cxgb4vf: added much cleaner implementation of is_t4()
[linux-block.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/init.h>
36#include <linux/delay.h>
37#include "cxgb4.h"
38#include "t4_regs.h"
39#include "t4fw_api.h"
40
41/**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
50 *
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
55 */
de498c89
RD
56static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
58{
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
61
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
66 }
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
71 }
72}
73
74static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
76{
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
79}
80
81/**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
87 *
88 * Sets a register field specified by the supplied mask to the
89 * given value.
90 */
91void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
93{
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
98}
99
100/**
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
108 *
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
111 */
f2b7e78d 112void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
115{
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
120 }
121}
122
13ee15d3
VP
123/**
124 * t4_write_indirect - write indirectly addressed registers
125 * @adap: the adapter
126 * @addr_reg: register holding the indirect addresses
127 * @data_reg: register holding the value for the indirect registers
128 * @vals: values to write
129 * @nregs: how many indirect registers to write
130 * @start_idx: address of first indirect register to write
131 *
132 * Writes a sequential block of registers that are accessed indirectly
133 * through an address/data register pair.
134 */
135void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 unsigned int data_reg, const u32 *vals,
137 unsigned int nregs, unsigned int start_idx)
138{
139 while (nregs--) {
140 t4_write_reg(adap, addr_reg, start_idx++);
141 t4_write_reg(adap, data_reg, *vals++);
142 }
143}
144
56d36be4
DM
145/*
146 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
147 */
148static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
149 u32 mbox_addr)
150{
151 for ( ; nflit; nflit--, mbox_addr += 8)
152 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
153}
154
155/*
156 * Handle a FW assertion reported in a mailbox.
157 */
158static void fw_asrt(struct adapter *adap, u32 mbox_addr)
159{
160 struct fw_debug_cmd asrt;
161
162 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
163 dev_alert(adap->pdev_dev,
164 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
165 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
166 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
167}
168
169static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
170{
171 dev_err(adap->pdev_dev,
172 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
173 (unsigned long long)t4_read_reg64(adap, data_reg),
174 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
175 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
176 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
177 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
178 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
179 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
180 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
181}
182
183/**
184 * t4_wr_mbox_meat - send a command to FW through the given mailbox
185 * @adap: the adapter
186 * @mbox: index of the mailbox to use
187 * @cmd: the command to write
188 * @size: command length in bytes
189 * @rpl: where to optionally store the reply
190 * @sleep_ok: if true we may sleep while awaiting command completion
191 *
192 * Sends the given command to FW through the selected mailbox and waits
193 * for the FW to execute the command. If @rpl is not %NULL it is used to
194 * store the FW's reply to the command. The command and its optional
195 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
196 * to respond. @sleep_ok determines whether we may sleep while awaiting
197 * the response. If sleeping is allowed we use progressive backoff
198 * otherwise we spin.
199 *
200 * The return value is 0 on success or a negative errno on failure. A
201 * failure can happen either because we are not able to execute the
202 * command or FW executes it but signals an error. In the latter case
203 * the return value is the error code indicated by FW (negated).
204 */
205int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
206 void *rpl, bool sleep_ok)
207{
005b5717 208 static const int delay[] = {
56d36be4
DM
209 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
210 };
211
212 u32 v;
213 u64 res;
214 int i, ms, delay_idx;
215 const __be64 *p = cmd;
216 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
217 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
218
219 if ((size & 15) || size > MBOX_LEN)
220 return -EINVAL;
221
204dc3c0
DM
222 /*
223 * If the device is off-line, as in EEH, commands will time out.
224 * Fail them early so we don't waste time waiting.
225 */
226 if (adap->pdev->error_state != pci_channel_io_normal)
227 return -EIO;
228
56d36be4
DM
229 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
230 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
231 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
232
233 if (v != MBOX_OWNER_DRV)
234 return v ? -EBUSY : -ETIMEDOUT;
235
236 for (i = 0; i < size; i += 8)
237 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
238
239 t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
240 t4_read_reg(adap, ctl_reg); /* flush write */
241
242 delay_idx = 0;
243 ms = delay[0];
244
245 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
246 if (sleep_ok) {
247 ms = delay[delay_idx]; /* last element may repeat */
248 if (delay_idx < ARRAY_SIZE(delay) - 1)
249 delay_idx++;
250 msleep(ms);
251 } else
252 mdelay(ms);
253
254 v = t4_read_reg(adap, ctl_reg);
255 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
256 if (!(v & MBMSGVALID)) {
257 t4_write_reg(adap, ctl_reg, 0);
258 continue;
259 }
260
261 res = t4_read_reg64(adap, data_reg);
262 if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
263 fw_asrt(adap, data_reg);
264 res = FW_CMD_RETVAL(EIO);
265 } else if (rpl)
266 get_mbox_rpl(adap, rpl, size / 8, data_reg);
267
268 if (FW_CMD_RETVAL_GET((int)res))
269 dump_mbox(adap, mbox, data_reg);
270 t4_write_reg(adap, ctl_reg, 0);
271 return -FW_CMD_RETVAL_GET((int)res);
272 }
273 }
274
275 dump_mbox(adap, mbox, data_reg);
276 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
277 *(const u8 *)cmd, mbox);
278 return -ETIMEDOUT;
279}
280
281/**
282 * t4_mc_read - read from MC through backdoor accesses
283 * @adap: the adapter
284 * @addr: address of first byte requested
19dd37ba 285 * @idx: which MC to access
56d36be4
DM
286 * @data: 64 bytes of data containing the requested address
287 * @ecc: where to store the corresponding 64-bit ECC word
288 *
289 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
290 * that covers the requested address @addr. If @parity is not %NULL it
291 * is assigned the 64-bit ECC word for the read data.
292 */
19dd37ba 293int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
56d36be4
DM
294{
295 int i;
19dd37ba
SR
296 u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
297 u32 mc_bist_status_rdata, mc_bist_data_pattern;
56d36be4 298
d14807dd 299 if (is_t4(adap->params.chip)) {
19dd37ba
SR
300 mc_bist_cmd = MC_BIST_CMD;
301 mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
302 mc_bist_cmd_len = MC_BIST_CMD_LEN;
303 mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
304 mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
305 } else {
306 mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
307 mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
308 mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
309 mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
310 mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
311 }
312
313 if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
56d36be4 314 return -EBUSY;
19dd37ba
SR
315 t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
316 t4_write_reg(adap, mc_bist_cmd_len, 64);
317 t4_write_reg(adap, mc_bist_data_pattern, 0xc);
318 t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
56d36be4 319 BIST_CMD_GAP(1));
19dd37ba 320 i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
56d36be4
DM
321 if (i)
322 return i;
323
19dd37ba 324#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
56d36be4
DM
325
326 for (i = 15; i >= 0; i--)
327 *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
328 if (ecc)
329 *ecc = t4_read_reg64(adap, MC_DATA(16));
330#undef MC_DATA
331 return 0;
332}
333
334/**
335 * t4_edc_read - read from EDC through backdoor accesses
336 * @adap: the adapter
337 * @idx: which EDC to access
338 * @addr: address of first byte requested
339 * @data: 64 bytes of data containing the requested address
340 * @ecc: where to store the corresponding 64-bit ECC word
341 *
342 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
343 * that covers the requested address @addr. If @parity is not %NULL it
344 * is assigned the 64-bit ECC word for the read data.
345 */
346int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
347{
348 int i;
19dd37ba
SR
349 u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
350 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
56d36be4 351
d14807dd 352 if (is_t4(adap->params.chip)) {
19dd37ba
SR
353 edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
354 edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
355 edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
356 edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
357 idx);
358 edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
359 idx);
360 } else {
361 edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
362 edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
363 edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
364 edc_bist_cmd_data_pattern =
365 EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
366 edc_bist_status_rdata =
367 EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
368 }
369
370 if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
56d36be4 371 return -EBUSY;
19dd37ba
SR
372 t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
373 t4_write_reg(adap, edc_bist_cmd_len, 64);
374 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
375 t4_write_reg(adap, edc_bist_cmd,
56d36be4 376 BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
19dd37ba 377 i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
56d36be4
DM
378 if (i)
379 return i;
380
19dd37ba 381#define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
56d36be4
DM
382
383 for (i = 15; i >= 0; i--)
384 *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
385 if (ecc)
386 *ecc = t4_read_reg64(adap, EDC_DATA(16));
387#undef EDC_DATA
388 return 0;
389}
390
5afc8b84
VP
391/*
392 * t4_mem_win_rw - read/write memory through PCIE memory window
393 * @adap: the adapter
394 * @addr: address of first byte requested
395 * @data: MEMWIN0_APERTURE bytes of data containing the requested address
396 * @dir: direction of transfer 1 => read, 0 => write
397 *
398 * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
399 * MEMWIN0_APERTURE-byte-aligned address that covers the requested
400 * address @addr.
401 */
402static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
403{
404 int i;
d14807dd 405 u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
5afc8b84
VP
406
407 /*
408 * Setup offset into PCIE memory window. Address must be a
409 * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
410 * ensure that changes propagate before we attempt to use the new
411 * values.)
412 */
413 t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
19dd37ba 414 (addr & ~(MEMWIN0_APERTURE - 1)) | win_pf);
5afc8b84
VP
415 t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
416
417 /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
418 for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
419 if (dir)
404d9e3f
VP
420 *data++ = (__force __be32) t4_read_reg(adap,
421 (MEMWIN0_BASE + i));
5afc8b84 422 else
404d9e3f
VP
423 t4_write_reg(adap, (MEMWIN0_BASE + i),
424 (__force u32) *data++);
5afc8b84
VP
425 }
426
427 return 0;
428}
429
430/**
431 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
432 * @adap: the adapter
433 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
434 * @addr: address within indicated memory type
435 * @len: amount of memory to transfer
436 * @buf: host memory buffer
437 * @dir: direction of transfer 1 => read, 0 => write
438 *
439 * Reads/writes an [almost] arbitrary memory region in the firmware: the
440 * firmware memory address, length and host buffer must be aligned on
441 * 32-bit boudaries. The memory is transferred as a raw byte sequence
442 * from/to the firmware's memory. If this memory contains data
443 * structures which contain multi-byte integers, it's the callers
444 * responsibility to perform appropriate byte order conversions.
445 */
446static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
447 __be32 *buf, int dir)
448{
449 u32 pos, start, end, offset, memoffset;
19dd37ba 450 u32 edc_size, mc_size;
8c357ebd
VP
451 int ret = 0;
452 __be32 *data;
5afc8b84
VP
453
454 /*
455 * Argument sanity checks ...
456 */
457 if ((addr & 0x3) || (len & 0x3))
458 return -EINVAL;
459
594f88e9 460 data = vmalloc(MEMWIN0_APERTURE);
8c357ebd
VP
461 if (!data)
462 return -ENOMEM;
463
19dd37ba 464 /* Offset into the region of memory which is being accessed
5afc8b84
VP
465 * MEM_EDC0 = 0
466 * MEM_EDC1 = 1
19dd37ba
SR
467 * MEM_MC = 2 -- T4
468 * MEM_MC0 = 2 -- For T5
469 * MEM_MC1 = 3 -- For T5
5afc8b84 470 */
19dd37ba
SR
471 edc_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR));
472 if (mtype != MEM_MC1)
473 memoffset = (mtype * (edc_size * 1024 * 1024));
474 else {
475 mc_size = EXT_MEM_SIZE_GET(t4_read_reg(adap,
476 MA_EXT_MEMORY_BAR));
477 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
478 }
5afc8b84
VP
479
480 /* Determine the PCIE_MEM_ACCESS_OFFSET */
481 addr = addr + memoffset;
482
483 /*
484 * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
485 * at a time so we need to round down the start and round up the end.
486 * We'll start copying out of the first line at (addr - start) a word
487 * at a time.
488 */
489 start = addr & ~(MEMWIN0_APERTURE-1);
490 end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
491 offset = (addr - start)/sizeof(__be32);
492
493 for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
5afc8b84
VP
494
495 /*
496 * If we're writing, copy the data from the caller's memory
497 * buffer
498 */
499 if (!dir) {
500 /*
501 * If we're doing a partial write, then we need to do
502 * a read-modify-write ...
503 */
504 if (offset || len < MEMWIN0_APERTURE) {
505 ret = t4_mem_win_rw(adap, pos, data, 1);
506 if (ret)
8c357ebd 507 break;
5afc8b84
VP
508 }
509 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
510 len > 0) {
511 data[offset++] = *buf++;
512 len -= sizeof(__be32);
513 }
514 }
515
516 /*
517 * Transfer a block of memory and bail if there's an error.
518 */
519 ret = t4_mem_win_rw(adap, pos, data, dir);
520 if (ret)
8c357ebd 521 break;
5afc8b84
VP
522
523 /*
524 * If we're reading, copy the data into the caller's memory
525 * buffer.
526 */
527 if (dir)
528 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
529 len > 0) {
530 *buf++ = data[offset++];
531 len -= sizeof(__be32);
532 }
533 }
534
8c357ebd
VP
535 vfree(data);
536 return ret;
5afc8b84
VP
537}
538
539int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
540 __be32 *buf)
541{
542 return t4_memory_rw(adap, mtype, addr, len, buf, 0);
543}
544
56d36be4 545#define EEPROM_STAT_ADDR 0x7bfc
47ce9c48
SR
546#define VPD_BASE 0x400
547#define VPD_BASE_OLD 0
0a57a536 548#define VPD_LEN 1024
56d36be4
DM
549
550/**
551 * t4_seeprom_wp - enable/disable EEPROM write protection
552 * @adapter: the adapter
553 * @enable: whether to enable or disable write protection
554 *
555 * Enables or disables write protection on the serial EEPROM.
556 */
557int t4_seeprom_wp(struct adapter *adapter, bool enable)
558{
559 unsigned int v = enable ? 0xc : 0;
560 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
561 return ret < 0 ? ret : 0;
562}
563
564/**
565 * get_vpd_params - read VPD parameters from VPD EEPROM
566 * @adapter: adapter to read
567 * @p: where to store the parameters
568 *
569 * Reads card parameters stored in VPD EEPROM.
