cxgb4: move VLAN_NONE macro definition
[linux-2.6-block.git] / drivers / net / ethernet / chelsio / cxgb4 / l2t.c
CommitLineData
625ba2c2
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
625ba2c2
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/if.h>
38#include <linux/if_vlan.h>
39#include <linux/jhash.h>
310587c3
PG
40#include <linux/module.h>
41#include <linux/debugfs.h>
42#include <linux/seq_file.h>
625ba2c2
DM
43#include <net/neighbour.h>
44#include "cxgb4.h"
45#include "l2t.h"
46#include "t4_msg.h"
47#include "t4fw_api.h"
dcf7b6f5 48#include "t4_regs.h"
0d804338 49#include "t4_values.h"
625ba2c2 50
625ba2c2 51/* identifies sync vs async L2T_WRITE_REQs */
5be9ed8d
HS
52#define SYNC_WR_S 12
53#define SYNC_WR_V(x) ((x) << SYNC_WR_S)
54#define SYNC_WR_F SYNC_WR_V(1)
625ba2c2
DM
55
56struct l2t_data {
5be9ed8d
HS
57 unsigned int l2t_start; /* start index of our piece of the L2T */
58 unsigned int l2t_size; /* number of entries in l2tab */
625ba2c2
DM
59 rwlock_t lock;
60 atomic_t nfree; /* number of free entries */
61 struct l2t_entry *rover; /* starting point for next allocation */
5be9ed8d 62 struct l2t_entry l2tab[0]; /* MUST BE LAST */
625ba2c2
DM
63};
64
65static inline unsigned int vlan_prio(const struct l2t_entry *e)
66{
e41e2824 67 return e->vlan >> VLAN_PRIO_SHIFT;
625ba2c2
DM
68}
69
70static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
71{
72 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */
73 atomic_dec(&d->nfree);
74}
75
76/*
77 * To avoid having to check address families we do not allow v4 and v6
78 * neighbors to be on the same hash chain. We keep v4 entries in the first
5be9ed8d
HS
79 * half of available hash buckets and v6 in the second. We need at least two
80 * entries in our L2T for this scheme to work.
625ba2c2
DM
81 */
82enum {
5be9ed8d 83 L2T_MIN_HASH_BUCKETS = 2,
625ba2c2
DM
84};
85
5be9ed8d
HS
86static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key,
87 int ifindex)
625ba2c2 88{
5be9ed8d
HS
89 unsigned int l2t_size_half = d->l2t_size / 2;
90
91 return jhash_2words(*key, ifindex, 0) % l2t_size_half;
625ba2c2
DM
92}
93
5be9ed8d
HS
94static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key,
95 int ifindex)
625ba2c2 96{
5be9ed8d 97 unsigned int l2t_size_half = d->l2t_size / 2;
625ba2c2
DM
98 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
99
5be9ed8d
HS
100 return (l2t_size_half +
101 (jhash_2words(xor, ifindex, 0) % l2t_size_half));
625ba2c2
DM
102}
103
5be9ed8d
HS
104static unsigned int addr_hash(struct l2t_data *d, const u32 *addr,
105 int addr_len, int ifindex)
625ba2c2 106{
5be9ed8d
HS
107 return addr_len == 4 ? arp_hash(d, addr, ifindex) :
108 ipv6_hash(d, addr, ifindex);
625ba2c2
DM
109}
110
111/*
112 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check
113 * whether the L2T entry and the address are of the same address family.
114 * Callers ensure an address is only checked against L2T entries of the same
115 * family, something made trivial by the separation of IP and IPv6 hash chains
116 * mentioned above. Returns 0 if there's a match,
117 */
118static int addreq(const struct l2t_entry *e, const u32 *addr)
119{
120 if (e->v6)
121 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
122 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
123 return e->addr[0] ^ addr[0];
124}
125
126static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
127{
128 neigh_hold(n);
129 if (e->neigh)
130 neigh_release(e->neigh);
131 e->neigh = n;
132}
133
134/*
135 * Write an L2T entry. Must be called with the entry locked.
136 * The write may be synchronous or asynchronous.
