c,
976 0x1f2c0, 0x1f2c0,
977 0x1f2e0, 0x1f2e0,
978 0x1f300, 0x1f384,
979 0x1f3c0, 0x1f3c8,
980 0x1f440, 0x1f44c,
981 0x1f684, 0x1f68c,
982 0x1f6c0, 0x1f6c0,
983 0x1f6e0, 0x1f6e0,
984 0x1f700, 0x1f784,
985 0x1f7c0, 0x1f7c8,
986 0x1f840, 0x1f84c,
987 0x1fa84, 0x1fa8c,
988 0x1fac0, 0x1fac0,
989 0x1fae0, 0x1fae0,
990 0x1fb00, 0x1fb84,
991 0x1fbc0, 0x1fbc8,
992 0x1fc40, 0x1fc4c,
993 0x1fe84, 0x1fe8c,
994 0x1fec0, 0x1fec0,
995 0x1fee0, 0x1fee0,
996 0x1ff00, 0x1ff84,
997 0x1ffc0, 0x1ffc8,
998 0x20000, 0x2002c,
999 0x20100, 0x2013c,
8119c018
HS
1000 0x20190, 0x201a0,
1001 0x201a8, 0x201b8,
1002 0x201c4, 0x201c8,
812034f1 1003 0x20200, 0x20318,
8119c018
HS
1004 0x20400, 0x204b4,
1005 0x204c0, 0x20528,
812034f1
HS
1006 0x20540, 0x20614,
1007 0x21000, 0x21040,
1008 0x2104c, 0x21060,
1009 0x210c0, 0x210ec,
1010 0x21200, 0x21268,
1011 0x21270, 0x21284,
1012 0x212fc, 0x21388,
1013 0x21400, 0x21404,
8119c018
HS
1014 0x21500, 0x21500,
1015 0x21510, 0x21518,
1016 0x2152c, 0x21530,
1017 0x2153c, 0x2153c,
812034f1
HS
1018 0x21550, 0x21554,
1019 0x21600, 0x21600,
8119c018
HS
1020 0x21608, 0x2161c,
1021 0x21624, 0x21628,
1022 0x21630, 0x21634,
1023 0x2163c, 0x2163c,
812034f1
HS
1024 0x21700, 0x2171c,
1025 0x21780, 0x2178c,
8119c018
HS
1026 0x21800, 0x21818,
1027 0x21820, 0x21828,
1028 0x21830, 0x21848,
1029 0x21850, 0x21854,
1030 0x21860, 0x21868,
1031 0x21870, 0x21870,
1032 0x21878, 0x21898,
1033 0x218a0, 0x218a8,
1034 0x218b0, 0x218c8,
1035 0x218d0, 0x218d4,
1036 0x218e0, 0x218e8,
1037 0x218f0, 0x218f0,
1038 0x218f8, 0x21a18,
1039 0x21a20, 0x21a28,
1040 0x21a30, 0x21a48,
1041 0x21a50, 0x21a54,
1042 0x21a60, 0x21a68,
1043 0x21a70, 0x21a70,
1044 0x21a78, 0x21a98,
1045 0x21aa0, 0x21aa8,
1046 0x21ab0, 0x21ac8,
1047 0x21ad0, 0x21ad4,
1048 0x21ae0, 0x21ae8,
1049 0x21af0, 0x21af0,
1050 0x21af8, 0x21c18,
1051 0x21c20, 0x21c20,
1052 0x21c28, 0x21c30,
1053 0x21c38, 0x21c38,
1054 0x21c80, 0x21c98,
1055 0x21ca0, 0x21ca8,
1056 0x21cb0, 0x21cc8,
1057 0x21cd0, 0x21cd4,
1058 0x21ce0, 0x21ce8,
1059 0x21cf0, 0x21cf0,
1060 0x21cf8, 0x21d7c,
812034f1
HS
1061 0x21e00, 0x21e04,
1062 0x22000, 0x2202c,
1063 0x22100, 0x2213c,
8119c018
HS
1064 0x22190, 0x221a0,
1065 0x221a8, 0x221b8,
1066 0x221c4, 0x221c8,
812034f1 1067 0x22200, 0x22318,
8119c018
HS
1068 0x22400, 0x224b4,
1069 0x224c0, 0x22528,
812034f1
HS
1070 0x22540, 0x22614,
1071 0x23000, 0x23040,
1072 0x2304c, 0x23060,
1073 0x230c0, 0x230ec,
1074 0x23200, 0x23268,
1075 0x23270, 0x23284,
1076 0x232fc, 0x23388,
1077 0x23400, 0x23404,
8119c018
HS
1078 0x23500, 0x23500,
1079 0x23510, 0x23518,
1080 0x2352c, 0x23530,
1081 0x2353c, 0x2353c,
812034f1
HS
1082 0x23550, 0x23554,
1083 0x23600, 0x23600,
8119c018
HS
1084 0x23608, 0x2361c,
1085 0x23624, 0x23628,
1086 0x23630, 0x23634,
1087 0x2363c, 0x2363c,
812034f1
HS
1088 0x23700, 0x2371c,
1089 0x23780, 0x2378c,
8119c018
HS
1090 0x23800, 0x23818,
1091 0x23820, 0x23828,
1092 0x23830, 0x23848,
1093 0x23850, 0x23854,
1094 0x23860, 0x23868,
1095 0x23870, 0x23870,
1096 0x23878, 0x23898,
1097 0x238a0, 0x238a8,
1098 0x238b0, 0x238c8,
1099 0x238d0, 0x238d4,
1100 0x238e0, 0x238e8,
1101 0x238f0, 0x238f0,
1102 0x238f8, 0x23a18,
1103 0x23a20, 0x23a28,
1104 0x23a30, 0x23a48,
1105 0x23a50, 0x23a54,
1106 0x23a60, 0x23a68,
1107 0x23a70, 0x23a70,
1108 0x23a78, 0x23a98,
1109 0x23aa0, 0x23aa8,
1110 0x23ab0, 0x23ac8,
1111 0x23ad0, 0x23ad4,
1112 0x23ae0, 0x23ae8,
1113 0x23af0, 0x23af0,
1114 0x23af8, 0x23c18,
1115 0x23c20, 0x23c20,
1116 0x23c28, 0x23c30,
1117 0x23c38, 0x23c38,
1118 0x23c80, 0x23c98,
1119 0x23ca0, 0x23ca8,
1120 0x23cb0, 0x23cc8,
1121 0x23cd0, 0x23cd4,
1122 0x23ce0, 0x23ce8,
1123 0x23cf0, 0x23cf0,
1124 0x23cf8, 0x23d7c,
812034f1
HS
1125 0x23e00, 0x23e04,
1126 0x24000, 0x2402c,
1127 0x24100, 0x2413c,
8119c018
HS
1128 0x24190, 0x241a0,
1129 0x241a8, 0x241b8,
1130 0x241c4, 0x241c8,
812034f1 1131 0x24200, 0x24318,
8119c018
HS
1132 0x24400, 0x244b4,
1133 0x244c0, 0x24528,
812034f1
HS
1134 0x24540, 0x24614,
1135 0x25000, 0x25040,
1136 0x2504c, 0x25060,
1137 0x250c0, 0x250ec,
1138 0x25200, 0x25268,
1139 0x25270, 0x25284,
1140 0x252fc, 0x25388,
1141 0x25400, 0x25404,
8119c018
HS
1142 0x25500, 0x25500,
1143 0x25510, 0x25518,
1144 0x2552c, 0x25530,
1145 0x2553c, 0x2553c,
812034f1
HS
1146 0x25550, 0x25554,
1147 0x25600, 0x25600,
8119c018
HS
1148 0x25608, 0x2561c,
1149 0x25624, 0x25628,
1150 0x25630, 0x25634,
1151 0x2563c, 0x2563c,
812034f1
HS
1152 0x25700, 0x2571c,
1153 0x25780, 0x2578c,
8119c018
HS
1154 0x25800, 0x25818,
1155 0x25820, 0x25828,
1156 0x25830, 0x25848,
1157 0x25850, 0x25854,
1158 0x25860, 0x25868,
1159 0x25870, 0x25870,
1160 0x25878, 0x25898,
1161 0x258a0, 0x258a8,
1162 0x258b0, 0x258c8,
1163 0x258d0, 0x258d4,
1164 0x258e0, 0x258e8,
1165 0x258f0, 0x258f0,
1166 0x258f8, 0x25a18,
1167 0x25a20, 0x25a28,
1168 0x25a30, 0x25a48,
1169 0x25a50, 0x25a54,
1170 0x25a60, 0x25a68,
1171 0x25a70, 0x25a70,
1172 0x25a78, 0x25a98,
1173 0x25aa0, 0x25aa8,
1174 0x25ab0, 0x25ac8,
1175 0x25ad0, 0x25ad4,
1176 0x25ae0, 0x25ae8,
1177 0x25af0, 0x25af0,
1178 0x25af8, 0x25c18,
1179 0x25c20, 0x25c20,
1180 0x25c28, 0x25c30,
1181 0x25c38, 0x25c38,
1182 0x25c80, 0x25c98,
1183 0x25ca0, 0x25ca8,
1184 0x25cb0, 0x25cc8,
1185 0x25cd0, 0x25cd4,
1186 0x25ce0, 0x25ce8,
1187 0x25cf0, 0x25cf0,
1188 0x25cf8, 0x25d7c,
812034f1
HS
1189 0x25e00, 0x25e04,
1190 0x26000, 0x2602c,
1191 0x26100, 0x2613c,
8119c018
HS
1192 0x26190, 0x261a0,
1193 0x261a8, 0x261b8,
1194 0x261c4, 0x261c8,
812034f1 1195 0x26200, 0x26318,
8119c018
HS
1196 0x26400, 0x264b4,
1197 0x264c0, 0x26528,
812034f1
HS
1198 0x26540, 0x26614,
1199 0x27000, 0x27040,
1200 0x2704c, 0x27060,
1201 0x270c0, 0x270ec,
1202 0x27200, 0x27268,
1203 0x27270, 0x27284,
1204 0x272fc, 0x27388,
1205 0x27400, 0x27404,
8119c018
HS
1206 0x27500, 0x27500,
1207 0x27510, 0x27518,
1208 0x2752c, 0x27530,
1209 0x2753c, 0x2753c,
812034f1
HS
1210 0x27550, 0x27554,
1211 0x27600, 0x27600,
8119c018
HS
1212 0x27608, 0x2761c,
1213 0x27624, 0x27628,
1214 0x27630, 0x27634,
1215 0x2763c, 0x2763c,
812034f1
HS
1216 0x27700, 0x2771c,
1217 0x27780, 0x2778c,
8119c018
HS
1218 0x27800, 0x27818,
1219 0x27820, 0x27828,
1220 0x27830, 0x27848,
1221 0x27850, 0x27854,
1222 0x27860, 0x27868,
1223 0x27870, 0x27870,
1224 0x27878, 0x27898,
1225 0x278a0, 0x278a8,
1226 0x278b0, 0x278c8,
1227 0x278d0, 0x278d4,
1228 0x278e0, 0x278e8,
1229 0x278f0, 0x278f0,
1230 0x278f8, 0x27a18,
1231 0x27a20, 0x27a28,
1232 0x27a30, 0x27a48,
1233 0x27a50, 0x27a54,
1234 0x27a60, 0x27a68,
1235 0x27a70, 0x27a70,
1236 0x27a78, 0x27a98,
1237 0x27aa0, 0x27aa8,
1238 0x27ab0, 0x27ac8,
1239 0x27ad0, 0x27ad4,
1240 0x27ae0, 0x27ae8,
1241 0x27af0, 0x27af0,
1242 0x27af8, 0x27c18,
1243 0x27c20, 0x27c20,
1244 0x27c28, 0x27c30,
1245 0x27c38, 0x27c38,
1246 0x27c80, 0x27c98,
1247 0x27ca0, 0x27ca8,
1248 0x27cb0, 0x27cc8,
1249 0x27cd0, 0x27cd4,
1250 0x27ce0, 0x27ce8,
1251 0x27cf0, 0x27cf0,
1252 0x27cf8, 0x27d7c,
9f5ac48d 1253 0x27e00, 0x27e04,
812034f1
HS
1254 };
1255
1256 static const unsigned int t5_reg_ranges[] = {
8119c018
HS
1257 0x1008, 0x10c0,
1258 0x10cc, 0x10f8,
1259 0x1100, 0x1100,
1260 0x110c, 0x1148,
1261 0x1180, 0x1184,
1262 0x1190, 0x1194,
1263 0x11a0, 0x11a4,
1264 0x11b0, 0x11b4,
812034f1
HS
1265 0x11fc, 0x123c,
1266 0x1280, 0x173c,
1267 0x1800, 0x18fc,
1268 0x3000, 0x3028,
8119c018
HS
1269 0x3060, 0x30b0,
1270 0x30b8, 0x30d8,
812034f1
HS
1271 0x30e0, 0x30fc,
1272 0x3140, 0x357c,
1273 0x35a8, 0x35cc,
1274 0x35ec, 0x35ec,
1275 0x3600, 0x5624,
8119c018
HS
1276 0x56cc, 0x56ec,
1277 0x56f4, 0x5720,
1278 0x5728, 0x575c,
812034f1 1279 0x580c, 0x5814,
8119c018
HS
1280 0x5890, 0x589c,
1281 0x58a4, 0x58ac,
1282 0x58b8, 0x58bc,
1283 0x5940, 0x59c8,
1284 0x59d0, 0x59dc,
812034f1 1285 0x59fc, 0x5a18,
8119c018
HS
1286 0x5a60, 0x5a70,
1287 0x5a80, 0x5a9c,
9f5ac48d 1288 0x5b94, 0x5bfc,
8119c018
HS
1289 0x6000, 0x6020,
1290 0x6028, 0x6040,
1291 0x6058, 0x609c,
1292 0x60a8, 0x614c,
812034f1
HS
1293 0x7700, 0x7798,
1294 0x77c0, 0x78fc,
8119c018
HS
1295 0x7b00, 0x7b58,
1296 0x7b60, 0x7b84,
1297 0x7b8c, 0x7c54,
1298 0x7d00, 0x7d38,
1299 0x7d40, 0x7d80,
1300 0x7d8c, 0x7ddc,
1301 0x7de4, 0x7e04,
1302 0x7e10, 0x7e1c,
1303 0x7e24, 0x7e38,
1304 0x7e40, 0x7e44,
1305 0x7e4c, 0x7e78,
1306 0x7e80, 0x7edc,
1307 0x7ee8, 0x7efc,
812034f1 1308 0x8dc0, 0x8de0,
8119c018
HS
1309 0x8df8, 0x8e04,
1310 0x8e10, 0x8e84,
812034f1 1311 0x8ea0, 0x8f84,
8119c018
HS
1312 0x8fc0, 0x9058,
1313 0x9060, 0x9060,
1314 0x9068, 0x90f8,
1315 0x9400, 0x9408,
1316 0x9410, 0x9470,
1317 0x9600, 0x9600,
1318 0x9608, 0x9638,
1319 0x9640, 0x96f4,
812034f1
HS
1320 0x9800, 0x9808,
1321 0x9820, 0x983c,
1322 0x9850, 0x9864,
1323 0x9c00, 0x9c6c,
1324 0x9c80, 0x9cec,
1325 0x9d00, 0x9d6c,
1326 0x9d80, 0x9dec,
1327 0x9e00, 0x9e6c,
1328 0x9e80, 0x9eec,
1329 0x9f00, 0x9f6c,
1330 0x9f80, 0xa020,
8119c018
HS
1331 0xd004, 0xd004,
1332 0xd010, 0xd03c,
812034f1 1333 0xdfc0, 0xdfe0,
8119c018
HS
1334 0xe000, 0x1106c,
1335 0x11074, 0x11088,
1336 0x1109c, 0x1117c,
812034f1
HS
1337 0x11190, 0x11204,
1338 0x19040, 0x1906c,
1339 0x19078, 0x19080,
8119c018
HS
1340 0x1908c, 0x190e8,
1341 0x190f0, 0x190f8,
1342 0x19100, 0x19110,
1343 0x19120, 0x19124,
1344 0x19150, 0x19194,
1345 0x1919c, 0x191b0,
812034f1
HS
1346 0x191d0, 0x191e8,
1347 0x19238, 0x19290,
8119c018
HS
1348 0x193f8, 0x19428,
1349 0x19430, 0x19444,
1350 0x1944c, 0x1946c,
1351 0x19474, 0x19474,
812034f1
HS
1352 0x19490, 0x194cc,
1353 0x194f0, 0x194f8,
8119c018
HS
1354 0x19c00, 0x19c08,
1355 0x19c10, 0x19c60,
1356 0x19c94, 0x19ce4,
1357 0x19cf0, 0x19d40,
1358 0x19d50, 0x19d94,
1359 0x19da0, 0x19de8,
1360 0x19df0, 0x19e10,
1361 0x19e50, 0x19e90,
1362 0x19ea0, 0x19f24,
1363 0x19f34, 0x19f34,
812034f1 1364 0x19f40, 0x19f50,
8119c018
HS
1365 0x19f90, 0x19fb4,
1366 0x19fc4, 0x19fe4,
1367 0x1a000, 0x1a004,
1368 0x1a010, 0x1a06c,
1369 0x1a0b0, 0x1a0e4,
1370 0x1a0ec, 0x1a0f8,
1371 0x1a100, 0x1a108,
1372 0x1a114, 0x1a120,
1373 0x1a128, 0x1a130,
1374 0x1a138, 0x1a138,
812034f1
HS
1375 0x1a190, 0x1a1c4,
1376 0x1a1fc, 0x1a1fc,
1377 0x1e008, 0x1e00c,
8119c018
HS
1378 0x1e040, 0x1e044,
1379 0x1e04c, 0x1e04c,
812034f1
HS
1380 0x1e284, 0x1e290,
1381 0x1e2c0, 0x1e2c0,
1382 0x1e2e0, 0x1e2e0,
1383 0x1e300, 0x1e384,
1384 0x1e3c0, 0x1e3c8,
1385 0x1e408, 0x1e40c,
8119c018
HS
1386 0x1e440, 0x1e444,
1387 0x1e44c, 0x1e44c,
812034f1
HS
1388 0x1e684, 0x1e690,
1389 0x1e6c0, 0x1e6c0,
1390 0x1e6e0, 0x1e6e0,
1391 0x1e700, 0x1e784,
1392 0x1e7c0, 0x1e7c8,
1393 0x1e808, 0x1e80c,
8119c018
HS
1394 0x1e840, 0x1e844,
1395 0x1e84c, 0x1e84c,
812034f1
HS
1396 0x1ea84, 0x1ea90,
1397 0x1eac0, 0x1eac0,
1398 0x1eae0, 0x1eae0,
1399 0x1eb00, 0x1eb84,
1400 0x1ebc0, 0x1ebc8,
1401 0x1ec08, 0x1ec0c,
8119c018
HS
1402 0x1ec40, 0x1ec44,
1403 0x1ec4c, 0x1ec4c,
812034f1
HS
1404 0x1ee84, 0x1ee90,
1405 0x1eec0, 0x1eec0,
1406 0x1eee0, 0x1eee0,
1407 0x1ef00, 0x1ef84,
1408 0x1efc0, 0x1efc8,
1409 0x1f008, 0x1f00c,
8119c018
HS
1410 0x1f040, 0x1f044,
1411 0x1f04c, 0x1f04c,
812034f1
HS
1412 0x1f284, 0x1f290,
1413 0x1f2c0, 0x1f2c0,
1414 0x1f2e0, 0x1f2e0,
1415 0x1f300, 0x1f384,
1416 0x1f3c0, 0x1f3c8,
1417 0x1f408, 0x1f40c,
8119c018
HS
1418 0x1f440, 0x1f444,
1419 0x1f44c, 0x1f44c,
812034f1
HS
1420 0x1f684, 0x1f690,
1421 0x1f6c0, 0x1f6c0,
1422 0x1f6e0, 0x1f6e0,
1423 0x1f700, 0x1f784,
1424 0x1f7c0, 0x1f7c8,
1425 0x1f808, 0x1f80c,
8119c018
HS
1426 0x1f840, 0x1f844,
1427 0x1f84c, 0x1f84c,
812034f1
HS
1428 0x1fa84, 0x1fa90,
1429 0x1fac0, 0x1fac0,
1430 0x1fae0, 0x1fae0,
1431 0x1fb00, 0x1fb84,
1432 0x1fbc0, 0x1fbc8,
1433 0x1fc08, 0x1fc0c,
8119c018
HS
1434 0x1fc40, 0x1fc44,
1435 0x1fc4c, 0x1fc4c,
812034f1
HS
1436 0x1fe84, 0x1fe90,
1437 0x1fec0, 0x1fec0,
1438 0x1fee0, 0x1fee0,
1439 0x1ff00, 0x1ff84,
1440 0x1ffc0, 0x1ffc8,
1441 0x30000, 0x30030,
8119c018
HS
1442 0x30038, 0x30038,
1443 0x30040, 0x30040,
812034f1 1444 0x30100, 0x30144,
8119c018
HS
1445 0x30190, 0x301a0,
1446 0x301a8, 0x301b8,
1447 0x301c4, 0x301c8,
1448 0x301d0, 0x301d0,
812034f1 1449 0x30200, 0x30318,
8119c018
HS
1450 0x30400, 0x304b4,
1451 0x304c0, 0x3052c,
812034f1 1452 0x30540, 0x3061c,
8119c018
HS
1453 0x30800, 0x30828,
1454 0x30834, 0x30834,
812034f1
HS
1455 0x308c0, 0x30908,
1456 0x30910, 0x309ac,
8119c018
HS
1457 0x30a00, 0x30a14,
1458 0x30a1c, 0x30a2c,
812034f1 1459 0x30a44, 0x30a50,
8119c018
HS
1460 0x30a74, 0x30a74,
1461 0x30a7c, 0x30afc,
1462 0x30b08, 0x30c24,
9f5ac48d 1463 0x30d00, 0x30d00,
812034f1
HS
1464 0x30d08, 0x30d14,
1465 0x30d1c, 0x30d20,
8119c018
HS
1466 0x30d3c, 0x30d3c,
1467 0x30d48, 0x30d50,
812034f1
HS
1468 0x31200, 0x3120c,
1469 0x31220, 0x31220,
1470 0x31240, 0x31240,
9f5ac48d 1471 0x31600, 0x3160c,
812034f1 1472 0x31a00, 0x31a1c,
9f5ac48d 1473 0x31e00, 0x31e20,
812034f1
HS
1474 0x31e38, 0x31e3c,
1475 0x31e80, 0x31e80,
1476 0x31e88, 0x31ea8,
1477 0x31eb0, 0x31eb4,
1478 0x31ec8, 0x31ed4,
1479 0x31fb8, 0x32004,
9f5ac48d
HS
1480 0x32200, 0x32200,
1481 0x32208, 0x32240,
1482 0x32248, 0x32280,
1483 0x32288, 0x322c0,
1484 0x322c8, 0x322fc,
812034f1
HS
1485 0x32600, 0x32630,
1486 0x32a00, 0x32abc,
8119c018
HS
1487 0x32b00, 0x32b10,
1488 0x32b20, 0x32b30,
1489 0x32b40, 0x32b50,
1490 0x32b60, 0x32b70,
1491 0x33000, 0x33028,
1492 0x33030, 0x33048,
1493 0x33060, 0x33068,
1494 0x33070, 0x3309c,
1495 0x330f0, 0x33128,
1496 0x33130, 0x33148,
1497 0x33160, 0x33168,
1498 0x33170, 0x3319c,
1499 0x331f0, 0x33238,
1500 0x33240, 0x33240,
1501 0x33248, 0x33250,
1502 0x3325c, 0x33264,
1503 0x33270, 0x332b8,
1504 0x332c0, 0x332e4,
1505 0x332f8, 0x33338,
1506 0x33340, 0x33340,
1507 0x33348, 0x33350,
1508 0x3335c, 0x33364,
1509 0x33370, 0x333b8,
1510 0x333c0, 0x333e4,
1511 0x333f8, 0x33428,
1512 0x33430, 0x33448,
1513 0x33460, 0x33468,
1514 0x33470, 0x3349c,
1515 0x334f0, 0x33528,
1516 0x33530, 0x33548,
1517 0x33560, 0x33568,
1518 0x33570, 0x3359c,
1519 0x335f0, 0x33638,
1520 0x33640, 0x33640,
1521 0x33648, 0x33650,
1522 0x3365c, 0x33664,
1523 0x33670, 0x336b8,
1524 0x336c0, 0x336e4,
1525 0x336f8, 0x33738,
1526 0x33740, 0x33740,
1527 0x33748, 0x33750,
1528 0x3375c, 0x33764,
1529 0x33770, 0x337b8,
1530 0x337c0, 0x337e4,
812034f1
HS
1531 0x337f8, 0x337fc,
1532 0x33814, 0x33814,
1533 0x3382c, 0x3382c,
1534 0x33880, 0x3388c,
1535 0x338e8, 0x338ec,
8119c018
HS
1536 0x33900, 0x33928,
1537 0x33930, 0x33948,
1538 0x33960, 0x33968,
1539 0x33970, 0x3399c,
1540 0x339f0, 0x33a38,
1541 0x33a40, 0x33a40,
1542 0x33a48, 0x33a50,
1543 0x33a5c, 0x33a64,
1544 0x33a70, 0x33ab8,
1545 0x33ac0, 0x33ae4,
812034f1
HS
1546 0x33af8, 0x33b10,
1547 0x33b28, 0x33b28,
1548 0x33b3c, 0x33b50,
1549 0x33bf0, 0x33c10,
1550 0x33c28, 0x33c28,
1551 0x33c3c, 0x33c50,
1552 0x33cf0, 0x33cfc,
1553 0x34000, 0x34030,
8119c018
HS
1554 0x34038, 0x34038,
1555 0x34040, 0x34040,
812034f1 1556 0x34100, 0x34144,
8119c018
HS
1557 0x34190, 0x341a0,
1558 0x341a8, 0x341b8,
1559 0x341c4, 0x341c8,
1560 0x341d0, 0x341d0,
812034f1 1561 0x34200, 0x34318,
8119c018
HS
1562 0x34400, 0x344b4,
1563 0x344c0, 0x3452c,
812034f1 1564 0x34540, 0x3461c,
8119c018
HS
1565 0x34800, 0x34828,
1566 0x34834, 0x34834,
812034f1
HS
1567 0x348c0, 0x34908,
1568 0x34910, 0x349ac,
8119c018
HS
1569 0x34a00, 0x34a14,
1570 0x34a1c, 0x34a2c,
812034f1 1571 0x34a44, 0x34a50,
8119c018
HS
1572 0x34a74, 0x34a74,
1573 0x34a7c, 0x34afc,
1574 0x34b08, 0x34c24,
9f5ac48d 1575 0x34d00, 0x34d00,
812034f1
HS
1576 0x34d08, 0x34d14,
1577 0x34d1c, 0x34d20,
8119c018
HS
1578 0x34d3c, 0x34d3c,
1579 0x34d48, 0x34d50,
812034f1
HS
1580 0x35200, 0x3520c,
1581 0x35220, 0x35220,
1582 0x35240, 0x35240,
9f5ac48d 1583 0x35600, 0x3560c,
812034f1 1584 0x35a00, 0x35a1c,
9f5ac48d 1585 0x35e00, 0x35e20,
812034f1
HS
1586 0x35e38, 0x35e3c,
1587 0x35e80, 0x35e80,
1588 0x35e88, 0x35ea8,
1589 0x35eb0, 0x35eb4,
1590 0x35ec8, 0x35ed4,
1591 0x35fb8, 0x36004,
9f5ac48d
HS
1592 0x36200, 0x36200,
1593 0x36208, 0x36240,
1594 0x36248, 0x36280,
1595 0x36288, 0x362c0,
1596 0x362c8, 0x362fc,
812034f1
HS
1597 0x36600, 0x36630,
1598 0x36a00, 0x36abc,
8119c018
HS
1599 0x36b00, 0x36b10,
1600 0x36b20, 0x36b30,
1601 0x36b40, 0x36b50,
1602 0x36b60, 0x36b70,
1603 0x37000, 0x37028,
1604 0x37030, 0x37048,
1605 0x37060, 0x37068,
1606 0x37070, 0x3709c,
1607 0x370f0, 0x37128,
1608 0x37130, 0x37148,
1609 0x37160, 0x37168,
1610 0x37170, 0x3719c,
1611 0x371f0, 0x37238,
1612 0x37240, 0x37240,
1613 0x37248, 0x37250,
1614 0x3725c, 0x37264,
1615 0x37270, 0x372b8,
1616 0x372c0, 0x372e4,
1617 0x372f8, 0x37338,
1618 0x37340, 0x37340,
1619 0x37348, 0x37350,
1620 0x3735c, 0x37364,
1621 0x37370, 0x373b8,
1622 0x373c0, 0x373e4,
1623 0x373f8, 0x37428,
1624 0x37430, 0x37448,
1625 0x37460, 0x37468,
1626 0x37470, 0x3749c,
1627 0x374f0, 0x37528,
1628 0x37530, 0x37548,
1629 0x37560, 0x37568,
1630 0x37570, 0x3759c,
1631 0x375f0, 0x37638,
1632 0x37640, 0x37640,
1633 0x37648, 0x37650,
1634 0x3765c, 0x37664,
1635 0x37670, 0x376b8,
1636 0x376c0, 0x376e4,
1637 0x376f8, 0x37738,
1638 0x37740, 0x37740,
1639 0x37748, 0x37750,
1640 0x3775c, 0x37764,
1641 0x37770, 0x377b8,
1642 0x377c0, 0x377e4,
812034f1
HS
1643 0x377f8, 0x377fc,
1644 0x37814, 0x37814,
1645 0x3782c, 0x3782c,
1646 0x37880, 0x3788c,
1647 0x378e8, 0x378ec,
8119c018
HS
1648 0x37900, 0x37928,
1649 0x37930, 0x37948,
1650 0x37960, 0x37968,
1651 0x37970, 0x3799c,
1652 0x379f0, 0x37a38,
1653 0x37a40, 0x37a40,
1654 0x37a48, 0x37a50,
1655 0x37a5c, 0x37a64,
1656 0x37a70, 0x37ab8,
1657 0x37ac0, 0x37ae4,
812034f1
HS
1658 0x37af8, 0x37b10,
1659 0x37b28, 0x37b28,
1660 0x37b3c, 0x37b50,
1661 0x37bf0, 0x37c10,
1662 0x37c28, 0x37c28,
1663 0x37c3c, 0x37c50,
1664 0x37cf0, 0x37cfc,
1665 0x38000, 0x38030,
8119c018
HS
1666 0x38038, 0x38038,
1667 0x38040, 0x38040,
812034f1 1668 0x38100, 0x38144,
8119c018
HS
1669 0x38190, 0x381a0,
1670 0x381a8, 0x381b8,
1671 0x381c4, 0x381c8,
1672 0x381d0, 0x381d0,
812034f1 1673 0x38200, 0x38318,
8119c018
HS
1674 0x38400, 0x384b4,
1675 0x384c0, 0x3852c,
812034f1 1676 0x38540, 0x3861c,
8119c018
HS
1677 0x38800, 0x38828,
1678 0x38834, 0x38834,
812034f1
HS
1679 0x388c0, 0x38908,
1680 0x38910, 0x389ac,
8119c018
HS
1681 0x38a00, 0x38a14,
1682 0x38a1c, 0x38a2c,
812034f1 1683 0x38a44, 0x38a50,
8119c018
HS
1684 0x38a74, 0x38a74,
1685 0x38a7c, 0x38afc,
1686 0x38b08, 0x38c24,
9f5ac48d 1687 0x38d00, 0x38d00,
812034f1
HS
1688 0x38d08, 0x38d14,
1689 0x38d1c, 0x38d20,
8119c018
HS
1690 0x38d3c, 0x38d3c,
1691 0x38d48, 0x38d50,
812034f1
HS
1692 0x39200, 0x3920c,
1693 0x39220, 0x39220,
1694 0x39240, 0x39240,
9f5ac48d 1695 0x39600, 0x3960c,
812034f1 1696 0x39a00, 0x39a1c,
9f5ac48d 1697 0x39e00, 0x39e20,
812034f1
HS
1698 0x39e38, 0x39e3c,
1699 0x39e80, 0x39e80,
1700 0x39e88, 0x39ea8,
1701 0x39eb0, 0x39eb4,
1702 0x39ec8, 0x39ed4,
1703 0x39fb8, 0x3a004,
9f5ac48d
HS
1704 0x3a200, 0x3a200,
1705 0x3a208, 0x3a240,
1706 0x3a248, 0x3a280,
1707 0x3a288, 0x3a2c0,
1708 0x3a2c8, 0x3a2fc,
812034f1
HS
1709 0x3a600, 0x3a630,
1710 0x3aa00, 0x3aabc,
8119c018
HS
1711 0x3ab00, 0x3ab10,
1712 0x3ab20, 0x3ab30,
1713 0x3ab40, 0x3ab50,
1714 0x3ab60, 0x3ab70,
1715 0x3b000, 0x3b028,
1716 0x3b030, 0x3b048,
1717 0x3b060, 0x3b068,
1718 0x3b070, 0x3b09c,
1719 0x3b0f0, 0x3b128,
1720 0x3b130, 0x3b148,
1721 0x3b160, 0x3b168,
1722 0x3b170, 0x3b19c,
1723 0x3b1f0, 0x3b238,
1724 0x3b240, 0x3b240,
1725 0x3b248, 0x3b250,
1726 0x3b25c, 0x3b264,
1727 0x3b270, 0x3b2b8,
1728 0x3b2c0, 0x3b2e4,
1729 0x3b2f8, 0x3b338,
1730 0x3b340, 0x3b340,
1731 0x3b348, 0x3b350,
1732 0x3b35c, 0x3b364,
1733 0x3b370, 0x3b3b8,
1734 0x3b3c0, 0x3b3e4,
1735 0x3b3f8, 0x3b428,
1736 0x3b430, 0x3b448,
1737 0x3b460, 0x3b468,
1738 0x3b470, 0x3b49c,
1739 0x3b4f0, 0x3b528,
1740 0x3b530, 0x3b548,
1741 0x3b560, 0x3b568,
1742 0x3b570, 0x3b59c,
1743 0x3b5f0, 0x3b638,
1744 0x3b640, 0x3b640,
1745 0x3b648, 0x3b650,
1746 0x3b65c, 0x3b664,
1747 0x3b670, 0x3b6b8,
1748 0x3b6c0, 0x3b6e4,
1749 0x3b6f8, 0x3b738,
1750 0x3b740, 0x3b740,
1751 0x3b748, 0x3b750,
1752 0x3b75c, 0x3b764,
1753 0x3b770, 0x3b7b8,
1754 0x3b7c0, 0x3b7e4,
812034f1
HS
1755 0x3b7f8, 0x3b7fc,
1756 0x3b814, 0x3b814,
1757 0x3b82c, 0x3b82c,
1758 0x3b880, 0x3b88c,
1759 0x3b8e8, 0x3b8ec,
8119c018
HS
1760 0x3b900, 0x3b928,
1761 0x3b930, 0x3b948,
1762 0x3b960, 0x3b968,
1763 0x3b970, 0x3b99c,
1764 0x3b9f0, 0x3ba38,
1765 0x3ba40, 0x3ba40,
1766 0x3ba48, 0x3ba50,
1767 0x3ba5c, 0x3ba64,
1768 0x3ba70, 0x3bab8,
1769 0x3bac0, 0x3bae4,
812034f1
HS
1770 0x3baf8, 0x3bb10,
1771 0x3bb28, 0x3bb28,
1772 0x3bb3c, 0x3bb50,
1773 0x3bbf0, 0x3bc10,
1774 0x3bc28, 0x3bc28,
1775 0x3bc3c, 0x3bc50,
1776 0x3bcf0, 0x3bcfc,
1777 0x3c000, 0x3c030,
8119c018
HS
1778 0x3c038, 0x3c038,
1779 0x3c040, 0x3c040,
812034f1 1780 0x3c100, 0x3c144,
8119c018
HS
1781 0x3c190, 0x3c1a0,
1782 0x3c1a8, 0x3c1b8,
1783 0x3c1c4, 0x3c1c8,
1784 0x3c1d0, 0x3c1d0,
812034f1 1785 0x3c200, 0x3c318,
8119c018
HS
1786 0x3c400, 0x3c4b4,
1787 0x3c4c0, 0x3c52c,
812034f1 1788 0x3c540, 0x3c61c,
8119c018
HS
1789 0x3c800, 0x3c828,
1790 0x3c834, 0x3c834,
812034f1
HS
1791 0x3c8c0, 0x3c908,
1792 0x3c910, 0x3c9ac,
8119c018
HS
1793 0x3ca00, 0x3ca14,
1794 0x3ca1c, 0x3ca2c,
812034f1 1795 0x3ca44, 0x3ca50,
8119c018
HS
