sctp: Add RCU protection to assoc->transport_addr_list
[linux-2.6-block.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/init.h>
36#include <linux/delay.h>
37#include "cxgb4.h"
38#include "t4_regs.h"
39#include "t4fw_api.h"
40
41/**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
50 *
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
55 */
de498c89
RD
56static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
58{
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
61
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
66 }
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
71 }
72}
73
74static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
76{
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
79}
80
81/**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
87 *
88 * Sets a register field specified by the supplied mask to the
89 * given value.
90 */
91void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
93{
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
98}
99
100/**
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
108 *
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
111 */
de498c89
RD
112static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
115{
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
120 }
121}
122
13ee15d3
VP
123/**
124 * t4_write_indirect - write indirectly addressed registers
125 * @adap: the adapter
126 * @addr_reg: register holding the indirect addresses
127 * @data_reg: register holding the value for the indirect registers
128 * @vals: values to write
129 * @nregs: how many indirect registers to write
130 * @start_idx: address of first indirect register to write
131 *
132 * Writes a sequential block of registers that are accessed indirectly
133 * through an address/data register pair.
134 */
135void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 unsigned int data_reg, const u32 *vals,
137 unsigned int nregs, unsigned int start_idx)
138{
139 while (nregs--) {
140 t4_write_reg(adap, addr_reg, start_idx++);
141 t4_write_reg(adap, data_reg, *vals++);
142 }
143}
144
56d36be4
DM
145/*
146 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
147 */
148static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
149 u32 mbox_addr)
150{
151 for ( ; nflit; nflit--, mbox_addr += 8)
152 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
153}
154
155/*
156 * Handle a FW assertion reported in a mailbox.
157 */
158static void fw_asrt(struct adapter *adap, u32 mbox_addr)
159{
160 struct fw_debug_cmd asrt;
161
162 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
163 dev_alert(adap->pdev_dev,
164 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
165 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
166 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
167}
168
169static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
170{
171 dev_err(adap->pdev_dev,
172 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
173 (unsigned long long)t4_read_reg64(adap, data_reg),
174 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
175 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
176 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
177 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
178 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
179 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
180 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
181}
182
183/**
184 * t4_wr_mbox_meat - send a command to FW through the given mailbox
185 * @adap: the adapter
186 * @mbox: index of the mailbox to use
187 * @cmd: the command to write
188 * @size: command length in bytes
189 * @rpl: where to optionally store the reply
190 * @sleep_ok: if true we may sleep while awaiting command completion
191 *
192 * Sends the given command to FW through the selected mailbox and waits
193 * for the FW to execute the command. If @rpl is not %NULL it is used to
194 * store the FW's reply to the command. The command and its optional
195 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
196 * to respond. @sleep_ok determines whether we may sleep while awaiting
197 * the response. If sleeping is allowed we use progressive backoff
198 * otherwise we spin.
199 *
200 * The return value is 0 on success or a negative errno on failure. A
201 * failure can happen either because we are not able to execute the
202 * command or FW executes it but signals an error. In the latter case
203 * the return value is the error code indicated by FW (negated).
204 */
205int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
206 void *rpl, bool sleep_ok)
207{
005b5717 208 static const int delay[] = {
56d36be4
DM
209 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
210 };
211
212 u32 v;
213 u64 res;
214 int i, ms, delay_idx;
215 const __be64 *p = cmd;
216 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
217 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
218
219 if ((size & 15) || size > MBOX_LEN)
220 return -EINVAL;
221
204dc3c0
DM
222 /*
223 * If the device is off-line, as in EEH, commands will time out.
224 * Fail them early so we don't waste time waiting.
225 */
226 if (adap->pdev->error_state != pci_channel_io_normal)
227 return -EIO;
228
56d36be4
DM
229 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
230 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
231 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
232
233 if (v != MBOX_OWNER_DRV)
234 return v ? -EBUSY : -ETIMEDOUT;
235
236 for (i = 0; i < size; i += 8)
237 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
238
239 t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
240 t4_read_reg(adap, ctl_reg); /* flush write */
241
242 delay_idx = 0;
243 ms = delay[0];
244
245 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
246 if (sleep_ok) {
247 ms = delay[delay_idx]; /* last element may repeat */
248 if (delay_idx < ARRAY_SIZE(delay) - 1)
249 delay_idx++;
250 msleep(ms);
251 } else
252 mdelay(ms);
253
254 v = t4_read_reg(adap, ctl_reg);
255 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
256 if (!(v & MBMSGVALID)) {
257 t4_write_reg(adap, ctl_reg, 0);
258 continue;
259 }
260
261 res = t4_read_reg64(adap, data_reg);
262 if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
263 fw_asrt(adap, data_reg);
264 res = FW_CMD_RETVAL(EIO);
265 } else if (rpl)
266 get_mbox_rpl(adap, rpl, size / 8, data_reg);
267
268 if (FW_CMD_RETVAL_GET((int)res))
269 dump_mbox(adap, mbox, data_reg);
270 t4_write_reg(adap, ctl_reg, 0);
271 return -FW_CMD_RETVAL_GET((int)res);
272 }
273 }
274
275 dump_mbox(adap, mbox, data_reg);
276 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
277 *(const u8 *)cmd, mbox);
278 return -ETIMEDOUT;
279}
280
281/**
282 * t4_mc_read - read from MC through backdoor accesses
283 * @adap: the adapter
284 * @addr: address of first byte requested
285 * @data: 64 bytes of data containing the requested address
286 * @ecc: where to store the corresponding 64-bit ECC word
287 *
288 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
289 * that covers the requested address @addr. If @parity is not %NULL it
290 * is assigned the 64-bit ECC word for the read data.
291 */
292int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
293{
294 int i;
295
296 if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
297 return -EBUSY;
298 t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
299 t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
300 t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
301 t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
302 BIST_CMD_GAP(1));
303 i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
304 if (i)
305 return i;
306
307#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
308
309 for (i = 15; i >= 0; i--)
310 *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
311 if (ecc)
312 *ecc = t4_read_reg64(adap, MC_DATA(16));
313#undef MC_DATA
314 return 0;
315}
316
317/**
318 * t4_edc_read - read from EDC through backdoor accesses
319 * @adap: the adapter
320 * @idx: which EDC to access
321 * @addr: address of first byte requested
322 * @data: 64 bytes of data containing the requested address
323 * @ecc: where to store the corresponding 64-bit ECC word
324 *
325 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
326 * that covers the requested address @addr. If @parity is not %NULL it
327 * is assigned the 64-bit ECC word for the read data.
328 */
329int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
330{
331 int i;
332
333 idx *= EDC_STRIDE;
334 if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
335 return -EBUSY;
336 t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
337 t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
338 t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
339 t4_write_reg(adap, EDC_BIST_CMD + idx,
340 BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
341 i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
342 if (i)
343 return i;
344
345#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
346
347 for (i = 15; i >= 0; i--)
348 *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
349 if (ecc)
350 *ecc = t4_read_reg64(adap, EDC_DATA(16));
351#undef EDC_DATA
352 return 0;
353}
354
5afc8b84
VP
355/*
356 * t4_mem_win_rw - read/write memory through PCIE memory window
357 * @adap: the adapter
358 * @addr: address of first byte requested
359 * @data: MEMWIN0_APERTURE bytes of data containing the requested address
360 * @dir: direction of transfer 1 => read, 0 => write
361 *
362 * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
363 * MEMWIN0_APERTURE-byte-aligned address that covers the requested
364 * address @addr.
365 */
366static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
367{
368 int i;
369
370 /*
371 * Setup offset into PCIE memory window. Address must be a
372 * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
373 * ensure that changes propagate before we attempt to use the new
374 * values.)
375 */
376 t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
377 addr & ~(MEMWIN0_APERTURE - 1));
378 t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
379
380 /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
381 for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
382 if (dir)
404d9e3f
VP
383 *data++ = (__force __be32) t4_read_reg(adap,
384 (MEMWIN0_BASE + i));
5afc8b84 385 else
404d9e3f
VP
386 t4_write_reg(adap, (MEMWIN0_BASE + i),
387 (__force u32) *data++);
5afc8b84
VP
388 }
389
390 return 0;
391}
392
393/**
394 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
395 * @adap: the adapter
396 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
397 * @addr: address within indicated memory type
398 * @len: amount of memory to transfer
399 * @buf: host memory buffer
400 * @dir: direction of transfer 1 => read, 0 => write
401 *
402 * Reads/writes an [almost] arbitrary memory region in the firmware: the
403 * firmware memory address, length and host buffer must be aligned on
404 * 32-bit boudaries. The memory is transferred as a raw byte sequence
405 * from/to the firmware's memory. If this memory contains data
406 * structures which contain multi-byte integers, it's the callers
407 * responsibility to perform appropriate byte order conversions.
408 */
409static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
410 __be32 *buf, int dir)
411{
412 u32 pos, start, end, offset, memoffset;
8c357ebd
VP
413 int ret = 0;
414 __be32 *data;
5afc8b84
VP
415
416 /*
417 * Argument sanity checks ...
418 */
419 if ((addr & 0x3) || (len & 0x3))
420 return -EINVAL;
421
594f88e9 422 data = vmalloc(MEMWIN0_APERTURE);
8c357ebd
VP
423 if (!data)
424 return -ENOMEM;
425
5afc8b84
VP
426 /*
427 * Offset into the region of memory which is being accessed
428 * MEM_EDC0 = 0
429 * MEM_EDC1 = 1
430 * MEM_MC = 2
431 */
432 memoffset = (mtype * (5 * 1024 * 1024));
433
434 /* Determine the PCIE_MEM_ACCESS_OFFSET */
435 addr = addr + memoffset;
436
437 /*
438 * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
439 * at a time so we need to round down the start and round up the end.
440 * We'll start copying out of the first line at (addr - start) a word
441 * at a time.
442 */
443 start = addr & ~(MEMWIN0_APERTURE-1);
444 end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
445 offset = (addr - start)/sizeof(__be32);
446
447 for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
5afc8b84
VP
448
449 /*
450 * If we're writing, copy the data from the caller's memory
451 * buffer
452 */
453 if (!dir) {
454 /*
455 * If we're doing a partial write, then we need to do
456 * a read-modify-write ...
457 */
458 if (offset || len < MEMWIN0_APERTURE) {
459 ret = t4_mem_win_rw(adap, pos, data, 1);
460 if (ret)
8c357ebd 461 break;
5afc8b84
VP
462 }
463 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
464 len > 0) {
465 data[offset++] = *buf++;
466 len -= sizeof(__be32);
467 }
468 }
469
470 /*
471 * Transfer a block of memory and bail if there's an error.
472 */
473 ret = t4_mem_win_rw(adap, pos, data, dir);
474 if (ret)
8c357ebd 475 break;
5afc8b84
VP
476
477 /*
478 * If we're reading, copy the data into the caller's memory
479 * buffer.
480 */
481 if (dir)
482 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
483 len > 0) {
484 *buf++ = data[offset++];
485 len -= sizeof(__be32);
486 }
487 }
488
8c357ebd
VP
489 vfree(data);
490 return ret;
5afc8b84
VP
491}
492
493int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
494 __be32 *buf)
495{
496 return t4_memory_rw(adap, mtype, addr, len, buf, 0);
497}
498
56d36be4
DM
499#define EEPROM_STAT_ADDR 0x7bfc
500#define VPD_BASE 0
226ec5fd 501#define VPD_LEN 512
56d36be4
DM
502
503/**
504 * t4_seeprom_wp - enable/disable EEPROM write protection
505 * @adapter: the adapter
506 * @enable: whether to enable or disable write protection
507 *
508 * Enables or disables write protection on the serial EEPROM.
509 */
510int t4_seeprom_wp(struct adapter *adapter, bool enable)
511{
512 unsigned int v = enable ? 0xc : 0;
513 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
514 return ret < 0 ? ret : 0;
515}
516
517/**
518 * get_vpd_params - read VPD parameters from VPD EEPROM
519 * @adapter: adapter to read
520 * @p: where to store the parameters
521 *
522 * Reads card parameters stored in VPD EEPROM.
523 */
636f9d37 524int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 525{
636f9d37 526 u32 cclk_param, cclk_val;
226ec5fd 527 int i, ret;
ec164008 528 int ec, sn;
8c357ebd 529 u8 *vpd, csum;
23d88e1d 530 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 531
8c357ebd
VP
532 vpd = vmalloc(VPD_LEN);
533 if (!vpd)
534 return -ENOMEM;
535
536 ret = pci_read_vpd(adapter->pdev, VPD_BASE, VPD_LEN, vpd);
56d36be4 537 if (ret < 0)
8c357ebd 538 goto out;
56d36be4 539
23d88e1d
DM
540 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
541 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
542 ret = -EINVAL;
543 goto out;
23d88e1d
DM
544 }
545
546 id_len = pci_vpd_lrdt_size(vpd);
547 if (id_len > ID_LEN)
548 id_len = ID_LEN;
549
550 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
551 if (i < 0) {
552 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
553 ret = -EINVAL;
554 goto out;
23d88e1d
DM
555 }
556
557 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
558 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
559 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 560 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
561 ret = -EINVAL;
562 goto out;
226ec5fd
DM
563 }
564
565#define FIND_VPD_KW(var, name) do { \
23d88e1d 566 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
567 if (var < 0) { \
568 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
569 ret = -EINVAL; \
570 goto out; \
226ec5fd
DM
571 } \
572 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
573} while (0)
574
575 FIND_VPD_KW(i, "RV");
576 for (csum = 0; i >= 0; i--)
577 csum += vpd[i];
56d36be4
DM
578
579 if (csum) {
580 dev_err(adapter->pdev_dev,
581 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
582 ret = -EINVAL;
583 goto out;
56d36be4
DM
584 }
585
226ec5fd
DM
586 FIND_VPD_KW(ec, "EC");
587 FIND_VPD_KW(sn, "SN");
226ec5fd
DM
588#undef FIND_VPD_KW
589
23d88e1d 590 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 591 strim(p->id);
226ec5fd 592 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 593 strim(p->ec);
226ec5fd
DM
594 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
595 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 596 strim(p->sn);
636f9d37
VP
597
598 /*
599 * Ask firmware for the Core Clock since it knows how to translate the
600 * Reference Clock ('V2') VPD field into a Core Clock value ...
