cxgb4: Add sge ec context flush service
[linux-block.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
56d36be4
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
56d36be4
DM
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
f612b815 38#include "t4_values.h"
56d36be4
DM
39#include "t4fw_api.h"
40
41/**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
50 *
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
55 */
de498c89
RD
56static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
58{
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
61
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
66 }
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
71 }
72}
73
74static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
76{
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
79}
80
81/**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
87 *
88 * Sets a register field specified by the supplied mask to the
89 * given value.
90 */
91void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
93{
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
98}
99
100/**
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
108 *
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
111 */
f2b7e78d 112void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
115{
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
120 }
121}
122
13ee15d3
VP
123/**
124 * t4_write_indirect - write indirectly addressed registers
125 * @adap: the adapter
126 * @addr_reg: register holding the indirect addresses
127 * @data_reg: register holding the value for the indirect registers
128 * @vals: values to write
129 * @nregs: how many indirect registers to write
130 * @start_idx: address of first indirect register to write
131 *
132 * Writes a sequential block of registers that are accessed indirectly
133 * through an address/data register pair.
134 */
135void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 unsigned int data_reg, const u32 *vals,
137 unsigned int nregs, unsigned int start_idx)
138{
139 while (nregs--) {
140 t4_write_reg(adap, addr_reg, start_idx++);
141 t4_write_reg(adap, data_reg, *vals++);
142 }
143}
144
0abfd152
HS
145/*
146 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147 * mechanism. This guarantees that we get the real value even if we're
148 * operating within a Virtual Machine and the Hypervisor is trapping our
149 * Configuration Space accesses.
150 */
151void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
152{
3ccc6cf7
HS
153 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
154
155 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
156 req |= ENABLE_F;
157 else
158 req |= T6_ENABLE_F;
0abfd152
HS
159
160 if (is_t4(adap->params.chip))
f061de42 161 req |= LOCALCFG_F;
0abfd152 162
f061de42
HS
163 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
164 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0abfd152
HS
165
166 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
167 * Configuration Space read. (None of the other fields matter when
168 * ENABLE is 0 so a simple register write is easier than a
169 * read-modify-write via t4_set_reg_field().)
170 */
f061de42 171 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0abfd152
HS
172}
173
31d55c2d
HS
174/*
175 * t4_report_fw_error - report firmware error
176 * @adap: the adapter
177 *
178 * The adapter firmware can indicate error conditions to the host.
179 * If the firmware has indicated an error, print out the reason for
180 * the firmware error.
181 */
182static void t4_report_fw_error(struct adapter *adap)
183{
184 static const char *const reason[] = {
185 "Crash", /* PCIE_FW_EVAL_CRASH */
186 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
187 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
188 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
189 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
190 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
191 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
192 "Reserved", /* reserved */
193 };
194 u32 pcie_fw;
195
f061de42
HS
196 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
197 if (pcie_fw & PCIE_FW_ERR_F)
31d55c2d 198 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
b2e1a3f0 199 reason[PCIE_FW_EVAL_G(pcie_fw)]);
31d55c2d
HS
200}
201
56d36be4
DM
202/*
203 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
204 */
205static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
206 u32 mbox_addr)
207{
208 for ( ; nflit; nflit--, mbox_addr += 8)
209 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
210}
211
212/*
213 * Handle a FW assertion reported in a mailbox.
214 */
215static void fw_asrt(struct adapter *adap, u32 mbox_addr)
216{
217 struct fw_debug_cmd asrt;
218
219 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
220 dev_alert(adap->pdev_dev,
221 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
f404f80c
HS
222 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
223 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
56d36be4
DM
224}
225
226static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
227{
228 dev_err(adap->pdev_dev,
229 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
230 (unsigned long long)t4_read_reg64(adap, data_reg),
231 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
238}
239
240/**
01b69614 241 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
56d36be4
DM
242 * @adap: the adapter
243 * @mbox: index of the mailbox to use
244 * @cmd: the command to write
245 * @size: command length in bytes
246 * @rpl: where to optionally store the reply
247 * @sleep_ok: if true we may sleep while awaiting command completion
01b69614 248 * @timeout: time to wait for command to finish before timing out
56d36be4
DM
249 *
250 * Sends the given command to FW through the selected mailbox and waits
251 * for the FW to execute the command. If @rpl is not %NULL it is used to
252 * store the FW's reply to the command. The command and its optional
253 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
254 * to respond. @sleep_ok determines whether we may sleep while awaiting
255 * the response. If sleeping is allowed we use progressive backoff
256 * otherwise we spin.
257 *
258 * The return value is 0 on success or a negative errno on failure. A
259 * failure can happen either because we are not able to execute the
260 * command or FW executes it but signals an error. In the latter case
261 * the return value is the error code indicated by FW (negated).
262 */
01b69614
HS
263int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
264 int size, void *rpl, bool sleep_ok, int timeout)
56d36be4 265{
005b5717 266 static const int delay[] = {
56d36be4
DM
267 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
268 };
269
270 u32 v;
271 u64 res;
272 int i, ms, delay_idx;
273 const __be64 *p = cmd;
89c3a86c
HS
274 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
275 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
56d36be4
DM
276
277 if ((size & 15) || size > MBOX_LEN)
278 return -EINVAL;
279
204dc3c0
DM
280 /*
281 * If the device is off-line, as in EEH, commands will time out.
282 * Fail them early so we don't waste time waiting.
283 */
284 if (adap->pdev->error_state != pci_channel_io_normal)
285 return -EIO;
286
89c3a86c 287 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 288 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 289 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4
DM
290
291 if (v != MBOX_OWNER_DRV)
292 return v ? -EBUSY : -ETIMEDOUT;
293
294 for (i = 0; i < size; i += 8)
295 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
296
89c3a86c 297 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
56d36be4
DM
298 t4_read_reg(adap, ctl_reg); /* flush write */
299
300 delay_idx = 0;
301 ms = delay[0];
302
01b69614 303 for (i = 0; i < timeout; i += ms) {
56d36be4
DM
304 if (sleep_ok) {
305 ms = delay[delay_idx]; /* last element may repeat */
306 if (delay_idx < ARRAY_SIZE(delay) - 1)
307 delay_idx++;
308 msleep(ms);
309 } else
310 mdelay(ms);
311
312 v = t4_read_reg(adap, ctl_reg);
89c3a86c
HS
313 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
314 if (!(v & MBMSGVALID_F)) {
56d36be4
DM
315 t4_write_reg(adap, ctl_reg, 0);
316 continue;
317 }
318
319 res = t4_read_reg64(adap, data_reg);
e2ac9628 320 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
56d36be4 321 fw_asrt(adap, data_reg);
e2ac9628
HS
322 res = FW_CMD_RETVAL_V(EIO);
323 } else if (rpl) {
56d36be4 324 get_mbox_rpl(adap, rpl, size / 8, data_reg);
e2ac9628 325 }
56d36be4 326
e2ac9628 327 if (FW_CMD_RETVAL_G((int)res))
56d36be4
DM
328 dump_mbox(adap, mbox, data_reg);
329 t4_write_reg(adap, ctl_reg, 0);
e2ac9628 330 return -FW_CMD_RETVAL_G((int)res);
56d36be4
DM
331 }
332 }
333
334 dump_mbox(adap, mbox, data_reg);
335 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
336 *(const u8 *)cmd, mbox);
31d55c2d 337 t4_report_fw_error(adap);
56d36be4
DM
338 return -ETIMEDOUT;
339}
340
01b69614
HS
341int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
342 void *rpl, bool sleep_ok)
343{
344 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
345 FW_CMD_MAX_TIMEOUT);
346}
347
5afc8b84
VP
348/**
349 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
350 * @adap: the adapter
fc5ab020 351 * @win: PCI-E Memory Window to use
5afc8b84
VP
352 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
353 * @addr: address within indicated memory type
354 * @len: amount of memory to transfer
f01aa633 355 * @hbuf: host memory buffer
fc5ab020 356 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5afc8b84
VP
357 *
358 * Reads/writes an [almost] arbitrary memory region in the firmware: the
fc5ab020
HS
359 * firmware memory address and host buffer must be aligned on 32-bit
360 * boudaries; the length may be arbitrary. The memory is transferred as
361 * a raw byte sequence from/to the firmware's memory. If this memory
362 * contains data structures which contain multi-byte integers, it's the
363 * caller's responsibility to perform appropriate byte order conversions.
5afc8b84 364 */
fc5ab020 365int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
f01aa633 366 u32 len, void *hbuf, int dir)
5afc8b84 367{
fc5ab020
HS
368 u32 pos, offset, resid, memoffset;
369 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
f01aa633 370 u32 *buf;
5afc8b84 371
fc5ab020 372 /* Argument sanity checks ...
5afc8b84 373 */
f01aa633 374 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5afc8b84 375 return -EINVAL;
f01aa633 376 buf = (u32 *)hbuf;
5afc8b84 377
fc5ab020
HS
378 /* It's convenient to be able to handle lengths which aren't a
379 * multiple of 32-bits because we often end up transferring files to
380 * the firmware. So we'll handle that by normalizing the length here
381 * and then handling any residual transfer at the end.
382 */
383 resid = len & 0x3;
384 len -= resid;
8c357ebd 385
19dd37ba 386 /* Offset into the region of memory which is being accessed
5afc8b84
VP
387 * MEM_EDC0 = 0
388 * MEM_EDC1 = 1
3ccc6cf7
HS
389 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
390 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
5afc8b84 391 */
6559a7e8 392 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
19dd37ba
SR
393 if (mtype != MEM_MC1)
394 memoffset = (mtype * (edc_size * 1024 * 1024));
395 else {
6559a7e8 396 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
7f0b8a56 397 MA_EXT_MEMORY0_BAR_A));
19dd37ba
SR
398 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
399 }
5afc8b84
VP
400
401 /* Determine the PCIE_MEM_ACCESS_OFFSET */
402 addr = addr + memoffset;
403
fc5ab020
HS
404 /* Each PCI-E Memory Window is programmed with a window size -- or
405 * "aperture" -- which controls the granularity of its mapping onto
406 * adapter memory. We need to grab that aperture in order to know
407 * how to use the specified window. The window is also programmed
408 * with the base address of the Memory Window in BAR0's address
409 * space. For T4 this is an absolute PCI-E Bus Address. For T5
410 * the address is relative to BAR0.
5afc8b84 411 */
fc5ab020 412 mem_reg = t4_read_reg(adap,
f061de42 413 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
fc5ab020 414 win));
f061de42
HS
415 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
416 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
fc5ab020
HS
417 if (is_t4(adap->params.chip))
418 mem_base -= adap->t4_bar0;
b2612722 419 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
5afc8b84 420
fc5ab020
HS
421 /* Calculate our initial PCI-E Memory Window Position and Offset into
422 * that Window.
423 */
424 pos = addr & ~(mem_aperture-1);
425 offset = addr - pos;
5afc8b84 426
fc5ab020
HS
427 /* Set up initial PCI-E Memory Window to cover the start of our
428 * transfer. (Read it back to ensure that changes propagate before we
429 * attempt to use the new value.)
430 */
431 t4_write_reg(adap,
f061de42 432 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
fc5ab020
HS
433 pos | win_pf);
434 t4_read_reg(adap,
f061de42 435 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
fc5ab020
HS
436
437 /* Transfer data to/from the adapter as long as there's an integral
438 * number of 32-bit transfers to complete.
f01aa633
HS
439 *
440 * A note on Endianness issues:
441 *
442 * The "register" reads and writes below from/to the PCI-E Memory
443 * Window invoke the standard adapter Big-Endian to PCI-E Link
444 * Little-Endian "swizzel." As a result, if we have the following
445 * data in adapter memory:
446 *
447 * Memory: ... | b0 | b1 | b2 | b3 | ...
448 * Address: i+0 i+1 i+2 i+3
449 *
450 * Then a read of the adapter memory via the PCI-E Memory Window
451 * will yield:
452 *
453 * x = readl(i)
454 * 31 0
455 * [ b3 | b2 | b1 | b0 ]
456 *
457 * If this value is stored into local memory on a Little-Endian system
458 * it will show up correctly in local memory as:
459 *
460 * ( ..., b0, b1, b2, b3, ... )
461 *
462 * But on a Big-Endian system, the store will show up in memory
463 * incorrectly swizzled as:
464 *
465 * ( ..., b3, b2, b1, b0, ... )
466 *
467 * So we need to account for this in the reads and writes to the
468 * PCI-E Memory Window below by undoing the register read/write
469 * swizzels.
fc5ab020
HS
470 */
471 while (len > 0) {
472 if (dir == T4_MEMORY_READ)
f01aa633
HS
473 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
474 mem_base + offset));
fc5ab020
HS
475 else
476 t4_write_reg(adap, mem_base + offset,
f01aa633 477 (__force u32)cpu_to_le32(*buf++));
fc5ab020
HS
478 offset += sizeof(__be32);
479 len -= sizeof(__be32);
480
481 /* If we've reached the end of our current window aperture,
482 * move the PCI-E Memory Window on to the next. Note that
483 * doing this here after "len" may be 0 allows us to set up
484 * the PCI-E Memory Window for a possible final residual
485 * transfer below ...
5afc8b84 486 */
fc5ab020
HS
487 if (offset == mem_aperture) {
488 pos += mem_aperture;
489 offset = 0;
490 t4_write_reg(adap,
f061de42
HS
491 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
492 win), pos | win_pf);
fc5ab020 493 t4_read_reg(adap,
f061de42
HS
494 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
495 win));
5afc8b84 496 }
5afc8b84
VP
497 }
498
fc5ab020
HS
499 /* If the original transfer had a length which wasn't a multiple of
500 * 32-bits, now's where we need to finish off the transfer of the
501 * residual amount. The PCI-E Memory Window has already been moved
502 * above (if necessary) to cover this final transfer.
503 */
504 if (resid) {
505 union {
f01aa633 506 u32 word;
fc5ab020
HS
507 char byte[4];
508 } last;
509 unsigned char *bp;
510 int i;
511
c81576c2 512 if (dir == T4_MEMORY_READ) {
f01aa633
HS
513 last.word = le32_to_cpu(
514 (__force __le32)t4_read_reg(adap,
515 mem_base + offset));
fc5ab020
HS
516 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
517 bp[i] = last.byte[i];
518 } else {
519 last.word = *buf;
520 for (i = resid; i < 4; i++)
521 last.byte[i] = 0;
522 t4_write_reg(adap, mem_base + offset,
f01aa633 523 (__force u32)cpu_to_le32(last.word));
fc5ab020
HS
524 }
525 }
5afc8b84 526
fc5ab020 527 return 0;
5afc8b84
VP
528}
529
b562fc37
HS
530/* Return the specified PCI-E Configuration Space register from our Physical
531 * Function. We try first via a Firmware LDST Command since we prefer to let
532 * the firmware own all of these registers, but if that fails we go for it
533 * directly ourselves.
534 */
535u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
536{
537 u32 val, ldst_addrspace;
538
539 /* If fw_attach != 0, construct and send the Firmware LDST Command to
540 * retrieve the specified PCI-E Configuration Space register.
541 */
542 struct fw_ldst_cmd ldst_cmd;
543 int ret;
544
545 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
546 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
547 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
548 FW_CMD_REQUEST_F |
549 FW_CMD_READ_F |
550 ldst_addrspace);
551 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
552 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
553 ldst_cmd.u.pcie.ctrl_to_fn =
b2612722 554 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
b562fc37
HS
555 ldst_cmd.u.pcie.r = reg;
556
557 /* If the LDST Command succeeds, return the result, otherwise
558 * fall through to reading it directly ourselves ...
559 */
560 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
561 &ldst_cmd);
562 if (ret == 0)
563 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
564 else
565 /* Read the desired Configuration Space register via the PCI-E
566 * Backdoor mechanism.
567 */
568 t4_hw_pci_read_cfg4(adap, reg, &val);
569 return val;
570}
571
572/* Get the window based on base passed to it.
573 * Window aperture is currently unhandled, but there is no use case for it
574 * right now
575 */
576static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
577 u32 memwin_base)
578{
579 u32 ret;
580
581 if (is_t4(adap->params.chip)) {
582 u32 bar0;
583
584 /* Truncation intentional: we only read the bottom 32-bits of
585 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
586 * mechanism to read BAR0 instead of using
587 * pci_resource_start() because we could be operating from
588 * within a Virtual Machine which is trapping our accesses to
589 * our Configuration Space and we need to set up the PCI-E
590 * Memory Window decoders with the actual addresses which will
591 * be coming across the PCI-E link.
592 */
593 bar0 = t4_read_pcie_cfg4(adap, pci_base);
594 bar0 &= pci_mask;
595 adap->t4_bar0 = bar0;
596
597 ret = bar0 + memwin_base;
598 } else {
599 /* For T5, only relative offset inside the PCIe BAR is passed */
600 ret = memwin_base;
601 }
602 return ret;
603}
604
605/* Get the default utility window (win0) used by everyone */
606u32 t4_get_util_window(struct adapter *adap)
607{
608 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
609 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
610}
611
612/* Set up memory window for accessing adapter memory ranges. (Read
613 * back MA register to ensure that changes propagate before we attempt
614 * to use the new values.)
615 */
616void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
617{
618 t4_write_reg(adap,
619 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
620 memwin_base | BIR_V(0) |
621 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
622 t4_read_reg(adap,
623 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
624}
625
812034f1
HS
626/**
627 * t4_get_regs_len - return the size of the chips register set
628 * @adapter: the adapter
629 *
630 * Returns the size of the chip's BAR0 register space.
631 */
632unsigned int t4_get_regs_len(struct adapter *adapter)
633{
634 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
635
636 switch (chip_version) {
637 case CHELSIO_T4:
638 return T4_REGMAP_SIZE;
639
640 case CHELSIO_T5:
ab4b583b 641 case CHELSIO_T6:
812034f1
HS
642 return T5_REGMAP_SIZE;
643 }
644
645 dev_err(adapter->pdev_dev,
646 "Unsupported chip version %d\n", chip_version);
647 return 0;
648}
649
650/**
651 * t4_get_regs - read chip registers into provided buffer
652 * @adap: the adapter
653 * @buf: register buffer
654 * @buf_size: size (in bytes) of register buffer
655 *
656 * If the provided register buffer isn't large enough for the chip's
657 * full register range, the register dump will be truncated to the
658 * register buffer's size.
659 */
660void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
661{
662 static const unsigned int t4_reg_ranges[] = {
663 0x1008, 0x1108,
664 0x1180, 0x11b4,
665 0x11fc, 0x123c,
666 0x1300, 0x173c,
667 0x1800, 0x18fc,
9f5ac48d
HS
668 0x3000, 0x305c,
669 0x3068, 0x30d8,
812034f1
HS
670 0x30e0, 0x5924,
671 0x5960, 0x59d4,
672 0x5a00, 0x5af8,
673 0x6000, 0x6098,
674 0x6100, 0x6150,
675 0x6200, 0x6208,
676 0x6240, 0x6248,
677 0x6280, 0x6338,
678 0x6370, 0x638c,
679 0x6400, 0x643c,
680 0x6500, 0x6524,
681 0x6a00, 0x6a38,
682 0x6a60, 0x6a78,
683 0x6b00, 0x6b84,
684 0x6bf0, 0x6c84,
685 0x6cf0, 0x6d84,
686 0x6df0, 0x6e84,
687 0x6ef0, 0x6f84,
688 0x6ff0, 0x7084,
689 0x70f0, 0x7184,
690 0x71f0, 0x7284,
691 0x72f0, 0x7384,
692 0x73f0, 0x7450,
693 0x7500, 0x7530,
694 0x7600, 0x761c,
695 0x7680, 0x76cc,
696 0x7700, 0x7798,
697 0x77c0, 0x77fc,
698 0x7900, 0x79fc,
699 0x7b00, 0x7c38,
700 0x7d00, 0x7efc,
701 0x8dc0, 0x8e1c,
702 0x8e30, 0x8e78,
703 0x8ea0, 0x8f6c,
704 0x8fc0, 0x9074,
705 0x90fc, 0x90fc,
706 0x9400, 0x9458,
707 0x9600, 0x96bc,
708 0x9800, 0x9808,
709 0x9820, 0x983c,
710 0x9850, 0x9864,
711 0x9c00, 0x9c6c,
712 0x9c80, 0x9cec,
713 0x9d00, 0x9d6c,
714 0x9d80, 0x9dec,
715 0x9e00, 0x9e6c,
716 0x9e80, 0x9eec,
717 0x9f00, 0x9f6c,
718 0x9f80, 0x9fec,
719 0xd004, 0xd03c,
720 0xdfc0, 0xdfe0,
721 0xe000, 0xea7c,
722 0xf000, 0x11110,
723 0x11118, 0x11190,
724 0x19040, 0x1906c,
725 0x19078, 0x19080,
726 0x1908c, 0x19124,