1796 0x3ca74, 0x3ca74,
1797 0x3ca7c, 0x3cafc,
1798 0x3cb08, 0x3cc24,
9f5ac48d 1799 0x3cd00, 0x3cd00,
812034f1
HS
1800 0x3cd08, 0x3cd14,
1801 0x3cd1c, 0x3cd20,
8119c018
HS
1802 0x3cd3c, 0x3cd3c,
1803 0x3cd48, 0x3cd50,
812034f1
HS
1804 0x3d200, 0x3d20c,
1805 0x3d220, 0x3d220,
1806 0x3d240, 0x3d240,
9f5ac48d 1807 0x3d600, 0x3d60c,
812034f1 1808 0x3da00, 0x3da1c,
9f5ac48d 1809 0x3de00, 0x3de20,
812034f1
HS
1810 0x3de38, 0x3de3c,
1811 0x3de80, 0x3de80,
1812 0x3de88, 0x3dea8,
1813 0x3deb0, 0x3deb4,
1814 0x3dec8, 0x3ded4,
1815 0x3dfb8, 0x3e004,
9f5ac48d
HS
1816 0x3e200, 0x3e200,
1817 0x3e208, 0x3e240,
1818 0x3e248, 0x3e280,
1819 0x3e288, 0x3e2c0,
1820 0x3e2c8, 0x3e2fc,
812034f1
HS
1821 0x3e600, 0x3e630,
1822 0x3ea00, 0x3eabc,
8119c018
HS
1823 0x3eb00, 0x3eb10,
1824 0x3eb20, 0x3eb30,
1825 0x3eb40, 0x3eb50,
1826 0x3eb60, 0x3eb70,
1827 0x3f000, 0x3f028,
1828 0x3f030, 0x3f048,
1829 0x3f060, 0x3f068,
1830 0x3f070, 0x3f09c,
1831 0x3f0f0, 0x3f128,
1832 0x3f130, 0x3f148,
1833 0x3f160, 0x3f168,
1834 0x3f170, 0x3f19c,
1835 0x3f1f0, 0x3f238,
1836 0x3f240, 0x3f240,
1837 0x3f248, 0x3f250,
1838 0x3f25c, 0x3f264,
1839 0x3f270, 0x3f2b8,
1840 0x3f2c0, 0x3f2e4,
1841 0x3f2f8, 0x3f338,
1842 0x3f340, 0x3f340,
1843 0x3f348, 0x3f350,
1844 0x3f35c, 0x3f364,
1845 0x3f370, 0x3f3b8,
1846 0x3f3c0, 0x3f3e4,
1847 0x3f3f8, 0x3f428,
1848 0x3f430, 0x3f448,
1849 0x3f460, 0x3f468,
1850 0x3f470, 0x3f49c,
1851 0x3f4f0, 0x3f528,
1852 0x3f530, 0x3f548,
1853 0x3f560, 0x3f568,
1854 0x3f570, 0x3f59c,
1855 0x3f5f0, 0x3f638,
1856 0x3f640, 0x3f640,
1857 0x3f648, 0x3f650,
1858 0x3f65c, 0x3f664,
1859 0x3f670, 0x3f6b8,
1860 0x3f6c0, 0x3f6e4,
1861 0x3f6f8, 0x3f738,
1862 0x3f740, 0x3f740,
1863 0x3f748, 0x3f750,
1864 0x3f75c, 0x3f764,
1865 0x3f770, 0x3f7b8,
1866 0x3f7c0, 0x3f7e4,
812034f1
HS
1867 0x3f7f8, 0x3f7fc,
1868 0x3f814, 0x3f814,
1869 0x3f82c, 0x3f82c,
1870 0x3f880, 0x3f88c,
1871 0x3f8e8, 0x3f8ec,
8119c018
HS
1872 0x3f900, 0x3f928,
1873 0x3f930, 0x3f948,
1874 0x3f960, 0x3f968,
1875 0x3f970, 0x3f99c,
1876 0x3f9f0, 0x3fa38,
1877 0x3fa40, 0x3fa40,
1878 0x3fa48, 0x3fa50,
1879 0x3fa5c, 0x3fa64,
1880 0x3fa70, 0x3fab8,
1881 0x3fac0, 0x3fae4,
812034f1
HS
1882 0x3faf8, 0x3fb10,
1883 0x3fb28, 0x3fb28,
1884 0x3fb3c, 0x3fb50,
1885 0x3fbf0, 0x3fc10,
1886 0x3fc28, 0x3fc28,
1887 0x3fc3c, 0x3fc50,
1888 0x3fcf0, 0x3fcfc,
1889 0x40000, 0x4000c,
8119c018
HS
1890 0x40040, 0x40050,
1891 0x40060, 0x40068,
1892 0x4007c, 0x4008c,
1893 0x40094, 0x400b0,
1894 0x400c0, 0x40144,
812034f1 1895 0x40180, 0x4018c,
8119c018
HS
1896 0x40200, 0x40254,
1897 0x40260, 0x40264,
1898 0x40270, 0x40288,
1899 0x40290, 0x40298,
1900 0x402ac, 0x402c8,
1901 0x402d0, 0x402e0,
1902 0x402f0, 0x402f0,
1903 0x40300, 0x4033c,
812034f1
HS
1904 0x403f8, 0x403fc,
1905 0x41304, 0x413c4,
8119c018
HS
1906 0x41400, 0x4140c,
1907 0x41414, 0x4141c,
812034f1 1908 0x41480, 0x414d0,
8119c018
HS
1909 0x44000, 0x44054,
1910 0x4405c, 0x44078,
1911 0x440c0, 0x44174,
1912 0x44180, 0x441ac,
1913 0x441b4, 0x441b8,
1914 0x441c0, 0x44254,
1915 0x4425c, 0x44278,
1916 0x442c0, 0x44374,
1917 0x44380, 0x443ac,
1918 0x443b4, 0x443b8,
1919 0x443c0, 0x44454,
1920 0x4445c, 0x44478,
1921 0x444c0, 0x44574,
1922 0x44580, 0x445ac,
1923 0x445b4, 0x445b8,
1924 0x445c0, 0x44654,
1925 0x4465c, 0x44678,
1926 0x446c0, 0x44774,
1927 0x44780, 0x447ac,
1928 0x447b4, 0x447b8,
1929 0x447c0, 0x44854,
1930 0x4485c, 0x44878,
1931 0x448c0, 0x44974,
1932 0x44980, 0x449ac,
1933 0x449b4, 0x449b8,
1934 0x449c0, 0x449fc,
1935 0x45000, 0x45004,
1936 0x45010, 0x45030,
1937 0x45040, 0x45060,
1938 0x45068, 0x45068,
812034f1
HS
1939 0x45080, 0x45084,
1940 0x450a0, 0x450b0,
8119c018
HS
1941 0x45200, 0x45204,
1942 0x45210, 0x45230,
1943 0x45240, 0x45260,
1944 0x45268, 0x45268,
812034f1
HS
1945 0x45280, 0x45284,
1946 0x452a0, 0x452b0,
1947 0x460c0, 0x460e4,
8119c018
HS
1948 0x47000, 0x4703c,
1949 0x47044, 0x4708c,
812034f1 1950 0x47200, 0x47250,
8119c018
HS
1951 0x47400, 0x47408,
1952 0x47414, 0x47420,
812034f1
HS
1953 0x47600, 0x47618,
1954 0x47800, 0x47814,
1955 0x48000, 0x4800c,
8119c018
HS
1956 0x48040, 0x48050,
1957 0x48060, 0x48068,
1958 0x4807c, 0x4808c,
1959 0x48094, 0x480b0,
1960 0x480c0, 0x48144,
812034f1 1961 0x48180, 0x4818c,
8119c018
HS
1962 0x48200, 0x48254,
1963 0x48260, 0x48264,
1964 0x48270, 0x48288,
1965 0x48290, 0x48298,
1966 0x482ac, 0x482c8,
1967 0x482d0, 0x482e0,
1968 0x482f0, 0x482f0,
1969 0x48300, 0x4833c,
812034f1
HS
1970 0x483f8, 0x483fc,
1971 0x49304, 0x493c4,
8119c018
HS
1972 0x49400, 0x4940c,
1973 0x49414, 0x4941c,
812034f1 1974 0x49480, 0x494d0,
8119c018
HS
1975 0x4c000, 0x4c054,
1976 0x4c05c, 0x4c078,
1977 0x4c0c0, 0x4c174,
1978 0x4c180, 0x4c1ac,
1979 0x4c1b4, 0x4c1b8,
1980 0x4c1c0, 0x4c254,
1981 0x4c25c, 0x4c278,
1982 0x4c2c0, 0x4c374,
1983 0x4c380, 0x4c3ac,
1984 0x4c3b4, 0x4c3b8,
1985 0x4c3c0, 0x4c454,
1986 0x4c45c, 0x4c478,
1987 0x4c4c0, 0x4c574,
1988 0x4c580, 0x4c5ac,
1989 0x4c5b4, 0x4c5b8,
1990 0x4c5c0, 0x4c654,
1991 0x4c65c, 0x4c678,
1992 0x4c6c0, 0x4c774,
1993 0x4c780, 0x4c7ac,
1994 0x4c7b4, 0x4c7b8,
1995 0x4c7c0, 0x4c854,
1996 0x4c85c, 0x4c878,
1997 0x4c8c0, 0x4c974,
1998 0x4c980, 0x4c9ac,
1999 0x4c9b4, 0x4c9b8,
2000 0x4c9c0, 0x4c9fc,
2001 0x4d000, 0x4d004,
2002 0x4d010, 0x4d030,
2003 0x4d040, 0x4d060,
2004 0x4d068, 0x4d068,
812034f1
HS
2005 0x4d080, 0x4d084,
2006 0x4d0a0, 0x4d0b0,
8119c018
HS
2007 0x4d200, 0x4d204,
2008 0x4d210, 0x4d230,
2009 0x4d240, 0x4d260,
2010 0x4d268, 0x4d268,
812034f1
HS
2011 0x4d280, 0x4d284,
2012 0x4d2a0, 0x4d2b0,
2013 0x4e0c0, 0x4e0e4,
8119c018
HS
2014 0x4f000, 0x4f03c,
2015 0x4f044, 0x4f08c,
812034f1 2016 0x4f200, 0x4f250,
8119c018
HS
2017 0x4f400, 0x4f408,
2018 0x4f414, 0x4f420,
812034f1
HS
2019 0x4f600, 0x4f618,
2020 0x4f800, 0x4f814,
8119c018
HS
2021 0x50000, 0x50084,
2022 0x50090, 0x500cc,
812034f1 2023 0x50400, 0x50400,
8119c018
HS
2024 0x50800, 0x50884,
2025 0x50890, 0x508cc,
812034f1
HS
2026 0x50c00, 0x50c00,
2027 0x51000, 0x5101c,
2028 0x51300, 0x51308,
2029 };
2030
ab4b583b 2031 static const unsigned int t6_reg_ranges[] = {
8119c018
HS
2032 0x1008, 0x101c,
2033 0x1024, 0x10a8,
2034 0x10b4, 0x10f8,
2035 0x1100, 0x1114,
2036 0x111c, 0x112c,
2037 0x1138, 0x113c,
2038 0x1144, 0x114c,
2039 0x1180, 0x1184,
2040 0x1190, 0x1194,
2041 0x11a0, 0x11a4,
2042 0x11b0, 0x11b4,
676d6a75
HS
2043 0x11fc, 0x1258,
2044 0x1280, 0x12d4,
2045 0x12d9, 0x12d9,
2046 0x12de, 0x12de,
2047 0x12e3, 0x12e3,
2048 0x12e8, 0x133c,
ab4b583b
HS
2049 0x1800, 0x18fc,
2050 0x3000, 0x302c,
8119c018
HS
2051 0x3060, 0x30b0,
2052 0x30b8, 0x30d8,
ab4b583b
HS
2053 0x30e0, 0x30fc,
2054 0x3140, 0x357c,
2055 0x35a8, 0x35cc,
2056 0x35ec, 0x35ec,
2057 0x3600, 0x5624,
8119c018
HS
2058 0x56cc, 0x56ec,
2059 0x56f4, 0x5720,
2060 0x5728, 0x575c,
ab4b583b 2061 0x580c, 0x5814,
8119c018
HS
2062 0x5890, 0x589c,
2063 0x58a4, 0x58ac,
2064 0x58b8, 0x58bc,
ab4b583b
HS
2065 0x5940, 0x595c,
2066 0x5980, 0x598c,
8119c018
HS
2067 0x59b0, 0x59c8,
2068 0x59d0, 0x59dc,
ab4b583b
HS
2069 0x59fc, 0x5a18,
2070 0x5a60, 0x5a6c,
8119c018
HS
2071 0x5a80, 0x5a8c,
2072 0x5a94, 0x5a9c,
ab4b583b 2073 0x5b94, 0x5bfc,
8119c018
HS
2074 0x5c10, 0x5e48,
2075 0x5e50, 0x5e94,
2076 0x5ea0, 0x5eb0,
2077 0x5ec0, 0x5ec0,
676d6a75 2078 0x5ec8, 0x5ed0,
8119c018
HS
2079 0x6000, 0x6020,
2080 0x6028, 0x6040,
2081 0x6058, 0x609c,
2082 0x60a8, 0x619c,
ab4b583b
HS
2083 0x7700, 0x7798,
2084 0x77c0, 0x7880,
2085 0x78cc, 0x78fc,
8119c018
HS
2086 0x7b00, 0x7b58,
2087 0x7b60, 0x7b84,
2088 0x7b8c, 0x7c54,
2089 0x7d00, 0x7d38,
2090 0x7d40, 0x7d84,
2091 0x7d8c, 0x7ddc,
2092 0x7de4, 0x7e04,
2093 0x7e10, 0x7e1c,
2094 0x7e24, 0x7e38,
2095 0x7e40, 0x7e44,
2096 0x7e4c, 0x7e78,
2097 0x7e80, 0x7edc,
2098 0x7ee8, 0x7efc,
f109ff11 2099 0x8dc0, 0x8de4,
8119c018
HS
2100 0x8df8, 0x8e04,
2101 0x8e10, 0x8e84,
ab4b583b 2102 0x8ea0, 0x8f88,
8119c018
HS
2103 0x8fb8, 0x9058,
2104 0x9060, 0x9060,
2105 0x9068, 0x90f8,
2106 0x9100, 0x9124,
ab4b583b 2107 0x9400, 0x9470,
8119c018
HS
2108 0x9600, 0x9600,
2109 0x9608, 0x9638,
2110 0x9640, 0x9704,
2111 0x9710, 0x971c,
ab4b583b
HS
2112 0x9800, 0x9808,
2113 0x9820, 0x983c,
2114 0x9850, 0x9864,
2115 0x9c00, 0x9c6c,
2116 0x9c80, 0x9cec,
2117 0x9d00, 0x9d6c,
2118 0x9d80, 0x9dec,
2119 0x9e00, 0x9e6c,
2120 0x9e80, 0x9eec,
2121 0x9f00, 0x9f6c,
2122 0x9f80, 0xa020,
2123 0xd004, 0xd03c,
5b4e83e1 2124 0xd100, 0xd118,
8119c018
HS
2125 0xd200, 0xd214,
2126 0xd220, 0xd234,
2127 0xd240, 0xd254,
2128 0xd260, 0xd274,
2129 0xd280, 0xd294,
2130 0xd2a0, 0xd2b4,
2131 0xd2c0, 0xd2d4,
2132 0xd2e0, 0xd2f4,
2133 0xd300, 0xd31c,
ab4b583b
HS
2134 0xdfc0, 0xdfe0,
2135 0xe000, 0xf008,
2136 0x11000, 0x11014,
8119c018
HS
2137 0x11048, 0x1106c,
2138 0x11074, 0x11088,
2139 0x11098, 0x11120,
2140 0x1112c, 0x1117c,
2141 0x11190, 0x112e0,
ab4b583b 2142 0x11300, 0x1130c,
5b4e83e1 2143 0x12000, 0x1206c,
ab4b583b
HS
2144 0x19040, 0x1906c,
2145 0x19078, 0x19080,
8119c018
HS
2146 0x1908c, 0x190e8,
2147 0x190f0, 0x190f8,
2148 0x19100, 0x19110,
2149 0x19120, 0x19124,
2150 0x19150, 0x19194,
2151 0x1919c, 0x191b0,
ab4b583b 2152 0x191d0, 0x191e8,
676d6a75
HS
2153 0x19238, 0x19290,
2154 0x192a4, 0x192b0,
8119c018
HS
2155 0x192bc, 0x192bc,
2156 0x19348, 0x1934c,
2157 0x193f8, 0x19418,
2158 0x19420, 0x19428,
2159 0x19430, 0x19444,
2160 0x1944c, 0x1946c,
2161 0x19474, 0x19474,
ab4b583b
HS
2162 0x19490, 0x194cc,
2163 0x194f0, 0x194f8,
8119c018
HS
2164 0x19c00, 0x19c48,
2165 0x19c50, 0x19c80,
2166 0x19c94, 0x19c98,
2167 0x19ca0, 0x19cbc,
2168 0x19ce4, 0x19ce4,
2169 0x19cf0, 0x19cf8,
2170 0x19d00, 0x19d28,
ab4b583b 2171 0x19d50, 0x19d78,
8119c018
HS
2172 0x19d94, 0x19d98,
2173 0x19da0, 0x19dc8,
ab4b583b
HS
2174 0x19df0, 0x19e10,
2175 0x19e50, 0x19e6c,
8119c018
HS
2176 0x19ea0, 0x19ebc,
2177 0x19ec4, 0x19ef4,
2178 0x19f04, 0x19f2c,
2179 0x19f34, 0x19f34,
ab4b583b
HS
2180 0x19f40, 0x19f50,
2181 0x19f90, 0x19fac,
8119c018
HS
2182 0x19fc4, 0x19fc8,
2183 0x19fd0, 0x19fe4,
2184 0x1a000, 0x1a004,
2185 0x1a010, 0x1a06c,
2186 0x1a0b0, 0x1a0e4,
2187 0x1a0ec, 0x1a0f8,
2188 0x1a100, 0x1a108,
2189 0x1a114, 0x1a120,
2190 0x1a128, 0x1a130,
2191 0x1a138, 0x1a138,
ab4b583b
HS
2192 0x1a190, 0x1a1c4,
2193 0x1a1fc, 0x1a1fc,
2194 0x1e008, 0x1e00c,
8119c018
HS
2195 0x1e040, 0x1e044,
2196 0x1e04c, 0x1e04c,
ab4b583b
HS
2197 0x1e284, 0x1e290,
2198 0x1e2c0, 0x1e2c0,
2199 0x1e2e0, 0x1e2e0,
2200 0x1e300, 0x1e384,
2201 0x1e3c0, 0x1e3c8,
2202 0x1e408, 0x1e40c,
8119c018
HS
2203 0x1e440, 0x1e444,
2204 0x1e44c, 0x1e44c,
ab4b583b
HS
2205 0x1e684, 0x1e690,
2206 0x1e6c0, 0x1e6c0,
2207 0x1e6e0, 0x1e6e0,
2208 0x1e700, 0x1e784,
2209 0x1e7c0, 0x1e7c8,
2210 0x1e808, 0x1e80c,
8119c018
HS
2211 0x1e840, 0x1e844,
2212 0x1e84c, 0x1e84c,
ab4b583b
HS
2213 0x1ea84, 0x1ea90,
2214 0x1eac0, 0x1eac0,
2215 0x1eae0, 0x1eae0,
2216 0x1eb00, 0x1eb84,
2217 0x1ebc0, 0x1ebc8,
2218 0x1ec08, 0x1ec0c,
8119c018
HS
2219 0x1ec40, 0x1ec44,
2220 0x1ec4c, 0x1ec4c,
ab4b583b
HS
2221 0x1ee84, 0x1ee90,
2222 0x1eec0, 0x1eec0,
2223 0x1eee0, 0x1eee0,
2224 0x1ef00, 0x1ef84,
2225 0x1efc0, 0x1efc8,
2226 0x1f008, 0x1f00c,
8119c018
HS
2227 0x1f040, 0x1f044,
2228 0x1f04c, 0x1f04c,
ab4b583b
HS
2229 0x1f284, 0x1f290,
2230 0x1f2c0, 0x1f2c0,
2231 0x1f2e0, 0x1f2e0,
2232 0x1f300, 0x1f384,
2233 0x1f3c0, 0x1f3c8,
2234 0x1f408, 0x1f40c,
8119c018
HS
2235 0x1f440, 0x1f444,
2236 0x1f44c, 0x1f44c,
ab4b583b
HS
2237 0x1f684, 0x1f690,
2238 0x1f6c0, 0x1f6c0,
2239 0x1f6e0, 0x1f6e0,
2240 0x1f700, 0x1f784,
2241 0x1f7c0, 0x1f7c8,
2242 0x1f808, 0x1f80c,
8119c018
HS
2243 0x1f840, 0x1f844,
2244 0x1f84c, 0x1f84c,
ab4b583b
HS
2245 0x1fa84, 0x1fa90,
2246 0x1fac0, 0x1fac0,
2247 0x1fae0, 0x1fae0,
2248 0x1fb00, 0x1fb84,
2249 0x1fbc0, 0x1fbc8,
2250 0x1fc08, 0x1fc0c,
8119c018
HS
2251 0x1fc40, 0x1fc44,
2252 0x1fc4c, 0x1fc4c,
ab4b583b
HS
2253 0x1fe84, 0x1fe90,
2254 0x1fec0, 0x1fec0,
2255 0x1fee0, 0x1fee0,
2256 0x1ff00, 0x1ff84,
2257 0x1ffc0, 0x1ffc8,
8119c018
HS
2258 0x30000, 0x30030,
2259 0x30038, 0x30038,
2260 0x30040, 0x30040,
2261 0x30048, 0x30048,
2262 0x30050, 0x30050,
2263 0x3005c, 0x30060,
2264 0x30068, 0x30068,
2265 0x30070, 0x30070,
2266 0x30100, 0x30168,
2267 0x30190, 0x301a0,
2268 0x301a8, 0x301b8,
2269 0x301c4, 0x301c8,
2270 0x301d0, 0x301d0,
f109ff11 2271 0x30200, 0x30320,
8119c018
HS
2272 0x30400, 0x304b4,
2273 0x304c0, 0x3052c,
ab4b583b 2274 0x30540, 0x3061c,
8119c018 2275 0x30800, 0x308a0,
ab4b583b
HS
2276 0x308c0, 0x30908,
2277 0x30910, 0x309b8,
2278 0x30a00, 0x30a04,
8119c018
HS
2279 0x30a0c, 0x30a14,
2280 0x30a1c, 0x30a2c,
ab4b583b 2281 0x30a44, 0x30a50,
8119c018
HS
2282 0x30a74, 0x30a74,
2283 0x30a7c, 0x30afc,
2284 0x30b08, 0x30c24,
2285 0x30d00, 0x30d14,
2286 0x30d1c, 0x30d3c,
2287 0x30d44, 0x30d4c,
2288 0x30d54, 0x30d74,
2289 0x30d7c, 0x30d7c,
ab4b583b
HS
2290 0x30de0, 0x30de0,
2291 0x30e00, 0x30ed4,
2292 0x30f00, 0x30fa4,
2293 0x30fc0, 0x30fc4,
2294 0x31000, 0x31004,
2295 0x31080, 0x310fc,
2296 0x31208, 0x31220,
2297 0x3123c, 0x31254,
2298 0x31300, 0x31300,
2299 0x31308, 0x3131c,
2300 0x31338, 0x3133c,
2301 0x31380, 0x31380,
2302 0x31388, 0x313a8,
2303 0x313b4, 0x313b4,
2304 0x31400, 0x31420,
2305 0x31438, 0x3143c,
2306 0x31480, 0x31480,
2307 0x314a8, 0x314a8,
2308 0x314b0, 0x314b4,
2309 0x314c8, 0x314d4,
2310 0x31a40, 0x31a4c,
2311 0x31af0, 0x31b20,
2312 0x31b38, 0x31b3c,
2313 0x31b80, 0x31b80,
2314 0x31ba8, 0x31ba8,
2315 0x31bb0, 0x31bb4,
2316 0x31bc8, 0x31bd4,
2317 0x32140, 0x3218c,
8119c018
HS
2318 0x321f0, 0x321f4,
2319 0x32200, 0x32200,
ab4b583b
HS
2320 0x32218, 0x32218,
2321 0x32400, 0x32400,
2322 0x32408, 0x3241c,
2323 0x32618, 0x32620,
2324 0x32664, 0x32664,
2325 0x326a8, 0x326a8,
2326 0x326ec, 0x326ec,
2327 0x32a00, 0x32abc,
8119c018
HS
2328 0x32b00, 0x32b38,
2329 0x32b40, 0x32b58,
2330 0x32b60, 0x32b78,
ab4b583b
HS
2331 0x32c00, 0x32c00,
2332 0x32c08, 0x32c3c,
2333 0x32e00, 0x32e2c,
2334 0x32f00, 0x32f2c,
8119c018
HS
2335 0x33000, 0x3302c,
2336 0x33034, 0x33050,
2337 0x33058, 0x33058,
2338 0x33060, 0x3308c,
2339 0x3309c, 0x330ac,
2340 0x330c0, 0x330c0,
2341 0x330c8, 0x330d0,
2342 0x330d8, 0x330e0,
2343 0x330ec, 0x3312c,
2344 0x33134, 0x33150,
2345 0x33158, 0x33158,
2346 0x33160, 0x3318c,
2347 0x3319c, 0x331ac,
2348 0x331c0, 0x331c0,
2349 0x331c8, 0x331d0,
2350 0x331d8, 0x331e0,
2351 0x331ec, 0x33290,
2352 0x33298, 0x332c4,
2353 0x332e4, 0x33390,
2354 0x33398, 0x333c4,
2355 0x333e4, 0x3342c,
2356 0x33434, 0x33450,
2357 0x33458, 0x33458,
2358 0x33460, 0x3348c,
2359 0x3349c, 0x334ac,
2360 0x334c0, 0x334c0,
2361 0x334c8, 0x334d0,
2362 0x334d8, 0x334e0,
2363 0x334ec, 0x3352c,
2364 0x33534, 0x33550,
2365 0x33558, 0x33558,
2366 0x33560, 0x3358c,
2367 0x3359c, 0x335ac,
2368 0x335c0, 0x335c0,
2369 0x335c8, 0x335d0,
2370 0x335d8, 0x335e0,
2371 0x335ec, 0x33690,
2372 0x33698, 0x336c4,
2373 0x336e4, 0x33790,
2374 0x33798, 0x337c4,
ab4b583b
HS
2375 0x337e4, 0x337fc,
2376 0x33814, 0x33814,
2377 0x33854, 0x33868,
2378 0x33880, 0x3388c,
2379 0x338c0, 0x338d0,
2380 0x338e8, 0x338ec,
8119c018
HS
2381 0x33900, 0x3392c,
2382 0x33934, 0x33950,
2383 0x33958, 0x33958,
2384 0x33960, 0x3398c,
2385 0x3399c, 0x339ac,
2386 0x339c0, 0x339c0,
2387 0x339c8, 0x339d0,
2388 0x339d8, 0x339e0,
2389 0x339ec, 0x33a90,
2390 0x33a98, 0x33ac4,
ab4b583b 2391 0x33ae4, 0x33b10,
8119c018
HS
2392 0x33b24, 0x33b28,
2393 0x33b38, 0x33b50,
ab4b583b 2394 0x33bf0, 0x33c10,
8119c018
HS
2395 0x33c24, 0x33c28,
2396 0x33c38, 0x33c50,
ab4b583b 2397 0x33cf0, 0x33cfc,
8119c018
HS
2398 0x34000, 0x34030,
2399 0x34038, 0x34038,
2400 0x34040, 0x34040,
2401 0x34048, 0x34048,
2402 0x34050, 0x34050,
2403 0x3405c, 0x34060,
2404 0x34068, 0x34068,
2405 0x34070, 0x34070,
2406 0x34100, 0x34168,
2407 0x34190, 0x341a0,
2408 0x341a8, 0x341b8,
2409 0x341c4, 0x341c8,
2410 0x341d0, 0x341d0,
f109ff11 2411 0x34200, 0x34320,
8119c018
HS
2412 0x34400, 0x344b4,
2413 0x344c0, 0x3452c,
ab4b583b 2414 0x34540, 0x3461c,
8119c018 2415 0x34800, 0x348a0,
ab4b583b
HS
2416 0x348c0, 0x34908,
2417 0x34910, 0x349b8,
2418 0x34a00, 0x34a04,
8119c018
HS
2419 0x34a0c, 0x34a14,
2420 0x34a1c, 0x34a2c,
ab4b583b 2421 0x34a44, 0x34a50,
8119c018
HS
2422 0x34a74, 0x34a74,
2423 0x34a7c, 0x34afc,
2424 0x34b08, 0x34c24,
2425 0x34d00, 0x34d14,
2426 0x34d1c, 0x34d3c,
2427 0x34d44, 0x34d4c,
2428 0x34d54, 0x34d74,
2429 0x34d7c, 0x34d7c,
ab4b583b
HS
2430 0x34de0, 0x34de0,
2431 0x34e00, 0x34ed4,
2432 0x34f00, 0x34fa4,
2433 0x34fc0, 0x34fc4,
2434 0x35000, 0x35004,
2435 0x35080, 0x350fc,
2436 0x35208, 0x35220,
2437 0x3523c, 0x35254,
2438 0x35300, 0x35300,
2439 0x35308, 0x3531c,
2440 0x35338, 0x3533c,
2441 0x35380, 0x35380,
2442 0x35388, 0x353a8,
2443 0x353b4, 0x353b4,
2444 0x35400, 0x35420,
2445 0x35438, 0x3543c,
2446 0x35480, 0x35480,
2447 0x354a8, 0x354a8,
2448 0x354b0, 0x354b4,
2449 0x354c8, 0x354d4,
2450 0x35a40, 0x35a4c,
2451 0x35af0, 0x35b20,
2452 0x35b38, 0x35b3c,
2453 0x35b80, 0x35b80,
2454 0x35ba8, 0x35ba8,
2455 0x35bb0, 0x35bb4,
2456 0x35bc8, 0x35bd4,
2457 0x36140, 0x3618c,
8119c018
HS
2458 0x361f0, 0x361f4,
2459 0x36200, 0x36200,
ab4b583b
HS
2460 0x36218, 0x36218,
2461 0x36400, 0x36400,
2462 0x36408, 0x3641c,
2463 0x36618, 0x36620,
2464 0x36664, 0x36664,
2465 0x366a8, 0x366a8,
2466 0x366ec, 0x366ec,
2467 0x36a00, 0x36abc,
8119c018
HS
2468 0x36b00, 0x36b38,
2469 0x36b40, 0x36b58,
2470 0x36b60, 0x36b78,
ab4b583b
HS
2471 0x36c00, 0x36c00,
2472 0x36c08, 0x36c3c,
2473 0x36e00, 0x36e2c,
2474 0x36f00, 0x36f2c,
8119c018
HS
2475 0x37000, 0x3702c,
2476 0x37034, 0x37050,
2477 0x37058, 0x37058,
2478 0x37060, 0x3708c,
2479 0x3709c, 0x370ac,
2480 0x370c0, 0x370c0,
2481 0x370c8, 0x370d0,
2482 0x370d8, 0x370e0,
2483 0x370ec, 0x3712c,
2484 0x37134, 0x37150,
2485 0x37158, 0x37158,
2486 0x37160, 0x3718c,
2487 0x3719c, 0x371ac,
2488 0x371c0, 0x371c0,
2489 0x371c8, 0x371d0,
2490 0x371d8, 0x371e0,
2491 0x371ec, 0x37290,
2492 0x37298, 0x372c4,
2493 0x372e4, 0x37390,
2494 0x37398, 0x373c4,
2495 0x373e4, 0x3742c,
2496 0x37434, 0x37450,
2497 0x37458, 0x37458,
2498 0x37460, 0x3748c,
2499 0x3749c, 0x374ac,
2500 0x374c0, 0x374c0,
2501 0x374c8, 0x374d0,
2502 0x374d8, 0x374e0,
2503 0x374ec, 0x3752c,
2504 0x37534, 0x37550,
2505 0x37558, 0x37558,
2506 0x37560, 0x3758c,
2507 0x3759c, 0x375ac,
2508 0x375c0, 0x375c0,
2509 0x375c8, 0x375d0,
2510 0x375d8, 0x375e0,
2511 0x375ec, 0x37690,
2512 0x37698, 0x376c4,
2513 0x376e4, 0x37790,
2514 0x37798, 0x377c4,
ab4b583b
HS
2515 0x377e4, 0x377fc,
2516 0x37814, 0x37814,
2517 0x37854, 0x37868,
2518 0x37880, 0x3788c,
2519 0x378c0, 0x378d0,
2520 0x378e8, 0x378ec,
8119c018
HS
2521 0x37900, 0x3792c,
2522 0x37934, 0x37950,
2523 0x37958, 0x37958,
2524 0x37960, 0x3798c,
2525 0x3799c, 0x379ac,
2526 0x379c0, 0x379c0,
2527 0x379c8, 0x379d0,
2528 0x379d8, 0x379e0,
2529 0x379ec, 0x37a90,
2530 0x37a98, 0x37ac4,
ab4b583b 2531 0x37ae4, 0x37b10,
8119c018
HS
2532 0x37b24, 0x37b28,
2533 0x37b38, 0x37b50,
ab4b583b 2534 0x37bf0, 0x37c10,
8119c018
HS
2535 0x37c24, 0x37c28,
2536 0x37c38, 0x37c50,
ab4b583b
HS
2537 0x37cf0, 0x37cfc,
2538 0x40040, 0x40040,
2539 0x40080, 0x40084,
2540 0x40100, 0x40100,
2541 0x40140, 0x401bc,
2542 0x40200, 0x40214,
2543 0x40228, 0x40228,
2544 0x40240, 0x40258,
2545 0x40280, 0x40280,
2546 0x40304, 0x40304,
2547 0x40330, 0x4033c,
676d6a75
HS
2548 0x41304, 0x413b8,
2549 0x413c0, 0x413c8,
8119c018
HS
2550 0x413d0, 0x413dc,
2551 0x413f0, 0x413f0,
2552 0x41400, 0x4140c,
2553 0x41414, 0x4141c,
ab4b583b
HS
2554 0x41480, 0x414d0,
2555 0x44000, 0x4407c,
8119c018
HS
2556 0x440c0, 0x441ac,
2557 0x441b4, 0x4427c,
2558 0x442c0, 0x443ac,
2559 0x443b4, 0x4447c,
2560 0x444c0, 0x445ac,
2561 0x445b4, 0x4467c,
2562 0x446c0, 0x447ac,
2563 0x447b4, 0x4487c,
2564 0x448c0, 0x449ac,
2565 0x449b4, 0x44a7c,
2566 0x44ac0, 0x44bac,
2567 0x44bb4, 0x44c7c,
2568 0x44cc0, 0x44dac,
2569 0x44db4, 0x44e7c,
2570 0x44ec0, 0x44fac,
2571 0x44fb4, 0x4507c,
2572 0x450c0, 0x451ac,
2573 0x451b4, 0x451fc,
2574 0x45800, 0x45804,
2575 0x45810, 0x45830,
2576 0x45840, 0x45860,
2577 0x45868, 0x45868,
ab4b583b
HS
2578 0x45880, 0x45884,
2579 0x458a0, 0x458b0,
8119c018
HS
2580 0x45a00, 0x45a04,
2581 0x45a10, 0x45a30,
2582 0x45a40, 0x45a60,
2583 0x45a68, 0x45a68,
ab4b583b
HS
2584 0x45a80, 0x45a84,
2585 0x45aa0, 0x45ab0,
2586 0x460c0, 0x460e4,
8119c018
HS
2587 0x47000, 0x4703c,
2588 0x47044, 0x4708c,
ab4b583b 2589 0x47200, 0x47250,
8119c018
HS
2590 0x47400, 0x47408,
2591 0x47414, 0x47420,
ab4b583b 2592 0x47600, 0x47618,
8119c018
HS
2593 0x47800, 0x47814,
2594 0x47820, 0x4782c,
2595 0x50000, 0x50084,
2596 0x50090, 0x500cc,
2597 0x50300, 0x50384,
ab4b583b 2598 0x50400, 0x50400,
8119c018
HS
2599 0x50800, 0x50884,
2600 0x50890, 0x508cc,
2601 0x50b00, 0x50b84,
ab4b583b 2602 0x50c00, 0x50c00,
8119c018
HS
2603 0x51000, 0x51020,
2604 0x51028, 0x510b0,
ab4b583b
HS
2605 0x51300, 0x51324,
2606 };
2607
812034f1
HS
2608 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2609 const unsigned int *reg_ranges;
2610 int reg_ranges_size, range;
2611 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2612
2613 /* Select the right set of register ranges to dump depending on the
2614 * adapter chip type.