570 */
636f9d37 571int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 572{
636f9d37 573 u32 cclk_param, cclk_val;
47ce9c48 574 int i, ret, addr;
ec164008 575 int ec, sn;
8c357ebd 576 u8 *vpd, csum;
23d88e1d 577 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 578
8c357ebd
VP
579 vpd = vmalloc(VPD_LEN);
580 if (!vpd)
581 return -ENOMEM;
582
47ce9c48
SR
583 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
584 if (ret < 0)
585 goto out;
586 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
587
588 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 589 if (ret < 0)
8c357ebd 590 goto out;
56d36be4 591
23d88e1d
DM
592 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
593 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
594 ret = -EINVAL;
595 goto out;
23d88e1d
DM
596 }
597
598 id_len = pci_vpd_lrdt_size(vpd);
599 if (id_len > ID_LEN)
600 id_len = ID_LEN;
601
602 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
603 if (i < 0) {
604 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
605 ret = -EINVAL;
606 goto out;
23d88e1d
DM
607 }
608
609 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
610 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
611 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 612 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
613 ret = -EINVAL;
614 goto out;
226ec5fd
DM
615 }
616
617#define FIND_VPD_KW(var, name) do { \
23d88e1d 618 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
619 if (var < 0) { \
620 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
621 ret = -EINVAL; \
622 goto out; \
226ec5fd
DM
623 } \
624 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
625} while (0)
626
627 FIND_VPD_KW(i, "RV");
628 for (csum = 0; i >= 0; i--)
629 csum += vpd[i];
56d36be4
DM
630
631 if (csum) {
632 dev_err(adapter->pdev_dev,
633 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
634 ret = -EINVAL;
635 goto out;
56d36be4
DM
636 }
637
226ec5fd
DM
638 FIND_VPD_KW(ec, "EC");
639 FIND_VPD_KW(sn, "SN");
226ec5fd
DM
640#undef FIND_VPD_KW
641
23d88e1d 642 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 643 strim(p->id);
226ec5fd 644 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 645 strim(p->ec);
226ec5fd
DM
646 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
647 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 648 strim(p->sn);
636f9d37
VP
649
650 /*
651 * Ask firmware for the Core Clock since it knows how to translate the
652 * Reference Clock ('V2') VPD field into a Core Clock value ...
653 */
654 cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
655 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
656 ret = t4_query_params(adapter, adapter->mbox, 0, 0,
657 1, &cclk_param, &cclk_val);
8c357ebd
VP
658
659out:
660 vfree(vpd);
636f9d37
VP
661 if (ret)
662 return ret;
663 p->cclk = cclk_val;
664
56d36be4
DM
665 return 0;
666}
667
668/* serial flash and firmware constants */
669enum {
670 SF_ATTEMPTS = 10, /* max retries for SF operations */
671
672 /* flash command opcodes */
673 SF_PROG_PAGE = 2, /* program page */
674 SF_WR_DISABLE = 4, /* disable writes */
675 SF_RD_STATUS = 5, /* read status register */
676 SF_WR_ENABLE = 6, /* enable writes */
677 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 678 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
679 SF_ERASE_SECTOR = 0xd8, /* erase sector */
680
900a6596 681 FW_MAX_SIZE = 512 * 1024,
56d36be4
DM
682};
683
684/**
685 * sf1_read - read data from the serial flash
686 * @adapter: the adapter
687 * @byte_cnt: number of bytes to read
688 * @cont: whether another operation will be chained
689 * @lock: whether to lock SF for PL access only
690 * @valp: where to store the read data
691 *
692 * Reads up to 4 bytes of data from the serial flash. The location of
693 * the read needs to be specified prior to calling this by issuing the
694 * appropriate commands to the serial flash.
695 */
696static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
697 int lock, u32 *valp)
698{
699 int ret;
700
701 if (!byte_cnt || byte_cnt > 4)
702 return -EINVAL;
ce91a923 703 if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
56d36be4
DM
704 return -EBUSY;
705 cont = cont ? SF_CONT : 0;
706 lock = lock ? SF_LOCK : 0;
707 t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
ce91a923 708 ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
56d36be4
DM
709 if (!ret)
710 *valp = t4_read_reg(adapter, SF_DATA);
711 return ret;
712}
713
714/**
715 * sf1_write - write data to the serial flash
716 * @adapter: the adapter
717 * @byte_cnt: number of bytes to write
718 * @cont: whether another operation will be chained
719 * @lock: whether to lock SF for PL access only
720 * @val: value to write
721 *
722 * Writes up to 4 bytes of data to the serial flash. The location of
723 * the write needs to be specified prior to calling this by issuing the
724 * appropriate commands to the serial flash.
725 */
726static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
727 int lock, u32 val)
728{
729 if (!byte_cnt || byte_cnt > 4)
730 return -EINVAL;
ce91a923 731 if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
56d36be4
DM
732 return -EBUSY;
733 cont = cont ? SF_CONT : 0;
734 lock = lock ? SF_LOCK : 0;
735 t4_write_reg(adapter, SF_DATA, val);
736 t4_write_reg(adapter, SF_OP, lock |
737 cont | BYTECNT(byte_cnt - 1) | OP_WR);
ce91a923 738 return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
56d36be4
DM
739}
740
741/**
742 * flash_wait_op - wait for a flash operation to complete
743 * @adapter: the adapter
744 * @attempts: max number of polls of the status register
745 * @delay: delay between polls in ms
746 *
747 * Wait for a flash operation to complete by polling the status register.
748 */
749static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
750{
751 int ret;
752 u32 status;
753
754 while (1) {
755 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
756 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
757 return ret;
758 if (!(status & 1))
759 return 0;
760 if (--attempts == 0)
761 return -EAGAIN;
762 if (delay)
763 msleep(delay);
764 }
765}
766
767/**
768 * t4_read_flash - read words from serial flash
769 * @adapter: the adapter
770 * @addr: the start address for the read
771 * @nwords: how many 32-bit words to read
772 * @data: where to store the read data
773 * @byte_oriented: whether to store data as bytes or as words
774 *
775 * Read the specified number of 32-bit words from the serial flash.
776 * If @byte_oriented is set the read data is stored as a byte array
777 * (i.e., big-endian), otherwise as 32-bit words in the platform's
778 * natural endianess.
779 */
de498c89
RD
780static int t4_read_flash(struct adapter *adapter, unsigned int addr,
781 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
782{
783 int ret;
784
900a6596 785 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
786 return -EINVAL;
787
788 addr = swab32(addr) | SF_RD_DATA_FAST;
789
790 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
791 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
792 return ret;
793
794 for ( ; nwords; nwords--, data++) {
795 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
796 if (nwords == 1)
797 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
798 if (ret)
799 return ret;
800 if (byte_oriented)
404d9e3f 801 *data = (__force __u32) (htonl(*data));
56d36be4
DM
802 }
803 return 0;
804}
805
806/**
807 * t4_write_flash - write up to a page of data to the serial flash
808 * @adapter: the adapter
809 * @addr: the start address to write
810 * @n: length of data to write in bytes
811 * @data: the data to write
812 *
813 * Writes up to a page of data (256 bytes) to the serial flash starting
814 * at the given address. All the data must be written to the same page.
815 */
816static int t4_write_flash(struct adapter *adapter, unsigned int addr,
817 unsigned int n, const u8 *data)
818{
819 int ret;
820 u32 buf[64];
821 unsigned int i, c, left, val, offset = addr & 0xff;
822
900a6596 823 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
824 return -EINVAL;
825
826 val = swab32(addr) | SF_PROG_PAGE;
827
828 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
829 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
830 goto unlock;
831
832 for (left = n; left; left -= c) {
833 c = min(left, 4U);
834 for (val = 0, i = 0; i < c; ++i)
835 val = (val << 8) + *data++;
836
837 ret = sf1_write(adapter, c, c != left, 1, val);
838 if (ret)
839 goto unlock;
840 }
900a6596 841 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
842 if (ret)
843 goto unlock;
844
845 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
846
847 /* Read the page to verify the write succeeded */
848 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
849 if (ret)
850 return ret;
851
852 if (memcmp(data - n, (u8 *)buf + offset, n)) {
853 dev_err(adapter->pdev_dev,
854 "failed to correctly write the flash page at %#x\n",
855 addr);
856 return -EIO;
857 }
858 return 0;
859
860unlock:
861 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
862 return ret;
863}
864
865/**
866 * get_fw_version - read the firmware version
867 * @adapter: the adapter
868 * @vers: where to place the version
869 *
870 * Reads the FW version from flash.
871 */
872static int get_fw_version(struct adapter *adapter, u32 *vers)
873{
900a6596
DM
874 return t4_read_flash(adapter, adapter->params.sf_fw_start +
875 offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
56d36be4
DM
876}
877
878/**
879 * get_tp_version - read the TP microcode version
880 * @adapter: the adapter
881 * @vers: where to place the version
882 *
883 * Reads the TP microcode version from flash.
884 */
885static int get_tp_version(struct adapter *adapter, u32 *vers)
886{
900a6596
DM
887 return t4_read_flash(adapter, adapter->params.sf_fw_start +
888 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
889 1, vers, 0);
890}
891
892/**
893 * t4_check_fw_version - check if the FW is compatible with this driver
894 * @adapter: the adapter
895 *
896 * Checks if an adapter's FW is compatible with the driver. Returns 0
897 * if there's exact match, a negative error if the version could not be
898 * read or there's a major version mismatch, and a positive value if the
899 * expected major version is found but there's a minor version mismatch.
900 */
901int t4_check_fw_version(struct adapter *adapter)
902{
903 u32 api_vers[2];
904 int ret, major, minor, micro;
0a57a536 905 int exp_major, exp_minor, exp_micro;
56d36be4
DM
906
907 ret = get_fw_version(adapter, &adapter->params.fw_vers);
908 if (!ret)
909 ret = get_tp_version(adapter, &adapter->params.tp_vers);
910 if (!ret)
900a6596
DM
911 ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
912 offsetof(struct fw_hdr, intfver_nic),
913 2, api_vers, 1);
56d36be4
DM
914 if (ret)
915 return ret;
916
917 major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
918 minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
919 micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
0a57a536 920
d14807dd 921 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536
SR
922 case CHELSIO_T4:
923 exp_major = FW_VERSION_MAJOR;
924 exp_minor = FW_VERSION_MINOR;
925 exp_micro = FW_VERSION_MICRO;
926 break;
927 case CHELSIO_T5:
928 exp_major = FW_VERSION_MAJOR_T5;
929 exp_minor = FW_VERSION_MINOR_T5;
930 exp_micro = FW_VERSION_MICRO_T5;
931 break;
932 default:
933 dev_err(adapter->pdev_dev, "Unsupported chip type, %x\n",
d14807dd 934 adapter->params.chip);
0a57a536
SR
935 return -EINVAL;
936 }
937
56d36be4
DM
938 memcpy(adapter->params.api_vers, api_vers,
939 sizeof(adapter->params.api_vers));
940
e69972f5
JH
941 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
942 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
943 dev_err(adapter->pdev_dev,
944 "Card has firmware version %u.%u.%u, minimum "
945 "supported firmware is %u.%u.%u.\n", major, minor,
946 micro, exp_major, exp_minor, exp_micro);
947 return -EFAULT;
948 }
949
0a57a536 950 if (major != exp_major) { /* major mismatch - fail */
56d36be4
DM
951 dev_err(adapter->pdev_dev,
952 "card FW has major version %u, driver wants %u\n",
0a57a536 953 major, exp_major);
56d36be4
DM
954 return -EINVAL;
955 }
956
0a57a536 957 if (minor == exp_minor && micro == exp_micro)
56d36be4
DM
958 return 0; /* perfect match */
959
960 /* Minor/micro version mismatch. Report it but often it's OK. */
961 return 1;
962}
963
964/**
965 * t4_flash_erase_sectors - erase a range of flash sectors
966 * @adapter: the adapter
967 * @start: the first sector to erase
968 * @end: the last sector to erase
969 *
970 * Erases the sectors in the given inclusive range.
971 */
972static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
973{
974 int ret = 0;
975
976 while (start <= end) {
977 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
978 (ret = sf1_write(adapter, 4, 0, 1,
979 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 980 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
981 dev_err(adapter->pdev_dev,
982 "erase of flash sector %d failed, error %d\n",
983 start, ret);
984 break;
985 }
986 start++;
987 }
988 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
989 return ret;
990}
991
636f9d37
VP
992/**
993 * t4_flash_cfg_addr - return the address of the flash configuration file
994 * @adapter: the adapter
995 *
996 * Return the address within the flash where the Firmware Configuration
997 * File is stored.
998 */
999unsigned int t4_flash_cfg_addr(struct adapter *adapter)
1000{
1001 if (adapter->params.sf_size == 0x100000)
1002 return FLASH_FPGA_CFG_START;
1003 else
1004 return FLASH_CFG_START;
1005}
1006
1007/**
1008 * t4_load_cfg - download config file
1009 * @adap: the adapter
1010 * @cfg_data: the cfg text file to write
1011 * @size: text file size
1012 *
1013 * Write the supplied config text file to the card's serial flash.
1014 */
1015int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
1016{
1017 int ret, i, n;
1018 unsigned int addr;
1019 unsigned int flash_cfg_start_sec;
1020 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1021
1022 addr = t4_flash_cfg_addr(adap);
1023 flash_cfg_start_sec = addr / SF_SEC_SIZE;
1024
1025 if (size > FLASH_CFG_MAX_SIZE) {
1026 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
1027 FLASH_CFG_MAX_SIZE);
1028 return -EFBIG;
1029 }
1030
1031 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
1032 sf_sec_size);
1033 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
1034 flash_cfg_start_sec + i - 1);
1035 /*
1036 * If size == 0 then we're simply erasing the FLASH sectors associated
1037 * with the on-adapter Firmware Configuration File.
1038 */
1039 if (ret || size == 0)
1040 goto out;
1041
1042 /* this will write to the flash up to SF_PAGE_SIZE at a time */
1043 for (i = 0; i < size; i += SF_PAGE_SIZE) {
1044 if ((size - i) < SF_PAGE_SIZE)
1045 n = size - i;
1046 else
1047 n = SF_PAGE_SIZE;
1048 ret = t4_write_flash(adap, addr, n, cfg_data);
1049 if (ret)
1050 goto out;
1051
1052 addr += SF_PAGE_SIZE;
1053 cfg_data += SF_PAGE_SIZE;
1054 }
1055
1056out:
1057 if (ret)
1058 dev_err(adap->pdev_dev, "config file %s failed %d\n",
1059 (size == 0 ? "clear" : "download"), ret);
1060 return ret;
1061}
1062
56d36be4
DM
1063/**
1064 * t4_load_fw - download firmware
1065 * @adap: the adapter
1066 * @fw_data: the firmware image to write
1067 * @size: image size
1068 *
1069 * Write the supplied firmware image to the card's serial flash.