601 */
602 cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
603 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
604 ret = t4_query_params(adapter, adapter->mbox, 0, 0,
605 1, &cclk_param, &cclk_val);
8c357ebd
VP
606
607out:
608 vfree(vpd);
636f9d37
VP
609 if (ret)
610 return ret;
611 p->cclk = cclk_val;
612
56d36be4
DM
613 return 0;
614}
615
616/* serial flash and firmware constants */
617enum {
618 SF_ATTEMPTS = 10, /* max retries for SF operations */
619
620 /* flash command opcodes */
621 SF_PROG_PAGE = 2, /* program page */
622 SF_WR_DISABLE = 4, /* disable writes */
623 SF_RD_STATUS = 5, /* read status register */
624 SF_WR_ENABLE = 6, /* enable writes */
625 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 626 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
627 SF_ERASE_SECTOR = 0xd8, /* erase sector */
628
900a6596 629 FW_MAX_SIZE = 512 * 1024,
56d36be4
DM
630};
631
632/**
633 * sf1_read - read data from the serial flash
634 * @adapter: the adapter
635 * @byte_cnt: number of bytes to read
636 * @cont: whether another operation will be chained
637 * @lock: whether to lock SF for PL access only
638 * @valp: where to store the read data
639 *
640 * Reads up to 4 bytes of data from the serial flash. The location of
641 * the read needs to be specified prior to calling this by issuing the
642 * appropriate commands to the serial flash.
643 */
644static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
645 int lock, u32 *valp)
646{
647 int ret;
648
649 if (!byte_cnt || byte_cnt > 4)
650 return -EINVAL;
651 if (t4_read_reg(adapter, SF_OP) & BUSY)
652 return -EBUSY;
653 cont = cont ? SF_CONT : 0;
654 lock = lock ? SF_LOCK : 0;
655 t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
656 ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
657 if (!ret)
658 *valp = t4_read_reg(adapter, SF_DATA);
659 return ret;
660}
661
662/**
663 * sf1_write - write data to the serial flash
664 * @adapter: the adapter
665 * @byte_cnt: number of bytes to write
666 * @cont: whether another operation will be chained
667 * @lock: whether to lock SF for PL access only
668 * @val: value to write
669 *
670 * Writes up to 4 bytes of data to the serial flash. The location of
671 * the write needs to be specified prior to calling this by issuing the
672 * appropriate commands to the serial flash.
673 */
674static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
675 int lock, u32 val)
676{
677 if (!byte_cnt || byte_cnt > 4)
678 return -EINVAL;
679 if (t4_read_reg(adapter, SF_OP) & BUSY)
680 return -EBUSY;
681 cont = cont ? SF_CONT : 0;
682 lock = lock ? SF_LOCK : 0;
683 t4_write_reg(adapter, SF_DATA, val);
684 t4_write_reg(adapter, SF_OP, lock |
685 cont | BYTECNT(byte_cnt - 1) | OP_WR);
686 return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
687}
688
689/**
690 * flash_wait_op - wait for a flash operation to complete
691 * @adapter: the adapter
692 * @attempts: max number of polls of the status register
693 * @delay: delay between polls in ms
694 *
695 * Wait for a flash operation to complete by polling the status register.
696 */
697static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
698{
699 int ret;
700 u32 status;
701
702 while (1) {
703 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
704 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
705 return ret;
706 if (!(status & 1))
707 return 0;
708 if (--attempts == 0)
709 return -EAGAIN;
710 if (delay)
711 msleep(delay);
712 }
713}
714
715/**
716 * t4_read_flash - read words from serial flash
717 * @adapter: the adapter
718 * @addr: the start address for the read
719 * @nwords: how many 32-bit words to read
720 * @data: where to store the read data
721 * @byte_oriented: whether to store data as bytes or as words
722 *
723 * Read the specified number of 32-bit words from the serial flash.
724 * If @byte_oriented is set the read data is stored as a byte array
725 * (i.e., big-endian), otherwise as 32-bit words in the platform's
726 * natural endianess.
727 */
de498c89
RD
728static int t4_read_flash(struct adapter *adapter, unsigned int addr,
729 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
730{
731 int ret;
732
900a6596 733 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
734 return -EINVAL;
735
736 addr = swab32(addr) | SF_RD_DATA_FAST;
737
738 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
739 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
740 return ret;
741
742 for ( ; nwords; nwords--, data++) {
743 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
744 if (nwords == 1)
745 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
746 if (ret)
747 return ret;
748 if (byte_oriented)
404d9e3f 749 *data = (__force __u32) (htonl(*data));
56d36be4
DM
750 }
751 return 0;
752}
753
754/**
755 * t4_write_flash - write up to a page of data to the serial flash
756 * @adapter: the adapter
757 * @addr: the start address to write
758 * @n: length of data to write in bytes
759 * @data: the data to write
760 *
761 * Writes up to a page of data (256 bytes) to the serial flash starting
762 * at the given address. All the data must be written to the same page.
763 */
764static int t4_write_flash(struct adapter *adapter, unsigned int addr,
765 unsigned int n, const u8 *data)
766{
767 int ret;
768 u32 buf[64];
769 unsigned int i, c, left, val, offset = addr & 0xff;
770
900a6596 771 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
772 return -EINVAL;
773
774 val = swab32(addr) | SF_PROG_PAGE;
775
776 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
777 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
778 goto unlock;
779
780 for (left = n; left; left -= c) {
781 c = min(left, 4U);
782 for (val = 0, i = 0; i < c; ++i)
783 val = (val << 8) + *data++;
784
785 ret = sf1_write(adapter, c, c != left, 1, val);
786 if (ret)
787 goto unlock;
788 }
900a6596 789 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
790 if (ret)
791 goto unlock;
792
793 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
794
795 /* Read the page to verify the write succeeded */
796 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
797 if (ret)
798 return ret;
799
800 if (memcmp(data - n, (u8 *)buf + offset, n)) {
801 dev_err(adapter->pdev_dev,
802 "failed to correctly write the flash page at %#x\n",
803 addr);
804 return -EIO;
805 }
806 return 0;
807
808unlock:
809 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
810 return ret;
811}
812
813/**
814 * get_fw_version - read the firmware version
815 * @adapter: the adapter
816 * @vers: where to place the version
817 *
818 * Reads the FW version from flash.
819 */
820static int get_fw_version(struct adapter *adapter, u32 *vers)
821{
900a6596
DM
822 return t4_read_flash(adapter, adapter->params.sf_fw_start +
823 offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
56d36be4
DM
824}
825
826/**
827 * get_tp_version - read the TP microcode version
828 * @adapter: the adapter
829 * @vers: where to place the version
830 *
831 * Reads the TP microcode version from flash.
832 */
833static int get_tp_version(struct adapter *adapter, u32 *vers)
834{
900a6596
DM
835 return t4_read_flash(adapter, adapter->params.sf_fw_start +
836 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
837 1, vers, 0);
838}
839
840/**
841 * t4_check_fw_version - check if the FW is compatible with this driver
842 * @adapter: the adapter
843 *
844 * Checks if an adapter's FW is compatible with the driver. Returns 0
845 * if there's exact match, a negative error if the version could not be
846 * read or there's a major version mismatch, and a positive value if the
847 * expected major version is found but there's a minor version mismatch.
848 */
849int t4_check_fw_version(struct adapter *adapter)
850{
851 u32 api_vers[2];
852 int ret, major, minor, micro;
853
854 ret = get_fw_version(adapter, &adapter->params.fw_vers);
855 if (!ret)
856 ret = get_tp_version(adapter, &adapter->params.tp_vers);
857 if (!ret)
900a6596
DM
858 ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
859 offsetof(struct fw_hdr, intfver_nic),
860 2, api_vers, 1);
56d36be4
DM
861 if (ret)
862 return ret;
863
864 major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
865 minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
866 micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
867 memcpy(adapter->params.api_vers, api_vers,
868 sizeof(adapter->params.api_vers));
869
870 if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
871 dev_err(adapter->pdev_dev,
872 "card FW has major version %u, driver wants %u\n",
873 major, FW_VERSION_MAJOR);
874 return -EINVAL;
875 }
876
877 if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
878 return 0; /* perfect match */
879
880 /* Minor/micro version mismatch. Report it but often it's OK. */
881 return 1;
882}
883
884/**
885 * t4_flash_erase_sectors - erase a range of flash sectors
886 * @adapter: the adapter
887 * @start: the first sector to erase
888 * @end: the last sector to erase
889 *
890 * Erases the sectors in the given inclusive range.
891 */
892static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
893{
894 int ret = 0;
895
896 while (start <= end) {
897 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
898 (ret = sf1_write(adapter, 4, 0, 1,
899 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 900 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
901 dev_err(adapter->pdev_dev,
902 "erase of flash sector %d failed, error %d\n",
903 start, ret);
904 break;
905 }
906 start++;
907 }
908 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
909 return ret;
910}
911
636f9d37
VP
912/**
913 * t4_flash_cfg_addr - return the address of the flash configuration file
914 * @adapter: the adapter
915 *
916 * Return the address within the flash where the Firmware Configuration
917 * File is stored.
918 */
919unsigned int t4_flash_cfg_addr(struct adapter *adapter)
920{
921 if (adapter->params.sf_size == 0x100000)
922 return FLASH_FPGA_CFG_START;
923 else
924 return FLASH_CFG_START;
925}
926
927/**
928 * t4_load_cfg - download config file
929 * @adap: the adapter
930 * @cfg_data: the cfg text file to write
931 * @size: text file size
932 *
933 * Write the supplied config text file to the card's serial flash.
934 */
935int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
936{
937 int ret, i, n;
938 unsigned int addr;
939 unsigned int flash_cfg_start_sec;
940 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
941
942 addr = t4_flash_cfg_addr(adap);
943 flash_cfg_start_sec = addr / SF_SEC_SIZE;
944
945 if (size > FLASH_CFG_MAX_SIZE) {
946 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
947 FLASH_CFG_MAX_SIZE);
948 return -EFBIG;
949 }
950
951 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
952 sf_sec_size);
953 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
954 flash_cfg_start_sec + i - 1);
955 /*
956 * If size == 0 then we're simply erasing the FLASH sectors associated
957 * with the on-adapter Firmware Configuration File.
958 */
959 if (ret || size == 0)
960 goto out;
961
962 /* this will write to the flash up to SF_PAGE_SIZE at a time */
963 for (i = 0; i < size; i += SF_PAGE_SIZE) {
964 if ((size - i) < SF_PAGE_SIZE)
965 n = size - i;
966 else
967 n = SF_PAGE_SIZE;
968 ret = t4_write_flash(adap, addr, n, cfg_data);
969 if (ret)
970 goto out;
971
972 addr += SF_PAGE_SIZE;
973 cfg_data += SF_PAGE_SIZE;
974 }
975
976out:
977 if (ret)
978 dev_err(adap->pdev_dev, "config file %s failed %d\n",
979 (size == 0 ? "clear" : "download"), ret);
980 return ret;
981}
982
56d36be4
DM
983/**
984 * t4_load_fw - download firmware
985 * @adap: the adapter
986 * @fw_data: the firmware image to write
987 * @size: image size
988 *
989 * Write the supplied firmware image to the card's serial flash.
990 */
991int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
992{
993 u32 csum;
994 int ret, addr;
995 unsigned int i;
996 u8 first_page[SF_PAGE_SIZE];
404d9e3f 997 const __be32 *p = (const __be32 *)fw_data;
56d36be4 998 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
999 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1000 unsigned int fw_img_start = adap->params.sf_fw_start;
1001 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
1002
1003 if (!size) {
1004 dev_err(adap->pdev_dev, "FW image has no data\n");
1005 return -EINVAL;
1006 }
1007 if (size & 511) {
1008 dev_err(adap->pdev_dev,
1009 "FW image size not multiple of 512 bytes\n");
1010 return -EINVAL;
1011 }
1012 if (ntohs(hdr->len512) * 512 != size) {
1013 dev_err(adap->pdev_dev,
1014 "FW image size differs from size in FW header\n");
1015 return -EINVAL;
1016 }
1017 if (size > FW_MAX_SIZE) {
1018 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
1019 FW_MAX_SIZE);
1020 return -EFBIG;
1021 }
1022
1023 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1024 csum += ntohl(p[i]);
1025
1026 if (csum != 0xffffffff) {
1027 dev_err(adap->pdev_dev,
1028 "corrupted firmware image, checksum %#x\n", csum);
1029 return -EINVAL;
1030 }
1031
900a6596
DM
1032 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
1033 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
1034 if (ret)
1035 goto out;
1036
1037 /*
1038 * We write the correct version at the end so the driver can see a bad
1039 * version if the FW write fails. Start by writing a copy of the
1040 * first page with a bad version.