137 */
138static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
139{
5be9ed8d
HS
140 struct l2t_data *d = adap->l2t;
141 unsigned int l2t_idx = e->idx + d->l2t_start;
625ba2c2
DM
142 struct sk_buff *skb;
143 struct cpl_l2t_write_req *req;
144
145 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
146 if (!skb)
147 return -ENOMEM;
148
149 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
150 INIT_TP_WR(req, 0);
151
152 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
5be9ed8d 153 l2t_idx | (sync ? SYNC_WR_F : 0) |
6c53e938 154 TID_QID_V(adap->sge.fw_evtq.abs_id)));
bdc590b9 155 req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync));
5be9ed8d 156 req->l2t_idx = htons(l2t_idx);
625ba2c2 157 req->vlan = htons(e->vlan);
bfae2324 158 if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
625ba2c2
DM
159 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
160 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
161
9baeb9d7 162 t4_mgmt_tx(adap, skb);
625ba2c2
DM
163
164 if (sync && e->state != L2T_STATE_SWITCHING)
165 e->state = L2T_STATE_SYNC_WRITE;
166 return 0;
167}
168
169/*
170 * Send packets waiting in an L2T entry's ARP queue. Must be called with the
171 * entry locked.
172 */
173static void send_pending(struct adapter *adap, struct l2t_entry *e)
174{
749cb5fe 175 struct sk_buff *skb;
625ba2c2 176
749cb5fe 177 while ((skb = __skb_dequeue(&e->arpq)) != NULL)
625ba2c2 178 t4_ofld_send(adap, skb);
625ba2c2
DM
179}
180
181/*
182 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a
183 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T
184 * index it refers to.
185 */
186void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
187{
5be9ed8d 188 struct l2t_data *d = adap->l2t;
625ba2c2 189 unsigned int tid = GET_TID(rpl);
5be9ed8d 190 unsigned int l2t_idx = tid % L2T_SIZE;
625ba2c2
DM
191
192 if (unlikely(rpl->status != CPL_ERR_NONE)) {
193 dev_err(adap->pdev_dev,
194 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
5be9ed8d 195 rpl->status, l2t_idx);
625ba2c2
DM
196 return;
197 }
198
5be9ed8d
HS
199 if (tid & SYNC_WR_F) {
200 struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start];
625ba2c2
DM
201
202 spin_lock(&e->lock);
203 if (e->state != L2T_STATE_SWITCHING) {
204 send_pending(adap, e);
205 e->state = (e->neigh->nud_state & NUD_STALE) ?
206 L2T_STATE_STALE : L2T_STATE_VALID;
207 }
208 spin_unlock(&e->lock);
209 }
210}
211
212/*
213 * Add a packet to an L2T entry's queue of packets awaiting resolution.
214 * Must be called with the entry's lock held.
215 */
216static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
217{
749cb5fe 218 __skb_queue_tail(&e->arpq, skb);
625ba2c2
DM
219}
220
221int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
222 struct l2t_entry *e)
223{
224 struct adapter *adap = netdev2adap(dev);
225
226again:
227 switch (e->state) {
228 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
229 neigh_event_send(e->neigh, NULL);
230 spin_lock_bh(&e->lock);
231 if (e->state == L2T_STATE_STALE)
232 e->state = L2T_STATE_VALID;
233 spin_unlock_bh(&e->lock);
234 case L2T_STATE_VALID: /* fast-path, send the packet on */
235 return t4_ofld_send(adap, skb);
236 case L2T_STATE_RESOLVING:
237 case L2T_STATE_SYNC_WRITE:
238 spin_lock_bh(&e->lock);
239 if (e->state != L2T_STATE_SYNC_WRITE &&
240 e->state != L2T_STATE_RESOLVING) {
241 spin_unlock_bh(&e->lock);
242 goto again;
243 }
244 arpq_enqueue(e, skb);
245 spin_unlock_bh(&e->lock);
246
247 if (e->state == L2T_STATE_RESOLVING &&
248 !neigh_event_send(e->neigh, NULL)) {
249 spin_lock_bh(&e->lock);
749cb5fe
HS
250 if (e->state == L2T_STATE_RESOLVING &&
251 !skb_queue_empty(&e->arpq))
625ba2c2
DM
252 write_l2e(adap, e, 1);
253 spin_unlock_bh(&e->lock);
254 }
255 }
256 return 0;
257}
258EXPORT_SYMBOL(cxgb4_l2t_send);
259
260/*
261 * Allocate a free L2T entry. Must be called with l2t_data.lock held.