1070 */
1071int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1072{
1073 u32 csum;
1074 int ret, addr;
1075 unsigned int i;
1076 u8 first_page[SF_PAGE_SIZE];
404d9e3f 1077 const __be32 *p = (const __be32 *)fw_data;
56d36be4 1078 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
1079 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1080 unsigned int fw_img_start = adap->params.sf_fw_start;
1081 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
1082
1083 if (!size) {
1084 dev_err(adap->pdev_dev, "FW image has no data\n");
1085 return -EINVAL;
1086 }
1087 if (size & 511) {
1088 dev_err(adap->pdev_dev,
1089 "FW image size not multiple of 512 bytes\n");
1090 return -EINVAL;
1091 }
1092 if (ntohs(hdr->len512) * 512 != size) {
1093 dev_err(adap->pdev_dev,
1094 "FW image size differs from size in FW header\n");
1095 return -EINVAL;
1096 }
1097 if (size > FW_MAX_SIZE) {
1098 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
1099 FW_MAX_SIZE);
1100 return -EFBIG;
1101 }
1102
1103 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1104 csum += ntohl(p[i]);
1105
1106 if (csum != 0xffffffff) {
1107 dev_err(adap->pdev_dev,
1108 "corrupted firmware image, checksum %#x\n", csum);
1109 return -EINVAL;
1110 }
1111
900a6596
DM
1112 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
1113 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
1114 if (ret)
1115 goto out;
1116
1117 /*
1118 * We write the correct version at the end so the driver can see a bad
1119 * version if the FW write fails. Start by writing a copy of the
1120 * first page with a bad version.
1121 */
1122 memcpy(first_page, fw_data, SF_PAGE_SIZE);
1123 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
900a6596 1124 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
1125 if (ret)
1126 goto out;
1127
900a6596 1128 addr = fw_img_start;
56d36be4
DM
1129 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1130 addr += SF_PAGE_SIZE;
1131 fw_data += SF_PAGE_SIZE;
1132 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
1133 if (ret)
1134 goto out;
1135 }
1136
1137 ret = t4_write_flash(adap,
900a6596 1138 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
1139 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
1140out:
1141 if (ret)
1142 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
1143 ret);
1144 return ret;
1145}
1146
1147#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1148 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
1149
1150/**
1151 * t4_link_start - apply link configuration to MAC/PHY
1152 * @phy: the PHY to setup
1153 * @mac: the MAC to setup
1154 * @lc: the requested link configuration
1155 *
1156 * Set up a port's MAC and PHY according to a desired link configuration.
1157 * - If the PHY can auto-negotiate first decide what to advertise, then
1158 * enable/disable auto-negotiation as desired, and reset.
1159 * - If the PHY does not auto-negotiate just reset it.
1160 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1161 * otherwise do it later based on the outcome of auto-negotiation.
1162 */
1163int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1164 struct link_config *lc)
1165{
1166 struct fw_port_cmd c;
1167 unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
1168
1169 lc->link_ok = 0;
1170 if (lc->requested_fc & PAUSE_RX)
1171 fc |= FW_PORT_CAP_FC_RX;
1172 if (lc->requested_fc & PAUSE_TX)
1173 fc |= FW_PORT_CAP_FC_TX;
1174
1175 memset(&c, 0, sizeof(c));
1176 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
1177 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
1178 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1179 FW_LEN16(c));
1180
1181 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1182 c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1183 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1184 } else if (lc->autoneg == AUTONEG_DISABLE) {
1185 c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1186 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1187 } else
1188 c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1189
1190 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1191}
1192
1193/**
1194 * t4_restart_aneg - restart autonegotiation
1195 * @adap: the adapter
1196 * @mbox: mbox to use for the FW command
1197 * @port: the port id
1198 *
1199 * Restarts autonegotiation for the selected port.
1200 */
1201int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1202{
1203 struct fw_port_cmd c;
1204
1205 memset(&c, 0, sizeof(c));
1206 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
1207 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
1208 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1209 FW_LEN16(c));
1210 c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1211 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1212}
1213
8caa1e84
VP
1214typedef void (*int_handler_t)(struct adapter *adap);
1215
56d36be4
DM
1216struct intr_info {
1217 unsigned int mask; /* bits to check in interrupt status */
1218 const char *msg; /* message to print or NULL */
1219 short stat_idx; /* stat counter to increment or -1 */
1220 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 1221 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
1222};
1223
1224/**
1225 * t4_handle_intr_status - table driven interrupt handler
1226 * @adapter: the adapter that generated the interrupt
1227 * @reg: the interrupt status register to process
1228 * @acts: table of interrupt actions
1229 *
1230 * A table driven interrupt handler that applies a set of masks to an
1231 * interrupt status word and performs the corresponding actions if the
25985edc 1232 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
1233 * optionally emitting a warning or alert message. The table is terminated
1234 * by an entry specifying mask 0. Returns the number of fatal interrupt
1235 * conditions.
1236 */
1237static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1238 const struct intr_info *acts)
1239{
1240 int fatal = 0;
1241 unsigned int mask = 0;
1242 unsigned int status = t4_read_reg(adapter, reg);
1243
1244 for ( ; acts->mask; ++acts) {
1245 if (!(status & acts->mask))
1246 continue;
1247 if (acts->fatal) {
1248 fatal++;
1249 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
1250 status & acts->mask);
1251 } else if (acts->msg && printk_ratelimit())
1252 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
1253 status & acts->mask);
8caa1e84
VP
1254 if (acts->int_handler)
1255 acts->int_handler(adapter);
56d36be4
DM
1256 mask |= acts->mask;
1257 }
1258 status &= mask;
1259 if (status) /* clear processed interrupts */
1260 t4_write_reg(adapter, reg, status);
1261 return fatal;
1262}
1263
1264/*
1265 * Interrupt handler for the PCIE module.
1266 */
1267static void pcie_intr_handler(struct adapter *adapter)
1268{
005b5717 1269 static const struct intr_info sysbus_intr_info[] = {
56d36be4
DM
1270 { RNPP, "RXNP array parity error", -1, 1 },
1271 { RPCP, "RXPC array parity error", -1, 1 },
1272 { RCIP, "RXCIF array parity error", -1, 1 },
1273 { RCCP, "Rx completions control array parity error", -1, 1 },
1274 { RFTP, "RXFT array parity error", -1, 1 },
1275 { 0 }
1276 };
005b5717 1277 static const struct intr_info pcie_port_intr_info[] = {
56d36be4
DM
1278 { TPCP, "TXPC array parity error", -1, 1 },
1279 { TNPP, "TXNP array parity error", -1, 1 },
1280 { TFTP, "TXFT array parity error", -1, 1 },
1281 { TCAP, "TXCA array parity error", -1, 1 },
1282 { TCIP, "TXCIF array parity error", -1, 1 },
1283 { RCAP, "RXCA array parity error", -1, 1 },
1284 { OTDD, "outbound request TLP discarded", -1, 1 },
1285 { RDPE, "Rx data parity error", -1, 1 },
1286 { TDUE, "Tx uncorrectable data error", -1, 1 },
1287 { 0 }
1288 };
005b5717 1289 static const struct intr_info pcie_intr_info[] = {
56d36be4
DM
1290 { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
1291 { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
1292 { MSIDATAPERR, "MSI data parity error", -1, 1 },
1293 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
1294 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
1295 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
1296 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
1297 { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
1298 { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
1299 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
1300 { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
1301 { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
1302 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
1303 { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
1304 { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
1305 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
1306 { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
1307 { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
1308 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
1309 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
1310 { FIDPERR, "PCI FID parity error", -1, 1 },
1311 { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
1312 { MATAGPERR, "PCI MA tag parity error", -1, 1 },
1313 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
1314 { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
1315 { RXWRPERR, "PCI Rx write parity error", -1, 1 },
1316 { RPLPERR, "PCI replay buffer parity error", -1, 1 },
1317 { PCIESINT, "PCI core secondary fault", -1, 1 },
1318 { PCIEPINT, "PCI core primary fault", -1, 1 },
1319 { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
1320 { 0 }
1321 };
1322
0a57a536
SR
1323 static struct intr_info t5_pcie_intr_info[] = {
1324 { MSTGRPPERR, "Master Response Read Queue parity error",
1325 -1, 1 },
1326 { MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
1327 { MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
1328 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
1329 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
1330 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
1331 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
1332 { PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
1333 -1, 1 },
1334 { PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
1335 -1, 1 },
1336 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
1337 { MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
1338 { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
1339 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
1340 { DREQWRPERR, "PCI DMA channel write request parity error",
1341 -1, 1 },
1342 { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
1343 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
1344 { HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
1345 { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
1346 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
1347 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
1348 { FIDPERR, "PCI FID parity error", -1, 1 },
1349 { VFIDPERR, "PCI INTx clear parity error", -1, 1 },
1350 { MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
1351 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
1352 { IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
1353 -1, 1 },
1354 { IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 },
1355 { RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
1356 { IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
1357 { TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
1358 { READRSPERR, "Outbound read error", -1, 0 },
1359 { 0 }
1360 };
1361
56d36be4
DM
1362 int fat;
1363
1364 fat = t4_handle_intr_status(adapter,
1365 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
1366 sysbus_intr_info) +
1367 t4_handle_intr_status(adapter,
1368 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
1369 pcie_port_intr_info) +
0a57a536 1370 t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
d14807dd 1371 is_t4(adapter->params.chip) ?
0a57a536
SR
1372 pcie_intr_info : t5_pcie_intr_info);
1373
56d36be4
DM
1374 if (fat)
1375 t4_fatal_err(adapter);
1376}
1377
1378/*
1379 * TP interrupt handler.
1380 */
1381static void tp_intr_handler(struct adapter *adapter)
1382{
005b5717 1383 static const struct intr_info tp_intr_info[] = {
56d36be4
DM
1384 { 0x3fffffff, "TP parity error", -1, 1 },
1385 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
1386 { 0 }
1387 };
1388
1389 if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
1390 t4_fatal_err(adapter);
1391}
1392
1393/*
1394 * SGE interrupt handler.
1395 */
1396static void sge_intr_handler(struct adapter *adapter)
1397{
1398 u64 v;
1399
005b5717 1400 static const struct intr_info sge_intr_info[] = {
56d36be4
DM
1401 { ERR_CPL_EXCEED_IQE_SIZE,
1402 "SGE received CPL exceeding IQE size", -1, 1 },
1403 { ERR_INVALID_CIDX_INC,
1404 "SGE GTS CIDX increment too large", -1, 0 },
1405 { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
840f3000
VP
1406 { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
1407 { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
1408 { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
56d36be4
DM
1409 { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
1410 "SGE IQID > 1023 received CPL for FL", -1, 0 },
1411 { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
1412 0 },
1413 { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
1414 0 },
1415 { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
1416 0 },
1417 { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
1418 0 },
1419 { ERR_ING_CTXT_PRIO,
1420 "SGE too many priority ingress contexts", -1, 0 },
1421 { ERR_EGR_CTXT_PRIO,
1422 "SGE too many priority egress contexts", -1, 0 },
1423 { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
1424 { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
1425 { 0 }
1426 };
1427
1428 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
8caa1e84 1429 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
56d36be4
DM
1430 if (v) {
1431 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 1432 (unsigned long long)v);
56d36be4
DM
1433 t4_write_reg(adapter, SGE_INT_CAUSE1, v);
1434 t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
1435 }
1436
1437 if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
1438 v != 0)
1439 t4_fatal_err(adapter);
1440}
1441
1442/*
1443 * CIM interrupt handler.
1444 */
1445static void cim_intr_handler(struct adapter *adapter)
1446{
005b5717 1447 static const struct intr_info cim_intr_info[] = {
56d36be4
DM
1448 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
1449 { OBQPARERR, "CIM OBQ parity error", -1, 1 },
1450 { IBQPARERR, "CIM IBQ parity error", -1, 1 },
1451 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
1452 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
1453 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
1454 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
1455 { 0 }
1456 };
005b5717 1457 static const struct intr_info cim_upintr_info[] = {
56d36be4
DM
1458 { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
1459 { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
1460 { ILLWRINT, "CIM illegal write", -1, 1 },
1461 { ILLRDINT, "CIM illegal read", -1, 1 },
1462 { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
1463 { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
1464 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
1465 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
1466 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
1467 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
1468 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
1469 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
1470 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
1471 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
1472 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
1473 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
1474 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
1475 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
1476 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
1477 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
1478 { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
1479 { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
1480 { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
1481 { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
1482 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
1483 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
1484 { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
1485 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
1486 { 0 }
1487 };
1488
1489 int fat;
1490
1491 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
1492 cim_intr_info) +
1493 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
1494 cim_upintr_info);
1495 if (fat)
1496 t4_fatal_err(adapter);
1497}
1498
1499/*
1500 * ULP RX interrupt handler.
1501 */
1502static void ulprx_intr_handler(struct adapter *adapter)
1503{
005b5717 1504 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 1505 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
1506 { 0x7fffff, "ULPRX parity error", -1, 1 },
1507 { 0 }
1508 };
1509
1510 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
1511 t4_fatal_err(adapter);
1512}
1513
1514/*
1515 * ULP TX interrupt handler.
1516 */
1517static void ulptx_intr_handler(struct adapter *adapter)
1518{
005b5717 1519 static const struct intr_info ulptx_intr_info[] = {
56d36be4
DM
1520 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
1521 0 },
1522 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
1523 0 },
1524 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
1525 0 },
1526 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
1527 0 },
1528 { 0xfffffff, "ULPTX parity error", -1, 1 },
1529 { 0 }
1530 };
1531
1532 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
1533 t4_fatal_err(adapter);
1534}
1535
1536/*
1537 * PM TX interrupt handler.
1538 */
1539static void pmtx_intr_handler(struct adapter *adapter)
1540{
005b5717 1541 static const struct intr_info pmtx_intr_info[] = {
56d36be4
DM
1542 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
1543 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
1544 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
1545 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
1546 { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
1547 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
1548 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
1549 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
1550 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
1551 { 0 }
1552 };
1553
1554 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
1555 t4_fatal_err(adapter);
1556}
1557
1558/*
1559 * PM RX interrupt handler.