1041 */
1042 memcpy(first_page, fw_data, SF_PAGE_SIZE);
1043 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
900a6596 1044 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
1045 if (ret)
1046 goto out;
1047
900a6596 1048 addr = fw_img_start;
56d36be4
DM
1049 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1050 addr += SF_PAGE_SIZE;
1051 fw_data += SF_PAGE_SIZE;
1052 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
1053 if (ret)
1054 goto out;
1055 }
1056
1057 ret = t4_write_flash(adap,
900a6596 1058 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
1059 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
1060out:
1061 if (ret)
1062 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
1063 ret);
1064 return ret;
1065}
1066
1067#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1068 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
1069
1070/**
1071 * t4_link_start - apply link configuration to MAC/PHY
1072 * @phy: the PHY to setup
1073 * @mac: the MAC to setup
1074 * @lc: the requested link configuration
1075 *
1076 * Set up a port's MAC and PHY according to a desired link configuration.
1077 * - If the PHY can auto-negotiate first decide what to advertise, then
1078 * enable/disable auto-negotiation as desired, and reset.
1079 * - If the PHY does not auto-negotiate just reset it.
1080 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1081 * otherwise do it later based on the outcome of auto-negotiation.
1082 */
1083int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1084 struct link_config *lc)
1085{
1086 struct fw_port_cmd c;
1087 unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
1088
1089 lc->link_ok = 0;
1090 if (lc->requested_fc & PAUSE_RX)
1091 fc |= FW_PORT_CAP_FC_RX;
1092 if (lc->requested_fc & PAUSE_TX)
1093 fc |= FW_PORT_CAP_FC_TX;
1094
1095 memset(&c, 0, sizeof(c));
1096 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
1097 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
1098 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1099 FW_LEN16(c));
1100
1101 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1102 c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1103 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1104 } else if (lc->autoneg == AUTONEG_DISABLE) {
1105 c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1106 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1107 } else
1108 c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1109
1110 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1111}
1112
1113/**
1114 * t4_restart_aneg - restart autonegotiation
1115 * @adap: the adapter
1116 * @mbox: mbox to use for the FW command
1117 * @port: the port id
1118 *
1119 * Restarts autonegotiation for the selected port.
1120 */
1121int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1122{
1123 struct fw_port_cmd c;
1124
1125 memset(&c, 0, sizeof(c));
1126 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
1127 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
1128 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1129 FW_LEN16(c));
1130 c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1131 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1132}
1133
8caa1e84
VP
1134typedef void (*int_handler_t)(struct adapter *adap);
1135
56d36be4
DM
1136struct intr_info {
1137 unsigned int mask; /* bits to check in interrupt status */
1138 const char *msg; /* message to print or NULL */
1139 short stat_idx; /* stat counter to increment or -1 */
1140 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 1141 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
1142};
1143
1144/**
1145 * t4_handle_intr_status - table driven interrupt handler
1146 * @adapter: the adapter that generated the interrupt
1147 * @reg: the interrupt status register to process
1148 * @acts: table of interrupt actions
1149 *
1150 * A table driven interrupt handler that applies a set of masks to an
1151 * interrupt status word and performs the corresponding actions if the
25985edc 1152 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
1153 * optionally emitting a warning or alert message. The table is terminated
1154 * by an entry specifying mask 0. Returns the number of fatal interrupt
1155 * conditions.
1156 */
1157static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1158 const struct intr_info *acts)
1159{
1160 int fatal = 0;
1161 unsigned int mask = 0;
1162 unsigned int status = t4_read_reg(adapter, reg);
1163
1164 for ( ; acts->mask; ++acts) {
1165 if (!(status & acts->mask))
1166 continue;
1167 if (acts->fatal) {
1168 fatal++;
1169 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
1170 status & acts->mask);
1171 } else if (acts->msg && printk_ratelimit())
1172 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
1173 status & acts->mask);
8caa1e84
VP
1174 if (acts->int_handler)
1175 acts->int_handler(adapter);
56d36be4
DM
1176 mask |= acts->mask;
1177 }
1178 status &= mask;
1179 if (status) /* clear processed interrupts */
1180 t4_write_reg(adapter, reg, status);
1181 return fatal;
1182}
1183
1184/*
1185 * Interrupt handler for the PCIE module.
1186 */
1187static void pcie_intr_handler(struct adapter *adapter)
1188{
005b5717 1189 static const struct intr_info sysbus_intr_info[] = {
56d36be4
DM
1190 { RNPP, "RXNP array parity error", -1, 1 },
1191 { RPCP, "RXPC array parity error", -1, 1 },
1192 { RCIP, "RXCIF array parity error", -1, 1 },
1193 { RCCP, "Rx completions control array parity error", -1, 1 },
1194 { RFTP, "RXFT array parity error", -1, 1 },
1195 { 0 }
1196 };
005b5717 1197 static const struct intr_info pcie_port_intr_info[] = {
56d36be4
DM
1198 { TPCP, "TXPC array parity error", -1, 1 },
1199 { TNPP, "TXNP array parity error", -1, 1 },
1200 { TFTP, "TXFT array parity error", -1, 1 },
1201 { TCAP, "TXCA array parity error", -1, 1 },
1202 { TCIP, "TXCIF array parity error", -1, 1 },
1203 { RCAP, "RXCA array parity error", -1, 1 },
1204 { OTDD, "outbound request TLP discarded", -1, 1 },
1205 { RDPE, "Rx data parity error", -1, 1 },
1206 { TDUE, "Tx uncorrectable data error", -1, 1 },
1207 { 0 }
1208 };
005b5717 1209 static const struct intr_info pcie_intr_info[] = {
56d36be4
DM
1210 { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
1211 { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
1212 { MSIDATAPERR, "MSI data parity error", -1, 1 },
1213 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
1214 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
1215 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
1216 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
1217 { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
1218 { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
1219 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
1220 { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
1221 { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
1222 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
1223 { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
1224 { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
1225 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
1226 { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
1227 { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
1228 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
1229 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
1230 { FIDPERR, "PCI FID parity error", -1, 1 },
1231 { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
1232 { MATAGPERR, "PCI MA tag parity error", -1, 1 },
1233 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
1234 { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
1235 { RXWRPERR, "PCI Rx write parity error", -1, 1 },
1236 { RPLPERR, "PCI replay buffer parity error", -1, 1 },
1237 { PCIESINT, "PCI core secondary fault", -1, 1 },
1238 { PCIEPINT, "PCI core primary fault", -1, 1 },
1239 { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
1240 { 0 }
1241 };
1242
1243 int fat;
1244
1245 fat = t4_handle_intr_status(adapter,
1246 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
1247 sysbus_intr_info) +
1248 t4_handle_intr_status(adapter,
1249 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
1250 pcie_port_intr_info) +
1251 t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
1252 if (fat)
1253 t4_fatal_err(adapter);
1254}
1255
1256/*
1257 * TP interrupt handler.
1258 */
1259static void tp_intr_handler(struct adapter *adapter)
1260{
005b5717 1261 static const struct intr_info tp_intr_info[] = {
56d36be4
DM
1262 { 0x3fffffff, "TP parity error", -1, 1 },
1263 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
1264 { 0 }
1265 };
1266
1267 if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
1268 t4_fatal_err(adapter);
1269}
1270
1271/*
1272 * SGE interrupt handler.
1273 */
1274static void sge_intr_handler(struct adapter *adapter)
1275{
1276 u64 v;
1277
005b5717 1278 static const struct intr_info sge_intr_info[] = {
56d36be4
DM
1279 { ERR_CPL_EXCEED_IQE_SIZE,
1280 "SGE received CPL exceeding IQE size", -1, 1 },
1281 { ERR_INVALID_CIDX_INC,
1282 "SGE GTS CIDX increment too large", -1, 0 },
1283 { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
840f3000
VP
1284 { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
1285 { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
1286 { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
56d36be4
DM
1287 { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
1288 "SGE IQID > 1023 received CPL for FL", -1, 0 },
1289 { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
1290 0 },
1291 { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
1292 0 },
1293 { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
1294 0 },
1295 { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
1296 0 },
1297 { ERR_ING_CTXT_PRIO,
1298 "SGE too many priority ingress contexts", -1, 0 },
1299 { ERR_EGR_CTXT_PRIO,
1300 "SGE too many priority egress contexts", -1, 0 },
1301 { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
1302 { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
1303 { 0 }
1304 };
1305
1306 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
8caa1e84 1307 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
56d36be4
DM
1308 if (v) {
1309 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 1310 (unsigned long long)v);
56d36be4
DM
1311 t4_write_reg(adapter, SGE_INT_CAUSE1, v);
1312 t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
1313 }
1314
1315 if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
1316 v != 0)
1317 t4_fatal_err(adapter);
1318}
1319
1320/*
1321 * CIM interrupt handler.
1322 */
1323static void cim_intr_handler(struct adapter *adapter)
1324{
005b5717 1325 static const struct intr_info cim_intr_info[] = {
56d36be4
DM
1326 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
1327 { OBQPARERR, "CIM OBQ parity error", -1, 1 },
1328 { IBQPARERR, "CIM IBQ parity error", -1, 1 },
1329 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
1330 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
1331 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
1332 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
1333 { 0 }
1334 };
005b5717 1335 static const struct intr_info cim_upintr_info[] = {
56d36be4
DM
1336 { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
1337 { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
1338 { ILLWRINT, "CIM illegal write", -1, 1 },
1339 { ILLRDINT, "CIM illegal read", -1, 1 },
1340 { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
1341 { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
1342 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
1343 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
1344 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
1345 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
1346 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
1347 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
1348 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
1349 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
1350 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
1351 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
1352 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
1353 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
1354 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
1355 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
1356 { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
1357 { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
1358 { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
1359 { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
1360 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
1361 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
1362 { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
1363 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
1364 { 0 }
1365 };
1366
1367 int fat;
1368
1369 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
1370 cim_intr_info) +
1371 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
1372 cim_upintr_info);
1373 if (fat)
1374 t4_fatal_err(adapter);
1375}
1376
1377/*
1378 * ULP RX interrupt handler.
1379 */
1380static void ulprx_intr_handler(struct adapter *adapter)
1381{
005b5717 1382 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 1383 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
1384 { 0x7fffff, "ULPRX parity error", -1, 1 },
1385 { 0 }
1386 };
1387
1388 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
1389 t4_fatal_err(adapter);
1390}
1391
1392/*
1393 * ULP TX interrupt handler.
1394 */
1395static void ulptx_intr_handler(struct adapter *adapter)
1396{
005b5717 1397 static const struct intr_info ulptx_intr_info[] = {
56d36be4
DM
1398 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
1399 0 },
1400 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
1401 0 },
1402 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
1403 0 },
1404 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
1405 0 },
1406 { 0xfffffff, "ULPTX parity error", -1, 1 },
1407 { 0 }
1408 };
1409
1410 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
1411 t4_fatal_err(adapter);
1412}
1413
1414/*
1415 * PM TX interrupt handler.
1416 */
1417static void pmtx_intr_handler(struct adapter *adapter)
1418{
005b5717 1419 static const struct intr_info pmtx_intr_info[] = {
56d36be4
DM
1420 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
1421 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
1422 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
1423 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
1424 { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
1425 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
1426 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
1427 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
1428 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
1429 { 0 }
1430 };
1431
1432 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
1433 t4_fatal_err(adapter);
1434}
1435
1436/*
1437 * PM RX interrupt handler.
1438 */
1439static void pmrx_intr_handler(struct adapter *adapter)
1440{
005b5717 1441 static const struct intr_info pmrx_intr_info[] = {
56d36be4
DM
1442 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
1443 { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
1444 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
1445 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
1446 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
1447 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
1448 { 0 }
1449 };
1450
1451 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
1452 t4_fatal_err(adapter);
1453}
1454
1455/*
1456 * CPL switch interrupt handler.
1457 */
1458static void cplsw_intr_handler(struct adapter *adapter)
1459{
005b5717 1460 static const struct intr_info cplsw_intr_info[] = {
56d36be4
DM
1461 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
1462 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
1463 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
1464 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
1465 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
1466 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
1467 { 0 }
1468 };
1469
1470 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
1471 t4_fatal_err(adapter);
1472}
1473
1474/*
1475 * LE interrupt handler.
1476 */
1477static void le_intr_handler(struct adapter *adap)
1478{
005b5717 1479 static const struct intr_info le_intr_info[] = {
56d36be4
DM
1480 { LIPMISS, "LE LIP miss", -1, 0 },
1481 { LIP0, "LE 0 LIP error", -1, 0 },
1482 { PARITYERR, "LE parity error", -1, 1 },
1483 { UNKNOWNCMD, "LE unknown command", -1, 1 },
1484 { REQQPARERR, "LE request queue parity error", -1, 1 },
1485 { 0 }
1486 };
1487
1488 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
1489 t4_fatal_err(adap);
1490}
1491
1492/*
1493 * MPS interrupt handler.
