net: thunderx: remove unneeded type conversions
[linux-2.6-block.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
CommitLineData
4863dea3
SG
1/*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9#include <linux/pci.h>
10#include <linux/netdevice.h>
11#include <linux/ip.h>
12#include <linux/etherdevice.h>
13#include <net/ip.h>
14#include <net/tso.h>
15
16#include "nic_reg.h"
17#include "nic.h"
18#include "q_struct.h"
19#include "nicvf_queues.h"
20
21struct rbuf_info {
22 struct page *page;
23 void *data;
24 u64 offset;
25};
26
27#define GET_RBUF_INFO(x) ((struct rbuf_info *)(x - NICVF_RCV_BUF_ALIGN_BYTES))
28
29/* Poll a register for a specific value */
30static int nicvf_poll_reg(struct nicvf *nic, int qidx,
31 u64 reg, int bit_pos, int bits, int val)
32{
33 u64 bit_mask;
34 u64 reg_val;
35 int timeout = 10;
36
37 bit_mask = (1ULL << bits) - 1;
38 bit_mask = (bit_mask << bit_pos);
39
40 while (timeout) {
41 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
42 if (((reg_val & bit_mask) >> bit_pos) == val)
43 return 0;
44 usleep_range(1000, 2000);
45 timeout--;
46 }
47 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
48 return 1;
49}
50
51/* Allocate memory for a queue's descriptors */
52static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
53 int q_len, int desc_size, int align_bytes)
54{
55 dmem->q_len = q_len;
56 dmem->size = (desc_size * q_len) + align_bytes;
57 /* Save address, need it while freeing */
58 dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
59 &dmem->dma, GFP_KERNEL);
60 if (!dmem->unalign_base)
61 return -ENOMEM;
62
63 /* Align memory address for 'align_bytes' */
64 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
39a0dd0b 65 dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
4863dea3
SG
66 return 0;
67}
68
69/* Free queue's descriptor memory */
70static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
71{
72 if (!dmem)
73 return;
74
75 dma_free_coherent(&nic->pdev->dev, dmem->size,
76 dmem->unalign_base, dmem->dma);
77 dmem->unalign_base = NULL;
78 dmem->base = NULL;
79}
80
81/* Allocate buffer for packet reception
82 * HW returns memory address where packet is DMA'ed but not a pointer
83 * into RBDR ring, so save buffer address at the start of fragment and
84 * align the start address to a cache aligned address
85 */
86static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
87 u32 buf_len, u64 **rbuf)
88{
89 u64 data;
90 struct rbuf_info *rinfo;
91 int order = get_order(buf_len);
92
93 /* Check if request can be accomodated in previous allocated page */
94 if (nic->rb_page) {
95 if ((nic->rb_page_offset + buf_len + buf_len) >
96 (PAGE_SIZE << order)) {
97 nic->rb_page = NULL;
98 } else {
99 nic->rb_page_offset += buf_len;
100 get_page(nic->rb_page);
101 }
102 }
103
104 /* Allocate a new page */
105 if (!nic->rb_page) {
106 nic->rb_page = alloc_pages(gfp | __GFP_COMP, order);
107 if (!nic->rb_page) {
108 netdev_err(nic->netdev, "Failed to allocate new rcv buffer\n");
109 return -ENOMEM;
110 }
111 nic->rb_page_offset = 0;
112 }
113
114 data = (u64)page_address(nic->rb_page) + nic->rb_page_offset;
115
116 /* Align buffer addr to cache line i.e 128 bytes */
117 rinfo = (struct rbuf_info *)(data + NICVF_RCV_BUF_ALIGN_LEN(data));
118 /* Save page address for reference updation */
119 rinfo->page = nic->rb_page;
120 /* Store start address for later retrieval */
121 rinfo->data = (void *)data;
122 /* Store alignment offset */
123 rinfo->offset = NICVF_RCV_BUF_ALIGN_LEN(data);
124
125 data += rinfo->offset;
126
127 /* Give next aligned address to hw for DMA */
128 *rbuf = (u64 *)(data + NICVF_RCV_BUF_ALIGN_BYTES);
129 return 0;
130}
131
132/* Retrieve actual buffer start address and build skb for received packet */
133static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
134 u64 rb_ptr, int len)
135{
136 struct sk_buff *skb;
137 struct rbuf_info *rinfo;
138
139 rb_ptr = (u64)phys_to_virt(rb_ptr);
140 /* Get buffer start address and alignment offset */