1560 */
1561static void pmrx_intr_handler(struct adapter *adapter)
1562{
005b5717 1563 static const struct intr_info pmrx_intr_info[] = {
56d36be4
DM
1564 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
1565 { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
1566 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
1567 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
1568 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
1569 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
1570 { 0 }
1571 };
1572
1573 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
1574 t4_fatal_err(adapter);
1575}
1576
1577/*
1578 * CPL switch interrupt handler.
1579 */
1580static void cplsw_intr_handler(struct adapter *adapter)
1581{
005b5717 1582 static const struct intr_info cplsw_intr_info[] = {
56d36be4
DM
1583 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
1584 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
1585 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
1586 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
1587 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
1588 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
1589 { 0 }
1590 };
1591
1592 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
1593 t4_fatal_err(adapter);
1594}
1595
1596/*
1597 * LE interrupt handler.
1598 */
1599static void le_intr_handler(struct adapter *adap)
1600{
005b5717 1601 static const struct intr_info le_intr_info[] = {
56d36be4
DM
1602 { LIPMISS, "LE LIP miss", -1, 0 },
1603 { LIP0, "LE 0 LIP error", -1, 0 },
1604 { PARITYERR, "LE parity error", -1, 1 },
1605 { UNKNOWNCMD, "LE unknown command", -1, 1 },
1606 { REQQPARERR, "LE request queue parity error", -1, 1 },
1607 { 0 }
1608 };
1609
1610 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
1611 t4_fatal_err(adap);
1612}
1613
1614/*
1615 * MPS interrupt handler.
1616 */
1617static void mps_intr_handler(struct adapter *adapter)
1618{
005b5717 1619 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
1620 { 0xffffff, "MPS Rx parity error", -1, 1 },
1621 { 0 }
1622 };
005b5717 1623 static const struct intr_info mps_tx_intr_info[] = {
56d36be4
DM
1624 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
1625 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
1626 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
1627 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
1628 { BUBBLE, "MPS Tx underflow", -1, 1 },
1629 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
1630 { FRMERR, "MPS Tx framing error", -1, 1 },
1631 { 0 }
1632 };
005b5717 1633 static const struct intr_info mps_trc_intr_info[] = {
56d36be4
DM
1634 { FILTMEM, "MPS TRC filter parity error", -1, 1 },
1635 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
1636 { MISCPERR, "MPS TRC misc parity error", -1, 1 },
1637 { 0 }
1638 };
005b5717 1639 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
1640 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
1641 { 0 }
1642 };
005b5717 1643 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
1644 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
1645 { 0 }
1646 };
005b5717 1647 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
1648 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
1649 { 0 }
1650 };
005b5717 1651 static const struct intr_info mps_cls_intr_info[] = {
56d36be4
DM
1652 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
1653 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
1654 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
1655 { 0 }
1656 };
1657
1658 int fat;
1659
1660 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
1661 mps_rx_intr_info) +
1662 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
1663 mps_tx_intr_info) +
1664 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
1665 mps_trc_intr_info) +
1666 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
1667 mps_stat_sram_intr_info) +
1668 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
1669 mps_stat_tx_intr_info) +
1670 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
1671 mps_stat_rx_intr_info) +
1672 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
1673 mps_cls_intr_info);
1674
1675 t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
1676 RXINT | TXINT | STATINT);
1677 t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
1678 if (fat)
1679 t4_fatal_err(adapter);
1680}
1681
1682#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
1683
1684/*
1685 * EDC/MC interrupt handler.
1686 */
1687static void mem_intr_handler(struct adapter *adapter, int idx)
1688{
1689 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
1690
1691 unsigned int addr, cnt_addr, v;
1692
1693 if (idx <= MEM_EDC1) {
1694 addr = EDC_REG(EDC_INT_CAUSE, idx);
1695 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
1696 } else {
1697 addr = MC_INT_CAUSE;
1698 cnt_addr = MC_ECC_STATUS;
1699 }
1700
1701 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
1702 if (v & PERR_INT_CAUSE)
1703 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
1704 name[idx]);
1705 if (v & ECC_CE_INT_CAUSE) {
1706 u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
1707
1708 t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
1709 if (printk_ratelimit())
1710 dev_warn(adapter->pdev_dev,
1711 "%u %s correctable ECC data error%s\n",
1712 cnt, name[idx], cnt > 1 ? "s" : "");
1713 }
1714 if (v & ECC_UE_INT_CAUSE)
1715 dev_alert(adapter->pdev_dev,
1716 "%s uncorrectable ECC data error\n", name[idx]);
1717
1718 t4_write_reg(adapter, addr, v);
1719 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
1720 t4_fatal_err(adapter);
1721}
1722
1723/*
1724 * MA interrupt handler.
1725 */
1726static void ma_intr_handler(struct adapter *adap)
1727{
1728 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
1729
1730 if (status & MEM_PERR_INT_CAUSE)
1731 dev_alert(adap->pdev_dev,
1732 "MA parity error, parity status %#x\n",
1733 t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
1734 if (status & MEM_WRAP_INT_CAUSE) {
1735 v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
1736 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
1737 "client %u to address %#x\n",
1738 MEM_WRAP_CLIENT_NUM_GET(v),
1739 MEM_WRAP_ADDRESS_GET(v) << 4);
1740 }
1741 t4_write_reg(adap, MA_INT_CAUSE, status);
1742 t4_fatal_err(adap);
1743}
1744
1745/*
1746 * SMB interrupt handler.
1747 */
1748static void smb_intr_handler(struct adapter *adap)
1749{
005b5717 1750 static const struct intr_info smb_intr_info[] = {
56d36be4
DM
1751 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
1752 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
1753 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
1754 { 0 }
1755 };
1756
1757 if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
1758 t4_fatal_err(adap);
1759}
1760
1761/*
1762 * NC-SI interrupt handler.
1763 */
1764static void ncsi_intr_handler(struct adapter *adap)
1765{
005b5717 1766 static const struct intr_info ncsi_intr_info[] = {
56d36be4
DM
1767 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
1768 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
1769 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
1770 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
1771 { 0 }
1772 };
1773
1774 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
1775 t4_fatal_err(adap);
1776}
1777
1778/*
1779 * XGMAC interrupt handler.
1780 */
1781static void xgmac_intr_handler(struct adapter *adap, int port)
1782{
0a57a536
SR
1783 u32 v, int_cause_reg;
1784
d14807dd 1785 if (is_t4(adap->params.chip))
0a57a536
SR
1786 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
1787 else
1788 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
1789
1790 v = t4_read_reg(adap, int_cause_reg);
56d36be4
DM
1791
1792 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
1793 if (!v)
1794 return;
1795
1796 if (v & TXFIFO_PRTY_ERR)
1797 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
1798 port);
1799 if (v & RXFIFO_PRTY_ERR)
1800 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
1801 port);
1802 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
1803 t4_fatal_err(adap);
1804}
1805
1806/*
1807 * PL interrupt handler.
1808 */
1809static void pl_intr_handler(struct adapter *adap)
1810{
005b5717 1811 static const struct intr_info pl_intr_info[] = {
56d36be4
DM
1812 { FATALPERR, "T4 fatal parity error", -1, 1 },
1813 { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
1814 { 0 }
1815 };
1816
1817 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
1818 t4_fatal_err(adap);
1819}
1820
63bcceec 1821#define PF_INTR_MASK (PFSW)
56d36be4
DM
1822#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
1823 EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
1824 CPL_SWITCH | SGE | ULP_TX)
1825
1826/**
1827 * t4_slow_intr_handler - control path interrupt handler
1828 * @adapter: the adapter
1829 *
1830 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
1831 * The designation 'slow' is because it involves register reads, while
1832 * data interrupts typically don't involve any MMIOs.
1833 */
1834int t4_slow_intr_handler(struct adapter *adapter)
1835{
1836 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
1837
1838 if (!(cause & GLBL_INTR_MASK))
1839 return 0;
1840 if (cause & CIM)
1841 cim_intr_handler(adapter);
1842 if (cause & MPS)
1843 mps_intr_handler(adapter);
1844 if (cause & NCSI)
1845 ncsi_intr_handler(adapter);
1846 if (cause & PL)
1847 pl_intr_handler(adapter);
1848 if (cause & SMB)
1849 smb_intr_handler(adapter);
1850 if (cause & XGMAC0)
1851 xgmac_intr_handler(adapter, 0);
1852 if (cause & XGMAC1)
1853 xgmac_intr_handler(adapter, 1);
1854 if (cause & XGMAC_KR0)
1855 xgmac_intr_handler(adapter, 2);
1856 if (cause & XGMAC_KR1)
1857 xgmac_intr_handler(adapter, 3);
1858 if (cause & PCIE)
1859 pcie_intr_handler(adapter);
1860 if (cause & MC)
1861 mem_intr_handler(adapter, MEM_MC);
1862 if (cause & EDC0)
1863 mem_intr_handler(adapter, MEM_EDC0);
1864 if (cause & EDC1)
1865 mem_intr_handler(adapter, MEM_EDC1);
1866 if (cause & LE)
1867 le_intr_handler(adapter);
1868 if (cause & TP)
1869 tp_intr_handler(adapter);
1870 if (cause & MA)
1871 ma_intr_handler(adapter);
1872 if (cause & PM_TX)
1873 pmtx_intr_handler(adapter);
1874 if (cause & PM_RX)
1875 pmrx_intr_handler(adapter);
1876 if (cause & ULP_RX)
1877 ulprx_intr_handler(adapter);
1878 if (cause & CPL_SWITCH)
1879 cplsw_intr_handler(adapter);
1880 if (cause & SGE)
1881 sge_intr_handler(adapter);
1882 if (cause & ULP_TX)
1883 ulptx_intr_handler(adapter);
1884
1885 /* Clear the interrupts just processed for which we are the master. */
1886 t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
1887 (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
1888 return 1;
1889}
1890
1891/**
1892 * t4_intr_enable - enable interrupts
1893 * @adapter: the adapter whose interrupts should be enabled
1894 *
1895 * Enable PF-specific interrupts for the calling function and the top-level
1896 * interrupt concentrator for global interrupts. Interrupts are already
1897 * enabled at each module, here we just enable the roots of the interrupt
1898 * hierarchies.
1899 *
1900 * Note: this function should be called only when the driver manages
1901 * non PF-specific interrupts from the various HW modules. Only one PCI
1902 * function at a time should be doing this.
1903 */
1904void t4_intr_enable(struct adapter *adapter)
1905{
1906 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
1907
1908 t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
1909 ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
1910 ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
1911 ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
1912 ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
1913 ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
1914 ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
840f3000 1915 DBFIFO_HP_INT | DBFIFO_LP_INT |
56d36be4
DM
1916 EGRESS_SIZE_ERR);
1917 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
1918 t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
1919}
1920
1921/**
1922 * t4_intr_disable - disable interrupts
1923 * @adapter: the adapter whose interrupts should be disabled
1924 *
1925 * Disable interrupts. We only disable the top-level interrupt
1926 * concentrators. The caller must be a PCI function managing global
1927 * interrupts.
1928 */
1929void t4_intr_disable(struct adapter *adapter)
1930{
1931 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
1932
1933 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
1934 t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
1935}
1936
56d36be4
DM
1937/**
1938 * hash_mac_addr - return the hash value of a MAC address
1939 * @addr: the 48-bit Ethernet MAC address
1940 *
1941 * Hashes a MAC address according to the hash function used by HW inexact
1942 * (hash) address matching.
1943 */
1944static int hash_mac_addr(const u8 *addr)
1945{
1946 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
1947 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
1948 a ^= b;
1949 a ^= (a >> 12);
1950 a ^= (a >> 6);
1951 return a & 0x3f;
1952}
1953
1954/**
1955 * t4_config_rss_range - configure a portion of the RSS mapping table
1956 * @adapter: the adapter
1957 * @mbox: mbox to use for the FW command
1958 * @viid: virtual interface whose RSS subtable is to be written
1959 * @start: start entry in the table to write
1960 * @n: how many table entries to write
1961 * @rspq: values for the response queue lookup table
1962 * @nrspq: number of values in @rspq
1963 *
1964 * Programs the selected part of the VI's RSS mapping table with the
1965 * provided values. If @nrspq < @n the supplied values are used repeatedly
1966 * until the full table range is populated.
1967 *
1968 * The caller must ensure the values in @rspq are in the range allowed for
1969 * @viid.
1970 */
1971int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
1972 int start, int n, const u16 *rspq, unsigned int nrspq)
1973{
1974 int ret;
1975 const u16 *rsp = rspq;
1976 const u16 *rsp_end = rspq + nrspq;
1977 struct fw_rss_ind_tbl_cmd cmd;
1978
1979 memset(&cmd, 0, sizeof(cmd));
1980 cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
1981 FW_CMD_REQUEST | FW_CMD_WRITE |
1982 FW_RSS_IND_TBL_CMD_VIID(viid));
1983 cmd.retval_len16 = htonl(FW_LEN16(cmd));
1984
1985 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
1986 while (n > 0) {
1987 int nq = min(n, 32);
1988 __be32 *qp = &cmd.iq0_to_iq2;
1989
1990 cmd.niqid = htons(nq);
1991 cmd.startidx = htons(start);
1992
1993 start += nq;
1994 n -= nq;
1995
1996 while (nq > 0) {
1997 unsigned int v;
1998
1999 v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
2000 if (++rsp >= rsp_end)
2001 rsp = rspq;
2002 v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
2003 if (++rsp >= rsp_end)
2004 rsp = rspq;
2005 v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
2006 if (++rsp >= rsp_end)
2007 rsp = rspq;
2008
2009 *qp++ = htonl(v);
2010 nq -= 3;
2011 }
2012
2013 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2014 if (ret)
2015 return ret;
2016 }
2017 return 0;
2018}
2019
2020/**
2021 * t4_config_glbl_rss - configure the global RSS mode
2022 * @adapter: the adapter
2023 * @mbox: mbox to use for the FW command
2024 * @mode: global RSS mode
2025 * @flags: mode-specific flags
2026 *
2027 * Sets the global RSS mode.