1494 */
1495static void mps_intr_handler(struct adapter *adapter)
1496{
005b5717 1497 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
1498 { 0xffffff, "MPS Rx parity error", -1, 1 },
1499 { 0 }
1500 };
005b5717 1501 static const struct intr_info mps_tx_intr_info[] = {
56d36be4
DM
1502 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
1503 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
1504 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
1505 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
1506 { BUBBLE, "MPS Tx underflow", -1, 1 },
1507 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
1508 { FRMERR, "MPS Tx framing error", -1, 1 },
1509 { 0 }
1510 };
005b5717 1511 static const struct intr_info mps_trc_intr_info[] = {
56d36be4
DM
1512 { FILTMEM, "MPS TRC filter parity error", -1, 1 },
1513 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
1514 { MISCPERR, "MPS TRC misc parity error", -1, 1 },
1515 { 0 }
1516 };
005b5717 1517 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
1518 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
1519 { 0 }
1520 };
005b5717 1521 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
1522 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
1523 { 0 }
1524 };
005b5717 1525 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
1526 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
1527 { 0 }
1528 };
005b5717 1529 static const struct intr_info mps_cls_intr_info[] = {
56d36be4
DM
1530 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
1531 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
1532 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
1533 { 0 }
1534 };
1535
1536 int fat;
1537
1538 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
1539 mps_rx_intr_info) +
1540 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
1541 mps_tx_intr_info) +
1542 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
1543 mps_trc_intr_info) +
1544 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
1545 mps_stat_sram_intr_info) +
1546 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
1547 mps_stat_tx_intr_info) +
1548 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
1549 mps_stat_rx_intr_info) +
1550 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
1551 mps_cls_intr_info);
1552
1553 t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
1554 RXINT | TXINT | STATINT);
1555 t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
1556 if (fat)
1557 t4_fatal_err(adapter);
1558}
1559
1560#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
1561
1562/*
1563 * EDC/MC interrupt handler.
1564 */
1565static void mem_intr_handler(struct adapter *adapter, int idx)
1566{
1567 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
1568
1569 unsigned int addr, cnt_addr, v;
1570
1571 if (idx <= MEM_EDC1) {
1572 addr = EDC_REG(EDC_INT_CAUSE, idx);
1573 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
1574 } else {
1575 addr = MC_INT_CAUSE;
1576 cnt_addr = MC_ECC_STATUS;
1577 }
1578
1579 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
1580 if (v & PERR_INT_CAUSE)
1581 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
1582 name[idx]);
1583 if (v & ECC_CE_INT_CAUSE) {
1584 u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
1585
1586 t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
1587 if (printk_ratelimit())
1588 dev_warn(adapter->pdev_dev,
1589 "%u %s correctable ECC data error%s\n",
1590 cnt, name[idx], cnt > 1 ? "s" : "");
1591 }
1592 if (v & ECC_UE_INT_CAUSE)
1593 dev_alert(adapter->pdev_dev,
1594 "%s uncorrectable ECC data error\n", name[idx]);
1595
1596 t4_write_reg(adapter, addr, v);
1597 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
1598 t4_fatal_err(adapter);
1599}
1600
1601/*
1602 * MA interrupt handler.
1603 */
1604static void ma_intr_handler(struct adapter *adap)
1605{
1606 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
1607
1608 if (status & MEM_PERR_INT_CAUSE)
1609 dev_alert(adap->pdev_dev,
1610 "MA parity error, parity status %#x\n",
1611 t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
1612 if (status & MEM_WRAP_INT_CAUSE) {
1613 v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
1614 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
1615 "client %u to address %#x\n",
1616 MEM_WRAP_CLIENT_NUM_GET(v),
1617 MEM_WRAP_ADDRESS_GET(v) << 4);
1618 }
1619 t4_write_reg(adap, MA_INT_CAUSE, status);
1620 t4_fatal_err(adap);
1621}
1622
1623/*
1624 * SMB interrupt handler.
1625 */
1626static void smb_intr_handler(struct adapter *adap)
1627{
005b5717 1628 static const struct intr_info smb_intr_info[] = {
56d36be4
DM
1629 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
1630 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
1631 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
1632 { 0 }
1633 };
1634
1635 if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
1636 t4_fatal_err(adap);
1637}
1638
1639/*
1640 * NC-SI interrupt handler.
1641 */
1642static void ncsi_intr_handler(struct adapter *adap)
1643{
005b5717 1644 static const struct intr_info ncsi_intr_info[] = {
56d36be4
DM
1645 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
1646 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
1647 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
1648 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
1649 { 0 }
1650 };
1651
1652 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
1653 t4_fatal_err(adap);
1654}
1655
1656/*
1657 * XGMAC interrupt handler.
1658 */
1659static void xgmac_intr_handler(struct adapter *adap, int port)
1660{
1661 u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
1662
1663 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
1664 if (!v)
1665 return;
1666
1667 if (v & TXFIFO_PRTY_ERR)
1668 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
1669 port);
1670 if (v & RXFIFO_PRTY_ERR)
1671 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
1672 port);
1673 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
1674 t4_fatal_err(adap);
1675}
1676
1677/*
1678 * PL interrupt handler.
1679 */
1680static void pl_intr_handler(struct adapter *adap)
1681{
005b5717 1682 static const struct intr_info pl_intr_info[] = {
56d36be4
DM
1683 { FATALPERR, "T4 fatal parity error", -1, 1 },
1684 { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
1685 { 0 }
1686 };
1687
1688 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
1689 t4_fatal_err(adap);
1690}
1691
63bcceec 1692#define PF_INTR_MASK (PFSW)
56d36be4
DM
1693#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
1694 EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
1695 CPL_SWITCH | SGE | ULP_TX)
1696
1697/**
1698 * t4_slow_intr_handler - control path interrupt handler
1699 * @adapter: the adapter
1700 *
1701 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
1702 * The designation 'slow' is because it involves register reads, while
1703 * data interrupts typically don't involve any MMIOs.
1704 */
1705int t4_slow_intr_handler(struct adapter *adapter)
1706{
1707 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
1708
1709 if (!(cause & GLBL_INTR_MASK))
1710 return 0;
1711 if (cause & CIM)
1712 cim_intr_handler(adapter);
1713 if (cause & MPS)
1714 mps_intr_handler(adapter);
1715 if (cause & NCSI)
1716 ncsi_intr_handler(adapter);
1717 if (cause & PL)
1718 pl_intr_handler(adapter);
1719 if (cause & SMB)
1720 smb_intr_handler(adapter);
1721 if (cause & XGMAC0)
1722 xgmac_intr_handler(adapter, 0);
1723 if (cause & XGMAC1)
1724 xgmac_intr_handler(adapter, 1);
1725 if (cause & XGMAC_KR0)
1726 xgmac_intr_handler(adapter, 2);
1727 if (cause & XGMAC_KR1)
1728 xgmac_intr_handler(adapter, 3);
1729 if (cause & PCIE)
1730 pcie_intr_handler(adapter);
1731 if (cause & MC)
1732 mem_intr_handler(adapter, MEM_MC);
1733 if (cause & EDC0)
1734 mem_intr_handler(adapter, MEM_EDC0);
1735 if (cause & EDC1)
1736 mem_intr_handler(adapter, MEM_EDC1);
1737 if (cause & LE)
1738 le_intr_handler(adapter);
1739 if (cause & TP)
1740 tp_intr_handler(adapter);
1741 if (cause & MA)
1742 ma_intr_handler(adapter);
1743 if (cause & PM_TX)
1744 pmtx_intr_handler(adapter);
1745 if (cause & PM_RX)
1746 pmrx_intr_handler(adapter);
1747 if (cause & ULP_RX)
1748 ulprx_intr_handler(adapter);
1749 if (cause & CPL_SWITCH)
1750 cplsw_intr_handler(adapter);
1751 if (cause & SGE)
1752 sge_intr_handler(adapter);
1753 if (cause & ULP_TX)
1754 ulptx_intr_handler(adapter);
1755
1756 /* Clear the interrupts just processed for which we are the master. */
1757 t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
1758 (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
1759 return 1;
1760}
1761
1762/**
1763 * t4_intr_enable - enable interrupts
1764 * @adapter: the adapter whose interrupts should be enabled
1765 *
1766 * Enable PF-specific interrupts for the calling function and the top-level
1767 * interrupt concentrator for global interrupts. Interrupts are already
1768 * enabled at each module, here we just enable the roots of the interrupt
1769 * hierarchies.
1770 *
1771 * Note: this function should be called only when the driver manages
1772 * non PF-specific interrupts from the various HW modules. Only one PCI
1773 * function at a time should be doing this.
1774 */
1775void t4_intr_enable(struct adapter *adapter)
1776{
1777 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
1778
1779 t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
1780 ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
1781 ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
1782 ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
1783 ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
1784 ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
1785 ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
840f3000 1786 DBFIFO_HP_INT | DBFIFO_LP_INT |
56d36be4
DM
1787 EGRESS_SIZE_ERR);
1788 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
1789 t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
1790}
1791
1792/**
1793 * t4_intr_disable - disable interrupts
1794 * @adapter: the adapter whose interrupts should be disabled
1795 *
1796 * Disable interrupts. We only disable the top-level interrupt
1797 * concentrators. The caller must be a PCI function managing global
1798 * interrupts.
1799 */
1800void t4_intr_disable(struct adapter *adapter)
1801{
1802 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
1803
1804 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
1805 t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
1806}
1807
56d36be4
DM
1808/**
1809 * hash_mac_addr - return the hash value of a MAC address
1810 * @addr: the 48-bit Ethernet MAC address
1811 *
1812 * Hashes a MAC address according to the hash function used by HW inexact
1813 * (hash) address matching.
1814 */
1815static int hash_mac_addr(const u8 *addr)
1816{
1817 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
1818 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
1819 a ^= b;
1820 a ^= (a >> 12);
1821 a ^= (a >> 6);
1822 return a & 0x3f;
1823}
1824
1825/**
1826 * t4_config_rss_range - configure a portion of the RSS mapping table
1827 * @adapter: the adapter
1828 * @mbox: mbox to use for the FW command
1829 * @viid: virtual interface whose RSS subtable is to be written
1830 * @start: start entry in the table to write
1831 * @n: how many table entries to write
1832 * @rspq: values for the response queue lookup table
1833 * @nrspq: number of values in @rspq
1834 *
1835 * Programs the selected part of the VI's RSS mapping table with the
1836 * provided values. If @nrspq < @n the supplied values are used repeatedly
1837 * until the full table range is populated.
1838 *
1839 * The caller must ensure the values in @rspq are in the range allowed for
1840 * @viid.
1841 */
1842int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
1843 int start, int n, const u16 *rspq, unsigned int nrspq)
1844{
1845 int ret;
1846 const u16 *rsp = rspq;
1847 const u16 *rsp_end = rspq + nrspq;
1848 struct fw_rss_ind_tbl_cmd cmd;
1849
1850 memset(&cmd, 0, sizeof(cmd));
1851 cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
1852 FW_CMD_REQUEST | FW_CMD_WRITE |
1853 FW_RSS_IND_TBL_CMD_VIID(viid));
1854 cmd.retval_len16 = htonl(FW_LEN16(cmd));
1855
1856 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
1857 while (n > 0) {
1858 int nq = min(n, 32);
1859 __be32 *qp = &cmd.iq0_to_iq2;
1860
1861 cmd.niqid = htons(nq);
1862 cmd.startidx = htons(start);
1863
1864 start += nq;
1865 n -= nq;
1866
1867 while (nq > 0) {
1868 unsigned int v;
1869
1870 v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
1871 if (++rsp >= rsp_end)
1872 rsp = rspq;
1873 v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
1874 if (++rsp >= rsp_end)
1875 rsp = rspq;
1876 v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
1877 if (++rsp >= rsp_end)
1878 rsp = rspq;
1879
1880 *qp++ = htonl(v);
1881 nq -= 3;
1882 }
1883
1884 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
1885 if (ret)
1886 return ret;
1887 }
1888 return 0;
1889}
1890
1891/**
1892 * t4_config_glbl_rss - configure the global RSS mode
1893 * @adapter: the adapter
1894 * @mbox: mbox to use for the FW command
1895 * @mode: global RSS mode
1896 * @flags: mode-specific flags
1897 *
1898 * Sets the global RSS mode.
1899 */
1900int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
1901 unsigned int flags)
1902{
1903 struct fw_rss_glb_config_cmd c;
1904
1905 memset(&c, 0, sizeof(c));
1906 c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
1907 FW_CMD_REQUEST | FW_CMD_WRITE);
1908 c.retval_len16 = htonl(FW_LEN16(c));
1909 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
1910 c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
1911 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
1912 c.u.basicvirtual.mode_pkd =
1913 htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
1914 c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
1915 } else
1916 return -EINVAL;
1917 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
1918}
1919
56d36be4
DM
1920/**
1921 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
1922 * @adap: the adapter
1923 * @v4: holds the TCP/IP counter values
1924 * @v6: holds the TCP/IPv6 counter values
1925 *
1926 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
1927 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
1928 */
1929void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
1930 struct tp_tcp_stats *v6)
1931{
1932 u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
1933
1934#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
1935#define STAT(x) val[STAT_IDX(x)]
1936#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
1937
1938 if (v4) {
1939 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
1940 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
1941 v4->tcpOutRsts = STAT(OUT_RST);
1942 v4->tcpInSegs = STAT64(IN_SEG);
1943 v4->tcpOutSegs = STAT64(OUT_SEG);
1944 v4->tcpRetransSegs = STAT64(RXT_SEG);
1945 }
1946 if (v6) {
1947 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
1948 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
1949 v6->tcpOutRsts = STAT(OUT_RST);
1950 v6->tcpInSegs = STAT64(IN_SEG);
1951 v6->tcpOutSegs = STAT64(OUT_SEG);
1952 v6->tcpRetransSegs = STAT64(RXT_SEG);
1953 }
1954#undef STAT64
1955#undef STAT
1956#undef STAT_IDX
1957}
1958
56d36be4
DM
1959/**
1960 * t4_read_mtu_tbl - returns the values in the HW path MTU table
1961 * @adap: the adapter
1962 * @mtus: where to store the MTU values
1963 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
1964 *
1965 * Reads the HW path MTU table.