262 */
263static struct l2t_entry *alloc_l2e(struct l2t_data *d)
264{
265 struct l2t_entry *end, *e, **p;
266
267 if (!atomic_read(&d->nfree))
268 return NULL;
269
270 /* there's definitely a free entry */
5be9ed8d 271 for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
625ba2c2
DM
272 if (atomic_read(&e->refcnt) == 0)
273 goto found;
274
275 for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
276 ;
277found:
278 d->rover = e + 1;
279 atomic_dec(&d->nfree);
280
281 /*
282 * The entry we found may be an inactive entry that is
283 * presently in the hash table. We need to remove it.
284 */
285 if (e->state < L2T_STATE_SWITCHING)
286 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
287 if (*p == e) {
288 *p = e->next;
289 e->next = NULL;
290 break;
291 }
292
293 e->state = L2T_STATE_UNUSED;
294 return e;
295}
296
f7502659
HS
297static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan,
298 u8 port, u8 *dmac)
299{
300 struct l2t_entry *end, *e, **p;
301 struct l2t_entry *first_free = NULL;
302
303 for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) {
304 if (atomic_read(&e->refcnt) == 0) {
305 if (!first_free)
306 first_free = e;
307 } else {
308 if (e->state == L2T_STATE_SWITCHING) {
309 if (ether_addr_equal(e->dmac, dmac) &&
310 (e->vlan == vlan) && (e->lport == port))
311 goto exists;
312 }
313 }
314 }
315
316 if (first_free) {
317 e = first_free;
318 goto found;
319 }
320
321 return NULL;
322
323found:
324 /* The entry we found may be an inactive entry that is
325 * presently in the hash table. We need to remove it.
326 */
327 if (e->state < L2T_STATE_SWITCHING)
328 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
329 if (*p == e) {
330 *p = e->next;
331 e->next = NULL;
332 break;
333 }
334 e->state = L2T_STATE_UNUSED;
335
336exists:
337 return e;
338}
339
340/* Called when an L2T entry has no more users. The entry is left in the hash
341 * table since it is likely to be reused but we also bump nfree to indicate
342 * that the entry can be reallocated for a different neighbor. We also drop
343 * the existing neighbor reference in case the neighbor is going away and is
344 * waiting on our reference.
345 *
346 * Because entries can be reallocated to other neighbors once their ref count
347 * drops to 0 we need to take the entry's lock to avoid races with a new
348 * incarnation.
625ba2c2 349 */
f7502659
HS
350static void _t4_l2e_free(struct l2t_entry *e)
351{
352 struct l2t_data *d;
749cb5fe 353 struct sk_buff *skb;
f7502659
HS
354
355 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
356 if (e->neigh) {
357 neigh_release(e->neigh);
358 e->neigh = NULL;
359 }
749cb5fe 360 while ((skb = __skb_dequeue(&e->arpq)) != NULL)
f7502659 361 kfree_skb(skb);
f7502659
HS
362 }
363
364 d = container_of(e, struct l2t_data, l2tab[e->idx]);
365 atomic_inc(&d->nfree);
366}
367
368/* Locked version of _t4_l2e_free */
625ba2c2
DM
369static void t4_l2e_free(struct l2t_entry *e)
370{
371 struct l2t_data *d;
749cb5fe 372 struct sk_buff *skb;
625ba2c2
DM
373
374 spin_lock_bh(&e->lock);
375 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
376 if (e->neigh) {
377 neigh_release(e->neigh);
378 e->neigh = NULL;
379 }
749cb5fe 380 while ((skb = __skb_dequeue(&e->arpq)) != NULL)
05eda04b 381 kfree_skb(skb);
625ba2c2
DM
382 }
383 spin_unlock_bh(&e->lock);
384
385 d = container_of(e, struct l2t_data, l2tab[e->idx]);
386 atomic_inc(&d->nfree);
387}
388
389void cxgb4_l2t_release(struct l2t_entry *e)
390{
391 if (atomic_dec_and_test(&e->refcnt))
392 t4_l2e_free(e);
393}
394EXPORT_SYMBOL(cxgb4_l2t_release);
395
396/*
397 * Update an L2T entry that was previously used for the same next hop as neigh.
398 * Must be called with softirqs disabled.