141 rinfo = GET_RBUF_INFO(rb_ptr);
142
143 /* Now build an skb to give to stack */
144 skb = build_skb(rinfo->data, RCV_FRAG_LEN);
145 if (!skb) {
146 put_page(rinfo->page);
147 return NULL;
148 }
149
150 /* Set correct skb->data */
151 skb_reserve(skb, rinfo->offset + NICVF_RCV_BUF_ALIGN_BYTES);
152
153 prefetch((void *)rb_ptr);
154 return skb;
155}
156
157/* Allocate RBDR ring and populate receive buffers */
158static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
159 int ring_len, int buf_size)
160{
161 int idx;
162 u64 *rbuf;
163 struct rbdr_entry_t *desc;
164 int err;
165
166 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
167 sizeof(struct rbdr_entry_t),
168 NICVF_RCV_BUF_ALIGN_BYTES);
169 if (err)
170 return err;
171
172 rbdr->desc = rbdr->dmem.base;
173 /* Buffer size has to be in multiples of 128 bytes */
174 rbdr->dma_size = buf_size;
175 rbdr->enable = true;
176 rbdr->thresh = RBDR_THRESH;
177
178 nic->rb_page = NULL;
179 for (idx = 0; idx < ring_len; idx++) {
180 err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
181 &rbuf);
182 if (err)
183 return err;
184
185 desc = GET_RBDR_DESC(rbdr, idx);
186 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
187 }
188 return 0;
189}
190
191/* Free RBDR ring and its receive buffers */
192static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
193{
194 int head, tail;
195 u64 buf_addr;
196 struct rbdr_entry_t *desc;
197 struct rbuf_info *rinfo;
198
199 if (!rbdr)
200 return;
201
202 rbdr->enable = false;
203 if (!rbdr->dmem.base)
204 return;
205
206 head = rbdr->head;
207 tail = rbdr->tail;
208
209 /* Free SKBs */
210 while (head != tail) {
211 desc = GET_RBDR_DESC(rbdr, head);
212 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
213 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
214 put_page(rinfo->page);
215 head++;
216 head &= (rbdr->dmem.q_len - 1);
217 }
218 /* Free SKB of tail desc */
219 desc = GET_RBDR_DESC(rbdr, tail);
220 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
221 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
222 put_page(rinfo->page);
223
224 /* Free RBDR ring */
225 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
226}
227
228/* Refill receive buffer descriptors with new buffers.
229 */
fd7ec062 230static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
4863dea3
SG
231{
232 struct queue_set *qs = nic->qs;
233 int rbdr_idx = qs->rbdr_cnt;
234 int tail, qcount;
235 int refill_rb_cnt;
236 struct rbdr *rbdr;
237 struct rbdr_entry_t *desc;
238 u64 *rbuf;
239 int new_rb = 0;
240
241refill:
242 if (!rbdr_idx)
243 return;
244 rbdr_idx--;
245 rbdr = &qs->rbdr[rbdr_idx];
246 /* Check if it's enabled */
247 if (!rbdr->enable)
248 goto next_rbdr;
249
250 /* Get no of desc's to be refilled */
251 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
252 qcount &= 0x7FFFF;
253 /* Doorbell can be ringed with a max of ring size minus 1 */
254 if (qcount >= (qs->rbdr_len - 1))
255 goto next_rbdr;
256 else
257 refill_rb_cnt = qs->rbdr_len - qcount - 1;
258
259 /* Start filling descs from tail */
260 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
261 while (refill_rb_cnt) {
262 tail++;
263 tail &= (rbdr->dmem.q_len - 1);
264
265 if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
266 break;
267
268 desc = GET_RBDR_DESC(rbdr, tail);
269 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
270 refill_rb_cnt--;
271 new_rb++;
272 }
273
274 /* make sure all memory stores are done before ringing doorbell */
275 smp_wmb();
276
277 /* Check if buffer allocation failed */
278 if (refill_rb_cnt)
279 nic->rb_alloc_fail = true;
280 else
281 nic->rb_alloc_fail = false;
282
283 /* Notify HW */
284 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
285 rbdr_idx, new_rb);
286next_rbdr:
287 /* Re-enable RBDR interrupts only if buffer allocation is success */
288 if (!nic->rb_alloc_fail && rbdr->enable)
289 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
290
291 if (rbdr_idx)