727 0x19150, 0x191b0,
728 0x191d0, 0x191e8,
729 0x19238, 0x1924c,
730 0x193f8, 0x19474,
731 0x19490, 0x194f8,
9f5ac48d 732 0x19800, 0x19f4c,
812034f1
HS
733 0x1a000, 0x1a06c,
734 0x1a0b0, 0x1a120,
735 0x1a128, 0x1a138,
736 0x1a190, 0x1a1c4,
737 0x1a1fc, 0x1a1fc,
738 0x1e040, 0x1e04c,
739 0x1e284, 0x1e28c,
740 0x1e2c0, 0x1e2c0,
741 0x1e2e0, 0x1e2e0,
742 0x1e300, 0x1e384,
743 0x1e3c0, 0x1e3c8,
744 0x1e440, 0x1e44c,
745 0x1e684, 0x1e68c,
746 0x1e6c0, 0x1e6c0,
747 0x1e6e0, 0x1e6e0,
748 0x1e700, 0x1e784,
749 0x1e7c0, 0x1e7c8,
750 0x1e840, 0x1e84c,
751 0x1ea84, 0x1ea8c,
752 0x1eac0, 0x1eac0,
753 0x1eae0, 0x1eae0,
754 0x1eb00, 0x1eb84,
755 0x1ebc0, 0x1ebc8,
756 0x1ec40, 0x1ec4c,
757 0x1ee84, 0x1ee8c,
758 0x1eec0, 0x1eec0,
759 0x1eee0, 0x1eee0,
760 0x1ef00, 0x1ef84,
761 0x1efc0, 0x1efc8,
762 0x1f040, 0x1f04c,
763 0x1f284, 0x1f28c,
764 0x1f2c0, 0x1f2c0,
765 0x1f2e0, 0x1f2e0,
766 0x1f300, 0x1f384,
767 0x1f3c0, 0x1f3c8,
768 0x1f440, 0x1f44c,
769 0x1f684, 0x1f68c,
770 0x1f6c0, 0x1f6c0,
771 0x1f6e0, 0x1f6e0,
772 0x1f700, 0x1f784,
773 0x1f7c0, 0x1f7c8,
774 0x1f840, 0x1f84c,
775 0x1fa84, 0x1fa8c,
776 0x1fac0, 0x1fac0,
777 0x1fae0, 0x1fae0,
778 0x1fb00, 0x1fb84,
779 0x1fbc0, 0x1fbc8,
780 0x1fc40, 0x1fc4c,
781 0x1fe84, 0x1fe8c,
782 0x1fec0, 0x1fec0,
783 0x1fee0, 0x1fee0,
784 0x1ff00, 0x1ff84,
785 0x1ffc0, 0x1ffc8,
786 0x20000, 0x2002c,
787 0x20100, 0x2013c,
788 0x20190, 0x201c8,
789 0x20200, 0x20318,
790 0x20400, 0x20528,
791 0x20540, 0x20614,
792 0x21000, 0x21040,
793 0x2104c, 0x21060,
794 0x210c0, 0x210ec,
795 0x21200, 0x21268,
796 0x21270, 0x21284,
797 0x212fc, 0x21388,
798 0x21400, 0x21404,
799 0x21500, 0x21518,
800 0x2152c, 0x2153c,
801 0x21550, 0x21554,
802 0x21600, 0x21600,
803 0x21608, 0x21628,
804 0x21630, 0x2163c,
805 0x21700, 0x2171c,
806 0x21780, 0x2178c,
807 0x21800, 0x21c38,
808 0x21c80, 0x21d7c,
809 0x21e00, 0x21e04,
810 0x22000, 0x2202c,
811 0x22100, 0x2213c,
812 0x22190, 0x221c8,
813 0x22200, 0x22318,
814 0x22400, 0x22528,
815 0x22540, 0x22614,
816 0x23000, 0x23040,
817 0x2304c, 0x23060,
818 0x230c0, 0x230ec,
819 0x23200, 0x23268,
820 0x23270, 0x23284,
821 0x232fc, 0x23388,
822 0x23400, 0x23404,
823 0x23500, 0x23518,
824 0x2352c, 0x2353c,
825 0x23550, 0x23554,
826 0x23600, 0x23600,
827 0x23608, 0x23628,
828 0x23630, 0x2363c,
829 0x23700, 0x2371c,
830 0x23780, 0x2378c,
831 0x23800, 0x23c38,
832 0x23c80, 0x23d7c,
833 0x23e00, 0x23e04,
834 0x24000, 0x2402c,
835 0x24100, 0x2413c,
836 0x24190, 0x241c8,
837 0x24200, 0x24318,
838 0x24400, 0x24528,
839 0x24540, 0x24614,
840 0x25000, 0x25040,
841 0x2504c, 0x25060,
842 0x250c0, 0x250ec,
843 0x25200, 0x25268,
844 0x25270, 0x25284,
845 0x252fc, 0x25388,
846 0x25400, 0x25404,
847 0x25500, 0x25518,
848 0x2552c, 0x2553c,
849 0x25550, 0x25554,
850 0x25600, 0x25600,
851 0x25608, 0x25628,
852 0x25630, 0x2563c,
853 0x25700, 0x2571c,
854 0x25780, 0x2578c,
855 0x25800, 0x25c38,
856 0x25c80, 0x25d7c,
857 0x25e00, 0x25e04,
858 0x26000, 0x2602c,
859 0x26100, 0x2613c,
860 0x26190, 0x261c8,
861 0x26200, 0x26318,
862 0x26400, 0x26528,
863 0x26540, 0x26614,
864 0x27000, 0x27040,
865 0x2704c, 0x27060,
866 0x270c0, 0x270ec,
867 0x27200, 0x27268,
868 0x27270, 0x27284,
869 0x272fc, 0x27388,
870 0x27400, 0x27404,
871 0x27500, 0x27518,
872 0x2752c, 0x2753c,
873 0x27550, 0x27554,
874 0x27600, 0x27600,
875 0x27608, 0x27628,
876 0x27630, 0x2763c,
877 0x27700, 0x2771c,
878 0x27780, 0x2778c,
879 0x27800, 0x27c38,
880 0x27c80, 0x27d7c,
9f5ac48d 881 0x27e00, 0x27e04,
812034f1
HS
882 };
883
884 static const unsigned int t5_reg_ranges[] = {
885 0x1008, 0x1148,
886 0x1180, 0x11b4,
887 0x11fc, 0x123c,
888 0x1280, 0x173c,
889 0x1800, 0x18fc,
890 0x3000, 0x3028,
9f5ac48d 891 0x3068, 0x30d8,
812034f1
HS
892 0x30e0, 0x30fc,
893 0x3140, 0x357c,
894 0x35a8, 0x35cc,
895 0x35ec, 0x35ec,
896 0x3600, 0x5624,
897 0x56cc, 0x575c,
898 0x580c, 0x5814,
899 0x5890, 0x58bc,
900 0x5940, 0x59dc,
901 0x59fc, 0x5a18,
902 0x5a60, 0x5a9c,
9f5ac48d 903 0x5b94, 0x5bfc,
812034f1
HS
904 0x6000, 0x6040,
905 0x6058, 0x614c,
906 0x7700, 0x7798,
907 0x77c0, 0x78fc,
908 0x7b00, 0x7c54,
909 0x7d00, 0x7efc,
910 0x8dc0, 0x8de0,
911 0x8df8, 0x8e84,
912 0x8ea0, 0x8f84,
913 0x8fc0, 0x90f8,
914 0x9400, 0x9470,
915 0x9600, 0x96f4,
916 0x9800, 0x9808,
917 0x9820, 0x983c,
918 0x9850, 0x9864,
919 0x9c00, 0x9c6c,
920 0x9c80, 0x9cec,
921 0x9d00, 0x9d6c,
922 0x9d80, 0x9dec,
923 0x9e00, 0x9e6c,
924 0x9e80, 0x9eec,
925 0x9f00, 0x9f6c,
926 0x9f80, 0xa020,
927 0xd004, 0xd03c,
928 0xdfc0, 0xdfe0,
929 0xe000, 0x11088,
930 0x1109c, 0x11110,
931 0x11118, 0x1117c,
932 0x11190, 0x11204,
933 0x19040, 0x1906c,
934 0x19078, 0x19080,
935 0x1908c, 0x19124,
936 0x19150, 0x191b0,
937 0x191d0, 0x191e8,
938 0x19238, 0x19290,
939 0x193f8, 0x19474,
940 0x19490, 0x194cc,
941 0x194f0, 0x194f8,
942 0x19c00, 0x19c60,
943 0x19c94, 0x19e10,
944 0x19e50, 0x19f34,
945 0x19f40, 0x19f50,
946 0x19f90, 0x19fe4,
947 0x1a000, 0x1a06c,
948 0x1a0b0, 0x1a120,
949 0x1a128, 0x1a138,
950 0x1a190, 0x1a1c4,
951 0x1a1fc, 0x1a1fc,
952 0x1e008, 0x1e00c,
953 0x1e040, 0x1e04c,
954 0x1e284, 0x1e290,
955 0x1e2c0, 0x1e2c0,
956 0x1e2e0, 0x1e2e0,
957 0x1e300, 0x1e384,
958 0x1e3c0, 0x1e3c8,
959 0x1e408, 0x1e40c,
960 0x1e440, 0x1e44c,
961 0x1e684, 0x1e690,
962 0x1e6c0, 0x1e6c0,
963 0x1e6e0, 0x1e6e0,
964 0x1e700, 0x1e784,
965 0x1e7c0, 0x1e7c8,
966 0x1e808, 0x1e80c,
967 0x1e840, 0x1e84c,
968 0x1ea84, 0x1ea90,
969 0x1eac0, 0x1eac0,
970 0x1eae0, 0x1eae0,
971 0x1eb00, 0x1eb84,
972 0x1ebc0, 0x1ebc8,
973 0x1ec08, 0x1ec0c,
974 0x1ec40, 0x1ec4c,
975 0x1ee84, 0x1ee90,
976 0x1eec0, 0x1eec0,
977 0x1eee0, 0x1eee0,
978 0x1ef00, 0x1ef84,
979 0x1efc0, 0x1efc8,
980 0x1f008, 0x1f00c,
981 0x1f040, 0x1f04c,
982 0x1f284, 0x1f290,
983 0x1f2c0, 0x1f2c0,
984 0x1f2e0, 0x1f2e0,
985 0x1f300, 0x1f384,
986 0x1f3c0, 0x1f3c8,
987 0x1f408, 0x1f40c,
988 0x1f440, 0x1f44c,
989 0x1f684, 0x1f690,
990 0x1f6c0, 0x1f6c0,
991 0x1f6e0, 0x1f6e0,
992 0x1f700, 0x1f784,
993 0x1f7c0, 0x1f7c8,
994 0x1f808, 0x1f80c,
995 0x1f840, 0x1f84c,
996 0x1fa84, 0x1fa90,
997 0x1fac0, 0x1fac0,
998 0x1fae0, 0x1fae0,
999 0x1fb00, 0x1fb84,
1000 0x1fbc0, 0x1fbc8,
1001 0x1fc08, 0x1fc0c,
1002 0x1fc40, 0x1fc4c,
1003 0x1fe84, 0x1fe90,
1004 0x1fec0, 0x1fec0,
1005 0x1fee0, 0x1fee0,
1006 0x1ff00, 0x1ff84,
1007 0x1ffc0, 0x1ffc8,
1008 0x30000, 0x30030,
1009 0x30100, 0x30144,
1010 0x30190, 0x301d0,
1011 0x30200, 0x30318,
1012 0x30400, 0x3052c,
1013 0x30540, 0x3061c,
1014 0x30800, 0x30834,
1015 0x308c0, 0x30908,
1016 0x30910, 0x309ac,
9f5ac48d 1017 0x30a00, 0x30a2c,
812034f1
HS
1018 0x30a44, 0x30a50,
1019 0x30a74, 0x30c24,
9f5ac48d 1020 0x30d00, 0x30d00,
812034f1
HS
1021 0x30d08, 0x30d14,
1022 0x30d1c, 0x30d20,
1023 0x30d3c, 0x30d50,
1024 0x31200, 0x3120c,
1025 0x31220, 0x31220,
1026 0x31240, 0x31240,
9f5ac48d 1027 0x31600, 0x3160c,
812034f1 1028 0x31a00, 0x31a1c,
9f5ac48d 1029 0x31e00, 0x31e20,
812034f1
HS
1030 0x31e38, 0x31e3c,
1031 0x31e80, 0x31e80,
1032 0x31e88, 0x31ea8,
1033 0x31eb0, 0x31eb4,
1034 0x31ec8, 0x31ed4,
1035 0x31fb8, 0x32004,
9f5ac48d
HS
1036 0x32200, 0x32200,
1037 0x32208, 0x32240,
1038 0x32248, 0x32280,
1039 0x32288, 0x322c0,
1040 0x322c8, 0x322fc,
812034f1
HS
1041 0x32600, 0x32630,
1042 0x32a00, 0x32abc,
1043 0x32b00, 0x32b70,
1044 0x33000, 0x33048,
1045 0x33060, 0x3309c,
1046 0x330f0, 0x33148,
1047 0x33160, 0x3319c,
1048 0x331f0, 0x332e4,
1049 0x332f8, 0x333e4,
1050 0x333f8, 0x33448,
1051 0x33460, 0x3349c,
1052 0x334f0, 0x33548,
1053 0x33560, 0x3359c,
1054 0x335f0, 0x336e4,
1055 0x336f8, 0x337e4,
1056 0x337f8, 0x337fc,
1057 0x33814, 0x33814,
1058 0x3382c, 0x3382c,
1059 0x33880, 0x3388c,
1060 0x338e8, 0x338ec,
1061 0x33900, 0x33948,
1062 0x33960, 0x3399c,
1063 0x339f0, 0x33ae4,
1064 0x33af8, 0x33b10,
1065 0x33b28, 0x33b28,
1066 0x33b3c, 0x33b50,
1067 0x33bf0, 0x33c10,
1068 0x33c28, 0x33c28,
1069 0x33c3c, 0x33c50,
1070 0x33cf0, 0x33cfc,
1071 0x34000, 0x34030,
1072 0x34100, 0x34144,
1073 0x34190, 0x341d0,
1074 0x34200, 0x34318,
1075 0x34400, 0x3452c,
1076 0x34540, 0x3461c,
1077 0x34800, 0x34834,
1078 0x348c0, 0x34908,
1079 0x34910, 0x349ac,
9f5ac48d 1080 0x34a00, 0x34a2c,
812034f1
HS
1081 0x34a44, 0x34a50,
1082 0x34a74, 0x34c24,
9f5ac48d 1083 0x34d00, 0x34d00,
812034f1
HS
1084 0x34d08, 0x34d14,
1085 0x34d1c, 0x34d20,
1086 0x34d3c, 0x34d50,
1087 0x35200, 0x3520c,
1088 0x35220, 0x35220,
1089 0x35240, 0x35240,
9f5ac48d 1090 0x35600, 0x3560c,
812034f1 1091 0x35a00, 0x35a1c,
9f5ac48d 1092 0x35e00, 0x35e20,
812034f1
HS
1093 0x35e38, 0x35e3c,
1094 0x35e80, 0x35e80,
1095 0x35e88, 0x35ea8,
1096 0x35eb0, 0x35eb4,
1097 0x35ec8, 0x35ed4,
1098 0x35fb8, 0x36004,
9f5ac48d
HS
1099 0x36200, 0x36200,
1100 0x36208, 0x36240,
1101 0x36248, 0x36280,
1102 0x36288, 0x362c0,
1103 0x362c8, 0x362fc,
812034f1
HS
1104 0x36600, 0x36630,
1105 0x36a00, 0x36abc,
1106 0x36b00, 0x36b70,
1107 0x37000, 0x37048,
1108 0x37060, 0x3709c,
1109 0x370f0, 0x37148,
1110 0x37160, 0x3719c,
1111 0x371f0, 0x372e4,
1112 0x372f8, 0x373e4,
1113 0x373f8, 0x37448,
1114 0x37460, 0x3749c,
1115 0x374f0, 0x37548,
1116 0x37560, 0x3759c,
1117 0x375f0, 0x376e4,
1118 0x376f8, 0x377e4,
1119 0x377f8, 0x377fc,
1120 0x37814, 0x37814,
1121 0x3782c, 0x3782c,
1122 0x37880, 0x3788c,
1123 0x378e8, 0x378ec,
1124 0x37900, 0x37948,
1125 0x37960, 0x3799c,
1126 0x379f0, 0x37ae4,
1127 0x37af8, 0x37b10,
1128 0x37b28, 0x37b28,
1129 0x37b3c, 0x37b50,
1130 0x37bf0, 0x37c10,
1131 0x37c28, 0x37c28,
1132 0x37c3c, 0x37c50,
1133 0x37cf0, 0x37cfc,
1134 0x38000, 0x38030,
1135 0x38100, 0x38144,
1136 0x38190, 0x381d0,
1137 0x38200, 0x38318,
1138 0x38400, 0x3852c,
1139 0x38540, 0x3861c,
1140 0x38800, 0x38834,
1141 0x388c0, 0x38908,
1142 0x38910, 0x389ac,
9f5ac48d 1143 0x38a00, 0x38a2c,
812034f1
HS
1144 0x38a44, 0x38a50,
1145 0x38a74, 0x38c24,
9f5ac48d 1146 0x38d00, 0x38d00,
812034f1
HS
1147 0x38d08, 0x38d14,
1148 0x38d1c, 0x38d20,
1149 0x38d3c, 0x38d50,
1150 0x39200, 0x3920c,
1151 0x39220, 0x39220,
1152 0x39240, 0x39240,
9f5ac48d 1153 0x39600, 0x3960c,
812034f1 1154 0x39a00, 0x39a1c,
9f5ac48d 1155 0x39e00, 0x39e20,
812034f1
HS
1156 0x39e38, 0x39e3c,
1157 0x39e80, 0x39e80,
1158 0x39e88, 0x39ea8,
1159 0x39eb0, 0x39eb4,
1160 0x39ec8, 0x39ed4,
1161 0x39fb8, 0x3a004,
9f5ac48d
HS
1162 0x3a200, 0x3a200,
1163 0x3a208, 0x3a240,
1164 0x3a248, 0x3a280,
1165 0x3a288, 0x3a2c0,
1166 0x3a2c8, 0x3a2fc,
812034f1
HS
1167 0x3a600, 0x3a630,
1168 0x3aa00, 0x3aabc,
1169 0x3ab00, 0x3ab70,
1170 0x3b000, 0x3b048,
1171 0x3b060, 0x3b09c,
1172 0x3b0f0, 0x3b148,
1173 0x3b160, 0x3b19c,
1174 0x3b1f0, 0x3b2e4,
1175 0x3b2f8, 0x3b3e4,
1176 0x3b3f8, 0x3b448,
1177 0x3b460, 0x3b49c,
1178 0x3b4f0, 0x3b548,
1179 0x3b560, 0x3b59c,
1180 0x3b5f0, 0x3b6e4,
1181 0x3b6f8, 0x3b7e4,
1182 0x3b7f8, 0x3b7fc,
1183 0x3b814, 0x3b814,
1184 0x3b82c, 0x3b82c,
1185 0x3b880, 0x3b88c,
1186 0x3b8e8, 0x3b8ec,
1187 0x3b900, 0x3b948,
1188 0x3b960, 0x3b99c,
1189 0x3b9f0, 0x3bae4,
1190 0x3baf8, 0x3bb10,
1191 0x3bb28, 0x3bb28,
1192 0x3bb3c, 0x3bb50,
1193 0x3bbf0, 0x3bc10,
1194 0x3bc28, 0x3bc28,
1195 0x3bc3c, 0x3bc50,
1196 0x3bcf0, 0x3bcfc,
1197 0x3c000, 0x3c030,
1198 0x3c100, 0x3c144,
1199 0x3c190, 0x3c1d0,
1200 0x3c200, 0x3c318,
1201 0x3c400, 0x3c52c,
1202 0x3c540, 0x3c61c,
1203 0x3c800, 0x3c834,
1204 0x3c8c0, 0x3c908,
1205 0x3c910, 0x3c9ac,
9f5ac48d 1206 0x3ca00, 0x3ca2c,
812034f1
HS
1207 0x3ca44, 0x3ca50,
1208 0x3ca74, 0x3cc24,
9f5ac48d 1209 0x3cd00, 0x3cd00,
812034f1
HS
1210 0x3cd08, 0x3cd14,
1211 0x3cd1c, 0x3cd20,
1212 0x3cd3c, 0x3cd50,
1213 0x3d200, 0x3d20c,
1214 0x3d220, 0x3d220,
1215 0x3d240, 0x3d240,
9f5ac48d 1216 0x3d600, 0x3d60c,
812034f1 1217 0x3da00, 0x3da1c,
9f5ac48d 1218 0x3de00, 0x3de20,
812034f1
HS
1219 0x3de38, 0x3de3c,
1220 0x3de80, 0x3de80,
1221 0x3de88, 0x3dea8,
1222 0x3deb0, 0x3deb4,
1223 0x3dec8, 0x3ded4,
1224 0x3dfb8, 0x3e004,
9f5ac48d
HS
1225 0x3e200, 0x3e200,
1226 0x3e208, 0x3e240,
1227 0x3e248, 0x3e280,
1228 0x3e288, 0x3e2c0,
1229 0x3e2c8, 0x3e2fc,
812034f1
HS
1230 0x3e600, 0x3e630,
1231 0x3ea00, 0x3eabc,
1232 0x3eb00, 0x3eb70,
1233 0x3f000, 0x3f048,
1234 0x3f060, 0x3f09c,
1235 0x3f0f0, 0x3f148,
1236 0x3f160, 0x3f19c,
1237 0x3f1f0, 0x3f2e4,
1238 0x3f2f8, 0x3f3e4,
1239 0x3f3f8, 0x3f448,
1240 0x3f460, 0x3f49c,
1241 0x3f4f0, 0x3f548,
1242 0x3f560, 0x3f59c,
1243 0x3f5f0, 0x3f6e4,
1244 0x3f6f8, 0x3f7e4,
1245 0x3f7f8, 0x3f7fc,
1246 0x3f814, 0x3f814,
1247 0x3f82c, 0x3f82c,
1248 0x3f880, 0x3f88c,
1249 0x3f8e8, 0x3f8ec,
1250 0x3f900, 0x3f948,
1251 0x3f960, 0x3f99c,
1252 0x3f9f0, 0x3fae4,
1253 0x3faf8, 0x3fb10,
1254 0x3fb28, 0x3fb28,
1255 0x3fb3c, 0x3fb50,
1256 0x3fbf0, 0x3fc10,
1257 0x3fc28, 0x3fc28,
1258 0x3fc3c, 0x3fc50,
1259 0x3fcf0, 0x3fcfc,
1260 0x40000, 0x4000c,
1261 0x40040, 0x40068,
9f5ac48d 1262 0x4007c, 0x40144,
812034f1
HS
1263 0x40180, 0x4018c,
1264 0x40200, 0x40298,
1265 0x402ac, 0x4033c,
1266 0x403f8, 0x403fc,
1267 0x41304, 0x413c4,
1268 0x41400, 0x4141c,
1269 0x41480, 0x414d0,
1270 0x44000, 0x44078,
1271 0x440c0, 0x44278,
1272 0x442c0, 0x44478,
1273 0x444c0, 0x44678,
1274 0x446c0, 0x44878,
1275 0x448c0, 0x449fc,
1276 0x45000, 0x45068,
1277 0x45080, 0x45084,
1278 0x450a0, 0x450b0,
1279 0x45200, 0x45268,
1280 0x45280, 0x45284,
1281 0x452a0, 0x452b0,
1282 0x460c0, 0x460e4,
1283 0x47000, 0x4708c,
1284 0x47200, 0x47250,
1285 0x47400, 0x47420,
1286 0x47600, 0x47618,
1287 0x47800, 0x47814,
1288 0x48000, 0x4800c,
1289 0x48040, 0x48068,
9f5ac48d 1290 0x4807c, 0x48144,
812034f1
HS
1291 0x48180, 0x4818c,
1292 0x48200, 0x48298,
1293 0x482ac, 0x4833c,
1294 0x483f8, 0x483fc,
1295 0x49304, 0x493c4,
1296 0x49400, 0x4941c,
1297 0x49480, 0x494d0,
1298 0x4c000, 0x4c078,
1299 0x4c0c0, 0x4c278,
1300 0x4c2c0, 0x4c478,
1301 0x4c4c0, 0x4c678,
1302 0x4c6c0, 0x4c878,
1303 0x4c8c0, 0x4c9fc,
1304 0x4d000, 0x4d068,
1305 0x4d080, 0x4d084,
1306 0x4d0a0, 0x4d0b0,
1307 0x4d200, 0x4d268,
1308 0x4d280, 0x4d284,
1309 0x4d2a0, 0x4d2b0,
1310 0x4e0c0, 0x4e0e4,
1311 0x4f000, 0x4f08c,
1312 0x4f200, 0x4f250,
1313 0x4f400, 0x4f420,
1314 0x4f600, 0x4f618,
1315 0x4f800, 0x4f814,
1316 0x50000, 0x500cc,
1317 0x50400, 0x50400,
1318 0x50800, 0x508cc,
1319 0x50c00, 0x50c00,
1320 0x51000, 0x5101c,
1321 0x51300, 0x51308,
1322 };
1323
ab4b583b
HS
1324 static const unsigned int t6_reg_ranges[] = {
1325 0x1008, 0x114c,
1326 0x1180, 0x11b4,
1327 0x11fc, 0x1250,
1328 0x1280, 0x133c,
1329 0x1800, 0x18fc,
1330 0x3000, 0x302c,
1331 0x3060, 0x30d8,
1332 0x30e0, 0x30fc,
1333 0x3140, 0x357c,
1334 0x35a8, 0x35cc,
1335 0x35ec, 0x35ec,
1336 0x3600, 0x5624,
1337 0x56cc, 0x575c,
1338 0x580c, 0x5814,
1339 0x5890, 0x58bc,
1340 0x5940, 0x595c,
1341 0x5980, 0x598c,
1342 0x59b0, 0x59dc,
1343 0x59fc, 0x5a18,
1344 0x5a60, 0x5a6c,
1345 0x5a80, 0x5a9c,
1346 0x5b94, 0x5bfc,
1347 0x5c10, 0x5ec0,
1348 0x5ec8, 0x5ec8,
1349 0x6000, 0x6040,
1350 0x6058, 0x6154,
1351 0x7700, 0x7798,
1352 0x77c0, 0x7880,
1353 0x78cc, 0x78fc,
1354 0x7b00, 0x7c54,
1355 0x7d00, 0x7efc,
1356 0x8dc0, 0x8de0,
1357 0x8df8, 0x8e84,
1358 0x8ea0, 0x8f88,
1359 0x8fb8, 0x911c,
1360 0x9400, 0x9470,
1361 0x9600, 0x971c,
1362 0x9800, 0x9808,
1363 0x9820, 0x983c,
1364 0x9850, 0x9864,
1365 0x9c00, 0x9c6c,
1366 0x9c80, 0x9cec,
1367 0x9d00, 0x9d6c,
1368 0x9d80, 0x9dec,
1369 0x9e00, 0x9e6c,
1370 0x9e80, 0x9eec,
1371 0x9f00, 0x9f6c,
1372 0x9f80, 0xa020,
1373 0xd004, 0xd03c,
1374 0xdfc0, 0xdfe0,
1375 0xe000, 0xf008,
1376 0x11000, 0x11014,
1377 0x11048, 0x11110,
1378 0x11118, 0x1117c,
1379 0x11190, 0x11260,
1380 0x11300, 0x1130c,
1381 0x12000, 0x1205c,
1382 0x19040, 0x1906c,
1383 0x19078, 0x19080,
1384 0x1908c, 0x19124,
1385 0x19150, 0x191b0,
1386 0x191d0, 0x191e8,
1387 0x19238, 0x192b8,
1388 0x193f8, 0x19474,
1389 0x19490, 0x194cc,
1390 0x194f0, 0x194f8,
1391 0x19c00, 0x19c80,
1392 0x19c94, 0x19cbc,
1393 0x19ce4, 0x19d28,
1394 0x19d50, 0x19d78,
1395 0x19d94, 0x19dc8,
1396 0x19df0, 0x19e10,
1397 0x19e50, 0x19e6c,
1398 0x19ea0, 0x19f34,
1399 0x19f40, 0x19f50,
1400 0x19f90, 0x19fac,
1401 0x19fc4, 0x19fe4,
1402 0x1a000, 0x1a06c,
1403 0x1a0b0, 0x1a120,
1404 0x1a128, 0x1a138,
1405 0x1a190, 0x1a1c4,
1406 0x1a1fc, 0x1a1fc,
1407 0x1e008, 0x1e00c,
1408 0x1e040, 0x1e04c,
1409 0x1e284, 0x1e290,
1410 0x1e2c0, 0x1e2c0,
1411 0x1e2e0, 0x1e2e0,
1412 0x1e300, 0x1e384,
1413 0x1e3c0, 0x1e3c8,
1414 0x1e408, 0x1e40c,
1415 0x1e440, 0x1e44c,
1416 0x1e684, 0x1e690,
1417 0x1e6c0, 0x1e6c0,
1418 0x1e6e0, 0x1e6e0,
1419 0x1e700, 0x1e784,
1420 0x1e7c0, 0x1e7c8,
1421 0x1e808, 0x1e80c,
1422 0x1e840, 0x1e84c,
1423 0x1ea84, 0x1ea90,
1424 0x1eac0, 0x1eac0,
1425 0x1eae0, 0x1eae0,
1426 0x1eb00, 0x1eb84,
1427 0x1ebc0, 0x1ebc8,
1428 0x1ec08, 0x1ec0c,
1429 0x1ec40, 0x1ec4c,
1430 0x1ee84, 0x1ee90,
1431 0x1eec0, 0x1eec0,
1432 0x1eee0, 0x1eee0,
1433 0x1ef00, 0x1ef84,
1434 0x1efc0, 0x1efc8,
1435 0x1f008, 0x1f00c,
1436 0x1f040, 0x1f04c,
1437 0x1f284, 0x1f290,
1438 0x1f2c0, 0x1f2c0,
1439 0x1f2e0, 0x1f2e0,
1440 0x1f300, 0x1f384,
1441 0x1f3c0, 0x1f3c8,
1442 0x1f408, 0x1f40c,
1443 0x1f440, 0x1f44c,
1444 0x1f684, 0x1f690,
1445 0x1f6c0, 0x1f6c0,
1446 0x1f6e0, 0x1f6e0,
1447 0x1f700, 0x1f784,
1448 0x1f7c0, 0x1f7c8,
1449 0x1f808, 0x1f80c,
1450 0x1f840, 0x1f84c,
1451 0x1fa84, 0x1fa90,
1452 0x1fac0, 0x1fac0,
1453 0x1fae0, 0x1fae0,
1454 0x1fb00, 0x1fb84,
1455 0x1fbc0, 0x1fbc8,
1456 0x1fc08, 0x1fc0c,
1457 0x1fc40, 0x1fc4c,
1458 0x1fe84, 0x1fe90,
1459 0x1fec0, 0x1fec0,
1460 0x1fee0, 0x1fee0,
1461 0x1ff00, 0x1ff84,
1462 0x1ffc0, 0x1ffc8,
1463 0x30000, 0x30070,
1464 0x30100, 0x3015c,
1465 0x30190, 0x301d0,
1466 0x30200, 0x30318,
1467 0x30400, 0x3052c,
1468 0x30540, 0x3061c,
1469 0x30800, 0x3088c,
1470 0x308c0, 0x30908,
1471 0x30910, 0x309b8,
1472 0x30a00, 0x30a04,
1473 0x30a0c, 0x30a2c,
1474 0x30a44, 0x30a50,
1475 0x30a74, 0x30c24,
1476 0x30d00, 0x30d3c,
1477 0x30d44, 0x30d7c,
1478 0x30de0, 0x30de0,
1479 0x30e00, 0x30ed4,
1480 0x30f00, 0x30fa4,
1481 0x30fc0, 0x30fc4,
1482 0x31000, 0x31004,
1483 0x31080, 0x310fc,
1484 0x31208, 0x31220,
1485 0x3123c, 0x31254,
1486 0x31300, 0x31300,
1487 0x31308, 0x3131c,
1488 0x31338, 0x3133c,
1489 0x31380, 0x31380,
1490 0x31388, 0x313a8,
1491 0x313b4, 0x313b4,
1492 0x31400, 0x31420,
1493 0x31438, 0x3143c,
1494 0x31480, 0x31480,
1495 0x314a8, 0x314a8,
1496 0x314b0, 0x314b4,
1497 0x314c8, 0x314d4,
1498 0x31a40, 0x31a4c,
1499 0x31af0, 0x31b20,
1500 0x31b38, 0x31b3c,
1501 0x31b80, 0x31b80,
1502 0x31ba8, 0x31ba8,
1503 0x31bb0, 0x31bb4,
1504 0x31bc8, 0x31bd4,
1505 0x32140, 0x3218c,
1506 0x321f0, 0x32200,
1507 0x32218, 0x32218,
1508 0x32400, 0x32400,
1509 0x32408, 0x3241c,
1510 0x32618, 0x32620,
1511 0x32664, 0x32664,
1512 0x326a8, 0x326a8,
1513 0x326ec, 0x326ec,
1514 0x32a00, 0x32abc,
1515 0x32b00, 0x32b78,
1516 0x32c00, 0x32c00,
1517 0x32c08, 0x32c3c,
1518 0x32e00, 0x32e2c,
1519 0x32f00, 0x32f2c,
1520 0x33000, 0x330ac,
1521 0x330c0, 0x331ac,
1522 0x331c0, 0x332c4,
1523 0x332e4, 0x333c4,
1524 0x333e4, 0x334ac,
1525 0x334c0, 0x335ac,
1526 0x335c0, 0x336c4,
1527 0x336e4, 0x337c4,
1528 0x337e4, 0x337fc,
1529 0x33814, 0x33814,
1530 0x33854, 0x33868,
1531 0x33880, 0x3388c,
1532 0x338c0, 0x338d0,
1533 0x338e8, 0x338ec,
1534 0x33900, 0x339ac,
1535 0x339c0, 0x33ac4,
1536 0x33ae4, 0x33b10,
1537 0x33b24, 0x33b50,
1538 0x33bf0, 0x33c10,
1539 0x33c24, 0x33c50,
1540 0x33cf0, 0x33cfc,
1541 0x34000, 0x34070,
1542 0x34100, 0x3415c,
1543 0x34190, 0x341d0,
1544 0x34200, 0x34318,
1545 0x34400, 0x3452c,
1546 0x34540, 0x3461c,
1547 0x34800, 0x3488c,
1548 0x348c0, 0x34908,
1549 0x34910, 0x349b8,
1550 0x34a00, 0x34a04,
1551 0x34a0c, 0x34a2c,
1552 0x34a44, 0x34a50,
1553 0x34a74, 0x34c24,
1554 0x34d00, 0x34d3c,
1555 0x34d44, 0x34d7c,
1556 0x34de0, 0x34de0,
1557 0x34e00, 0x34ed4,
1558 0x34f00, 0x34fa4,
1559 0x34fc0, 0x34fc4,
1560 0x35000, 0x35004,
1561 0x35080, 0x350fc,
1562 0x35208, 0x35220,
1563 0x3523c, 0x35254,
1564 0x35300, 0x35300,
1565 0x35308, 0x3531c,
1566 0x35338, 0x3533c,
1567 0x35380, 0x35380,
1568 0x35388, 0x353a8,
1569 0x353b4, 0x353b4,
1570 0x35400, 0x35420,
1571 0x35438, 0x3543c,
1572 0x35480, 0x35480,
1573 0x354a8, 0x354a8,
1574 0x354b0, 0x354b4,
1575 0x354c8, 0x354d4,
1576 0x35a40, 0x35a4c,
1577 0x35af0, 0x35b20,
1578 0x35b38, 0x35b3c,
1579 0x35b80, 0x35b80,
1580 0x35ba8, 0x35ba8,
1581 0x35bb0, 0x35bb4,
1582 0x35bc8, 0x35bd4,
1583 0x36140, 0x3618c,
1584 0x361f0, 0x36200,
1585 0x36218, 0x36218,
1586 0x36400, 0x36400,
1587 0x36408, 0x3641c,
1588 0x36618, 0x36620,
1589 0x36664, 0x36664,
1590 0x366a8, 0x366a8,
1591 0x366ec, 0x366ec,
1592 0x36a00, 0x36abc,
1593 0x36b00, 0x36b78,
1594 0x36c00, 0x36c00,
1595 0x36c08, 0x36c3c,
1596 0x36e00, 0x36e2c,
1597 0x36f00, 0x36f2c,
1598 0x37000, 0x370ac,
1599 0x370c0, 0x371ac,
1600 0x371c0, 0x372c4,
1601 0x372e4, 0x373c4,
1602 0x373e4, 0x374ac,
1603 0x374c0, 0x375ac,
1604 0x375c0, 0x376c4,
1605 0x376e4, 0x377c4,
1606 0x377e4, 0x377fc,
1607 0x37814, 0x37814,
1608 0x37854, 0x37868,
1609 0x37880, 0x3788c,
1610 0x378c0, 0x378d0,
1611 0x378e8, 0x378ec,
1612 0x37900, 0x379ac,
1613 0x379c0, 0x37ac4,
1614 0x37ae4, 0x37b10,
1615 0x37b24, 0x37b50,
1616 0x37bf0, 0x37c10,
1617 0x37c24, 0x37c50,
1618 0x37cf0, 0x37cfc,
1619 0x40040, 0x40040,
1620 0x40080, 0x40084,
1621 0x40100, 0x40100,
1622 0x40140, 0x401bc,
1623 0x40200, 0x40214,
1624 0x40228, 0x40228,
1625 0x40240, 0x40258,
1626 0x40280, 0x40280,
1627 0x40304, 0x40304,
1628 0x40330, 0x4033c,
1629 0x41304, 0x413dc,
1630 0x41400, 0x4141c,
1631 0x41480, 0x414d0,
1632 0x44000, 0x4407c,
1633 0x440c0, 0x4427c,
1634 0x442c0, 0x4447c,
1635 0x444c0, 0x4467c,
1636 0x446c0, 0x4487c,
1637 0x448c0, 0x44a7c,
1638 0x44ac0, 0x44c7c,
1639 0x44cc0, 0x44e7c,
1640 0x44ec0, 0x4507c,
1641 0x450c0, 0x451fc,
1642 0x45800, 0x45868,
1643 0x45880, 0x45884,
1644 0x458a0, 0x458b0,
1645 0x45a00, 0x45a68,
1646 0x45a80, 0x45a84,
1647 0x45aa0, 0x45ab0,
1648 0x460c0, 0x460e4,
1649 0x47000, 0x4708c,
1650 0x47200, 0x47250,
1651 0x47400, 0x47420,
1652 0x47600, 0x47618,
1653 0x47800, 0x4782c,
1654 0x50000, 0x500cc,
1655 0x50400, 0x50400,
1656 0x50800, 0x508cc,
1657 0x50c00, 0x50c00,
1658 0x51000, 0x510b0,
1659 0x51300, 0x51324,
1660 };
1661
812034f1
HS
1662 u32 *buf_end = (u32 *)((char *)buf + buf_size);
1663 const unsigned int *reg_ranges;
1664 int reg_ranges_size, range;
1665 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1666
1667 /* Select the right set of register ranges to dump depending on the
1668 * adapter chip type.