2028 */
2029int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2030 unsigned int flags)
2031{
2032 struct fw_rss_glb_config_cmd c;
2033
2034 memset(&c, 0, sizeof(c));
2035 c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
2036 FW_CMD_REQUEST | FW_CMD_WRITE);
2037 c.retval_len16 = htonl(FW_LEN16(c));
2038 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
2039 c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2040 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2041 c.u.basicvirtual.mode_pkd =
2042 htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2043 c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
2044 } else
2045 return -EINVAL;
2046 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2047}
2048
56d36be4
DM
2049/**
2050 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
2051 * @adap: the adapter
2052 * @v4: holds the TCP/IP counter values
2053 * @v6: holds the TCP/IPv6 counter values
2054 *
2055 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
2056 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
2057 */
2058void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
2059 struct tp_tcp_stats *v6)
2060{
2061 u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
2062
2063#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
2064#define STAT(x) val[STAT_IDX(x)]
2065#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
2066
2067 if (v4) {
2068 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
2069 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
2070 v4->tcpOutRsts = STAT(OUT_RST);
2071 v4->tcpInSegs = STAT64(IN_SEG);
2072 v4->tcpOutSegs = STAT64(OUT_SEG);
2073 v4->tcpRetransSegs = STAT64(RXT_SEG);
2074 }
2075 if (v6) {
2076 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
2077 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
2078 v6->tcpOutRsts = STAT(OUT_RST);
2079 v6->tcpInSegs = STAT64(IN_SEG);
2080 v6->tcpOutSegs = STAT64(OUT_SEG);
2081 v6->tcpRetransSegs = STAT64(RXT_SEG);
2082 }
2083#undef STAT64
2084#undef STAT
2085#undef STAT_IDX
2086}
2087
56d36be4
DM
2088/**
2089 * t4_read_mtu_tbl - returns the values in the HW path MTU table
2090 * @adap: the adapter
2091 * @mtus: where to store the MTU values
2092 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
2093 *
2094 * Reads the HW path MTU table.
2095 */
2096void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
2097{
2098 u32 v;
2099 int i;
2100
2101 for (i = 0; i < NMTUS; ++i) {
2102 t4_write_reg(adap, TP_MTU_TABLE,
2103 MTUINDEX(0xff) | MTUVALUE(i));
2104 v = t4_read_reg(adap, TP_MTU_TABLE);
2105 mtus[i] = MTUVALUE_GET(v);
2106 if (mtu_log)
2107 mtu_log[i] = MTUWIDTH_GET(v);
2108 }
2109}
2110
636f9d37
VP
2111/**
2112 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
2113 * @adap: the adapter
2114 * @addr: the indirect TP register address
2115 * @mask: specifies the field within the register to modify
2116 * @val: new value for the field
2117 *
2118 * Sets a field of an indirect TP register to the given value.
2119 */
2120void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
2121 unsigned int mask, unsigned int val)
2122{
2123 t4_write_reg(adap, TP_PIO_ADDR, addr);
2124 val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
2125 t4_write_reg(adap, TP_PIO_DATA, val);
2126}
2127
56d36be4
DM
2128/**
2129 * init_cong_ctrl - initialize congestion control parameters
2130 * @a: the alpha values for congestion control
2131 * @b: the beta values for congestion control
2132 *
2133 * Initialize the congestion control parameters.
2134 */
91744948 2135static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
2136{
2137 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2138 a[9] = 2;
2139 a[10] = 3;
2140 a[11] = 4;
2141 a[12] = 5;
2142 a[13] = 6;
2143 a[14] = 7;
2144 a[15] = 8;
2145 a[16] = 9;
2146 a[17] = 10;
2147 a[18] = 14;
2148 a[19] = 17;
2149 a[20] = 21;
2150 a[21] = 25;
2151 a[22] = 30;
2152 a[23] = 35;
2153 a[24] = 45;
2154 a[25] = 60;
2155 a[26] = 80;
2156 a[27] = 100;
2157 a[28] = 200;
2158 a[29] = 300;
2159 a[30] = 400;
2160 a[31] = 500;
2161
2162 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2163 b[9] = b[10] = 1;
2164 b[11] = b[12] = 2;
2165 b[13] = b[14] = b[15] = b[16] = 3;
2166 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2167 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2168 b[28] = b[29] = 6;
2169 b[30] = b[31] = 7;
2170}
2171
2172/* The minimum additive increment value for the congestion control table */
2173#define CC_MIN_INCR 2U
2174
2175/**
2176 * t4_load_mtus - write the MTU and congestion control HW tables
2177 * @adap: the adapter
2178 * @mtus: the values for the MTU table
2179 * @alpha: the values for the congestion control alpha parameter
2180 * @beta: the values for the congestion control beta parameter
2181 *
2182 * Write the HW MTU table with the supplied MTUs and the high-speed
2183 * congestion control table with the supplied alpha, beta, and MTUs.
2184 * We write the two tables together because the additive increments
2185 * depend on the MTUs.
2186 */
2187void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
2188 const unsigned short *alpha, const unsigned short *beta)
2189{
2190 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2191 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2192 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2193 28672, 40960, 57344, 81920, 114688, 163840, 229376
2194 };
2195
2196 unsigned int i, w;
2197
2198 for (i = 0; i < NMTUS; ++i) {
2199 unsigned int mtu = mtus[i];
2200 unsigned int log2 = fls(mtu);
2201
2202 if (!(mtu & ((1 << log2) >> 2))) /* round */
2203 log2--;
2204 t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
2205 MTUWIDTH(log2) | MTUVALUE(mtu));
2206
2207 for (w = 0; w < NCCTRL_WIN; ++w) {
2208 unsigned int inc;
2209
2210 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2211 CC_MIN_INCR);
2212
2213 t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
2214 (w << 16) | (beta[w] << 13) | inc);
2215 }
2216 }
2217}
2218
56d36be4
DM
2219/**
2220 * get_mps_bg_map - return the buffer groups associated with a port
2221 * @adap: the adapter
2222 * @idx: the port index
2223 *
2224 * Returns a bitmap indicating which MPS buffer groups are associated
2225 * with the given port. Bit i is set if buffer group i is used by the
2226 * port.
2227 */
2228static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
2229{
2230 u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
2231
2232 if (n == 0)
2233 return idx == 0 ? 0xf : 0;
2234 if (n == 1)
2235 return idx < 2 ? (3 << (2 * idx)) : 0;
2236 return 1 << idx;
2237}
2238
2239/**
2240 * t4_get_port_stats - collect port statistics
2241 * @adap: the adapter
2242 * @idx: the port index
2243 * @p: the stats structure to fill
2244 *
2245 * Collect statistics related to the given port from HW.
2246 */
2247void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
2248{
2249 u32 bgmap = get_mps_bg_map(adap, idx);
2250
2251#define GET_STAT(name) \
0a57a536 2252 t4_read_reg64(adap, \
d14807dd 2253 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 2254 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
2255#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
2256
2257 p->tx_octets = GET_STAT(TX_PORT_BYTES);
2258 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
2259 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
2260 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
2261 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
2262 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
2263 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
2264 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
2265 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
2266 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
2267 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
2268 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
2269 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
2270 p->tx_drop = GET_STAT(TX_PORT_DROP);
2271 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
2272 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
2273 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
2274 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
2275 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
2276 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
2277 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
2278 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
2279 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
2280
2281 p->rx_octets = GET_STAT(RX_PORT_BYTES);
2282 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
2283 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
2284 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
2285 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
2286 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
2287 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
2288 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
2289 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
2290 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
2291 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
2292 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
2293 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
2294 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
2295 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
2296 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
2297 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
2298 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
2299 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
2300 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
2301 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
2302 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
2303 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
2304 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
2305 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
2306 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
2307 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
2308
2309 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
2310 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
2311 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
2312 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
2313 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
2314 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
2315 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
2316 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
2317
2318#undef GET_STAT
2319#undef GET_STAT_COM
2320}
2321
56d36be4
DM
2322/**
2323 * t4_wol_magic_enable - enable/disable magic packet WoL
2324 * @adap: the adapter
2325 * @port: the physical port index
2326 * @addr: MAC address expected in magic packets, %NULL to disable
2327 *
2328 * Enables/disables magic packet wake-on-LAN for the selected port.
2329 */
2330void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
2331 const u8 *addr)
2332{
0a57a536
SR
2333 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
2334
d14807dd 2335 if (is_t4(adap->params.chip)) {
0a57a536
SR
2336 mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
2337 mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
2338 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
2339 } else {
2340 mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
2341 mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
2342 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
2343 }
2344
56d36be4 2345 if (addr) {
0a57a536 2346 t4_write_reg(adap, mag_id_reg_l,
56d36be4
DM
2347 (addr[2] << 24) | (addr[3] << 16) |
2348 (addr[4] << 8) | addr[5]);
0a57a536 2349 t4_write_reg(adap, mag_id_reg_h,
56d36be4
DM
2350 (addr[0] << 8) | addr[1]);
2351 }
0a57a536 2352 t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
56d36be4
DM
2353 addr ? MAGICEN : 0);
2354}
2355
2356/**
2357 * t4_wol_pat_enable - enable/disable pattern-based WoL
2358 * @adap: the adapter
2359 * @port: the physical port index
2360 * @map: bitmap of which HW pattern filters to set
2361 * @mask0: byte mask for bytes 0-63 of a packet
2362 * @mask1: byte mask for bytes 64-127 of a packet
2363 * @crc: Ethernet CRC for selected bytes
2364 * @enable: enable/disable switch
2365 *
2366 * Sets the pattern filters indicated in @map to mask out the bytes
2367 * specified in @mask0/@mask1 in received packets and compare the CRC of
2368 * the resulting packet against @crc. If @enable is %true pattern-based
2369 * WoL is enabled, otherwise disabled.
2370 */
2371int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
2372 u64 mask0, u64 mask1, unsigned int crc, bool enable)
2373{
2374 int i;
0a57a536
SR
2375 u32 port_cfg_reg;
2376
d14807dd 2377 if (is_t4(adap->params.chip))
0a57a536
SR
2378 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
2379 else
2380 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
56d36be4
DM
2381
2382 if (!enable) {
0a57a536 2383 t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
56d36be4
DM
2384 return 0;
2385 }
2386 if (map > 0xff)
2387 return -EINVAL;
2388
0a57a536 2389#define EPIO_REG(name) \
d14807dd 2390 (is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
0a57a536 2391 T5_PORT_REG(port, MAC_PORT_EPIO_##name))
56d36be4
DM
2392
2393 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
2394 t4_write_reg(adap, EPIO_REG(DATA2), mask1);
2395 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
2396
2397 for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
2398 if (!(map & 1))
2399 continue;
2400
2401 /* write byte masks */
2402 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
2403 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
2404 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
ce91a923 2405 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
56d36be4
DM
2406 return -ETIMEDOUT;
2407
2408 /* write CRC */
2409 t4_write_reg(adap, EPIO_REG(DATA0), crc);
2410 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
2411 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
ce91a923 2412 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
56d36be4
DM
2413 return -ETIMEDOUT;
2414 }
2415#undef EPIO_REG
2416
2417 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
2418 return 0;
2419}
2420
f2b7e78d
VP
2421/* t4_mk_filtdelwr - create a delete filter WR
2422 * @ftid: the filter ID
2423 * @wr: the filter work request to populate
2424 * @qid: ingress queue to receive the delete notification
2425 *
2426 * Creates a filter work request to delete the supplied filter. If @qid is
2427 * negative the delete notification is suppressed.
2428 */
2429void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
2430{
2431 memset(wr, 0, sizeof(*wr));
2432 wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
2433 wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16));
2434 wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
2435 V_FW_FILTER_WR_NOREPLY(qid < 0));
2436 wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
2437 if (qid >= 0)
2438 wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
2439}
2440
56d36be4
DM
2441#define INIT_CMD(var, cmd, rd_wr) do { \
2442 (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
2443 FW_CMD_REQUEST | FW_CMD_##rd_wr); \
2444 (var).retval_len16 = htonl(FW_LEN16(var)); \
2445} while (0)
2446
8caa1e84
VP
2447int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
2448 u32 addr, u32 val)
2449{
2450 struct fw_ldst_cmd c;
2451
2452 memset(&c, 0, sizeof(c));
636f9d37
VP
2453 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
2454 FW_CMD_WRITE |
2455 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
8caa1e84
VP
2456 c.cycles_to_len16 = htonl(FW_LEN16(c));
2457 c.u.addrval.addr = htonl(addr);
2458 c.u.addrval.val = htonl(val);
2459
2460 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2461}
2462
49ce9c2c 2463/**
8caa1e84
VP
2464 * t4_mem_win_read_len - read memory through PCIE memory window
2465 * @adap: the adapter
2466 * @addr: address of first byte requested aligned on 32b.
2467 * @data: len bytes to hold the data read
2468 * @len: amount of data to read from window. Must be <=
19dd37ba
SR
2469 * MEMWIN0_APERATURE after adjusting for 16B for T4 and
2470 * 128B for T5 alignment requirements of the the memory window.
8caa1e84
VP
2471 *
2472 * Read len bytes of data from MC starting at @addr.
2473 */
2474int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
2475{
19dd37ba 2476 int i, off;
d14807dd 2477 u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
8caa1e84 2478
19dd37ba 2479 /* Align on a 2KB boundary.
8caa1e84 2480 */
19dd37ba 2481 off = addr & MEMWIN0_APERTURE;
8caa1e84
VP
2482 if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
2483 return -EINVAL;
2484
19dd37ba
SR
2485 t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
2486 (addr & ~MEMWIN0_APERTURE) | win_pf);
840f3000 2487 t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
8caa1e84
VP
2488
2489 for (i = 0; i < len; i += 4)
404d9e3f
VP
2490 *data++ = (__force __be32) t4_read_reg(adap,
2491 (MEMWIN0_BASE + off + i));
8caa1e84
VP
2492
2493 return 0;
2494}
2495
56d36be4
DM
2496/**
2497 * t4_mdio_rd - read a PHY register through MDIO
2498 * @adap: the adapter
2499 * @mbox: mailbox to use for the FW command
2500 * @phy_addr: the PHY address
2501 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2502 * @reg: the register to read
2503 * @valp: where to store the value
2504 *
2505 * Issues a FW command through the given mailbox to read a PHY register.