399 */
400static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
401{
402 unsigned int nud_state;
403
404 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
405 if (neigh != e->neigh)
406 neigh_replace(e, neigh);
407 nud_state = neigh->nud_state;
408 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
409 !(nud_state & NUD_VALID))
410 e->state = L2T_STATE_RESOLVING;
411 else if (nud_state & NUD_CONNECTED)
412 e->state = L2T_STATE_VALID;
413 else
414 e->state = L2T_STATE_STALE;
415 spin_unlock(&e->lock);
416}
417
418struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
419 const struct net_device *physdev,
420 unsigned int priority)
421{
422 u8 lport;
423 u16 vlan;
424 struct l2t_entry *e;
425 int addr_len = neigh->tbl->key_len;
426 u32 *addr = (u32 *)neigh->primary_key;
427 int ifidx = neigh->dev->ifindex;
5be9ed8d 428 int hash = addr_hash(d, addr, addr_len, ifidx);
625ba2c2
DM
429
430 if (neigh->dev->flags & IFF_LOOPBACK)
431 lport = netdev2pinfo(physdev)->tx_chan + 4;
432 else
433 lport = netdev2pinfo(physdev)->lport;
434
435 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
436 vlan = vlan_dev_vlan_id(neigh->dev);
437 else
438 vlan = VLAN_NONE;
439
440 write_lock_bh(&d->lock);
441 for (e = d->l2tab[hash].first; e; e = e->next)
442 if (!addreq(e, addr) && e->ifindex == ifidx &&
443 e->vlan == vlan && e->lport == lport) {
444 l2t_hold(d, e);
445 if (atomic_read(&e->refcnt) == 1)
446 reuse_entry(e, neigh);
447 goto done;
448 }
449
450 /* Need to allocate a new entry */
451 e = alloc_l2e(d);
452 if (e) {
453 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
454 e->state = L2T_STATE_RESOLVING;
bfae2324
SW
455 if (neigh->dev->flags & IFF_LOOPBACK)
456 memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
625ba2c2
DM
457 memcpy(e->addr, addr, addr_len);
458 e->ifindex = ifidx;
459 e->hash = hash;
460 e->lport = lport;
461 e->v6 = addr_len == 16;
462 atomic_set(&e->refcnt, 1);
463 neigh_replace(e, neigh);
464 e->vlan = vlan;
465 e->next = d->l2tab[hash].first;
466 d->l2tab[hash].first = e;
467 spin_unlock(&e->lock);
468 }
469done:
470 write_unlock_bh(&d->lock);
471 return e;
472}
473EXPORT_SYMBOL(cxgb4_l2t_get);
474
dcf7b6f5
KS
475u64 cxgb4_select_ntuple(struct net_device *dev,
476 const struct l2t_entry *l2t)
477{
478 struct adapter *adap = netdev2adap(dev);
479 struct tp_params *tp = &adap->params.tp;
480 u64 ntuple = 0;
481
482 /* Initialize each of the fields which we care about which are present
483 * in the Compressed Filter Tuple.
484 */
485 if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
0d804338 486 ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift;
dcf7b6f5
KS
487
488 if (tp->port_shift >= 0)
489 ntuple |= (u64)l2t->lport << tp->port_shift;
490
491 if (tp->protocol_shift >= 0)
492 ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
493
494 if (tp->vnic_shift >= 0) {
495 u32 viid = cxgb4_port_viid(dev);
2b5fb1f2 496 u32 vf = FW_VIID_VIN_G(viid);
d7990b0c 497 u32 pf = FW_VIID_PFN_G(viid);
2b5fb1f2 498 u32 vld = FW_VIID_VIVLD_G(viid);
dcf7b6f5 499
0d804338
HS
500 ntuple |= (u64)(FT_VNID_ID_VF_V(vf) |
501 FT_VNID_ID_PF_V(pf) |
502 FT_VNID_ID_VLD_V(vld)) << tp->vnic_shift;
dcf7b6f5
KS
503 }
504
505 return ntuple;
506}
507EXPORT_SYMBOL(cxgb4_select_ntuple);
508
625ba2c2
DM
509/*
510 * Called when address resolution fails for an L2T entry to handle packets
511 * on the arpq head. If a packet specifies a failure handler it is invoked,
512 * otherwise the packet is sent to the device.