292 goto refill;
293}
294
295/* Alloc rcv buffers in non-atomic mode for better success */
296void nicvf_rbdr_work(struct work_struct *work)
297{
298 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
299
300 nicvf_refill_rbdr(nic, GFP_KERNEL);
301 if (nic->rb_alloc_fail)
302 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
303 else
304 nic->rb_work_scheduled = false;
305}
306
307/* In Softirq context, alloc rcv buffers in atomic mode */
308void nicvf_rbdr_task(unsigned long data)
309{
310 struct nicvf *nic = (struct nicvf *)data;
311
312 nicvf_refill_rbdr(nic, GFP_ATOMIC);
313 if (nic->rb_alloc_fail) {
314 nic->rb_work_scheduled = true;
315 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
316 }
317}
318
319/* Initialize completion queue */
320static int nicvf_init_cmp_queue(struct nicvf *nic,
321 struct cmp_queue *cq, int q_len)
322{
323 int err;
324
325 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
326 NICVF_CQ_BASE_ALIGN_BYTES);
327 if (err)
328 return err;
329
330 cq->desc = cq->dmem.base;
331 cq->thresh = CMP_QUEUE_CQE_THRESH;
332 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
333
334 return 0;
335}
336
337static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
338{
339 if (!cq)
340 return;
341 if (!cq->dmem.base)
342 return;
343
344 nicvf_free_q_desc_mem(nic, &cq->dmem);
345}
346
347/* Initialize transmit queue */
348static int nicvf_init_snd_queue(struct nicvf *nic,
349 struct snd_queue *sq, int q_len)
350{
351 int err;
352
353 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
354 NICVF_SQ_BASE_ALIGN_BYTES);
355 if (err)
356 return err;
357
358 sq->desc = sq->dmem.base;
359 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_ATOMIC);
360 sq->head = 0;
361 sq->tail = 0;
362 atomic_set(&sq->free_cnt, q_len - 1);
363 sq->thresh = SND_QUEUE_THRESH;
364
365 /* Preallocate memory for TSO segment's header */
366 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
367 q_len * TSO_HEADER_SIZE,
368 &sq->tso_hdrs_phys, GFP_KERNEL);
369 if (!sq->tso_hdrs)
370 return -ENOMEM;
371
372 return 0;
373}
374
375static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
376{
377 if (!sq)
378 return;
379 if (!sq->dmem.base)
380 return;
381
382 if (sq->tso_hdrs)
383 dma_free_coherent(&nic->pdev->dev, sq->dmem.q_len,
384 sq->tso_hdrs, sq->tso_hdrs_phys);
385
386 kfree(sq->skbuff);
387 nicvf_free_q_desc_mem(nic, &sq->dmem);
388}
389
390static void nicvf_reclaim_snd_queue(struct nicvf *nic,
391 struct queue_set *qs, int qidx)
392{
393 /* Disable send queue */
394 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
395 /* Check if SQ is stopped */
396 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
397 return;
398 /* Reset send queue */
399 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
400}
401
402static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
403 struct queue_set *qs, int qidx)
404{
405 union nic_mbx mbx = {};
406
407 /* Make sure all packets in the pipeline are written back into mem */
408 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
409 nicvf_send_msg_to_pf(nic, &mbx);
410}
411
412static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
413 struct queue_set *qs, int qidx)
414{
415 /* Disable timer threshold (doesn't get reset upon CQ reset */
416 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
417 /* Disable completion queue */
418 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
419 /* Reset completion queue */
420 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
421}
422
423static void nicvf_reclaim_rbdr(struct nicvf *nic,
424 struct rbdr *rbdr, int qidx)
425{
426 u64 tmp, fifo_state;
427 int timeout = 10;
428
429 /* Save head and tail pointers for feeing up buffers */
430 rbdr->head = nicvf_queue_reg_read(nic,
431 NIC_QSET_RBDR_0_1_HEAD,
432 qidx) >> 3;
433 rbdr->tail = nicvf_queue_reg_read(nic,
434 NIC_QSET_RBDR_0_1_TAIL,
435 qidx) >> 3;
436
437 /* If RBDR FIFO is in 'FAIL' state then do a reset first
438 * before relaiming.