2615 */
2616 switch (chip_version) {
2617 case CHELSIO_T4:
2618 reg_ranges = t4_reg_ranges;
2619 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2620 break;
2621
2622 case CHELSIO_T5:
2623 reg_ranges = t5_reg_ranges;
2624 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2625 break;
2626
ab4b583b
HS
2627 case CHELSIO_T6:
2628 reg_ranges = t6_reg_ranges;
2629 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2630 break;
2631
812034f1
HS
2632 default:
2633 dev_err(adap->pdev_dev,
2634 "Unsupported chip version %d\n", chip_version);
2635 return;
2636 }
2637
2638 /* Clear the register buffer and insert the appropriate register
2639 * values selected by the above register ranges.
2640 */
2641 memset(buf, 0, buf_size);
2642 for (range = 0; range < reg_ranges_size; range += 2) {
2643 unsigned int reg = reg_ranges[range];
2644 unsigned int last_reg = reg_ranges[range + 1];
2645 u32 *bufp = (u32 *)((char *)buf + reg);
2646
2647 /* Iterate across the register range filling in the register
2648 * buffer but don't write past the end of the register buffer.
2649 */
2650 while (reg <= last_reg && bufp < buf_end) {
2651 *bufp++ = t4_read_reg(adap, reg);
2652 reg += sizeof(u32);
2653 }
2654 }
2655}
2656
56d36be4 2657#define EEPROM_STAT_ADDR 0x7bfc
67e65879 2658#define VPD_SIZE 0x800
47ce9c48
SR
2659#define VPD_BASE 0x400
2660#define VPD_BASE_OLD 0
0a57a536 2661#define VPD_LEN 1024
63a92fe6 2662#define CHELSIO_VPD_UNIQUE_ID 0x82
56d36be4
DM
2663
2664/**
2665 * t4_seeprom_wp - enable/disable EEPROM write protection
2666 * @adapter: the adapter
2667 * @enable: whether to enable or disable write protection
2668 *
2669 * Enables or disables write protection on the serial EEPROM.
2670 */
2671int t4_seeprom_wp(struct adapter *adapter, bool enable)
2672{
2673 unsigned int v = enable ? 0xc : 0;
2674 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2675 return ret < 0 ? ret : 0;
2676}
2677
2678/**
098ef6c2 2679 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
56d36be4
DM
2680 * @adapter: adapter to read
2681 * @p: where to store the parameters
2682 *
2683 * Reads card parameters stored in VPD EEPROM.
2684 */
098ef6c2 2685int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 2686{
098ef6c2
HS
2687 int i, ret = 0, addr;
2688 int ec, sn, pn, na;
8c357ebd 2689 u8 *vpd, csum;
23d88e1d 2690 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 2691
8c357ebd
VP
2692 vpd = vmalloc(VPD_LEN);
2693 if (!vpd)
2694 return -ENOMEM;
2695
67e65879
HS
2696 /* We have two VPD data structures stored in the adapter VPD area.
2697 * By default, Linux calculates the size of the VPD area by traversing
2698 * the first VPD area at offset 0x0, so we need to tell the OS what
2699 * our real VPD size is.
2700 */
2701 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2702 if (ret < 0)
2703 goto out;
2704
098ef6c2
HS
2705 /* Card information normally starts at VPD_BASE but early cards had
2706 * it at 0.
2707 */
47ce9c48
SR
2708 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2709 if (ret < 0)
2710 goto out;
63a92fe6
HS
2711
2712 /* The VPD shall have a unique identifier specified by the PCI SIG.
2713 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2714 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2715 * is expected to automatically put this entry at the
2716 * beginning of the VPD.
2717 */
2718 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
47ce9c48
SR
2719
2720 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 2721 if (ret < 0)
8c357ebd 2722 goto out;
56d36be4 2723
23d88e1d
DM
2724 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2725 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
2726 ret = -EINVAL;
2727 goto out;
23d88e1d
DM
2728 }
2729
2730 id_len = pci_vpd_lrdt_size(vpd);
2731 if (id_len > ID_LEN)
2732 id_len = ID_LEN;
2733
2734 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2735 if (i < 0) {
2736 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
2737 ret = -EINVAL;
2738 goto out;
23d88e1d
DM
2739 }
2740
2741 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2742 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2743 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 2744 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
2745 ret = -EINVAL;
2746 goto out;
226ec5fd
DM
2747 }
2748
2749#define FIND_VPD_KW(var, name) do { \
23d88e1d 2750 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
2751 if (var < 0) { \
2752 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
2753 ret = -EINVAL; \
2754 goto out; \
226ec5fd
DM
2755 } \
2756 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2757} while (0)
2758
2759 FIND_VPD_KW(i, "RV");
2760 for (csum = 0; i >= 0; i--)
2761 csum += vpd[i];
56d36be4
DM
2762
2763 if (csum) {
2764 dev_err(adapter->pdev_dev,
2765 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
2766 ret = -EINVAL;
2767 goto out;
56d36be4
DM
2768 }
2769
226ec5fd
DM
2770 FIND_VPD_KW(ec, "EC");
2771 FIND_VPD_KW(sn, "SN");
a94cd705 2772 FIND_VPD_KW(pn, "PN");
098ef6c2 2773 FIND_VPD_KW(na, "NA");
226ec5fd
DM
2774#undef FIND_VPD_KW
2775
23d88e1d 2776 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 2777 strim(p->id);
226ec5fd 2778 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 2779 strim(p->ec);
226ec5fd
DM
2780 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2781 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 2782 strim(p->sn);
63a92fe6 2783 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
a94cd705
KS
2784 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2785 strim(p->pn);
098ef6c2
HS
2786 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2787 strim((char *)p->na);
636f9d37 2788
098ef6c2
HS
2789out:
2790 vfree(vpd);
661dbeb9 2791 return ret < 0 ? ret : 0;
098ef6c2
HS
2792}
2793
2794/**
2795 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2796 * @adapter: adapter to read
2797 * @p: where to store the parameters
2798 *
2799 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2800 * Clock. This can only be called after a connection to the firmware
2801 * is established.
2802 */
2803int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2804{
2805 u32 cclk_param, cclk_val;
2806 int ret;
2807
2808 /* Grab the raw VPD parameters.
2809 */
2810 ret = t4_get_raw_vpd_params(adapter, p);
2811 if (ret)
2812 return ret;
2813
2814 /* Ask firmware for the Core Clock since it knows how to translate the
636f9d37
VP
2815 * Reference Clock ('V2') VPD field into a Core Clock value ...
2816 */
5167865a
HS
2817 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2818 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
098ef6c2 2819 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
636f9d37 2820 1, &cclk_param, &cclk_val);
8c357ebd 2821
636f9d37
VP
2822 if (ret)
2823 return ret;
2824 p->cclk = cclk_val;
2825
56d36be4
DM
2826 return 0;
2827}
2828
2829/* serial flash and firmware constants */
2830enum {
2831 SF_ATTEMPTS = 10, /* max retries for SF operations */
2832
2833 /* flash command opcodes */
2834 SF_PROG_PAGE = 2, /* program page */
2835 SF_WR_DISABLE = 4, /* disable writes */
2836 SF_RD_STATUS = 5, /* read status register */
2837 SF_WR_ENABLE = 6, /* enable writes */
2838 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 2839 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
2840 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2841
6f1d7210 2842 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
56d36be4
DM
2843};
2844
2845/**
2846 * sf1_read - read data from the serial flash
2847 * @adapter: the adapter
2848 * @byte_cnt: number of bytes to read
2849 * @cont: whether another operation will be chained
2850 * @lock: whether to lock SF for PL access only
2851 * @valp: where to store the read data
2852 *
2853 * Reads up to 4 bytes of data from the serial flash. The location of
2854 * the read needs to be specified prior to calling this by issuing the
2855 * appropriate commands to the serial flash.
2856 */
2857static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2858 int lock, u32 *valp)
2859{
2860 int ret;
2861
2862 if (!byte_cnt || byte_cnt > 4)
2863 return -EINVAL;
0d804338 2864 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2865 return -EBUSY;
0d804338
HS
2866 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2867 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2868 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4 2869 if (!ret)
0d804338 2870 *valp = t4_read_reg(adapter, SF_DATA_A);
56d36be4
DM
2871 return ret;
2872}
2873
2874/**
2875 * sf1_write - write data to the serial flash
2876 * @adapter: the adapter
2877 * @byte_cnt: number of bytes to write
2878 * @cont: whether another operation will be chained
2879 * @lock: whether to lock SF for PL access only
2880 * @val: value to write
2881 *
2882 * Writes up to 4 bytes of data to the serial flash. The location of
2883 * the write needs to be specified prior to calling this by issuing the
2884 * appropriate commands to the serial flash.
2885 */
2886static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2887 int lock, u32 val)
2888{
2889 if (!byte_cnt || byte_cnt > 4)
2890 return -EINVAL;
0d804338 2891 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2892 return -EBUSY;
0d804338
HS
2893 t4_write_reg(adapter, SF_DATA_A, val);
2894 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2895 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2896 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4
DM
2897}
2898
2899/**
2900 * flash_wait_op - wait for a flash operation to complete
2901 * @adapter: the adapter
2902 * @attempts: max number of polls of the status register
2903 * @delay: delay between polls in ms
2904 *
2905 * Wait for a flash operation to complete by polling the status register.
2906 */
2907static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2908{
2909 int ret;
2910 u32 status;
2911
2912 while (1) {
2913 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2914 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2915 return ret;
2916 if (!(status & 1))
2917 return 0;
2918 if (--attempts == 0)
2919 return -EAGAIN;
2920 if (delay)
2921 msleep(delay);
2922 }
2923}
2924
2925/**
2926 * t4_read_flash - read words from serial flash
2927 * @adapter: the adapter
2928 * @addr: the start address for the read
2929 * @nwords: how many 32-bit words to read
2930 * @data: where to store the read data
2931 * @byte_oriented: whether to store data as bytes or as words
2932 *
2933 * Read the specified number of 32-bit words from the serial flash.
2934 * If @byte_oriented is set the read data is stored as a byte array
2935 * (i.e., big-endian), otherwise as 32-bit words in the platform's
dbedd44e 2936 * natural endianness.
56d36be4 2937 */
49216c1c
HS
2938int t4_read_flash(struct adapter *adapter, unsigned int addr,
2939 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
2940{
2941 int ret;
2942
900a6596 2943 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
2944 return -EINVAL;
2945
2946 addr = swab32(addr) | SF_RD_DATA_FAST;
2947
2948 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2949 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2950 return ret;
2951
2952 for ( ; nwords; nwords--, data++) {
2953 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2954 if (nwords == 1)
0d804338 2955 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2956 if (ret)
2957 return ret;
2958 if (byte_oriented)
f404f80c 2959 *data = (__force __u32)(cpu_to_be32(*data));
56d36be4
DM
2960 }
2961 return 0;
2962}
2963
2964/**
2965 * t4_write_flash - write up to a page of data to the serial flash
2966 * @adapter: the adapter
2967 * @addr: the start address to write
2968 * @n: length of data to write in bytes
2969 * @data: the data to write
2970 *
2971 * Writes up to a page of data (256 bytes) to the serial flash starting
2972 * at the given address. All the data must be written to the same page.
2973 */
2974static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2975 unsigned int n, const u8 *data)
2976{
2977 int ret;
2978 u32 buf[64];
2979 unsigned int i, c, left, val, offset = addr & 0xff;
2980
900a6596 2981 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
2982 return -EINVAL;
2983
2984 val = swab32(addr) | SF_PROG_PAGE;
2985
2986 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2987 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2988 goto unlock;
2989
2990 for (left = n; left; left -= c) {
2991 c = min(left, 4U);
2992 for (val = 0, i = 0; i < c; ++i)
2993 val = (val << 8) + *data++;
2994
2995 ret = sf1_write(adapter, c, c != left, 1, val);
2996 if (ret)
2997 goto unlock;
2998 }
900a6596 2999 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
3000 if (ret)
3001 goto unlock;
3002
0d804338 3003 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
3004
3005 /* Read the page to verify the write succeeded */
3006 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3007 if (ret)
3008 return ret;
3009
3010 if (memcmp(data - n, (u8 *)buf + offset, n)) {
3011 dev_err(adapter->pdev_dev,
3012 "failed to correctly write the flash page at %#x\n",
3013 addr);
3014 return -EIO;
3015 }
3016 return 0;
3017
3018unlock:
0d804338 3019 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
3020 return ret;
3021}
3022
3023/**
16e47624 3024 * t4_get_fw_version - read the firmware version
56d36be4
DM
3025 * @adapter: the adapter
3026 * @vers: where to place the version
3027 *
3028 * Reads the FW version from flash.
3029 */
16e47624 3030int t4_get_fw_version(struct adapter *adapter, u32 *vers)
56d36be4 3031{
16e47624
HS
3032 return t4_read_flash(adapter, FLASH_FW_START +
3033 offsetof(struct fw_hdr, fw_ver), 1,
3034 vers, 0);
56d36be4
DM
3035}
3036
0de72738
HS
3037/**
3038 * t4_get_bs_version - read the firmware bootstrap version
3039 * @adapter: the adapter
3040 * @vers: where to place the version
3041 *
3042 * Reads the FW Bootstrap version from flash.
3043 */
3044int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3045{
3046 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3047 offsetof(struct fw_hdr, fw_ver), 1,
3048 vers, 0);
3049}
3050
56d36be4 3051/**
16e47624 3052 * t4_get_tp_version - read the TP microcode version
56d36be4
DM
3053 * @adapter: the adapter
3054 * @vers: where to place the version
3055 *
3056 * Reads the TP microcode version from flash.
3057 */
16e47624 3058int t4_get_tp_version(struct adapter *adapter, u32 *vers)
56d36be4 3059{
16e47624 3060 return t4_read_flash(adapter, FLASH_FW_START +
900a6596 3061 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
3062 1, vers, 0);
3063}
3064
ba3f8cd5
HS
3065/**
3066 * t4_get_exprom_version - return the Expansion ROM version (if any)
3067 * @adapter: the adapter
3068 * @vers: where to place the version
3069 *
3070 * Reads the Expansion ROM header from FLASH and returns the version
3071 * number (if present) through the @vers return value pointer. We return
3072 * this in the Firmware Version Format since it's convenient. Return
3073 * 0 on success, -ENOENT if no Expansion ROM is present.
3074 */
3075int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3076{
3077 struct exprom_header {
3078 unsigned char hdr_arr[16]; /* must start with 0x55aa */
3079 unsigned char hdr_ver[4]; /* Expansion ROM version */
3080 } *hdr;
3081 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3082 sizeof(u32))];
3083 int ret;
3084
3085 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3086 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3087 0);
3088 if (ret)
3089 return ret;
3090
3091 hdr = (struct exprom_header *)exprom_header_buf;
3092 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3093 return -ENOENT;
3094
3095 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3096 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3097 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3098 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3099 return 0;
3100}
3101
a69265e9
HS
3102/**
3103 * t4_check_fw_version - check if the FW is supported with this driver
3104 * @adap: the adapter
3105 *
3106 * Checks if an adapter's FW is compatible with the driver. Returns 0
3107 * if there's exact match, a negative error if the version could not be
3108 * read or there's a major version mismatch
3109 */
3110int t4_check_fw_version(struct adapter *adap)
3111{
21d11bd6 3112 int i, ret, major, minor, micro;
a69265e9
HS
3113 int exp_major, exp_minor, exp_micro;
3114 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3115
3116 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
21d11bd6
HS
3117 /* Try multiple times before returning error */
3118 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3119 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3120
a69265e9
HS
3121 if (ret)
3122 return ret;
3123
3124 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3125 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3126 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3127
3128 switch (chip_version) {
3129 case CHELSIO_T4:
3130 exp_major = T4FW_MIN_VERSION_MAJOR;
3131 exp_minor = T4FW_MIN_VERSION_MINOR;
3132 exp_micro = T4FW_MIN_VERSION_MICRO;
3133 break;
3134 case CHELSIO_T5:
3135 exp_major = T5FW_MIN_VERSION_MAJOR;
3136 exp_minor = T5FW_MIN_VERSION_MINOR;
3137 exp_micro = T5FW_MIN_VERSION_MICRO;
3138 break;
3139 case CHELSIO_T6:
3140 exp_major = T6FW_MIN_VERSION_MAJOR;
3141 exp_minor = T6FW_MIN_VERSION_MINOR;
3142 exp_micro = T6FW_MIN_VERSION_MICRO;
3143 break;
3144 default:
3145 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3146 adap->chip);
3147 return -EINVAL;
3148 }
3149
3150 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3151 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3152 dev_err(adap->pdev_dev,
3153 "Card has firmware version %u.%u.%u, minimum "
3154 "supported firmware is %u.%u.%u.\n", major, minor,
3155 micro, exp_major, exp_minor, exp_micro);
3156 return -EFAULT;
3157 }
3158 return 0;
3159}
3160
16e47624
HS
3161/* Is the given firmware API compatible with the one the driver was compiled
3162 * with?
56d36be4 3163 */
16e47624 3164static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
56d36be4 3165{
56d36be4 3166
16e47624
HS
3167 /* short circuit if it's the exact same firmware version */
3168 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3169 return 1;
56d36be4 3170
16e47624
HS
3171#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3172 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3173 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3174 return 1;
3175#undef SAME_INTF
0a57a536 3176
16e47624
HS
3177 return 0;
3178}
56d36be4 3179
16e47624
HS
3180/* The firmware in the filesystem is usable, but should it be installed?
3181 * This routine explains itself in detail if it indicates the filesystem
3182 * firmware should be installed.
3183 */
3184static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3185 int k, int c)
3186{
3187 const char *reason;
3188
3189 if (!card_fw_usable) {
3190 reason = "incompatible or unusable";
3191 goto install;
e69972f5
JH
3192 }
3193
16e47624
HS
3194 if (k > c) {
3195 reason = "older than the version supported with this driver";
3196 goto install;
56d36be4
DM
3197 }
3198
16e47624
HS
3199 return 0;
3200
3201install:
3202 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3203 "installing firmware %u.%u.%u.%u on card.\n",
b2e1a3f0
HS
3204 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3205 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3206 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3207 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
56d36be4 3208
56d36be4
DM
3209 return 1;
3210}
3211
16e47624
HS
3212int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3213 const u8 *fw_data, unsigned int fw_size,
3214 struct fw_hdr *card_fw, enum dev_state state,
3215 int *reset)
3216{
3217 int ret, card_fw_usable, fs_fw_usable;
3218 const struct fw_hdr *fs_fw;
3219 const struct fw_hdr *drv_fw;
3220
3221 drv_fw = &fw_info->fw_hdr;
3222
3223 /* Read the header of the firmware on the card */
3224 ret = -t4_read_flash(adap, FLASH_FW_START,
3225 sizeof(*card_fw) / sizeof(uint32_t),
3226 (uint32_t *)card_fw, 1);
3227 if (ret == 0) {
3228 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3229 } else {
3230 dev_err(adap->pdev_dev,
3231 "Unable to read card's firmware header: %d\n", ret);
3232 card_fw_usable = 0;
3233 }
3234
3235 if (fw_data != NULL) {
3236 fs_fw = (const void *)fw_data;
3237 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3238 } else {
3239 fs_fw = NULL;
3240 fs_fw_usable = 0;
3241 }
3242
3243 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3244 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3245 /* Common case: the firmware on the card is an exact match and
3246 * the filesystem one is an exact match too, or the filesystem
3247 * one is absent/incompatible.
3248 */
3249 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3250 should_install_fs_fw(adap, card_fw_usable,
3251 be32_to_cpu(fs_fw->fw_ver),
3252 be32_to_cpu(card_fw->fw_ver))) {
3253 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3254 fw_size, 0);
3255 if (ret != 0) {
3256 dev_err(adap->pdev_dev,
3257 "failed to install firmware: %d\n", ret);
3258 goto bye;
3259 }
3260
3261 /* Installed successfully, update the cached header too. */
e3d50738 3262 *card_fw = *fs_fw;
16e47624
HS
3263 card_fw_usable = 1;
3264 *reset = 0; /* already reset as part of load_fw */
3265 }
3266
3267 if (!card_fw_usable) {
3268 uint32_t d, c, k;
3269
3270 d = be32_to_cpu(drv_fw->fw_ver);
3271 c = be32_to_cpu(card_fw->fw_ver);
3272 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3273
3274 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3275 "chip state %d, "
3276 "driver compiled with %d.%d.%d.%d, "
3277 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3278 state,
b2e1a3f0
HS
3279 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3280 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3281 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3282 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3283 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3284 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
16e47624
HS
3285 ret = EINVAL;
3286 goto bye;
3287 }
3288
3289 /* We're using whatever's on the card and it's known to be good. */
3290 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3291 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3292
3293bye:
3294 return ret;
3295}
3296
56d36be4
DM
3297/**
3298 * t4_flash_erase_sectors - erase a range of flash sectors
3299 * @adapter: the adapter
3300 * @start: the first sector to erase
3301 * @end: the last sector to erase
3302 *
3303 * Erases the sectors in the given inclusive range.
3304 */
3305static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3306{
3307 int ret = 0;
3308
c0d5b8cf
HS
3309 if (end >= adapter->params.sf_nsec)
3310 return -EINVAL;
3311
56d36be4
DM
3312 while (start <= end) {
3313 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3314 (ret = sf1_write(adapter, 4, 0, 1,
3315 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 3316 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
3317 dev_err(adapter->pdev_dev,
3318 "erase of flash sector %d failed, error %d\n",
3319 start, ret);
3320 break;
3321 }
3322 start++;
3323 }
0d804338 3324 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
3325 return ret;
3326}
3327
636f9d37
VP
3328/**
3329 * t4_flash_cfg_addr - return the address of the flash configuration file
3330 * @adapter: the adapter
3331 *
3332 * Return the address within the flash where the Firmware Configuration
3333 * File is stored.
3334 */
3335unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3336{
3337 if (adapter->params.sf_size == 0x100000)
3338 return FLASH_FPGA_CFG_START;
3339 else
3340 return FLASH_CFG_START;
3341}
3342
79af221d
HS
3343/* Return TRUE if the specified firmware matches the adapter. I.e. T4
3344 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3345 * and emit an error message for mismatched firmware to save our caller the
3346 * effort ...
3347 */
3348static bool t4_fw_matches_chip(const struct adapter *adap,
3349 const struct fw_hdr *hdr)
3350{
3351 /* The expression below will return FALSE for any unsupported adapter
3352 * which will keep us "honest" in the future ...
3353 */
3354 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3ccc6cf7
HS
3355 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3356 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
79af221d
HS
3357 return true;
3358
3359 dev_err(adap->pdev_dev,
3360 "FW image (%d) is not suitable for this adapter (%d)\n",
3361 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3362 return false;
3363}
3364
56d36be4
DM
3365/**
3366 * t4_load_fw - download firmware
3367 * @adap: the adapter
3368 * @fw_data: the firmware image to write
3369 * @size: image size
3370 *
3371 * Write the supplied firmware image to the card's serial flash.
3372 */
3373int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3374{
3375 u32 csum;
3376 int ret, addr;
3377 unsigned int i;
3378 u8 first_page[SF_PAGE_SIZE];
404d9e3f 3379 const __be32 *p = (const __be32 *)fw_data;
56d36be4 3380 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
3381 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3382 unsigned int fw_img_start = adap->params.sf_fw_start;
3383 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
3384
3385 if (!size) {
3386 dev_err(adap->pdev_dev, "FW image has no data\n");
3387 return -EINVAL;
3388 }
3389 if (size & 511) {
3390 dev_err(adap->pdev_dev,
3391 "FW image size not multiple of 512 bytes\n");
3392 return -EINVAL;
3393 }
f404f80c 3394 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
56d36be4
DM
3395 dev_err(adap->pdev_dev,
3396 "FW image size differs from size in FW header\n");
3397 return -EINVAL;
3398 }
3399 if (size > FW_MAX_SIZE) {
3400 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3401 FW_MAX_SIZE);
3402 return -EFBIG;
3403 }
79af221d
HS
3404 if (!t4_fw_matches_chip(adap, hdr))
3405 return -EINVAL;
56d36be4
DM
3406
3407 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
f404f80c 3408 csum += be32_to_cpu(p[i]);
56d36be4
DM
3409
3410 if (csum != 0xffffffff) {
3411 dev_err(adap->pdev_dev,
3412 "corrupted firmware image, checksum %#x\n", csum);
3413 return -EINVAL;
3414 }
3415
900a6596
DM
3416 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3417 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
3418 if (ret)
3419 goto out;
3420
3421 /*
3422 * We write the correct version at the end so the driver can see a bad
3423 * version if the FW write fails. Start by writing a copy of the
3424 * first page with a bad version.
3425 */
3426 memcpy(first_page, fw_data, SF_PAGE_SIZE);
f404f80c 3427 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
900a6596 3428 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
3429 if (ret)
3430 goto out;
3431
900a6596 3432 addr = fw_img_start;
56d36be4
DM
3433 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3434 addr += SF_PAGE_SIZE;
3435 fw_data += SF_PAGE_SIZE;
3436 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3437 if (ret)
3438 goto out;
3439 }
3440
3441 ret = t4_write_flash(adap,
900a6596 3442 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
3443 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3444out:
3445 if (ret)
3446 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3447 ret);
dff04bce
HS
3448 else
3449 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
56d36be4
DM
3450 return ret;
3451}
3452
01b69614
HS
3453/**
3454 * t4_phy_fw_ver - return current PHY firmware version
3455 * @adap: the adapter
3456 * @phy_fw_ver: return value buffer for PHY firmware version
3457 *
3458 * Returns the current version of external PHY firmware on the
3459 * adapter.