2506 */
2507int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2508 unsigned int mmd, unsigned int reg, u16 *valp)
2509{
2510 int ret;
2511 struct fw_ldst_cmd c;
2512
2513 memset(&c, 0, sizeof(c));
2514 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
2515 FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
2516 c.cycles_to_len16 = htonl(FW_LEN16(c));
2517 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
2518 FW_LDST_CMD_MMD(mmd));
2519 c.u.mdio.raddr = htons(reg);
2520
2521 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2522 if (ret == 0)
2523 *valp = ntohs(c.u.mdio.rval);
2524 return ret;
2525}
2526
2527/**
2528 * t4_mdio_wr - write a PHY register through MDIO
2529 * @adap: the adapter
2530 * @mbox: mailbox to use for the FW command
2531 * @phy_addr: the PHY address
2532 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2533 * @reg: the register to write
2534 * @valp: value to write
2535 *
2536 * Issues a FW command through the given mailbox to write a PHY register.
2537 */
2538int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2539 unsigned int mmd, unsigned int reg, u16 val)
2540{
2541 struct fw_ldst_cmd c;
2542
2543 memset(&c, 0, sizeof(c));
2544 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
2545 FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
2546 c.cycles_to_len16 = htonl(FW_LEN16(c));
2547 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
2548 FW_LDST_CMD_MMD(mmd));
2549 c.u.mdio.raddr = htons(reg);
2550 c.u.mdio.rval = htons(val);
2551
2552 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2553}
2554
2555/**
636f9d37
VP
2556 * t4_fw_hello - establish communication with FW
2557 * @adap: the adapter
2558 * @mbox: mailbox to use for the FW command
2559 * @evt_mbox: mailbox to receive async FW events
2560 * @master: specifies the caller's willingness to be the device master
2561 * @state: returns the current device state (if non-NULL)
56d36be4 2562 *
636f9d37
VP
2563 * Issues a command to establish communication with FW. Returns either
2564 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
2565 */
2566int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
2567 enum dev_master master, enum dev_state *state)
2568{
2569 int ret;
2570 struct fw_hello_cmd c;
636f9d37
VP
2571 u32 v;
2572 unsigned int master_mbox;
2573 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 2574
636f9d37
VP
2575retry:
2576 memset(&c, 0, sizeof(c));
56d36be4 2577 INIT_CMD(c, HELLO, WRITE);
ce91a923 2578 c.err_to_clearinit = htonl(
56d36be4
DM
2579 FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
2580 FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
636f9d37
VP
2581 FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
2582 FW_HELLO_CMD_MBMASTER_MASK) |
2583 FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
2584 FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
2585 FW_HELLO_CMD_CLEARINIT);
56d36be4 2586
636f9d37
VP
2587 /*
2588 * Issue the HELLO command to the firmware. If it's not successful
2589 * but indicates that we got a "busy" or "timeout" condition, retry
2590 * the HELLO until we exhaust our retry limit.
2591 */
56d36be4 2592 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
2593 if (ret < 0) {
2594 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
2595 goto retry;
2596 return ret;
2597 }
2598
ce91a923 2599 v = ntohl(c.err_to_clearinit);
636f9d37
VP
2600 master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
2601 if (state) {
2602 if (v & FW_HELLO_CMD_ERR)
56d36be4 2603 *state = DEV_STATE_ERR;
636f9d37
VP
2604 else if (v & FW_HELLO_CMD_INIT)
2605 *state = DEV_STATE_INIT;
56d36be4
DM
2606 else
2607 *state = DEV_STATE_UNINIT;
2608 }
636f9d37
VP
2609
2610 /*
2611 * If we're not the Master PF then we need to wait around for the
2612 * Master PF Driver to finish setting up the adapter.
2613 *
2614 * Note that we also do this wait if we're a non-Master-capable PF and
2615 * there is no current Master PF; a Master PF may show up momentarily
2616 * and we wouldn't want to fail pointlessly. (This can happen when an
2617 * OS loads lots of different drivers rapidly at the same time). In
2618 * this case, the Master PF returned by the firmware will be
2619 * FW_PCIE_FW_MASTER_MASK so the test below will work ...
2620 */
2621 if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
2622 master_mbox != mbox) {
2623 int waiting = FW_CMD_HELLO_TIMEOUT;
2624
2625 /*
2626 * Wait for the firmware to either indicate an error or
2627 * initialized state. If we see either of these we bail out
2628 * and report the issue to the caller. If we exhaust the
2629 * "hello timeout" and we haven't exhausted our retries, try
2630 * again. Otherwise bail with a timeout error.
2631 */
2632 for (;;) {
2633 u32 pcie_fw;
2634
2635 msleep(50);
2636 waiting -= 50;
2637
2638 /*
2639 * If neither Error nor Initialialized are indicated
2640 * by the firmware keep waiting till we exaust our
2641 * timeout ... and then retry if we haven't exhausted
2642 * our retries ...
2643 */
2644 pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
2645 if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
2646 if (waiting <= 0) {
2647 if (retries-- > 0)
2648 goto retry;
2649
2650 return -ETIMEDOUT;
2651 }
2652 continue;
2653 }
2654
2655 /*
2656 * We either have an Error or Initialized condition
2657 * report errors preferentially.
2658 */
2659 if (state) {
2660 if (pcie_fw & FW_PCIE_FW_ERR)
2661 *state = DEV_STATE_ERR;
2662 else if (pcie_fw & FW_PCIE_FW_INIT)
2663 *state = DEV_STATE_INIT;
2664 }
2665
2666 /*
2667 * If we arrived before a Master PF was selected and
2668 * there's not a valid Master PF, grab its identity
2669 * for our caller.
2670 */
2671 if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
2672 (pcie_fw & FW_PCIE_FW_MASTER_VLD))
2673 master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
2674 break;
2675 }
2676 }
2677
2678 return master_mbox;
56d36be4
DM
2679}
2680
2681/**
2682 * t4_fw_bye - end communication with FW
2683 * @adap: the adapter
2684 * @mbox: mailbox to use for the FW command
2685 *
2686 * Issues a command to terminate communication with FW.
2687 */
2688int t4_fw_bye(struct adapter *adap, unsigned int mbox)
2689{
2690 struct fw_bye_cmd c;
2691
0062b15c 2692 memset(&c, 0, sizeof(c));
56d36be4
DM
2693 INIT_CMD(c, BYE, WRITE);
2694 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2695}
2696
2697/**
2698 * t4_init_cmd - ask FW to initialize the device
2699 * @adap: the adapter
2700 * @mbox: mailbox to use for the FW command
2701 *
2702 * Issues a command to FW to partially initialize the device. This
2703 * performs initialization that generally doesn't depend on user input.
2704 */
2705int t4_early_init(struct adapter *adap, unsigned int mbox)
2706{
2707 struct fw_initialize_cmd c;
2708
0062b15c 2709 memset(&c, 0, sizeof(c));
56d36be4
DM
2710 INIT_CMD(c, INITIALIZE, WRITE);
2711 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2712}
2713
2714/**
2715 * t4_fw_reset - issue a reset to FW
2716 * @adap: the adapter
2717 * @mbox: mailbox to use for the FW command
2718 * @reset: specifies the type of reset to perform
2719 *
2720 * Issues a reset command of the specified type to FW.
2721 */
2722int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
2723{
2724 struct fw_reset_cmd c;
2725
0062b15c 2726 memset(&c, 0, sizeof(c));
56d36be4
DM
2727 INIT_CMD(c, RESET, WRITE);
2728 c.val = htonl(reset);
2729 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2730}
2731
26f7cbc0
VP
2732/**
2733 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
2734 * @adap: the adapter
2735 * @mbox: mailbox to use for the FW RESET command (if desired)
2736 * @force: force uP into RESET even if FW RESET command fails
2737 *
2738 * Issues a RESET command to firmware (if desired) with a HALT indication
2739 * and then puts the microprocessor into RESET state. The RESET command
2740 * will only be issued if a legitimate mailbox is provided (mbox <=
2741 * FW_PCIE_FW_MASTER_MASK).
2742 *
2743 * This is generally used in order for the host to safely manipulate the
2744 * adapter without fear of conflicting with whatever the firmware might
2745 * be doing. The only way out of this state is to RESTART the firmware
2746 * ...
2747 */
2748int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
2749{
2750 int ret = 0;
2751
2752 /*
2753 * If a legitimate mailbox is provided, issue a RESET command
2754 * with a HALT indication.
2755 */
2756 if (mbox <= FW_PCIE_FW_MASTER_MASK) {
2757 struct fw_reset_cmd c;
2758
2759 memset(&c, 0, sizeof(c));
2760 INIT_CMD(c, RESET, WRITE);
2761 c.val = htonl(PIORST | PIORSTMODE);
2762 c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
2763 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2764 }
2765
2766 /*
2767 * Normally we won't complete the operation if the firmware RESET
2768 * command fails but if our caller insists we'll go ahead and put the
2769 * uP into RESET. This can be useful if the firmware is hung or even
2770 * missing ... We'll have to take the risk of putting the uP into
2771 * RESET without the cooperation of firmware in that case.
2772 *
2773 * We also force the firmware's HALT flag to be on in case we bypassed
2774 * the firmware RESET command above or we're dealing with old firmware
2775 * which doesn't have the HALT capability. This will serve as a flag
2776 * for the incoming firmware to know that it's coming out of a HALT
2777 * rather than a RESET ... if it's new enough to understand that ...
2778 */
2779 if (ret == 0 || force) {
2780 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
2781 t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
2782 FW_PCIE_FW_HALT);
2783 }
2784
2785 /*
2786 * And we always return the result of the firmware RESET command
2787 * even when we force the uP into RESET ...
2788 */
2789 return ret;
2790}
2791
2792/**
2793 * t4_fw_restart - restart the firmware by taking the uP out of RESET
2794 * @adap: the adapter
2795 * @reset: if we want to do a RESET to restart things
2796 *
2797 * Restart firmware previously halted by t4_fw_halt(). On successful
2798 * return the previous PF Master remains as the new PF Master and there
2799 * is no need to issue a new HELLO command, etc.
2800 *
2801 * We do this in two ways:
2802 *
2803 * 1. If we're dealing with newer firmware we'll simply want to take
2804 * the chip's microprocessor out of RESET. This will cause the
2805 * firmware to start up from its start vector. And then we'll loop
2806 * until the firmware indicates it's started again (PCIE_FW.HALT
2807 * reset to 0) or we timeout.
2808 *
2809 * 2. If we're dealing with older firmware then we'll need to RESET
2810 * the chip since older firmware won't recognize the PCIE_FW.HALT
2811 * flag and automatically RESET itself on startup.
2812 */
2813int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
2814{
2815 if (reset) {
2816 /*
2817 * Since we're directing the RESET instead of the firmware
2818 * doing it automatically, we need to clear the PCIE_FW.HALT
2819 * bit.
2820 */
2821 t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
2822
2823 /*
2824 * If we've been given a valid mailbox, first try to get the
2825 * firmware to do the RESET. If that works, great and we can
2826 * return success. Otherwise, if we haven't been given a
2827 * valid mailbox or the RESET command failed, fall back to
2828 * hitting the chip with a hammer.
2829 */
2830 if (mbox <= FW_PCIE_FW_MASTER_MASK) {
2831 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
2832 msleep(100);
2833 if (t4_fw_reset(adap, mbox,
2834 PIORST | PIORSTMODE) == 0)
2835 return 0;
2836 }
2837
2838 t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
2839 msleep(2000);
2840 } else {
2841 int ms;
2842
2843 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
2844 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
2845 if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
2846 return 0;
2847 msleep(100);
2848 ms += 100;
2849 }
2850 return -ETIMEDOUT;
2851 }
2852 return 0;
2853}
2854
2855/**
2856 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
2857 * @adap: the adapter
2858 * @mbox: mailbox to use for the FW RESET command (if desired)
2859 * @fw_data: the firmware image to write
2860 * @size: image size
2861 * @force: force upgrade even if firmware doesn't cooperate
2862 *
2863 * Perform all of the steps necessary for upgrading an adapter's
2864 * firmware image. Normally this requires the cooperation of the
2865 * existing firmware in order to halt all existing activities
2866 * but if an invalid mailbox token is passed in we skip that step
2867 * (though we'll still put the adapter microprocessor into RESET in
2868 * that case).
2869 *
2870 * On successful return the new firmware will have been loaded and
2871 * the adapter will have been fully RESET losing all previous setup
2872 * state. On unsuccessful return the adapter may be completely hosed ...
2873 * positive errno indicates that the adapter is ~probably~ intact, a
2874 * negative errno indicates that things are looking bad ...
2875 */
2876int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
2877 const u8 *fw_data, unsigned int size, int force)
2878{
2879 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
2880 int reset, ret;
2881
2882 ret = t4_fw_halt(adap, mbox, force);
2883 if (ret < 0 && !force)
2884 return ret;
2885
2886 ret = t4_load_fw(adap, fw_data, size);
2887 if (ret < 0)
2888 return ret;
2889
2890 /*
2891 * Older versions of the firmware don't understand the new
2892 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
2893 * restart. So for newly loaded older firmware we'll have to do the
2894 * RESET for it so it starts up on a clean slate. We can tell if
2895 * the newly loaded firmware will handle this right by checking
2896 * its header flags to see if it advertises the capability.
2897 */
2898 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
2899 return t4_fw_restart(adap, mbox, reset);
2900}
2901
2902
636f9d37
VP
2903/**
2904 * t4_fw_config_file - setup an adapter via a Configuration File
2905 * @adap: the adapter
2906 * @mbox: mailbox to use for the FW command
2907 * @mtype: the memory type where the Configuration File is located
2908 * @maddr: the memory address where the Configuration File is located
2909 * @finiver: return value for CF [fini] version
2910 * @finicsum: return value for CF [fini] checksum
2911 * @cfcsum: return value for CF computed checksum
2912 *
2913 * Issue a command to get the firmware to process the Configuration
2914 * File located at the specified mtype/maddress. If the Configuration
2915 * File is processed successfully and return value pointers are
2916 * provided, the Configuration File "[fini] section version and
2917 * checksum values will be returned along with the computed checksum.
2918 * It's up to the caller to decide how it wants to respond to the
2919 * checksums not matching but it recommended that a prominant warning
2920 * be emitted in order to help people rapidly identify changed or
2921 * corrupted Configuration Files.
2922 *
2923 * Also note that it's possible to modify things like "niccaps",
2924 * "toecaps",etc. between processing the Configuration File and telling
2925 * the firmware to use the new configuration. Callers which want to
2926 * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
2927 * Configuration Files if they want to do this.