1669 */
1670 switch (chip_version) {
1671 case CHELSIO_T4:
1672 reg_ranges = t4_reg_ranges;
1673 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
1674 break;
1675
1676 case CHELSIO_T5:
1677 reg_ranges = t5_reg_ranges;
1678 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1679 break;
1680
ab4b583b
HS
1681 case CHELSIO_T6:
1682 reg_ranges = t6_reg_ranges;
1683 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1684 break;
1685
812034f1
HS
1686 default:
1687 dev_err(adap->pdev_dev,
1688 "Unsupported chip version %d\n", chip_version);
1689 return;
1690 }
1691
1692 /* Clear the register buffer and insert the appropriate register
1693 * values selected by the above register ranges.
1694 */
1695 memset(buf, 0, buf_size);
1696 for (range = 0; range < reg_ranges_size; range += 2) {
1697 unsigned int reg = reg_ranges[range];
1698 unsigned int last_reg = reg_ranges[range + 1];
1699 u32 *bufp = (u32 *)((char *)buf + reg);
1700
1701 /* Iterate across the register range filling in the register
1702 * buffer but don't write past the end of the register buffer.
1703 */
1704 while (reg <= last_reg && bufp < buf_end) {
1705 *bufp++ = t4_read_reg(adap, reg);
1706 reg += sizeof(u32);
1707 }
1708 }
1709}
1710
56d36be4 1711#define EEPROM_STAT_ADDR 0x7bfc
47ce9c48
SR
1712#define VPD_BASE 0x400
1713#define VPD_BASE_OLD 0
0a57a536 1714#define VPD_LEN 1024
63a92fe6 1715#define CHELSIO_VPD_UNIQUE_ID 0x82
56d36be4
DM
1716
1717/**
1718 * t4_seeprom_wp - enable/disable EEPROM write protection
1719 * @adapter: the adapter
1720 * @enable: whether to enable or disable write protection
1721 *
1722 * Enables or disables write protection on the serial EEPROM.
1723 */
1724int t4_seeprom_wp(struct adapter *adapter, bool enable)
1725{
1726 unsigned int v = enable ? 0xc : 0;
1727 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
1728 return ret < 0 ? ret : 0;
1729}
1730
1731/**
1732 * get_vpd_params - read VPD parameters from VPD EEPROM
1733 * @adapter: adapter to read
1734 * @p: where to store the parameters
1735 *
1736 * Reads card parameters stored in VPD EEPROM.
1737 */
636f9d37 1738int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 1739{
636f9d37 1740 u32 cclk_param, cclk_val;
47ce9c48 1741 int i, ret, addr;
a94cd705 1742 int ec, sn, pn;
8c357ebd 1743 u8 *vpd, csum;
23d88e1d 1744 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 1745
8c357ebd
VP
1746 vpd = vmalloc(VPD_LEN);
1747 if (!vpd)
1748 return -ENOMEM;
1749
47ce9c48
SR
1750 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
1751 if (ret < 0)
1752 goto out;
63a92fe6
HS
1753
1754 /* The VPD shall have a unique identifier specified by the PCI SIG.
1755 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
1756 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
1757 * is expected to automatically put this entry at the
1758 * beginning of the VPD.
1759 */
1760 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
47ce9c48
SR
1761
1762 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 1763 if (ret < 0)
8c357ebd 1764 goto out;
56d36be4 1765
23d88e1d
DM
1766 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
1767 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
1768 ret = -EINVAL;
1769 goto out;
23d88e1d
DM
1770 }
1771
1772 id_len = pci_vpd_lrdt_size(vpd);
1773 if (id_len > ID_LEN)
1774 id_len = ID_LEN;
1775
1776 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
1777 if (i < 0) {
1778 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
1779 ret = -EINVAL;
1780 goto out;
23d88e1d
DM
1781 }
1782
1783 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
1784 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
1785 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 1786 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
1787 ret = -EINVAL;
1788 goto out;
226ec5fd
DM
1789 }
1790
1791#define FIND_VPD_KW(var, name) do { \
23d88e1d 1792 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
1793 if (var < 0) { \
1794 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
1795 ret = -EINVAL; \
1796 goto out; \
226ec5fd
DM
1797 } \
1798 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
1799} while (0)
1800
1801 FIND_VPD_KW(i, "RV");
1802 for (csum = 0; i >= 0; i--)
1803 csum += vpd[i];
56d36be4
DM
1804
1805 if (csum) {
1806 dev_err(adapter->pdev_dev,
1807 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
1808 ret = -EINVAL;
1809 goto out;
56d36be4
DM
1810 }
1811
226ec5fd
DM
1812 FIND_VPD_KW(ec, "EC");
1813 FIND_VPD_KW(sn, "SN");
a94cd705 1814 FIND_VPD_KW(pn, "PN");
226ec5fd
DM
1815#undef FIND_VPD_KW
1816
23d88e1d 1817 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 1818 strim(p->id);
226ec5fd 1819 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 1820 strim(p->ec);
226ec5fd
DM
1821 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
1822 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 1823 strim(p->sn);
63a92fe6 1824 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
a94cd705
KS
1825 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
1826 strim(p->pn);
636f9d37
VP
1827
1828 /*
1829 * Ask firmware for the Core Clock since it knows how to translate the
1830 * Reference Clock ('V2') VPD field into a Core Clock value ...
1831 */
5167865a
HS
1832 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1833 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
636f9d37
VP
1834 ret = t4_query_params(adapter, adapter->mbox, 0, 0,
1835 1, &cclk_param, &cclk_val);
8c357ebd
VP
1836
1837out:
1838 vfree(vpd);
636f9d37
VP
1839 if (ret)
1840 return ret;
1841 p->cclk = cclk_val;
1842
56d36be4
DM
1843 return 0;
1844}
1845
1846/* serial flash and firmware constants */
1847enum {
1848 SF_ATTEMPTS = 10, /* max retries for SF operations */
1849
1850 /* flash command opcodes */
1851 SF_PROG_PAGE = 2, /* program page */
1852 SF_WR_DISABLE = 4, /* disable writes */
1853 SF_RD_STATUS = 5, /* read status register */
1854 SF_WR_ENABLE = 6, /* enable writes */
1855 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 1856 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
1857 SF_ERASE_SECTOR = 0xd8, /* erase sector */
1858
6f1d7210 1859 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
56d36be4
DM
1860};
1861
1862/**
1863 * sf1_read - read data from the serial flash
1864 * @adapter: the adapter
1865 * @byte_cnt: number of bytes to read
1866 * @cont: whether another operation will be chained
1867 * @lock: whether to lock SF for PL access only
1868 * @valp: where to store the read data
1869 *
1870 * Reads up to 4 bytes of data from the serial flash. The location of
1871 * the read needs to be specified prior to calling this by issuing the
1872 * appropriate commands to the serial flash.
1873 */
1874static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1875 int lock, u32 *valp)
1876{
1877 int ret;
1878
1879 if (!byte_cnt || byte_cnt > 4)
1880 return -EINVAL;
0d804338 1881 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 1882 return -EBUSY;
0d804338
HS
1883 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1884 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
1885 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4 1886 if (!ret)
0d804338 1887 *valp = t4_read_reg(adapter, SF_DATA_A);
56d36be4
DM
1888 return ret;
1889}
1890
1891/**
1892 * sf1_write - write data to the serial flash
1893 * @adapter: the adapter
1894 * @byte_cnt: number of bytes to write
1895 * @cont: whether another operation will be chained
1896 * @lock: whether to lock SF for PL access only
1897 * @val: value to write
1898 *
1899 * Writes up to 4 bytes of data to the serial flash. The location of
1900 * the write needs to be specified prior to calling this by issuing the
1901 * appropriate commands to the serial flash.
1902 */
1903static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1904 int lock, u32 val)
1905{
1906 if (!byte_cnt || byte_cnt > 4)
1907 return -EINVAL;
0d804338 1908 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 1909 return -EBUSY;
0d804338
HS
1910 t4_write_reg(adapter, SF_DATA_A, val);
1911 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1912 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
1913 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4
DM
1914}
1915
1916/**
1917 * flash_wait_op - wait for a flash operation to complete
1918 * @adapter: the adapter
1919 * @attempts: max number of polls of the status register
1920 * @delay: delay between polls in ms
1921 *
1922 * Wait for a flash operation to complete by polling the status register.
1923 */
1924static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
1925{
1926 int ret;
1927 u32 status;
1928
1929 while (1) {
1930 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
1931 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
1932 return ret;
1933 if (!(status & 1))
1934 return 0;
1935 if (--attempts == 0)
1936 return -EAGAIN;
1937 if (delay)
1938 msleep(delay);
1939 }
1940}
1941
1942/**
1943 * t4_read_flash - read words from serial flash
1944 * @adapter: the adapter
1945 * @addr: the start address for the read
1946 * @nwords: how many 32-bit words to read
1947 * @data: where to store the read data
1948 * @byte_oriented: whether to store data as bytes or as words
1949 *
1950 * Read the specified number of 32-bit words from the serial flash.
1951 * If @byte_oriented is set the read data is stored as a byte array
1952 * (i.e., big-endian), otherwise as 32-bit words in the platform's
dbedd44e 1953 * natural endianness.
56d36be4 1954 */
49216c1c
HS
1955int t4_read_flash(struct adapter *adapter, unsigned int addr,
1956 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
1957{
1958 int ret;
1959
900a6596 1960 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
1961 return -EINVAL;
1962
1963 addr = swab32(addr) | SF_RD_DATA_FAST;
1964
1965 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
1966 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
1967 return ret;
1968
1969 for ( ; nwords; nwords--, data++) {
1970 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
1971 if (nwords == 1)
0d804338 1972 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
1973 if (ret)
1974 return ret;
1975 if (byte_oriented)
f404f80c 1976 *data = (__force __u32)(cpu_to_be32(*data));
56d36be4
DM
1977 }
1978 return 0;
1979}
1980
1981/**
1982 * t4_write_flash - write up to a page of data to the serial flash
1983 * @adapter: the adapter
1984 * @addr: the start address to write
1985 * @n: length of data to write in bytes
1986 * @data: the data to write
1987 *
1988 * Writes up to a page of data (256 bytes) to the serial flash starting
1989 * at the given address. All the data must be written to the same page.
1990 */
1991static int t4_write_flash(struct adapter *adapter, unsigned int addr,
1992 unsigned int n, const u8 *data)
1993{
1994 int ret;
1995 u32 buf[64];
1996 unsigned int i, c, left, val, offset = addr & 0xff;
1997
900a6596 1998 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
1999 return -EINVAL;
2000
2001 val = swab32(addr) | SF_PROG_PAGE;
2002
2003 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2004 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2005 goto unlock;
2006
2007 for (left = n; left; left -= c) {
2008 c = min(left, 4U);
2009 for (val = 0, i = 0; i < c; ++i)
2010 val = (val << 8) + *data++;
2011
2012 ret = sf1_write(adapter, c, c != left, 1, val);
2013 if (ret)
2014 goto unlock;
2015 }
900a6596 2016 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
2017 if (ret)
2018 goto unlock;
2019
0d804338 2020 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2021
2022 /* Read the page to verify the write succeeded */
2023 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2024 if (ret)
2025 return ret;
2026
2027 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2028 dev_err(adapter->pdev_dev,
2029 "failed to correctly write the flash page at %#x\n",
2030 addr);
2031 return -EIO;
2032 }
2033 return 0;
2034
2035unlock:
0d804338 2036 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2037 return ret;
2038}
2039
2040/**
16e47624 2041 * t4_get_fw_version - read the firmware version
56d36be4
DM
2042 * @adapter: the adapter
2043 * @vers: where to place the version
2044 *
2045 * Reads the FW version from flash.
2046 */
16e47624 2047int t4_get_fw_version(struct adapter *adapter, u32 *vers)
56d36be4 2048{
16e47624
HS
2049 return t4_read_flash(adapter, FLASH_FW_START +
2050 offsetof(struct fw_hdr, fw_ver), 1,
2051 vers, 0);
56d36be4
DM
2052}
2053
2054/**
16e47624 2055 * t4_get_tp_version - read the TP microcode version
56d36be4
DM
2056 * @adapter: the adapter
2057 * @vers: where to place the version
2058 *
2059 * Reads the TP microcode version from flash.
2060 */
16e47624 2061int t4_get_tp_version(struct adapter *adapter, u32 *vers)
56d36be4 2062{
16e47624 2063 return t4_read_flash(adapter, FLASH_FW_START +
900a6596 2064 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
2065 1, vers, 0);
2066}
2067
ba3f8cd5
HS
2068/**
2069 * t4_get_exprom_version - return the Expansion ROM version (if any)
2070 * @adapter: the adapter
2071 * @vers: where to place the version
2072 *
2073 * Reads the Expansion ROM header from FLASH and returns the version
2074 * number (if present) through the @vers return value pointer. We return
2075 * this in the Firmware Version Format since it's convenient. Return
2076 * 0 on success, -ENOENT if no Expansion ROM is present.
2077 */
2078int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2079{
2080 struct exprom_header {
2081 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2082 unsigned char hdr_ver[4]; /* Expansion ROM version */
2083 } *hdr;
2084 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2085 sizeof(u32))];
2086 int ret;
2087
2088 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2089 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2090 0);
2091 if (ret)
2092 return ret;
2093
2094 hdr = (struct exprom_header *)exprom_header_buf;
2095 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2096 return -ENOENT;
2097
2098 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2099 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2100 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2101 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2102 return 0;
2103}
2104
16e47624
HS
2105/* Is the given firmware API compatible with the one the driver was compiled
2106 * with?
56d36be4 2107 */
16e47624 2108static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
56d36be4 2109{
56d36be4 2110
16e47624
HS
2111 /* short circuit if it's the exact same firmware version */
2112 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2113 return 1;
56d36be4 2114
16e47624
HS
2115#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2116 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2117 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2118 return 1;
2119#undef SAME_INTF
0a57a536 2120
16e47624
HS
2121 return 0;
2122}
56d36be4 2123
16e47624
HS
2124/* The firmware in the filesystem is usable, but should it be installed?
2125 * This routine explains itself in detail if it indicates the filesystem
2126 * firmware should be installed.
2127 */
2128static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
2129 int k, int c)
2130{
2131 const char *reason;
2132
2133 if (!card_fw_usable) {
2134 reason = "incompatible or unusable";
2135 goto install;
e69972f5
JH
2136 }
2137
16e47624
HS
2138 if (k > c) {
2139 reason = "older than the version supported with this driver";
2140 goto install;
56d36be4
DM
2141 }
2142
16e47624
HS
2143 return 0;
2144
2145install:
2146 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
2147 "installing firmware %u.%u.%u.%u on card.\n",
b2e1a3f0
HS
2148 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2149 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2150 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2151 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
56d36be4 2152
56d36be4
DM
2153 return 1;
2154}
2155
16e47624
HS
2156int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
2157 const u8 *fw_data, unsigned int fw_size,
2158 struct fw_hdr *card_fw, enum dev_state state,
2159 int *reset)
2160{
2161 int ret, card_fw_usable, fs_fw_usable;
2162 const struct fw_hdr *fs_fw;
2163 const struct fw_hdr *drv_fw;
2164
2165 drv_fw = &fw_info->fw_hdr;
2166
2167 /* Read the header of the firmware on the card */
2168 ret = -t4_read_flash(adap, FLASH_FW_START,
2169 sizeof(*card_fw) / sizeof(uint32_t),
2170 (uint32_t *)card_fw, 1);
2171 if (ret == 0) {
2172 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2173 } else {
2174 dev_err(adap->pdev_dev,
2175 "Unable to read card's firmware header: %d\n", ret);
2176 card_fw_usable = 0;
2177 }
2178
2179 if (fw_data != NULL) {
2180 fs_fw = (const void *)fw_data;
2181 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2182 } else {
2183 fs_fw = NULL;
2184 fs_fw_usable = 0;
2185 }
2186
2187 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2188 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2189 /* Common case: the firmware on the card is an exact match and
2190 * the filesystem one is an exact match too, or the filesystem
2191 * one is absent/incompatible.
2192 */
2193 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
2194 should_install_fs_fw(adap, card_fw_usable,
2195 be32_to_cpu(fs_fw->fw_ver),
2196 be32_to_cpu(card_fw->fw_ver))) {
2197 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
2198 fw_size, 0);
2199 if (ret != 0) {
2200 dev_err(adap->pdev_dev,
2201 "failed to install firmware: %d\n", ret);
2202 goto bye;
2203 }
2204
2205 /* Installed successfully, update the cached header too. */
e3d50738 2206 *card_fw = *fs_fw;
16e47624
HS
2207 card_fw_usable = 1;
2208 *reset = 0; /* already reset as part of load_fw */
2209 }
2210
2211 if (!card_fw_usable) {
2212 uint32_t d, c, k;
2213
2214 d = be32_to_cpu(drv_fw->fw_ver);
2215 c = be32_to_cpu(card_fw->fw_ver);
2216 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2217
2218 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
2219 "chip state %d, "
2220 "driver compiled with %d.%d.%d.%d, "
2221 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2222 state,
b2e1a3f0
HS
2223 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2224 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2225 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2226 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2227 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2228 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
16e47624
HS
2229 ret = EINVAL;
2230 goto bye;
2231 }
2232
2233 /* We're using whatever's on the card and it's known to be good. */
2234 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
2235 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2236
2237bye:
2238 return ret;
2239}
2240
56d36be4
DM
2241/**
2242 * t4_flash_erase_sectors - erase a range of flash sectors
2243 * @adapter: the adapter
2244 * @start: the first sector to erase
2245 * @end: the last sector to erase
2246 *
2247 * Erases the sectors in the given inclusive range.
2248 */
2249static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
2250{
2251 int ret = 0;
2252
c0d5b8cf
HS
2253 if (end >= adapter->params.sf_nsec)
2254 return -EINVAL;
2255
56d36be4
DM
2256 while (start <= end) {
2257 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2258 (ret = sf1_write(adapter, 4, 0, 1,
2259 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 2260 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
2261 dev_err(adapter->pdev_dev,
2262 "erase of flash sector %d failed, error %d\n",
2263 start, ret);
2264 break;
2265 }
2266 start++;
2267 }
0d804338 2268 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2269 return ret;
2270}
2271
636f9d37
VP
2272/**
2273 * t4_flash_cfg_addr - return the address of the flash configuration file
2274 * @adapter: the adapter
2275 *
2276 * Return the address within the flash where the Firmware Configuration
2277 * File is stored.
2278 */
2279unsigned int t4_flash_cfg_addr(struct adapter *adapter)
2280{
2281 if (adapter->params.sf_size == 0x100000)
2282 return FLASH_FPGA_CFG_START;
2283 else
2284 return FLASH_CFG_START;
2285}
2286
79af221d
HS
2287/* Return TRUE if the specified firmware matches the adapter. I.e. T4
2288 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
2289 * and emit an error message for mismatched firmware to save our caller the
2290 * effort ...
2291 */
2292static bool t4_fw_matches_chip(const struct adapter *adap,
2293 const struct fw_hdr *hdr)
2294{
2295 /* The expression below will return FALSE for any unsupported adapter
2296 * which will keep us "honest" in the future ...
2297 */
2298 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3ccc6cf7
HS
2299 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
2300 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
79af221d
HS
2301 return true;
2302
2303 dev_err(adap->pdev_dev,
2304 "FW image (%d) is not suitable for this adapter (%d)\n",
2305 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
2306 return false;
2307}
2308
56d36be4
DM
2309/**
2310 * t4_load_fw - download firmware
2311 * @adap: the adapter
2312 * @fw_data: the firmware image to write
2313 * @size: image size
2314 *
2315 * Write the supplied firmware image to the card's serial flash.
2316 */
2317int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
2318{
2319 u32 csum;
2320 int ret, addr;
2321 unsigned int i;
2322 u8 first_page[SF_PAGE_SIZE];
404d9e3f 2323 const __be32 *p = (const __be32 *)fw_data;
56d36be4 2324 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
2325 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
2326 unsigned int fw_img_start = adap->params.sf_fw_start;
2327 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
2328
2329 if (!size) {
2330 dev_err(adap->pdev_dev, "FW image has no data\n");
2331 return -EINVAL;
2332 }
2333 if (size & 511) {
2334 dev_err(adap->pdev_dev,
2335 "FW image size not multiple of 512 bytes\n");
2336 return -EINVAL;
2337 }
f404f80c 2338 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
56d36be4
DM
2339 dev_err(adap->pdev_dev,
2340 "FW image size differs from size in FW header\n");
2341 return -EINVAL;
2342 }
2343 if (size > FW_MAX_SIZE) {
2344 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
2345 FW_MAX_SIZE);
2346 return -EFBIG;
2347 }
79af221d
HS
2348 if (!t4_fw_matches_chip(adap, hdr))
2349 return -EINVAL;
56d36be4
DM
2350
2351 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
f404f80c 2352 csum += be32_to_cpu(p[i]);
56d36be4
DM
2353
2354 if (csum != 0xffffffff) {
2355 dev_err(adap->pdev_dev,
2356 "corrupted firmware image, checksum %#x\n", csum);
2357 return -EINVAL;
2358 }
2359
900a6596
DM
2360 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
2361 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
2362 if (ret)
2363 goto out;
2364
2365 /*
2366 * We write the correct version at the end so the driver can see a bad
2367 * version if the FW write fails. Start by writing a copy of the
2368 * first page with a bad version.
2369 */
2370 memcpy(first_page, fw_data, SF_PAGE_SIZE);
f404f80c 2371 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
900a6596 2372 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
2373 if (ret)
2374 goto out;
2375
900a6596 2376 addr = fw_img_start;
56d36be4
DM
2377 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
2378 addr += SF_PAGE_SIZE;
2379 fw_data += SF_PAGE_SIZE;
2380 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
2381 if (ret)
2382 goto out;
2383 }
2384
2385 ret = t4_write_flash(adap,
900a6596 2386 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
2387 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
2388out:
2389 if (ret)
2390 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
2391 ret);
dff04bce
HS
2392 else
2393 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
56d36be4
DM
2394 return ret;
2395}
2396
01b69614
HS
2397/**
2398 * t4_phy_fw_ver - return current PHY firmware version
2399 * @adap: the adapter
2400 * @phy_fw_ver: return value buffer for PHY firmware version
2401 *
2402 * Returns the current version of external PHY firmware on the
2403 * adapter.
2404 */
2405int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
2406{
2407 u32 param, val;
2408 int ret;
2409
2410 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2411 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2412 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2413 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
b2612722 2414 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
2415 &param, &val);
2416 if (ret < 0)
2417 return ret;
2418 *phy_fw_ver = val;
2419 return 0;
2420}
2421
2422/**
2423 * t4_load_phy_fw - download port PHY firmware
2424 * @adap: the adapter
2425 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
2426 * @win_lock: the lock to use to guard the memory copy
2427 * @phy_fw_version: function to check PHY firmware versions
2428 * @phy_fw_data: the PHY firmware image to write
2429 * @phy_fw_size: image size
2430 *
2431 * Transfer the specified PHY firmware to the adapter. If a non-NULL
2432 * @phy_fw_version is supplied, then it will be used to determine if
2433 * it's necessary to perform the transfer by comparing the version
2434 * of any existing adapter PHY firmware with that of the passed in
2435 * PHY firmware image. If @win_lock is non-NULL then it will be used
2436 * around the call to t4_memory_rw() which transfers the PHY firmware
2437 * to the adapter.