3460 */
3461int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3462{
3463 u32 param, val;
3464 int ret;
3465
3466 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3467 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3468 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3469 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
b2612722 3470 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3471 &param, &val);
3472 if (ret < 0)
3473 return ret;
3474 *phy_fw_ver = val;
3475 return 0;
3476}
3477
3478/**
3479 * t4_load_phy_fw - download port PHY firmware
3480 * @adap: the adapter
3481 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3482 * @win_lock: the lock to use to guard the memory copy
3483 * @phy_fw_version: function to check PHY firmware versions
3484 * @phy_fw_data: the PHY firmware image to write
3485 * @phy_fw_size: image size
3486 *
3487 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3488 * @phy_fw_version is supplied, then it will be used to determine if
3489 * it's necessary to perform the transfer by comparing the version
3490 * of any existing adapter PHY firmware with that of the passed in
3491 * PHY firmware image. If @win_lock is non-NULL then it will be used
3492 * around the call to t4_memory_rw() which transfers the PHY firmware
3493 * to the adapter.
3494 *
3495 * A negative error number will be returned if an error occurs. If
3496 * version number support is available and there's no need to upgrade
3497 * the firmware, 0 will be returned. If firmware is successfully
3498 * transferred to the adapter, 1 will be retured.
3499 *
3500 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3501 * a result, a RESET of the adapter would cause that RAM to lose its
3502 * contents. Thus, loading PHY firmware on such adapters must happen
3503 * after any FW_RESET_CMDs ...
3504 */
3505int t4_load_phy_fw(struct adapter *adap,
3506 int win, spinlock_t *win_lock,
3507 int (*phy_fw_version)(const u8 *, size_t),
3508 const u8 *phy_fw_data, size_t phy_fw_size)
3509{
3510 unsigned long mtype = 0, maddr = 0;
3511 u32 param, val;
3512 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3513 int ret;
3514
3515 /* If we have version number support, then check to see if the adapter
3516 * already has up-to-date PHY firmware loaded.
3517 */
3518 if (phy_fw_version) {
3519 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3520 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3521 if (ret < 0)
3522 return ret;
3523
3524 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3525 CH_WARN(adap, "PHY Firmware already up-to-date, "
3526 "version %#x\n", cur_phy_fw_ver);
3527 return 0;
3528 }
3529 }
3530
3531 /* Ask the firmware where it wants us to copy the PHY firmware image.
3532 * The size of the file requires a special version of the READ coommand
3533 * which will pass the file size via the values field in PARAMS_CMD and
3534 * retrieve the return value from firmware and place it in the same
3535 * buffer values
3536 */
3537 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3538 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3539 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3540 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3541 val = phy_fw_size;
b2612722 3542 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3543 &param, &val, 1);
3544 if (ret < 0)
3545 return ret;
3546 mtype = val >> 8;
3547 maddr = (val & 0xff) << 16;
3548
3549 /* Copy the supplied PHY Firmware image to the adapter memory location
3550 * allocated by the adapter firmware.
3551 */
3552 if (win_lock)
3553 spin_lock_bh(win_lock);
3554 ret = t4_memory_rw(adap, win, mtype, maddr,
3555 phy_fw_size, (__be32 *)phy_fw_data,
3556 T4_MEMORY_WRITE);
3557 if (win_lock)
3558 spin_unlock_bh(win_lock);
3559 if (ret)
3560 return ret;
3561
3562 /* Tell the firmware that the PHY firmware image has been written to
3563 * RAM and it can now start copying it over to the PHYs. The chip
3564 * firmware will RESET the affected PHYs as part of this operation
3565 * leaving them running the new PHY firmware image.
3566 */
3567 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3568 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3569 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3570 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
b2612722 3571 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3572 &param, &val, 30000);
3573
3574 /* If we have version number support, then check to see that the new
3575 * firmware got loaded properly.
3576 */
3577 if (phy_fw_version) {
3578 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3579 if (ret < 0)
3580 return ret;
3581
3582 if (cur_phy_fw_ver != new_phy_fw_vers) {
3583 CH_WARN(adap, "PHY Firmware did not update: "
3584 "version on adapter %#x, "
3585 "version flashed %#x\n",
3586 cur_phy_fw_ver, new_phy_fw_vers);
3587 return -ENXIO;
3588 }
3589 }
3590
3591 return 1;
3592}
3593
49216c1c
HS
3594/**
3595 * t4_fwcache - firmware cache operation
3596 * @adap: the adapter
3597 * @op : the operation (flush or flush and invalidate)
3598 */
3599int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3600{
3601 struct fw_params_cmd c;
3602
3603 memset(&c, 0, sizeof(c));
3604 c.op_to_vfn =
3605 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3606 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2612722 3607 FW_PARAMS_CMD_PFN_V(adap->pf) |
49216c1c
HS
3608 FW_PARAMS_CMD_VFN_V(0));
3609 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3610 c.param[0].mnem =
3611 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3612 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3613 c.param[0].val = (__force __be32)op;
3614
3615 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3616}
3617
19689609
HS
3618void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3619 unsigned int *pif_req_wrptr,
3620 unsigned int *pif_rsp_wrptr)
3621{
3622 int i, j;
3623 u32 cfg, val, req, rsp;
3624
3625 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3626 if (cfg & LADBGEN_F)
3627 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3628
3629 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3630 req = POLADBGWRPTR_G(val);
3631 rsp = PILADBGWRPTR_G(val);
3632 if (pif_req_wrptr)
3633 *pif_req_wrptr = req;
3634 if (pif_rsp_wrptr)
3635 *pif_rsp_wrptr = rsp;
3636
3637 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3638 for (j = 0; j < 6; j++) {
3639 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3640 PILADBGRDPTR_V(rsp));
3641 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3642 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3643 req++;
3644 rsp++;
3645 }
3646 req = (req + 2) & POLADBGRDPTR_M;
3647 rsp = (rsp + 2) & PILADBGRDPTR_M;
3648 }
3649 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3650}
3651
26fae93f
HS
3652void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3653{
3654 u32 cfg;
3655 int i, j, idx;
3656
3657 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3658 if (cfg & LADBGEN_F)
3659 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3660
3661 for (i = 0; i < CIM_MALA_SIZE; i++) {
3662 for (j = 0; j < 5; j++) {
3663 idx = 8 * i + j;
3664 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3665 PILADBGRDPTR_V(idx));
3666 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3667 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3668 }
3669 }
3670 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3671}
3672
797ff0f5
HS
3673void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3674{
3675 unsigned int i, j;
3676
3677 for (i = 0; i < 8; i++) {
3678 u32 *p = la_buf + i;
3679
3680 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3681 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3682 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3683 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3684 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3685 }
3686}
3687
56d36be4 3688#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
9b86a8d1
HS
3689 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3690 FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
72aca4bf 3691 FW_PORT_CAP_ANEG)
56d36be4
DM
3692
3693/**
4036da90 3694 * t4_link_l1cfg - apply link configuration to MAC/PHY
56d36be4
DM
3695 * @phy: the PHY to setup
3696 * @mac: the MAC to setup
3697 * @lc: the requested link configuration
3698 *
3699 * Set up a port's MAC and PHY according to a desired link configuration.
3700 * - If the PHY can auto-negotiate first decide what to advertise, then
3701 * enable/disable auto-negotiation as desired, and reset.
3702 * - If the PHY does not auto-negotiate just reset it.
3703 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3704 * otherwise do it later based on the outcome of auto-negotiation.
3705 */
4036da90 3706int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
56d36be4
DM
3707 struct link_config *lc)
3708{
3709 struct fw_port_cmd c;
3bb4858f
GG
3710 unsigned int mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3711 unsigned int fc = 0, fec = 0, fw_fec = 0;
56d36be4
DM
3712
3713 lc->link_ok = 0;
3714 if (lc->requested_fc & PAUSE_RX)
3715 fc |= FW_PORT_CAP_FC_RX;
3716 if (lc->requested_fc & PAUSE_TX)
3717 fc |= FW_PORT_CAP_FC_TX;
3718
3bb4858f
GG
3719 fec = lc->requested_fec & FEC_AUTO ? lc->auto_fec : lc->requested_fec;
3720
3721 if (fec & FEC_RS)
3722 fw_fec |= FW_PORT_CAP_FEC_RS;
3723 if (fec & FEC_BASER_RS)
3724 fw_fec |= FW_PORT_CAP_FEC_BASER_RS;
3725
56d36be4 3726 memset(&c, 0, sizeof(c));
f404f80c
HS
3727 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3728 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3729 FW_PORT_CMD_PORTID_V(port));
3730 c.action_to_len16 =
3731 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3732 FW_LEN16(c));
56d36be4
DM
3733
3734 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
f404f80c 3735 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3bb4858f 3736 fc | fw_fec);
56d36be4
DM
3737 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3738 } else if (lc->autoneg == AUTONEG_DISABLE) {
3bb4858f
GG
3739 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc |
3740 fw_fec | mdi);
56d36be4
DM
3741 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3742 } else
3bb4858f
GG
3743 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc |
3744 fw_fec | mdi);
56d36be4
DM
3745
3746 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3747}
3748
3749/**
3750 * t4_restart_aneg - restart autonegotiation
3751 * @adap: the adapter
3752 * @mbox: mbox to use for the FW command
3753 * @port: the port id
3754 *
3755 * Restarts autonegotiation for the selected port.
3756 */
3757int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3758{
3759 struct fw_port_cmd c;
3760
3761 memset(&c, 0, sizeof(c));
f404f80c
HS
3762 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3763 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3764 FW_PORT_CMD_PORTID_V(port));
3765 c.action_to_len16 =
3766 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3767 FW_LEN16(c));
3768 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
56d36be4
DM
3769 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3770}
3771
8caa1e84
VP
3772typedef void (*int_handler_t)(struct adapter *adap);
3773
56d36be4
DM
3774struct intr_info {
3775 unsigned int mask; /* bits to check in interrupt status */
3776 const char *msg; /* message to print or NULL */
3777 short stat_idx; /* stat counter to increment or -1 */
3778 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 3779 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
3780};
3781
3782/**
3783 * t4_handle_intr_status - table driven interrupt handler
3784 * @adapter: the adapter that generated the interrupt
3785 * @reg: the interrupt status register to process
3786 * @acts: table of interrupt actions
3787 *
3788 * A table driven interrupt handler that applies a set of masks to an
3789 * interrupt status word and performs the corresponding actions if the
25985edc 3790 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
3791 * optionally emitting a warning or alert message. The table is terminated
3792 * by an entry specifying mask 0. Returns the number of fatal interrupt
3793 * conditions.
3794 */
3795static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3796 const struct intr_info *acts)
3797{
3798 int fatal = 0;
3799 unsigned int mask = 0;
3800 unsigned int status = t4_read_reg(adapter, reg);
3801
3802 for ( ; acts->mask; ++acts) {
3803 if (!(status & acts->mask))
3804 continue;
3805 if (acts->fatal) {
3806 fatal++;
3807 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3808 status & acts->mask);
3809 } else if (acts->msg && printk_ratelimit())
3810 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3811 status & acts->mask);
8caa1e84
VP
3812 if (acts->int_handler)
3813 acts->int_handler(adapter);
56d36be4
DM
3814 mask |= acts->mask;
3815 }
3816 status &= mask;
3817 if (status) /* clear processed interrupts */
3818 t4_write_reg(adapter, reg, status);
3819 return fatal;
3820}
3821
3822/*
3823 * Interrupt handler for the PCIE module.
3824 */
3825static void pcie_intr_handler(struct adapter *adapter)
3826{
005b5717 3827 static const struct intr_info sysbus_intr_info[] = {
f061de42
HS
3828 { RNPP_F, "RXNP array parity error", -1, 1 },
3829 { RPCP_F, "RXPC array parity error", -1, 1 },
3830 { RCIP_F, "RXCIF array parity error", -1, 1 },
3831 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3832 { RFTP_F, "RXFT array parity error", -1, 1 },
56d36be4
DM
3833 { 0 }
3834 };
005b5717 3835 static const struct intr_info pcie_port_intr_info[] = {
f061de42
HS
3836 { TPCP_F, "TXPC array parity error", -1, 1 },
3837 { TNPP_F, "TXNP array parity error", -1, 1 },
3838 { TFTP_F, "TXFT array parity error", -1, 1 },
3839 { TCAP_F, "TXCA array parity error", -1, 1 },
3840 { TCIP_F, "TXCIF array parity error", -1, 1 },
3841 { RCAP_F, "RXCA array parity error", -1, 1 },
3842 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3843 { RDPE_F, "Rx data parity error", -1, 1 },
3844 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
56d36be4
DM
3845 { 0 }
3846 };
005b5717 3847 static const struct intr_info pcie_intr_info[] = {
f061de42
HS
3848 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3849 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3850 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3851 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3852 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3853 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3854 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3855 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3856 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3857 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3858 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3859 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3860 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3861 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3862 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3863 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3864 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3865 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3866 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3867 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3868 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3869 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3870 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3871 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3872 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3873 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3874 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3875 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3876 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3877 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3878 -1, 0 },
56d36be4
DM
3879 { 0 }
3880 };
3881
0a57a536 3882 static struct intr_info t5_pcie_intr_info[] = {
f061de42 3883 { MSTGRPPERR_F, "Master Response Read Queue parity error",
0a57a536 3884 -1, 1 },
f061de42
HS
3885 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3886 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3887 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3888 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3889 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3890 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3891 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
0a57a536 3892 -1, 1 },
f061de42 3893 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
0a57a536 3894 -1, 1 },
f061de42
HS
3895 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3896 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3897 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3898 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3899 { DREQWRPERR_F, "PCI DMA channel write request parity error",
0a57a536 3900 -1, 1 },
f061de42
HS
3901 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3902 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3903 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3904 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3905 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3906 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3907 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3908 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3909 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3910 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3911 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
0a57a536 3912 -1, 1 },
f061de42
HS
3913 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3914 -1, 1 },
3915 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3916 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3917 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3918 { READRSPERR_F, "Outbound read error", -1, 0 },
0a57a536
SR
3919 { 0 }
3920 };
3921
56d36be4
DM
3922 int fat;
3923
9bb59b96
HS
3924 if (is_t4(adapter->params.chip))
3925 fat = t4_handle_intr_status(adapter,
f061de42
HS
3926 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3927 sysbus_intr_info) +
9bb59b96 3928 t4_handle_intr_status(adapter,
f061de42
HS
3929 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3930 pcie_port_intr_info) +
3931 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96
HS
3932 pcie_intr_info);
3933 else
f061de42 3934 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96 3935 t5_pcie_intr_info);
0a57a536 3936
56d36be4
DM
3937 if (fat)
3938 t4_fatal_err(adapter);
3939}
3940
3941/*
3942 * TP interrupt handler.
3943 */
3944static void tp_intr_handler(struct adapter *adapter)
3945{
005b5717 3946 static const struct intr_info tp_intr_info[] = {
56d36be4 3947 { 0x3fffffff, "TP parity error", -1, 1 },
837e4a42 3948 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
56d36be4
DM
3949 { 0 }
3950 };
3951
837e4a42 3952 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
56d36be4
DM
3953 t4_fatal_err(adapter);
3954}
3955
3956/*
3957 * SGE interrupt handler.
3958 */
3959static void sge_intr_handler(struct adapter *adapter)
3960{
3961 u64 v;
3ccc6cf7 3962 u32 err;
56d36be4 3963
005b5717 3964 static const struct intr_info sge_intr_info[] = {
f612b815 3965 { ERR_CPL_EXCEED_IQE_SIZE_F,
56d36be4 3966 "SGE received CPL exceeding IQE size", -1, 1 },
f612b815 3967 { ERR_INVALID_CIDX_INC_F,
56d36be4 3968 "SGE GTS CIDX increment too large", -1, 0 },
f612b815
HS
3969 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3970 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
f612b815 3971 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
56d36be4 3972 "SGE IQID > 1023 received CPL for FL", -1, 0 },
f612b815 3973 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
56d36be4 3974 0 },
f612b815 3975 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
56d36be4 3976 0 },
f612b815 3977 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
56d36be4 3978 0 },
f612b815 3979 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
56d36be4 3980 0 },
f612b815 3981 { ERR_ING_CTXT_PRIO_F,
56d36be4 3982 "SGE too many priority ingress contexts", -1, 0 },
f612b815
HS
3983 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3984 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
56d36be4
DM
3985 { 0 }
3986 };
3987
3ccc6cf7
HS
3988 static struct intr_info t4t5_sge_intr_info[] = {
3989 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3990 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3991 { ERR_EGR_CTXT_PRIO_F,
3992 "SGE too many priority egress contexts", -1, 0 },
3993 { 0 }
3994 };
3995
f612b815
HS
3996 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3997 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
56d36be4
DM
3998 if (v) {
3999 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 4000 (unsigned long long)v);
f612b815
HS
4001 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4002 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
56d36be4
DM
4003 }
4004
3ccc6cf7
HS
4005 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4006 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4007 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4008 t4t5_sge_intr_info);
4009
4010 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4011 if (err & ERROR_QID_VALID_F) {
4012 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4013 ERROR_QID_G(err));
4014 if (err & UNCAPTURED_ERROR_F)
4015 dev_err(adapter->pdev_dev,
4016 "SGE UNCAPTURED_ERROR set (clearing)\n");
4017 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4018 UNCAPTURED_ERROR_F);
4019 }
4020
4021 if (v != 0)
56d36be4
DM
4022 t4_fatal_err(adapter);
4023}
4024
89c3a86c
HS
4025#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4026 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4027#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4028 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4029
56d36be4
DM
4030/*
4031 * CIM interrupt handler.
4032 */
4033static void cim_intr_handler(struct adapter *adapter)
4034{
005b5717 4035 static const struct intr_info cim_intr_info[] = {
89c3a86c
HS
4036 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4037 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4038 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4039 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4040 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4041 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4042 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
d86cc04e 4043 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
56d36be4
DM
4044 { 0 }
4045 };
005b5717 4046 static const struct intr_info cim_upintr_info[] = {
89c3a86c
HS
4047 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4048 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4049 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4050 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4051 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4052 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4053 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4054 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4055 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4056 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4057 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4058 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4059 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4060 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4061 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4062 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4063 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4064 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4065 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4066 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4067 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4068 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4069 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4070 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4071 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4072 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4073 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4074 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
56d36be4
DM
4075 { 0 }
4076 };
4077
d86cc04e 4078 u32 val, fw_err;
56d36be4
DM
4079 int fat;
4080
d86cc04e
RL
4081 fw_err = t4_read_reg(adapter, PCIE_FW_A);
4082 if (fw_err & PCIE_FW_ERR_F)
31d55c2d
HS
4083 t4_report_fw_error(adapter);
4084
d86cc04e
RL
4085 /* When the Firmware detects an internal error which normally
4086 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4087 * in order to make sure the Host sees the Firmware Crash. So
4088 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4089 * ignore the Timer0 interrupt.
4090 */
4091
4092 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4093 if (val & TIMER0INT_F)
4094 if (!(fw_err & PCIE_FW_ERR_F) ||
4095 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4096 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4097 TIMER0INT_F);
4098
89c3a86c 4099 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
56d36be4 4100 cim_intr_info) +
89c3a86c 4101 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
56d36be4
DM
4102 cim_upintr_info);
4103 if (fat)
4104 t4_fatal_err(adapter);
4105}
4106
4107/*
4108 * ULP RX interrupt handler.
4109 */
4110static void ulprx_intr_handler(struct adapter *adapter)
4111{
005b5717 4112 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 4113 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
4114 { 0x7fffff, "ULPRX parity error", -1, 1 },
4115 { 0 }
4116 };
4117
0d804338 4118 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
56d36be4
DM
4119 t4_fatal_err(adapter);
4120}
4121
4122/*
4123 * ULP TX interrupt handler.
4124 */
4125static void ulptx_intr_handler(struct adapter *adapter)
4126{
005b5717 4127 static const struct intr_info ulptx_intr_info[] = {
837e4a42 4128 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
56d36be4 4129 0 },
837e4a42 4130 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
56d36be4 4131 0 },
837e4a42 4132 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
56d36be4 4133 0 },
837e4a42 4134 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
56d36be4
DM
4135 0 },
4136 { 0xfffffff, "ULPTX parity error", -1, 1 },
4137 { 0 }
4138 };
4139
837e4a42 4140 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
56d36be4
DM
4141 t4_fatal_err(adapter);
4142}
4143
4144/*
4145 * PM TX interrupt handler.
4146 */
4147static void pmtx_intr_handler(struct adapter *adapter)
4148{
005b5717 4149 static const struct intr_info pmtx_intr_info[] = {
837e4a42
HS
4150 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4151 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4152 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4153 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4154 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4155 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4156 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4157 -1, 1 },
4158 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4159 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
56d36be4
DM
4160 { 0 }
4161 };
4162
837e4a42 4163 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
56d36be4
DM
4164 t4_fatal_err(adapter);
4165}
4166
4167/*
4168 * PM RX interrupt handler.
4169 */
4170static void pmrx_intr_handler(struct adapter *adapter)
4171{
005b5717 4172 static const struct intr_info pmrx_intr_info[] = {
837e4a42
HS
4173 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4174 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4175 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4176 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4177 -1, 1 },
4178 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4179 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
56d36be4
DM
4180 { 0 }
4181 };
4182
837e4a42 4183 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
56d36be4
DM
4184 t4_fatal_err(adapter);
4185}
4186
4187/*
4188 * CPL switch interrupt handler.
4189 */
4190static void cplsw_intr_handler(struct adapter *adapter)
4191{
005b5717 4192 static const struct intr_info cplsw_intr_info[] = {
0d804338
HS
4193 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4194 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4195 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4196 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4197 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4198 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
56d36be4
DM
4199 { 0 }
4200 };
4201
0d804338 4202 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
56d36be4
DM
4203 t4_fatal_err(adapter);
4204}
4205
4206/*
4207 * LE interrupt handler.
4208 */
4209static void le_intr_handler(struct adapter *adap)
4210{
3ccc6cf7 4211 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
005b5717 4212 static const struct intr_info le_intr_info[] = {
0d804338
HS
4213 { LIPMISS_F, "LE LIP miss", -1, 0 },
4214 { LIP0_F, "LE 0 LIP error", -1, 0 },
4215 { PARITYERR_F, "LE parity error", -1, 1 },
4216 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4217 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
56d36be4
DM
4218 { 0 }
4219 };
4220
3ccc6cf7
HS
4221 static struct intr_info t6_le_intr_info[] = {
4222 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4223 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4224 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4225 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4226 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4227 { 0 }
4228 };
4229
4230 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4231 (chip <= CHELSIO_T5) ?
4232 le_intr_info : t6_le_intr_info))
56d36be4
DM
4233 t4_fatal_err(adap);
4234}
4235
4236/*
4237 * MPS interrupt handler.
4238 */
4239static void mps_intr_handler(struct adapter *adapter)
4240{
005b5717 4241 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
4242 { 0xffffff, "MPS Rx parity error", -1, 1 },
4243 { 0 }
4244 };
005b5717 4245 static const struct intr_info mps_tx_intr_info[] = {
837e4a42
HS
4246 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4247 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4248 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4249 -1, 1 },
4250 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4251 -1, 1 },
4252 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4253 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4254 { FRMERR_F, "MPS Tx framing error", -1, 1 },
56d36be4
DM
4255 { 0 }
4256 };
005b5717 4257 static const struct intr_info mps_trc_intr_info[] = {
837e4a42
HS
4258 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4259 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4260 -1, 1 },
4261 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
56d36be4
DM
4262 { 0 }
4263 };
005b5717 4264 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
4265 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4266 { 0 }
4267 };
005b5717 4268 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
4269 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4270 { 0 }
4271 };
005b5717 4272 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
4273 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4274 { 0 }
4275 };
005b5717 4276 static const struct intr_info mps_cls_intr_info[] = {
837e4a42
HS
4277 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4278 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4279 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
56d36be4
DM
4280 { 0 }
4281 };
4282
4283 int fat;
4284
837e4a42 4285 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
56d36be4 4286 mps_rx_intr_info) +
837e4a42 4287 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
56d36be4 4288 mps_tx_intr_info) +
837e4a42 4289 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
56d36be4 4290 mps_trc_intr_info) +
837e4a42 4291 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
56d36be4 4292 mps_stat_sram_intr_info) +
837e4a42 4293 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
56d36be4 4294 mps_stat_tx_intr_info) +
837e4a42 4295 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
56d36be4 4296 mps_stat_rx_intr_info) +
837e4a42 4297 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
56d36be4
DM
4298 mps_cls_intr_info);
4299
837e4a42
HS
4300 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4301 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
56d36be4
DM
4302 if (fat)
4303 t4_fatal_err(adapter);
4304}
4305
89c3a86c
HS
4306#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4307 ECC_UE_INT_CAUSE_F)
56d36be4
DM
4308
4309/*
4310 * EDC/MC interrupt handler.
4311 */
4312static void mem_intr_handler(struct adapter *adapter, int idx)
4313{
822dd8a8 4314 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
56d36be4
DM
4315
4316 unsigned int addr, cnt_addr, v;
4317
4318 if (idx <= MEM_EDC1) {
89c3a86c
HS
4319 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4320 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
822dd8a8
HS
4321 } else if (idx == MEM_MC) {
4322 if (is_t4(adapter->params.chip)) {
89c3a86c
HS
4323 addr = MC_INT_CAUSE_A;
4324 cnt_addr = MC_ECC_STATUS_A;
822dd8a8 4325 } else {
89c3a86c
HS
4326 addr = MC_P_INT_CAUSE_A;
4327 cnt_addr = MC_P_ECC_STATUS_A;
822dd8a8 4328 }
56d36be4 4329 } else {
89c3a86c
HS
4330 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4331 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
56d36be4
DM
4332 }
4333
4334 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
89c3a86c 4335 if (v & PERR_INT_CAUSE_F)
56d36be4
DM
4336 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4337 name[idx]);
89c3a86c
HS
4338 if (v & ECC_CE_INT_CAUSE_F) {
4339 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
56d36be4 4340
bf8ebb67
HS
4341 t4_edc_err_read(adapter, idx);
4342
89c3a86c 4343 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
56d36be4
DM
4344 if (printk_ratelimit())
4345 dev_warn(adapter->pdev_dev,
4346 "%u %s correctable ECC data error%s\n",
4347 cnt, name[idx], cnt > 1 ? "s" : "");
4348 }
89c3a86c 4349 if (v & ECC_UE_INT_CAUSE_F)
56d36be4
DM
4350 dev_alert(adapter->pdev_dev,
4351 "%s uncorrectable ECC data error\n", name[idx]);
4352
4353 t4_write_reg(adapter, addr, v);
89c3a86c 4354 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
56d36be4
DM
4355 t4_fatal_err(adapter);
4356}
4357
4358/*
4359 * MA interrupt handler.
4360 */
4361static void ma_intr_handler(struct adapter *adap)
4362{
89c3a86c 4363 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
56d36be4 4364
89c3a86c 4365 if (status & MEM_PERR_INT_CAUSE_F) {
56d36be4
DM
4366 dev_alert(adap->pdev_dev,
4367 "MA parity error, parity status %#x\n",
89c3a86c 4368 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
9bb59b96
HS
4369 if (is_t5(adap->params.chip))
4370 dev_alert(adap->pdev_dev,
4371 "MA parity error, parity status %#x\n",
4372 t4_read_reg(adap,
89c3a86c 4373 MA_PARITY_ERROR_STATUS2_A));
9bb59b96 4374 }
89c3a86c
HS
4375 if (status & MEM_WRAP_INT_CAUSE_F) {
4376 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
56d36be4
DM
4377 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4378 "client %u to address %#x\n",
89c3a86c
HS
4379 MEM_WRAP_CLIENT_NUM_G(v),
4380 MEM_WRAP_ADDRESS_G(v) << 4);
56d36be4 4381 }
89c3a86c 4382 t4_write_reg(adap, MA_INT_CAUSE_A, status);
56d36be4
DM
4383 t4_fatal_err(adap);
4384}
4385
4386/*
4387 * SMB interrupt handler.
4388 */
4389static void smb_intr_handler(struct adapter *adap)
4390{
005b5717 4391 static const struct intr_info smb_intr_info[] = {
0d804338
HS
4392 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4393 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4394 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
56d36be4
DM
4395 { 0 }
4396 };
4397
0d804338 4398 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
56d36be4
DM
4399 t4_fatal_err(adap);
4400}
4401
4402/*
4403 * NC-SI interrupt handler.
4404 */
4405static void ncsi_intr_handler(struct adapter *adap)
4406{
005b5717 4407 static const struct intr_info ncsi_intr_info[] = {
0d804338
HS
4408 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4409 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4410 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4411 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
56d36be4
DM
4412 { 0 }
4413 };
4414
0d804338 4415 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
56d36be4
DM
4416 t4_fatal_err(adap);
4417}
4418
4419/*
4420 * XGMAC interrupt handler.
4421 */
4422static void xgmac_intr_handler(struct adapter *adap, int port)
4423{
0a57a536
SR
4424 u32 v, int_cause_reg;
4425
d14807dd 4426 if (is_t4(adap->params.chip))
0d804338 4427 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
0a57a536 4428 else
0d804338 4429 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
0a57a536
SR
4430
4431 v = t4_read_reg(adap, int_cause_reg);
56d36be4 4432
0d804338 4433 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
56d36be4
DM
4434 if (!v)
4435 return;
4436
0d804338 4437 if (v & TXFIFO_PRTY_ERR_F)
56d36be4
DM
4438 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4439 port);
0d804338 4440 if (v & RXFIFO_PRTY_ERR_F)
56d36be4
DM
4441 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4442 port);
0d804338 4443 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
56d36be4
DM
4444 t4_fatal_err(adap);
4445}
4446
4447/*
4448 * PL interrupt handler.
4449 */
4450static void pl_intr_handler(struct adapter *adap)
4451{
005b5717 4452 static const struct intr_info pl_intr_info[] = {
0d804338
HS
4453 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4454 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
56d36be4
DM
4455 { 0 }
4456 };
4457
0d804338 4458 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
56d36be4
DM
4459 t4_fatal_err(adap);
4460}
4461
0d804338
HS
4462#define PF_INTR_MASK (PFSW_F)
4463#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4464 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
38b6ec50 4465 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
56d36be4
DM
4466
4467/**
4468 * t4_slow_intr_handler - control path interrupt handler
4469 * @adapter: the adapter
4470 *
4471 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4472 * The designation 'slow' is because it involves register reads, while
4473 * data interrupts typically don't involve any MMIOs.
4474 */
4475int t4_slow_intr_handler(struct adapter *adapter)
4476{
0d804338 4477 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
56d36be4
DM
4478
4479 if (!(cause & GLBL_INTR_MASK))
4480 return 0;
0d804338 4481 if (cause & CIM_F)
56d36be4 4482 cim_intr_handler(adapter);
0d804338 4483 if (cause & MPS_F)
56d36be4 4484 mps_intr_handler(adapter);
0d804338 4485 if (cause & NCSI_F)
56d36be4 4486 ncsi_intr_handler(adapter);
0d804338 4487 if (cause & PL_F)
56d36be4 4488 pl_intr_handler(adapter);
0d804338 4489 if (cause & SMB_F)
56d36be4 4490 smb_intr_handler(adapter);
0d804338 4491 if (cause & XGMAC0_F)
56d36be4 4492 xgmac_intr_handler(adapter, 0);
0d804338 4493 if (cause & XGMAC1_F)
56d36be4 4494 xgmac_intr_handler(adapter, 1);
0d804338 4495 if (cause & XGMAC_KR0_F)
56d36be4 4496 xgmac_intr_handler(adapter, 2);
0d804338 4497 if (cause & XGMAC_KR1_F)
56d36be4 4498 xgmac_intr_handler(adapter, 3);
0d804338 4499 if (cause & PCIE_F)
56d36be4 4500 pcie_intr_handler(adapter);
0d804338 4501 if (cause & MC_F)
56d36be4 4502 mem_intr_handler(adapter, MEM_MC);
3ccc6cf7 4503 if (is_t5(adapter->params.chip) && (cause & MC1_F))
822dd8a8 4504 mem_intr_handler(adapter, MEM_MC1);
0d804338 4505 if (cause & EDC0_F)
56d36be4 4506 mem_intr_handler(adapter, MEM_EDC0);
0d804338 4507 if (cause & EDC1_F)
56d36be4 4508 mem_intr_handler(adapter, MEM_EDC1);
0d804338 4509 if (cause & LE_F)
56d36be4 4510 le_intr_handler(adapter);
0d804338 4511 if (cause & TP_F)
56d36be4 4512 tp_intr_handler(adapter);
0d804338 4513 if (cause & MA_F)
56d36be4 4514 ma_intr_handler(adapter);
0d804338 4515 if (cause & PM_TX_F)
56d36be4 4516 pmtx_intr_handler(adapter);
0d804338 4517 if (cause & PM_RX_F)
56d36be4 4518 pmrx_intr_handler(adapter);
0d804338 4519 if (cause & ULP_RX_F)
56d36be4 4520 ulprx_intr_handler(adapter);
0d804338 4521 if (cause & CPL_SWITCH_F)
56d36be4 4522 cplsw_intr_handler(adapter);
0d804338 4523 if (cause & SGE_F)
56d36be4 4524 sge_intr_handler(adapter);
0d804338 4525 if (cause & ULP_TX_F)
56d36be4
DM
4526 ulptx_intr_handler(adapter);
4527
4528 /* Clear the interrupts just processed for which we are the master. */
0d804338
HS
4529 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4530 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
56d36be4
DM
4531 return 1;
4532}
4533
4534/**
4535 * t4_intr_enable - enable interrupts
4536 * @adapter: the adapter whose interrupts should be enabled
4537 *
4538 * Enable PF-specific interrupts for the calling function and the top-level
4539 * interrupt concentrator for global interrupts. Interrupts are already
4540 * enabled at each module, here we just enable the roots of the interrupt
4541 * hierarchies.