1966 */
1967void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
1968{
1969 u32 v;
1970 int i;
1971
1972 for (i = 0; i < NMTUS; ++i) {
1973 t4_write_reg(adap, TP_MTU_TABLE,
1974 MTUINDEX(0xff) | MTUVALUE(i));
1975 v = t4_read_reg(adap, TP_MTU_TABLE);
1976 mtus[i] = MTUVALUE_GET(v);
1977 if (mtu_log)
1978 mtu_log[i] = MTUWIDTH_GET(v);
1979 }
1980}
1981
636f9d37
VP
1982/**
1983 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
1984 * @adap: the adapter
1985 * @addr: the indirect TP register address
1986 * @mask: specifies the field within the register to modify
1987 * @val: new value for the field
1988 *
1989 * Sets a field of an indirect TP register to the given value.
1990 */
1991void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
1992 unsigned int mask, unsigned int val)
1993{
1994 t4_write_reg(adap, TP_PIO_ADDR, addr);
1995 val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
1996 t4_write_reg(adap, TP_PIO_DATA, val);
1997}
1998
56d36be4
DM
1999/**
2000 * init_cong_ctrl - initialize congestion control parameters
2001 * @a: the alpha values for congestion control
2002 * @b: the beta values for congestion control
2003 *
2004 * Initialize the congestion control parameters.
2005 */
91744948 2006static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
2007{
2008 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2009 a[9] = 2;
2010 a[10] = 3;
2011 a[11] = 4;
2012 a[12] = 5;
2013 a[13] = 6;
2014 a[14] = 7;
2015 a[15] = 8;
2016 a[16] = 9;
2017 a[17] = 10;
2018 a[18] = 14;
2019 a[19] = 17;
2020 a[20] = 21;
2021 a[21] = 25;
2022 a[22] = 30;
2023 a[23] = 35;
2024 a[24] = 45;
2025 a[25] = 60;
2026 a[26] = 80;
2027 a[27] = 100;
2028 a[28] = 200;
2029 a[29] = 300;
2030 a[30] = 400;
2031 a[31] = 500;
2032
2033 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2034 b[9] = b[10] = 1;
2035 b[11] = b[12] = 2;
2036 b[13] = b[14] = b[15] = b[16] = 3;
2037 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2038 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2039 b[28] = b[29] = 6;
2040 b[30] = b[31] = 7;
2041}
2042
2043/* The minimum additive increment value for the congestion control table */
2044#define CC_MIN_INCR 2U
2045
2046/**
2047 * t4_load_mtus - write the MTU and congestion control HW tables
2048 * @adap: the adapter
2049 * @mtus: the values for the MTU table
2050 * @alpha: the values for the congestion control alpha parameter
2051 * @beta: the values for the congestion control beta parameter
2052 *
2053 * Write the HW MTU table with the supplied MTUs and the high-speed
2054 * congestion control table with the supplied alpha, beta, and MTUs.
2055 * We write the two tables together because the additive increments
2056 * depend on the MTUs.
2057 */
2058void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
2059 const unsigned short *alpha, const unsigned short *beta)
2060{
2061 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2062 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2063 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2064 28672, 40960, 57344, 81920, 114688, 163840, 229376
2065 };
2066
2067 unsigned int i, w;
2068
2069 for (i = 0; i < NMTUS; ++i) {
2070 unsigned int mtu = mtus[i];
2071 unsigned int log2 = fls(mtu);
2072
2073 if (!(mtu & ((1 << log2) >> 2))) /* round */
2074 log2--;
2075 t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
2076 MTUWIDTH(log2) | MTUVALUE(mtu));
2077
2078 for (w = 0; w < NCCTRL_WIN; ++w) {
2079 unsigned int inc;
2080
2081 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2082 CC_MIN_INCR);
2083
2084 t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
2085 (w << 16) | (beta[w] << 13) | inc);
2086 }
2087 }
2088}
2089
56d36be4
DM
2090/**
2091 * get_mps_bg_map - return the buffer groups associated with a port
2092 * @adap: the adapter
2093 * @idx: the port index
2094 *
2095 * Returns a bitmap indicating which MPS buffer groups are associated
2096 * with the given port. Bit i is set if buffer group i is used by the
2097 * port.
2098 */
2099static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
2100{
2101 u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
2102
2103 if (n == 0)
2104 return idx == 0 ? 0xf : 0;
2105 if (n == 1)
2106 return idx < 2 ? (3 << (2 * idx)) : 0;
2107 return 1 << idx;
2108}
2109
2110/**
2111 * t4_get_port_stats - collect port statistics
2112 * @adap: the adapter
2113 * @idx: the port index
2114 * @p: the stats structure to fill
2115 *
2116 * Collect statistics related to the given port from HW.
2117 */
2118void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
2119{
2120 u32 bgmap = get_mps_bg_map(adap, idx);
2121
2122#define GET_STAT(name) \
2123 t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
2124#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
2125
2126 p->tx_octets = GET_STAT(TX_PORT_BYTES);
2127 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
2128 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
2129 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
2130 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
2131 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
2132 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
2133 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
2134 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
2135 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
2136 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
2137 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
2138 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
2139 p->tx_drop = GET_STAT(TX_PORT_DROP);
2140 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
2141 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
2142 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
2143 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
2144 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
2145 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
2146 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
2147 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
2148 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
2149
2150 p->rx_octets = GET_STAT(RX_PORT_BYTES);
2151 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
2152 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
2153 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
2154 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
2155 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
2156 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
2157 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
2158 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
2159 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
2160 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
2161 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
2162 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
2163 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
2164 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
2165 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
2166 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
2167 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
2168 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
2169 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
2170 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
2171 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
2172 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
2173 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
2174 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
2175 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
2176 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
2177
2178 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
2179 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
2180 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
2181 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
2182 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
2183 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
2184 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
2185 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
2186
2187#undef GET_STAT
2188#undef GET_STAT_COM
2189}
2190
56d36be4
DM
2191/**
2192 * t4_wol_magic_enable - enable/disable magic packet WoL
2193 * @adap: the adapter
2194 * @port: the physical port index
2195 * @addr: MAC address expected in magic packets, %NULL to disable
2196 *
2197 * Enables/disables magic packet wake-on-LAN for the selected port.
2198 */
2199void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
2200 const u8 *addr)
2201{
2202 if (addr) {
2203 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
2204 (addr[2] << 24) | (addr[3] << 16) |
2205 (addr[4] << 8) | addr[5]);
2206 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
2207 (addr[0] << 8) | addr[1]);
2208 }
2209 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
2210 addr ? MAGICEN : 0);
2211}
2212
2213/**
2214 * t4_wol_pat_enable - enable/disable pattern-based WoL
2215 * @adap: the adapter
2216 * @port: the physical port index
2217 * @map: bitmap of which HW pattern filters to set
2218 * @mask0: byte mask for bytes 0-63 of a packet
2219 * @mask1: byte mask for bytes 64-127 of a packet
2220 * @crc: Ethernet CRC for selected bytes
2221 * @enable: enable/disable switch
2222 *
2223 * Sets the pattern filters indicated in @map to mask out the bytes
2224 * specified in @mask0/@mask1 in received packets and compare the CRC of
2225 * the resulting packet against @crc. If @enable is %true pattern-based
2226 * WoL is enabled, otherwise disabled.
2227 */
2228int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
2229 u64 mask0, u64 mask1, unsigned int crc, bool enable)
2230{
2231 int i;
2232
2233 if (!enable) {
2234 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
2235 PATEN, 0);
2236 return 0;
2237 }
2238 if (map > 0xff)
2239 return -EINVAL;
2240
2241#define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
2242
2243 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
2244 t4_write_reg(adap, EPIO_REG(DATA2), mask1);
2245 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
2246
2247 for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
2248 if (!(map & 1))
2249 continue;
2250
2251 /* write byte masks */
2252 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
2253 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
2254 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
2255 if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
2256 return -ETIMEDOUT;
2257
2258 /* write CRC */
2259 t4_write_reg(adap, EPIO_REG(DATA0), crc);
2260 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
2261 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
2262 if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
2263 return -ETIMEDOUT;
2264 }
2265#undef EPIO_REG
2266
2267 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
2268 return 0;
2269}
2270
2271#define INIT_CMD(var, cmd, rd_wr) do { \
2272 (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
2273 FW_CMD_REQUEST | FW_CMD_##rd_wr); \
2274 (var).retval_len16 = htonl(FW_LEN16(var)); \
2275} while (0)
2276
8caa1e84
VP
2277int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
2278 u32 addr, u32 val)
2279{
2280 struct fw_ldst_cmd c;
2281
2282 memset(&c, 0, sizeof(c));
636f9d37
VP
2283 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
2284 FW_CMD_WRITE |
2285 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
8caa1e84
VP
2286 c.cycles_to_len16 = htonl(FW_LEN16(c));
2287 c.u.addrval.addr = htonl(addr);
2288 c.u.addrval.val = htonl(val);
2289
2290 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2291}
2292
49ce9c2c 2293/**
8caa1e84
VP
2294 * t4_mem_win_read_len - read memory through PCIE memory window
2295 * @adap: the adapter
2296 * @addr: address of first byte requested aligned on 32b.
2297 * @data: len bytes to hold the data read
2298 * @len: amount of data to read from window. Must be <=
2299 * MEMWIN0_APERATURE after adjusting for 16B alignment
2300 * requirements of the the memory window.
2301 *
2302 * Read len bytes of data from MC starting at @addr.
2303 */
2304int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
2305{
2306 int i;
2307 int off;
2308
2309 /*
2310 * Align on a 16B boundary.
2311 */
2312 off = addr & 15;
2313 if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
2314 return -EINVAL;
2315
840f3000
VP
2316 t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, addr & ~15);
2317 t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
8caa1e84
VP
2318
2319 for (i = 0; i < len; i += 4)
404d9e3f
VP
2320 *data++ = (__force __be32) t4_read_reg(adap,
2321 (MEMWIN0_BASE + off + i));
8caa1e84
VP
2322
2323 return 0;
2324}
2325
56d36be4
DM
2326/**
2327 * t4_mdio_rd - read a PHY register through MDIO
2328 * @adap: the adapter
2329 * @mbox: mailbox to use for the FW command
2330 * @phy_addr: the PHY address
2331 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2332 * @reg: the register to read
2333 * @valp: where to store the value
2334 *
2335 * Issues a FW command through the given mailbox to read a PHY register.
2336 */
2337int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2338 unsigned int mmd, unsigned int reg, u16 *valp)
2339{
2340 int ret;
2341 struct fw_ldst_cmd c;
2342
2343 memset(&c, 0, sizeof(c));
2344 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
2345 FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
2346 c.cycles_to_len16 = htonl(FW_LEN16(c));
2347 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
2348 FW_LDST_CMD_MMD(mmd));
2349 c.u.mdio.raddr = htons(reg);
2350
2351 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2352 if (ret == 0)
2353 *valp = ntohs(c.u.mdio.rval);
2354 return ret;
2355}
2356
2357/**
2358 * t4_mdio_wr - write a PHY register through MDIO
2359 * @adap: the adapter
2360 * @mbox: mailbox to use for the FW command
2361 * @phy_addr: the PHY address
2362 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2363 * @reg: the register to write
2364 * @valp: value to write
2365 *
2366 * Issues a FW command through the given mailbox to write a PHY register.
2367 */
2368int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2369 unsigned int mmd, unsigned int reg, u16 val)
2370{
2371 struct fw_ldst_cmd c;
2372
2373 memset(&c, 0, sizeof(c));
2374 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
2375 FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
2376 c.cycles_to_len16 = htonl(FW_LEN16(c));
2377 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
2378 FW_LDST_CMD_MMD(mmd));
2379 c.u.mdio.raddr = htons(reg);
2380 c.u.mdio.rval = htons(val);
2381
2382 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2383}
2384
2385/**
636f9d37
VP
2386 * t4_fw_hello - establish communication with FW
2387 * @adap: the adapter
2388 * @mbox: mailbox to use for the FW command
2389 * @evt_mbox: mailbox to receive async FW events
2390 * @master: specifies the caller's willingness to be the device master
2391 * @state: returns the current device state (if non-NULL)
56d36be4 2392 *
636f9d37
VP
2393 * Issues a command to establish communication with FW. Returns either
2394 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
2395 */
2396int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
2397 enum dev_master master, enum dev_state *state)
2398{
2399 int ret;
2400 struct fw_hello_cmd c;
636f9d37
VP
2401 u32 v;
2402 unsigned int master_mbox;
2403 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 2404
636f9d37
VP
2405retry:
2406 memset(&c, 0, sizeof(c));
56d36be4
DM
2407 INIT_CMD(c, HELLO, WRITE);
2408 c.err_to_mbasyncnot = htonl(
2409 FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
2410 FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
636f9d37
VP
2411 FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
2412 FW_HELLO_CMD_MBMASTER_MASK) |
2413 FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
2414 FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
2415 FW_HELLO_CMD_CLEARINIT);
56d36be4 2416
636f9d37
VP
2417 /*
2418 * Issue the HELLO command to the firmware. If it's not successful
2419 * but indicates that we got a "busy" or "timeout" condition, retry
2420 * the HELLO until we exhaust our retry limit.