2928 */
2929int t4_fw_config_file(struct adapter *adap, unsigned int mbox,
2930 unsigned int mtype, unsigned int maddr,
2931 u32 *finiver, u32 *finicsum, u32 *cfcsum)
2932{
2933 struct fw_caps_config_cmd caps_cmd;
2934 int ret;
2935
2936 /*
2937 * Tell the firmware to process the indicated Configuration File.
2938 * If there are no errors and the caller has provided return value
2939 * pointers for the [fini] section version, checksum and computed
2940 * checksum, pass those back to the caller.
2941 */
2942 memset(&caps_cmd, 0, sizeof(caps_cmd));
2943 caps_cmd.op_to_write =
2944 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2945 FW_CMD_REQUEST |
2946 FW_CMD_READ);
ce91a923 2947 caps_cmd.cfvalid_to_len16 =
636f9d37
VP
2948 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
2949 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
2950 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
2951 FW_LEN16(caps_cmd));
2952 ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd);
2953 if (ret < 0)
2954 return ret;
2955
2956 if (finiver)
2957 *finiver = ntohl(caps_cmd.finiver);
2958 if (finicsum)
2959 *finicsum = ntohl(caps_cmd.finicsum);
2960 if (cfcsum)
2961 *cfcsum = ntohl(caps_cmd.cfcsum);
2962
2963 /*
2964 * And now tell the firmware to use the configuration we just loaded.
2965 */
2966 caps_cmd.op_to_write =
2967 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2968 FW_CMD_REQUEST |
2969 FW_CMD_WRITE);
ce91a923 2970 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
2971 return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL);
2972}
2973
2974/**
2975 * t4_fixup_host_params - fix up host-dependent parameters
2976 * @adap: the adapter
2977 * @page_size: the host's Base Page Size
2978 * @cache_line_size: the host's Cache Line Size
2979 *
2980 * Various registers in T4 contain values which are dependent on the
2981 * host's Base Page and Cache Line Sizes. This function will fix all of
2982 * those registers with the appropriate values as passed in ...
2983 */
2984int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
2985 unsigned int cache_line_size)
2986{
2987 unsigned int page_shift = fls(page_size) - 1;
2988 unsigned int sge_hps = page_shift - 10;
2989 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
2990 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
2991 unsigned int fl_align_log = fls(fl_align) - 1;
2992
2993 t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
2994 HOSTPAGESIZEPF0(sge_hps) |
2995 HOSTPAGESIZEPF1(sge_hps) |
2996 HOSTPAGESIZEPF2(sge_hps) |
2997 HOSTPAGESIZEPF3(sge_hps) |
2998 HOSTPAGESIZEPF4(sge_hps) |
2999 HOSTPAGESIZEPF5(sge_hps) |
3000 HOSTPAGESIZEPF6(sge_hps) |
3001 HOSTPAGESIZEPF7(sge_hps));
3002
3003 t4_set_reg_field(adap, SGE_CONTROL,
0dad9e94 3004 INGPADBOUNDARY_MASK |
636f9d37
VP
3005 EGRSTATUSPAGESIZE_MASK,
3006 INGPADBOUNDARY(fl_align_log - 5) |
3007 EGRSTATUSPAGESIZE(stat_len != 64));
3008
3009 /*
3010 * Adjust various SGE Free List Host Buffer Sizes.
3011 *
3012 * This is something of a crock since we're using fixed indices into
3013 * the array which are also known by the sge.c code and the T4
3014 * Firmware Configuration File. We need to come up with a much better
3015 * approach to managing this array. For now, the first four entries
3016 * are:
3017 *
3018 * 0: Host Page Size
3019 * 1: 64KB
3020 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3021 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3022 *
3023 * For the single-MTU buffers in unpacked mode we need to include
3024 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3025 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3026 * Padding boundry. All of these are accommodated in the Factory
3027 * Default Firmware Configuration File but we need to adjust it for
3028 * this host's cache line size.
3029 */
3030 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
3031 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
3032 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
3033 & ~(fl_align-1));
3034 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
3035 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
3036 & ~(fl_align-1));
3037
3038 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
3039
3040 return 0;
3041}
3042
3043/**
3044 * t4_fw_initialize - ask FW to initialize the device
3045 * @adap: the adapter
3046 * @mbox: mailbox to use for the FW command
3047 *
3048 * Issues a command to FW to partially initialize the device. This
3049 * performs initialization that generally doesn't depend on user input.
3050 */
3051int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3052{
3053 struct fw_initialize_cmd c;
3054
3055 memset(&c, 0, sizeof(c));
3056 INIT_CMD(c, INITIALIZE, WRITE);
3057 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3058}
3059
56d36be4
DM
3060/**
3061 * t4_query_params - query FW or device parameters
3062 * @adap: the adapter
3063 * @mbox: mailbox to use for the FW command
3064 * @pf: the PF
3065 * @vf: the VF
3066 * @nparams: the number of parameters
3067 * @params: the parameter names
3068 * @val: the parameter values
3069 *
3070 * Reads the value of FW or device parameters. Up to 7 parameters can be
3071 * queried at once.
3072 */
3073int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3074 unsigned int vf, unsigned int nparams, const u32 *params,
3075 u32 *val)
3076{
3077 int i, ret;
3078 struct fw_params_cmd c;
3079 __be32 *p = &c.param[0].mnem;
3080
3081 if (nparams > 7)
3082 return -EINVAL;
3083
3084 memset(&c, 0, sizeof(c));
3085 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
3086 FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
3087 FW_PARAMS_CMD_VFN(vf));
3088 c.retval_len16 = htonl(FW_LEN16(c));
3089 for (i = 0; i < nparams; i++, p += 2)
3090 *p = htonl(*params++);
3091
3092 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3093 if (ret == 0)
3094 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3095 *val++ = ntohl(*p);
3096 return ret;
3097}
3098
3099/**
3100 * t4_set_params - sets FW or device parameters
3101 * @adap: the adapter
3102 * @mbox: mailbox to use for the FW command
3103 * @pf: the PF
3104 * @vf: the VF
3105 * @nparams: the number of parameters
3106 * @params: the parameter names
3107 * @val: the parameter values
3108 *
3109 * Sets the value of FW or device parameters. Up to 7 parameters can be
3110 * specified at once.
3111 */
3112int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3113 unsigned int vf, unsigned int nparams, const u32 *params,
3114 const u32 *val)
3115{
3116 struct fw_params_cmd c;
3117 __be32 *p = &c.param[0].mnem;
3118
3119 if (nparams > 7)
3120 return -EINVAL;
3121
3122 memset(&c, 0, sizeof(c));
3123 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
3124 FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
3125 FW_PARAMS_CMD_VFN(vf));
3126 c.retval_len16 = htonl(FW_LEN16(c));
3127 while (nparams--) {
3128 *p++ = htonl(*params++);
3129 *p++ = htonl(*val++);
3130 }
3131
3132 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3133}
3134
3135/**
3136 * t4_cfg_pfvf - configure PF/VF resource limits
3137 * @adap: the adapter
3138 * @mbox: mailbox to use for the FW command
3139 * @pf: the PF being configured
3140 * @vf: the VF being configured
3141 * @txq: the max number of egress queues
3142 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
3143 * @rxqi: the max number of interrupt-capable ingress queues
3144 * @rxq: the max number of interruptless ingress queues
3145 * @tc: the PCI traffic class
3146 * @vi: the max number of virtual interfaces
3147 * @cmask: the channel access rights mask for the PF/VF
3148 * @pmask: the port access rights mask for the PF/VF
3149 * @nexact: the maximum number of exact MPS filters
3150 * @rcaps: read capabilities
3151 * @wxcaps: write/execute capabilities
3152 *
3153 * Configures resource limits and capabilities for a physical or virtual
3154 * function.
3155 */
3156int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
3157 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
3158 unsigned int rxqi, unsigned int rxq, unsigned int tc,
3159 unsigned int vi, unsigned int cmask, unsigned int pmask,
3160 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
3161{
3162 struct fw_pfvf_cmd c;
3163
3164 memset(&c, 0, sizeof(c));
3165 c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
3166 FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
3167 FW_PFVF_CMD_VFN(vf));
3168 c.retval_len16 = htonl(FW_LEN16(c));
3169 c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
3170 FW_PFVF_CMD_NIQ(rxq));
81323b74 3171 c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
56d36be4
DM
3172 FW_PFVF_CMD_PMASK(pmask) |
3173 FW_PFVF_CMD_NEQ(txq));
3174 c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
3175 FW_PFVF_CMD_NEXACTF(nexact));
3176 c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
3177 FW_PFVF_CMD_WX_CAPS(wxcaps) |
3178 FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
3179 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3180}
3181
3182/**
3183 * t4_alloc_vi - allocate a virtual interface
3184 * @adap: the adapter
3185 * @mbox: mailbox to use for the FW command
3186 * @port: physical port associated with the VI
3187 * @pf: the PF owning the VI
3188 * @vf: the VF owning the VI
3189 * @nmac: number of MAC addresses needed (1 to 5)
3190 * @mac: the MAC addresses of the VI
3191 * @rss_size: size of RSS table slice associated with this VI
3192 *
3193 * Allocates a virtual interface for the given physical port. If @mac is
3194 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3195 * @mac should be large enough to hold @nmac Ethernet addresses, they are
3196 * stored consecutively so the space needed is @nmac * 6 bytes.
3197 * Returns a negative error number or the non-negative VI id.
3198 */
3199int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3200 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3201 unsigned int *rss_size)
3202{
3203 int ret;
3204 struct fw_vi_cmd c;
3205
3206 memset(&c, 0, sizeof(c));
3207 c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
3208 FW_CMD_WRITE | FW_CMD_EXEC |
3209 FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
3210 c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
3211 c.portid_pkd = FW_VI_CMD_PORTID(port);
3212 c.nmac = nmac - 1;
3213
3214 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3215 if (ret)
3216 return ret;
3217
3218 if (mac) {
3219 memcpy(mac, c.mac, sizeof(c.mac));
3220 switch (nmac) {
3221 case 5:
3222 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3223 case 4:
3224 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3225 case 3:
3226 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3227 case 2:
3228 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
3229 }
3230 }
3231 if (rss_size)
3232 *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
a0881cab 3233 return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
56d36be4
DM
3234}
3235
56d36be4
DM
3236/**
3237 * t4_set_rxmode - set Rx properties of a virtual interface
3238 * @adap: the adapter
3239 * @mbox: mailbox to use for the FW command
3240 * @viid: the VI id
3241 * @mtu: the new MTU or -1
3242 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3243 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3244 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 3245 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
3246 * @sleep_ok: if true we may sleep while awaiting command completion
3247 *
3248 * Sets Rx properties of a virtual interface.
3249 */
3250int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
3251 int mtu, int promisc, int all_multi, int bcast, int vlanex,
3252 bool sleep_ok)
56d36be4
DM
3253{
3254 struct fw_vi_rxmode_cmd c;
3255
3256 /* convert to FW values */
3257 if (mtu < 0)
3258 mtu = FW_RXMODE_MTU_NO_CHG;
3259 if (promisc < 0)
3260 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
3261 if (all_multi < 0)
3262 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
3263 if (bcast < 0)
3264 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
f8f5aafa
DM
3265 if (vlanex < 0)
3266 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
56d36be4
DM
3267
3268 memset(&c, 0, sizeof(c));
3269 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
3270 FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
3271 c.retval_len16 = htonl(FW_LEN16(c));
f8f5aafa
DM
3272 c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
3273 FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
3274 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
3275 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
3276 FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
56d36be4
DM
3277 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3278}
3279
3280/**
3281 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
3282 * @adap: the adapter
3283 * @mbox: mailbox to use for the FW command
3284 * @viid: the VI id
3285 * @free: if true any existing filters for this VI id are first removed
3286 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
3287 * @addr: the MAC address(es)
3288 * @idx: where to store the index of each allocated filter
3289 * @hash: pointer to hash address filter bitmap
3290 * @sleep_ok: call is allowed to sleep
3291 *
3292 * Allocates an exact-match filter for each of the supplied addresses and
3293 * sets it to the corresponding address. If @idx is not %NULL it should
3294 * have at least @naddr entries, each of which will be set to the index of
3295 * the filter allocated for the corresponding MAC address. If a filter
3296 * could not be allocated for an address its index is set to 0xffff.
3297 * If @hash is not %NULL addresses that fail to allocate an exact filter
3298 * are hashed and update the hash filter bitmap pointed at by @hash.
3299 *
3300 * Returns a negative error number or the number of filters allocated.
3301 */
3302int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
3303 unsigned int viid, bool free, unsigned int naddr,
3304 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
3305{
3306 int i, ret;
3307 struct fw_vi_mac_cmd c;
3308 struct fw_vi_mac_exact *p;
d14807dd 3309 unsigned int max_naddr = is_t4(adap->params.chip) ?
0a57a536
SR
3310 NUM_MPS_CLS_SRAM_L_INSTANCES :
3311 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
56d36be4
DM
3312
3313 if (naddr > 7)
3314 return -EINVAL;
3315
3316 memset(&c, 0, sizeof(c));
3317 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
3318 FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
3319 FW_VI_MAC_CMD_VIID(viid));
3320 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
3321 FW_CMD_LEN16((naddr + 2) / 2));
3322
3323 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
3324 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
3325 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
3326 memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
3327 }
3328
3329 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
3330 if (ret)
3331 return ret;
3332
3333 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
3334 u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
3335
3336 if (idx)
0a57a536
SR
3337 idx[i] = index >= max_naddr ? 0xffff : index;
3338 if (index < max_naddr)
56d36be4
DM
3339 ret++;
3340 else if (hash)
ce9aeb58 3341 *hash |= (1ULL << hash_mac_addr(addr[i]));
56d36be4
DM
3342 }
3343 return ret;
3344}
3345
3346/**
3347 * t4_change_mac - modifies the exact-match filter for a MAC address
3348 * @adap: the adapter
3349 * @mbox: mailbox to use for the FW command
3350 * @viid: the VI id
3351 * @idx: index of existing filter for old value of MAC address, or -1
3352 * @addr: the new MAC address value
3353 * @persist: whether a new MAC allocation should be persistent
3354 * @add_smt: if true also add the address to the HW SMT
3355 *
3356 * Modifies an exact-match filter and sets it to the new MAC address.