2438 *
2439 * A negative error number will be returned if an error occurs. If
2440 * version number support is available and there's no need to upgrade
2441 * the firmware, 0 will be returned. If firmware is successfully
2442 * transferred to the adapter, 1 will be retured.
2443 *
2444 * NOTE: some adapters only have local RAM to store the PHY firmware. As
2445 * a result, a RESET of the adapter would cause that RAM to lose its
2446 * contents. Thus, loading PHY firmware on such adapters must happen
2447 * after any FW_RESET_CMDs ...
2448 */
2449int t4_load_phy_fw(struct adapter *adap,
2450 int win, spinlock_t *win_lock,
2451 int (*phy_fw_version)(const u8 *, size_t),
2452 const u8 *phy_fw_data, size_t phy_fw_size)
2453{
2454 unsigned long mtype = 0, maddr = 0;
2455 u32 param, val;
2456 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
2457 int ret;
2458
2459 /* If we have version number support, then check to see if the adapter
2460 * already has up-to-date PHY firmware loaded.
2461 */
2462 if (phy_fw_version) {
2463 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
2464 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2465 if (ret < 0)
2466 return ret;
2467
2468 if (cur_phy_fw_ver >= new_phy_fw_vers) {
2469 CH_WARN(adap, "PHY Firmware already up-to-date, "
2470 "version %#x\n", cur_phy_fw_ver);
2471 return 0;
2472 }
2473 }
2474
2475 /* Ask the firmware where it wants us to copy the PHY firmware image.
2476 * The size of the file requires a special version of the READ coommand
2477 * which will pass the file size via the values field in PARAMS_CMD and
2478 * retrieve the return value from firmware and place it in the same
2479 * buffer values
2480 */
2481 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2482 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2483 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2484 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2485 val = phy_fw_size;
b2612722 2486 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
2487 &param, &val, 1);
2488 if (ret < 0)
2489 return ret;
2490 mtype = val >> 8;
2491 maddr = (val & 0xff) << 16;
2492
2493 /* Copy the supplied PHY Firmware image to the adapter memory location
2494 * allocated by the adapter firmware.
2495 */
2496 if (win_lock)
2497 spin_lock_bh(win_lock);
2498 ret = t4_memory_rw(adap, win, mtype, maddr,
2499 phy_fw_size, (__be32 *)phy_fw_data,
2500 T4_MEMORY_WRITE);
2501 if (win_lock)
2502 spin_unlock_bh(win_lock);
2503 if (ret)
2504 return ret;
2505
2506 /* Tell the firmware that the PHY firmware image has been written to
2507 * RAM and it can now start copying it over to the PHYs. The chip
2508 * firmware will RESET the affected PHYs as part of this operation
2509 * leaving them running the new PHY firmware image.
2510 */
2511 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2512 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2513 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2514 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
b2612722 2515 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
2516 &param, &val, 30000);
2517
2518 /* If we have version number support, then check to see that the new
2519 * firmware got loaded properly.
2520 */
2521 if (phy_fw_version) {
2522 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2523 if (ret < 0)
2524 return ret;
2525
2526 if (cur_phy_fw_ver != new_phy_fw_vers) {
2527 CH_WARN(adap, "PHY Firmware did not update: "
2528 "version on adapter %#x, "
2529 "version flashed %#x\n",
2530 cur_phy_fw_ver, new_phy_fw_vers);
2531 return -ENXIO;
2532 }
2533 }
2534
2535 return 1;
2536}
2537
49216c1c
HS
2538/**
2539 * t4_fwcache - firmware cache operation
2540 * @adap: the adapter
2541 * @op : the operation (flush or flush and invalidate)
2542 */
2543int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
2544{
2545 struct fw_params_cmd c;
2546
2547 memset(&c, 0, sizeof(c));
2548 c.op_to_vfn =
2549 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
2550 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2612722 2551 FW_PARAMS_CMD_PFN_V(adap->pf) |
49216c1c
HS
2552 FW_PARAMS_CMD_VFN_V(0));
2553 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2554 c.param[0].mnem =
2555 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2556 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
2557 c.param[0].val = (__force __be32)op;
2558
2559 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
2560}
2561
797ff0f5
HS
2562void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
2563{
2564 unsigned int i, j;
2565
2566 for (i = 0; i < 8; i++) {
2567 u32 *p = la_buf + i;
2568
2569 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
2570 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
2571 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
2572 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
2573 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
2574 }
2575}
2576
56d36be4 2577#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
72aca4bf
KS
2578 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
2579 FW_PORT_CAP_ANEG)
56d36be4
DM
2580
2581/**
2582 * t4_link_start - apply link configuration to MAC/PHY
2583 * @phy: the PHY to setup
2584 * @mac: the MAC to setup
2585 * @lc: the requested link configuration
2586 *
2587 * Set up a port's MAC and PHY according to a desired link configuration.
2588 * - If the PHY can auto-negotiate first decide what to advertise, then
2589 * enable/disable auto-negotiation as desired, and reset.
2590 * - If the PHY does not auto-negotiate just reset it.
2591 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2592 * otherwise do it later based on the outcome of auto-negotiation.
2593 */
2594int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
2595 struct link_config *lc)
2596{
2597 struct fw_port_cmd c;
2b5fb1f2 2598 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
56d36be4
DM
2599
2600 lc->link_ok = 0;
2601 if (lc->requested_fc & PAUSE_RX)
2602 fc |= FW_PORT_CAP_FC_RX;
2603 if (lc->requested_fc & PAUSE_TX)
2604 fc |= FW_PORT_CAP_FC_TX;
2605
2606 memset(&c, 0, sizeof(c));
f404f80c
HS
2607 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2608 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2609 FW_PORT_CMD_PORTID_V(port));
2610 c.action_to_len16 =
2611 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2612 FW_LEN16(c));
56d36be4
DM
2613
2614 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
f404f80c
HS
2615 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
2616 fc);
56d36be4
DM
2617 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2618 } else if (lc->autoneg == AUTONEG_DISABLE) {
f404f80c 2619 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
56d36be4
DM
2620 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2621 } else
f404f80c 2622 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
56d36be4
DM
2623
2624 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2625}
2626
2627/**
2628 * t4_restart_aneg - restart autonegotiation
2629 * @adap: the adapter
2630 * @mbox: mbox to use for the FW command
2631 * @port: the port id
2632 *
2633 * Restarts autonegotiation for the selected port.
2634 */
2635int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
2636{
2637 struct fw_port_cmd c;
2638
2639 memset(&c, 0, sizeof(c));
f404f80c
HS
2640 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2641 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2642 FW_PORT_CMD_PORTID_V(port));
2643 c.action_to_len16 =
2644 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2645 FW_LEN16(c));
2646 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
56d36be4
DM
2647 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2648}
2649
8caa1e84
VP
2650typedef void (*int_handler_t)(struct adapter *adap);
2651
56d36be4
DM
2652struct intr_info {
2653 unsigned int mask; /* bits to check in interrupt status */
2654 const char *msg; /* message to print or NULL */
2655 short stat_idx; /* stat counter to increment or -1 */
2656 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 2657 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
2658};
2659
2660/**
2661 * t4_handle_intr_status - table driven interrupt handler
2662 * @adapter: the adapter that generated the interrupt
2663 * @reg: the interrupt status register to process
2664 * @acts: table of interrupt actions
2665 *
2666 * A table driven interrupt handler that applies a set of masks to an
2667 * interrupt status word and performs the corresponding actions if the
25985edc 2668 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
2669 * optionally emitting a warning or alert message. The table is terminated
2670 * by an entry specifying mask 0. Returns the number of fatal interrupt
2671 * conditions.
2672 */
2673static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
2674 const struct intr_info *acts)
2675{
2676 int fatal = 0;
2677 unsigned int mask = 0;
2678 unsigned int status = t4_read_reg(adapter, reg);
2679
2680 for ( ; acts->mask; ++acts) {
2681 if (!(status & acts->mask))
2682 continue;
2683 if (acts->fatal) {
2684 fatal++;
2685 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2686 status & acts->mask);
2687 } else if (acts->msg && printk_ratelimit())
2688 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2689 status & acts->mask);
8caa1e84
VP
2690 if (acts->int_handler)
2691 acts->int_handler(adapter);
56d36be4
DM
2692 mask |= acts->mask;
2693 }
2694 status &= mask;
2695 if (status) /* clear processed interrupts */
2696 t4_write_reg(adapter, reg, status);
2697 return fatal;
2698}
2699
2700/*
2701 * Interrupt handler for the PCIE module.
2702 */
2703static void pcie_intr_handler(struct adapter *adapter)
2704{
005b5717 2705 static const struct intr_info sysbus_intr_info[] = {
f061de42
HS
2706 { RNPP_F, "RXNP array parity error", -1, 1 },
2707 { RPCP_F, "RXPC array parity error", -1, 1 },
2708 { RCIP_F, "RXCIF array parity error", -1, 1 },
2709 { RCCP_F, "Rx completions control array parity error", -1, 1 },
2710 { RFTP_F, "RXFT array parity error", -1, 1 },
56d36be4
DM
2711 { 0 }
2712 };
005b5717 2713 static const struct intr_info pcie_port_intr_info[] = {
f061de42
HS
2714 { TPCP_F, "TXPC array parity error", -1, 1 },
2715 { TNPP_F, "TXNP array parity error", -1, 1 },
2716 { TFTP_F, "TXFT array parity error", -1, 1 },
2717 { TCAP_F, "TXCA array parity error", -1, 1 },
2718 { TCIP_F, "TXCIF array parity error", -1, 1 },
2719 { RCAP_F, "RXCA array parity error", -1, 1 },
2720 { OTDD_F, "outbound request TLP discarded", -1, 1 },
2721 { RDPE_F, "Rx data parity error", -1, 1 },
2722 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
56d36be4
DM
2723 { 0 }
2724 };
005b5717 2725 static const struct intr_info pcie_intr_info[] = {
f061de42
HS
2726 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
2727 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
2728 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
2729 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2730 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2731 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2732 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2733 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
2734 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
2735 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2736 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
2737 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2738 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2739 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
2740 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2741 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2742 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
2743 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2744 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2745 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2746 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2747 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
2748 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
2749 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2750 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
2751 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
2752 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
2753 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
2754 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
2755 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
2756 -1, 0 },
56d36be4
DM
2757 { 0 }
2758 };
2759
0a57a536 2760 static struct intr_info t5_pcie_intr_info[] = {
f061de42 2761 { MSTGRPPERR_F, "Master Response Read Queue parity error",
0a57a536 2762 -1, 1 },
f061de42
HS
2763 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
2764 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
2765 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2766 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2767 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2768 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2769 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
0a57a536 2770 -1, 1 },
f061de42 2771 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
0a57a536 2772 -1, 1 },
f061de42
HS
2773 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2774 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
2775 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2776 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2777 { DREQWRPERR_F, "PCI DMA channel write request parity error",
0a57a536 2778 -1, 1 },
f061de42
HS
2779 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2780 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2781 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
2782 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2783 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2784 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2785 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2786 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
2787 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
2788 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2789 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
0a57a536 2790 -1, 1 },
f061de42
HS
2791 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
2792 -1, 1 },
2793 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
2794 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
2795 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2796 { READRSPERR_F, "Outbound read error", -1, 0 },
0a57a536
SR
2797 { 0 }
2798 };
2799
56d36be4
DM
2800 int fat;
2801
9bb59b96
HS
2802 if (is_t4(adapter->params.chip))
2803 fat = t4_handle_intr_status(adapter,
f061de42
HS
2804 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
2805 sysbus_intr_info) +
9bb59b96 2806 t4_handle_intr_status(adapter,
f061de42
HS
2807 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
2808 pcie_port_intr_info) +
2809 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96
HS
2810 pcie_intr_info);
2811 else
f061de42 2812 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96 2813 t5_pcie_intr_info);
0a57a536 2814
56d36be4
DM
2815 if (fat)
2816 t4_fatal_err(adapter);
2817}
2818
2819/*
2820 * TP interrupt handler.
2821 */
2822static void tp_intr_handler(struct adapter *adapter)
2823{
005b5717 2824 static const struct intr_info tp_intr_info[] = {
56d36be4 2825 { 0x3fffffff, "TP parity error", -1, 1 },
837e4a42 2826 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
56d36be4
DM
2827 { 0 }
2828 };
2829
837e4a42 2830 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
56d36be4
DM
2831 t4_fatal_err(adapter);
2832}
2833
2834/*
2835 * SGE interrupt handler.
2836 */
2837static void sge_intr_handler(struct adapter *adapter)
2838{
2839 u64 v;
3ccc6cf7 2840 u32 err;
56d36be4 2841
005b5717 2842 static const struct intr_info sge_intr_info[] = {
f612b815 2843 { ERR_CPL_EXCEED_IQE_SIZE_F,
56d36be4 2844 "SGE received CPL exceeding IQE size", -1, 1 },
f612b815 2845 { ERR_INVALID_CIDX_INC_F,
56d36be4 2846 "SGE GTS CIDX increment too large", -1, 0 },
f612b815
HS
2847 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2848 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
f612b815 2849 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
56d36be4 2850 "SGE IQID > 1023 received CPL for FL", -1, 0 },
f612b815 2851 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
56d36be4 2852 0 },
f612b815 2853 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
56d36be4 2854 0 },
f612b815 2855 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
56d36be4 2856 0 },
f612b815 2857 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
56d36be4 2858 0 },
f612b815 2859 { ERR_ING_CTXT_PRIO_F,
56d36be4 2860 "SGE too many priority ingress contexts", -1, 0 },
f612b815
HS
2861 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2862 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
56d36be4
DM
2863 { 0 }
2864 };
2865
3ccc6cf7
HS
2866 static struct intr_info t4t5_sge_intr_info[] = {
2867 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
2868 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
2869 { ERR_EGR_CTXT_PRIO_F,
2870 "SGE too many priority egress contexts", -1, 0 },
2871 { 0 }
2872 };
2873
f612b815
HS
2874 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
2875 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
56d36be4
DM
2876 if (v) {
2877 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 2878 (unsigned long long)v);
f612b815
HS
2879 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
2880 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
56d36be4
DM
2881 }
2882
3ccc6cf7
HS
2883 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
2884 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2885 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
2886 t4t5_sge_intr_info);
2887
2888 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
2889 if (err & ERROR_QID_VALID_F) {
2890 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
2891 ERROR_QID_G(err));
2892 if (err & UNCAPTURED_ERROR_F)
2893 dev_err(adapter->pdev_dev,
2894 "SGE UNCAPTURED_ERROR set (clearing)\n");
2895 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
2896 UNCAPTURED_ERROR_F);
2897 }
2898
2899 if (v != 0)
56d36be4
DM
2900 t4_fatal_err(adapter);
2901}
2902
89c3a86c
HS
2903#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2904 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2905#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2906 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2907
56d36be4
DM
2908/*
2909 * CIM interrupt handler.
2910 */
2911static void cim_intr_handler(struct adapter *adapter)
2912{
005b5717 2913 static const struct intr_info cim_intr_info[] = {
89c3a86c
HS
2914 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2915 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2916 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2917 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2918 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2919 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2920 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
56d36be4
DM
2921 { 0 }
2922 };
005b5717 2923 static const struct intr_info cim_upintr_info[] = {
89c3a86c
HS
2924 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2925 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2926 { ILLWRINT_F, "CIM illegal write", -1, 1 },
2927 { ILLRDINT_F, "CIM illegal read", -1, 1 },
2928 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2929 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2930 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2931 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2932 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2933 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2934 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2935 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2936 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2937 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2938 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2939 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2940 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2941 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2942 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2943 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2944 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2945 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2946 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2947 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2948 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2949 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2950 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2951 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
56d36be4
DM
2952 { 0 }
2953 };
2954
2955 int fat;
2956
f061de42 2957 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d
HS
2958 t4_report_fw_error(adapter);
2959
89c3a86c 2960 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
56d36be4 2961 cim_intr_info) +
89c3a86c 2962 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
56d36be4
DM
2963 cim_upintr_info);
2964 if (fat)
2965 t4_fatal_err(adapter);
2966}
2967
2968/*
2969 * ULP RX interrupt handler.
2970 */
2971static void ulprx_intr_handler(struct adapter *adapter)
2972{
005b5717 2973 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 2974 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
2975 { 0x7fffff, "ULPRX parity error", -1, 1 },
2976 { 0 }
2977 };
2978
0d804338 2979 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
56d36be4
DM
2980 t4_fatal_err(adapter);
2981}
2982
2983/*
2984 * ULP TX interrupt handler.
2985 */
2986static void ulptx_intr_handler(struct adapter *adapter)
2987{
005b5717 2988 static const struct intr_info ulptx_intr_info[] = {
837e4a42 2989 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
56d36be4 2990 0 },
837e4a42 2991 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
56d36be4 2992 0 },
837e4a42 2993 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
56d36be4 2994 0 },
837e4a42 2995 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
56d36be4
DM
2996 0 },
2997 { 0xfffffff, "ULPTX parity error", -1, 1 },
2998 { 0 }
2999 };
3000
837e4a42 3001 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
56d36be4
DM
3002 t4_fatal_err(adapter);
3003}
3004
3005/*
3006 * PM TX interrupt handler.
3007 */
3008static void pmtx_intr_handler(struct adapter *adapter)
3009{
005b5717 3010 static const struct intr_info pmtx_intr_info[] = {
837e4a42
HS
3011 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3012 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3013 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3014 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3015 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3016 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3017 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
3018 -1, 1 },
3019 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3020 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
56d36be4
DM
3021 { 0 }
3022 };
3023
837e4a42 3024 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
56d36be4
DM
3025 t4_fatal_err(adapter);
3026}
3027
3028/*
3029 * PM RX interrupt handler.
3030 */
3031static void pmrx_intr_handler(struct adapter *adapter)
3032{
005b5717 3033 static const struct intr_info pmrx_intr_info[] = {
837e4a42
HS
3034 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3035 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
3036 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3037 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
3038 -1, 1 },
3039 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3040 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
56d36be4
DM
3041 { 0 }
3042 };
3043
837e4a42 3044 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
56d36be4
DM
3045 t4_fatal_err(adapter);
3046}
3047
3048/*
3049 * CPL switch interrupt handler.
3050 */
3051static void cplsw_intr_handler(struct adapter *adapter)
3052{
005b5717 3053 static const struct intr_info cplsw_intr_info[] = {
0d804338
HS
3054 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3055 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3056 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3057 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3058 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3059 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
56d36be4
DM
3060 { 0 }
3061 };
3062
0d804338 3063 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
56d36be4
DM
3064 t4_fatal_err(adapter);
3065}
3066
3067/*
3068 * LE interrupt handler.
3069 */
3070static void le_intr_handler(struct adapter *adap)
3071{
3ccc6cf7 3072 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
005b5717 3073 static const struct intr_info le_intr_info[] = {
0d804338
HS
3074 { LIPMISS_F, "LE LIP miss", -1, 0 },
3075 { LIP0_F, "LE 0 LIP error", -1, 0 },
3076 { PARITYERR_F, "LE parity error", -1, 1 },
3077 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3078 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
56d36be4
DM
3079 { 0 }
3080 };
3081
3ccc6cf7
HS
3082 static struct intr_info t6_le_intr_info[] = {
3083 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3084 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3085 { TCAMINTPERR_F, "LE parity error", -1, 1 },
3086 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3087 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3088 { 0 }
3089 };
3090
3091 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
3092 (chip <= CHELSIO_T5) ?
3093 le_intr_info : t6_le_intr_info))
56d36be4
DM
3094 t4_fatal_err(adap);
3095}
3096
3097/*
3098 * MPS interrupt handler.
3099 */
3100static void mps_intr_handler(struct adapter *adapter)
3101{
005b5717 3102 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
3103 { 0xffffff, "MPS Rx parity error", -1, 1 },
3104 { 0 }
3105 };
005b5717 3106 static const struct intr_info mps_tx_intr_info[] = {
837e4a42
HS
3107 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3108 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3109 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3110 -1, 1 },
3111 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3112 -1, 1 },
3113 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3114 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3115 { FRMERR_F, "MPS Tx framing error", -1, 1 },
56d36be4
DM
3116 { 0 }
3117 };
005b5717 3118 static const struct intr_info mps_trc_intr_info[] = {
837e4a42
HS
3119 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3120 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3121 -1, 1 },
3122 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
56d36be4
DM
3123 { 0 }
3124 };
005b5717 3125 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
3126 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3127 { 0 }
3128 };
005b5717 3129 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
3130 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3131 { 0 }
3132 };
005b5717 3133 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
3134 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3135 { 0 }
3136 };
005b5717 3137 static const struct intr_info mps_cls_intr_info[] = {
837e4a42
HS
3138 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3139 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3140 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
56d36be4
DM
3141 { 0 }
3142 };
3143
3144 int fat;
3145
837e4a42 3146 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
56d36be4 3147 mps_rx_intr_info) +
837e4a42 3148 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
56d36be4 3149 mps_tx_intr_info) +
837e4a42 3150 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
56d36be4 3151 mps_trc_intr_info) +
837e4a42 3152 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
56d36be4 3153 mps_stat_sram_intr_info) +
837e4a42 3154 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
56d36be4 3155 mps_stat_tx_intr_info) +
837e4a42 3156 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
56d36be4 3157 mps_stat_rx_intr_info) +
837e4a42 3158 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
56d36be4
DM
3159 mps_cls_intr_info);
3160
837e4a42
HS
3161 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
3162 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
56d36be4
DM
3163 if (fat)
3164 t4_fatal_err(adapter);
3165}
3166
89c3a86c
HS
3167#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3168 ECC_UE_INT_CAUSE_F)
56d36be4
DM
3169
3170/*
3171 * EDC/MC interrupt handler.
3172 */
3173static void mem_intr_handler(struct adapter *adapter, int idx)
3174{
822dd8a8 3175 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
56d36be4
DM
3176
3177 unsigned int addr, cnt_addr, v;
3178
3179 if (idx <= MEM_EDC1) {
89c3a86c
HS
3180 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3181 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
822dd8a8
HS
3182 } else if (idx == MEM_MC) {
3183 if (is_t4(adapter->params.chip)) {
89c3a86c
HS
3184 addr = MC_INT_CAUSE_A;
3185 cnt_addr = MC_ECC_STATUS_A;
822dd8a8 3186 } else {
89c3a86c
HS
3187 addr = MC_P_INT_CAUSE_A;
3188 cnt_addr = MC_P_ECC_STATUS_A;
822dd8a8 3189 }
56d36be4 3190 } else {
89c3a86c
HS
3191 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
3192 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
56d36be4
DM
3193 }
3194
3195 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
89c3a86c 3196 if (v & PERR_INT_CAUSE_F)
56d36be4
DM
3197 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
3198 name[idx]);
89c3a86c
HS
3199 if (v & ECC_CE_INT_CAUSE_F) {
3200 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
56d36be4 3201
89c3a86c 3202 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
56d36be4
DM
3203 if (printk_ratelimit())
3204 dev_warn(adapter->pdev_dev,
3205 "%u %s correctable ECC data error%s\n",
3206 cnt, name[idx], cnt > 1 ? "s" : "");
3207 }
89c3a86c 3208 if (v & ECC_UE_INT_CAUSE_F)
56d36be4
DM
3209 dev_alert(adapter->pdev_dev,
3210 "%s uncorrectable ECC data error\n", name[idx]);
3211
3212 t4_write_reg(adapter, addr, v);
89c3a86c 3213 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
56d36be4
DM
3214 t4_fatal_err(adapter);
3215}
3216
3217/*
3218 * MA interrupt handler.
3219 */
3220static void ma_intr_handler(struct adapter *adap)
3221{
89c3a86c 3222 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
56d36be4 3223
89c3a86c 3224 if (status & MEM_PERR_INT_CAUSE_F) {
56d36be4
DM
3225 dev_alert(adap->pdev_dev,
3226 "MA parity error, parity status %#x\n",
89c3a86c 3227 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
9bb59b96
HS
3228 if (is_t5(adap->params.chip))
3229 dev_alert(adap->pdev_dev,
3230 "MA parity error, parity status %#x\n",
3231 t4_read_reg(adap,
89c3a86c 3232 MA_PARITY_ERROR_STATUS2_A));
9bb59b96 3233 }
89c3a86c
HS
3234 if (status & MEM_WRAP_INT_CAUSE_F) {
3235 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
56d36be4
DM
3236 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
3237 "client %u to address %#x\n",
89c3a86c
HS
3238 MEM_WRAP_CLIENT_NUM_G(v),
3239 MEM_WRAP_ADDRESS_G(v) << 4);
56d36be4 3240 }
89c3a86c 3241 t4_write_reg(adap, MA_INT_CAUSE_A, status);
56d36be4
DM
3242 t4_fatal_err(adap);
3243}
3244
3245/*
3246 * SMB interrupt handler.
3247 */
3248static void smb_intr_handler(struct adapter *adap)
3249{
005b5717 3250 static const struct intr_info smb_intr_info[] = {
0d804338
HS
3251 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3252 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3253 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
56d36be4
DM
3254 { 0 }
3255 };
3256
0d804338 3257 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
56d36be4
DM
3258 t4_fatal_err(adap);
3259}
3260
3261/*
3262 * NC-SI interrupt handler.
3263 */
3264static void ncsi_intr_handler(struct adapter *adap)
3265{
005b5717 3266 static const struct intr_info ncsi_intr_info[] = {
0d804338
HS
3267 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3268 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3269 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3270 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
56d36be4
DM
3271 { 0 }
3272 };
3273
0d804338 3274 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
56d36be4
DM
3275 t4_fatal_err(adap);
3276}
3277
3278/*
3279 * XGMAC interrupt handler.
3280 */
3281static void xgmac_intr_handler(struct adapter *adap, int port)
3282{
0a57a536
SR
3283 u32 v, int_cause_reg;
3284
d14807dd 3285 if (is_t4(adap->params.chip))
0d804338 3286 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
0a57a536 3287 else
0d804338 3288 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
0a57a536
SR
3289
3290 v = t4_read_reg(adap, int_cause_reg);
56d36be4 3291
0d804338 3292 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
56d36be4
DM
3293 if (!v)
3294 return;
3295
0d804338 3296 if (v & TXFIFO_PRTY_ERR_F)
56d36be4
DM
3297 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
3298 port);
0d804338 3299 if (v & RXFIFO_PRTY_ERR_F)
56d36be4
DM
3300 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
3301 port);
0d804338 3302 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
56d36be4
DM
3303 t4_fatal_err(adap);
3304}
3305
3306/*
3307 * PL interrupt handler.
3308 */
3309static void pl_intr_handler(struct adapter *adap)
3310{
005b5717 3311 static const struct intr_info pl_intr_info[] = {
0d804338
HS
3312 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3313 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
56d36be4
DM
3314 { 0 }
3315 };
3316
0d804338 3317 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
56d36be4
DM
3318 t4_fatal_err(adap);
3319}
3320
0d804338
HS
3321#define PF_INTR_MASK (PFSW_F)
3322#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
3323 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
3324 CPL_SWITCH_F | SGE_F | ULP_TX_F)
56d36be4
DM
3325
3326/**
3327 * t4_slow_intr_handler - control path interrupt handler
3328 * @adapter: the adapter
3329 *
3330 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
3331 * The designation 'slow' is because it involves register reads, while
3332 * data interrupts typically don't involve any MMIOs.