2421 */
56d36be4 2422 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
2423 if (ret < 0) {
2424 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
2425 goto retry;
2426 return ret;
2427 }
2428
2429 v = ntohl(c.err_to_mbasyncnot);
2430 master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
2431 if (state) {
2432 if (v & FW_HELLO_CMD_ERR)
56d36be4 2433 *state = DEV_STATE_ERR;
636f9d37
VP
2434 else if (v & FW_HELLO_CMD_INIT)
2435 *state = DEV_STATE_INIT;
56d36be4
DM
2436 else
2437 *state = DEV_STATE_UNINIT;
2438 }
636f9d37
VP
2439
2440 /*
2441 * If we're not the Master PF then we need to wait around for the
2442 * Master PF Driver to finish setting up the adapter.
2443 *
2444 * Note that we also do this wait if we're a non-Master-capable PF and
2445 * there is no current Master PF; a Master PF may show up momentarily
2446 * and we wouldn't want to fail pointlessly. (This can happen when an
2447 * OS loads lots of different drivers rapidly at the same time). In
2448 * this case, the Master PF returned by the firmware will be
2449 * FW_PCIE_FW_MASTER_MASK so the test below will work ...
2450 */
2451 if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
2452 master_mbox != mbox) {
2453 int waiting = FW_CMD_HELLO_TIMEOUT;
2454
2455 /*
2456 * Wait for the firmware to either indicate an error or
2457 * initialized state. If we see either of these we bail out
2458 * and report the issue to the caller. If we exhaust the
2459 * "hello timeout" and we haven't exhausted our retries, try
2460 * again. Otherwise bail with a timeout error.
2461 */
2462 for (;;) {
2463 u32 pcie_fw;
2464
2465 msleep(50);
2466 waiting -= 50;
2467
2468 /*
2469 * If neither Error nor Initialialized are indicated
2470 * by the firmware keep waiting till we exaust our
2471 * timeout ... and then retry if we haven't exhausted
2472 * our retries ...
2473 */
2474 pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
2475 if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
2476 if (waiting <= 0) {
2477 if (retries-- > 0)
2478 goto retry;
2479
2480 return -ETIMEDOUT;
2481 }
2482 continue;
2483 }
2484
2485 /*
2486 * We either have an Error or Initialized condition
2487 * report errors preferentially.
2488 */
2489 if (state) {
2490 if (pcie_fw & FW_PCIE_FW_ERR)
2491 *state = DEV_STATE_ERR;
2492 else if (pcie_fw & FW_PCIE_FW_INIT)
2493 *state = DEV_STATE_INIT;
2494 }
2495
2496 /*
2497 * If we arrived before a Master PF was selected and
2498 * there's not a valid Master PF, grab its identity
2499 * for our caller.
2500 */
2501 if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
2502 (pcie_fw & FW_PCIE_FW_MASTER_VLD))
2503 master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
2504 break;
2505 }
2506 }
2507
2508 return master_mbox;
56d36be4
DM
2509}
2510
2511/**
2512 * t4_fw_bye - end communication with FW
2513 * @adap: the adapter
2514 * @mbox: mailbox to use for the FW command
2515 *
2516 * Issues a command to terminate communication with FW.
2517 */
2518int t4_fw_bye(struct adapter *adap, unsigned int mbox)
2519{
2520 struct fw_bye_cmd c;
2521
0062b15c 2522 memset(&c, 0, sizeof(c));
56d36be4
DM
2523 INIT_CMD(c, BYE, WRITE);
2524 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2525}
2526
2527/**
2528 * t4_init_cmd - ask FW to initialize the device
2529 * @adap: the adapter
2530 * @mbox: mailbox to use for the FW command
2531 *
2532 * Issues a command to FW to partially initialize the device. This
2533 * performs initialization that generally doesn't depend on user input.
2534 */
2535int t4_early_init(struct adapter *adap, unsigned int mbox)
2536{
2537 struct fw_initialize_cmd c;
2538
0062b15c 2539 memset(&c, 0, sizeof(c));
56d36be4
DM
2540 INIT_CMD(c, INITIALIZE, WRITE);
2541 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2542}
2543
2544/**
2545 * t4_fw_reset - issue a reset to FW
2546 * @adap: the adapter
2547 * @mbox: mailbox to use for the FW command
2548 * @reset: specifies the type of reset to perform
2549 *
2550 * Issues a reset command of the specified type to FW.
2551 */
2552int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
2553{
2554 struct fw_reset_cmd c;
2555
0062b15c 2556 memset(&c, 0, sizeof(c));
56d36be4
DM
2557 INIT_CMD(c, RESET, WRITE);
2558 c.val = htonl(reset);
2559 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2560}
2561
26f7cbc0
VP
2562/**
2563 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
2564 * @adap: the adapter
2565 * @mbox: mailbox to use for the FW RESET command (if desired)
2566 * @force: force uP into RESET even if FW RESET command fails
2567 *
2568 * Issues a RESET command to firmware (if desired) with a HALT indication
2569 * and then puts the microprocessor into RESET state. The RESET command
2570 * will only be issued if a legitimate mailbox is provided (mbox <=
2571 * FW_PCIE_FW_MASTER_MASK).
2572 *
2573 * This is generally used in order for the host to safely manipulate the
2574 * adapter without fear of conflicting with whatever the firmware might
2575 * be doing. The only way out of this state is to RESTART the firmware
2576 * ...
2577 */
2578int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
2579{
2580 int ret = 0;
2581
2582 /*
2583 * If a legitimate mailbox is provided, issue a RESET command
2584 * with a HALT indication.
2585 */
2586 if (mbox <= FW_PCIE_FW_MASTER_MASK) {
2587 struct fw_reset_cmd c;
2588
2589 memset(&c, 0, sizeof(c));
2590 INIT_CMD(c, RESET, WRITE);
2591 c.val = htonl(PIORST | PIORSTMODE);
2592 c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
2593 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2594 }
2595
2596 /*
2597 * Normally we won't complete the operation if the firmware RESET
2598 * command fails but if our caller insists we'll go ahead and put the
2599 * uP into RESET. This can be useful if the firmware is hung or even
2600 * missing ... We'll have to take the risk of putting the uP into
2601 * RESET without the cooperation of firmware in that case.
2602 *
2603 * We also force the firmware's HALT flag to be on in case we bypassed
2604 * the firmware RESET command above or we're dealing with old firmware
2605 * which doesn't have the HALT capability. This will serve as a flag
2606 * for the incoming firmware to know that it's coming out of a HALT
2607 * rather than a RESET ... if it's new enough to understand that ...
2608 */
2609 if (ret == 0 || force) {
2610 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
2611 t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
2612 FW_PCIE_FW_HALT);
2613 }
2614
2615 /*
2616 * And we always return the result of the firmware RESET command
2617 * even when we force the uP into RESET ...
2618 */
2619 return ret;
2620}
2621
2622/**
2623 * t4_fw_restart - restart the firmware by taking the uP out of RESET
2624 * @adap: the adapter
2625 * @reset: if we want to do a RESET to restart things
2626 *
2627 * Restart firmware previously halted by t4_fw_halt(). On successful
2628 * return the previous PF Master remains as the new PF Master and there
2629 * is no need to issue a new HELLO command, etc.
2630 *
2631 * We do this in two ways:
2632 *
2633 * 1. If we're dealing with newer firmware we'll simply want to take
2634 * the chip's microprocessor out of RESET. This will cause the
2635 * firmware to start up from its start vector. And then we'll loop
2636 * until the firmware indicates it's started again (PCIE_FW.HALT
2637 * reset to 0) or we timeout.
2638 *
2639 * 2. If we're dealing with older firmware then we'll need to RESET
2640 * the chip since older firmware won't recognize the PCIE_FW.HALT
2641 * flag and automatically RESET itself on startup.
2642 */
2643int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
2644{
2645 if (reset) {
2646 /*
2647 * Since we're directing the RESET instead of the firmware
2648 * doing it automatically, we need to clear the PCIE_FW.HALT
2649 * bit.
2650 */
2651 t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
2652
2653 /*
2654 * If we've been given a valid mailbox, first try to get the
2655 * firmware to do the RESET. If that works, great and we can
2656 * return success. Otherwise, if we haven't been given a
2657 * valid mailbox or the RESET command failed, fall back to
2658 * hitting the chip with a hammer.
2659 */
2660 if (mbox <= FW_PCIE_FW_MASTER_MASK) {
2661 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
2662 msleep(100);
2663 if (t4_fw_reset(adap, mbox,
2664 PIORST | PIORSTMODE) == 0)
2665 return 0;
2666 }
2667
2668 t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
2669 msleep(2000);
2670 } else {
2671 int ms;
2672
2673 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
2674 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
2675 if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
2676 return 0;
2677 msleep(100);
2678 ms += 100;
2679 }
2680 return -ETIMEDOUT;
2681 }
2682 return 0;
2683}
2684
2685/**
2686 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
2687 * @adap: the adapter
2688 * @mbox: mailbox to use for the FW RESET command (if desired)
2689 * @fw_data: the firmware image to write
2690 * @size: image size
2691 * @force: force upgrade even if firmware doesn't cooperate
2692 *
2693 * Perform all of the steps necessary for upgrading an adapter's
2694 * firmware image. Normally this requires the cooperation of the
2695 * existing firmware in order to halt all existing activities
2696 * but if an invalid mailbox token is passed in we skip that step
2697 * (though we'll still put the adapter microprocessor into RESET in
2698 * that case).
2699 *
2700 * On successful return the new firmware will have been loaded and
2701 * the adapter will have been fully RESET losing all previous setup
2702 * state. On unsuccessful return the adapter may be completely hosed ...
2703 * positive errno indicates that the adapter is ~probably~ intact, a
2704 * negative errno indicates that things are looking bad ...
2705 */
2706int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
2707 const u8 *fw_data, unsigned int size, int force)
2708{
2709 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
2710 int reset, ret;
2711
2712 ret = t4_fw_halt(adap, mbox, force);
2713 if (ret < 0 && !force)
2714 return ret;
2715
2716 ret = t4_load_fw(adap, fw_data, size);
2717 if (ret < 0)
2718 return ret;
2719
2720 /*
2721 * Older versions of the firmware don't understand the new
2722 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
2723 * restart. So for newly loaded older firmware we'll have to do the
2724 * RESET for it so it starts up on a clean slate. We can tell if
2725 * the newly loaded firmware will handle this right by checking
2726 * its header flags to see if it advertises the capability.
2727 */
2728 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
2729 return t4_fw_restart(adap, mbox, reset);
2730}
2731
2732
636f9d37
VP
2733/**
2734 * t4_fw_config_file - setup an adapter via a Configuration File
2735 * @adap: the adapter
2736 * @mbox: mailbox to use for the FW command
2737 * @mtype: the memory type where the Configuration File is located
2738 * @maddr: the memory address where the Configuration File is located
2739 * @finiver: return value for CF [fini] version
2740 * @finicsum: return value for CF [fini] checksum
2741 * @cfcsum: return value for CF computed checksum
2742 *
2743 * Issue a command to get the firmware to process the Configuration
2744 * File located at the specified mtype/maddress. If the Configuration
2745 * File is processed successfully and return value pointers are
2746 * provided, the Configuration File "[fini] section version and
2747 * checksum values will be returned along with the computed checksum.
2748 * It's up to the caller to decide how it wants to respond to the
2749 * checksums not matching but it recommended that a prominant warning
2750 * be emitted in order to help people rapidly identify changed or
2751 * corrupted Configuration Files.
2752 *
2753 * Also note that it's possible to modify things like "niccaps",
2754 * "toecaps",etc. between processing the Configuration File and telling
2755 * the firmware to use the new configuration. Callers which want to
2756 * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
2757 * Configuration Files if they want to do this.
2758 */
2759int t4_fw_config_file(struct adapter *adap, unsigned int mbox,
2760 unsigned int mtype, unsigned int maddr,
2761 u32 *finiver, u32 *finicsum, u32 *cfcsum)
2762{
2763 struct fw_caps_config_cmd caps_cmd;
2764 int ret;
2765
2766 /*
2767 * Tell the firmware to process the indicated Configuration File.
2768 * If there are no errors and the caller has provided return value
2769 * pointers for the [fini] section version, checksum and computed
2770 * checksum, pass those back to the caller.
2771 */
2772 memset(&caps_cmd, 0, sizeof(caps_cmd));
2773 caps_cmd.op_to_write =
2774 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2775 FW_CMD_REQUEST |
2776 FW_CMD_READ);
2777 caps_cmd.retval_len16 =
2778 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
2779 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
2780 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
2781 FW_LEN16(caps_cmd));
2782 ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd);
2783 if (ret < 0)
2784 return ret;
2785
2786 if (finiver)
2787 *finiver = ntohl(caps_cmd.finiver);
2788 if (finicsum)
2789 *finicsum = ntohl(caps_cmd.finicsum);
2790 if (cfcsum)
2791 *cfcsum = ntohl(caps_cmd.cfcsum);
2792
2793 /*
2794 * And now tell the firmware to use the configuration we just loaded.