4542 *
4543 * Note: this function should be called only when the driver manages
4544 * non PF-specific interrupts from the various HW modules. Only one PCI
4545 * function at a time should be doing this.
4546 */
4547void t4_intr_enable(struct adapter *adapter)
4548{
3ccc6cf7 4549 u32 val = 0;
d86bd29e
HS
4550 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4551 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4552 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4553
3ccc6cf7
HS
4554 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4555 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
f612b815
HS
4556 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4557 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3ccc6cf7 4558 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
f612b815
HS
4559 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4560 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4561 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3ccc6cf7 4562 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
0d804338
HS
4563 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4564 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
56d36be4
DM
4565}
4566
4567/**
4568 * t4_intr_disable - disable interrupts
4569 * @adapter: the adapter whose interrupts should be disabled
4570 *
4571 * Disable interrupts. We only disable the top-level interrupt
4572 * concentrators. The caller must be a PCI function managing global
4573 * interrupts.
4574 */
4575void t4_intr_disable(struct adapter *adapter)
4576{
025d0973
GP
4577 u32 whoami, pf;
4578
4579 if (pci_channel_offline(adapter->pdev))
4580 return;
4581
4582 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4583 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
d86bd29e 4584 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4585
0d804338
HS
4586 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4587 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
56d36be4
DM
4588}
4589
56d36be4
DM
4590/**
4591 * t4_config_rss_range - configure a portion of the RSS mapping table
4592 * @adapter: the adapter
4593 * @mbox: mbox to use for the FW command
4594 * @viid: virtual interface whose RSS subtable is to be written
4595 * @start: start entry in the table to write
4596 * @n: how many table entries to write
4597 * @rspq: values for the response queue lookup table
4598 * @nrspq: number of values in @rspq
4599 *
4600 * Programs the selected part of the VI's RSS mapping table with the
4601 * provided values. If @nrspq < @n the supplied values are used repeatedly
4602 * until the full table range is populated.
4603 *
4604 * The caller must ensure the values in @rspq are in the range allowed for
4605 * @viid.
4606 */
4607int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4608 int start, int n, const u16 *rspq, unsigned int nrspq)
4609{
4610 int ret;
4611 const u16 *rsp = rspq;
4612 const u16 *rsp_end = rspq + nrspq;
4613 struct fw_rss_ind_tbl_cmd cmd;
4614
4615 memset(&cmd, 0, sizeof(cmd));
f404f80c 4616 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
e2ac9628 4617 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2e1a3f0 4618 FW_RSS_IND_TBL_CMD_VIID_V(viid));
f404f80c 4619 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
56d36be4
DM
4620
4621 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4622 while (n > 0) {
4623 int nq = min(n, 32);
4624 __be32 *qp = &cmd.iq0_to_iq2;
4625
f404f80c
HS
4626 cmd.niqid = cpu_to_be16(nq);
4627 cmd.startidx = cpu_to_be16(start);
56d36be4
DM
4628
4629 start += nq;
4630 n -= nq;
4631
4632 while (nq > 0) {
4633 unsigned int v;
4634
b2e1a3f0 4635 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
56d36be4
DM
4636 if (++rsp >= rsp_end)
4637 rsp = rspq;
b2e1a3f0 4638 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
56d36be4
DM
4639 if (++rsp >= rsp_end)
4640 rsp = rspq;
b2e1a3f0 4641 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
56d36be4
DM
4642 if (++rsp >= rsp_end)
4643 rsp = rspq;
4644
f404f80c 4645 *qp++ = cpu_to_be32(v);
56d36be4
DM
4646 nq -= 3;
4647 }
4648
4649 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4650 if (ret)
4651 return ret;
4652 }
4653 return 0;
4654}
4655
4656/**
4657 * t4_config_glbl_rss - configure the global RSS mode
4658 * @adapter: the adapter
4659 * @mbox: mbox to use for the FW command
4660 * @mode: global RSS mode
4661 * @flags: mode-specific flags
4662 *
4663 * Sets the global RSS mode.
4664 */
4665int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4666 unsigned int flags)
4667{
4668 struct fw_rss_glb_config_cmd c;
4669
4670 memset(&c, 0, sizeof(c));
f404f80c
HS
4671 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4672 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4673 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
56d36be4 4674 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
f404f80c
HS
4675 c.u.manual.mode_pkd =
4676 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
56d36be4
DM
4677 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4678 c.u.basicvirtual.mode_pkd =
f404f80c
HS
4679 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4680 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
56d36be4
DM
4681 } else
4682 return -EINVAL;
4683 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4684}
4685
c035e183
HS
4686/**
4687 * t4_config_vi_rss - configure per VI RSS settings
4688 * @adapter: the adapter
4689 * @mbox: mbox to use for the FW command
4690 * @viid: the VI id
4691 * @flags: RSS flags
4692 * @defq: id of the default RSS queue for the VI.
4693 *
4694 * Configures VI-specific RSS properties.
4695 */
4696int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4697 unsigned int flags, unsigned int defq)
4698{
4699 struct fw_rss_vi_config_cmd c;
4700
4701 memset(&c, 0, sizeof(c));
4702 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4703 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4704 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4705 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4706 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4707 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4708 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4709}
4710
688ea5fe
HS
4711/* Read an RSS table row */
4712static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4713{
4714 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4715 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4716 5, 0, val);
4717}
4718
4719/**
4720 * t4_read_rss - read the contents of the RSS mapping table
4721 * @adapter: the adapter
4722 * @map: holds the contents of the RSS mapping table
4723 *
4724 * Reads the contents of the RSS hash->queue mapping table.
4725 */
4726int t4_read_rss(struct adapter *adapter, u16 *map)
4727{
4728 u32 val;
4729 int i, ret;
4730
4731 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4732 ret = rd_rss_row(adapter, i, &val);
4733 if (ret)
4734 return ret;
4735 *map++ = LKPTBLQUEUE0_G(val);
4736 *map++ = LKPTBLQUEUE1_G(val);
4737 }
4738 return 0;
4739}
4740
0b2c2a93
HS
4741static unsigned int t4_use_ldst(struct adapter *adap)
4742{
4743 return (adap->flags & FW_OK) || !adap->use_bd;
4744}
4745
c1e9af0c
HS
4746/**
4747 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4748 * @adap: the adapter
4749 * @vals: where the indirect register values are stored/written
4750 * @nregs: how many indirect registers to read/write
4751 * @start_idx: index of first indirect register to read/write
4752 * @rw: Read (1) or Write (0)
4753 *
4754 * Access TP PIO registers through LDST
4755 */
4756static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4757 unsigned int start_index, unsigned int rw)
4758{
4759 int ret, i;
4760 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4761 struct fw_ldst_cmd c;
4762
4763 for (i = 0 ; i < nregs; i++) {
4764 memset(&c, 0, sizeof(c));
4765 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4766 FW_CMD_REQUEST_F |
4767 (rw ? FW_CMD_READ_F :
4768 FW_CMD_WRITE_F) |
4769 FW_LDST_CMD_ADDRSPACE_V(cmd));
4770 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4771
4772 c.u.addrval.addr = cpu_to_be32(start_index + i);
4773 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4774 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4775 if (!ret && rw)
4776 vals[i] = be32_to_cpu(c.u.addrval.val);
4777 }
4778}
4779
688ea5fe
HS
4780/**
4781 * t4_read_rss_key - read the global RSS key
4782 * @adap: the adapter
4783 * @key: 10-entry array holding the 320-bit RSS key
4784 *
4785 * Reads the global 320-bit RSS key.
4786 */
4787void t4_read_rss_key(struct adapter *adap, u32 *key)
4788{
0b2c2a93 4789 if (t4_use_ldst(adap))
c1e9af0c
HS
4790 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4791 else
4792 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4793 TP_RSS_SECRET_KEY0_A);
688ea5fe
HS
4794}
4795
4796/**
4797 * t4_write_rss_key - program one of the RSS keys
4798 * @adap: the adapter
4799 * @key: 10-entry array holding the 320-bit RSS key
4800 * @idx: which RSS key to write
4801 *
4802 * Writes one of the RSS keys with the given 320-bit value. If @idx is
4803 * 0..15 the corresponding entry in the RSS key table is written,
4804 * otherwise the global RSS key is written.
4805 */
4806void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4807{
3ccc6cf7
HS
4808 u8 rss_key_addr_cnt = 16;
4809 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4810
4811 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4812 * allows access to key addresses 16-63 by using KeyWrAddrX
4813 * as index[5:4](upper 2) into key table
4814 */
4815 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4816 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4817 rss_key_addr_cnt = 32;
4818
0b2c2a93 4819 if (t4_use_ldst(adap))
c1e9af0c
HS
4820 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4821 else
4822 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4823 TP_RSS_SECRET_KEY0_A);
3ccc6cf7
HS
4824
4825 if (idx >= 0 && idx < rss_key_addr_cnt) {
4826 if (rss_key_addr_cnt > 16)
4827 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4828 KEYWRADDRX_V(idx >> 4) |
4829 T6_VFWRADDR_V(idx) | KEYWREN_F);
4830 else
4831 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4832 KEYWRADDR_V(idx) | KEYWREN_F);
4833 }
688ea5fe
HS
4834}
4835
4836/**
4837 * t4_read_rss_pf_config - read PF RSS Configuration Table
4838 * @adapter: the adapter
4839 * @index: the entry in the PF RSS table to read
4840 * @valp: where to store the returned value
4841 *
4842 * Reads the PF RSS Configuration Table at the specified index and returns
4843 * the value found there.
4844 */
4845void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4846 u32 *valp)
4847{
0b2c2a93 4848 if (t4_use_ldst(adapter))
c1e9af0c
HS
4849 t4_fw_tp_pio_rw(adapter, valp, 1,
4850 TP_RSS_PF0_CONFIG_A + index, 1);
4851 else
4852 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4853 valp, 1, TP_RSS_PF0_CONFIG_A + index);
688ea5fe
HS
4854}
4855
4856/**
4857 * t4_read_rss_vf_config - read VF RSS Configuration Table
4858 * @adapter: the adapter
4859 * @index: the entry in the VF RSS table to read
4860 * @vfl: where to store the returned VFL
4861 * @vfh: where to store the returned VFH
4862 *
4863 * Reads the VF RSS Configuration Table at the specified index and returns
4864 * the (VFL, VFH) values found there.
4865 */
4866void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4867 u32 *vfl, u32 *vfh)
4868{
4869 u32 vrt, mask, data;
4870
3ccc6cf7
HS
4871 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4872 mask = VFWRADDR_V(VFWRADDR_M);
4873 data = VFWRADDR_V(index);
4874 } else {
4875 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
4876 data = T6_VFWRADDR_V(index);
4877 }
688ea5fe
HS
4878
4879 /* Request that the index'th VF Table values be read into VFL/VFH.
4880 */
4881 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4882 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4883 vrt |= data | VFRDEN_F;
4884 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4885
4886 /* Grab the VFL/VFH values ...
4887 */
0b2c2a93 4888 if (t4_use_ldst(adapter)) {
c1e9af0c
HS
4889 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4890 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4891 } else {
4892 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4893 vfl, 1, TP_RSS_VFL_CONFIG_A);
4894 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4895 vfh, 1, TP_RSS_VFH_CONFIG_A);
4896 }
688ea5fe
HS
4897}
4898
4899/**
4900 * t4_read_rss_pf_map - read PF RSS Map
4901 * @adapter: the adapter
4902 *
4903 * Reads the PF RSS Map register and returns its value.
4904 */
4905u32 t4_read_rss_pf_map(struct adapter *adapter)
4906{
4907 u32 pfmap;
4908
0b2c2a93 4909 if (t4_use_ldst(adapter))
c1e9af0c
HS
4910 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4911 else
4912 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4913 &pfmap, 1, TP_RSS_PF_MAP_A);
688ea5fe
HS
4914 return pfmap;
4915}
4916
4917/**
4918 * t4_read_rss_pf_mask - read PF RSS Mask
4919 * @adapter: the adapter
4920 *
4921 * Reads the PF RSS Mask register and returns its value.
4922 */
4923u32 t4_read_rss_pf_mask(struct adapter *adapter)
4924{
4925 u32 pfmask;
4926
0b2c2a93 4927 if (t4_use_ldst(adapter))
c1e9af0c
HS
4928 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4929 else
4930 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4931 &pfmask, 1, TP_RSS_PF_MSK_A);
688ea5fe
HS
4932 return pfmask;
4933}
4934
56d36be4
DM
4935/**
4936 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
4937 * @adap: the adapter
4938 * @v4: holds the TCP/IP counter values
4939 * @v6: holds the TCP/IPv6 counter values
4940 *
4941 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4942 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4943 */
4944void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4945 struct tp_tcp_stats *v6)
4946{
837e4a42 4947 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
56d36be4 4948
837e4a42 4949#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
56d36be4
DM
4950#define STAT(x) val[STAT_IDX(x)]
4951#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4952
4953 if (v4) {
837e4a42
HS
4954 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4955 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
a4cfd929
HS
4956 v4->tcp_out_rsts = STAT(OUT_RST);
4957 v4->tcp_in_segs = STAT64(IN_SEG);
4958 v4->tcp_out_segs = STAT64(OUT_SEG);
4959 v4->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4960 }
4961 if (v6) {
837e4a42
HS
4962 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4963 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
a4cfd929
HS
4964 v6->tcp_out_rsts = STAT(OUT_RST);
4965 v6->tcp_in_segs = STAT64(IN_SEG);
4966 v6->tcp_out_segs = STAT64(OUT_SEG);
4967 v6->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4968 }
4969#undef STAT64
4970#undef STAT
4971#undef STAT_IDX
4972}
4973
a4cfd929
HS
4974/**
4975 * t4_tp_get_err_stats - read TP's error MIB counters
4976 * @adap: the adapter
4977 * @st: holds the counter values
4978 *
4979 * Returns the values of TP's error counters.
4980 */
4981void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4982{
df459ebc
HS
4983 int nchan = adap->params.arch.nchan;
4984
4985 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4986 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4987 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4988 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4989 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4990 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4991 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4992 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4993 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4994 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4995 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4996 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4997 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4998 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4999 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5000 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
5001
a4cfd929
HS
5002 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5003 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
5004}
5005
a6222975
HS
5006/**
5007 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
5008 * @adap: the adapter
5009 * @st: holds the counter values
5010 *
5011 * Returns the values of TP's CPL counters.
5012 */
5013void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5014{
df459ebc
HS
5015 int nchan = adap->params.arch.nchan;
5016
5017 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
5018 nchan, TP_MIB_CPL_IN_REQ_0_A);
5019 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
5020 nchan, TP_MIB_CPL_OUT_RSP_0_A);
5021
a6222975
HS
5022}
5023
a4cfd929
HS
5024/**
5025 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5026 * @adap: the adapter
5027 * @st: holds the counter values
5028 *
5029 * Returns the values of TP's RDMA counters.
5030 */
5031void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5032{
5033 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
5034 2, TP_MIB_RQE_DFR_PKT_A);
5035}
5036
a6222975
HS
5037/**
5038 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5039 * @adap: the adapter
5040 * @idx: the port index
5041 * @st: holds the counter values
5042 *
5043 * Returns the values of TP's FCoE counters for the selected port.
5044 */
5045void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5046 struct tp_fcoe_stats *st)
5047{
5048 u32 val[2];
5049
5050 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
5051 1, TP_MIB_FCOE_DDP_0_A + idx);
5052 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
5053 1, TP_MIB_FCOE_DROP_0_A + idx);
5054 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5055 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
5056 st->octets_ddp = ((u64)val[0] << 32) | val[1];
5057}
5058
a4cfd929
HS
5059/**
5060 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5061 * @adap: the adapter
5062 * @st: holds the counter values
5063 *
5064 * Returns the values of TP's counters for non-TCP directly-placed packets.
5065 */
5066void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5067{
5068 u32 val[4];
5069
5070 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
5071 TP_MIB_USM_PKTS_A);
5072 st->frames = val[0];
5073 st->drops = val[1];
5074 st->octets = ((u64)val[2] << 32) | val[3];
5075}
5076
56d36be4
DM
5077/**
5078 * t4_read_mtu_tbl - returns the values in the HW path MTU table
5079 * @adap: the adapter
5080 * @mtus: where to store the MTU values
5081 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
5082 *
5083 * Reads the HW path MTU table.
5084 */
5085void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5086{
5087 u32 v;
5088 int i;
5089
5090 for (i = 0; i < NMTUS; ++i) {
837e4a42
HS
5091 t4_write_reg(adap, TP_MTU_TABLE_A,
5092 MTUINDEX_V(0xff) | MTUVALUE_V(i));
5093 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5094 mtus[i] = MTUVALUE_G(v);
56d36be4 5095 if (mtu_log)
837e4a42 5096 mtu_log[i] = MTUWIDTH_G(v);
56d36be4
DM
5097 }
5098}
5099
bad43792
HS
5100/**
5101 * t4_read_cong_tbl - reads the congestion control table
5102 * @adap: the adapter
5103 * @incr: where to store the alpha values
5104 *
5105 * Reads the additive increments programmed into the HW congestion
5106 * control table.
5107 */
5108void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5109{
5110 unsigned int mtu, w;
5111
5112 for (mtu = 0; mtu < NMTUS; ++mtu)
5113 for (w = 0; w < NCCTRL_WIN; ++w) {
5114 t4_write_reg(adap, TP_CCTRL_TABLE_A,
5115 ROWINDEX_V(0xffff) | (mtu << 5) | w);
5116 incr[mtu][w] = (u16)t4_read_reg(adap,
5117 TP_CCTRL_TABLE_A) & 0x1fff;
5118 }
5119}
5120
636f9d37
VP
5121/**
5122 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5123 * @adap: the adapter
5124 * @addr: the indirect TP register address
5125 * @mask: specifies the field within the register to modify
5126 * @val: new value for the field
5127 *
5128 * Sets a field of an indirect TP register to the given value.
5129 */
5130void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5131 unsigned int mask, unsigned int val)
5132{
837e4a42
HS
5133 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5134 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5135 t4_write_reg(adap, TP_PIO_DATA_A, val);
636f9d37
VP
5136}
5137
56d36be4
DM
5138/**
5139 * init_cong_ctrl - initialize congestion control parameters
5140 * @a: the alpha values for congestion control
5141 * @b: the beta values for congestion control
5142 *
5143 * Initialize the congestion control parameters.
5144 */
91744948 5145static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
5146{
5147 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5148 a[9] = 2;
5149 a[10] = 3;
5150 a[11] = 4;
5151 a[12] = 5;
5152 a[13] = 6;
5153 a[14] = 7;
5154 a[15] = 8;
5155 a[16] = 9;
5156 a[17] = 10;
5157 a[18] = 14;
5158 a[19] = 17;
5159 a[20] = 21;
5160 a[21] = 25;
5161 a[22] = 30;
5162 a[23] = 35;
5163 a[24] = 45;
5164 a[25] = 60;
5165 a[26] = 80;
5166 a[27] = 100;
5167 a[28] = 200;
5168 a[29] = 300;
5169 a[30] = 400;
5170 a[31] = 500;
5171
5172 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5173 b[9] = b[10] = 1;
5174 b[11] = b[12] = 2;
5175 b[13] = b[14] = b[15] = b[16] = 3;
5176 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5177 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5178 b[28] = b[29] = 6;
5179 b[30] = b[31] = 7;
5180}
5181
5182/* The minimum additive increment value for the congestion control table */
5183#define CC_MIN_INCR 2U
5184
5185/**
5186 * t4_load_mtus - write the MTU and congestion control HW tables
5187 * @adap: the adapter
5188 * @mtus: the values for the MTU table
5189 * @alpha: the values for the congestion control alpha parameter
5190 * @beta: the values for the congestion control beta parameter
5191 *
5192 * Write the HW MTU table with the supplied MTUs and the high-speed
5193 * congestion control table with the supplied alpha, beta, and MTUs.
5194 * We write the two tables together because the additive increments
5195 * depend on the MTUs.
5196 */
5197void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5198 const unsigned short *alpha, const unsigned short *beta)
5199{
5200 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5201 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5202 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5203 28672, 40960, 57344, 81920, 114688, 163840, 229376
5204 };
5205
5206 unsigned int i, w;
5207
5208 for (i = 0; i < NMTUS; ++i) {
5209 unsigned int mtu = mtus[i];
5210 unsigned int log2 = fls(mtu);
5211
5212 if (!(mtu & ((1 << log2) >> 2))) /* round */
5213 log2--;
837e4a42
HS
5214 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5215 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
56d36be4
DM
5216
5217 for (w = 0; w < NCCTRL_WIN; ++w) {
5218 unsigned int inc;
5219
5220 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5221 CC_MIN_INCR);
5222
837e4a42 5223 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
56d36be4
DM
5224 (w << 16) | (beta[w] << 13) | inc);
5225 }
5226 }
5227}
5228
7864026b
HS
5229/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5230 * clocks. The formula is
5231 *
5232 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5233 *
5234 * which is equivalent to
5235 *
5236 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5237 */
5238static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5239{
5240 u64 v = bytes256 * adap->params.vpd.cclk;
5241
5242 return v * 62 + v / 2;
5243}
5244
5245/**
5246 * t4_get_chan_txrate - get the current per channel Tx rates
5247 * @adap: the adapter
5248 * @nic_rate: rates for NIC traffic
5249 * @ofld_rate: rates for offloaded traffic
5250 *
5251 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5252 * for each channel.
5253 */
5254void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5255{
5256 u32 v;
5257
5258 v = t4_read_reg(adap, TP_TX_TRATE_A);
5259 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5260 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5261 if (adap->params.arch.nchan == NCHAN) {
5262 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5263 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5264 }
5265
5266 v = t4_read_reg(adap, TP_TX_ORATE_A);
5267 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5268 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5269 if (adap->params.arch.nchan == NCHAN) {
5270 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5271 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5272 }
5273}
5274
8e3d04fd
HS
5275/**
5276 * t4_set_trace_filter - configure one of the tracing filters
5277 * @adap: the adapter
5278 * @tp: the desired trace filter parameters
5279 * @idx: which filter to configure
5280 * @enable: whether to enable or disable the filter
5281 *
5282 * Configures one of the tracing filters available in HW. If @enable is
5283 * %0 @tp is not examined and may be %NULL. The user is responsible to
5284 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5285 */
5286int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5287 int idx, int enable)
5288{
5289 int i, ofst = idx * 4;
5290 u32 data_reg, mask_reg, cfg;
5291 u32 multitrc = TRCMULTIFILTER_F;
5292
5293 if (!enable) {
5294 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5295 return 0;
5296 }
5297
5298 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5299 if (cfg & TRCMULTIFILTER_F) {
5300 /* If multiple tracers are enabled, then maximum
5301 * capture size is 2.5KB (FIFO size of a single channel)
5302 * minus 2 flits for CPL_TRACE_PKT header.
5303 */
5304 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5305 return -EINVAL;
5306 } else {
5307 /* If multiple tracers are disabled, to avoid deadlocks
5308 * maximum packet capture size of 9600 bytes is recommended.
5309 * Also in this mode, only trace0 can be enabled and running.
5310 */
5311 multitrc = 0;
5312 if (tp->snap_len > 9600 || idx)
5313 return -EINVAL;
5314 }
5315
5316 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5317 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5318 tp->min_len > TFMINPKTSIZE_M)
5319 return -EINVAL;
5320
5321 /* stop the tracer we'll be changing */
5322 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5323
5324 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5325 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5326 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5327
5328 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5329 t4_write_reg(adap, data_reg, tp->data[i]);
5330 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5331 }
5332 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5333 TFCAPTUREMAX_V(tp->snap_len) |
5334 TFMINPKTSIZE_V(tp->min_len));
5335 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5336 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5337 (is_t4(adap->params.chip) ?
5338 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5339 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5340 T5_TFINVERTMATCH_V(tp->invert)));
5341
5342 return 0;
5343}
5344
5345/**
5346 * t4_get_trace_filter - query one of the tracing filters
5347 * @adap: the adapter
5348 * @tp: the current trace filter parameters
5349 * @idx: which trace filter to query
5350 * @enabled: non-zero if the filter is enabled
5351 *
5352 * Returns the current settings of one of the HW tracing filters.
5353 */
5354void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5355 int *enabled)
5356{
5357 u32 ctla, ctlb;
5358 int i, ofst = idx * 4;
5359 u32 data_reg, mask_reg;
5360
5361 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5362 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5363
5364 if (is_t4(adap->params.chip)) {
5365 *enabled = !!(ctla & TFEN_F);
5366 tp->port = TFPORT_G(ctla);
5367 tp->invert = !!(ctla & TFINVERTMATCH_F);
5368 } else {
5369 *enabled = !!(ctla & T5_TFEN_F);
5370 tp->port = T5_TFPORT_G(ctla);
5371 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5372 }
5373 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5374 tp->min_len = TFMINPKTSIZE_G(ctlb);
5375 tp->skip_ofst = TFOFFSET_G(ctla);
5376 tp->skip_len = TFLENGTH_G(ctla);
5377
5378 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5379 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5380 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5381
5382 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5383 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5384 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5385 }
5386}
5387
b3bbe36a
HS
5388/**
5389 * t4_pmtx_get_stats - returns the HW stats from PMTX
5390 * @adap: the adapter
5391 * @cnt: where to store the count statistics
5392 * @cycles: where to store the cycle statistics
5393 *
5394 * Returns performance statistics from PMTX.
5395 */
5396void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5397{
5398 int i;
5399 u32 data[2];
5400
44588560 5401 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5402 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5403 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5404 if (is_t4(adap->params.chip)) {
5405 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5406 } else {
5407 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5408 PM_TX_DBG_DATA_A, data, 2,
5409 PM_TX_DBG_STAT_MSB_A);
5410 cycles[i] = (((u64)data[0] << 32) | data[1]);
5411 }
5412 }
5413}
5414
5415/**
5416 * t4_pmrx_get_stats - returns the HW stats from PMRX
5417 * @adap: the adapter
5418 * @cnt: where to store the count statistics
5419 * @cycles: where to store the cycle statistics
5420 *
5421 * Returns performance statistics from PMRX.
5422 */
5423void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5424{
5425 int i;
5426 u32 data[2];
5427
44588560 5428 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5429 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5430 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5431 if (is_t4(adap->params.chip)) {
5432 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5433 } else {
5434 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5435 PM_RX_DBG_DATA_A, data, 2,
5436 PM_RX_DBG_STAT_MSB_A);
5437 cycles[i] = (((u64)data[0] << 32) | data[1]);
5438 }
5439 }
5440}
5441
56d36be4 5442/**
145ef8a5 5443 * t4_get_mps_bg_map - return the buffer groups associated with a port
56d36be4
DM
5444 * @adap: the adapter
5445 * @idx: the port index
5446 *
5447 * Returns a bitmap indicating which MPS buffer groups are associated
5448 * with the given port. Bit i is set if buffer group i is used by the
5449 * port.
5450 */
145ef8a5 5451unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
56d36be4 5452{
837e4a42 5453 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
56d36be4
DM
5454
5455 if (n == 0)
5456 return idx == 0 ? 0xf : 0;
e9faeab8
HS
5457 /* In T6 (which is a 2 port card),
5458 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5459 * For 2 port T4/T5 adapter,
5460 * port 0 is mapped to channel 0 and 1,
5461 * port 1 is mapped to channel 2 and 3.
5462 */
5463 if ((n == 1) &&
5464 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
56d36be4
DM
5465 return idx < 2 ? (3 << (2 * idx)) : 0;
5466 return 1 << idx;
5467}
5468
72aca4bf
KS
5469/**
5470 * t4_get_port_type_description - return Port Type string description
5471 * @port_type: firmware Port Type enumeration
5472 */
5473const char *t4_get_port_type_description(enum fw_port_type port_type)
5474{
5475 static const char *const port_type_description[] = {
89eb9835
GG
5476 "Fiber_XFI",
5477 "Fiber_XAUI",
5478 "BT_SGMII",
5479 "BT_XFI",
5480 "BT_XAUI",
72aca4bf
KS
5481 "KX4",
5482 "CX4",
5483 "KX",
5484 "KR",
89eb9835
GG
5485 "SFP",
5486 "BP_AP",
5487 "BP4_AP",
5488 "QSFP_10G",
5489 "QSA",
5490 "QSFP",
5491 "BP40_BA",
5492 "KR4_100G",
5493 "CR4_QSFP",
5494 "CR_QSFP",
5495 "CR2_QSFP",
5496 "SFP28",
5497 "KR_SFP28",
72aca4bf
KS
5498 };
5499
5500 if (port_type < ARRAY_SIZE(port_type_description))
5501 return port_type_description[port_type];
5502 return "UNKNOWN";
5503}
5504
a4cfd929
HS
5505/**
5506 * t4_get_port_stats_offset - collect port stats relative to a previous
5507 * snapshot
5508 * @adap: The adapter
5509 * @idx: The port
5510 * @stats: Current stats to fill
5511 * @offset: Previous stats snapshot
5512 */
5513void t4_get_port_stats_offset(struct adapter *adap, int idx,
5514 struct port_stats *stats,
5515 struct port_stats *offset)
5516{
5517 u64 *s, *o;
5518 int i;
5519
5520 t4_get_port_stats(adap, idx, stats);
5521 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5522 i < (sizeof(struct port_stats) / sizeof(u64));
5523 i++, s++, o++)
5524 *s -= *o;
5525}
5526
56d36be4
DM
5527/**
5528 * t4_get_port_stats - collect port statistics
5529 * @adap: the adapter
5530 * @idx: the port index
5531 * @p: the stats structure to fill
5532 *
5533 * Collect statistics related to the given port from HW.
5534 */
5535void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5536{
145ef8a5 5537 u32 bgmap = t4_get_mps_bg_map(adap, idx);
f750e82e 5538 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
56d36be4
DM
5539
5540#define GET_STAT(name) \
0a57a536 5541 t4_read_reg64(adap, \
d14807dd 5542 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 5543 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
5544#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5545
5546 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5547 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5548 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5549 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5550 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5551 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5552 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5553 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5554 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5555 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5556 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5557 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5558 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5559 p->tx_drop = GET_STAT(TX_PORT_DROP);
5560 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5561 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5562 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5563 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5564 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5565 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5566 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5567 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5568 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5569
f750e82e
GG
5570 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5571 if (stat_ctl & COUNTPAUSESTATTX_F) {
5572 p->tx_frames -= p->tx_pause;
5573 p->tx_octets -= p->tx_pause * 64;
5574 }
5575 if (stat_ctl & COUNTPAUSEMCTX_F)
5576 p->tx_mcast_frames -= p->tx_pause;
5577 }
56d36be4
DM
5578 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5579 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5580 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5581 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5582 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5583 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5584 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5585 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5586 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5587 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5588 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5589 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5590 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5591 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5592 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5593 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5594 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5595 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5596 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5597 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5598 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5599 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5600 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5601 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5602 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5603 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5604 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5605
f750e82e
GG
5606 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5607 if (stat_ctl & COUNTPAUSESTATRX_F) {
5608 p->rx_frames -= p->rx_pause;
5609 p->rx_octets -= p->rx_pause * 64;
5610 }
5611 if (stat_ctl & COUNTPAUSEMCRX_F)
5612 p->rx_mcast_frames -= p->rx_pause;
5613 }
5614
56d36be4
DM
5615 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5616 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5617 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5618 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5619 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5620 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5621 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5622 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5623
5624#undef GET_STAT
5625#undef GET_STAT_COM
5626}
5627
56d36be4 5628/**
65046e84 5629 * t4_get_lb_stats - collect loopback port statistics
56d36be4 5630 * @adap: the adapter
65046e84
HS
5631 * @idx: the loopback port index
5632 * @p: the stats structure to fill
56d36be4 5633 *
65046e84 5634 * Return HW statistics for the given loopback port.