3333 */
3334int t4_slow_intr_handler(struct adapter *adapter)
3335{
0d804338 3336 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
56d36be4
DM
3337
3338 if (!(cause & GLBL_INTR_MASK))
3339 return 0;
0d804338 3340 if (cause & CIM_F)
56d36be4 3341 cim_intr_handler(adapter);
0d804338 3342 if (cause & MPS_F)
56d36be4 3343 mps_intr_handler(adapter);
0d804338 3344 if (cause & NCSI_F)
56d36be4 3345 ncsi_intr_handler(adapter);
0d804338 3346 if (cause & PL_F)
56d36be4 3347 pl_intr_handler(adapter);
0d804338 3348 if (cause & SMB_F)
56d36be4 3349 smb_intr_handler(adapter);
0d804338 3350 if (cause & XGMAC0_F)
56d36be4 3351 xgmac_intr_handler(adapter, 0);
0d804338 3352 if (cause & XGMAC1_F)
56d36be4 3353 xgmac_intr_handler(adapter, 1);
0d804338 3354 if (cause & XGMAC_KR0_F)
56d36be4 3355 xgmac_intr_handler(adapter, 2);
0d804338 3356 if (cause & XGMAC_KR1_F)
56d36be4 3357 xgmac_intr_handler(adapter, 3);
0d804338 3358 if (cause & PCIE_F)
56d36be4 3359 pcie_intr_handler(adapter);
0d804338 3360 if (cause & MC_F)
56d36be4 3361 mem_intr_handler(adapter, MEM_MC);
3ccc6cf7 3362 if (is_t5(adapter->params.chip) && (cause & MC1_F))
822dd8a8 3363 mem_intr_handler(adapter, MEM_MC1);
0d804338 3364 if (cause & EDC0_F)
56d36be4 3365 mem_intr_handler(adapter, MEM_EDC0);
0d804338 3366 if (cause & EDC1_F)
56d36be4 3367 mem_intr_handler(adapter, MEM_EDC1);
0d804338 3368 if (cause & LE_F)
56d36be4 3369 le_intr_handler(adapter);
0d804338 3370 if (cause & TP_F)
56d36be4 3371 tp_intr_handler(adapter);
0d804338 3372 if (cause & MA_F)
56d36be4 3373 ma_intr_handler(adapter);
0d804338 3374 if (cause & PM_TX_F)
56d36be4 3375 pmtx_intr_handler(adapter);
0d804338 3376 if (cause & PM_RX_F)
56d36be4 3377 pmrx_intr_handler(adapter);
0d804338 3378 if (cause & ULP_RX_F)
56d36be4 3379 ulprx_intr_handler(adapter);
0d804338 3380 if (cause & CPL_SWITCH_F)
56d36be4 3381 cplsw_intr_handler(adapter);
0d804338 3382 if (cause & SGE_F)
56d36be4 3383 sge_intr_handler(adapter);
0d804338 3384 if (cause & ULP_TX_F)
56d36be4
DM
3385 ulptx_intr_handler(adapter);
3386
3387 /* Clear the interrupts just processed for which we are the master. */
0d804338
HS
3388 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
3389 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
56d36be4
DM
3390 return 1;
3391}
3392
3393/**
3394 * t4_intr_enable - enable interrupts
3395 * @adapter: the adapter whose interrupts should be enabled
3396 *
3397 * Enable PF-specific interrupts for the calling function and the top-level
3398 * interrupt concentrator for global interrupts. Interrupts are already
3399 * enabled at each module, here we just enable the roots of the interrupt
3400 * hierarchies.
3401 *
3402 * Note: this function should be called only when the driver manages
3403 * non PF-specific interrupts from the various HW modules. Only one PCI
3404 * function at a time should be doing this.
3405 */
3406void t4_intr_enable(struct adapter *adapter)
3407{
3ccc6cf7 3408 u32 val = 0;
0d804338 3409 u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
56d36be4 3410
3ccc6cf7
HS
3411 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3412 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
f612b815
HS
3413 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
3414 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3ccc6cf7 3415 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
f612b815
HS
3416 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
3417 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
3418 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3ccc6cf7 3419 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
0d804338
HS
3420 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
3421 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
56d36be4
DM
3422}
3423
3424/**
3425 * t4_intr_disable - disable interrupts
3426 * @adapter: the adapter whose interrupts should be disabled
3427 *
3428 * Disable interrupts. We only disable the top-level interrupt
3429 * concentrators. The caller must be a PCI function managing global
3430 * interrupts.
3431 */
3432void t4_intr_disable(struct adapter *adapter)
3433{
0d804338 3434 u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
56d36be4 3435
0d804338
HS
3436 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
3437 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
56d36be4
DM
3438}
3439
56d36be4
DM
3440/**
3441 * hash_mac_addr - return the hash value of a MAC address
3442 * @addr: the 48-bit Ethernet MAC address
3443 *
3444 * Hashes a MAC address according to the hash function used by HW inexact
3445 * (hash) address matching.
3446 */
3447static int hash_mac_addr(const u8 *addr)
3448{
3449 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
3450 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
3451 a ^= b;
3452 a ^= (a >> 12);
3453 a ^= (a >> 6);
3454 return a & 0x3f;
3455}
3456
3457/**
3458 * t4_config_rss_range - configure a portion of the RSS mapping table
3459 * @adapter: the adapter
3460 * @mbox: mbox to use for the FW command
3461 * @viid: virtual interface whose RSS subtable is to be written
3462 * @start: start entry in the table to write
3463 * @n: how many table entries to write
3464 * @rspq: values for the response queue lookup table
3465 * @nrspq: number of values in @rspq
3466 *
3467 * Programs the selected part of the VI's RSS mapping table with the
3468 * provided values. If @nrspq < @n the supplied values are used repeatedly
3469 * until the full table range is populated.
3470 *
3471 * The caller must ensure the values in @rspq are in the range allowed for
3472 * @viid.
3473 */
3474int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
3475 int start, int n, const u16 *rspq, unsigned int nrspq)
3476{
3477 int ret;
3478 const u16 *rsp = rspq;
3479 const u16 *rsp_end = rspq + nrspq;
3480 struct fw_rss_ind_tbl_cmd cmd;
3481
3482 memset(&cmd, 0, sizeof(cmd));
f404f80c 3483 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
e2ac9628 3484 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2e1a3f0 3485 FW_RSS_IND_TBL_CMD_VIID_V(viid));
f404f80c 3486 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
56d36be4
DM
3487
3488 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
3489 while (n > 0) {
3490 int nq = min(n, 32);
3491 __be32 *qp = &cmd.iq0_to_iq2;
3492
f404f80c
HS
3493 cmd.niqid = cpu_to_be16(nq);
3494 cmd.startidx = cpu_to_be16(start);
56d36be4
DM
3495
3496 start += nq;
3497 n -= nq;
3498
3499 while (nq > 0) {
3500 unsigned int v;
3501
b2e1a3f0 3502 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
56d36be4
DM
3503 if (++rsp >= rsp_end)
3504 rsp = rspq;
b2e1a3f0 3505 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
56d36be4
DM
3506 if (++rsp >= rsp_end)
3507 rsp = rspq;
b2e1a3f0 3508 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
56d36be4
DM
3509 if (++rsp >= rsp_end)
3510 rsp = rspq;
3511
f404f80c 3512 *qp++ = cpu_to_be32(v);
56d36be4
DM
3513 nq -= 3;
3514 }
3515
3516 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
3517 if (ret)
3518 return ret;
3519 }
3520 return 0;
3521}
3522
3523/**
3524 * t4_config_glbl_rss - configure the global RSS mode
3525 * @adapter: the adapter
3526 * @mbox: mbox to use for the FW command
3527 * @mode: global RSS mode
3528 * @flags: mode-specific flags
3529 *
3530 * Sets the global RSS mode.
3531 */
3532int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
3533 unsigned int flags)
3534{
3535 struct fw_rss_glb_config_cmd c;
3536
3537 memset(&c, 0, sizeof(c));
f404f80c
HS
3538 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
3539 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3540 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
56d36be4 3541 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
f404f80c
HS
3542 c.u.manual.mode_pkd =
3543 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
56d36be4
DM
3544 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
3545 c.u.basicvirtual.mode_pkd =
f404f80c
HS
3546 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3547 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
56d36be4
DM
3548 } else
3549 return -EINVAL;
3550 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3551}
3552
c035e183
HS
3553/**
3554 * t4_config_vi_rss - configure per VI RSS settings
3555 * @adapter: the adapter
3556 * @mbox: mbox to use for the FW command
3557 * @viid: the VI id
3558 * @flags: RSS flags
3559 * @defq: id of the default RSS queue for the VI.
3560 *
3561 * Configures VI-specific RSS properties.
3562 */
3563int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
3564 unsigned int flags, unsigned int defq)
3565{
3566 struct fw_rss_vi_config_cmd c;
3567
3568 memset(&c, 0, sizeof(c));
3569 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
3570 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3571 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
3572 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3573 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
3574 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
3575 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3576}
3577
688ea5fe
HS
3578/* Read an RSS table row */
3579static int rd_rss_row(struct adapter *adap, int row, u32 *val)
3580{
3581 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
3582 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
3583 5, 0, val);
3584}
3585
3586/**
3587 * t4_read_rss - read the contents of the RSS mapping table
3588 * @adapter: the adapter
3589 * @map: holds the contents of the RSS mapping table
3590 *
3591 * Reads the contents of the RSS hash->queue mapping table.
3592 */
3593int t4_read_rss(struct adapter *adapter, u16 *map)
3594{
3595 u32 val;
3596 int i, ret;
3597
3598 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
3599 ret = rd_rss_row(adapter, i, &val);
3600 if (ret)
3601 return ret;
3602 *map++ = LKPTBLQUEUE0_G(val);
3603 *map++ = LKPTBLQUEUE1_G(val);
3604 }
3605 return 0;
3606}
3607
3608/**
3609 * t4_read_rss_key - read the global RSS key
3610 * @adap: the adapter
3611 * @key: 10-entry array holding the 320-bit RSS key
3612 *
3613 * Reads the global 320-bit RSS key.
3614 */
3615void t4_read_rss_key(struct adapter *adap, u32 *key)
3616{
3617 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3618 TP_RSS_SECRET_KEY0_A);
3619}
3620
3621/**
3622 * t4_write_rss_key - program one of the RSS keys
3623 * @adap: the adapter
3624 * @key: 10-entry array holding the 320-bit RSS key
3625 * @idx: which RSS key to write
3626 *
3627 * Writes one of the RSS keys with the given 320-bit value. If @idx is
3628 * 0..15 the corresponding entry in the RSS key table is written,
3629 * otherwise the global RSS key is written.
3630 */
3631void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
3632{
3ccc6cf7
HS
3633 u8 rss_key_addr_cnt = 16;
3634 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
3635
3636 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
3637 * allows access to key addresses 16-63 by using KeyWrAddrX
3638 * as index[5:4](upper 2) into key table
3639 */
3640 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
3641 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
3642 rss_key_addr_cnt = 32;
3643
688ea5fe
HS
3644 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3645 TP_RSS_SECRET_KEY0_A);
3ccc6cf7
HS
3646
3647 if (idx >= 0 && idx < rss_key_addr_cnt) {
3648 if (rss_key_addr_cnt > 16)
3649 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3650 KEYWRADDRX_V(idx >> 4) |
3651 T6_VFWRADDR_V(idx) | KEYWREN_F);
3652 else
3653 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3654 KEYWRADDR_V(idx) | KEYWREN_F);
3655 }
688ea5fe
HS
3656}
3657
3658/**
3659 * t4_read_rss_pf_config - read PF RSS Configuration Table
3660 * @adapter: the adapter
3661 * @index: the entry in the PF RSS table to read
3662 * @valp: where to store the returned value
3663 *
3664 * Reads the PF RSS Configuration Table at the specified index and returns
3665 * the value found there.
3666 */
3667void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
3668 u32 *valp)
3669{
3670 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3671 valp, 1, TP_RSS_PF0_CONFIG_A + index);
3672}
3673
3674/**
3675 * t4_read_rss_vf_config - read VF RSS Configuration Table
3676 * @adapter: the adapter
3677 * @index: the entry in the VF RSS table to read
3678 * @vfl: where to store the returned VFL
3679 * @vfh: where to store the returned VFH
3680 *
3681 * Reads the VF RSS Configuration Table at the specified index and returns
3682 * the (VFL, VFH) values found there.
3683 */
3684void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3685 u32 *vfl, u32 *vfh)
3686{
3687 u32 vrt, mask, data;
3688
3ccc6cf7
HS
3689 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3690 mask = VFWRADDR_V(VFWRADDR_M);
3691 data = VFWRADDR_V(index);
3692 } else {
3693 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
3694 data = T6_VFWRADDR_V(index);
3695 }
688ea5fe
HS
3696
3697 /* Request that the index'th VF Table values be read into VFL/VFH.
3698 */
3699 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
3700 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
3701 vrt |= data | VFRDEN_F;
3702 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
3703
3704 /* Grab the VFL/VFH values ...
3705 */
3706 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3707 vfl, 1, TP_RSS_VFL_CONFIG_A);
3708 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3709 vfh, 1, TP_RSS_VFH_CONFIG_A);
3710}
3711
3712/**
3713 * t4_read_rss_pf_map - read PF RSS Map
3714 * @adapter: the adapter
3715 *
3716 * Reads the PF RSS Map register and returns its value.
3717 */
3718u32 t4_read_rss_pf_map(struct adapter *adapter)
3719{
3720 u32 pfmap;
3721
3722 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3723 &pfmap, 1, TP_RSS_PF_MAP_A);
3724 return pfmap;
3725}
3726
3727/**
3728 * t4_read_rss_pf_mask - read PF RSS Mask
3729 * @adapter: the adapter
3730 *
3731 * Reads the PF RSS Mask register and returns its value.
3732 */
3733u32 t4_read_rss_pf_mask(struct adapter *adapter)
3734{
3735 u32 pfmask;
3736
3737 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3738 &pfmask, 1, TP_RSS_PF_MSK_A);
3739 return pfmask;
3740}
3741
56d36be4
DM
3742/**
3743 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
3744 * @adap: the adapter
3745 * @v4: holds the TCP/IP counter values
3746 * @v6: holds the TCP/IPv6 counter values
3747 *
3748 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3749 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3750 */
3751void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3752 struct tp_tcp_stats *v6)
3753{
837e4a42 3754 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
56d36be4 3755
837e4a42 3756#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
56d36be4
DM
3757#define STAT(x) val[STAT_IDX(x)]
3758#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3759
3760 if (v4) {
837e4a42
HS
3761 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3762 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
a4cfd929
HS
3763 v4->tcp_out_rsts = STAT(OUT_RST);
3764 v4->tcp_in_segs = STAT64(IN_SEG);
3765 v4->tcp_out_segs = STAT64(OUT_SEG);
3766 v4->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
3767 }
3768 if (v6) {
837e4a42
HS
3769 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3770 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
a4cfd929
HS
3771 v6->tcp_out_rsts = STAT(OUT_RST);
3772 v6->tcp_in_segs = STAT64(IN_SEG);
3773 v6->tcp_out_segs = STAT64(OUT_SEG);
3774 v6->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
3775 }
3776#undef STAT64
3777#undef STAT
3778#undef STAT_IDX
3779}
3780
a4cfd929
HS
3781/**
3782 * t4_tp_get_err_stats - read TP's error MIB counters
3783 * @adap: the adapter
3784 * @st: holds the counter values
3785 *
3786 * Returns the values of TP's error counters.
3787 */
3788void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3789{
3790 /* T6 and later has 2 channels */
3791 if (adap->params.arch.nchan == NCHAN) {
3792 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3793 st->mac_in_errs, 12, TP_MIB_MAC_IN_ERR_0_A);
3794 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3795 st->tnl_cong_drops, 8,
3796 TP_MIB_TNL_CNG_DROP_0_A);
3797 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3798 st->tnl_tx_drops, 4,
3799 TP_MIB_TNL_DROP_0_A);
3800 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3801 st->ofld_vlan_drops, 4,
3802 TP_MIB_OFD_VLN_DROP_0_A);
3803 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3804 st->tcp6_in_errs, 4,
3805 TP_MIB_TCP_V6IN_ERR_0_A);
3806 } else {
3807 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3808 st->mac_in_errs, 2, TP_MIB_MAC_IN_ERR_0_A);
3809 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3810 st->hdr_in_errs, 2, TP_MIB_HDR_IN_ERR_0_A);
3811 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3812 st->tcp_in_errs, 2, TP_MIB_TCP_IN_ERR_0_A);
3813 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3814 st->tnl_cong_drops, 2,
3815 TP_MIB_TNL_CNG_DROP_0_A);
3816 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3817 st->ofld_chan_drops, 2,
3818 TP_MIB_OFD_CHN_DROP_0_A);
3819 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3820 st->tnl_tx_drops, 2, TP_MIB_TNL_DROP_0_A);
3821 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3822 st->ofld_vlan_drops, 2,
3823 TP_MIB_OFD_VLN_DROP_0_A);
3824 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3825 st->tcp6_in_errs, 2, TP_MIB_TCP_V6IN_ERR_0_A);
3826 }
3827 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3828 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
3829}
3830
a6222975
HS
3831/**
3832 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
3833 * @adap: the adapter
3834 * @st: holds the counter values
3835 *
3836 * Returns the values of TP's CPL counters.
3837 */
3838void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
3839{
3840 /* T6 and later has 2 channels */
3841 if (adap->params.arch.nchan == NCHAN) {
3842 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
3843 8, TP_MIB_CPL_IN_REQ_0_A);
3844 } else {
3845 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
3846 2, TP_MIB_CPL_IN_REQ_0_A);
3847 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
3848 2, TP_MIB_CPL_OUT_RSP_0_A);
3849 }
3850}
3851
a4cfd929
HS
3852/**
3853 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
3854 * @adap: the adapter
3855 * @st: holds the counter values
3856 *
3857 * Returns the values of TP's RDMA counters.
3858 */
3859void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
3860{
3861 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
3862 2, TP_MIB_RQE_DFR_PKT_A);
3863}
3864
a6222975
HS
3865/**
3866 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
3867 * @adap: the adapter
3868 * @idx: the port index
3869 * @st: holds the counter values
3870 *
3871 * Returns the values of TP's FCoE counters for the selected port.
3872 */
3873void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
3874 struct tp_fcoe_stats *st)
3875{
3876 u32 val[2];
3877
3878 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
3879 1, TP_MIB_FCOE_DDP_0_A + idx);
3880 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
3881 1, TP_MIB_FCOE_DROP_0_A + idx);
3882 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3883 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
3884 st->octets_ddp = ((u64)val[0] << 32) | val[1];
3885}
3886
a4cfd929
HS
3887/**
3888 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
3889 * @adap: the adapter
3890 * @st: holds the counter values
3891 *
3892 * Returns the values of TP's counters for non-TCP directly-placed packets.
3893 */
3894void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
3895{
3896 u32 val[4];
3897
3898 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
3899 TP_MIB_USM_PKTS_A);
3900 st->frames = val[0];
3901 st->drops = val[1];
3902 st->octets = ((u64)val[2] << 32) | val[3];
3903}
3904
56d36be4
DM
3905/**
3906 * t4_read_mtu_tbl - returns the values in the HW path MTU table
3907 * @adap: the adapter
3908 * @mtus: where to store the MTU values
3909 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
3910 *
3911 * Reads the HW path MTU table.
3912 */
3913void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
3914{
3915 u32 v;
3916 int i;
3917
3918 for (i = 0; i < NMTUS; ++i) {
837e4a42
HS
3919 t4_write_reg(adap, TP_MTU_TABLE_A,
3920 MTUINDEX_V(0xff) | MTUVALUE_V(i));
3921 v = t4_read_reg(adap, TP_MTU_TABLE_A);
3922 mtus[i] = MTUVALUE_G(v);
56d36be4 3923 if (mtu_log)
837e4a42 3924 mtu_log[i] = MTUWIDTH_G(v);
56d36be4
DM
3925 }
3926}
3927
bad43792
HS
3928/**
3929 * t4_read_cong_tbl - reads the congestion control table
3930 * @adap: the adapter
3931 * @incr: where to store the alpha values
3932 *
3933 * Reads the additive increments programmed into the HW congestion
3934 * control table.
3935 */
3936void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
3937{
3938 unsigned int mtu, w;
3939
3940 for (mtu = 0; mtu < NMTUS; ++mtu)
3941 for (w = 0; w < NCCTRL_WIN; ++w) {
3942 t4_write_reg(adap, TP_CCTRL_TABLE_A,
3943 ROWINDEX_V(0xffff) | (mtu << 5) | w);
3944 incr[mtu][w] = (u16)t4_read_reg(adap,
3945 TP_CCTRL_TABLE_A) & 0x1fff;
3946 }
3947}
3948
636f9d37
VP
3949/**
3950 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
3951 * @adap: the adapter
3952 * @addr: the indirect TP register address
3953 * @mask: specifies the field within the register to modify
3954 * @val: new value for the field
3955 *
3956 * Sets a field of an indirect TP register to the given value.
3957 */
3958void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
3959 unsigned int mask, unsigned int val)
3960{
837e4a42
HS
3961 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
3962 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
3963 t4_write_reg(adap, TP_PIO_DATA_A, val);
636f9d37
VP
3964}
3965
56d36be4
DM
3966/**
3967 * init_cong_ctrl - initialize congestion control parameters
3968 * @a: the alpha values for congestion control
3969 * @b: the beta values for congestion control
3970 *
3971 * Initialize the congestion control parameters.
3972 */
91744948 3973static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
3974{
3975 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
3976 a[9] = 2;
3977 a[10] = 3;
3978 a[11] = 4;
3979 a[12] = 5;
3980 a[13] = 6;
3981 a[14] = 7;
3982 a[15] = 8;
3983 a[16] = 9;
3984 a[17] = 10;
3985 a[18] = 14;
3986 a[19] = 17;
3987 a[20] = 21;
3988 a[21] = 25;
3989 a[22] = 30;
3990 a[23] = 35;
3991 a[24] = 45;
3992 a[25] = 60;
3993 a[26] = 80;
3994 a[27] = 100;
3995 a[28] = 200;
3996 a[29] = 300;
3997 a[30] = 400;
3998 a[31] = 500;
3999
4000 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
4001 b[9] = b[10] = 1;
4002 b[11] = b[12] = 2;
4003 b[13] = b[14] = b[15] = b[16] = 3;
4004 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
4005 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
4006 b[28] = b[29] = 6;
4007 b[30] = b[31] = 7;
4008}
4009
4010/* The minimum additive increment value for the congestion control table */
4011#define CC_MIN_INCR 2U
4012
4013/**
4014 * t4_load_mtus - write the MTU and congestion control HW tables
4015 * @adap: the adapter
4016 * @mtus: the values for the MTU table
4017 * @alpha: the values for the congestion control alpha parameter
4018 * @beta: the values for the congestion control beta parameter
4019 *
4020 * Write the HW MTU table with the supplied MTUs and the high-speed
4021 * congestion control table with the supplied alpha, beta, and MTUs.
4022 * We write the two tables together because the additive increments
4023 * depend on the MTUs.
4024 */
4025void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
4026 const unsigned short *alpha, const unsigned short *beta)
4027{
4028 static const unsigned int avg_pkts[NCCTRL_WIN] = {
4029 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
4030 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
4031 28672, 40960, 57344, 81920, 114688, 163840, 229376
4032 };
4033
4034 unsigned int i, w;
4035
4036 for (i = 0; i < NMTUS; ++i) {
4037 unsigned int mtu = mtus[i];
4038 unsigned int log2 = fls(mtu);
4039
4040 if (!(mtu & ((1 << log2) >> 2))) /* round */
4041 log2--;
837e4a42
HS
4042 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
4043 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
56d36be4
DM
4044
4045 for (w = 0; w < NCCTRL_WIN; ++w) {
4046 unsigned int inc;
4047
4048 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
4049 CC_MIN_INCR);
4050
837e4a42 4051 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
56d36be4
DM
4052 (w << 16) | (beta[w] << 13) | inc);
4053 }
4054 }
4055}
4056
b3bbe36a
HS
4057/**
4058 * t4_pmtx_get_stats - returns the HW stats from PMTX
4059 * @adap: the adapter
4060 * @cnt: where to store the count statistics
4061 * @cycles: where to store the cycle statistics
4062 *
4063 * Returns performance statistics from PMTX.
4064 */
4065void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4066{
4067 int i;
4068 u32 data[2];
4069
4070 for (i = 0; i < PM_NSTATS; i++) {
4071 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
4072 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
4073 if (is_t4(adap->params.chip)) {
4074 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
4075 } else {
4076 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
4077 PM_TX_DBG_DATA_A, data, 2,
4078 PM_TX_DBG_STAT_MSB_A);
4079 cycles[i] = (((u64)data[0] << 32) | data[1]);
4080 }
4081 }
4082}
4083
4084/**
4085 * t4_pmrx_get_stats - returns the HW stats from PMRX
4086 * @adap: the adapter
4087 * @cnt: where to store the count statistics
4088 * @cycles: where to store the cycle statistics
4089 *
4090 * Returns performance statistics from PMRX.
4091 */
4092void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4093{
4094 int i;
4095 u32 data[2];
4096
4097 for (i = 0; i < PM_NSTATS; i++) {
4098 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
4099 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
4100 if (is_t4(adap->params.chip)) {
4101 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
4102 } else {
4103 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
4104 PM_RX_DBG_DATA_A, data, 2,
4105 PM_RX_DBG_STAT_MSB_A);
4106 cycles[i] = (((u64)data[0] << 32) | data[1]);
4107 }
4108 }
4109}
4110
56d36be4 4111/**
145ef8a5 4112 * t4_get_mps_bg_map - return the buffer groups associated with a port
56d36be4
DM
4113 * @adap: the adapter
4114 * @idx: the port index
4115 *
4116 * Returns a bitmap indicating which MPS buffer groups are associated
4117 * with the given port. Bit i is set if buffer group i is used by the
4118 * port.
4119 */
145ef8a5 4120unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
56d36be4 4121{
837e4a42 4122 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
56d36be4
DM
4123
4124 if (n == 0)
4125 return idx == 0 ? 0xf : 0;
4126 if (n == 1)
4127 return idx < 2 ? (3 << (2 * idx)) : 0;
4128 return 1 << idx;
4129}
4130
72aca4bf
KS
4131/**
4132 * t4_get_port_type_description - return Port Type string description
4133 * @port_type: firmware Port Type enumeration
4134 */
4135const char *t4_get_port_type_description(enum fw_port_type port_type)
4136{
4137 static const char *const port_type_description[] = {
4138 "R XFI",
4139 "R XAUI",
4140 "T SGMII",
4141 "T XFI",
4142 "T XAUI",
4143 "KX4",
4144 "CX4",
4145 "KX",
4146 "KR",
4147 "R SFP+",
4148 "KR/KX",
4149 "KR/KX/KX4",
4150 "R QSFP_10G",
5aa80e51 4151 "R QSA",
72aca4bf
KS
4152 "R QSFP",
4153 "R BP40_BA",
4154 };
4155
4156 if (port_type < ARRAY_SIZE(port_type_description))
4157 return port_type_description[port_type];
4158 return "UNKNOWN";
4159}
4160
a4cfd929
HS
4161/**
4162 * t4_get_port_stats_offset - collect port stats relative to a previous
4163 * snapshot
4164 * @adap: The adapter
4165 * @idx: The port
4166 * @stats: Current stats to fill
4167 * @offset: Previous stats snapshot
4168 */
4169void t4_get_port_stats_offset(struct adapter *adap, int idx,
4170 struct port_stats *stats,
4171 struct port_stats *offset)
4172{
4173 u64 *s, *o;
4174 int i;
4175
4176 t4_get_port_stats(adap, idx, stats);
4177 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
4178 i < (sizeof(struct port_stats) / sizeof(u64));
4179 i++, s++, o++)
4180 *s -= *o;
4181}
4182
56d36be4
DM
4183/**
4184 * t4_get_port_stats - collect port statistics
4185 * @adap: the adapter
4186 * @idx: the port index
4187 * @p: the stats structure to fill
4188 *
4189 * Collect statistics related to the given port from HW.