439 */
440 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
441 if (((fifo_state >> 62) & 0x03) == 0x3)
442 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
443 qidx, NICVF_RBDR_RESET);
444
445 /* Disable RBDR */
446 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
447 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
448 return;
449 while (1) {
450 tmp = nicvf_queue_reg_read(nic,
451 NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
452 qidx);
453 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
454 break;
455 usleep_range(1000, 2000);
456 timeout--;
457 if (!timeout) {
458 netdev_err(nic->netdev,
459 "Failed polling on prefetch status\n");
460 return;
461 }
462 }
463 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
464 qidx, NICVF_RBDR_RESET);
465
466 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
467 return;
468 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
469 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
470 return;
471}
472
473/* Configures receive queue */
474static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
475 int qidx, bool enable)
476{
477 union nic_mbx mbx = {};
478 struct rcv_queue *rq;
479 struct rq_cfg rq_cfg;
480
481 rq = &qs->rq[qidx];
482 rq->enable = enable;
483
484 /* Disable receive queue */
485 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
486
487 if (!rq->enable) {
488 nicvf_reclaim_rcv_queue(nic, qs, qidx);
489 return;
490 }
491
492 rq->cq_qs = qs->vnic_id;
493 rq->cq_idx = qidx;
494 rq->start_rbdr_qs = qs->vnic_id;
495 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
496 rq->cont_rbdr_qs = qs->vnic_id;
497 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
498 /* all writes of RBDR data to be loaded into L2 Cache as well*/
499 rq->caching = 1;
500
501 /* Send a mailbox msg to PF to config RQ */
502 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
503 mbx.rq.qs_num = qs->vnic_id;
504 mbx.rq.rq_num = qidx;
505 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
506 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
507 (rq->cont_qs_rbdr_idx << 8) |
508 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
509 nicvf_send_msg_to_pf(nic, &mbx);
510
511 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
512 mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
513 nicvf_send_msg_to_pf(nic, &mbx);
514
515 /* RQ drop config
516 * Enable CQ drop to reserve sufficient CQEs for all tx packets
517 */
518 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
519 mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
520 nicvf_send_msg_to_pf(nic, &mbx);
521
522 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, qidx, 0x00);
523
524 /* Enable Receive queue */
525 rq_cfg.ena = 1;
526 rq_cfg.tcp_ena = 0;
527 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
528}
529
530/* Configures completion queue */
531void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
532 int qidx, bool enable)
533{
534 struct cmp_queue *cq;
535 struct cq_cfg cq_cfg;
536
537 cq = &qs->cq[qidx];
538 cq->enable = enable;
539
540 if (!cq->enable) {
541 nicvf_reclaim_cmp_queue(nic, qs, qidx);
542 return;
543 }
544
545 /* Reset completion queue */
546 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
547
548 if (!cq->enable)
549 return;
550
551 spin_lock_init(&cq->lock);
552 /* Set completion queue base address */
553 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
554 qidx, (u64)(cq->dmem.phys_base));
555
556 /* Enable Completion queue */
557 cq_cfg.ena = 1;
558 cq_cfg.reset = 0;
559 cq_cfg.caching = 0;
560 cq_cfg.qsize = CMP_QSIZE;
561 cq_cfg.avg_con = 0;
562 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
563
564 /* Set threshold value for interrupt generation */
565 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
566 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
567 qidx, nic->cq_coalesce_usecs);
568}
569
570/* Configures transmit queue */
571static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
572 int qidx, bool enable)
573{
574 union nic_mbx mbx = {};
575 struct snd_queue *sq;
576 struct sq_cfg sq_cfg;
577
578 sq = &qs->sq[qidx];
579 sq->enable = enable;
580
581 if (!sq->enable) {
582 nicvf_reclaim_snd_queue(nic, qs, qidx);
583 return;
584 }
585
586 /* Reset send queue */
587 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
588
589 sq->cq_qs = qs->vnic_id;
590 sq->cq_idx = qidx;
591
592 /* Send a mailbox msg to PF to config SQ */
593 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
594 mbx.sq.qs_num = qs->vnic_id;
595 mbx.sq.sq_num = qidx;
596 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
597 nicvf_send_msg_to_pf(nic, &mbx);
598
599 /* Set queue base address */
600 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
601 qidx, (u64)(sq->dmem.phys_base));