2795 */
2796 caps_cmd.op_to_write =
2797 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2798 FW_CMD_REQUEST |
2799 FW_CMD_WRITE);
2800 caps_cmd.retval_len16 = htonl(FW_LEN16(caps_cmd));
2801 return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL);
2802}
2803
2804/**
2805 * t4_fixup_host_params - fix up host-dependent parameters
2806 * @adap: the adapter
2807 * @page_size: the host's Base Page Size
2808 * @cache_line_size: the host's Cache Line Size
2809 *
2810 * Various registers in T4 contain values which are dependent on the
2811 * host's Base Page and Cache Line Sizes. This function will fix all of
2812 * those registers with the appropriate values as passed in ...
2813 */
2814int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
2815 unsigned int cache_line_size)
2816{
2817 unsigned int page_shift = fls(page_size) - 1;
2818 unsigned int sge_hps = page_shift - 10;
2819 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
2820 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
2821 unsigned int fl_align_log = fls(fl_align) - 1;
2822
2823 t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
2824 HOSTPAGESIZEPF0(sge_hps) |
2825 HOSTPAGESIZEPF1(sge_hps) |
2826 HOSTPAGESIZEPF2(sge_hps) |
2827 HOSTPAGESIZEPF3(sge_hps) |
2828 HOSTPAGESIZEPF4(sge_hps) |
2829 HOSTPAGESIZEPF5(sge_hps) |
2830 HOSTPAGESIZEPF6(sge_hps) |
2831 HOSTPAGESIZEPF7(sge_hps));
2832
2833 t4_set_reg_field(adap, SGE_CONTROL,
0dad9e94 2834 INGPADBOUNDARY_MASK |
636f9d37
VP
2835 EGRSTATUSPAGESIZE_MASK,
2836 INGPADBOUNDARY(fl_align_log - 5) |
2837 EGRSTATUSPAGESIZE(stat_len != 64));
2838
2839 /*
2840 * Adjust various SGE Free List Host Buffer Sizes.
2841 *
2842 * This is something of a crock since we're using fixed indices into
2843 * the array which are also known by the sge.c code and the T4
2844 * Firmware Configuration File. We need to come up with a much better
2845 * approach to managing this array. For now, the first four entries
2846 * are:
2847 *
2848 * 0: Host Page Size
2849 * 1: 64KB
2850 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
2851 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
2852 *
2853 * For the single-MTU buffers in unpacked mode we need to include
2854 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
2855 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
2856 * Padding boundry. All of these are accommodated in the Factory
2857 * Default Firmware Configuration File but we need to adjust it for
2858 * this host's cache line size.
2859 */
2860 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
2861 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
2862 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
2863 & ~(fl_align-1));
2864 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
2865 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
2866 & ~(fl_align-1));
2867
2868 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
2869
2870 return 0;
2871}
2872
2873/**
2874 * t4_fw_initialize - ask FW to initialize the device
2875 * @adap: the adapter
2876 * @mbox: mailbox to use for the FW command
2877 *
2878 * Issues a command to FW to partially initialize the device. This
2879 * performs initialization that generally doesn't depend on user input.
2880 */
2881int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
2882{
2883 struct fw_initialize_cmd c;
2884
2885 memset(&c, 0, sizeof(c));
2886 INIT_CMD(c, INITIALIZE, WRITE);
2887 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2888}
2889
56d36be4
DM
2890/**
2891 * t4_query_params - query FW or device parameters
2892 * @adap: the adapter
2893 * @mbox: mailbox to use for the FW command
2894 * @pf: the PF
2895 * @vf: the VF
2896 * @nparams: the number of parameters
2897 * @params: the parameter names
2898 * @val: the parameter values
2899 *
2900 * Reads the value of FW or device parameters. Up to 7 parameters can be
2901 * queried at once.
2902 */
2903int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
2904 unsigned int vf, unsigned int nparams, const u32 *params,
2905 u32 *val)
2906{
2907 int i, ret;
2908 struct fw_params_cmd c;
2909 __be32 *p = &c.param[0].mnem;
2910
2911 if (nparams > 7)
2912 return -EINVAL;
2913
2914 memset(&c, 0, sizeof(c));
2915 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
2916 FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
2917 FW_PARAMS_CMD_VFN(vf));
2918 c.retval_len16 = htonl(FW_LEN16(c));
2919 for (i = 0; i < nparams; i++, p += 2)
2920 *p = htonl(*params++);
2921
2922 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2923 if (ret == 0)
2924 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
2925 *val++ = ntohl(*p);
2926 return ret;
2927}
2928
2929/**
2930 * t4_set_params - sets FW or device parameters
2931 * @adap: the adapter
2932 * @mbox: mailbox to use for the FW command
2933 * @pf: the PF
2934 * @vf: the VF
2935 * @nparams: the number of parameters
2936 * @params: the parameter names
2937 * @val: the parameter values
2938 *
2939 * Sets the value of FW or device parameters. Up to 7 parameters can be
2940 * specified at once.
2941 */
2942int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
2943 unsigned int vf, unsigned int nparams, const u32 *params,
2944 const u32 *val)
2945{
2946 struct fw_params_cmd c;
2947 __be32 *p = &c.param[0].mnem;
2948
2949 if (nparams > 7)
2950 return -EINVAL;
2951
2952 memset(&c, 0, sizeof(c));
2953 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
2954 FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
2955 FW_PARAMS_CMD_VFN(vf));
2956 c.retval_len16 = htonl(FW_LEN16(c));
2957 while (nparams--) {
2958 *p++ = htonl(*params++);
2959 *p++ = htonl(*val++);
2960 }
2961
2962 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2963}
2964
2965/**
2966 * t4_cfg_pfvf - configure PF/VF resource limits
2967 * @adap: the adapter
2968 * @mbox: mailbox to use for the FW command
2969 * @pf: the PF being configured
2970 * @vf: the VF being configured
2971 * @txq: the max number of egress queues
2972 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
2973 * @rxqi: the max number of interrupt-capable ingress queues
2974 * @rxq: the max number of interruptless ingress queues
2975 * @tc: the PCI traffic class
2976 * @vi: the max number of virtual interfaces
2977 * @cmask: the channel access rights mask for the PF/VF
2978 * @pmask: the port access rights mask for the PF/VF
2979 * @nexact: the maximum number of exact MPS filters
2980 * @rcaps: read capabilities
2981 * @wxcaps: write/execute capabilities
2982 *
2983 * Configures resource limits and capabilities for a physical or virtual
2984 * function.
2985 */
2986int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
2987 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
2988 unsigned int rxqi, unsigned int rxq, unsigned int tc,
2989 unsigned int vi, unsigned int cmask, unsigned int pmask,
2990 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
2991{
2992 struct fw_pfvf_cmd c;
2993
2994 memset(&c, 0, sizeof(c));
2995 c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
2996 FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
2997 FW_PFVF_CMD_VFN(vf));
2998 c.retval_len16 = htonl(FW_LEN16(c));
2999 c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
3000 FW_PFVF_CMD_NIQ(rxq));
81323b74 3001 c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
56d36be4
DM
3002 FW_PFVF_CMD_PMASK(pmask) |
3003 FW_PFVF_CMD_NEQ(txq));
3004 c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
3005 FW_PFVF_CMD_NEXACTF(nexact));
3006 c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
3007 FW_PFVF_CMD_WX_CAPS(wxcaps) |
3008 FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
3009 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3010}
3011
3012/**
3013 * t4_alloc_vi - allocate a virtual interface
3014 * @adap: the adapter
3015 * @mbox: mailbox to use for the FW command
3016 * @port: physical port associated with the VI
3017 * @pf: the PF owning the VI
3018 * @vf: the VF owning the VI
3019 * @nmac: number of MAC addresses needed (1 to 5)
3020 * @mac: the MAC addresses of the VI
3021 * @rss_size: size of RSS table slice associated with this VI
3022 *
3023 * Allocates a virtual interface for the given physical port. If @mac is
3024 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3025 * @mac should be large enough to hold @nmac Ethernet addresses, they are
3026 * stored consecutively so the space needed is @nmac * 6 bytes.
3027 * Returns a negative error number or the non-negative VI id.
3028 */
3029int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3030 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3031 unsigned int *rss_size)
3032{
3033 int ret;
3034 struct fw_vi_cmd c;
3035
3036 memset(&c, 0, sizeof(c));
3037 c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
3038 FW_CMD_WRITE | FW_CMD_EXEC |
3039 FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
3040 c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
3041 c.portid_pkd = FW_VI_CMD_PORTID(port);
3042 c.nmac = nmac - 1;
3043
3044 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3045 if (ret)
3046 return ret;
3047
3048 if (mac) {
3049 memcpy(mac, c.mac, sizeof(c.mac));
3050 switch (nmac) {
3051 case 5:
3052 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3053 case 4:
3054 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3055 case 3:
3056 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3057 case 2:
3058 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
3059 }
3060 }
3061 if (rss_size)
3062 *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
a0881cab 3063 return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
56d36be4
DM
3064}
3065
56d36be4
DM
3066/**
3067 * t4_set_rxmode - set Rx properties of a virtual interface
3068 * @adap: the adapter
3069 * @mbox: mailbox to use for the FW command
3070 * @viid: the VI id
3071 * @mtu: the new MTU or -1
3072 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3073 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3074 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 3075 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
3076 * @sleep_ok: if true we may sleep while awaiting command completion
3077 *
3078 * Sets Rx properties of a virtual interface.
3079 */
3080int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
3081 int mtu, int promisc, int all_multi, int bcast, int vlanex,
3082 bool sleep_ok)
56d36be4
DM
3083{
3084 struct fw_vi_rxmode_cmd c;
3085
3086 /* convert to FW values */
3087 if (mtu < 0)
3088 mtu = FW_RXMODE_MTU_NO_CHG;
3089 if (promisc < 0)
3090 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
3091 if (all_multi < 0)
3092 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
3093 if (bcast < 0)
3094 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
f8f5aafa
DM
3095 if (vlanex < 0)
3096 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
56d36be4
DM
3097
3098 memset(&c, 0, sizeof(c));
3099 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
3100 FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
3101 c.retval_len16 = htonl(FW_LEN16(c));
f8f5aafa
DM
3102 c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
3103 FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
3104 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
3105 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
3106 FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
56d36be4
DM
3107 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3108}
3109
3110/**
3111 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
3112 * @adap: the adapter
3113 * @mbox: mailbox to use for the FW command
3114 * @viid: the VI id
3115 * @free: if true any existing filters for this VI id are first removed
3116 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
3117 * @addr: the MAC address(es)
3118 * @idx: where to store the index of each allocated filter
3119 * @hash: pointer to hash address filter bitmap
3120 * @sleep_ok: call is allowed to sleep
3121 *
3122 * Allocates an exact-match filter for each of the supplied addresses and
3123 * sets it to the corresponding address. If @idx is not %NULL it should
3124 * have at least @naddr entries, each of which will be set to the index of
3125 * the filter allocated for the corresponding MAC address. If a filter
3126 * could not be allocated for an address its index is set to 0xffff.
3127 * If @hash is not %NULL addresses that fail to allocate an exact filter
3128 * are hashed and update the hash filter bitmap pointed at by @hash.
3129 *
3130 * Returns a negative error number or the number of filters allocated.
3131 */
3132int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
3133 unsigned int viid, bool free, unsigned int naddr,
3134 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
3135{
3136 int i, ret;
3137 struct fw_vi_mac_cmd c;
3138 struct fw_vi_mac_exact *p;
3139
3140 if (naddr > 7)
3141 return -EINVAL;
3142
3143 memset(&c, 0, sizeof(c));
3144 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
3145 FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
3146 FW_VI_MAC_CMD_VIID(viid));
3147 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
3148 FW_CMD_LEN16((naddr + 2) / 2));
3149
3150 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
3151 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
3152 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
3153 memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
3154 }
3155
3156 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
3157 if (ret)
3158 return ret;
3159
3160 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
3161 u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
3162
3163 if (idx)
3164 idx[i] = index >= NEXACT_MAC ? 0xffff : index;
3165 if (index < NEXACT_MAC)
3166 ret++;
3167 else if (hash)
ce9aeb58 3168 *hash |= (1ULL << hash_mac_addr(addr[i]));
56d36be4
DM
3169 }
3170 return ret;
3171}
3172
3173/**
3174 * t4_change_mac - modifies the exact-match filter for a MAC address
3175 * @adap: the adapter
3176 * @mbox: mailbox to use for the FW command
3177 * @viid: the VI id
3178 * @idx: index of existing filter for old value of MAC address, or -1
3179 * @addr: the new MAC address value
3180 * @persist: whether a new MAC allocation should be persistent
3181 * @add_smt: if true also add the address to the HW SMT
3182 *
3183 * Modifies an exact-match filter and sets it to the new MAC address.
3184 * Note that in general it is not possible to modify the value of a given
3185 * filter so the generic way to modify an address filter is to free the one
3186 * being used by the old address value and allocate a new filter for the
3187 * new address value. @idx can be -1 if the address is a new addition.
3188 *
3189 * Returns a negative error number or the index of the filter with the new
3190 * MAC value.