4190 */
4191void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
4192{
145ef8a5 4193 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4
DM
4194
4195#define GET_STAT(name) \
0a57a536 4196 t4_read_reg64(adap, \
d14807dd 4197 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 4198 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
4199#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4200
4201 p->tx_octets = GET_STAT(TX_PORT_BYTES);
4202 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
4203 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
4204 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
4205 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
4206 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
4207 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
4208 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
4209 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
4210 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
4211 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
4212 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
4213 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
4214 p->tx_drop = GET_STAT(TX_PORT_DROP);
4215 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
4216 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
4217 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
4218 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
4219 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
4220 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
4221 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
4222 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
4223 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
4224
4225 p->rx_octets = GET_STAT(RX_PORT_BYTES);
4226 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
4227 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
4228 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
4229 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
4230 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
4231 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
4232 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
4233 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
4234 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
4235 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
4236 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
4237 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
4238 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
4239 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
4240 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
4241 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
4242 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
4243 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
4244 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
4245 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
4246 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
4247 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
4248 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
4249 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
4250 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
4251 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
4252
4253 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
4254 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
4255 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
4256 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
4257 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
4258 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
4259 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
4260 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
4261
4262#undef GET_STAT
4263#undef GET_STAT_COM
4264}
4265
65046e84
HS
4266/**
4267 * t4_get_lb_stats - collect loopback port statistics
4268 * @adap: the adapter
4269 * @idx: the loopback port index
4270 * @p: the stats structure to fill
4271 *
4272 * Return HW statistics for the given loopback port.
4273 */
4274void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4275{
4276 u32 bgmap = t4_get_mps_bg_map(adap, idx);
4277
4278#define GET_STAT(name) \
4279 t4_read_reg64(adap, \
4280 (is_t4(adap->params.chip) ? \
4281 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
4282 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
4283#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4284
4285 p->octets = GET_STAT(BYTES);
4286 p->frames = GET_STAT(FRAMES);
4287 p->bcast_frames = GET_STAT(BCAST);
4288 p->mcast_frames = GET_STAT(MCAST);
4289 p->ucast_frames = GET_STAT(UCAST);
4290 p->error_frames = GET_STAT(ERROR);
4291
4292 p->frames_64 = GET_STAT(64B);
4293 p->frames_65_127 = GET_STAT(65B_127B);
4294 p->frames_128_255 = GET_STAT(128B_255B);
4295 p->frames_256_511 = GET_STAT(256B_511B);
4296 p->frames_512_1023 = GET_STAT(512B_1023B);
4297 p->frames_1024_1518 = GET_STAT(1024B_1518B);
4298 p->frames_1519_max = GET_STAT(1519B_MAX);
4299 p->drop = GET_STAT(DROP_FRAMES);
4300
4301 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4302 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4303 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4304 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4305 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4306 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4307 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4308 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4309
4310#undef GET_STAT
4311#undef GET_STAT_COM
4312}
4313
f2b7e78d
VP
4314/* t4_mk_filtdelwr - create a delete filter WR
4315 * @ftid: the filter ID
4316 * @wr: the filter work request to populate
4317 * @qid: ingress queue to receive the delete notification
4318 *
4319 * Creates a filter work request to delete the supplied filter. If @qid is
4320 * negative the delete notification is suppressed.
4321 */
4322void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4323{
4324 memset(wr, 0, sizeof(*wr));
f404f80c
HS
4325 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
4326 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
4327 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
4328 FW_FILTER_WR_NOREPLY_V(qid < 0));
4329 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
f2b7e78d 4330 if (qid >= 0)
f404f80c
HS
4331 wr->rx_chan_rx_rpl_iq =
4332 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
f2b7e78d
VP
4333}
4334
56d36be4 4335#define INIT_CMD(var, cmd, rd_wr) do { \
f404f80c
HS
4336 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
4337 FW_CMD_REQUEST_F | \
4338 FW_CMD_##rd_wr##_F); \
4339 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
56d36be4
DM
4340} while (0)
4341
8caa1e84
VP
4342int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
4343 u32 addr, u32 val)
4344{
f404f80c 4345 u32 ldst_addrspace;
8caa1e84
VP
4346 struct fw_ldst_cmd c;
4347
4348 memset(&c, 0, sizeof(c));
f404f80c
HS
4349 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
4350 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4351 FW_CMD_REQUEST_F |
4352 FW_CMD_WRITE_F |
4353 ldst_addrspace);
4354 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4355 c.u.addrval.addr = cpu_to_be32(addr);
4356 c.u.addrval.val = cpu_to_be32(val);
8caa1e84
VP
4357
4358 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4359}
4360
56d36be4
DM
4361/**
4362 * t4_mdio_rd - read a PHY register through MDIO
4363 * @adap: the adapter
4364 * @mbox: mailbox to use for the FW command
4365 * @phy_addr: the PHY address
4366 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4367 * @reg: the register to read
4368 * @valp: where to store the value
4369 *
4370 * Issues a FW command through the given mailbox to read a PHY register.
4371 */
4372int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4373 unsigned int mmd, unsigned int reg, u16 *valp)
4374{
4375 int ret;
f404f80c 4376 u32 ldst_addrspace;
56d36be4
DM
4377 struct fw_ldst_cmd c;
4378
4379 memset(&c, 0, sizeof(c));
f404f80c
HS
4380 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4381 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4382 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4383 ldst_addrspace);
4384 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4385 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4386 FW_LDST_CMD_MMD_V(mmd));
4387 c.u.mdio.raddr = cpu_to_be16(reg);
56d36be4
DM
4388
4389 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4390 if (ret == 0)
f404f80c 4391 *valp = be16_to_cpu(c.u.mdio.rval);
56d36be4
DM
4392 return ret;
4393}
4394
4395/**
4396 * t4_mdio_wr - write a PHY register through MDIO
4397 * @adap: the adapter
4398 * @mbox: mailbox to use for the FW command
4399 * @phy_addr: the PHY address
4400 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4401 * @reg: the register to write
4402 * @valp: value to write
4403 *
4404 * Issues a FW command through the given mailbox to write a PHY register.
4405 */
4406int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4407 unsigned int mmd, unsigned int reg, u16 val)
4408{
f404f80c 4409 u32 ldst_addrspace;
56d36be4
DM
4410 struct fw_ldst_cmd c;
4411
4412 memset(&c, 0, sizeof(c));
f404f80c
HS
4413 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4414 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4415 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4416 ldst_addrspace);
4417 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4418 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4419 FW_LDST_CMD_MMD_V(mmd));
4420 c.u.mdio.raddr = cpu_to_be16(reg);
4421 c.u.mdio.rval = cpu_to_be16(val);
56d36be4
DM
4422
4423 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4424}
4425
68bce192
KS
4426/**
4427 * t4_sge_decode_idma_state - decode the idma state
4428 * @adap: the adapter
4429 * @state: the state idma is stuck in
4430 */
4431void t4_sge_decode_idma_state(struct adapter *adapter, int state)
4432{
4433 static const char * const t4_decode[] = {
4434 "IDMA_IDLE",
4435 "IDMA_PUSH_MORE_CPL_FIFO",
4436 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4437 "Not used",
4438 "IDMA_PHYSADDR_SEND_PCIEHDR",
4439 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4440 "IDMA_PHYSADDR_SEND_PAYLOAD",
4441 "IDMA_SEND_FIFO_TO_IMSG",
4442 "IDMA_FL_REQ_DATA_FL_PREP",
4443 "IDMA_FL_REQ_DATA_FL",
4444 "IDMA_FL_DROP",
4445 "IDMA_FL_H_REQ_HEADER_FL",
4446 "IDMA_FL_H_SEND_PCIEHDR",
4447 "IDMA_FL_H_PUSH_CPL_FIFO",
4448 "IDMA_FL_H_SEND_CPL",
4449 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4450 "IDMA_FL_H_SEND_IP_HDR",
4451 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4452 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4453 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4454 "IDMA_FL_D_SEND_PCIEHDR",
4455 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4456 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4457 "IDMA_FL_SEND_PCIEHDR",
4458 "IDMA_FL_PUSH_CPL_FIFO",
4459 "IDMA_FL_SEND_CPL",
4460 "IDMA_FL_SEND_PAYLOAD_FIRST",
4461 "IDMA_FL_SEND_PAYLOAD",
4462 "IDMA_FL_REQ_NEXT_DATA_FL",
4463 "IDMA_FL_SEND_NEXT_PCIEHDR",
4464 "IDMA_FL_SEND_PADDING",
4465 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4466 "IDMA_FL_SEND_FIFO_TO_IMSG",
4467 "IDMA_FL_REQ_DATAFL_DONE",
4468 "IDMA_FL_REQ_HEADERFL_DONE",
4469 };
4470 static const char * const t5_decode[] = {
4471 "IDMA_IDLE",
4472 "IDMA_ALMOST_IDLE",
4473 "IDMA_PUSH_MORE_CPL_FIFO",
4474 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4475 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
4476 "IDMA_PHYSADDR_SEND_PCIEHDR",
4477 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4478 "IDMA_PHYSADDR_SEND_PAYLOAD",
4479 "IDMA_SEND_FIFO_TO_IMSG",
4480 "IDMA_FL_REQ_DATA_FL",
4481 "IDMA_FL_DROP",
4482 "IDMA_FL_DROP_SEND_INC",
4483 "IDMA_FL_H_REQ_HEADER_FL",
4484 "IDMA_FL_H_SEND_PCIEHDR",
4485 "IDMA_FL_H_PUSH_CPL_FIFO",
4486 "IDMA_FL_H_SEND_CPL",
4487 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4488 "IDMA_FL_H_SEND_IP_HDR",
4489 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4490 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4491 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4492 "IDMA_FL_D_SEND_PCIEHDR",
4493 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4494 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4495 "IDMA_FL_SEND_PCIEHDR",
4496 "IDMA_FL_PUSH_CPL_FIFO",
4497 "IDMA_FL_SEND_CPL",
4498 "IDMA_FL_SEND_PAYLOAD_FIRST",
4499 "IDMA_FL_SEND_PAYLOAD",
4500 "IDMA_FL_REQ_NEXT_DATA_FL",
4501 "IDMA_FL_SEND_NEXT_PCIEHDR",
4502 "IDMA_FL_SEND_PADDING",
4503 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4504 };
4505 static const u32 sge_regs[] = {
f061de42
HS
4506 SGE_DEBUG_DATA_LOW_INDEX_2_A,
4507 SGE_DEBUG_DATA_LOW_INDEX_3_A,
4508 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
68bce192
KS
4509 };
4510 const char **sge_idma_decode;
4511 int sge_idma_decode_nstates;
4512 int i;
4513
4514 if (is_t4(adapter->params.chip)) {
4515 sge_idma_decode = (const char **)t4_decode;
4516 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
4517 } else {
4518 sge_idma_decode = (const char **)t5_decode;
4519 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
4520 }
4521
4522 if (state < sge_idma_decode_nstates)
4523 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
4524 else
4525 CH_WARN(adapter, "idma state %d unknown\n", state);
4526
4527 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
4528 CH_WARN(adapter, "SGE register %#x value %#x\n",
4529 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
4530}
4531
5d700ecb
HS
4532/**
4533 * t4_sge_ctxt_flush - flush the SGE context cache
4534 * @adap: the adapter
4535 * @mbox: mailbox to use for the FW command
4536 *
4537 * Issues a FW command through the given mailbox to flush the
4538 * SGE context cache.
4539 */
4540int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4541{
4542 int ret;
4543 u32 ldst_addrspace;
4544 struct fw_ldst_cmd c;
4545
4546 memset(&c, 0, sizeof(c));
4547 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
4548 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4549 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4550 ldst_addrspace);
4551 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4552 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
4553
4554 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4555 return ret;
4556}
4557
56d36be4 4558/**
636f9d37
VP
4559 * t4_fw_hello - establish communication with FW
4560 * @adap: the adapter
4561 * @mbox: mailbox to use for the FW command
4562 * @evt_mbox: mailbox to receive async FW events
4563 * @master: specifies the caller's willingness to be the device master
4564 * @state: returns the current device state (if non-NULL)
56d36be4 4565 *
636f9d37
VP
4566 * Issues a command to establish communication with FW. Returns either
4567 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
4568 */
4569int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4570 enum dev_master master, enum dev_state *state)
4571{
4572 int ret;
4573 struct fw_hello_cmd c;
636f9d37
VP
4574 u32 v;
4575 unsigned int master_mbox;
4576 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 4577
636f9d37
VP
4578retry:
4579 memset(&c, 0, sizeof(c));
56d36be4 4580 INIT_CMD(c, HELLO, WRITE);
f404f80c 4581 c.err_to_clearinit = cpu_to_be32(
5167865a
HS
4582 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
4583 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
f404f80c
HS
4584 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
4585 mbox : FW_HELLO_CMD_MBMASTER_M) |
5167865a
HS
4586 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
4587 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
4588 FW_HELLO_CMD_CLEARINIT_F);
56d36be4 4589
636f9d37
VP
4590 /*
4591 * Issue the HELLO command to the firmware. If it's not successful
4592 * but indicates that we got a "busy" or "timeout" condition, retry
31d55c2d
HS
4593 * the HELLO until we exhaust our retry limit. If we do exceed our
4594 * retry limit, check to see if the firmware left us any error
4595 * information and report that if so.
636f9d37 4596 */
56d36be4 4597 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
4598 if (ret < 0) {
4599 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4600 goto retry;
f061de42 4601 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d 4602 t4_report_fw_error(adap);
636f9d37
VP
4603 return ret;
4604 }
4605
f404f80c 4606 v = be32_to_cpu(c.err_to_clearinit);
5167865a 4607 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
636f9d37 4608 if (state) {
5167865a 4609 if (v & FW_HELLO_CMD_ERR_F)
56d36be4 4610 *state = DEV_STATE_ERR;
5167865a 4611 else if (v & FW_HELLO_CMD_INIT_F)
636f9d37 4612 *state = DEV_STATE_INIT;
56d36be4
DM
4613 else
4614 *state = DEV_STATE_UNINIT;
4615 }
636f9d37
VP
4616
4617 /*
4618 * If we're not the Master PF then we need to wait around for the
4619 * Master PF Driver to finish setting up the adapter.
4620 *
4621 * Note that we also do this wait if we're a non-Master-capable PF and
4622 * there is no current Master PF; a Master PF may show up momentarily
4623 * and we wouldn't want to fail pointlessly. (This can happen when an
4624 * OS loads lots of different drivers rapidly at the same time). In
4625 * this case, the Master PF returned by the firmware will be
b2e1a3f0 4626 * PCIE_FW_MASTER_M so the test below will work ...
636f9d37 4627 */
5167865a 4628 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
636f9d37
VP
4629 master_mbox != mbox) {
4630 int waiting = FW_CMD_HELLO_TIMEOUT;
4631
4632 /*
4633 * Wait for the firmware to either indicate an error or
4634 * initialized state. If we see either of these we bail out
4635 * and report the issue to the caller. If we exhaust the
4636 * "hello timeout" and we haven't exhausted our retries, try
4637 * again. Otherwise bail with a timeout error.
4638 */
4639 for (;;) {
4640 u32 pcie_fw;
4641
4642 msleep(50);
4643 waiting -= 50;
4644
4645 /*
4646 * If neither Error nor Initialialized are indicated
4647 * by the firmware keep waiting till we exaust our
4648 * timeout ... and then retry if we haven't exhausted
4649 * our retries ...
4650 */
f061de42
HS
4651 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
4652 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
636f9d37
VP
4653 if (waiting <= 0) {
4654 if (retries-- > 0)
4655 goto retry;
4656
4657 return -ETIMEDOUT;
4658 }
4659 continue;
4660 }
4661
4662 /*
4663 * We either have an Error or Initialized condition
4664 * report errors preferentially.
4665 */
4666 if (state) {
f061de42 4667 if (pcie_fw & PCIE_FW_ERR_F)
636f9d37 4668 *state = DEV_STATE_ERR;
f061de42 4669 else if (pcie_fw & PCIE_FW_INIT_F)
636f9d37
VP
4670 *state = DEV_STATE_INIT;
4671 }
4672
4673 /*
4674 * If we arrived before a Master PF was selected and
4675 * there's not a valid Master PF, grab its identity
4676 * for our caller.
4677 */
b2e1a3f0 4678 if (master_mbox == PCIE_FW_MASTER_M &&
f061de42 4679 (pcie_fw & PCIE_FW_MASTER_VLD_F))
b2e1a3f0 4680 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
636f9d37
VP
4681 break;
4682 }
4683 }
4684
4685 return master_mbox;
56d36be4
DM
4686}
4687
4688/**
4689 * t4_fw_bye - end communication with FW
4690 * @adap: the adapter
4691 * @mbox: mailbox to use for the FW command
4692 *
4693 * Issues a command to terminate communication with FW.
4694 */
4695int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4696{
4697 struct fw_bye_cmd c;
4698
0062b15c 4699 memset(&c, 0, sizeof(c));
56d36be4
DM
4700 INIT_CMD(c, BYE, WRITE);
4701 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4702}
4703
4704/**
4705 * t4_init_cmd - ask FW to initialize the device
4706 * @adap: the adapter
4707 * @mbox: mailbox to use for the FW command
4708 *
4709 * Issues a command to FW to partially initialize the device. This
4710 * performs initialization that generally doesn't depend on user input.
4711 */
4712int t4_early_init(struct adapter *adap, unsigned int mbox)
4713{
4714 struct fw_initialize_cmd c;
4715
0062b15c 4716 memset(&c, 0, sizeof(c));
56d36be4
DM
4717 INIT_CMD(c, INITIALIZE, WRITE);
4718 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4719}
4720
4721/**
4722 * t4_fw_reset - issue a reset to FW
4723 * @adap: the adapter
4724 * @mbox: mailbox to use for the FW command
4725 * @reset: specifies the type of reset to perform
4726 *
4727 * Issues a reset command of the specified type to FW.
4728 */
4729int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4730{
4731 struct fw_reset_cmd c;
4732
0062b15c 4733 memset(&c, 0, sizeof(c));
56d36be4 4734 INIT_CMD(c, RESET, WRITE);
f404f80c 4735 c.val = cpu_to_be32(reset);
56d36be4
DM
4736 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4737}
4738
26f7cbc0
VP
4739/**
4740 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4741 * @adap: the adapter
4742 * @mbox: mailbox to use for the FW RESET command (if desired)
4743 * @force: force uP into RESET even if FW RESET command fails
4744 *
4745 * Issues a RESET command to firmware (if desired) with a HALT indication
4746 * and then puts the microprocessor into RESET state. The RESET command
4747 * will only be issued if a legitimate mailbox is provided (mbox <=
b2e1a3f0 4748 * PCIE_FW_MASTER_M).
26f7cbc0
VP
4749 *
4750 * This is generally used in order for the host to safely manipulate the
4751 * adapter without fear of conflicting with whatever the firmware might
4752 * be doing. The only way out of this state is to RESTART the firmware
4753 * ...
4754 */
de5b8677 4755static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
26f7cbc0
VP
4756{
4757 int ret = 0;
4758
4759 /*
4760 * If a legitimate mailbox is provided, issue a RESET command
4761 * with a HALT indication.
4762 */
b2e1a3f0 4763 if (mbox <= PCIE_FW_MASTER_M) {
26f7cbc0
VP
4764 struct fw_reset_cmd c;
4765
4766 memset(&c, 0, sizeof(c));
4767 INIT_CMD(c, RESET, WRITE);
f404f80c
HS
4768 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
4769 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
26f7cbc0
VP
4770 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4771 }
4772
4773 /*
4774 * Normally we won't complete the operation if the firmware RESET
4775 * command fails but if our caller insists we'll go ahead and put the
4776 * uP into RESET. This can be useful if the firmware is hung or even
4777 * missing ... We'll have to take the risk of putting the uP into
4778 * RESET without the cooperation of firmware in that case.
4779 *
4780 * We also force the firmware's HALT flag to be on in case we bypassed
4781 * the firmware RESET command above or we're dealing with old firmware
4782 * which doesn't have the HALT capability. This will serve as a flag
4783 * for the incoming firmware to know that it's coming out of a HALT
4784 * rather than a RESET ... if it's new enough to understand that ...
4785 */
4786 if (ret == 0 || force) {
89c3a86c 4787 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
f061de42 4788 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
b2e1a3f0 4789 PCIE_FW_HALT_F);
26f7cbc0
VP
4790 }
4791
4792 /*
4793 * And we always return the result of the firmware RESET command
4794 * even when we force the uP into RESET ...
4795 */
4796 return ret;
4797}
4798
4799/**
4800 * t4_fw_restart - restart the firmware by taking the uP out of RESET
4801 * @adap: the adapter
4802 * @reset: if we want to do a RESET to restart things
4803 *
4804 * Restart firmware previously halted by t4_fw_halt(). On successful
4805 * return the previous PF Master remains as the new PF Master and there
4806 * is no need to issue a new HELLO command, etc.
4807 *
4808 * We do this in two ways:
4809 *
4810 * 1. If we're dealing with newer firmware we'll simply want to take
4811 * the chip's microprocessor out of RESET. This will cause the
4812 * firmware to start up from its start vector. And then we'll loop
4813 * until the firmware indicates it's started again (PCIE_FW.HALT
4814 * reset to 0) or we timeout.
4815 *
4816 * 2. If we're dealing with older firmware then we'll need to RESET
4817 * the chip since older firmware won't recognize the PCIE_FW.HALT
4818 * flag and automatically RESET itself on startup.
4819 */
de5b8677 4820static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
26f7cbc0
VP
4821{
4822 if (reset) {
4823 /*
4824 * Since we're directing the RESET instead of the firmware
4825 * doing it automatically, we need to clear the PCIE_FW.HALT
4826 * bit.
4827 */
f061de42 4828 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
26f7cbc0
VP
4829
4830 /*
4831 * If we've been given a valid mailbox, first try to get the
4832 * firmware to do the RESET. If that works, great and we can
4833 * return success. Otherwise, if we haven't been given a
4834 * valid mailbox or the RESET command failed, fall back to
4835 * hitting the chip with a hammer.
4836 */
b2e1a3f0 4837 if (mbox <= PCIE_FW_MASTER_M) {
89c3a86c 4838 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0
VP
4839 msleep(100);
4840 if (t4_fw_reset(adap, mbox,
0d804338 4841 PIORST_F | PIORSTMODE_F) == 0)
26f7cbc0
VP
4842 return 0;
4843 }
4844
0d804338 4845 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
26f7cbc0
VP
4846 msleep(2000);
4847 } else {
4848 int ms;
4849
89c3a86c 4850 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0 4851 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
f061de42 4852 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
26f7cbc0
VP
4853 return 0;
4854 msleep(100);
4855 ms += 100;
4856 }
4857 return -ETIMEDOUT;
4858 }
4859 return 0;
4860}
4861
4862/**
4863 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4864 * @adap: the adapter
4865 * @mbox: mailbox to use for the FW RESET command (if desired)
4866 * @fw_data: the firmware image to write
4867 * @size: image size
4868 * @force: force upgrade even if firmware doesn't cooperate
4869 *
4870 * Perform all of the steps necessary for upgrading an adapter's
4871 * firmware image. Normally this requires the cooperation of the
4872 * existing firmware in order to halt all existing activities
4873 * but if an invalid mailbox token is passed in we skip that step
4874 * (though we'll still put the adapter microprocessor into RESET in
4875 * that case).
4876 *
4877 * On successful return the new firmware will have been loaded and
4878 * the adapter will have been fully RESET losing all previous setup
4879 * state. On unsuccessful return the adapter may be completely hosed ...
4880 * positive errno indicates that the adapter is ~probably~ intact, a
4881 * negative errno indicates that things are looking bad ...
4882 */
22c0b963
HS
4883int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4884 const u8 *fw_data, unsigned int size, int force)
26f7cbc0
VP
4885{
4886 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4887 int reset, ret;
4888
79af221d
HS
4889 if (!t4_fw_matches_chip(adap, fw_hdr))
4890 return -EINVAL;
4891
26f7cbc0
VP
4892 ret = t4_fw_halt(adap, mbox, force);
4893 if (ret < 0 && !force)
4894 return ret;
4895
4896 ret = t4_load_fw(adap, fw_data, size);
4897 if (ret < 0)
4898 return ret;
4899
4900 /*
4901 * Older versions of the firmware don't understand the new
4902 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
4903 * restart. So for newly loaded older firmware we'll have to do the
4904 * RESET for it so it starts up on a clean slate. We can tell if
4905 * the newly loaded firmware will handle this right by checking
4906 * its header flags to see if it advertises the capability.
4907 */
f404f80c 4908 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
26f7cbc0
VP
4909 return t4_fw_restart(adap, mbox, reset);
4910}
4911
636f9d37
VP
4912/**
4913 * t4_fixup_host_params - fix up host-dependent parameters
4914 * @adap: the adapter
4915 * @page_size: the host's Base Page Size
4916 * @cache_line_size: the host's Cache Line Size
4917 *
4918 * Various registers in T4 contain values which are dependent on the
4919 * host's Base Page and Cache Line Sizes. This function will fix all of
4920 * those registers with the appropriate values as passed in ...
4921 */
4922int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
4923 unsigned int cache_line_size)
4924{
4925 unsigned int page_shift = fls(page_size) - 1;
4926 unsigned int sge_hps = page_shift - 10;
4927 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
4928 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
4929 unsigned int fl_align_log = fls(fl_align) - 1;
4930
f612b815
HS
4931 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
4932 HOSTPAGESIZEPF0_V(sge_hps) |
4933 HOSTPAGESIZEPF1_V(sge_hps) |
4934 HOSTPAGESIZEPF2_V(sge_hps) |
4935 HOSTPAGESIZEPF3_V(sge_hps) |
4936 HOSTPAGESIZEPF4_V(sge_hps) |
4937 HOSTPAGESIZEPF5_V(sge_hps) |
4938 HOSTPAGESIZEPF6_V(sge_hps) |
4939 HOSTPAGESIZEPF7_V(sge_hps));
636f9d37 4940
ce8f407a 4941 if (is_t4(adap->params.chip)) {
f612b815
HS
4942 t4_set_reg_field(adap, SGE_CONTROL_A,
4943 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
4944 EGRSTATUSPAGESIZE_F,
4945 INGPADBOUNDARY_V(fl_align_log -
4946 INGPADBOUNDARY_SHIFT_X) |
4947 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
4948 } else {
4949 /* T5 introduced the separation of the Free List Padding and
4950 * Packing Boundaries. Thus, we can select a smaller Padding
4951 * Boundary to avoid uselessly chewing up PCIe Link and Memory
4952 * Bandwidth, and use a Packing Boundary which is large enough
4953 * to avoid false sharing between CPUs, etc.
4954 *
4955 * For the PCI Link, the smaller the Padding Boundary the
4956 * better. For the Memory Controller, a smaller Padding
4957 * Boundary is better until we cross under the Memory Line
4958 * Size (the minimum unit of transfer to/from Memory). If we
4959 * have a Padding Boundary which is smaller than the Memory
4960 * Line Size, that'll involve a Read-Modify-Write cycle on the
4961 * Memory Controller which is never good. For T5 the smallest
4962 * Padding Boundary which we can select is 32 bytes which is
4963 * larger than any known Memory Controller Line Size so we'll
4964 * use that.
4965 *
4966 * T5 has a different interpretation of the "0" value for the
4967 * Packing Boundary. This corresponds to 16 bytes instead of
4968 * the expected 32 bytes. We never have a Packing Boundary
4969 * less than 32 bytes so we can't use that special value but
4970 * on the other hand, if we wanted 32 bytes, the best we can
4971 * really do is 64 bytes.