602
603 /* Enable send queue & set queue size */
604 sq_cfg.ena = 1;
605 sq_cfg.reset = 0;
606 sq_cfg.ldwb = 0;
607 sq_cfg.qsize = SND_QSIZE;
608 sq_cfg.tstmp_bgx_intf = 0;
609 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
610
611 /* Set threshold value for interrupt generation */
612 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
613
614 /* Set queue:cpu affinity for better load distribution */
615 if (cpu_online(qidx)) {
616 cpumask_set_cpu(qidx, &sq->affinity_mask);
617 netif_set_xps_queue(nic->netdev,
618 &sq->affinity_mask, qidx);
619 }
620}
621
622/* Configures receive buffer descriptor ring */
623static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
624 int qidx, bool enable)
625{
626 struct rbdr *rbdr;
627 struct rbdr_cfg rbdr_cfg;
628
629 rbdr = &qs->rbdr[qidx];
630 nicvf_reclaim_rbdr(nic, rbdr, qidx);
631 if (!enable)
632 return;
633
634 /* Set descriptor base address */
635 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
636 qidx, (u64)(rbdr->dmem.phys_base));
637
638 /* Enable RBDR & set queue size */
639 /* Buffer size should be in multiples of 128 bytes */
640 rbdr_cfg.ena = 1;
641 rbdr_cfg.reset = 0;
642 rbdr_cfg.ldwb = 0;
643 rbdr_cfg.qsize = RBDR_SIZE;
644 rbdr_cfg.avg_con = 0;
645 rbdr_cfg.lines = rbdr->dma_size / 128;
646 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
647 qidx, *(u64 *)&rbdr_cfg);
648
649 /* Notify HW */
650 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
651 qidx, qs->rbdr_len - 1);
652
653 /* Set threshold value for interrupt generation */
654 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
655 qidx, rbdr->thresh - 1);
656}
657
658/* Requests PF to assign and enable Qset */
659void nicvf_qset_config(struct nicvf *nic, bool enable)
660{
661 union nic_mbx mbx = {};
662 struct queue_set *qs = nic->qs;
663 struct qs_cfg *qs_cfg;
664
665 if (!qs) {
666 netdev_warn(nic->netdev,
667 "Qset is still not allocated, don't init queues\n");
668 return;
669 }
670
671 qs->enable = enable;
672 qs->vnic_id = nic->vf_id;
673
674 /* Send a mailbox msg to PF to config Qset */
675 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
676 mbx.qs.num = qs->vnic_id;
677
678 mbx.qs.cfg = 0;
679 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
680 if (qs->enable) {
681 qs_cfg->ena = 1;
682#ifdef __BIG_ENDIAN
683 qs_cfg->be = 1;
684#endif
685 qs_cfg->vnic = qs->vnic_id;
686 }
687 nicvf_send_msg_to_pf(nic, &mbx);
688}
689
690static void nicvf_free_resources(struct nicvf *nic)
691{
692 int qidx;
693 struct queue_set *qs = nic->qs;
694
695 /* Free receive buffer descriptor ring */
696 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
697 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
698
699 /* Free completion queue */
700 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
701 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
702
703 /* Free send queue */
704 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
705 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
706}
707
708static int nicvf_alloc_resources(struct nicvf *nic)
709{
710 int qidx;
711 struct queue_set *qs = nic->qs;
712
713 /* Alloc receive buffer descriptor ring */
714 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
715 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
716 DMA_BUFFER_LEN))
717 goto alloc_fail;
718 }
719
720 /* Alloc send queue */
721 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
722 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
723 goto alloc_fail;
724 }
725
726 /* Alloc completion queue */
727 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
728 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
729 goto alloc_fail;
730 }
731
732 return 0;
733alloc_fail:
734 nicvf_free_resources(nic);
735 return -ENOMEM;
736}
737
738int nicvf_set_qset_resources(struct nicvf *nic)
739{
740 struct queue_set *qs;
741
742 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
743 if (!qs)
744 return -ENOMEM;
745 nic->qs = qs;
746
747 /* Set count of each queue */
748 qs->rbdr_cnt = RBDR_CNT;
749 qs->rq_cnt = RCV_QUEUE_CNT;
750 qs->sq_cnt = SND_QUEUE_CNT;
751 qs->cq_cnt = CMP_QUEUE_CNT;
752
753 /* Set queue lengths */
754 qs->rbdr_len = RCV_BUF_COUNT;
755 qs->sq_len = SND_QUEUE_LEN;
756 qs->cq_len = CMP_QUEUE_LEN;
757 return 0;
758}
759
760int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
761{
762 bool disable = false;
763 struct queue_set *qs = nic->qs;
764 int qidx;
765
766 if (!qs)
767 return 0;
768
769 if (enable) {
770 if (nicvf_alloc_resources(nic))
771 return -ENOMEM;
772
773 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
774 nicvf_snd_queue_config(nic, qs, qidx, enable);
775 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
776 nicvf_cmp_queue_config(nic, qs, qidx, enable);