56d36be4 5635 */
65046e84 5636void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
56d36be4 5637{
65046e84 5638 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4 5639
65046e84
HS
5640#define GET_STAT(name) \
5641 t4_read_reg64(adap, \
0d804338 5642 (is_t4(adap->params.chip) ? \
65046e84
HS
5643 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5644 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5645#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
56d36be4 5646
65046e84
HS
5647 p->octets = GET_STAT(BYTES);
5648 p->frames = GET_STAT(FRAMES);
5649 p->bcast_frames = GET_STAT(BCAST);
5650 p->mcast_frames = GET_STAT(MCAST);
5651 p->ucast_frames = GET_STAT(UCAST);
5652 p->error_frames = GET_STAT(ERROR);
5653
5654 p->frames_64 = GET_STAT(64B);
5655 p->frames_65_127 = GET_STAT(65B_127B);
5656 p->frames_128_255 = GET_STAT(128B_255B);
5657 p->frames_256_511 = GET_STAT(256B_511B);
5658 p->frames_512_1023 = GET_STAT(512B_1023B);
5659 p->frames_1024_1518 = GET_STAT(1024B_1518B);
5660 p->frames_1519_max = GET_STAT(1519B_MAX);
5661 p->drop = GET_STAT(DROP_FRAMES);
5662
5663 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5664 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5665 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5666 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5667 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5668 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5669 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5670 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
56d36be4 5671
65046e84
HS
5672#undef GET_STAT
5673#undef GET_STAT_COM
56d36be4
DM
5674}
5675
f2b7e78d
VP
5676/* t4_mk_filtdelwr - create a delete filter WR
5677 * @ftid: the filter ID
5678 * @wr: the filter work request to populate
5679 * @qid: ingress queue to receive the delete notification
5680 *
5681 * Creates a filter work request to delete the supplied filter. If @qid is
5682 * negative the delete notification is suppressed.
5683 */
5684void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5685{
5686 memset(wr, 0, sizeof(*wr));
f404f80c
HS
5687 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5688 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5689 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5690 FW_FILTER_WR_NOREPLY_V(qid < 0));
5691 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
f2b7e78d 5692 if (qid >= 0)
f404f80c
HS
5693 wr->rx_chan_rx_rpl_iq =
5694 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
f2b7e78d
VP
5695}
5696
56d36be4 5697#define INIT_CMD(var, cmd, rd_wr) do { \
f404f80c
HS
5698 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5699 FW_CMD_REQUEST_F | \
5700 FW_CMD_##rd_wr##_F); \
5701 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
56d36be4
DM
5702} while (0)
5703
8caa1e84
VP
5704int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5705 u32 addr, u32 val)
5706{
f404f80c 5707 u32 ldst_addrspace;
8caa1e84
VP
5708 struct fw_ldst_cmd c;
5709
5710 memset(&c, 0, sizeof(c));
f404f80c
HS
5711 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5712 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5713 FW_CMD_REQUEST_F |
5714 FW_CMD_WRITE_F |
5715 ldst_addrspace);
5716 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5717 c.u.addrval.addr = cpu_to_be32(addr);
5718 c.u.addrval.val = cpu_to_be32(val);
8caa1e84
VP
5719
5720 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5721}
5722
56d36be4
DM
5723/**
5724 * t4_mdio_rd - read a PHY register through MDIO
5725 * @adap: the adapter
5726 * @mbox: mailbox to use for the FW command
5727 * @phy_addr: the PHY address
5728 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5729 * @reg: the register to read
5730 * @valp: where to store the value
5731 *
5732 * Issues a FW command through the given mailbox to read a PHY register.
5733 */
5734int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5735 unsigned int mmd, unsigned int reg, u16 *valp)
5736{
5737 int ret;
f404f80c 5738 u32 ldst_addrspace;
56d36be4
DM
5739 struct fw_ldst_cmd c;
5740
5741 memset(&c, 0, sizeof(c));
f404f80c
HS
5742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5743 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5744 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5745 ldst_addrspace);
5746 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5747 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5748 FW_LDST_CMD_MMD_V(mmd));
5749 c.u.mdio.raddr = cpu_to_be16(reg);
56d36be4
DM
5750
5751 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5752 if (ret == 0)
f404f80c 5753 *valp = be16_to_cpu(c.u.mdio.rval);
56d36be4
DM
5754 return ret;
5755}
5756
5757/**
5758 * t4_mdio_wr - write a PHY register through MDIO
5759 * @adap: the adapter
5760 * @mbox: mailbox to use for the FW command
5761 * @phy_addr: the PHY address
5762 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5763 * @reg: the register to write
5764 * @valp: value to write
5765 *
5766 * Issues a FW command through the given mailbox to write a PHY register.
5767 */
5768int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5769 unsigned int mmd, unsigned int reg, u16 val)
5770{
f404f80c 5771 u32 ldst_addrspace;
56d36be4
DM
5772 struct fw_ldst_cmd c;
5773
5774 memset(&c, 0, sizeof(c));
f404f80c
HS
5775 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5776 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5777 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5778 ldst_addrspace);
5779 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5780 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5781 FW_LDST_CMD_MMD_V(mmd));
5782 c.u.mdio.raddr = cpu_to_be16(reg);
5783 c.u.mdio.rval = cpu_to_be16(val);
56d36be4
DM
5784
5785 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5786}
5787
68bce192
KS
5788/**
5789 * t4_sge_decode_idma_state - decode the idma state
5790 * @adap: the adapter
5791 * @state: the state idma is stuck in
5792 */
5793void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5794{
5795 static const char * const t4_decode[] = {
5796 "IDMA_IDLE",
5797 "IDMA_PUSH_MORE_CPL_FIFO",
5798 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5799 "Not used",
5800 "IDMA_PHYSADDR_SEND_PCIEHDR",
5801 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5802 "IDMA_PHYSADDR_SEND_PAYLOAD",
5803 "IDMA_SEND_FIFO_TO_IMSG",
5804 "IDMA_FL_REQ_DATA_FL_PREP",
5805 "IDMA_FL_REQ_DATA_FL",
5806 "IDMA_FL_DROP",
5807 "IDMA_FL_H_REQ_HEADER_FL",
5808 "IDMA_FL_H_SEND_PCIEHDR",
5809 "IDMA_FL_H_PUSH_CPL_FIFO",
5810 "IDMA_FL_H_SEND_CPL",
5811 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5812 "IDMA_FL_H_SEND_IP_HDR",
5813 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5814 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5815 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5816 "IDMA_FL_D_SEND_PCIEHDR",
5817 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5818 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5819 "IDMA_FL_SEND_PCIEHDR",
5820 "IDMA_FL_PUSH_CPL_FIFO",
5821 "IDMA_FL_SEND_CPL",
5822 "IDMA_FL_SEND_PAYLOAD_FIRST",
5823 "IDMA_FL_SEND_PAYLOAD",
5824 "IDMA_FL_REQ_NEXT_DATA_FL",
5825 "IDMA_FL_SEND_NEXT_PCIEHDR",
5826 "IDMA_FL_SEND_PADDING",
5827 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5828 "IDMA_FL_SEND_FIFO_TO_IMSG",
5829 "IDMA_FL_REQ_DATAFL_DONE",
5830 "IDMA_FL_REQ_HEADERFL_DONE",
5831 };
5832 static const char * const t5_decode[] = {
5833 "IDMA_IDLE",
5834 "IDMA_ALMOST_IDLE",
5835 "IDMA_PUSH_MORE_CPL_FIFO",
5836 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5837 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5838 "IDMA_PHYSADDR_SEND_PCIEHDR",
5839 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5840 "IDMA_PHYSADDR_SEND_PAYLOAD",
5841 "IDMA_SEND_FIFO_TO_IMSG",
5842 "IDMA_FL_REQ_DATA_FL",
5843 "IDMA_FL_DROP",
5844 "IDMA_FL_DROP_SEND_INC",
5845 "IDMA_FL_H_REQ_HEADER_FL",
5846 "IDMA_FL_H_SEND_PCIEHDR",
5847 "IDMA_FL_H_PUSH_CPL_FIFO",
5848 "IDMA_FL_H_SEND_CPL",
5849 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5850 "IDMA_FL_H_SEND_IP_HDR",
5851 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5852 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5853 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5854 "IDMA_FL_D_SEND_PCIEHDR",
5855 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5856 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5857 "IDMA_FL_SEND_PCIEHDR",
5858 "IDMA_FL_PUSH_CPL_FIFO",
5859 "IDMA_FL_SEND_CPL",
5860 "IDMA_FL_SEND_PAYLOAD_FIRST",
5861 "IDMA_FL_SEND_PAYLOAD",
5862 "IDMA_FL_REQ_NEXT_DATA_FL",
5863 "IDMA_FL_SEND_NEXT_PCIEHDR",
5864 "IDMA_FL_SEND_PADDING",
5865 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5866 };
6df39753
HS
5867 static const char * const t6_decode[] = {
5868 "IDMA_IDLE",
5869 "IDMA_PUSH_MORE_CPL_FIFO",
5870 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5871 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5872 "IDMA_PHYSADDR_SEND_PCIEHDR",
5873 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5874 "IDMA_PHYSADDR_SEND_PAYLOAD",
5875 "IDMA_FL_REQ_DATA_FL",
5876 "IDMA_FL_DROP",
5877 "IDMA_FL_DROP_SEND_INC",
5878 "IDMA_FL_H_REQ_HEADER_FL",
5879 "IDMA_FL_H_SEND_PCIEHDR",
5880 "IDMA_FL_H_PUSH_CPL_FIFO",
5881 "IDMA_FL_H_SEND_CPL",
5882 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5883 "IDMA_FL_H_SEND_IP_HDR",
5884 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5885 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5886 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5887 "IDMA_FL_D_SEND_PCIEHDR",
5888 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5889 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5890 "IDMA_FL_SEND_PCIEHDR",
5891 "IDMA_FL_PUSH_CPL_FIFO",
5892 "IDMA_FL_SEND_CPL",
5893 "IDMA_FL_SEND_PAYLOAD_FIRST",
5894 "IDMA_FL_SEND_PAYLOAD",
5895 "IDMA_FL_REQ_NEXT_DATA_FL",
5896 "IDMA_FL_SEND_NEXT_PCIEHDR",
5897 "IDMA_FL_SEND_PADDING",
5898 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5899 };
68bce192 5900 static const u32 sge_regs[] = {
f061de42
HS
5901 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5902 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5903 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
68bce192
KS
5904 };
5905 const char **sge_idma_decode;
5906 int sge_idma_decode_nstates;
5907 int i;
6df39753
HS
5908 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5909
5910 /* Select the right set of decode strings to dump depending on the
5911 * adapter chip type.
5912 */
5913 switch (chip_version) {
5914 case CHELSIO_T4:
5915 sge_idma_decode = (const char **)t4_decode;
5916 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5917 break;
5918
5919 case CHELSIO_T5:
5920 sge_idma_decode = (const char **)t5_decode;
5921 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5922 break;
5923
5924 case CHELSIO_T6:
5925 sge_idma_decode = (const char **)t6_decode;
5926 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5927 break;
5928
5929 default:
5930 dev_err(adapter->pdev_dev,
5931 "Unsupported chip version %d\n", chip_version);
5932 return;
5933 }
68bce192
KS
5934
5935 if (is_t4(adapter->params.chip)) {
5936 sge_idma_decode = (const char **)t4_decode;
5937 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5938 } else {
5939 sge_idma_decode = (const char **)t5_decode;
5940 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5941 }
5942
5943 if (state < sge_idma_decode_nstates)
5944 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5945 else
5946 CH_WARN(adapter, "idma state %d unknown\n", state);
5947
5948 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5949 CH_WARN(adapter, "SGE register %#x value %#x\n",
5950 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5951}
5952
5d700ecb
HS
5953/**
5954 * t4_sge_ctxt_flush - flush the SGE context cache
5955 * @adap: the adapter
5956 * @mbox: mailbox to use for the FW command
5957 *
5958 * Issues a FW command through the given mailbox to flush the
5959 * SGE context cache.
5960 */
5961int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5962{
5963 int ret;
5964 u32 ldst_addrspace;
5965 struct fw_ldst_cmd c;
5966
5967 memset(&c, 0, sizeof(c));
5968 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5969 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5970 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5971 ldst_addrspace);
5972 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5973 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5974
5975 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5976 return ret;
5977}
5978
56d36be4 5979/**
636f9d37
VP
5980 * t4_fw_hello - establish communication with FW
5981 * @adap: the adapter
5982 * @mbox: mailbox to use for the FW command
5983 * @evt_mbox: mailbox to receive async FW events
5984 * @master: specifies the caller's willingness to be the device master
5985 * @state: returns the current device state (if non-NULL)
56d36be4 5986 *
636f9d37
VP
5987 * Issues a command to establish communication with FW. Returns either
5988 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
5989 */
5990int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5991 enum dev_master master, enum dev_state *state)
5992{
5993 int ret;
5994 struct fw_hello_cmd c;
636f9d37
VP
5995 u32 v;
5996 unsigned int master_mbox;
5997 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 5998
636f9d37
VP
5999retry:
6000 memset(&c, 0, sizeof(c));
56d36be4 6001 INIT_CMD(c, HELLO, WRITE);
f404f80c 6002 c.err_to_clearinit = cpu_to_be32(
5167865a
HS
6003 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6004 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
f404f80c
HS
6005 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6006 mbox : FW_HELLO_CMD_MBMASTER_M) |
5167865a
HS
6007 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6008 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6009 FW_HELLO_CMD_CLEARINIT_F);
56d36be4 6010
636f9d37
VP
6011 /*
6012 * Issue the HELLO command to the firmware. If it's not successful
6013 * but indicates that we got a "busy" or "timeout" condition, retry
31d55c2d
HS
6014 * the HELLO until we exhaust our retry limit. If we do exceed our
6015 * retry limit, check to see if the firmware left us any error
6016 * information and report that if so.
636f9d37 6017 */
56d36be4 6018 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
6019 if (ret < 0) {
6020 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6021 goto retry;
f061de42 6022 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d 6023 t4_report_fw_error(adap);
636f9d37
VP
6024 return ret;
6025 }
6026
f404f80c 6027 v = be32_to_cpu(c.err_to_clearinit);
5167865a 6028 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
636f9d37 6029 if (state) {
5167865a 6030 if (v & FW_HELLO_CMD_ERR_F)
56d36be4 6031 *state = DEV_STATE_ERR;
5167865a 6032 else if (v & FW_HELLO_CMD_INIT_F)
636f9d37 6033 *state = DEV_STATE_INIT;
56d36be4
DM
6034 else
6035 *state = DEV_STATE_UNINIT;
6036 }
636f9d37
VP
6037
6038 /*
6039 * If we're not the Master PF then we need to wait around for the
6040 * Master PF Driver to finish setting up the adapter.
6041 *
6042 * Note that we also do this wait if we're a non-Master-capable PF and
6043 * there is no current Master PF; a Master PF may show up momentarily
6044 * and we wouldn't want to fail pointlessly. (This can happen when an
6045 * OS loads lots of different drivers rapidly at the same time). In
6046 * this case, the Master PF returned by the firmware will be
b2e1a3f0 6047 * PCIE_FW_MASTER_M so the test below will work ...
636f9d37 6048 */
5167865a 6049 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
636f9d37
VP
6050 master_mbox != mbox) {
6051 int waiting = FW_CMD_HELLO_TIMEOUT;
6052
6053 /*
6054 * Wait for the firmware to either indicate an error or
6055 * initialized state. If we see either of these we bail out
6056 * and report the issue to the caller. If we exhaust the
6057 * "hello timeout" and we haven't exhausted our retries, try
6058 * again. Otherwise bail with a timeout error.
6059 */
6060 for (;;) {
6061 u32 pcie_fw;
6062
6063 msleep(50);
6064 waiting -= 50;
6065
6066 /*
6067 * If neither Error nor Initialialized are indicated
6068 * by the firmware keep waiting till we exaust our
6069 * timeout ... and then retry if we haven't exhausted
6070 * our retries ...
6071 */
f061de42
HS
6072 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6073 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
636f9d37
VP
6074 if (waiting <= 0) {
6075 if (retries-- > 0)
6076 goto retry;
6077
6078 return -ETIMEDOUT;
6079 }
6080 continue;
6081 }
6082
6083 /*
6084 * We either have an Error or Initialized condition
6085 * report errors preferentially.
6086 */
6087 if (state) {
f061de42 6088 if (pcie_fw & PCIE_FW_ERR_F)
636f9d37 6089 *state = DEV_STATE_ERR;
f061de42 6090 else if (pcie_fw & PCIE_FW_INIT_F)
636f9d37
VP
6091 *state = DEV_STATE_INIT;
6092 }
6093
6094 /*
6095 * If we arrived before a Master PF was selected and
6096 * there's not a valid Master PF, grab its identity
6097 * for our caller.
6098 */
b2e1a3f0 6099 if (master_mbox == PCIE_FW_MASTER_M &&
f061de42 6100 (pcie_fw & PCIE_FW_MASTER_VLD_F))
b2e1a3f0 6101 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
636f9d37
VP
6102 break;
6103 }
6104 }
6105
6106 return master_mbox;
56d36be4
DM
6107}
6108
6109/**
6110 * t4_fw_bye - end communication with FW
6111 * @adap: the adapter
6112 * @mbox: mailbox to use for the FW command
6113 *
6114 * Issues a command to terminate communication with FW.
6115 */
6116int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6117{
6118 struct fw_bye_cmd c;
6119
0062b15c 6120 memset(&c, 0, sizeof(c));
56d36be4
DM
6121 INIT_CMD(c, BYE, WRITE);
6122 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6123}
6124
6125/**
6126 * t4_init_cmd - ask FW to initialize the device
6127 * @adap: the adapter
6128 * @mbox: mailbox to use for the FW command
6129 *
6130 * Issues a command to FW to partially initialize the device. This
6131 * performs initialization that generally doesn't depend on user input.
6132 */
6133int t4_early_init(struct adapter *adap, unsigned int mbox)
6134{
6135 struct fw_initialize_cmd c;
6136
0062b15c 6137 memset(&c, 0, sizeof(c));
56d36be4
DM
6138 INIT_CMD(c, INITIALIZE, WRITE);
6139 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6140}
6141
6142/**
6143 * t4_fw_reset - issue a reset to FW
6144 * @adap: the adapter
6145 * @mbox: mailbox to use for the FW command
6146 * @reset: specifies the type of reset to perform
6147 *
6148 * Issues a reset command of the specified type to FW.
6149 */
6150int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6151{
6152 struct fw_reset_cmd c;
6153
0062b15c 6154 memset(&c, 0, sizeof(c));
56d36be4 6155 INIT_CMD(c, RESET, WRITE);
f404f80c 6156 c.val = cpu_to_be32(reset);
56d36be4
DM
6157 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6158}
6159
26f7cbc0
VP
6160/**
6161 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6162 * @adap: the adapter
6163 * @mbox: mailbox to use for the FW RESET command (if desired)
6164 * @force: force uP into RESET even if FW RESET command fails
6165 *
6166 * Issues a RESET command to firmware (if desired) with a HALT indication
6167 * and then puts the microprocessor into RESET state. The RESET command
6168 * will only be issued if a legitimate mailbox is provided (mbox <=
b2e1a3f0 6169 * PCIE_FW_MASTER_M).
26f7cbc0
VP
6170 *
6171 * This is generally used in order for the host to safely manipulate the
6172 * adapter without fear of conflicting with whatever the firmware might
6173 * be doing. The only way out of this state is to RESTART the firmware
6174 * ...
6175 */
de5b8677 6176static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
26f7cbc0
VP
6177{
6178 int ret = 0;
6179
6180 /*
6181 * If a legitimate mailbox is provided, issue a RESET command
6182 * with a HALT indication.
6183 */
b2e1a3f0 6184 if (mbox <= PCIE_FW_MASTER_M) {
26f7cbc0
VP
6185 struct fw_reset_cmd c;
6186
6187 memset(&c, 0, sizeof(c));
6188 INIT_CMD(c, RESET, WRITE);
f404f80c
HS
6189 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6190 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
26f7cbc0
VP
6191 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6192 }
6193
6194 /*
6195 * Normally we won't complete the operation if the firmware RESET
6196 * command fails but if our caller insists we'll go ahead and put the
6197 * uP into RESET. This can be useful if the firmware is hung or even
6198 * missing ... We'll have to take the risk of putting the uP into
6199 * RESET without the cooperation of firmware in that case.
6200 *
6201 * We also force the firmware's HALT flag to be on in case we bypassed
6202 * the firmware RESET command above or we're dealing with old firmware
6203 * which doesn't have the HALT capability. This will serve as a flag
6204 * for the incoming firmware to know that it's coming out of a HALT
6205 * rather than a RESET ... if it's new enough to understand that ...
6206 */
6207 if (ret == 0 || force) {
89c3a86c 6208 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
f061de42 6209 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
b2e1a3f0 6210 PCIE_FW_HALT_F);
26f7cbc0
VP
6211 }
6212
6213 /*
6214 * And we always return the result of the firmware RESET command
6215 * even when we force the uP into RESET ...
6216 */
6217 return ret;
6218}
6219
6220/**
6221 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6222 * @adap: the adapter
6223 * @reset: if we want to do a RESET to restart things
6224 *
6225 * Restart firmware previously halted by t4_fw_halt(). On successful
6226 * return the previous PF Master remains as the new PF Master and there
6227 * is no need to issue a new HELLO command, etc.
6228 *
6229 * We do this in two ways:
6230 *
6231 * 1. If we're dealing with newer firmware we'll simply want to take
6232 * the chip's microprocessor out of RESET. This will cause the
6233 * firmware to start up from its start vector. And then we'll loop
6234 * until the firmware indicates it's started again (PCIE_FW.HALT
6235 * reset to 0) or we timeout.
6236 *
6237 * 2. If we're dealing with older firmware then we'll need to RESET
6238 * the chip since older firmware won't recognize the PCIE_FW.HALT
6239 * flag and automatically RESET itself on startup.
6240 */
de5b8677 6241static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
26f7cbc0
VP
6242{
6243 if (reset) {
6244 /*
6245 * Since we're directing the RESET instead of the firmware
6246 * doing it automatically, we need to clear the PCIE_FW.HALT
6247 * bit.
6248 */
f061de42 6249 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
26f7cbc0
VP
6250
6251 /*
6252 * If we've been given a valid mailbox, first try to get the
6253 * firmware to do the RESET. If that works, great and we can
6254 * return success. Otherwise, if we haven't been given a
6255 * valid mailbox or the RESET command failed, fall back to
6256 * hitting the chip with a hammer.
6257 */
b2e1a3f0 6258 if (mbox <= PCIE_FW_MASTER_M) {
89c3a86c 6259 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0
VP
6260 msleep(100);
6261 if (t4_fw_reset(adap, mbox,
0d804338 6262 PIORST_F | PIORSTMODE_F) == 0)
26f7cbc0
VP
6263 return 0;
6264 }
6265
0d804338 6266 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
26f7cbc0
VP
6267 msleep(2000);
6268 } else {
6269 int ms;
6270
89c3a86c 6271 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0 6272 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
f061de42 6273 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
26f7cbc0
VP
6274 return 0;
6275 msleep(100);
6276 ms += 100;
6277 }
6278 return -ETIMEDOUT;
6279 }
6280 return 0;
6281}
6282
6283/**
6284 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6285 * @adap: the adapter
6286 * @mbox: mailbox to use for the FW RESET command (if desired)
6287 * @fw_data: the firmware image to write
6288 * @size: image size
6289 * @force: force upgrade even if firmware doesn't cooperate
6290 *
6291 * Perform all of the steps necessary for upgrading an adapter's
6292 * firmware image. Normally this requires the cooperation of the
6293 * existing firmware in order to halt all existing activities
6294 * but if an invalid mailbox token is passed in we skip that step
6295 * (though we'll still put the adapter microprocessor into RESET in
6296 * that case).
6297 *
6298 * On successful return the new firmware will have been loaded and
6299 * the adapter will have been fully RESET losing all previous setup
6300 * state. On unsuccessful return the adapter may be completely hosed ...
6301 * positive errno indicates that the adapter is ~probably~ intact, a
6302 * negative errno indicates that things are looking bad ...
6303 */
22c0b963
HS
6304int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6305 const u8 *fw_data, unsigned int size, int force)
26f7cbc0
VP
6306{
6307 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6308 int reset, ret;
6309
79af221d
HS
6310 if (!t4_fw_matches_chip(adap, fw_hdr))
6311 return -EINVAL;
6312
26747211
AV
6313 /* Disable FW_OK flag so that mbox commands with FW_OK flag set
6314 * wont be sent when we are flashing FW.
6315 */
6316 adap->flags &= ~FW_OK;
6317
26f7cbc0
VP
6318 ret = t4_fw_halt(adap, mbox, force);
6319 if (ret < 0 && !force)
26747211 6320 goto out;
26f7cbc0
VP
6321
6322 ret = t4_load_fw(adap, fw_data, size);
6323 if (ret < 0)
26747211 6324 goto out;
26f7cbc0
VP
6325
6326 /*
6327 * Older versions of the firmware don't understand the new
6328 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6329 * restart. So for newly loaded older firmware we'll have to do the
6330 * RESET for it so it starts up on a clean slate. We can tell if
6331 * the newly loaded firmware will handle this right by checking
6332 * its header flags to see if it advertises the capability.
6333 */
f404f80c 6334 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
26747211
AV
6335 ret = t4_fw_restart(adap, mbox, reset);
6336
6337 /* Grab potentially new Firmware Device Log parameters so we can see
6338 * how healthy the new Firmware is. It's okay to contact the new
6339 * Firmware for these parameters even though, as far as it's
6340 * concerned, we've never said "HELLO" to it ...
6341 */
6342 (void)t4_init_devlog_params(adap);
6343out:
6344 adap->flags |= FW_OK;
6345 return ret;
26f7cbc0
VP
6346}
6347
acac5962
HS
6348/**
6349 * t4_fl_pkt_align - return the fl packet alignment
6350 * @adap: the adapter
6351 *
6352 * T4 has a single field to specify the packing and padding boundary.
6353 * T5 onwards has separate fields for this and hence the alignment for
6354 * next packet offset is maximum of these two.
6355 *
6356 */
6357int t4_fl_pkt_align(struct adapter *adap)
6358{
6359 u32 sge_control, sge_control2;
6360 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6361
6362 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6363
6364 /* T4 uses a single control field to specify both the PCIe Padding and
6365 * Packing Boundary. T5 introduced the ability to specify these
6366 * separately. The actual Ingress Packet Data alignment boundary
6367 * within Packed Buffer Mode is the maximum of these two
6368 * specifications. (Note that it makes no real practical sense to
6369 * have the Pading Boudary be larger than the Packing Boundary but you
6370 * could set the chip up that way and, in fact, legacy T4 code would
6371 * end doing this because it would initialize the Padding Boundary and
6372 * leave the Packing Boundary initialized to 0 (16 bytes).)
6373 * Padding Boundary values in T6 starts from 8B,
6374 * where as it is 32B for T4 and T5.
6375 */
6376 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6377 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6378 else
6379 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6380
6381 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6382
6383 fl_align = ingpadboundary;
6384 if (!is_t4(adap->params.chip)) {
6385 /* T5 has a weird interpretation of one of the PCIe Packing
6386 * Boundary values. No idea why ...
6387 */
6388 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6389 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6390 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6391 ingpackboundary = 16;
6392 else
6393 ingpackboundary = 1 << (ingpackboundary +
6394 INGPACKBOUNDARY_SHIFT_X);
6395
6396 fl_align = max(ingpadboundary, ingpackboundary);
6397 }
6398 return fl_align;
6399}
6400
636f9d37
VP
6401/**
6402 * t4_fixup_host_params - fix up host-dependent parameters
6403 * @adap: the adapter
6404 * @page_size: the host's Base Page Size
6405 * @cache_line_size: the host's Cache Line Size
6406 *
6407 * Various registers in T4 contain values which are dependent on the
6408 * host's Base Page and Cache Line Sizes. This function will fix all of
6409 * those registers with the appropriate values as passed in ...
6410 */
6411int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6412 unsigned int cache_line_size)
6413{
6414 unsigned int page_shift = fls(page_size) - 1;
6415 unsigned int sge_hps = page_shift - 10;
6416 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6417 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6418 unsigned int fl_align_log = fls(fl_align) - 1;
6419
f612b815
HS
6420 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6421 HOSTPAGESIZEPF0_V(sge_hps) |
6422 HOSTPAGESIZEPF1_V(sge_hps) |
6423 HOSTPAGESIZEPF2_V(sge_hps) |
6424 HOSTPAGESIZEPF3_V(sge_hps) |
6425 HOSTPAGESIZEPF4_V(sge_hps) |
6426 HOSTPAGESIZEPF5_V(sge_hps) |
6427 HOSTPAGESIZEPF6_V(sge_hps) |
6428 HOSTPAGESIZEPF7_V(sge_hps));
636f9d37 6429
ce8f407a 6430 if (is_t4(adap->params.chip)) {
f612b815
HS
6431 t4_set_reg_field(adap, SGE_CONTROL_A,
6432 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6433 EGRSTATUSPAGESIZE_F,
6434 INGPADBOUNDARY_V(fl_align_log -
6435 INGPADBOUNDARY_SHIFT_X) |
6436 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a 6437 } else {
bb58d079
AV
6438 unsigned int pack_align;
6439 unsigned int ingpad, ingpack;
6440 unsigned int pcie_cap;
6441
ce8f407a
HS
6442 /* T5 introduced the separation of the Free List Padding and
6443 * Packing Boundaries. Thus, we can select a smaller Padding
6444 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6445 * Bandwidth, and use a Packing Boundary which is large enough
6446 * to avoid false sharing between CPUs, etc.
6447 *
6448 * For the PCI Link, the smaller the Padding Boundary the
6449 * better. For the Memory Controller, a smaller Padding
6450 * Boundary is better until we cross under the Memory Line
6451 * Size (the minimum unit of transfer to/from Memory). If we
6452 * have a Padding Boundary which is smaller than the Memory
6453 * Line Size, that'll involve a Read-Modify-Write cycle on the
bb58d079
AV
6454 * Memory Controller which is never good.
6455 */
6456
6457 /* We want the Packing Boundary to be based on the Cache Line
6458 * Size in order to help avoid False Sharing performance
6459 * issues between CPUs, etc. We also want the Packing
6460 * Boundary to incorporate the PCI-E Maximum Payload Size. We
6461 * get best performance when the Packing Boundary is a
6462 * multiple of the Maximum Payload Size.
6463 */
6464 pack_align = fl_align;
6465 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
6466 if (pcie_cap) {
6467 unsigned int mps, mps_log;
6468 u16 devctl;
6469
6470 /* The PCIe Device Control Maximum Payload Size field
6471 * [bits 7:5] encodes sizes as powers of 2 starting at
6472 * 128 bytes.
6473 */
6474 pci_read_config_word(adap->pdev,
6475 pcie_cap + PCI_EXP_DEVCTL,
6476 &devctl);
6477 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
6478 mps = 1 << mps_log;
6479 if (mps > pack_align)
6480 pack_align = mps;
6481 }
6482
6483 /* N.B. T5/T6 have a crazy special interpretation of the "0"
6484 * value for the Packing Boundary. This corresponds to 16
6485 * bytes instead of the expected 32 bytes. So if we want 32
6486 * bytes, the best we can really do is 64 bytes ...
6487 */
6488 if (pack_align <= 16) {
6489 ingpack = INGPACKBOUNDARY_16B_X;
6490 fl_align = 16;
6491 } else if (pack_align == 32) {
6492 ingpack = INGPACKBOUNDARY_64B_X;
ce8f407a 6493 fl_align = 64;
bb58d079
AV
6494 } else {
6495 unsigned int pack_align_log = fls(pack_align) - 1;
6496
6497 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
6498 fl_align = pack_align;
ce8f407a 6499 }
acac5962 6500
bb58d079
AV
6501 /* Use the smallest Ingress Padding which isn't smaller than
6502 * the Memory Controller Read/Write Size. We'll take that as
6503 * being 8 bytes since we don't know of any system with a
6504 * wider Memory Controller Bus Width.
6505 */
acac5962 6506 if (is_t5(adap->params.chip))
bb58d079 6507 ingpad = INGPADBOUNDARY_32B_X;
acac5962 6508 else
bb58d079 6509 ingpad = T6_INGPADBOUNDARY_8B_X;
acac5962 6510
f612b815
HS
6511 t4_set_reg_field(adap, SGE_CONTROL_A,
6512 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6513 EGRSTATUSPAGESIZE_F,
acac5962 6514 INGPADBOUNDARY_V(ingpad) |
f612b815 6515 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6516 t4_set_reg_field(adap, SGE_CONTROL2_A,
6517 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
bb58d079 6518 INGPACKBOUNDARY_V(ingpack));
ce8f407a 6519 }
636f9d37
VP
6520 /*
6521 * Adjust various SGE Free List Host Buffer Sizes.
6522 *
6523 * This is something of a crock since we're using fixed indices into
6524 * the array which are also known by the sge.c code and the T4
6525 * Firmware Configuration File. We need to come up with a much better
6526 * approach to managing this array. For now, the first four entries
6527 * are:
6528 *
6529 * 0: Host Page Size
6530 * 1: 64KB
6531 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6532 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6533 *
6534 * For the single-MTU buffers in unpacked mode we need to include
6535 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6536 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
dbedd44e 6537 * Padding boundary. All of these are accommodated in the Factory
636f9d37
VP
6538 * Default Firmware Configuration File but we need to adjust it for
6539 * this host's cache line size.
6540 */
f612b815
HS
6541 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6542 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6543 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
636f9d37 6544 & ~(fl_align-1));
f612b815
HS
6545 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6546 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
636f9d37
VP
6547 & ~(fl_align-1));
6548
0d804338 6549 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
636f9d37
VP
6550
6551 return 0;
6552}
6553
6554/**
6555 * t4_fw_initialize - ask FW to initialize the device
6556 * @adap: the adapter
6557 * @mbox: mailbox to use for the FW command
6558 *
6559 * Issues a command to FW to partially initialize the device. This
6560 * performs initialization that generally doesn't depend on user input.