4972 */
4973 if (fl_align <= 32) {
4974 fl_align = 64;
4975 fl_align_log = 6;
4976 }
f612b815
HS
4977 t4_set_reg_field(adap, SGE_CONTROL_A,
4978 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
4979 EGRSTATUSPAGESIZE_F,
4980 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
4981 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
4982 t4_set_reg_field(adap, SGE_CONTROL2_A,
4983 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
4984 INGPACKBOUNDARY_V(fl_align_log -
f612b815 4985 INGPACKBOUNDARY_SHIFT_X));
ce8f407a 4986 }
636f9d37
VP
4987 /*
4988 * Adjust various SGE Free List Host Buffer Sizes.
4989 *
4990 * This is something of a crock since we're using fixed indices into
4991 * the array which are also known by the sge.c code and the T4
4992 * Firmware Configuration File. We need to come up with a much better
4993 * approach to managing this array. For now, the first four entries
4994 * are:
4995 *
4996 * 0: Host Page Size
4997 * 1: 64KB
4998 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
4999 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
5000 *
5001 * For the single-MTU buffers in unpacked mode we need to include
5002 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
5003 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
dbedd44e 5004 * Padding boundary. All of these are accommodated in the Factory
636f9d37
VP
5005 * Default Firmware Configuration File but we need to adjust it for
5006 * this host's cache line size.
5007 */
f612b815
HS
5008 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
5009 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
5010 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
636f9d37 5011 & ~(fl_align-1));
f612b815
HS
5012 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
5013 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
636f9d37
VP
5014 & ~(fl_align-1));
5015
0d804338 5016 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
636f9d37
VP
5017
5018 return 0;
5019}
5020
5021/**
5022 * t4_fw_initialize - ask FW to initialize the device
5023 * @adap: the adapter
5024 * @mbox: mailbox to use for the FW command
5025 *
5026 * Issues a command to FW to partially initialize the device. This
5027 * performs initialization that generally doesn't depend on user input.
5028 */
5029int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
5030{
5031 struct fw_initialize_cmd c;
5032
5033 memset(&c, 0, sizeof(c));
5034 INIT_CMD(c, INITIALIZE, WRITE);
5035 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5036}
5037
56d36be4 5038/**
01b69614 5039 * t4_query_params_rw - query FW or device parameters
56d36be4
DM
5040 * @adap: the adapter
5041 * @mbox: mailbox to use for the FW command
5042 * @pf: the PF
5043 * @vf: the VF
5044 * @nparams: the number of parameters
5045 * @params: the parameter names
5046 * @val: the parameter values
01b69614 5047 * @rw: Write and read flag
56d36be4
DM
5048 *
5049 * Reads the value of FW or device parameters. Up to 7 parameters can be
5050 * queried at once.
5051 */
01b69614
HS
5052int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
5053 unsigned int vf, unsigned int nparams, const u32 *params,
5054 u32 *val, int rw)
56d36be4
DM
5055{
5056 int i, ret;
5057 struct fw_params_cmd c;
5058 __be32 *p = &c.param[0].mnem;
5059
5060 if (nparams > 7)
5061 return -EINVAL;
5062
5063 memset(&c, 0, sizeof(c));
f404f80c
HS
5064 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5065 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5066 FW_PARAMS_CMD_PFN_V(pf) |
5067 FW_PARAMS_CMD_VFN_V(vf));
5068 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5069
01b69614
HS
5070 for (i = 0; i < nparams; i++) {
5071 *p++ = cpu_to_be32(*params++);
5072 if (rw)
5073 *p = cpu_to_be32(*(val + i));
5074 p++;
5075 }
56d36be4
DM
5076
5077 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5078 if (ret == 0)
5079 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
f404f80c 5080 *val++ = be32_to_cpu(*p);
56d36be4
DM
5081 return ret;
5082}
5083
01b69614
HS
5084int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5085 unsigned int vf, unsigned int nparams, const u32 *params,
5086 u32 *val)
5087{
5088 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
5089}
5090
688848b1 5091/**
01b69614 5092 * t4_set_params_timeout - sets FW or device parameters
688848b1
AB
5093 * @adap: the adapter
5094 * @mbox: mailbox to use for the FW command
5095 * @pf: the PF
5096 * @vf: the VF
5097 * @nparams: the number of parameters
5098 * @params: the parameter names
5099 * @val: the parameter values
01b69614 5100 * @timeout: the timeout time
688848b1 5101 *
688848b1
AB
5102 * Sets the value of FW or device parameters. Up to 7 parameters can be
5103 * specified at once.
5104 */
01b69614 5105int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
688848b1
AB
5106 unsigned int pf, unsigned int vf,
5107 unsigned int nparams, const u32 *params,
01b69614 5108 const u32 *val, int timeout)
688848b1
AB
5109{
5110 struct fw_params_cmd c;
5111 __be32 *p = &c.param[0].mnem;
5112
5113 if (nparams > 7)
5114 return -EINVAL;
5115
5116 memset(&c, 0, sizeof(c));
e2ac9628 5117 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
01b69614
HS
5118 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5119 FW_PARAMS_CMD_PFN_V(pf) |
5120 FW_PARAMS_CMD_VFN_V(vf));
688848b1
AB
5121 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5122
5123 while (nparams--) {
5124 *p++ = cpu_to_be32(*params++);
5125 *p++ = cpu_to_be32(*val++);
5126 }
5127
01b69614 5128 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
688848b1
AB
5129}
5130
56d36be4
DM
5131/**
5132 * t4_set_params - sets FW or device parameters
5133 * @adap: the adapter
5134 * @mbox: mailbox to use for the FW command
5135 * @pf: the PF
5136 * @vf: the VF
5137 * @nparams: the number of parameters
5138 * @params: the parameter names
5139 * @val: the parameter values
5140 *
5141 * Sets the value of FW or device parameters. Up to 7 parameters can be
5142 * specified at once.
5143 */
5144int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5145 unsigned int vf, unsigned int nparams, const u32 *params,
5146 const u32 *val)
5147{
01b69614
HS
5148 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
5149 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
5150}
5151
5152/**
5153 * t4_cfg_pfvf - configure PF/VF resource limits
5154 * @adap: the adapter
5155 * @mbox: mailbox to use for the FW command
5156 * @pf: the PF being configured
5157 * @vf: the VF being configured
5158 * @txq: the max number of egress queues
5159 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
5160 * @rxqi: the max number of interrupt-capable ingress queues
5161 * @rxq: the max number of interruptless ingress queues
5162 * @tc: the PCI traffic class
5163 * @vi: the max number of virtual interfaces
5164 * @cmask: the channel access rights mask for the PF/VF
5165 * @pmask: the port access rights mask for the PF/VF
5166 * @nexact: the maximum number of exact MPS filters
5167 * @rcaps: read capabilities
5168 * @wxcaps: write/execute capabilities
5169 *
5170 * Configures resource limits and capabilities for a physical or virtual
5171 * function.
5172 */
5173int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
5174 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
5175 unsigned int rxqi, unsigned int rxq, unsigned int tc,
5176 unsigned int vi, unsigned int cmask, unsigned int pmask,
5177 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
5178{
5179 struct fw_pfvf_cmd c;
5180
5181 memset(&c, 0, sizeof(c));
f404f80c
HS
5182 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
5183 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
5184 FW_PFVF_CMD_VFN_V(vf));
5185 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5186 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
5187 FW_PFVF_CMD_NIQ_V(rxq));
5188 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
5189 FW_PFVF_CMD_PMASK_V(pmask) |
5190 FW_PFVF_CMD_NEQ_V(txq));
5191 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
5192 FW_PFVF_CMD_NVI_V(vi) |
5193 FW_PFVF_CMD_NEXACTF_V(nexact));
5194 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
5195 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
5196 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
56d36be4
DM
5197 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5198}
5199
5200/**
5201 * t4_alloc_vi - allocate a virtual interface
5202 * @adap: the adapter
5203 * @mbox: mailbox to use for the FW command
5204 * @port: physical port associated with the VI
5205 * @pf: the PF owning the VI
5206 * @vf: the VF owning the VI
5207 * @nmac: number of MAC addresses needed (1 to 5)
5208 * @mac: the MAC addresses of the VI
5209 * @rss_size: size of RSS table slice associated with this VI
5210 *
5211 * Allocates a virtual interface for the given physical port. If @mac is
5212 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
5213 * @mac should be large enough to hold @nmac Ethernet addresses, they are
5214 * stored consecutively so the space needed is @nmac * 6 bytes.
5215 * Returns a negative error number or the non-negative VI id.
5216 */
5217int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
5218 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
5219 unsigned int *rss_size)
5220{
5221 int ret;
5222 struct fw_vi_cmd c;
5223
5224 memset(&c, 0, sizeof(c));
f404f80c
HS
5225 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
5226 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
5227 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
5228 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
2b5fb1f2 5229 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
56d36be4
DM
5230 c.nmac = nmac - 1;
5231
5232 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5233 if (ret)
5234 return ret;
5235
5236 if (mac) {
5237 memcpy(mac, c.mac, sizeof(c.mac));
5238 switch (nmac) {
5239 case 5:
5240 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
5241 case 4:
5242 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
5243 case 3:
5244 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
5245 case 2:
5246 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
5247 }
5248 }
5249 if (rss_size)
f404f80c
HS
5250 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
5251 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
56d36be4
DM
5252}
5253
4f3a0fcf
HS
5254/**
5255 * t4_free_vi - free a virtual interface
5256 * @adap: the adapter
5257 * @mbox: mailbox to use for the FW command
5258 * @pf: the PF owning the VI
5259 * @vf: the VF owning the VI
5260 * @viid: virtual interface identifiler
5261 *
5262 * Free a previously allocated virtual interface.
5263 */
5264int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
5265 unsigned int vf, unsigned int viid)
5266{
5267 struct fw_vi_cmd c;
5268
5269 memset(&c, 0, sizeof(c));
5270 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
5271 FW_CMD_REQUEST_F |
5272 FW_CMD_EXEC_F |
5273 FW_VI_CMD_PFN_V(pf) |
5274 FW_VI_CMD_VFN_V(vf));
5275 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
5276 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
5277
5278 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5279}
5280
56d36be4
DM
5281/**
5282 * t4_set_rxmode - set Rx properties of a virtual interface
5283 * @adap: the adapter
5284 * @mbox: mailbox to use for the FW command
5285 * @viid: the VI id
5286 * @mtu: the new MTU or -1
5287 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
5288 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
5289 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 5290 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
5291 * @sleep_ok: if true we may sleep while awaiting command completion
5292 *
5293 * Sets Rx properties of a virtual interface.
5294 */
5295int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
5296 int mtu, int promisc, int all_multi, int bcast, int vlanex,
5297 bool sleep_ok)
56d36be4
DM
5298{
5299 struct fw_vi_rxmode_cmd c;
5300
5301 /* convert to FW values */
5302 if (mtu < 0)
5303 mtu = FW_RXMODE_MTU_NO_CHG;
5304 if (promisc < 0)
2b5fb1f2 5305 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
56d36be4 5306 if (all_multi < 0)
2b5fb1f2 5307 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
56d36be4 5308 if (bcast < 0)
2b5fb1f2 5309 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
f8f5aafa 5310 if (vlanex < 0)
2b5fb1f2 5311 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
56d36be4
DM
5312
5313 memset(&c, 0, sizeof(c));
f404f80c
HS
5314 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
5315 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5316 FW_VI_RXMODE_CMD_VIID_V(viid));
5317 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5318 c.mtu_to_vlanexen =
5319 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
5320 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
5321 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
5322 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
5323 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
56d36be4
DM
5324 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5325}
5326
5327/**
5328 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5329 * @adap: the adapter
5330 * @mbox: mailbox to use for the FW command
5331 * @viid: the VI id
5332 * @free: if true any existing filters for this VI id are first removed
5333 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
5334 * @addr: the MAC address(es)
5335 * @idx: where to store the index of each allocated filter
5336 * @hash: pointer to hash address filter bitmap
5337 * @sleep_ok: call is allowed to sleep
5338 *
5339 * Allocates an exact-match filter for each of the supplied addresses and
5340 * sets it to the corresponding address. If @idx is not %NULL it should
5341 * have at least @naddr entries, each of which will be set to the index of
5342 * the filter allocated for the corresponding MAC address. If a filter
5343 * could not be allocated for an address its index is set to 0xffff.
5344 * If @hash is not %NULL addresses that fail to allocate an exact filter
5345 * are hashed and update the hash filter bitmap pointed at by @hash.
5346 *
5347 * Returns a negative error number or the number of filters allocated.
5348 */
5349int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5350 unsigned int viid, bool free, unsigned int naddr,
5351 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5352{
3ccc6cf7 5353 int offset, ret = 0;
56d36be4 5354 struct fw_vi_mac_cmd c;
3ccc6cf7
HS
5355 unsigned int nfilters = 0;
5356 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
5357 unsigned int rem = naddr;
56d36be4 5358
3ccc6cf7 5359 if (naddr > max_naddr)
56d36be4
DM
5360 return -EINVAL;
5361
3ccc6cf7
HS
5362 for (offset = 0; offset < naddr ; /**/) {
5363 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
5364 rem : ARRAY_SIZE(c.u.exact));
5365 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5366 u.exact[fw_naddr]), 16);
5367 struct fw_vi_mac_exact *p;
5368 int i;
56d36be4 5369
3ccc6cf7
HS
5370 memset(&c, 0, sizeof(c));
5371 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5372 FW_CMD_REQUEST_F |
5373 FW_CMD_WRITE_F |
5374 FW_CMD_EXEC_V(free) |
5375 FW_VI_MAC_CMD_VIID_V(viid));
5376 c.freemacs_to_len16 =
5377 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
5378 FW_CMD_LEN16_V(len16));
5379
5380 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5381 p->valid_to_idx =
5382 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5383 FW_VI_MAC_CMD_IDX_V(
5384 FW_VI_MAC_ADD_MAC));
5385 memcpy(p->macaddr, addr[offset + i],
5386 sizeof(p->macaddr));
5387 }
56d36be4 5388
3ccc6cf7
HS
5389 /* It's okay if we run out of space in our MAC address arena.
5390 * Some of the addresses we submit may get stored so we need
5391 * to run through the reply to see what the results were ...
5392 */
5393 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5394 if (ret && ret != -FW_ENOMEM)
5395 break;
56d36be4 5396
3ccc6cf7
HS
5397 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5398 u16 index = FW_VI_MAC_CMD_IDX_G(
5399 be16_to_cpu(p->valid_to_idx));
5400
5401 if (idx)
5402 idx[offset + i] = (index >= max_naddr ?
5403 0xffff : index);
5404 if (index < max_naddr)
5405 nfilters++;
5406 else if (hash)
5407 *hash |= (1ULL <<
5408 hash_mac_addr(addr[offset + i]));
5409 }
5410
5411 free = false;
5412 offset += fw_naddr;
5413 rem -= fw_naddr;
56d36be4 5414 }
3ccc6cf7
HS
5415
5416 if (ret == 0 || ret == -FW_ENOMEM)
5417 ret = nfilters;
56d36be4
DM
5418 return ret;
5419}
5420
5421/**
5422 * t4_change_mac - modifies the exact-match filter for a MAC address
5423 * @adap: the adapter
5424 * @mbox: mailbox to use for the FW command
5425 * @viid: the VI id
5426 * @idx: index of existing filter for old value of MAC address, or -1
5427 * @addr: the new MAC address value
5428 * @persist: whether a new MAC allocation should be persistent
5429 * @add_smt: if true also add the address to the HW SMT
5430 *
5431 * Modifies an exact-match filter and sets it to the new MAC address.
5432 * Note that in general it is not possible to modify the value of a given
5433 * filter so the generic way to modify an address filter is to free the one
5434 * being used by the old address value and allocate a new filter for the
5435 * new address value. @idx can be -1 if the address is a new addition.
5436 *
5437 * Returns a negative error number or the index of the filter with the new
5438 * MAC value.
5439 */
5440int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5441 int idx, const u8 *addr, bool persist, bool add_smt)
5442{
5443 int ret, mode;
5444 struct fw_vi_mac_cmd c;
5445 struct fw_vi_mac_exact *p = c.u.exact;
3ccc6cf7 5446 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
56d36be4
DM
5447
5448 if (idx < 0) /* new allocation */
5449 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5450 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5451
5452 memset(&c, 0, sizeof(c));
f404f80c
HS
5453 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5454 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5455 FW_VI_MAC_CMD_VIID_V(viid));
5456 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
5457 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5458 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
5459 FW_VI_MAC_CMD_IDX_V(idx));
56d36be4
DM
5460 memcpy(p->macaddr, addr, sizeof(p->macaddr));
5461
5462 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5463 if (ret == 0) {
f404f80c 5464 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
0a57a536 5465 if (ret >= max_mac_addr)
56d36be4
DM
5466 ret = -ENOMEM;
5467 }
5468 return ret;
5469}
5470
5471/**
5472 * t4_set_addr_hash - program the MAC inexact-match hash filter
5473 * @adap: the adapter
5474 * @mbox: mailbox to use for the FW command
5475 * @viid: the VI id
5476 * @ucast: whether the hash filter should also match unicast addresses
5477 * @vec: the value to be written to the hash filter
5478 * @sleep_ok: call is allowed to sleep
5479 *
5480 * Sets the 64-bit inexact-match hash filter for a virtual interface.
5481 */
5482int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5483 bool ucast, u64 vec, bool sleep_ok)
5484{
5485 struct fw_vi_mac_cmd c;
5486
5487 memset(&c, 0, sizeof(c));
f404f80c
HS
5488 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5489 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5490 FW_VI_ENABLE_CMD_VIID_V(viid));
5491 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
5492 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
5493 FW_CMD_LEN16_V(1));
56d36be4
DM
5494 c.u.hash.hashvec = cpu_to_be64(vec);
5495 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5496}
5497
688848b1
AB
5498/**
5499 * t4_enable_vi_params - enable/disable a virtual interface
5500 * @adap: the adapter
5501 * @mbox: mailbox to use for the FW command
5502 * @viid: the VI id
5503 * @rx_en: 1=enable Rx, 0=disable Rx
5504 * @tx_en: 1=enable Tx, 0=disable Tx
5505 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
5506 *
5507 * Enables/disables a virtual interface. Note that setting DCB Enable
5508 * only makes sense when enabling a Virtual Interface ...
5509 */
5510int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
5511 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
5512{
5513 struct fw_vi_enable_cmd c;
5514
5515 memset(&c, 0, sizeof(c));
f404f80c
HS
5516 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5517 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5518 FW_VI_ENABLE_CMD_VIID_V(viid));
5519 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
5520 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
5521 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
5522 FW_LEN16(c));
30f00847 5523 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
688848b1
AB
5524}
5525
56d36be4
DM
5526/**
5527 * t4_enable_vi - enable/disable a virtual interface
5528 * @adap: the adapter
5529 * @mbox: mailbox to use for the FW command
5530 * @viid: the VI id
5531 * @rx_en: 1=enable Rx, 0=disable Rx
5532 * @tx_en: 1=enable Tx, 0=disable Tx
5533 *
5534 * Enables/disables a virtual interface.
5535 */
5536int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5537 bool rx_en, bool tx_en)
5538{
688848b1 5539 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
56d36be4
DM
5540}
5541
5542/**
5543 * t4_identify_port - identify a VI's port by blinking its LED
5544 * @adap: the adapter
5545 * @mbox: mailbox to use for the FW command
5546 * @viid: the VI id
5547 * @nblinks: how many times to blink LED at 2.5 Hz
5548 *
5549 * Identifies a VI's port by blinking its LED.
5550 */
5551int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5552 unsigned int nblinks)
5553{
5554 struct fw_vi_enable_cmd c;
5555
0062b15c 5556 memset(&c, 0, sizeof(c));
f404f80c
HS
5557 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5558 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5559 FW_VI_ENABLE_CMD_VIID_V(viid));
5560 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
5561 c.blinkdur = cpu_to_be16(nblinks);
56d36be4 5562 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
5563}
5564
5565/**
5566 * t4_iq_free - free an ingress queue and its FLs
5567 * @adap: the adapter
5568 * @mbox: mailbox to use for the FW command
5569 * @pf: the PF owning the queues
5570 * @vf: the VF owning the queues
5571 * @iqtype: the ingress queue type
5572 * @iqid: ingress queue id
5573 * @fl0id: FL0 queue id or 0xffff if no attached FL0
5574 * @fl1id: FL1 queue id or 0xffff if no attached FL1
5575 *
5576 * Frees an ingress queue and its associated FLs, if any.
5577 */
5578int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5579 unsigned int vf, unsigned int iqtype, unsigned int iqid,
5580 unsigned int fl0id, unsigned int fl1id)
5581{
5582 struct fw_iq_cmd c;
5583
5584 memset(&c, 0, sizeof(c));
f404f80c
HS
5585 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
5586 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
5587 FW_IQ_CMD_VFN_V(vf));
5588 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
5589 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
5590 c.iqid = cpu_to_be16(iqid);
5591 c.fl0id = cpu_to_be16(fl0id);
5592 c.fl1id = cpu_to_be16(fl1id);
56d36be4
DM
5593 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5594}
5595
5596/**
5597 * t4_eth_eq_free - free an Ethernet egress queue
5598 * @adap: the adapter
5599 * @mbox: mailbox to use for the FW command
5600 * @pf: the PF owning the queue
5601 * @vf: the VF owning the queue
5602 * @eqid: egress queue id
5603 *
5604 * Frees an Ethernet egress queue.
5605 */
5606int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5607 unsigned int vf, unsigned int eqid)
5608{
5609 struct fw_eq_eth_cmd c;
5610
5611 memset(&c, 0, sizeof(c));
f404f80c
HS
5612 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
5613 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5614 FW_EQ_ETH_CMD_PFN_V(pf) |
5615 FW_EQ_ETH_CMD_VFN_V(vf));
5616 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
5617 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
56d36be4
DM
5618 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5619}
5620
5621/**
5622 * t4_ctrl_eq_free - free a control egress queue
5623 * @adap: the adapter
5624 * @mbox: mailbox to use for the FW command
5625 * @pf: the PF owning the queue
5626 * @vf: the VF owning the queue
5627 * @eqid: egress queue id
5628 *
5629 * Frees a control egress queue.
5630 */
5631int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5632 unsigned int vf, unsigned int eqid)
5633{
5634 struct fw_eq_ctrl_cmd c;
5635
5636 memset(&c, 0, sizeof(c));
f404f80c
HS
5637 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
5638 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5639 FW_EQ_CTRL_CMD_PFN_V(pf) |
5640 FW_EQ_CTRL_CMD_VFN_V(vf));
5641 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
5642 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
56d36be4
DM
5643 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5644}
5645
5646/**
5647 * t4_ofld_eq_free - free an offload egress queue
5648 * @adap: the adapter
5649 * @mbox: mailbox to use for the FW command
5650 * @pf: the PF owning the queue
5651 * @vf: the VF owning the queue
5652 * @eqid: egress queue id
5653 *
5654 * Frees a control egress queue.
5655 */
5656int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5657 unsigned int vf, unsigned int eqid)
5658{
5659 struct fw_eq_ofld_cmd c;
5660
5661 memset(&c, 0, sizeof(c));
f404f80c
HS
5662 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
5663 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5664 FW_EQ_OFLD_CMD_PFN_V(pf) |
5665 FW_EQ_OFLD_CMD_VFN_V(vf));
5666 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
5667 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
56d36be4
DM
5668 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5669}
5670
5671/**
5672 * t4_handle_fw_rpl - process a FW reply message
5673 * @adap: the adapter
5674 * @rpl: start of the FW message
5675 *
5676 * Processes a FW message, such as link state change messages.
5677 */
5678int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5679{
5680 u8 opcode = *(const u8 *)rpl;
5681
5682 if (opcode == FW_PORT_CMD) { /* link/module state change message */
5683 int speed = 0, fc = 0;
5684 const struct fw_port_cmd *p = (void *)rpl;
f404f80c 5685 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
56d36be4
DM
5686 int port = adap->chan_map[chan];
5687 struct port_info *pi = adap2pinfo(adap, port);
5688 struct link_config *lc = &pi->link_cfg;
f404f80c 5689 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
2b5fb1f2
HS
5690 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
5691 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
56d36be4 5692
2b5fb1f2 5693 if (stat & FW_PORT_CMD_RXPAUSE_F)
56d36be4 5694 fc |= PAUSE_RX;
2b5fb1f2 5695 if (stat & FW_PORT_CMD_TXPAUSE_F)
56d36be4 5696 fc |= PAUSE_TX;
2b5fb1f2 5697 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
e8b39015 5698 speed = 100;
2b5fb1f2 5699 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
e8b39015 5700 speed = 1000;
2b5fb1f2 5701 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
e8b39015 5702 speed = 10000;
2b5fb1f2 5703 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
e8b39015 5704 speed = 40000;
56d36be4
DM
5705
5706 if (link_ok != lc->link_ok || speed != lc->speed ||
5707 fc != lc->fc) { /* something changed */
5708 lc->link_ok = link_ok;
5709 lc->speed = speed;
5710 lc->fc = fc;
444018a7 5711 lc->supported = be16_to_cpu(p->u.info.pcap);
56d36be4
DM
5712 t4_os_link_changed(adap, port, link_ok);
5713 }
5714 if (mod != pi->mod_type) {
5715 pi->mod_type = mod;
5716 t4_os_portmod_changed(adap, port);
5717 }
5718 }
5719 return 0;
5720}
5721
1dd06ae8 5722static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
5723{
5724 u16 val;
56d36be4 5725
e5c8ae5f
JL
5726 if (pci_is_pcie(adapter->pdev)) {
5727 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
5728 p->speed = val & PCI_EXP_LNKSTA_CLS;
5729 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5730 }
5731}
5732
5733/**
5734 * init_link_config - initialize a link's SW state
5735 * @lc: structure holding the link state
5736 * @caps: link capabilities
5737 *
5738 * Initializes the SW state maintained for each link, including the link's
5739 * capabilities and default speed/flow-control/autonegotiation settings.
5740 */
1dd06ae8 5741static void init_link_config(struct link_config *lc, unsigned int caps)
56d36be4
DM
5742{
5743 lc->supported = caps;
5744 lc->requested_speed = 0;
5745 lc->speed = 0;
5746 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5747 if (lc->supported & FW_PORT_CAP_ANEG) {
5748 lc->advertising = lc->supported & ADVERT_MASK;
5749 lc->autoneg = AUTONEG_ENABLE;
5750 lc->requested_fc |= PAUSE_AUTONEG;
5751 } else {
5752 lc->advertising = 0;
5753 lc->autoneg = AUTONEG_DISABLE;
5754 }
5755}
5756
8203b509
HS
5757#define CIM_PF_NOACCESS 0xeeeeeeee
5758
5759int t4_wait_dev_ready(void __iomem *regs)
56d36be4 5760{
8203b509
HS
5761 u32 whoami;
5762
0d804338 5763 whoami = readl(regs + PL_WHOAMI_A);
8203b509 5764 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
56d36be4 5765 return 0;
8203b509 5766
56d36be4 5767 msleep(500);
0d804338 5768 whoami = readl(regs + PL_WHOAMI_A);
8203b509 5769 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
56d36be4
DM
5770}
5771
fe2ee139
HS
5772struct flash_desc {
5773 u32 vendor_and_model_id;
5774 u32 size_mb;
5775};
5776
91744948 5777static int get_flash_params(struct adapter *adap)
900a6596 5778{
fe2ee139
HS
5779 /* Table for non-Numonix supported flash parts. Numonix parts are left
5780 * to the preexisting code. All flash parts have 64KB sectors.