3357 * Note that in general it is not possible to modify the value of a given
3358 * filter so the generic way to modify an address filter is to free the one
3359 * being used by the old address value and allocate a new filter for the
3360 * new address value. @idx can be -1 if the address is a new addition.
3361 *
3362 * Returns a negative error number or the index of the filter with the new
3363 * MAC value.
3364 */
3365int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
3366 int idx, const u8 *addr, bool persist, bool add_smt)
3367{
3368 int ret, mode;
3369 struct fw_vi_mac_cmd c;
3370 struct fw_vi_mac_exact *p = c.u.exact;
d14807dd 3371 unsigned int max_mac_addr = is_t4(adap->params.chip) ?
0a57a536
SR
3372 NUM_MPS_CLS_SRAM_L_INSTANCES :
3373 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
56d36be4
DM
3374
3375 if (idx < 0) /* new allocation */
3376 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
3377 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
3378
3379 memset(&c, 0, sizeof(c));
3380 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
3381 FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
3382 c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
3383 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
3384 FW_VI_MAC_CMD_SMAC_RESULT(mode) |
3385 FW_VI_MAC_CMD_IDX(idx));
3386 memcpy(p->macaddr, addr, sizeof(p->macaddr));
3387
3388 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3389 if (ret == 0) {
3390 ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
0a57a536 3391 if (ret >= max_mac_addr)
56d36be4
DM
3392 ret = -ENOMEM;
3393 }
3394 return ret;
3395}
3396
3397/**
3398 * t4_set_addr_hash - program the MAC inexact-match hash filter
3399 * @adap: the adapter
3400 * @mbox: mailbox to use for the FW command
3401 * @viid: the VI id
3402 * @ucast: whether the hash filter should also match unicast addresses
3403 * @vec: the value to be written to the hash filter
3404 * @sleep_ok: call is allowed to sleep
3405 *
3406 * Sets the 64-bit inexact-match hash filter for a virtual interface.
3407 */
3408int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
3409 bool ucast, u64 vec, bool sleep_ok)
3410{
3411 struct fw_vi_mac_cmd c;
3412
3413 memset(&c, 0, sizeof(c));
3414 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
3415 FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
3416 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
3417 FW_VI_MAC_CMD_HASHUNIEN(ucast) |
3418 FW_CMD_LEN16(1));
3419 c.u.hash.hashvec = cpu_to_be64(vec);
3420 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3421}
3422
3423/**
3424 * t4_enable_vi - enable/disable a virtual interface
3425 * @adap: the adapter
3426 * @mbox: mailbox to use for the FW command
3427 * @viid: the VI id
3428 * @rx_en: 1=enable Rx, 0=disable Rx
3429 * @tx_en: 1=enable Tx, 0=disable Tx
3430 *
3431 * Enables/disables a virtual interface.
3432 */
3433int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
3434 bool rx_en, bool tx_en)
3435{
3436 struct fw_vi_enable_cmd c;
3437
3438 memset(&c, 0, sizeof(c));
3439 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
3440 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
3441 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
3442 FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
3443 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3444}
3445
3446/**
3447 * t4_identify_port - identify a VI's port by blinking its LED
3448 * @adap: the adapter
3449 * @mbox: mailbox to use for the FW command
3450 * @viid: the VI id
3451 * @nblinks: how many times to blink LED at 2.5 Hz
3452 *
3453 * Identifies a VI's port by blinking its LED.
3454 */
3455int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
3456 unsigned int nblinks)
3457{
3458 struct fw_vi_enable_cmd c;
3459
0062b15c 3460 memset(&c, 0, sizeof(c));
56d36be4
DM
3461 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
3462 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
3463 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
3464 c.blinkdur = htons(nblinks);
3465 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
3466}
3467
3468/**
3469 * t4_iq_free - free an ingress queue and its FLs
3470 * @adap: the adapter
3471 * @mbox: mailbox to use for the FW command
3472 * @pf: the PF owning the queues
3473 * @vf: the VF owning the queues
3474 * @iqtype: the ingress queue type
3475 * @iqid: ingress queue id
3476 * @fl0id: FL0 queue id or 0xffff if no attached FL0
3477 * @fl1id: FL1 queue id or 0xffff if no attached FL1
3478 *
3479 * Frees an ingress queue and its associated FLs, if any.
3480 */
3481int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3482 unsigned int vf, unsigned int iqtype, unsigned int iqid,
3483 unsigned int fl0id, unsigned int fl1id)
3484{
3485 struct fw_iq_cmd c;
3486
3487 memset(&c, 0, sizeof(c));
3488 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
3489 FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
3490 FW_IQ_CMD_VFN(vf));
3491 c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
3492 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
3493 c.iqid = htons(iqid);
3494 c.fl0id = htons(fl0id);
3495 c.fl1id = htons(fl1id);
3496 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3497}
3498
3499/**
3500 * t4_eth_eq_free - free an Ethernet egress queue
3501 * @adap: the adapter
3502 * @mbox: mailbox to use for the FW command
3503 * @pf: the PF owning the queue
3504 * @vf: the VF owning the queue
3505 * @eqid: egress queue id
3506 *
3507 * Frees an Ethernet egress queue.
3508 */
3509int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3510 unsigned int vf, unsigned int eqid)
3511{
3512 struct fw_eq_eth_cmd c;
3513
3514 memset(&c, 0, sizeof(c));
3515 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
3516 FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
3517 FW_EQ_ETH_CMD_VFN(vf));
3518 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
3519 c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
3520 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3521}
3522
3523/**
3524 * t4_ctrl_eq_free - free a control egress queue
3525 * @adap: the adapter
3526 * @mbox: mailbox to use for the FW command
3527 * @pf: the PF owning the queue
3528 * @vf: the VF owning the queue
3529 * @eqid: egress queue id
3530 *
3531 * Frees a control egress queue.
3532 */
3533int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3534 unsigned int vf, unsigned int eqid)
3535{
3536 struct fw_eq_ctrl_cmd c;
3537
3538 memset(&c, 0, sizeof(c));
3539 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
3540 FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
3541 FW_EQ_CTRL_CMD_VFN(vf));
3542 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
3543 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
3544 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3545}
3546
3547/**
3548 * t4_ofld_eq_free - free an offload egress queue
3549 * @adap: the adapter
3550 * @mbox: mailbox to use for the FW command
3551 * @pf: the PF owning the queue
3552 * @vf: the VF owning the queue
3553 * @eqid: egress queue id
3554 *
3555 * Frees a control egress queue.
3556 */
3557int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3558 unsigned int vf, unsigned int eqid)
3559{
3560 struct fw_eq_ofld_cmd c;
3561
3562 memset(&c, 0, sizeof(c));
3563 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
3564 FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
3565 FW_EQ_OFLD_CMD_VFN(vf));
3566 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
3567 c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
3568 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3569}
3570
3571/**
3572 * t4_handle_fw_rpl - process a FW reply message
3573 * @adap: the adapter
3574 * @rpl: start of the FW message
3575 *
3576 * Processes a FW message, such as link state change messages.
3577 */
3578int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
3579{
3580 u8 opcode = *(const u8 *)rpl;
3581
3582 if (opcode == FW_PORT_CMD) { /* link/module state change message */
3583 int speed = 0, fc = 0;
3584 const struct fw_port_cmd *p = (void *)rpl;
3585 int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
3586 int port = adap->chan_map[chan];
3587 struct port_info *pi = adap2pinfo(adap, port);
3588 struct link_config *lc = &pi->link_cfg;
3589 u32 stat = ntohl(p->u.info.lstatus_to_modtype);
3590 int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
3591 u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
3592
3593 if (stat & FW_PORT_CMD_RXPAUSE)
3594 fc |= PAUSE_RX;
3595 if (stat & FW_PORT_CMD_TXPAUSE)
3596 fc |= PAUSE_TX;
3597 if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
3598 speed = SPEED_100;
3599 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
3600 speed = SPEED_1000;
3601 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
3602 speed = SPEED_10000;
3603
3604 if (link_ok != lc->link_ok || speed != lc->speed ||
3605 fc != lc->fc) { /* something changed */
3606 lc->link_ok = link_ok;
3607 lc->speed = speed;
3608 lc->fc = fc;
3609 t4_os_link_changed(adap, port, link_ok);
3610 }
3611 if (mod != pi->mod_type) {
3612 pi->mod_type = mod;
3613 t4_os_portmod_changed(adap, port);
3614 }
3615 }
3616 return 0;
3617}
3618
1dd06ae8 3619static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
3620{
3621 u16 val;
56d36be4 3622
e5c8ae5f
JL
3623 if (pci_is_pcie(adapter->pdev)) {
3624 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
3625 p->speed = val & PCI_EXP_LNKSTA_CLS;
3626 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
3627 }
3628}
3629
3630/**
3631 * init_link_config - initialize a link's SW state
3632 * @lc: structure holding the link state
3633 * @caps: link capabilities
3634 *
3635 * Initializes the SW state maintained for each link, including the link's
3636 * capabilities and default speed/flow-control/autonegotiation settings.
3637 */
1dd06ae8 3638static void init_link_config(struct link_config *lc, unsigned int caps)
56d36be4
DM
3639{
3640 lc->supported = caps;
3641 lc->requested_speed = 0;
3642 lc->speed = 0;
3643 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3644 if (lc->supported & FW_PORT_CAP_ANEG) {
3645 lc->advertising = lc->supported & ADVERT_MASK;
3646 lc->autoneg = AUTONEG_ENABLE;
3647 lc->requested_fc |= PAUSE_AUTONEG;
3648 } else {
3649 lc->advertising = 0;
3650 lc->autoneg = AUTONEG_DISABLE;
3651 }
3652}
3653
204dc3c0 3654int t4_wait_dev_ready(struct adapter *adap)
56d36be4
DM
3655{
3656 if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
3657 return 0;
3658 msleep(500);
3659 return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
3660}
3661
91744948 3662static int get_flash_params(struct adapter *adap)
900a6596
DM
3663{
3664 int ret;
3665 u32 info;
3666
3667 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
3668 if (!ret)
3669 ret = sf1_read(adap, 3, 0, 1, &info);
3670 t4_write_reg(adap, SF_OP, 0); /* unlock SF */
3671 if (ret)
3672 return ret;
3673
3674 if ((info & 0xff) != 0x20) /* not a Numonix flash */
3675 return -EINVAL;
3676 info >>= 16; /* log2 of size */
3677 if (info >= 0x14 && info < 0x18)
3678 adap->params.sf_nsec = 1 << (info - 16);
3679 else if (info == 0x18)
3680 adap->params.sf_nsec = 64;
3681 else
3682 return -EINVAL;
3683 adap->params.sf_size = 1 << info;
3684 adap->params.sf_fw_start =
3685 t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
3686 return 0;
3687}
3688
56d36be4
DM
3689/**
3690 * t4_prep_adapter - prepare SW and HW for operation
3691 * @adapter: the adapter
3692 * @reset: if true perform a HW reset
3693 *
3694 * Initialize adapter SW state for the various HW modules, set initial
3695 * values for some adapter tunables, take PHYs out of reset, and
3696 * initialize the MDIO interface.
3697 */
91744948 3698int t4_prep_adapter(struct adapter *adapter)
56d36be4 3699{
0a57a536
SR
3700 int ret, ver;
3701 uint16_t device_id;
d14807dd 3702 u32 pl_rev;
56d36be4 3703
204dc3c0 3704 ret = t4_wait_dev_ready(adapter);
56d36be4
DM
3705 if (ret < 0)
3706 return ret;
3707
3708 get_pci_mode(adapter, &adapter->params.pci);
d14807dd 3709 pl_rev = G_REV(t4_read_reg(adapter, PL_REV));
56d36be4 3710
900a6596
DM
3711 ret = get_flash_params(adapter);
3712 if (ret < 0) {
3713 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
3714 return ret;
3715 }
3716
0a57a536
SR
3717 /* Retrieve adapter's device ID
3718 */
3719 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
3720 ver = device_id >> 12;
d14807dd 3721 adapter->params.chip = 0;
0a57a536
SR
3722 switch (ver) {
3723 case CHELSIO_T4:
d14807dd 3724 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
0a57a536
SR
3725 break;
3726 case CHELSIO_T5:
d14807dd 3727 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
0a57a536
SR
3728 break;
3729 default:
3730 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3731 device_id);
3732 return -EINVAL;
3733 }
3734
56d36be4
DM
3735 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3736
3737 /*
3738 * Default port for debugging in case we can't reach FW.
3739 */
3740 adapter->params.nports = 1;
3741 adapter->params.portvec = 1;
636f9d37 3742 adapter->params.vpd.cclk = 50000;
56d36be4
DM
3743 return 0;
3744}
3745
91744948 3746int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
56d36be4
DM
3747{
3748 u8 addr[6];
3749 int ret, i, j = 0;
3750 struct fw_port_cmd c;
f796564a 3751 struct fw_rss_vi_config_cmd rvc;
56d36be4
DM
3752
3753 memset(&c, 0, sizeof(c));
f796564a 3754 memset(&rvc, 0, sizeof(rvc));
56d36be4
DM
3755
3756 for_each_port(adap, i) {
3757 unsigned int rss_size;
3758 struct port_info *p = adap2pinfo(adap, i);
3759
3760 while ((adap->params.portvec & (1 << j)) == 0)
3761 j++;
3762
3763 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
3764 FW_CMD_REQUEST | FW_CMD_READ |
3765 FW_PORT_CMD_PORTID(j));
3766 c.action_to_len16 = htonl(
3767 FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
3768 FW_LEN16(c));
3769 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3770 if (ret)
3771 return ret;
3772
3773 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
3774 if (ret < 0)
3775 return ret;
3776
3777 p->viid = ret;
3778 p->tx_chan = j;
3779 p->lport = j;
3780 p->rss_size = rss_size;
3781 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
56d36be4
DM
3782
3783 ret = ntohl(c.u.info.lstatus_to_modtype);
3784 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
3785 FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
3786 p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
a0881cab 3787 p->mod_type = FW_PORT_MOD_TYPE_NA;
56d36be4 3788
f796564a
DM
3789 rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
3790 FW_CMD_REQUEST | FW_CMD_READ |
3791 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
3792 rvc.retval_len16 = htonl(FW_LEN16(rvc));
3793 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
3794 if (ret)
3795 return ret;
3796 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
3797
56d36be4
DM
3798 init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
3799 j++;
3800 }
3801 return 0;
3802}