777 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
778 nicvf_rbdr_config(nic, qs, qidx, enable);
779 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
780 nicvf_rcv_queue_config(nic, qs, qidx, enable);
781 } else {
782 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
783 nicvf_rcv_queue_config(nic, qs, qidx, disable);
784 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
785 nicvf_rbdr_config(nic, qs, qidx, disable);
786 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
787 nicvf_snd_queue_config(nic, qs, qidx, disable);
788 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
789 nicvf_cmp_queue_config(nic, qs, qidx, disable);
790
791 nicvf_free_resources(nic);
792 }
793
794 return 0;
795}
796
797/* Get a free desc from SQ
798 * returns descriptor ponter & descriptor number
799 */
800static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
801{
802 int qentry;
803
804 qentry = sq->tail;
805 atomic_sub(desc_cnt, &sq->free_cnt);
806 sq->tail += desc_cnt;
807 sq->tail &= (sq->dmem.q_len - 1);
808
809 return qentry;
810}
811
812/* Free descriptor back to SQ for future use */
813void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
814{
815 atomic_add(desc_cnt, &sq->free_cnt);
816 sq->head += desc_cnt;
817 sq->head &= (sq->dmem.q_len - 1);
818}
819
820static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
821{
822 qentry++;
823 qentry &= (sq->dmem.q_len - 1);
824 return qentry;
825}
826
827void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
828{
829 u64 sq_cfg;
830
831 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
832 sq_cfg |= NICVF_SQ_EN;
833 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
834 /* Ring doorbell so that H/W restarts processing SQEs */
835 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
836}
837
838void nicvf_sq_disable(struct nicvf *nic, int qidx)
839{
840 u64 sq_cfg;
841
842 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
843 sq_cfg &= ~NICVF_SQ_EN;
844 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
845}
846
847void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
848 int qidx)
849{
850 u64 head, tail;
851 struct sk_buff *skb;
852 struct nicvf *nic = netdev_priv(netdev);
853 struct sq_hdr_subdesc *hdr;
854
855 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
856 tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
857 while (sq->head != head) {
858 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
859 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
860 nicvf_put_sq_desc(sq, 1);
861 continue;
862 }
863 skb = (struct sk_buff *)sq->skbuff[sq->head];
864 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
865 atomic64_add(hdr->tot_len,
866 (atomic64_t *)&netdev->stats.tx_bytes);
867 dev_kfree_skb_any(skb);
868 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
869 }
870}
871
872/* Calculate no of SQ subdescriptors needed to transmit all
873 * segments of this TSO packet.
874 * Taken from 'Tilera network driver' with a minor modification.
875 */
876static int nicvf_tso_count_subdescs(struct sk_buff *skb)
877{
878 struct skb_shared_info *sh = skb_shinfo(skb);
879 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
880 unsigned int data_len = skb->len - sh_len;
881 unsigned int p_len = sh->gso_size;
882 long f_id = -1; /* id of the current fragment */
883 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
884 long f_used = 0; /* bytes used from the current fragment */
885 long n; /* size of the current piece of payload */
886 int num_edescs = 0;
887 int segment;
888
889 for (segment = 0; segment < sh->gso_segs; segment++) {
890 unsigned int p_used = 0;
891
892 /* One edesc for header and for each piece of the payload. */
893 for (num_edescs++; p_used < p_len; num_edescs++) {
894 /* Advance as needed. */
895 while (f_used >= f_size) {
896 f_id++;
897 f_size = skb_frag_size(&sh->frags[f_id]);
898 f_used = 0;
899 }
900
901 /* Use bytes from the current fragment. */
902 n = p_len - p_used;
903 if (n > f_size - f_used)
904 n = f_size - f_used;
905 f_used += n;
906 p_used += n;
907 }
908
909 /* The last segment may be less than gso_size. */
910 data_len -= p_len;
911 if (data_len < p_len)
912 p_len = data_len;
913 }
914
915 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
916 return num_edescs + sh->gso_segs;
917}
918
919/* Get the number of SQ descriptors needed to xmit this skb */
920static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
921{
922 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
923
924 if (skb_shinfo(skb)->gso_size) {
925 subdesc_cnt = nicvf_tso_count_subdescs(skb);
926 return subdesc_cnt;
927 }
928
929 if (skb_shinfo(skb)->nr_frags)
930 subdesc_cnt += skb_shinfo(skb)->nr_frags;
931
932 return subdesc_cnt;
933}
934
935/* Add SQ HEADER subdescriptor.