5781 */
5782 static struct flash_desc supported_flash[] = {
5783 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
5784 };
5785
900a6596
DM
5786 int ret;
5787 u32 info;
5788
5789 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
5790 if (!ret)
5791 ret = sf1_read(adap, 3, 0, 1, &info);
0d804338 5792 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
900a6596
DM
5793 if (ret)
5794 return ret;
5795
fe2ee139
HS
5796 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
5797 if (supported_flash[ret].vendor_and_model_id == info) {
5798 adap->params.sf_size = supported_flash[ret].size_mb;
5799 adap->params.sf_nsec =
5800 adap->params.sf_size / SF_SEC_SIZE;
5801 return 0;
5802 }
5803
900a6596
DM
5804 if ((info & 0xff) != 0x20) /* not a Numonix flash */
5805 return -EINVAL;
5806 info >>= 16; /* log2 of size */
5807 if (info >= 0x14 && info < 0x18)
5808 adap->params.sf_nsec = 1 << (info - 16);
5809 else if (info == 0x18)
5810 adap->params.sf_nsec = 64;
5811 else
5812 return -EINVAL;
5813 adap->params.sf_size = 1 << info;
5814 adap->params.sf_fw_start =
89c3a86c 5815 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
c290607e
HS
5816
5817 if (adap->params.sf_size < FLASH_MIN_SIZE)
5818 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
5819 adap->params.sf_size, FLASH_MIN_SIZE);
900a6596
DM
5820 return 0;
5821}
5822
56d36be4
DM
5823/**
5824 * t4_prep_adapter - prepare SW and HW for operation
5825 * @adapter: the adapter
5826 * @reset: if true perform a HW reset
5827 *
5828 * Initialize adapter SW state for the various HW modules, set initial
5829 * values for some adapter tunables, take PHYs out of reset, and
5830 * initialize the MDIO interface.
5831 */
91744948 5832int t4_prep_adapter(struct adapter *adapter)
56d36be4 5833{
0a57a536
SR
5834 int ret, ver;
5835 uint16_t device_id;
d14807dd 5836 u32 pl_rev;
56d36be4 5837
56d36be4 5838 get_pci_mode(adapter, &adapter->params.pci);
0d804338 5839 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
56d36be4 5840
900a6596
DM
5841 ret = get_flash_params(adapter);
5842 if (ret < 0) {
5843 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
5844 return ret;
5845 }
5846
0a57a536
SR
5847 /* Retrieve adapter's device ID
5848 */
5849 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
5850 ver = device_id >> 12;
d14807dd 5851 adapter->params.chip = 0;
0a57a536
SR
5852 switch (ver) {
5853 case CHELSIO_T4:
d14807dd 5854 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
3ccc6cf7
HS
5855 adapter->params.arch.sge_fl_db = DBPRIO_F;
5856 adapter->params.arch.mps_tcam_size =
5857 NUM_MPS_CLS_SRAM_L_INSTANCES;
5858 adapter->params.arch.mps_rplc_size = 128;
5859 adapter->params.arch.nchan = NCHAN;
5860 adapter->params.arch.vfcount = 128;
0a57a536
SR
5861 break;
5862 case CHELSIO_T5:
d14807dd 5863 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3ccc6cf7
HS
5864 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
5865 adapter->params.arch.mps_tcam_size =
5866 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5867 adapter->params.arch.mps_rplc_size = 128;
5868 adapter->params.arch.nchan = NCHAN;
5869 adapter->params.arch.vfcount = 128;
5870 break;
5871 case CHELSIO_T6:
5872 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5873 adapter->params.arch.sge_fl_db = 0;
5874 adapter->params.arch.mps_tcam_size =
5875 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5876 adapter->params.arch.mps_rplc_size = 256;
5877 adapter->params.arch.nchan = 2;
5878 adapter->params.arch.vfcount = 256;
0a57a536
SR
5879 break;
5880 default:
5881 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5882 device_id);
5883 return -EINVAL;
5884 }
5885
f1ff24aa 5886 adapter->params.cim_la_size = CIMLA_SIZE;
56d36be4
DM
5887 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5888
5889 /*
5890 * Default port for debugging in case we can't reach FW.
5891 */
5892 adapter->params.nports = 1;
5893 adapter->params.portvec = 1;
636f9d37 5894 adapter->params.vpd.cclk = 50000;
56d36be4
DM
5895 return 0;
5896}
5897
e85c9a7a 5898/**
b2612722 5899 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
5900 * @adapter: the adapter
5901 * @qid: the Queue ID
5902 * @qtype: the Ingress or Egress type for @qid
5903 * @pbar2_qoffset: BAR2 Queue Offset
5904 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
5905 *
5906 * Returns the BAR2 SGE Queue Registers information associated with the
5907 * indicated Absolute Queue ID. These are passed back in return value
5908 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
5909 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
5910 *
5911 * This may return an error which indicates that BAR2 SGE Queue
5912 * registers aren't available. If an error is not returned, then the
5913 * following values are returned:
5914 *
5915 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
5916 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
5917 *
5918 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
5919 * require the "Inferred Queue ID" ability may be used. E.g. the
5920 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
5921 * then these "Inferred Queue ID" register may not be used.
5922 */
b2612722 5923int t4_bar2_sge_qregs(struct adapter *adapter,
e85c9a7a
HS
5924 unsigned int qid,
5925 enum t4_bar2_qtype qtype,
5926 u64 *pbar2_qoffset,
5927 unsigned int *pbar2_qid)
5928{
5929 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5930 u64 bar2_page_offset, bar2_qoffset;
5931 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5932
5933 /* T4 doesn't support BAR2 SGE Queue registers.
5934 */
5935 if (is_t4(adapter->params.chip))
5936 return -EINVAL;
5937
5938 /* Get our SGE Page Size parameters.
5939 */
5940 page_shift = adapter->params.sge.hps + 10;
5941 page_size = 1 << page_shift;
5942
5943 /* Get the right Queues per Page parameters for our Queue.
5944 */
5945 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
5946 ? adapter->params.sge.eq_qpp
5947 : adapter->params.sge.iq_qpp);
5948 qpp_mask = (1 << qpp_shift) - 1;
5949
5950 /* Calculate the basics of the BAR2 SGE Queue register area:
5951 * o The BAR2 page the Queue registers will be in.
5952 * o The BAR2 Queue ID.
5953 * o The BAR2 Queue ID Offset into the BAR2 page.
5954 */
5955 bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5956 bar2_qid = qid & qpp_mask;
5957 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5958
5959 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
5960 * hardware will infer the Absolute Queue ID simply from the writes to
5961 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5962 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
5963 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5964 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5965 * from the BAR2 Page and BAR2 Queue ID.
5966 *
5967 * One important censequence of this is that some BAR2 SGE registers
5968 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5969 * there. But other registers synthesize the SGE Queue ID purely
5970 * from the writes to the registers -- the Write Combined Doorbell
5971 * Buffer is a good example. These BAR2 SGE Registers are only
5972 * available for those BAR2 SGE Register areas where the SGE Absolute
5973 * Queue ID can be inferred from simple writes.
5974 */
5975 bar2_qoffset = bar2_page_offset;
5976 bar2_qinferred = (bar2_qid_offset < page_size);
5977 if (bar2_qinferred) {
5978 bar2_qoffset += bar2_qid_offset;
5979 bar2_qid = 0;
5980 }
5981
5982 *pbar2_qoffset = bar2_qoffset;
5983 *pbar2_qid = bar2_qid;
5984 return 0;
5985}
5986
ae469b68
HS
5987/**
5988 * t4_init_devlog_params - initialize adapter->params.devlog
5989 * @adap: the adapter
5990 *
5991 * Initialize various fields of the adapter's Firmware Device Log
5992 * Parameters structure.
5993 */
5994int t4_init_devlog_params(struct adapter *adap)
5995{
5996 struct devlog_params *dparams = &adap->params.devlog;
5997 u32 pf_dparams;
5998 unsigned int devlog_meminfo;
5999 struct fw_devlog_cmd devlog_cmd;
6000 int ret;
6001
6002 /* If we're dealing with newer firmware, the Device Log Paramerters
6003 * are stored in a designated register which allows us to access the
6004 * Device Log even if we can't talk to the firmware.
6005 */
6006 pf_dparams =
6007 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
6008 if (pf_dparams) {
6009 unsigned int nentries, nentries128;
6010
6011 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
6012 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
6013
6014 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
6015 nentries = (nentries128 + 1) * 128;
6016 dparams->size = nentries * sizeof(struct fw_devlog_e);
6017
6018 return 0;
6019 }
6020
6021 /* Otherwise, ask the firmware for it's Device Log Parameters.
6022 */
6023 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
f404f80c
HS
6024 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
6025 FW_CMD_REQUEST_F | FW_CMD_READ_F);
6026 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ae469b68
HS
6027 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
6028 &devlog_cmd);
6029 if (ret)
6030 return ret;
6031
f404f80c
HS
6032 devlog_meminfo =
6033 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
ae469b68
HS
6034 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
6035 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
f404f80c 6036 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
ae469b68
HS
6037
6038 return 0;
6039}
6040
e85c9a7a
HS
6041/**
6042 * t4_init_sge_params - initialize adap->params.sge
6043 * @adapter: the adapter
6044 *
6045 * Initialize various fields of the adapter's SGE Parameters structure.
6046 */
6047int t4_init_sge_params(struct adapter *adapter)
6048{
6049 struct sge_params *sge_params = &adapter->params.sge;
6050 u32 hps, qpp;
6051 unsigned int s_hps, s_qpp;
6052
6053 /* Extract the SGE Page Size for our PF.
6054 */
f612b815 6055 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
e85c9a7a 6056 s_hps = (HOSTPAGESIZEPF0_S +
b2612722 6057 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
e85c9a7a
HS
6058 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
6059
6060 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
6061 */
6062 s_qpp = (QUEUESPERPAGEPF0_S +
b2612722 6063 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
f612b815
HS
6064 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
6065 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
f061de42 6066 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
f612b815 6067 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
e85c9a7a
HS
6068
6069 return 0;
6070}
6071
dcf7b6f5
KS
6072/**
6073 * t4_init_tp_params - initialize adap->params.tp
6074 * @adap: the adapter
6075 *
6076 * Initialize various fields of the adapter's TP Parameters structure.
6077 */
6078int t4_init_tp_params(struct adapter *adap)
6079{
6080 int chan;
6081 u32 v;
6082
837e4a42
HS
6083 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
6084 adap->params.tp.tre = TIMERRESOLUTION_G(v);
6085 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
dcf7b6f5
KS
6086
6087 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
6088 for (chan = 0; chan < NCHAN; chan++)
6089 adap->params.tp.tx_modq[chan] = chan;
6090
6091 /* Cache the adapter's Compressed Filter Mode and global Incress
6092 * Configuration.
6093 */
837e4a42 6094 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
dcf7b6f5 6095 &adap->params.tp.vlan_pri_map, 1,
837e4a42
HS
6096 TP_VLAN_PRI_MAP_A);
6097 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
dcf7b6f5 6098 &adap->params.tp.ingress_config, 1,
837e4a42 6099 TP_INGRESS_CONFIG_A);
dcf7b6f5
KS
6100
6101 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
6102 * shift positions of several elements of the Compressed Filter Tuple
6103 * for this adapter which we need frequently ...
6104 */
0d804338
HS
6105 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
6106 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
6107 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
dcf7b6f5 6108 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
0d804338 6109 PROTOCOL_F);
dcf7b6f5
KS
6110
6111 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
dbedd44e 6112 * represents the presence of an Outer VLAN instead of a VNIC ID.
dcf7b6f5 6113 */
0d804338 6114 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
dcf7b6f5
KS
6115 adap->params.tp.vnic_shift = -1;
6116
6117 return 0;
6118}
6119
6120/**
6121 * t4_filter_field_shift - calculate filter field shift
6122 * @adap: the adapter
6123 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
6124 *
6125 * Return the shift position of a filter field within the Compressed
6126 * Filter Tuple. The filter field is specified via its selection bit
6127 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
6128 */
6129int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
6130{
6131 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
6132 unsigned int sel;
6133 int field_shift;
6134
6135 if ((filter_mode & filter_sel) == 0)
6136 return -1;
6137
6138 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
6139 switch (filter_mode & sel) {
0d804338
HS
6140 case FCOE_F:
6141 field_shift += FT_FCOE_W;
dcf7b6f5 6142 break;
0d804338
HS
6143 case PORT_F:
6144 field_shift += FT_PORT_W;
dcf7b6f5 6145 break;
0d804338
HS
6146 case VNIC_ID_F:
6147 field_shift += FT_VNIC_ID_W;
dcf7b6f5 6148 break;
0d804338
HS
6149 case VLAN_F:
6150 field_shift += FT_VLAN_W;
dcf7b6f5 6151 break;
0d804338
HS
6152 case TOS_F:
6153 field_shift += FT_TOS_W;
dcf7b6f5 6154 break;
0d804338
HS
6155 case PROTOCOL_F:
6156 field_shift += FT_PROTOCOL_W;
dcf7b6f5 6157 break;
0d804338
HS
6158 case ETHERTYPE_F:
6159 field_shift += FT_ETHERTYPE_W;
dcf7b6f5 6160 break;
0d804338
HS
6161 case MACMATCH_F:
6162 field_shift += FT_MACMATCH_W;
dcf7b6f5 6163 break;
0d804338
HS
6164 case MPSHITTYPE_F:
6165 field_shift += FT_MPSHITTYPE_W;
dcf7b6f5 6166 break;
0d804338
HS
6167 case FRAGMENTATION_F:
6168 field_shift += FT_FRAGMENTATION_W;
dcf7b6f5
KS
6169 break;
6170 }
6171 }
6172 return field_shift;
6173}
6174
c035e183
HS
6175int t4_init_rss_mode(struct adapter *adap, int mbox)
6176{
6177 int i, ret;
6178 struct fw_rss_vi_config_cmd rvc;
6179
6180 memset(&rvc, 0, sizeof(rvc));
6181
6182 for_each_port(adap, i) {
6183 struct port_info *p = adap2pinfo(adap, i);
6184
f404f80c
HS
6185 rvc.op_to_viid =
6186 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6187 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6188 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
6189 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
c035e183
HS
6190 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6191 if (ret)
6192 return ret;
f404f80c 6193 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
c035e183
HS
6194 }
6195 return 0;
6196}
6197
91744948 6198int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
56d36be4
DM
6199{
6200 u8 addr[6];
6201 int ret, i, j = 0;
6202 struct fw_port_cmd c;
f796564a 6203 struct fw_rss_vi_config_cmd rvc;
56d36be4
DM
6204
6205 memset(&c, 0, sizeof(c));
f796564a 6206 memset(&rvc, 0, sizeof(rvc));
56d36be4
DM
6207
6208 for_each_port(adap, i) {
6209 unsigned int rss_size;
6210 struct port_info *p = adap2pinfo(adap, i);
6211
6212 while ((adap->params.portvec & (1 << j)) == 0)
6213 j++;
6214
f404f80c
HS
6215 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
6216 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6217 FW_PORT_CMD_PORTID_V(j));
6218 c.action_to_len16 = cpu_to_be32(
2b5fb1f2 6219 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
56d36be4
DM
6220 FW_LEN16(c));
6221 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6222 if (ret)
6223 return ret;
6224
6225 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
6226 if (ret < 0)
6227 return ret;
6228
6229 p->viid = ret;
6230 p->tx_chan = j;
6231 p->lport = j;
6232 p->rss_size = rss_size;
6233 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
40c9f8ab 6234 adap->port[i]->dev_port = j;
56d36be4 6235
f404f80c 6236 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
2b5fb1f2
HS
6237 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
6238 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
6239 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
a0881cab 6240 p->mod_type = FW_PORT_MOD_TYPE_NA;
56d36be4 6241
f404f80c
HS
6242 rvc.op_to_viid =
6243 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6244 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6245 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
6246 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
f796564a
DM
6247 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6248 if (ret)
6249 return ret;
f404f80c 6250 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
f796564a 6251
f404f80c 6252 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
56d36be4
DM
6253 j++;
6254 }
6255 return 0;
6256}
f1ff24aa 6257
74b3092c
HS
6258/**
6259 * t4_read_cimq_cfg - read CIM queue configuration
6260 * @adap: the adapter
6261 * @base: holds the queue base addresses in bytes
6262 * @size: holds the queue sizes in bytes
6263 * @thres: holds the queue full thresholds in bytes
6264 *
6265 * Returns the current configuration of the CIM queues, starting with
6266 * the IBQs, then the OBQs.
6267 */
6268void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
6269{
6270 unsigned int i, v;
6271 int cim_num_obq = is_t4(adap->params.chip) ?
6272 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6273
6274 for (i = 0; i < CIM_NUM_IBQ; i++) {
6275 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
6276 QUENUMSELECT_V(i));
6277 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6278 /* value is in 256-byte units */
6279 *base++ = CIMQBASE_G(v) * 256;
6280 *size++ = CIMQSIZE_G(v) * 256;
6281 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
6282 }
6283 for (i = 0; i < cim_num_obq; i++) {
6284 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6285 QUENUMSELECT_V(i));
6286 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6287 /* value is in 256-byte units */
6288 *base++ = CIMQBASE_G(v) * 256;
6289 *size++ = CIMQSIZE_G(v) * 256;
6290 }
6291}
6292
e5f0e43b
HS
6293/**
6294 * t4_read_cim_ibq - read the contents of a CIM inbound queue
6295 * @adap: the adapter
6296 * @qid: the queue index
6297 * @data: where to store the queue contents
6298 * @n: capacity of @data in 32-bit words
6299 *
6300 * Reads the contents of the selected CIM queue starting at address 0 up
6301 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
6302 * error and the number of 32-bit words actually read on success.
6303 */
6304int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6305{
6306 int i, err, attempts;
6307 unsigned int addr;
6308 const unsigned int nwords = CIM_IBQ_SIZE * 4;
6309
6310 if (qid > 5 || (n & 3))
6311 return -EINVAL;
6312
6313 addr = qid * nwords;
6314 if (n > nwords)
6315 n = nwords;
6316
6317 /* It might take 3-10ms before the IBQ debug read access is allowed.
6318 * Wait for 1 Sec with a delay of 1 usec.
6319 */
6320 attempts = 1000000;
6321
6322 for (i = 0; i < n; i++, addr++) {
6323 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
6324 IBQDBGEN_F);
6325 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
6326 attempts, 1);
6327 if (err)
6328 return err;
6329 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
6330 }
6331 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
c778af7d
HS
6332 return i;
6333}
6334
6335/**
6336 * t4_read_cim_obq - read the contents of a CIM outbound queue
6337 * @adap: the adapter
6338 * @qid: the queue index
6339 * @data: where to store the queue contents
6340 * @n: capacity of @data in 32-bit words
6341 *
6342 * Reads the contents of the selected CIM queue starting at address 0 up
6343 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
6344 * error and the number of 32-bit words actually read on success.
6345 */
6346int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6347{
6348 int i, err;
6349 unsigned int addr, v, nwords;
6350 int cim_num_obq = is_t4(adap->params.chip) ?
6351 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6352
6353 if ((qid > (cim_num_obq - 1)) || (n & 3))
6354 return -EINVAL;
6355
6356 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6357 QUENUMSELECT_V(qid));
6358 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6359
6360 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
6361 nwords = CIMQSIZE_G(v) * 64; /* same */
6362 if (n > nwords)
6363 n = nwords;
6364
6365 for (i = 0; i < n; i++, addr++) {
6366 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
6367 OBQDBGEN_F);
6368 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
6369 2, 1);
6370 if (err)
6371 return err;
6372 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
6373 }
6374 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
e5f0e43b
HS
6375 return i;
6376}
6377
f1ff24aa
HS
6378/**
6379 * t4_cim_read - read a block from CIM internal address space
6380 * @adap: the adapter
6381 * @addr: the start address within the CIM address space
6382 * @n: number of words to read
6383 * @valp: where to store the result
6384 *
6385 * Reads a block of 4-byte words from the CIM intenal address space.
6386 */
6387int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
6388 unsigned int *valp)
6389{
6390 int ret = 0;
6391
6392 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6393 return -EBUSY;
6394
6395 for ( ; !ret && n--; addr += 4) {
6396 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
6397 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6398 0, 5, 2);
6399 if (!ret)
6400 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
6401 }
6402 return ret;
6403}
6404
6405/**
6406 * t4_cim_write - write a block into CIM internal address space
6407 * @adap: the adapter
6408 * @addr: the start address within the CIM address space
6409 * @n: number of words to write
6410 * @valp: set of values to write
6411 *
6412 * Writes a block of 4-byte words into the CIM intenal address space.
6413 */
6414int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
6415 const unsigned int *valp)
6416{
6417 int ret = 0;
6418
6419 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6420 return -EBUSY;
6421
6422 for ( ; !ret && n--; addr += 4) {
6423 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
6424 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
6425 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6426 0, 5, 2);
6427 }
6428 return ret;
6429}
6430
6431static int t4_cim_write1(struct adapter *adap, unsigned int addr,
6432 unsigned int val)
6433{
6434 return t4_cim_write(adap, addr, 1, &val);
6435}
6436
6437/**
6438 * t4_cim_read_la - read CIM LA capture buffer
6439 * @adap: the adapter
6440 * @la_buf: where to store the LA data
6441 * @wrptr: the HW write pointer within the capture buffer
6442 *
6443 * Reads the contents of the CIM LA buffer with the most recent entry at
6444 * the end of the returned data and with the entry at @wrptr first.
6445 * We try to leave the LA in the running state we find it in.
6446 */
6447int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
6448{
6449 int i, ret;
6450 unsigned int cfg, val, idx;
6451
6452 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
6453 if (ret)
6454 return ret;
6455
6456 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
6457 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
6458 if (ret)
6459 return ret;
6460 }
6461
6462 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6463 if (ret)
6464 goto restart;
6465
6466 idx = UPDBGLAWRPTR_G(val);
6467 if (wrptr)
6468 *wrptr = idx;
6469
6470 for (i = 0; i < adap->params.cim_la_size; i++) {
6471 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6472 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
6473 if (ret)
6474 break;
6475 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6476 if (ret)
6477 break;
6478 if (val & UPDBGLARDEN_F) {
6479 ret = -ETIMEDOUT;
6480 break;
6481 }
6482 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
6483 if (ret)
6484 break;
6485 idx = (idx + 1) & UPDBGLARDPTR_M;
6486 }
6487restart:
6488 if (cfg & UPDBGLAEN_F) {
6489 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6490 cfg & ~UPDBGLARDEN_F);
6491 if (!ret)
6492 ret = r;
6493 }
6494 return ret;
6495}
2d277b3b
HS
6496
6497/**
6498 * t4_tp_read_la - read TP LA capture buffer
6499 * @adap: the adapter
6500 * @la_buf: where to store the LA data
6501 * @wrptr: the HW write pointer within the capture buffer
6502 *
6503 * Reads the contents of the TP LA buffer with the most recent entry at
6504 * the end of the returned data and with the entry at @wrptr first.
6505 * We leave the LA in the running state we find it in.
6506 */
6507void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
6508{
6509 bool last_incomplete;
6510 unsigned int i, cfg, val, idx;
6511
6512 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
6513 if (cfg & DBGLAENABLE_F) /* freeze LA */
6514 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6515 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
6516
6517 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
6518 idx = DBGLAWPTR_G(val);
6519 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
6520 if (last_incomplete)
6521 idx = (idx + 1) & DBGLARPTR_M;
6522 if (wrptr)
6523 *wrptr = idx;
6524
6525 val &= 0xffff;
6526 val &= ~DBGLARPTR_V(DBGLARPTR_M);
6527 val |= adap->params.tp.la_mask;
6528
6529 for (i = 0; i < TPLA_SIZE; i++) {
6530 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
6531 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
6532 idx = (idx + 1) & DBGLARPTR_M;
6533 }
6534
6535 /* Wipe out last entry if it isn't valid */
6536 if (last_incomplete)
6537 la_buf[TPLA_SIZE - 1] = ~0ULL;
6538
6539 if (cfg & DBGLAENABLE_F) /* restore running state */
6540 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6541 cfg | adap->params.tp.la_mask);
6542}
a3bfb617
HS
6543
6544/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
6545 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
6546 * state for more than the Warning Threshold then we'll issue a warning about
6547 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
6548 * appears to be hung every Warning Repeat second till the situation clears.
6549 * If the situation clears, we'll note that as well.
6550 */
6551#define SGE_IDMA_WARN_THRESH 1
6552#define SGE_IDMA_WARN_REPEAT 300
6553
6554/**
6555 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
6556 * @adapter: the adapter
6557 * @idma: the adapter IDMA Monitor state
6558 *
6559 * Initialize the state of an SGE Ingress DMA Monitor.
6560 */
6561void t4_idma_monitor_init(struct adapter *adapter,
6562 struct sge_idma_monitor_state *idma)
6563{
6564 /* Initialize the state variables for detecting an SGE Ingress DMA
6565 * hang. The SGE has internal counters which count up on each clock
6566 * tick whenever the SGE finds its Ingress DMA State Engines in the
6567 * same state they were on the previous clock tick. The clock used is
6568 * the Core Clock so we have a limit on the maximum "time" they can
6569 * record; typically a very small number of seconds. For instance,
6570 * with a 600MHz Core Clock, we can only count up to a bit more than
6571 * 7s. So we'll synthesize a larger counter in order to not run the
6572 * risk of having the "timers" overflow and give us the flexibility to
6573 * maintain a Hung SGE State Machine of our own which operates across
6574 * a longer time frame.
6575 */
6576 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
6577 idma->idma_stalled[0] = 0;
6578 idma->idma_stalled[1] = 0;
6579}
6580
6581/**
6582 * t4_idma_monitor - monitor SGE Ingress DMA state
6583 * @adapter: the adapter
6584 * @idma: the adapter IDMA Monitor state
6585 * @hz: number of ticks/second
6586 * @ticks: number of ticks since the last IDMA Monitor call
6587 */
6588void t4_idma_monitor(struct adapter *adapter,
6589 struct sge_idma_monitor_state *idma,
6590 int hz, int ticks)
6591{
6592 int i, idma_same_state_cnt[2];
6593
6594 /* Read the SGE Debug Ingress DMA Same State Count registers. These
6595 * are counters inside the SGE which count up on each clock when the
6596 * SGE finds its Ingress DMA State Engines in the same states they
6597 * were in the previous clock. The counters will peg out at
6598 * 0xffffffff without wrapping around so once they pass the 1s
6599 * threshold they'll stay above that till the IDMA state changes.
6600 */
6601 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
6602 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
6603 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6604
6605 for (i = 0; i < 2; i++) {
6606 u32 debug0, debug11;
6607
6608 /* If the Ingress DMA Same State Counter ("timer") is less
6609 * than 1s, then we can reset our synthesized Stall Timer and
6610 * continue. If we have previously emitted warnings about a
6611 * potential stalled Ingress Queue, issue a note indicating
6612 * that the Ingress Queue has resumed forward progress.
6613 */
6614 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
6615 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
6616 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
6617 "resumed after %d seconds\n",
6618 i, idma->idma_qid[i],
6619 idma->idma_stalled[i] / hz);
6620 idma->idma_stalled[i] = 0;
6621 continue;
6622 }
6623
6624 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
6625 * domain. The first time we get here it'll be because we
6626 * passed the 1s Threshold; each additional time it'll be
6627 * because the RX Timer Callback is being fired on its regular
6628 * schedule.
6629 *
6630 * If the stall is below our Potential Hung Ingress Queue
6631 * Warning Threshold, continue.
6632 */
6633 if (idma->idma_stalled[i] == 0) {
6634 idma->idma_stalled[i] = hz;
6635 idma->idma_warn[i] = 0;
6636 } else {
6637 idma->idma_stalled[i] += ticks;
6638 idma->idma_warn[i] -= ticks;
6639 }
6640
6641 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
6642 continue;
6643
6644 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
6645 */
6646 if (idma->idma_warn[i] > 0)
6647 continue;
6648 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
6649
6650 /* Read and save the SGE IDMA State and Queue ID information.
6651 * We do this every time in case it changes across time ...
6652 * can't be too careful ...
6653 */
6654 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
6655 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6656 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
6657
6658 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
6659 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6660 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
6661
6662 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
6663 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
6664 i, idma->idma_qid[i], idma->idma_state[i],
6665 idma->idma_stalled[i] / hz,
6666 debug0, debug11);
6667 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
6668 }
6669}