513 */
749cb5fe 514static void handle_failed_resolution(struct adapter *adap, struct l2t_entry *e)
625ba2c2 515{
749cb5fe
HS
516 struct sk_buff *skb;
517
518 while ((skb = __skb_dequeue(&e->arpq)) != NULL) {
625ba2c2
DM
519 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
520
749cb5fe 521 spin_unlock(&e->lock);
625ba2c2
DM
522 if (cb->arp_err_handler)
523 cb->arp_err_handler(cb->handle, skb);
524 else
525 t4_ofld_send(adap, skb);
749cb5fe 526 spin_lock(&e->lock);
625ba2c2
DM
527 }
528}
529
530/*
531 * Called when the host's neighbor layer makes a change to some entry that is
532 * loaded into the HW L2 table.
533 */
534void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
535{
536 struct l2t_entry *e;
749cb5fe 537 struct sk_buff_head *arpq = NULL;
625ba2c2
DM
538 struct l2t_data *d = adap->l2t;
539 int addr_len = neigh->tbl->key_len;
540 u32 *addr = (u32 *) neigh->primary_key;
541 int ifidx = neigh->dev->ifindex;
5be9ed8d 542 int hash = addr_hash(d, addr, addr_len, ifidx);
625ba2c2
DM
543
544 read_lock_bh(&d->lock);
545 for (e = d->l2tab[hash].first; e; e = e->next)
546 if (!addreq(e, addr) && e->ifindex == ifidx) {
547 spin_lock(&e->lock);
548 if (atomic_read(&e->refcnt))
549 goto found;
550 spin_unlock(&e->lock);
551 break;
552 }
553 read_unlock_bh(&d->lock);
554 return;
555
556 found:
557 read_unlock(&d->lock);
558
559 if (neigh != e->neigh)
560 neigh_replace(e, neigh);
561
562 if (e->state == L2T_STATE_RESOLVING) {
563 if (neigh->nud_state & NUD_FAILED) {
749cb5fe 564 arpq = &e->arpq;
625ba2c2 565 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
749cb5fe 566 !skb_queue_empty(&e->arpq)) {
625ba2c2
DM
567 write_l2e(adap, e, 1);
568 }
569 } else {
570 e->state = neigh->nud_state & NUD_CONNECTED ?
571 L2T_STATE_VALID : L2T_STATE_STALE;
572 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
573 write_l2e(adap, e, 0);
574 }
575
625ba2c2 576 if (arpq)
749cb5fe
HS
577 handle_failed_resolution(adap, e);
578 spin_unlock_bh(&e->lock);
625ba2c2
DM
579}
580
f2b7e78d
VP
581/* Allocate an L2T entry for use by a switching rule. Such need to be
582 * explicitly freed and while busy they are not on any hash chain, so normal
583 * address resolution updates do not see them.
584 */
f7502659
HS
585struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan,
586 u8 port, u8 *eth_addr)
f2b7e78d 587{
f7502659 588 struct l2t_data *d = adap->l2t;
f2b7e78d 589 struct l2t_entry *e;
f7502659 590 int ret;
f2b7e78d
VP
591
592 write_lock_bh(&d->lock);
f7502659 593 e = find_or_alloc_l2e(d, vlan, port, eth_addr);
f2b7e78d
VP
594 if (e) {
595 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
f7502659
HS
596 if (!atomic_read(&e->refcnt)) {
597 e->state = L2T_STATE_SWITCHING;
598 e->vlan = vlan;
599 e->lport = port;
600 ether_addr_copy(e->dmac, eth_addr);
601 atomic_set(&e->refcnt, 1);
602 ret = write_l2e(adap, e, 0);
603 if (ret < 0) {
604 _t4_l2e_free(e);
605 spin_unlock(&e->lock);
606 write_unlock_bh(&d->lock);
607 return NULL;
608 }
609 } else {
610 atomic_inc(&e->refcnt);
611 }
612
f2b7e78d
VP
613 spin_unlock(&e->lock);
614 }
615 write_unlock_bh(&d->lock);
616 return e;
617}
618
f7502659
HS
619/**
620 * @dev: net_device pointer
621 * @vlan: VLAN Id
622 * @port: Associated port
623 * @dmac: Destination MAC address to add to L2T
624 * Returns pointer to the allocated l2t entry
625 *
626 * Allocates an L2T entry for use by switching rule of a filter
f2b7e78d 627 */
f7502659
HS
628struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan,
629 u8 port, u8 *dmac)
f2b7e78d 630{
f7502659
HS