936 * First subdescriptor for every send descriptor.
937 */
938static inline void
939nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
940 int subdesc_cnt, struct sk_buff *skb, int len)
941{
942 int proto;
943 struct sq_hdr_subdesc *hdr;
944
945 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
946 sq->skbuff[qentry] = (u64)skb;
947
948 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
949 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
950 /* Enable notification via CQE after processing SQE */
951 hdr->post_cqe = 1;
952 /* No of subdescriptors following this */
953 hdr->subdesc_cnt = subdesc_cnt;
954 hdr->tot_len = len;
955
956 /* Offload checksum calculation to HW */
957 if (skb->ip_summed == CHECKSUM_PARTIAL) {
958 if (skb->protocol != htons(ETH_P_IP))
959 return;
960
961 hdr->csum_l3 = 1; /* Enable IP csum calculation */
962 hdr->l3_offset = skb_network_offset(skb);
963 hdr->l4_offset = skb_transport_offset(skb);
964
965 proto = ip_hdr(skb)->protocol;
966 switch (proto) {
967 case IPPROTO_TCP:
968 hdr->csum_l4 = SEND_L4_CSUM_TCP;
969 break;
970 case IPPROTO_UDP:
971 hdr->csum_l4 = SEND_L4_CSUM_UDP;
972 break;
973 case IPPROTO_SCTP:
974 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
975 break;
976 }
977 }
978}
979
980/* SQ GATHER subdescriptor
981 * Must follow HDR descriptor
982 */
983static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
984 int size, u64 data)
985{
986 struct sq_gather_subdesc *gather;
987
988 qentry &= (sq->dmem.q_len - 1);
989 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
990
991 memset(gather, 0, SND_QUEUE_DESC_SIZE);
992 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
993 gather->ld_type = NIC_SEND_LD_TYPE_E_LDWB;
994 gather->size = size;
995 gather->addr = data;
996}
997
998/* Segment a TSO packet into 'gso_size' segments and append
999 * them to SQ for transfer
1000 */
1001static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1002 int qentry, struct sk_buff *skb)
1003{
1004 struct tso_t tso;
1005 int seg_subdescs = 0, desc_cnt = 0;
1006 int seg_len, total_len, data_left;
1007 int hdr_qentry = qentry;
1008 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1009
1010 tso_start(skb, &tso);
1011 total_len = skb->len - hdr_len;
1012 while (total_len > 0) {
1013 char *hdr;
1014
1015 /* Save Qentry for adding HDR_SUBDESC at the end */
1016 hdr_qentry = qentry;
1017
1018 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1019 total_len -= data_left;
1020
1021 /* Add segment's header */
1022 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1023 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1024 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1025 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1026 sq->tso_hdrs_phys +
1027 qentry * TSO_HEADER_SIZE);
1028 /* HDR_SUDESC + GATHER */
1029 seg_subdescs = 2;
1030 seg_len = hdr_len;
1031
1032 /* Add segment's payload fragments */
1033 while (data_left > 0) {
1034 int size;
1035
1036 size = min_t(int, tso.size, data_left);
1037
1038 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1039 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1040 virt_to_phys(tso.data));
1041 seg_subdescs++;
1042 seg_len += size;
1043
1044 data_left -= size;
1045 tso_build_data(skb, &tso, size);
1046 }
1047 nicvf_sq_add_hdr_subdesc(sq, hdr_qentry,
1048 seg_subdescs - 1, skb, seg_len);
1049 sq->skbuff[hdr_qentry] = 0;
1050 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1051
1052 desc_cnt += seg_subdescs;
1053 }
1054 /* Save SKB in the last segment for freeing */
1055 sq->skbuff[hdr_qentry] = (u64)skb;
1056
1057 /* make sure all memory stores are done before ringing doorbell */
1058 smp_wmb();
1059
1060 /* Inform HW to xmit all TSO segments */
1061 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1062 skb_get_queue_mapping(skb), desc_cnt);
1063 return 1;
1064}
1065
1066/* Append an skb to a SQ for packet transfer. */
1067int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1068{
1069 int i, size;
1070 int subdesc_cnt;
1071 int sq_num, qentry;
1072 struct queue_set *qs = nic->qs;
1073 struct snd_queue *sq;
1074
1075 sq_num = skb_get_queue_mapping(skb);
1076 sq = &qs->sq[sq_num];
1077