6561 */
6562int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6563{
6564 struct fw_initialize_cmd c;
6565
6566 memset(&c, 0, sizeof(c));
6567 INIT_CMD(c, INITIALIZE, WRITE);
6568 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6569}
6570
56d36be4 6571/**
01b69614 6572 * t4_query_params_rw - query FW or device parameters
56d36be4
DM
6573 * @adap: the adapter
6574 * @mbox: mailbox to use for the FW command
6575 * @pf: the PF
6576 * @vf: the VF
6577 * @nparams: the number of parameters
6578 * @params: the parameter names
6579 * @val: the parameter values
01b69614 6580 * @rw: Write and read flag
56d36be4
DM
6581 *
6582 * Reads the value of FW or device parameters. Up to 7 parameters can be
6583 * queried at once.
6584 */
01b69614
HS
6585int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6586 unsigned int vf, unsigned int nparams, const u32 *params,
6587 u32 *val, int rw)
56d36be4
DM
6588{
6589 int i, ret;
6590 struct fw_params_cmd c;
6591 __be32 *p = &c.param[0].mnem;
6592
6593 if (nparams > 7)
6594 return -EINVAL;
6595
6596 memset(&c, 0, sizeof(c));
f404f80c
HS
6597 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6598 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6599 FW_PARAMS_CMD_PFN_V(pf) |
6600 FW_PARAMS_CMD_VFN_V(vf));
6601 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6602
01b69614
HS
6603 for (i = 0; i < nparams; i++) {
6604 *p++ = cpu_to_be32(*params++);
6605 if (rw)
6606 *p = cpu_to_be32(*(val + i));
6607 p++;
6608 }
56d36be4
DM
6609
6610 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6611 if (ret == 0)
6612 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
f404f80c 6613 *val++ = be32_to_cpu(*p);
56d36be4
DM
6614 return ret;
6615}
6616
01b69614
HS
6617int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6618 unsigned int vf, unsigned int nparams, const u32 *params,
6619 u32 *val)
6620{
6621 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6622}
6623
688848b1 6624/**
01b69614 6625 * t4_set_params_timeout - sets FW or device parameters
688848b1
AB
6626 * @adap: the adapter
6627 * @mbox: mailbox to use for the FW command
6628 * @pf: the PF
6629 * @vf: the VF
6630 * @nparams: the number of parameters
6631 * @params: the parameter names
6632 * @val: the parameter values
01b69614 6633 * @timeout: the timeout time
688848b1 6634 *
688848b1
AB
6635 * Sets the value of FW or device parameters. Up to 7 parameters can be
6636 * specified at once.
6637 */
01b69614 6638int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
688848b1
AB
6639 unsigned int pf, unsigned int vf,
6640 unsigned int nparams, const u32 *params,
01b69614 6641 const u32 *val, int timeout)
688848b1
AB
6642{
6643 struct fw_params_cmd c;
6644 __be32 *p = &c.param[0].mnem;
6645
6646 if (nparams > 7)
6647 return -EINVAL;
6648
6649 memset(&c, 0, sizeof(c));
e2ac9628 6650 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
01b69614
HS
6651 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6652 FW_PARAMS_CMD_PFN_V(pf) |
6653 FW_PARAMS_CMD_VFN_V(vf));
688848b1
AB
6654 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6655
6656 while (nparams--) {
6657 *p++ = cpu_to_be32(*params++);
6658 *p++ = cpu_to_be32(*val++);
6659 }
6660
01b69614 6661 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
688848b1
AB
6662}
6663
56d36be4
DM
6664/**
6665 * t4_set_params - sets FW or device parameters
6666 * @adap: the adapter
6667 * @mbox: mailbox to use for the FW command
6668 * @pf: the PF
6669 * @vf: the VF
6670 * @nparams: the number of parameters
6671 * @params: the parameter names
6672 * @val: the parameter values
6673 *
6674 * Sets the value of FW or device parameters. Up to 7 parameters can be
6675 * specified at once.
6676 */
6677int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6678 unsigned int vf, unsigned int nparams, const u32 *params,
6679 const u32 *val)
6680{
01b69614
HS
6681 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6682 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
6683}
6684
6685/**
6686 * t4_cfg_pfvf - configure PF/VF resource limits
6687 * @adap: the adapter
6688 * @mbox: mailbox to use for the FW command
6689 * @pf: the PF being configured
6690 * @vf: the VF being configured
6691 * @txq: the max number of egress queues
6692 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
6693 * @rxqi: the max number of interrupt-capable ingress queues
6694 * @rxq: the max number of interruptless ingress queues
6695 * @tc: the PCI traffic class
6696 * @vi: the max number of virtual interfaces
6697 * @cmask: the channel access rights mask for the PF/VF
6698 * @pmask: the port access rights mask for the PF/VF
6699 * @nexact: the maximum number of exact MPS filters
6700 * @rcaps: read capabilities
6701 * @wxcaps: write/execute capabilities
6702 *
6703 * Configures resource limits and capabilities for a physical or virtual
6704 * function.
6705 */
6706int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6707 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6708 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6709 unsigned int vi, unsigned int cmask, unsigned int pmask,
6710 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6711{
6712 struct fw_pfvf_cmd c;
6713
6714 memset(&c, 0, sizeof(c));
f404f80c
HS
6715 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6716 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6717 FW_PFVF_CMD_VFN_V(vf));
6718 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6719 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6720 FW_PFVF_CMD_NIQ_V(rxq));
6721 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6722 FW_PFVF_CMD_PMASK_V(pmask) |
6723 FW_PFVF_CMD_NEQ_V(txq));
6724 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6725 FW_PFVF_CMD_NVI_V(vi) |
6726 FW_PFVF_CMD_NEXACTF_V(nexact));
6727 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6728 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6729 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
56d36be4
DM
6730 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6731}
6732
6733/**
6734 * t4_alloc_vi - allocate a virtual interface
6735 * @adap: the adapter
6736 * @mbox: mailbox to use for the FW command
6737 * @port: physical port associated with the VI
6738 * @pf: the PF owning the VI
6739 * @vf: the VF owning the VI
6740 * @nmac: number of MAC addresses needed (1 to 5)
6741 * @mac: the MAC addresses of the VI
6742 * @rss_size: size of RSS table slice associated with this VI
6743 *
6744 * Allocates a virtual interface for the given physical port. If @mac is
6745 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
6746 * @mac should be large enough to hold @nmac Ethernet addresses, they are
6747 * stored consecutively so the space needed is @nmac * 6 bytes.
6748 * Returns a negative error number or the non-negative VI id.
6749 */
6750int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6751 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6752 unsigned int *rss_size)
6753{
6754 int ret;
6755 struct fw_vi_cmd c;
6756
6757 memset(&c, 0, sizeof(c));
f404f80c
HS
6758 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6759 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6760 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6761 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
2b5fb1f2 6762 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
56d36be4
DM
6763 c.nmac = nmac - 1;
6764
6765 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6766 if (ret)
6767 return ret;
6768
6769 if (mac) {
6770 memcpy(mac, c.mac, sizeof(c.mac));
6771 switch (nmac) {
6772 case 5:
6773 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6774 case 4:
6775 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6776 case 3:
6777 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6778 case 2:
6779 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
6780 }
6781 }
6782 if (rss_size)
f404f80c
HS
6783 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6784 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
56d36be4
DM
6785}
6786
4f3a0fcf
HS
6787/**
6788 * t4_free_vi - free a virtual interface
6789 * @adap: the adapter
6790 * @mbox: mailbox to use for the FW command
6791 * @pf: the PF owning the VI
6792 * @vf: the VF owning the VI
6793 * @viid: virtual interface identifiler
6794 *
6795 * Free a previously allocated virtual interface.
6796 */
6797int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6798 unsigned int vf, unsigned int viid)
6799{
6800 struct fw_vi_cmd c;
6801
6802 memset(&c, 0, sizeof(c));
6803 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6804 FW_CMD_REQUEST_F |
6805 FW_CMD_EXEC_F |
6806 FW_VI_CMD_PFN_V(pf) |
6807 FW_VI_CMD_VFN_V(vf));
6808 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6809 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6810
6811 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
56d36be4
DM
6812}
6813
56d36be4
DM
6814/**
6815 * t4_set_rxmode - set Rx properties of a virtual interface
6816 * @adap: the adapter
6817 * @mbox: mailbox to use for the FW command
6818 * @viid: the VI id
6819 * @mtu: the new MTU or -1
6820 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6821 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6822 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 6823 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
6824 * @sleep_ok: if true we may sleep while awaiting command completion
6825 *
6826 * Sets Rx properties of a virtual interface.
6827 */
6828int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
6829 int mtu, int promisc, int all_multi, int bcast, int vlanex,
6830 bool sleep_ok)
56d36be4
DM
6831{
6832 struct fw_vi_rxmode_cmd c;
6833
6834 /* convert to FW values */
6835 if (mtu < 0)
6836 mtu = FW_RXMODE_MTU_NO_CHG;
6837 if (promisc < 0)
2b5fb1f2 6838 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
56d36be4 6839 if (all_multi < 0)
2b5fb1f2 6840 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
56d36be4 6841 if (bcast < 0)
2b5fb1f2 6842 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
f8f5aafa 6843 if (vlanex < 0)
2b5fb1f2 6844 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
56d36be4
DM
6845
6846 memset(&c, 0, sizeof(c));
f404f80c
HS
6847 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6848 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6849 FW_VI_RXMODE_CMD_VIID_V(viid));
6850 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6851 c.mtu_to_vlanexen =
6852 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6853 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6854 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6855 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6856 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
56d36be4
DM
6857 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6858}
6859
6860/**
6861 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6862 * @adap: the adapter
6863 * @mbox: mailbox to use for the FW command
6864 * @viid: the VI id
6865 * @free: if true any existing filters for this VI id are first removed
6866 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6867 * @addr: the MAC address(es)
6868 * @idx: where to store the index of each allocated filter
6869 * @hash: pointer to hash address filter bitmap
6870 * @sleep_ok: call is allowed to sleep
6871 *
6872 * Allocates an exact-match filter for each of the supplied addresses and
6873 * sets it to the corresponding address. If @idx is not %NULL it should
6874 * have at least @naddr entries, each of which will be set to the index of
6875 * the filter allocated for the corresponding MAC address. If a filter
6876 * could not be allocated for an address its index is set to 0xffff.
6877 * If @hash is not %NULL addresses that fail to allocate an exact filter
6878 * are hashed and update the hash filter bitmap pointed at by @hash.
6879 *
6880 * Returns a negative error number or the number of filters allocated.
6881 */
6882int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6883 unsigned int viid, bool free, unsigned int naddr,
6884 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6885{
3ccc6cf7 6886 int offset, ret = 0;
56d36be4 6887 struct fw_vi_mac_cmd c;
3ccc6cf7
HS
6888 unsigned int nfilters = 0;
6889 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6890 unsigned int rem = naddr;
56d36be4 6891
3ccc6cf7 6892 if (naddr > max_naddr)
56d36be4
DM
6893 return -EINVAL;
6894
3ccc6cf7
HS
6895 for (offset = 0; offset < naddr ; /**/) {
6896 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6897 rem : ARRAY_SIZE(c.u.exact));
6898 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6899 u.exact[fw_naddr]), 16);
6900 struct fw_vi_mac_exact *p;
6901 int i;
56d36be4 6902
3ccc6cf7
HS
6903 memset(&c, 0, sizeof(c));
6904 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6905 FW_CMD_REQUEST_F |
6906 FW_CMD_WRITE_F |
6907 FW_CMD_EXEC_V(free) |
6908 FW_VI_MAC_CMD_VIID_V(viid));
6909 c.freemacs_to_len16 =
6910 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6911 FW_CMD_LEN16_V(len16));
6912
6913 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6914 p->valid_to_idx =
6915 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6916 FW_VI_MAC_CMD_IDX_V(
6917 FW_VI_MAC_ADD_MAC));
6918 memcpy(p->macaddr, addr[offset + i],
6919 sizeof(p->macaddr));
6920 }
56d36be4 6921
3ccc6cf7
HS
6922 /* It's okay if we run out of space in our MAC address arena.
6923 * Some of the addresses we submit may get stored so we need
6924 * to run through the reply to see what the results were ...
6925 */
6926 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6927 if (ret && ret != -FW_ENOMEM)
6928 break;
56d36be4 6929
3ccc6cf7
HS
6930 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6931 u16 index = FW_VI_MAC_CMD_IDX_G(
6932 be16_to_cpu(p->valid_to_idx));
6933
6934 if (idx)
6935 idx[offset + i] = (index >= max_naddr ?
6936 0xffff : index);
6937 if (index < max_naddr)
6938 nfilters++;
6939 else if (hash)
6940 *hash |= (1ULL <<
6941 hash_mac_addr(addr[offset + i]));
6942 }
56d36be4 6943
3ccc6cf7
HS
6944 free = false;
6945 offset += fw_naddr;
6946 rem -= fw_naddr;
56d36be4 6947 }
3ccc6cf7
HS
6948
6949 if (ret == 0 || ret == -FW_ENOMEM)
6950 ret = nfilters;
56d36be4
DM
6951 return ret;
6952}
6953
fc08a01a
HS
6954/**
6955 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
6956 * @adap: the adapter
6957 * @mbox: mailbox to use for the FW command
6958 * @viid: the VI id
6959 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6960 * @addr: the MAC address(es)
6961 * @sleep_ok: call is allowed to sleep
6962 *
6963 * Frees the exact-match filter for each of the supplied addresses
6964 *
6965 * Returns a negative error number or the number of filters freed.
6966 */
6967int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6968 unsigned int viid, unsigned int naddr,
6969 const u8 **addr, bool sleep_ok)
6970{
6971 int offset, ret = 0;
6972 struct fw_vi_mac_cmd c;
6973 unsigned int nfilters = 0;
6974 unsigned int max_naddr = is_t4(adap->params.chip) ?
6975 NUM_MPS_CLS_SRAM_L_INSTANCES :
6976 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6977 unsigned int rem = naddr;
6978
6979 if (naddr > max_naddr)
6980 return -EINVAL;
6981
6982 for (offset = 0; offset < (int)naddr ; /**/) {
6983 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6984 ? rem
6985 : ARRAY_SIZE(c.u.exact));
6986 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6987 u.exact[fw_naddr]), 16);
6988 struct fw_vi_mac_exact *p;
6989 int i;
6990
6991 memset(&c, 0, sizeof(c));
6992 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6993 FW_CMD_REQUEST_F |
6994 FW_CMD_WRITE_F |
6995 FW_CMD_EXEC_V(0) |
6996 FW_VI_MAC_CMD_VIID_V(viid));
6997 c.freemacs_to_len16 =
6998 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6999 FW_CMD_LEN16_V(len16));
7000
7001 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7002 p->valid_to_idx = cpu_to_be16(
7003 FW_VI_MAC_CMD_VALID_F |
7004 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7005 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7006 }
7007
7008 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7009 if (ret)
7010 break;
7011
7012 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7013 u16 index = FW_VI_MAC_CMD_IDX_G(
7014 be16_to_cpu(p->valid_to_idx));
7015
7016 if (index < max_naddr)
7017 nfilters++;
7018 }
7019
7020 offset += fw_naddr;
7021 rem -= fw_naddr;
7022 }
7023
7024 if (ret == 0)
7025 ret = nfilters;
7026 return ret;
7027}
7028
56d36be4
DM
7029/**
7030 * t4_change_mac - modifies the exact-match filter for a MAC address
7031 * @adap: the adapter
7032 * @mbox: mailbox to use for the FW command
7033 * @viid: the VI id
7034 * @idx: index of existing filter for old value of MAC address, or -1
7035 * @addr: the new MAC address value
7036 * @persist: whether a new MAC allocation should be persistent
7037 * @add_smt: if true also add the address to the HW SMT
7038 *
7039 * Modifies an exact-match filter and sets it to the new MAC address.
7040 * Note that in general it is not possible to modify the value of a given
7041 * filter so the generic way to modify an address filter is to free the one
7042 * being used by the old address value and allocate a new filter for the
7043 * new address value. @idx can be -1 if the address is a new addition.
7044 *
7045 * Returns a negative error number or the index of the filter with the new
7046 * MAC value.
7047 */
7048int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7049 int idx, const u8 *addr, bool persist, bool add_smt)
7050{
7051 int ret, mode;
7052 struct fw_vi_mac_cmd c;
7053 struct fw_vi_mac_exact *p = c.u.exact;
3ccc6cf7 7054 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
56d36be4
DM
7055
7056 if (idx < 0) /* new allocation */
7057 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7058 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7059
7060 memset(&c, 0, sizeof(c));
f404f80c
HS
7061 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7062 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7063 FW_VI_MAC_CMD_VIID_V(viid));
7064 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7065 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7066 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7067 FW_VI_MAC_CMD_IDX_V(idx));
56d36be4
DM
7068 memcpy(p->macaddr, addr, sizeof(p->macaddr));
7069
7070 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7071 if (ret == 0) {
f404f80c 7072 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
0a57a536 7073 if (ret >= max_mac_addr)
56d36be4
DM
7074 ret = -ENOMEM;
7075 }
7076 return ret;
7077}
7078
7079/**
7080 * t4_set_addr_hash - program the MAC inexact-match hash filter
7081 * @adap: the adapter
7082 * @mbox: mailbox to use for the FW command
7083 * @viid: the VI id
7084 * @ucast: whether the hash filter should also match unicast addresses
7085 * @vec: the value to be written to the hash filter
7086 * @sleep_ok: call is allowed to sleep
7087 *
7088 * Sets the 64-bit inexact-match hash filter for a virtual interface.
7089 */
7090int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7091 bool ucast, u64 vec, bool sleep_ok)
7092{
7093 struct fw_vi_mac_cmd c;
7094
7095 memset(&c, 0, sizeof(c));
f404f80c
HS
7096 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7097 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7098 FW_VI_ENABLE_CMD_VIID_V(viid));
7099 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7100 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7101 FW_CMD_LEN16_V(1));
56d36be4
DM
7102 c.u.hash.hashvec = cpu_to_be64(vec);
7103 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7104}
7105
688848b1
AB
7106/**
7107 * t4_enable_vi_params - enable/disable a virtual interface
7108 * @adap: the adapter
7109 * @mbox: mailbox to use for the FW command
7110 * @viid: the VI id
7111 * @rx_en: 1=enable Rx, 0=disable Rx
7112 * @tx_en: 1=enable Tx, 0=disable Tx
7113 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
7114 *
7115 * Enables/disables a virtual interface. Note that setting DCB Enable
7116 * only makes sense when enabling a Virtual Interface ...
7117 */
7118int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7119 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7120{
7121 struct fw_vi_enable_cmd c;
7122
7123 memset(&c, 0, sizeof(c));
f404f80c
HS
7124 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7125 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7126 FW_VI_ENABLE_CMD_VIID_V(viid));
7127 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7128 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7129 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7130 FW_LEN16(c));
30f00847 7131 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
688848b1
AB
7132}
7133
56d36be4
DM
7134/**
7135 * t4_enable_vi - enable/disable a virtual interface
7136 * @adap: the adapter
7137 * @mbox: mailbox to use for the FW command
7138 * @viid: the VI id
7139 * @rx_en: 1=enable Rx, 0=disable Rx
7140 * @tx_en: 1=enable Tx, 0=disable Tx
7141 *
7142 * Enables/disables a virtual interface.
7143 */
7144int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7145 bool rx_en, bool tx_en)
7146{
688848b1 7147 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
56d36be4
DM
7148}
7149
7150/**
7151 * t4_identify_port - identify a VI's port by blinking its LED
7152 * @adap: the adapter
7153 * @mbox: mailbox to use for the FW command
7154 * @viid: the VI id
7155 * @nblinks: how many times to blink LED at 2.5 Hz
7156 *
7157 * Identifies a VI's port by blinking its LED.
7158 */
7159int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7160 unsigned int nblinks)
7161{
7162 struct fw_vi_enable_cmd c;
7163
0062b15c 7164 memset(&c, 0, sizeof(c));
f404f80c
HS
7165 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7166 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7167 FW_VI_ENABLE_CMD_VIID_V(viid));
7168 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7169 c.blinkdur = cpu_to_be16(nblinks);
56d36be4 7170 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
7171}
7172
ebf4dc2b
HS
7173/**
7174 * t4_iq_stop - stop an ingress queue and its FLs
7175 * @adap: the adapter
7176 * @mbox: mailbox to use for the FW command
7177 * @pf: the PF owning the queues
7178 * @vf: the VF owning the queues
7179 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7180 * @iqid: ingress queue id
7181 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7182 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7183 *
7184 * Stops an ingress queue and its associated FLs, if any. This causes
7185 * any current or future data/messages destined for these queues to be
7186 * tossed.
7187 */
7188int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7189 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7190 unsigned int fl0id, unsigned int fl1id)
7191{
7192 struct fw_iq_cmd c;
7193
7194 memset(&c, 0, sizeof(c));
7195 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7196 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7197 FW_IQ_CMD_VFN_V(vf));
7198 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7199 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7200 c.iqid = cpu_to_be16(iqid);
7201 c.fl0id = cpu_to_be16(fl0id);
7202 c.fl1id = cpu_to_be16(fl1id);
7203 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7204}
7205
56d36be4
DM
7206/**
7207 * t4_iq_free - free an ingress queue and its FLs
7208 * @adap: the adapter
7209 * @mbox: mailbox to use for the FW command
7210 * @pf: the PF owning the queues
7211 * @vf: the VF owning the queues
7212 * @iqtype: the ingress queue type
7213 * @iqid: ingress queue id
7214 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7215 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7216 *
7217 * Frees an ingress queue and its associated FLs, if any.
7218 */
7219int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7220 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7221 unsigned int fl0id, unsigned int fl1id)
7222{
7223 struct fw_iq_cmd c;
7224
7225 memset(&c, 0, sizeof(c));
f404f80c
HS
7226 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7227 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7228 FW_IQ_CMD_VFN_V(vf));
7229 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7230 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7231 c.iqid = cpu_to_be16(iqid);
7232 c.fl0id = cpu_to_be16(fl0id);
7233 c.fl1id = cpu_to_be16(fl1id);
56d36be4
DM
7234 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7235}
7236
7237/**
7238 * t4_eth_eq_free - free an Ethernet egress queue
7239 * @adap: the adapter
7240 * @mbox: mailbox to use for the FW command
7241 * @pf: the PF owning the queue
7242 * @vf: the VF owning the queue
7243 * @eqid: egress queue id
7244 *
7245 * Frees an Ethernet egress queue.
7246 */
7247int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7248 unsigned int vf, unsigned int eqid)
7249{
7250 struct fw_eq_eth_cmd c;
7251
7252 memset(&c, 0, sizeof(c));
f404f80c
HS
7253 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7254 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7255 FW_EQ_ETH_CMD_PFN_V(pf) |
7256 FW_EQ_ETH_CMD_VFN_V(vf));
7257 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7258 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
56d36be4
DM
7259 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7260}
7261
7262/**
7263 * t4_ctrl_eq_free - free a control egress queue
7264 * @adap: the adapter
7265 * @mbox: mailbox to use for the FW command
7266 * @pf: the PF owning the queue
7267 * @vf: the VF owning the queue
7268 * @eqid: egress queue id
7269 *
7270 * Frees a control egress queue.
7271 */
7272int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7273 unsigned int vf, unsigned int eqid)
7274{
7275 struct fw_eq_ctrl_cmd c;
7276
7277 memset(&c, 0, sizeof(c));
f404f80c
HS
7278 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7279 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7280 FW_EQ_CTRL_CMD_PFN_V(pf) |
7281 FW_EQ_CTRL_CMD_VFN_V(vf));
7282 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7283 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
56d36be4
DM
7284 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7285}
7286
7287/**
7288 * t4_ofld_eq_free - free an offload egress queue
7289 * @adap: the adapter
7290 * @mbox: mailbox to use for the FW command
7291 * @pf: the PF owning the queue
7292 * @vf: the VF owning the queue
7293 * @eqid: egress queue id
7294 *
7295 * Frees a control egress queue.
7296 */
7297int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7298 unsigned int vf, unsigned int eqid)
7299{
7300 struct fw_eq_ofld_cmd c;
7301
7302 memset(&c, 0, sizeof(c));
f404f80c
HS
7303 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7304 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7305 FW_EQ_OFLD_CMD_PFN_V(pf) |
7306 FW_EQ_OFLD_CMD_VFN_V(vf));
7307 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7308 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
56d36be4
DM
7309 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7310}
7311
ddc7740d
HS
7312/**
7313 * t4_link_down_rc_str - return a string for a Link Down Reason Code
7314 * @adap: the adapter
7315 * @link_down_rc: Link Down Reason Code
7316 *
7317 * Returns a string representation of the Link Down Reason Code.
7318 */
7319static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7320{
7321 static const char * const reason[] = {
7322 "Link Down",
7323 "Remote Fault",
7324 "Auto-negotiation Failure",
7325 "Reserved",
7326 "Insufficient Airflow",
7327 "Unable To Determine Reason",
7328 "No RX Signal Detected",
7329 "Reserved",
7330 };
7331
7332 if (link_down_rc >= ARRAY_SIZE(reason))
7333 return "Bad Reason Code";
7334
7335 return reason[link_down_rc];
7336}
7337
56d36be4 7338/**
23853a0a
HS
7339 * t4_handle_get_port_info - process a FW reply message
7340 * @pi: the port info
56d36be4
DM
7341 * @rpl: start of the FW message
7342 *
23853a0a
HS
7343 * Processes a GET_PORT_INFO FW reply message.
7344 */
7345void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7346{
7347 const struct fw_port_cmd *p = (const void *)rpl;
7348 struct adapter *adap = pi->adapter;
7349
7350 /* link/module state change message */
7351 int speed = 0, fc = 0;
7352 struct link_config *lc;
7353 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7354 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7355 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7356
7357 if (stat & FW_PORT_CMD_RXPAUSE_F)
7358 fc |= PAUSE_RX;
7359 if (stat & FW_PORT_CMD_TXPAUSE_F)
7360 fc |= PAUSE_TX;
7361 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7362 speed = 100;
7363 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7364 speed = 1000;
7365 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7366 speed = 10000;
9b86a8d1
HS
7367 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7368 speed = 25000;
23853a0a
HS
7369 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7370 speed = 40000;
9b86a8d1
HS
7371 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7372 speed = 100000;
23853a0a
HS
7373
7374 lc = &pi->link_cfg;
7375
7376 if (mod != pi->mod_type) {
7377 pi->mod_type = mod;
7378 t4_os_portmod_changed(adap, pi->port_id);
7379 }
7380 if (link_ok != lc->link_ok || speed != lc->speed ||
7381 fc != lc->fc) { /* something changed */
ddc7740d
HS
7382 if (!link_ok && lc->link_ok) {
7383 unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7384
7385 lc->link_down_rc = rc;
7386 dev_warn(adap->pdev_dev,
7387 "Port %d link down, reason: %s\n",
7388 pi->port_id, t4_link_down_rc_str(rc));
7389 }
23853a0a
HS
7390 lc->link_ok = link_ok;
7391 lc->speed = speed;
7392 lc->fc = fc;
7393 lc->supported = be16_to_cpu(p->u.info.pcap);
eb97ad99 7394 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
2061ec3f 7395
23853a0a
HS
7396 t4_os_link_changed(adap, pi->port_id, link_ok);
7397 }
7398}
7399
2061ec3f
GG
7400/**
7401 * t4_update_port_info - retrieve and update port information if changed
7402 * @pi: the port_info
7403 *
7404 * We issue a Get Port Information Command to the Firmware and, if
7405 * successful, we check to see if anything is different from what we
7406 * last recorded and update things accordingly.
7407 */
7408int t4_update_port_info(struct port_info *pi)
7409{
7410 struct fw_port_cmd port_cmd;
7411 int ret;
7412
7413 memset(&port_cmd, 0, sizeof(port_cmd));
7414 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7415 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7416 FW_PORT_CMD_PORTID_V(pi->port_id));
7417 port_cmd.action_to_len16 = cpu_to_be32(
7418 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7419 FW_LEN16(port_cmd));
7420 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
7421 &port_cmd, sizeof(port_cmd), &port_cmd);
7422 if (ret)
7423 return ret;
7424
7425 t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
7426 return 0;
7427}
7428
23853a0a
HS
7429/**
7430 * t4_handle_fw_rpl - process a FW reply message
7431 * @adap: the adapter
7432 * @rpl: start of the FW message
7433 *
7434 * Processes a FW message, such as link state change messages.
56d36be4
DM
7435 */
7436int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7437{
7438 u8 opcode = *(const u8 *)rpl;
7439
23853a0a
HS
7440 /* This might be a port command ... this simplifies the following
7441 * conditionals ... We can get away with pre-dereferencing
7442 * action_to_len16 because it's in the first 16 bytes and all messages
7443 * will be at least that long.
7444 */
7445 const struct fw_port_cmd *p = (const void *)rpl;
7446 unsigned int action =
7447 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7448
7449 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7450 int i;
f404f80c 7451 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
23853a0a
HS
7452 struct port_info *pi = NULL;
7453
7454 for_each_port(adap, i) {
7455 pi = adap2pinfo(adap, i);
7456 if (pi->tx_chan == chan)
7457 break;
56d36be4 7458 }
23853a0a
HS
7459
7460 t4_handle_get_port_info(pi, rpl);
7461 } else {
7462 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7463 return -EINVAL;
56d36be4
DM
7464 }
7465 return 0;
7466}
7467
1dd06ae8 7468static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
7469{
7470 u16 val;
56d36be4 7471
e5c8ae5f
JL
7472 if (pci_is_pcie(adapter->pdev)) {
7473 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
7474 p->speed = val & PCI_EXP_LNKSTA_CLS;
7475 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7476 }
7477}
7478
7479/**
7480 * init_link_config - initialize a link's SW state
7481 * @lc: structure holding the link state
7482 * @caps: link capabilities
7483 *
7484 * Initializes the SW state maintained for each link, including the link's
7485 * capabilities and default speed/flow-control/autonegotiation settings.
7486 */
3bb4858f
GG
7487static void init_link_config(struct link_config *lc, unsigned int pcaps,
7488 unsigned int acaps)
56d36be4 7489{
3bb4858f 7490 lc->supported = pcaps;
eb97ad99 7491 lc->lp_advertising = 0;
56d36be4
DM
7492 lc->requested_speed = 0;
7493 lc->speed = 0;
7494 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3bb4858f
GG
7495 lc->auto_fec = 0;
7496
7497 /* For Forward Error Control, we default to whatever the Firmware
7498 * tells us the Link is currently advertising.
7499 */
7500 if (acaps & FW_PORT_CAP_FEC_RS)
7501 lc->auto_fec |= FEC_RS;
7502 if (acaps & FW_PORT_CAP_FEC_BASER_RS)
7503 lc->auto_fec |= FEC_BASER_RS;
7504 lc->requested_fec = FEC_AUTO;
7505 lc->fec = lc->auto_fec;
7506
56d36be4
DM
7507 if (lc->supported & FW_PORT_CAP_ANEG) {
7508 lc->advertising = lc->supported & ADVERT_MASK;
7509 lc->autoneg = AUTONEG_ENABLE;
7510 lc->requested_fc |= PAUSE_AUTONEG;
7511 } else {
7512 lc->advertising = 0;
7513 lc->autoneg = AUTONEG_DISABLE;
7514 }
7515}
7516
8203b509
HS
7517#define CIM_PF_NOACCESS 0xeeeeeeee
7518
7519int t4_wait_dev_ready(void __iomem *regs)
56d36be4 7520{
8203b509
HS
7521 u32 whoami;
7522
0d804338 7523 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7524 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
56d36be4 7525 return 0;
8203b509 7526
56d36be4 7527 msleep(500);
0d804338 7528 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7529 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
56d36be4
DM
7530}
7531
fe2ee139
HS
7532struct flash_desc {
7533 u32 vendor_and_model_id;
7534 u32 size_mb;
7535};
7536
91744948 7537static int get_flash_params(struct adapter *adap)
900a6596 7538{
fe2ee139
HS
7539 /* Table for non-Numonix supported flash parts. Numonix parts are left
7540 * to the preexisting code. All flash parts have 64KB sectors.