3191 */
3192int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
3193 int idx, const u8 *addr, bool persist, bool add_smt)
3194{
3195 int ret, mode;
3196 struct fw_vi_mac_cmd c;
3197 struct fw_vi_mac_exact *p = c.u.exact;
3198
3199 if (idx < 0) /* new allocation */
3200 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
3201 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
3202
3203 memset(&c, 0, sizeof(c));
3204 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
3205 FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
3206 c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
3207 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
3208 FW_VI_MAC_CMD_SMAC_RESULT(mode) |
3209 FW_VI_MAC_CMD_IDX(idx));
3210 memcpy(p->macaddr, addr, sizeof(p->macaddr));
3211
3212 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3213 if (ret == 0) {
3214 ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
3215 if (ret >= NEXACT_MAC)
3216 ret = -ENOMEM;
3217 }
3218 return ret;
3219}
3220
3221/**
3222 * t4_set_addr_hash - program the MAC inexact-match hash filter
3223 * @adap: the adapter
3224 * @mbox: mailbox to use for the FW command
3225 * @viid: the VI id
3226 * @ucast: whether the hash filter should also match unicast addresses
3227 * @vec: the value to be written to the hash filter
3228 * @sleep_ok: call is allowed to sleep
3229 *
3230 * Sets the 64-bit inexact-match hash filter for a virtual interface.
3231 */
3232int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
3233 bool ucast, u64 vec, bool sleep_ok)
3234{
3235 struct fw_vi_mac_cmd c;
3236
3237 memset(&c, 0, sizeof(c));
3238 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
3239 FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
3240 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
3241 FW_VI_MAC_CMD_HASHUNIEN(ucast) |
3242 FW_CMD_LEN16(1));
3243 c.u.hash.hashvec = cpu_to_be64(vec);
3244 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3245}
3246
3247/**
3248 * t4_enable_vi - enable/disable a virtual interface
3249 * @adap: the adapter
3250 * @mbox: mailbox to use for the FW command
3251 * @viid: the VI id
3252 * @rx_en: 1=enable Rx, 0=disable Rx
3253 * @tx_en: 1=enable Tx, 0=disable Tx
3254 *
3255 * Enables/disables a virtual interface.
3256 */
3257int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
3258 bool rx_en, bool tx_en)
3259{
3260 struct fw_vi_enable_cmd c;
3261
3262 memset(&c, 0, sizeof(c));
3263 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
3264 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
3265 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
3266 FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
3267 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3268}
3269
3270/**
3271 * t4_identify_port - identify a VI's port by blinking its LED
3272 * @adap: the adapter
3273 * @mbox: mailbox to use for the FW command
3274 * @viid: the VI id
3275 * @nblinks: how many times to blink LED at 2.5 Hz
3276 *
3277 * Identifies a VI's port by blinking its LED.
3278 */
3279int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
3280 unsigned int nblinks)
3281{
3282 struct fw_vi_enable_cmd c;
3283
0062b15c 3284 memset(&c, 0, sizeof(c));
56d36be4
DM
3285 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
3286 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
3287 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
3288 c.blinkdur = htons(nblinks);
3289 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
3290}
3291
3292/**
3293 * t4_iq_free - free an ingress queue and its FLs
3294 * @adap: the adapter
3295 * @mbox: mailbox to use for the FW command
3296 * @pf: the PF owning the queues
3297 * @vf: the VF owning the queues
3298 * @iqtype: the ingress queue type
3299 * @iqid: ingress queue id
3300 * @fl0id: FL0 queue id or 0xffff if no attached FL0
3301 * @fl1id: FL1 queue id or 0xffff if no attached FL1
3302 *
3303 * Frees an ingress queue and its associated FLs, if any.
3304 */
3305int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3306 unsigned int vf, unsigned int iqtype, unsigned int iqid,
3307 unsigned int fl0id, unsigned int fl1id)
3308{
3309 struct fw_iq_cmd c;
3310
3311 memset(&c, 0, sizeof(c));
3312 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
3313 FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
3314 FW_IQ_CMD_VFN(vf));
3315 c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
3316 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
3317 c.iqid = htons(iqid);
3318 c.fl0id = htons(fl0id);
3319 c.fl1id = htons(fl1id);
3320 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3321}
3322
3323/**
3324 * t4_eth_eq_free - free an Ethernet egress queue
3325 * @adap: the adapter
3326 * @mbox: mailbox to use for the FW command
3327 * @pf: the PF owning the queue
3328 * @vf: the VF owning the queue
3329 * @eqid: egress queue id
3330 *
3331 * Frees an Ethernet egress queue.
3332 */
3333int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3334 unsigned int vf, unsigned int eqid)
3335{
3336 struct fw_eq_eth_cmd c;
3337
3338 memset(&c, 0, sizeof(c));
3339 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
3340 FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
3341 FW_EQ_ETH_CMD_VFN(vf));
3342 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
3343 c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
3344 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3345}
3346
3347/**
3348 * t4_ctrl_eq_free - free a control egress queue
3349 * @adap: the adapter
3350 * @mbox: mailbox to use for the FW command
3351 * @pf: the PF owning the queue
3352 * @vf: the VF owning the queue
3353 * @eqid: egress queue id
3354 *
3355 * Frees a control egress queue.
3356 */
3357int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3358 unsigned int vf, unsigned int eqid)
3359{
3360 struct fw_eq_ctrl_cmd c;
3361
3362 memset(&c, 0, sizeof(c));
3363 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
3364 FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
3365 FW_EQ_CTRL_CMD_VFN(vf));
3366 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
3367 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
3368 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3369}
3370
3371/**
3372 * t4_ofld_eq_free - free an offload egress queue
3373 * @adap: the adapter
3374 * @mbox: mailbox to use for the FW command
3375 * @pf: the PF owning the queue
3376 * @vf: the VF owning the queue
3377 * @eqid: egress queue id
3378 *
3379 * Frees a control egress queue.
3380 */
3381int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3382 unsigned int vf, unsigned int eqid)
3383{
3384 struct fw_eq_ofld_cmd c;
3385
3386 memset(&c, 0, sizeof(c));
3387 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
3388 FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
3389 FW_EQ_OFLD_CMD_VFN(vf));
3390 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
3391 c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
3392 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3393}
3394
3395/**
3396 * t4_handle_fw_rpl - process a FW reply message
3397 * @adap: the adapter
3398 * @rpl: start of the FW message
3399 *
3400 * Processes a FW message, such as link state change messages.
3401 */
3402int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
3403{
3404 u8 opcode = *(const u8 *)rpl;
3405
3406 if (opcode == FW_PORT_CMD) { /* link/module state change message */
3407 int speed = 0, fc = 0;
3408 const struct fw_port_cmd *p = (void *)rpl;
3409 int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
3410 int port = adap->chan_map[chan];
3411 struct port_info *pi = adap2pinfo(adap, port);
3412 struct link_config *lc = &pi->link_cfg;
3413 u32 stat = ntohl(p->u.info.lstatus_to_modtype);
3414 int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
3415 u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
3416
3417 if (stat & FW_PORT_CMD_RXPAUSE)
3418 fc |= PAUSE_RX;
3419 if (stat & FW_PORT_CMD_TXPAUSE)
3420 fc |= PAUSE_TX;
3421 if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
3422 speed = SPEED_100;
3423 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
3424 speed = SPEED_1000;
3425 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
3426 speed = SPEED_10000;
3427
3428 if (link_ok != lc->link_ok || speed != lc->speed ||
3429 fc != lc->fc) { /* something changed */
3430 lc->link_ok = link_ok;
3431 lc->speed = speed;
3432 lc->fc = fc;
3433 t4_os_link_changed(adap, port, link_ok);
3434 }
3435 if (mod != pi->mod_type) {
3436 pi->mod_type = mod;
3437 t4_os_portmod_changed(adap, port);
3438 }
3439 }
3440 return 0;
3441}
3442
91744948 3443static void get_pci_mode(struct adapter *adapter,
56d36be4
DM
3444 struct pci_params *p)
3445{
3446 u16 val;
56d36be4 3447
e5c8ae5f
JL
3448 if (pci_is_pcie(adapter->pdev)) {
3449 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
3450 p->speed = val & PCI_EXP_LNKSTA_CLS;
3451 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
3452 }
3453}
3454
3455/**
3456 * init_link_config - initialize a link's SW state
3457 * @lc: structure holding the link state
3458 * @caps: link capabilities
3459 *
3460 * Initializes the SW state maintained for each link, including the link's
3461 * capabilities and default speed/flow-control/autonegotiation settings.
3462 */
91744948 3463static void init_link_config(struct link_config *lc,
56d36be4
DM
3464 unsigned int caps)
3465{
3466 lc->supported = caps;
3467 lc->requested_speed = 0;
3468 lc->speed = 0;
3469 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3470 if (lc->supported & FW_PORT_CAP_ANEG) {
3471 lc->advertising = lc->supported & ADVERT_MASK;
3472 lc->autoneg = AUTONEG_ENABLE;
3473 lc->requested_fc |= PAUSE_AUTONEG;
3474 } else {
3475 lc->advertising = 0;
3476 lc->autoneg = AUTONEG_DISABLE;
3477 }
3478}
3479
204dc3c0 3480int t4_wait_dev_ready(struct adapter *adap)
56d36be4
DM
3481{
3482 if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
3483 return 0;
3484 msleep(500);
3485 return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
3486}
3487
91744948 3488static int get_flash_params(struct adapter *adap)
900a6596
DM
3489{
3490 int ret;
3491 u32 info;
3492
3493 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
3494 if (!ret)
3495 ret = sf1_read(adap, 3, 0, 1, &info);
3496 t4_write_reg(adap, SF_OP, 0); /* unlock SF */
3497 if (ret)
3498 return ret;
3499
3500 if ((info & 0xff) != 0x20) /* not a Numonix flash */
3501 return -EINVAL;
3502 info >>= 16; /* log2 of size */
3503 if (info >= 0x14 && info < 0x18)
3504 adap->params.sf_nsec = 1 << (info - 16);
3505 else if (info == 0x18)
3506 adap->params.sf_nsec = 64;
3507 else
3508 return -EINVAL;
3509 adap->params.sf_size = 1 << info;
3510 adap->params.sf_fw_start =
3511 t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
3512 return 0;
3513}
3514
56d36be4
DM
3515/**
3516 * t4_prep_adapter - prepare SW and HW for operation
3517 * @adapter: the adapter
3518 * @reset: if true perform a HW reset
3519 *
3520 * Initialize adapter SW state for the various HW modules, set initial
3521 * values for some adapter tunables, take PHYs out of reset, and
3522 * initialize the MDIO interface.
3523 */
91744948 3524int t4_prep_adapter(struct adapter *adapter)
56d36be4
DM
3525{
3526 int ret;
3527
204dc3c0 3528 ret = t4_wait_dev_ready(adapter);
56d36be4
DM
3529 if (ret < 0)
3530 return ret;
3531
3532 get_pci_mode(adapter, &adapter->params.pci);
3533 adapter->params.rev = t4_read_reg(adapter, PL_REV);
3534
900a6596
DM
3535 ret = get_flash_params(adapter);
3536 if (ret < 0) {
3537 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
3538 return ret;
3539 }
3540
56d36be4
DM
3541 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3542
3543 /*
3544 * Default port for debugging in case we can't reach FW.
3545 */
3546 adapter->params.nports = 1;
3547 adapter->params.portvec = 1;
636f9d37 3548 adapter->params.vpd.cclk = 50000;
56d36be4
DM
3549 return 0;
3550}
3551
91744948 3552int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
56d36be4
DM
3553{
3554 u8 addr[6];
3555 int ret, i, j = 0;
3556 struct fw_port_cmd c;
f796564a 3557 struct fw_rss_vi_config_cmd rvc;
56d36be4
DM
3558
3559 memset(&c, 0, sizeof(c));
f796564a 3560 memset(&rvc, 0, sizeof(rvc));
56d36be4
DM
3561
3562 for_each_port(adap, i) {
3563 unsigned int rss_size;
3564 struct port_info *p = adap2pinfo(adap, i);
3565
3566 while ((adap->params.portvec & (1 << j)) == 0)
3567 j++;
3568
3569 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
3570 FW_CMD_REQUEST | FW_CMD_READ |
3571 FW_PORT_CMD_PORTID(j));
3572 c.action_to_len16 = htonl(
3573 FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
3574 FW_LEN16(c));
3575 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3576 if (ret)
3577 return ret;
3578
3579 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
3580 if (ret < 0)
3581 return ret;
3582
3583 p->viid = ret;
3584 p->tx_chan = j;
3585 p->lport = j;
3586 p->rss_size = rss_size;
3587 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
3588 memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
f21ce1c3 3589 adap->port[i]->dev_id = j;
56d36be4
DM
3590
3591 ret = ntohl(c.u.info.lstatus_to_modtype);
3592 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
3593 FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
3594 p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
a0881cab 3595 p->mod_type = FW_PORT_MOD_TYPE_NA;
56d36be4 3596
f796564a
DM
3597 rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
3598 FW_CMD_REQUEST | FW_CMD_READ |
3599 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
3600 rvc.retval_len16 = htonl(FW_LEN16(rvc));
3601 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
3602 if (ret)
3603 return ret;
3604 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
3605
56d36be4
DM
3606 init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
3607 j++;
3608 }
3609 return 0;
3610}