631 struct adapter *adap = netdev2adap(dev);
632
633 return t4_l2t_alloc_switching(adap, vlan, port, dmac);
f2b7e78d 634}
f7502659 635EXPORT_SYMBOL(cxgb4_l2t_alloc_switching);
f2b7e78d 636
5be9ed8d 637struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end)
625ba2c2 638{
5be9ed8d 639 unsigned int l2t_size;
625ba2c2
DM
640 int i;
641 struct l2t_data *d;
642
5be9ed8d
HS
643 if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE)
644 return NULL;
645 l2t_size = l2t_end - l2t_start + 1;
646 if (l2t_size < L2T_MIN_HASH_BUCKETS)
647 return NULL;
648
649 d = t4_alloc_mem(sizeof(*d) + l2t_size * sizeof(struct l2t_entry));
625ba2c2
DM
650 if (!d)
651 return NULL;
652
5be9ed8d
HS
653 d->l2t_start = l2t_start;
654 d->l2t_size = l2t_size;
655
625ba2c2 656 d->rover = d->l2tab;
5be9ed8d 657 atomic_set(&d->nfree, l2t_size);
625ba2c2
DM
658 rwlock_init(&d->lock);
659
5be9ed8d 660 for (i = 0; i < d->l2t_size; ++i) {
625ba2c2
DM
661 d->l2tab[i].idx = i;
662 d->l2tab[i].state = L2T_STATE_UNUSED;
663 spin_lock_init(&d->l2tab[i].lock);
664 atomic_set(&d->l2tab[i].refcnt, 0);
749cb5fe 665 skb_queue_head_init(&d->l2tab[i].arpq);
625ba2c2
DM
666 }
667 return d;
668}
669
625ba2c2
DM
670static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
671{
5be9ed8d 672 struct l2t_data *d = seq->private;
625ba2c2 673
5be9ed8d 674 return pos >= d->l2t_size ? NULL : &d->l2tab[pos];
625ba2c2
DM
675}
676
677static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
678{
679 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
680}
681
682static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
683{
684 v = l2t_get_idx(seq, *pos);
685 if (v)
686 ++*pos;
687 return v;
688}
689
690static void l2t_seq_stop(struct seq_file *seq, void *v)
691{
692}
693
694static char l2e_state(const struct l2t_entry *e)
695{
696 switch (e->state) {
697 case L2T_STATE_VALID: return 'V';
698 case L2T_STATE_STALE: return 'S';
699 case L2T_STATE_SYNC_WRITE: return 'W';
749cb5fe
HS
700 case L2T_STATE_RESOLVING:
701 return skb_queue_empty(&e->arpq) ? 'R' : 'A';
625ba2c2
DM
702 case L2T_STATE_SWITCHING: return 'X';
703 default:
704 return 'U';
705 }
706}
707
708static int l2t_seq_show(struct seq_file *seq, void *v)
709{
710 if (v == SEQ_START_TOKEN)
711 seq_puts(seq, " Idx IP address "
712 "Ethernet address VLAN/P LP State Users Port\n");
713 else {
714 char ip[60];
5be9ed8d 715 struct l2t_data *d = seq->private;
625ba2c2
DM
716 struct l2t_entry *e = v;
717
718 spin_lock_bh(&e->lock);
719 if (e->state == L2T_STATE_SWITCHING)
720 ip[0] = '\0';
721 else
722 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
723 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n",
5be9ed8d 724 e->idx + d->l2t_start, ip, e->dmac,
625ba2c2
DM
725 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
726 l2e_state(e), atomic_read(&e->refcnt),
727 e->neigh ? e->neigh->dev->name : "");
728 spin_unlock_bh(&e->lock);
729 }
730 return 0;
731}
732
733static const struct seq_operations l2t_seq_ops = {
734 .start = l2t_seq_start,
735 .next = l2t_seq_next,
736 .stop = l2t_seq_stop,
737 .show = l2t_seq_show
738};
739
740static int l2t_seq_open(struct inode *inode, struct file *file)
741{
742 int rc = seq_open(file, &l2t_seq_ops);
743
744 if (!rc) {
745 struct adapter *adap = inode->i_private;
746 struct seq_file *seq = file->private_data;
747
5be9ed8d 748 seq->private = adap->l2t;
625ba2c2
DM
749 }
750 return rc;
751}
752
753const struct file_operations t4_l2t_fops = {
754 .owner = THIS_MODULE,
755 .open = l2t_seq_open,
756 .read = seq_read,
757 .llseek = seq_lseek,
758 .release = seq_release,
759};