7541 */
7542 static struct flash_desc supported_flash[] = {
7543 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
7544 };
7545
900a6596
DM
7546 int ret;
7547 u32 info;
7548
7549 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7550 if (!ret)
7551 ret = sf1_read(adap, 3, 0, 1, &info);
0d804338 7552 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
900a6596
DM
7553 if (ret)
7554 return ret;
7555
fe2ee139
HS
7556 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7557 if (supported_flash[ret].vendor_and_model_id == info) {
7558 adap->params.sf_size = supported_flash[ret].size_mb;
7559 adap->params.sf_nsec =
7560 adap->params.sf_size / SF_SEC_SIZE;
7561 return 0;
7562 }
7563
900a6596
DM
7564 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7565 return -EINVAL;
7566 info >>= 16; /* log2 of size */
7567 if (info >= 0x14 && info < 0x18)
7568 adap->params.sf_nsec = 1 << (info - 16);
7569 else if (info == 0x18)
7570 adap->params.sf_nsec = 64;
7571 else
7572 return -EINVAL;
7573 adap->params.sf_size = 1 << info;
7574 adap->params.sf_fw_start =
89c3a86c 7575 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
c290607e
HS
7576
7577 if (adap->params.sf_size < FLASH_MIN_SIZE)
7578 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7579 adap->params.sf_size, FLASH_MIN_SIZE);
900a6596
DM
7580 return 0;
7581}
7582
eca0f6ee
HS
7583static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7584{
7585 u16 val;
7586 u32 pcie_cap;
7587
7588 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7589 if (pcie_cap) {
7590 pci_read_config_word(adapter->pdev,
7591 pcie_cap + PCI_EXP_DEVCTL2, &val);
7592 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7593 val |= range;
7594 pci_write_config_word(adapter->pdev,
7595 pcie_cap + PCI_EXP_DEVCTL2, val);
7596 }
7597}
7598
56d36be4
DM
7599/**
7600 * t4_prep_adapter - prepare SW and HW for operation
7601 * @adapter: the adapter
7602 * @reset: if true perform a HW reset
7603 *
7604 * Initialize adapter SW state for the various HW modules, set initial
7605 * values for some adapter tunables, take PHYs out of reset, and
7606 * initialize the MDIO interface.
7607 */
91744948 7608int t4_prep_adapter(struct adapter *adapter)
56d36be4 7609{
0a57a536
SR
7610 int ret, ver;
7611 uint16_t device_id;
d14807dd 7612 u32 pl_rev;
56d36be4 7613
56d36be4 7614 get_pci_mode(adapter, &adapter->params.pci);
0d804338 7615 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
56d36be4 7616
900a6596
DM
7617 ret = get_flash_params(adapter);
7618 if (ret < 0) {
7619 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7620 return ret;
7621 }
7622
0a57a536
SR
7623 /* Retrieve adapter's device ID
7624 */
7625 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7626 ver = device_id >> 12;
d14807dd 7627 adapter->params.chip = 0;
0a57a536
SR
7628 switch (ver) {
7629 case CHELSIO_T4:
d14807dd 7630 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
3ccc6cf7
HS
7631 adapter->params.arch.sge_fl_db = DBPRIO_F;
7632 adapter->params.arch.mps_tcam_size =
7633 NUM_MPS_CLS_SRAM_L_INSTANCES;
7634 adapter->params.arch.mps_rplc_size = 128;
7635 adapter->params.arch.nchan = NCHAN;
44588560 7636 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7637 adapter->params.arch.vfcount = 128;
2216d014
HS
7638 /* Congestion map is for 4 channels so that
7639 * MPS can have 4 priority per port.
7640 */
7641 adapter->params.arch.cng_ch_bits_log = 2;
0a57a536
SR
7642 break;
7643 case CHELSIO_T5:
d14807dd 7644 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3ccc6cf7
HS
7645 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7646 adapter->params.arch.mps_tcam_size =
7647 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7648 adapter->params.arch.mps_rplc_size = 128;
7649 adapter->params.arch.nchan = NCHAN;
44588560 7650 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7651 adapter->params.arch.vfcount = 128;
2216d014 7652 adapter->params.arch.cng_ch_bits_log = 2;
3ccc6cf7
HS
7653 break;
7654 case CHELSIO_T6:
7655 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7656 adapter->params.arch.sge_fl_db = 0;
7657 adapter->params.arch.mps_tcam_size =
7658 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7659 adapter->params.arch.mps_rplc_size = 256;
7660 adapter->params.arch.nchan = 2;
44588560 7661 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
3ccc6cf7 7662 adapter->params.arch.vfcount = 256;
2216d014
HS
7663 /* Congestion map will be for 2 channels so that
7664 * MPS can have 8 priority per port.
7665 */
7666 adapter->params.arch.cng_ch_bits_log = 3;
0a57a536
SR
7667 break;
7668 default:
7669 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7670 device_id);
7671 return -EINVAL;
7672 }
7673
f1ff24aa 7674 adapter->params.cim_la_size = CIMLA_SIZE;
56d36be4
DM
7675 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7676
7677 /*
7678 * Default port for debugging in case we can't reach FW.
7679 */
7680 adapter->params.nports = 1;
7681 adapter->params.portvec = 1;
636f9d37 7682 adapter->params.vpd.cclk = 50000;
eca0f6ee
HS
7683
7684 /* Set pci completion timeout value to 4 seconds. */
7685 set_pcie_completion_timeout(adapter, 0xd);
56d36be4
DM
7686 return 0;
7687}
7688
3be0679b
HS
7689/**
7690 * t4_shutdown_adapter - shut down adapter, host & wire
7691 * @adapter: the adapter
7692 *
7693 * Perform an emergency shutdown of the adapter and stop it from
7694 * continuing any further communication on the ports or DMA to the
7695 * host. This is typically used when the adapter and/or firmware
7696 * have crashed and we want to prevent any further accidental
7697 * communication with the rest of the world. This will also force
7698 * the port Link Status to go down -- if register writes work --
7699 * which should help our peers figure out that we're down.
7700 */
7701int t4_shutdown_adapter(struct adapter *adapter)
7702{
7703 int port;
7704
7705 t4_intr_disable(adapter);
7706 t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
7707 for_each_port(adapter, port) {
b3fd8220
RL
7708 u32 a_port_cfg = is_t4(adapter->params.chip) ?
7709 PORT_REG(port, XGMAC_PORT_CFG_A) :
7710 T5_PORT_REG(port, MAC_PORT_CFG_A);
3be0679b
HS
7711
7712 t4_write_reg(adapter, a_port_cfg,
7713 t4_read_reg(adapter, a_port_cfg)
7714 & ~SIGNAL_DET_V(1));
7715 }
7716 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
7717
7718 return 0;
7719}
7720
e85c9a7a 7721/**
b2612722 7722 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
7723 * @adapter: the adapter
7724 * @qid: the Queue ID
7725 * @qtype: the Ingress or Egress type for @qid
66cf188e 7726 * @user: true if this request is for a user mode queue
e85c9a7a
HS
7727 * @pbar2_qoffset: BAR2 Queue Offset
7728 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7729 *
7730 * Returns the BAR2 SGE Queue Registers information associated with the
7731 * indicated Absolute Queue ID. These are passed back in return value
7732 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7733 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7734 *
7735 * This may return an error which indicates that BAR2 SGE Queue
7736 * registers aren't available. If an error is not returned, then the
7737 * following values are returned:
7738 *
7739 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7740 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7741 *
7742 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7743 * require the "Inferred Queue ID" ability may be used. E.g. the
7744 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7745 * then these "Inferred Queue ID" register may not be used.
7746 */
b2612722 7747int t4_bar2_sge_qregs(struct adapter *adapter,
e85c9a7a
HS
7748 unsigned int qid,
7749 enum t4_bar2_qtype qtype,
66cf188e 7750 int user,
e85c9a7a
HS
7751 u64 *pbar2_qoffset,
7752 unsigned int *pbar2_qid)
7753{
7754 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7755 u64 bar2_page_offset, bar2_qoffset;
7756 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7757
66cf188e
H
7758 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7759 if (!user && is_t4(adapter->params.chip))
e85c9a7a
HS
7760 return -EINVAL;
7761
7762 /* Get our SGE Page Size parameters.
7763 */
7764 page_shift = adapter->params.sge.hps + 10;
7765 page_size = 1 << page_shift;
7766
7767 /* Get the right Queues per Page parameters for our Queue.
7768 */
7769 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7770 ? adapter->params.sge.eq_qpp
7771 : adapter->params.sge.iq_qpp);
7772 qpp_mask = (1 << qpp_shift) - 1;
7773
7774 /* Calculate the basics of the BAR2 SGE Queue register area:
7775 * o The BAR2 page the Queue registers will be in.
7776 * o The BAR2 Queue ID.
7777 * o The BAR2 Queue ID Offset into the BAR2 page.
7778 */
513d1a1d 7779 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
7780 bar2_qid = qid & qpp_mask;
7781 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7782
7783 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7784 * hardware will infer the Absolute Queue ID simply from the writes to
7785 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7786 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
7787 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7788 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7789 * from the BAR2 Page and BAR2 Queue ID.
7790 *
7791 * One important censequence of this is that some BAR2 SGE registers
7792 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7793 * there. But other registers synthesize the SGE Queue ID purely
7794 * from the writes to the registers -- the Write Combined Doorbell
7795 * Buffer is a good example. These BAR2 SGE Registers are only
7796 * available for those BAR2 SGE Register areas where the SGE Absolute
7797 * Queue ID can be inferred from simple writes.
7798 */
7799 bar2_qoffset = bar2_page_offset;
7800 bar2_qinferred = (bar2_qid_offset < page_size);
7801 if (bar2_qinferred) {
7802 bar2_qoffset += bar2_qid_offset;
7803 bar2_qid = 0;
7804 }
7805
7806 *pbar2_qoffset = bar2_qoffset;
7807 *pbar2_qid = bar2_qid;
7808 return 0;
7809}
7810
ae469b68
HS
7811/**
7812 * t4_init_devlog_params - initialize adapter->params.devlog
7813 * @adap: the adapter
7814 *
7815 * Initialize various fields of the adapter's Firmware Device Log
7816 * Parameters structure.
7817 */
7818int t4_init_devlog_params(struct adapter *adap)
7819{
7820 struct devlog_params *dparams = &adap->params.devlog;
7821 u32 pf_dparams;
7822 unsigned int devlog_meminfo;
7823 struct fw_devlog_cmd devlog_cmd;
7824 int ret;
7825
7826 /* If we're dealing with newer firmware, the Device Log Paramerters
7827 * are stored in a designated register which allows us to access the
7828 * Device Log even if we can't talk to the firmware.
7829 */
7830 pf_dparams =
7831 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7832 if (pf_dparams) {
7833 unsigned int nentries, nentries128;
7834
7835 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7836 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7837
7838 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7839 nentries = (nentries128 + 1) * 128;
7840 dparams->size = nentries * sizeof(struct fw_devlog_e);
7841
7842 return 0;
7843 }
7844
7845 /* Otherwise, ask the firmware for it's Device Log Parameters.
7846 */
7847 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
f404f80c
HS
7848 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7849 FW_CMD_REQUEST_F | FW_CMD_READ_F);
7850 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ae469b68
HS
7851 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7852 &devlog_cmd);
7853 if (ret)
7854 return ret;
7855
f404f80c
HS
7856 devlog_meminfo =
7857 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
ae469b68
HS
7858 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7859 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
f404f80c 7860 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
ae469b68
HS
7861
7862 return 0;
7863}
7864
e85c9a7a
HS
7865/**
7866 * t4_init_sge_params - initialize adap->params.sge
7867 * @adapter: the adapter
7868 *
7869 * Initialize various fields of the adapter's SGE Parameters structure.
7870 */
7871int t4_init_sge_params(struct adapter *adapter)
7872{
7873 struct sge_params *sge_params = &adapter->params.sge;
7874 u32 hps, qpp;
7875 unsigned int s_hps, s_qpp;
7876
7877 /* Extract the SGE Page Size for our PF.
7878 */
f612b815 7879 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
e85c9a7a 7880 s_hps = (HOSTPAGESIZEPF0_S +
b2612722 7881 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
e85c9a7a
HS
7882 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7883
7884 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7885 */
7886 s_qpp = (QUEUESPERPAGEPF0_S +
b2612722 7887 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
f612b815
HS
7888 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7889 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
f061de42 7890 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
f612b815 7891 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
e85c9a7a
HS
7892
7893 return 0;
7894}
7895
dcf7b6f5
KS
7896/**
7897 * t4_init_tp_params - initialize adap->params.tp
7898 * @adap: the adapter
7899 *
7900 * Initialize various fields of the adapter's TP Parameters structure.
7901 */
7902int t4_init_tp_params(struct adapter *adap)
7903{
7904 int chan;
7905 u32 v;
7906
837e4a42
HS
7907 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7908 adap->params.tp.tre = TIMERRESOLUTION_G(v);
7909 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
dcf7b6f5
KS
7910
7911 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7912 for (chan = 0; chan < NCHAN; chan++)
7913 adap->params.tp.tx_modq[chan] = chan;
7914
7915 /* Cache the adapter's Compressed Filter Mode and global Incress
7916 * Configuration.
7917 */
0b2c2a93 7918 if (t4_use_ldst(adap)) {
c1e9af0c
HS
7919 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7920 TP_VLAN_PRI_MAP_A, 1);
7921 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7922 TP_INGRESS_CONFIG_A, 1);
7923 } else {
7924 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7925 &adap->params.tp.vlan_pri_map, 1,
7926 TP_VLAN_PRI_MAP_A);
7927 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7928 &adap->params.tp.ingress_config, 1,
7929 TP_INGRESS_CONFIG_A);
7930 }
8eb9f2f9
A
7931 /* For T6, cache the adapter's compressed error vector
7932 * and passing outer header info for encapsulated packets.
7933 */
7934 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
7935 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
7936 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
7937 }
dcf7b6f5
KS
7938
7939 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7940 * shift positions of several elements of the Compressed Filter Tuple
7941 * for this adapter which we need frequently ...
7942 */
0d804338
HS
7943 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7944 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7945 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
dcf7b6f5 7946 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
0d804338 7947 PROTOCOL_F);
dcf7b6f5
KS
7948
7949 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
dbedd44e 7950 * represents the presence of an Outer VLAN instead of a VNIC ID.
dcf7b6f5 7951 */
0d804338 7952 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
dcf7b6f5
KS
7953 adap->params.tp.vnic_shift = -1;
7954
7955 return 0;
7956}
7957
7958/**
7959 * t4_filter_field_shift - calculate filter field shift
7960 * @adap: the adapter
7961 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7962 *
7963 * Return the shift position of a filter field within the Compressed
7964 * Filter Tuple. The filter field is specified via its selection bit
7965 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
7966 */
7967int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7968{
7969 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7970 unsigned int sel;
7971 int field_shift;
7972
7973 if ((filter_mode & filter_sel) == 0)
7974 return -1;
7975
7976 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7977 switch (filter_mode & sel) {
0d804338
HS
7978 case FCOE_F:
7979 field_shift += FT_FCOE_W;
dcf7b6f5 7980 break;
0d804338
HS
7981 case PORT_F:
7982 field_shift += FT_PORT_W;
dcf7b6f5 7983 break;
0d804338
HS
7984 case VNIC_ID_F:
7985 field_shift += FT_VNIC_ID_W;
dcf7b6f5 7986 break;
0d804338
HS
7987 case VLAN_F:
7988 field_shift += FT_VLAN_W;
dcf7b6f5 7989 break;
0d804338
HS
7990 case TOS_F:
7991 field_shift += FT_TOS_W;
dcf7b6f5 7992 break;
0d804338
HS
7993 case PROTOCOL_F:
7994 field_shift += FT_PROTOCOL_W;
dcf7b6f5 7995 break;
0d804338
HS
7996 case ETHERTYPE_F:
7997 field_shift += FT_ETHERTYPE_W;
dcf7b6f5 7998 break;
0d804338
HS
7999 case MACMATCH_F:
8000 field_shift += FT_MACMATCH_W;
dcf7b6f5 8001 break;
0d804338
HS
8002 case MPSHITTYPE_F:
8003 field_shift += FT_MPSHITTYPE_W;
dcf7b6f5 8004 break;
0d804338
HS
8005 case FRAGMENTATION_F:
8006 field_shift += FT_FRAGMENTATION_W;
dcf7b6f5
KS
8007 break;
8008 }
8009 }
8010 return field_shift;
8011}
8012
c035e183
HS
8013int t4_init_rss_mode(struct adapter *adap, int mbox)
8014{
8015 int i, ret;
8016 struct fw_rss_vi_config_cmd rvc;
8017
8018 memset(&rvc, 0, sizeof(rvc));
8019
8020 for_each_port(adap, i) {
8021 struct port_info *p = adap2pinfo(adap, i);
8022
f404f80c
HS
8023 rvc.op_to_viid =
8024 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8025 FW_CMD_REQUEST_F | FW_CMD_READ_F |
8026 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8027 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
c035e183
HS
8028 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8029 if (ret)
8030 return ret;
f404f80c 8031 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
c035e183
HS
8032 }
8033 return 0;
8034}
8035
c3e324e3
HS
8036/**
8037 * t4_init_portinfo - allocate a virtual interface amd initialize port_info
8038 * @pi: the port_info
8039 * @mbox: mailbox to use for the FW command
8040 * @port: physical port associated with the VI
8041 * @pf: the PF owning the VI
8042 * @vf: the VF owning the VI
8043 * @mac: the MAC address of the VI
8044 *
8045 * Allocates a virtual interface for the given physical port. If @mac is
8046 * not %NULL it contains the MAC address of the VI as assigned by FW.
8047 * @mac should be large enough to hold an Ethernet address.
8048 * Returns < 0 on error.
8049 */
8050int t4_init_portinfo(struct port_info *pi, int mbox,
8051 int port, int pf, int vf, u8 mac[])
56d36be4 8052{
c3e324e3 8053 int ret;
56d36be4 8054 struct fw_port_cmd c;
c3e324e3 8055 unsigned int rss_size;
56d36be4
DM
8056
8057 memset(&c, 0, sizeof(c));
c3e324e3
HS
8058 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8059 FW_CMD_REQUEST_F | FW_CMD_READ_F |
8060 FW_PORT_CMD_PORTID_V(port));
8061 c.action_to_len16 = cpu_to_be32(
8062 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
8063 FW_LEN16(c));
8064 ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
8065 if (ret)
8066 return ret;
8067
8068 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
8069 if (ret < 0)
8070 return ret;
8071
8072 pi->viid = ret;
8073 pi->tx_chan = port;
8074 pi->lport = port;
8075 pi->rss_size = rss_size;
8076
8077 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8078 pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
8079 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
8080 pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
8081 pi->mod_type = FW_PORT_MOD_TYPE_NA;
8082
3bb4858f
GG
8083 init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap),
8084 be16_to_cpu(c.u.info.acap));
c3e324e3
HS
8085 return 0;
8086}
8087
8088int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
8089{
8090 u8 addr[6];
8091 int ret, i, j = 0;
56d36be4
DM
8092
8093 for_each_port(adap, i) {
c3e324e3 8094 struct port_info *pi = adap2pinfo(adap, i);
56d36be4
DM
8095
8096 while ((adap->params.portvec & (1 << j)) == 0)
8097 j++;
8098
c3e324e3 8099 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
56d36be4
DM
8100 if (ret)
8101 return ret;
8102
56d36be4 8103 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
56d36be4
DM
8104 j++;
8105 }
8106 return 0;
8107}
f1ff24aa 8108
74b3092c
HS
8109/**
8110 * t4_read_cimq_cfg - read CIM queue configuration
8111 * @adap: the adapter
8112 * @base: holds the queue base addresses in bytes
8113 * @size: holds the queue sizes in bytes
8114 * @thres: holds the queue full thresholds in bytes
8115 *
8116 * Returns the current configuration of the CIM queues, starting with
8117 * the IBQs, then the OBQs.
8118 */
8119void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8120{
8121 unsigned int i, v;
8122 int cim_num_obq = is_t4(adap->params.chip) ?
8123 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8124
8125 for (i = 0; i < CIM_NUM_IBQ; i++) {
8126 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
8127 QUENUMSELECT_V(i));
8128 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8129 /* value is in 256-byte units */
8130 *base++ = CIMQBASE_G(v) * 256;
8131 *size++ = CIMQSIZE_G(v) * 256;
8132 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
8133 }
8134 for (i = 0; i < cim_num_obq; i++) {
8135 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8136 QUENUMSELECT_V(i));
8137 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8138 /* value is in 256-byte units */
8139 *base++ = CIMQBASE_G(v) * 256;
8140 *size++ = CIMQSIZE_G(v) * 256;
8141 }
8142}
8143
e5f0e43b
HS
8144/**
8145 * t4_read_cim_ibq - read the contents of a CIM inbound queue
8146 * @adap: the adapter
8147 * @qid: the queue index
8148 * @data: where to store the queue contents
8149 * @n: capacity of @data in 32-bit words
8150 *
8151 * Reads the contents of the selected CIM queue starting at address 0 up
8152 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
8153 * error and the number of 32-bit words actually read on success.
8154 */
8155int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8156{
8157 int i, err, attempts;
8158 unsigned int addr;
8159 const unsigned int nwords = CIM_IBQ_SIZE * 4;
8160
8161 if (qid > 5 || (n & 3))
8162 return -EINVAL;
8163
8164 addr = qid * nwords;
8165 if (n > nwords)
8166 n = nwords;
8167
8168 /* It might take 3-10ms before the IBQ debug read access is allowed.
8169 * Wait for 1 Sec with a delay of 1 usec.
8170 */
8171 attempts = 1000000;
8172
8173 for (i = 0; i < n; i++, addr++) {
8174 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
8175 IBQDBGEN_F);
8176 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
8177 attempts, 1);
8178 if (err)
8179 return err;
8180 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
8181 }
8182 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
c778af7d
HS
8183 return i;
8184}
8185
8186/**
8187 * t4_read_cim_obq - read the contents of a CIM outbound queue
8188 * @adap: the adapter
8189 * @qid: the queue index
8190 * @data: where to store the queue contents
8191 * @n: capacity of @data in 32-bit words
8192 *
8193 * Reads the contents of the selected CIM queue starting at address 0 up
8194 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
8195 * error and the number of 32-bit words actually read on success.
8196 */
8197int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8198{
8199 int i, err;
8200 unsigned int addr, v, nwords;
8201 int cim_num_obq = is_t4(adap->params.chip) ?
8202 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8203
8204 if ((qid > (cim_num_obq - 1)) || (n & 3))
8205 return -EINVAL;
8206
8207 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8208 QUENUMSELECT_V(qid));
8209 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8210
8211 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
8212 nwords = CIMQSIZE_G(v) * 64; /* same */
8213 if (n > nwords)
8214 n = nwords;
8215
8216 for (i = 0; i < n; i++, addr++) {
8217 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
8218 OBQDBGEN_F);
8219 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
8220 2, 1);
8221 if (err)
8222 return err;
8223 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
8224 }
8225 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
e5f0e43b
HS
8226 return i;
8227}
8228
f1ff24aa
HS
8229/**
8230 * t4_cim_read - read a block from CIM internal address space
8231 * @adap: the adapter
8232 * @addr: the start address within the CIM address space
8233 * @n: number of words to read
8234 * @valp: where to store the result
8235 *
8236 * Reads a block of 4-byte words from the CIM intenal address space.
8237 */
8238int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8239 unsigned int *valp)
8240{
8241 int ret = 0;
8242
8243 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8244 return -EBUSY;
8245
8246 for ( ; !ret && n--; addr += 4) {
8247 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8248 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8249 0, 5, 2);
8250 if (!ret)
8251 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8252 }
8253 return ret;
8254}
8255
8256/**
8257 * t4_cim_write - write a block into CIM internal address space
8258 * @adap: the adapter
8259 * @addr: the start address within the CIM address space
8260 * @n: number of words to write
8261 * @valp: set of values to write
8262 *
8263 * Writes a block of 4-byte words into the CIM intenal address space.
8264 */
8265int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8266 const unsigned int *valp)
8267{
8268 int ret = 0;
8269
8270 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8271 return -EBUSY;
8272
8273 for ( ; !ret && n--; addr += 4) {
8274 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8275 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8276 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8277 0, 5, 2);
8278 }
8279 return ret;
8280}
8281
8282static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8283 unsigned int val)
8284{
8285 return t4_cim_write(adap, addr, 1, &val);
8286}
8287
8288/**
8289 * t4_cim_read_la - read CIM LA capture buffer
8290 * @adap: the adapter
8291 * @la_buf: where to store the LA data
8292 * @wrptr: the HW write pointer within the capture buffer
8293 *
8294 * Reads the contents of the CIM LA buffer with the most recent entry at
8295 * the end of the returned data and with the entry at @wrptr first.
8296 * We try to leave the LA in the running state we find it in.
8297 */
8298int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8299{
8300 int i, ret;
8301 unsigned int cfg, val, idx;
8302
8303 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8304 if (ret)
8305 return ret;
8306
8307 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
8308 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8309 if (ret)
8310 return ret;
8311 }
8312
8313 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8314 if (ret)
8315 goto restart;
8316
8317 idx = UPDBGLAWRPTR_G(val);
8318 if (wrptr)
8319 *wrptr = idx;
8320
8321 for (i = 0; i < adap->params.cim_la_size; i++) {
8322 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8323 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8324 if (ret)
8325 break;
8326 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8327 if (ret)
8328 break;
8329 if (val & UPDBGLARDEN_F) {
8330 ret = -ETIMEDOUT;
8331 break;
8332 }
8333 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8334 if (ret)
8335 break;
a97051f4
GG
8336
8337 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8338 * identify the 32-bit portion of the full 312-bit data
8339 */
8340 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
8341 idx = (idx & 0xff0) + 0x10;
8342 else
8343 idx++;
8344 /* address can't exceed 0xfff */
8345 idx &= UPDBGLARDPTR_M;
f1ff24aa
HS
8346 }
8347restart:
8348 if (cfg & UPDBGLAEN_F) {
8349 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8350 cfg & ~UPDBGLARDEN_F);
8351 if (!ret)
8352 ret = r;
8353 }
8354 return ret;
8355}
2d277b3b
HS
8356
8357/**
8358 * t4_tp_read_la - read TP LA capture buffer
8359 * @adap: the adapter
8360 * @la_buf: where to store the LA data
8361 * @wrptr: the HW write pointer within the capture buffer
8362 *
8363 * Reads the contents of the TP LA buffer with the most recent entry at
8364 * the end of the returned data and with the entry at @wrptr first.
8365 * We leave the LA in the running state we find it in.
8366 */
8367void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8368{
8369 bool last_incomplete;
8370 unsigned int i, cfg, val, idx;
8371
8372 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8373 if (cfg & DBGLAENABLE_F) /* freeze LA */
8374 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8375 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8376
8377 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8378 idx = DBGLAWPTR_G(val);
8379 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8380 if (last_incomplete)
8381 idx = (idx + 1) & DBGLARPTR_M;
8382 if (wrptr)
8383 *wrptr = idx;
8384
8385 val &= 0xffff;
8386 val &= ~DBGLARPTR_V(DBGLARPTR_M);
8387 val |= adap->params.tp.la_mask;
8388
8389 for (i = 0; i < TPLA_SIZE; i++) {
8390 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8391 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8392 idx = (idx + 1) & DBGLARPTR_M;
8393 }
8394
8395 /* Wipe out last entry if it isn't valid */
8396 if (last_incomplete)
8397 la_buf[TPLA_SIZE - 1] = ~0ULL;
8398
8399 if (cfg & DBGLAENABLE_F) /* restore running state */
8400 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8401 cfg | adap->params.tp.la_mask);
8402}
a3bfb617
HS
8403
8404/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8405 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
8406 * state for more than the Warning Threshold then we'll issue a warning about
8407 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
8408 * appears to be hung every Warning Repeat second till the situation clears.
8409 * If the situation clears, we'll note that as well.
8410 */
8411#define SGE_IDMA_WARN_THRESH 1
8412#define SGE_IDMA_WARN_REPEAT 300
8413
8414/**
8415 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8416 * @adapter: the adapter
8417 * @idma: the adapter IDMA Monitor state
8418 *
8419 * Initialize the state of an SGE Ingress DMA Monitor.
8420 */
8421void t4_idma_monitor_init(struct adapter *adapter,
8422 struct sge_idma_monitor_state *idma)
8423{
8424 /* Initialize the state variables for detecting an SGE Ingress DMA
8425 * hang. The SGE has internal counters which count up on each clock
8426 * tick whenever the SGE finds its Ingress DMA State Engines in the
8427 * same state they were on the previous clock tick. The clock used is
8428 * the Core Clock so we have a limit on the maximum "time" they can
8429 * record; typically a very small number of seconds. For instance,
8430 * with a 600MHz Core Clock, we can only count up to a bit more than
8431 * 7s. So we'll synthesize a larger counter in order to not run the
8432 * risk of having the "timers" overflow and give us the flexibility to
8433 * maintain a Hung SGE State Machine of our own which operates across
8434 * a longer time frame.
8435 */
8436 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8437 idma->idma_stalled[0] = 0;
8438 idma->idma_stalled[1] = 0;
8439}
8440
8441/**
8442 * t4_idma_monitor - monitor SGE Ingress DMA state
8443 * @adapter: the adapter
8444 * @idma: the adapter IDMA Monitor state
8445 * @hz: number of ticks/second
8446 * @ticks: number of ticks since the last IDMA Monitor call
8447 */
8448void t4_idma_monitor(struct adapter *adapter,
8449 struct sge_idma_monitor_state *idma,
8450 int hz, int ticks)
8451{
8452 int i, idma_same_state_cnt[2];
8453
8454 /* Read the SGE Debug Ingress DMA Same State Count registers. These
8455 * are counters inside the SGE which count up on each clock when the
8456 * SGE finds its Ingress DMA State Engines in the same states they
8457 * were in the previous clock. The counters will peg out at
8458 * 0xffffffff without wrapping around so once they pass the 1s
8459 * threshold they'll stay above that till the IDMA state changes.
8460 */
8461 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8462 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8463 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8464
8465 for (i = 0; i < 2; i++) {
8466 u32 debug0, debug11;
8467
8468 /* If the Ingress DMA Same State Counter ("timer") is less
8469 * than 1s, then we can reset our synthesized Stall Timer and
8470 * continue. If we have previously emitted warnings about a
8471 * potential stalled Ingress Queue, issue a note indicating
8472 * that the Ingress Queue has resumed forward progress.
8473 */
8474 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8475 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8476 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8477 "resumed after %d seconds\n",
8478 i, idma->idma_qid[i],
8479 idma->idma_stalled[i] / hz);
8480 idma->idma_stalled[i] = 0;
8481 continue;
8482 }
8483
8484 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8485 * domain. The first time we get here it'll be because we
8486 * passed the 1s Threshold; each additional time it'll be
8487 * because the RX Timer Callback is being fired on its regular
8488 * schedule.
8489 *
8490 * If the stall is below our Potential Hung Ingress Queue
8491 * Warning Threshold, continue.
8492 */
8493 if (idma->idma_stalled[i] == 0) {
8494 idma->idma_stalled[i] = hz;
8495 idma->idma_warn[i] = 0;
8496 } else {
8497 idma->idma_stalled[i] += ticks;
8498 idma->idma_warn[i] -= ticks;
8499 }
8500
8501 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8502 continue;
8503
8504 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8505 */
8506 if (idma->idma_warn[i] > 0)
8507 continue;
8508 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8509
8510 /* Read and save the SGE IDMA State and Queue ID information.
8511 * We do this every time in case it changes across time ...
8512 * can't be too careful ...
8513 */
8514 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8515 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8516 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8517
8518 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8519 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8520 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8521
8522 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8523 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8524 i, idma->idma_qid[i], idma->idma_state[i],
8525 idma->idma_stalled[i] / hz,
8526 debug0, debug11);
8527 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8528 }
8529}
858aa65c
HS
8530
8531/**
8532 * t4_set_vf_mac - Set MAC address for the specified VF
8533 * @adapter: The adapter
8534 * @vf: one of the VFs instantiated by the specified PF
8535 * @naddr: the number of MAC addresses
8536 * @addr: the MAC address(es) to be set to the specified VF
8537 */
8538int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
8539 unsigned int naddr, u8 *addr)
8540{
8541 struct fw_acl_mac_cmd cmd;
8542
8543 memset(&cmd, 0, sizeof(cmd));
8544 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
8545 FW_CMD_REQUEST_F |
8546 FW_CMD_WRITE_F |
8547 FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
8548 FW_ACL_MAC_CMD_VFN_V(vf));
8549
8550 /* Note: Do not enable the ACL */
8551 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
8552 cmd.nmac = naddr;
8553
8554 switch (adapter->pf) {
8555 case 3:
8556 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
8557 break;
8558 case 2:
8559 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
8560 break;
8561 case 1:
8562 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
8563 break;
8564 case 0:
8565 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
8566 break;
8567 }
8568
8569 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
8570}
b72a32da
RL
8571
8572int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
8573 int rateunit, int ratemode, int channel, int class,
8574 int minrate, int maxrate, int weight, int pktsize)
8575{
8576 struct fw_sched_cmd cmd;
8577
8578 memset(&cmd, 0, sizeof(cmd));
8579 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
8580 FW_CMD_REQUEST_F |
8581 FW_CMD_WRITE_F);
8582 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
8583
8584 cmd.u.params.sc = FW_SCHED_SC_PARAMS;
8585 cmd.u.params.type = type;
8586 cmd.u.params.level = level;
8587 cmd.u.params.mode = mode;
8588 cmd.u.params.ch = channel;
8589 cmd.u.params.cl = class;
8590 cmd.u.params.unit = rateunit;
8591 cmd.u.params.rate = ratemode;
8592 cmd.u.params.min = cpu_to_be32(minrate);
8593 cmd.u.params.max = cpu_to_be32(maxrate);
8594 cmd.u.params.weight = cpu_to_be16(weight);
8595 cmd.u.params.pktsize = cpu_to_be16(pktsize);
8596
8597 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
8598 NULL, 1);
8599}