1078 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1079 if (subdesc_cnt > atomic_read(&sq->free_cnt))
1080 goto append_fail;
1081
1082 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1083
1084 /* Check if its a TSO packet */
1085 if (skb_shinfo(skb)->gso_size)
1086 return nicvf_sq_append_tso(nic, sq, qentry, skb);
1087
1088 /* Add SQ header subdesc */
1089 nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, skb, skb->len);
1090
1091 /* Add SQ gather subdescs */
1092 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1093 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1094 nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1095
1096 /* Check for scattered buffer */
1097 if (!skb_is_nonlinear(skb))
1098 goto doorbell;
1099
1100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1101 const struct skb_frag_struct *frag;
1102
1103 frag = &skb_shinfo(skb)->frags[i];
1104
1105 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1106 size = skb_frag_size(frag);
1107 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1108 virt_to_phys(
1109 skb_frag_address(frag)));
1110 }
1111
1112doorbell:
1113 /* make sure all memory stores are done before ringing doorbell */
1114 smp_wmb();
1115
1116 /* Inform HW to xmit new packet */
1117 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1118 sq_num, subdesc_cnt);
1119 return 1;
1120
1121append_fail:
1122 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1123 return 0;
1124}
1125
1126static inline unsigned frag_num(unsigned i)
1127{
1128#ifdef __BIG_ENDIAN
1129 return (i & ~3) + 3 - (i & 3);
1130#else
1131 return i;
1132#endif
1133}
1134
1135/* Returns SKB for a received packet */
1136struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1137{
1138 int frag;
1139 int payload_len = 0;
1140 struct sk_buff *skb = NULL;
1141 struct sk_buff *skb_frag = NULL;
1142 struct sk_buff *prev_frag = NULL;
1143 u16 *rb_lens = NULL;
1144 u64 *rb_ptrs = NULL;
1145
1146 rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1147 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1148
1149 netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1150 __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1151
1152 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1153 payload_len = rb_lens[frag_num(frag)];
1154 if (!frag) {
1155 /* First fragment */
1156 skb = nicvf_rb_ptr_to_skb(nic,
1157 *rb_ptrs - cqe_rx->align_pad,
1158 payload_len);
1159 if (!skb)
1160 return NULL;
1161 skb_reserve(skb, cqe_rx->align_pad);
1162 skb_put(skb, payload_len);
1163 } else {
1164 /* Add fragments */
1165 skb_frag = nicvf_rb_ptr_to_skb(nic, *rb_ptrs,
1166 payload_len);
1167 if (!skb_frag) {
1168 dev_kfree_skb(skb);
1169 return NULL;
1170 }
1171
1172 if (!skb_shinfo(skb)->frag_list)
1173 skb_shinfo(skb)->frag_list = skb_frag;
1174 else
1175 prev_frag->next = skb_frag;
1176
1177 prev_frag = skb_frag;
1178 skb->len += payload_len;
1179 skb->data_len += payload_len;
1180 skb_frag->len = payload_len;
1181 }
1182 /* Next buffer pointer */
1183 rb_ptrs++;
1184 }
1185 return skb;
1186}
1187
1188/* Enable interrupt */
1189void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1190{
1191 u64 reg_val;
1192
1193 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1194
1195 switch (int_type) {
1196 case NICVF_INTR_CQ:
1197 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1198 break;
1199 case NICVF_INTR_SQ:
1200 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1201 break;
1202 case NICVF_INTR_RBDR:
1203 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1204 break;
1205 case NICVF_INTR_PKT_DROP:
1206 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1207 break;
1208 case NICVF_INTR_TCP_TIMER:
1209 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1210 break;
1211 case NICVF_INTR_MBOX:
1212 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1213 break;
1214 case NICVF_INTR_QS_ERR:
1215 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1216 break;
1217 default:
1218 netdev_err(nic->netdev,
1219 "Failed to enable interrupt: unknown type\n");
1220 break;
1221 }
1222
1223 nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
1224}
1225
1226/* Disable interrupt */
1227void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1228{
1229 u64 reg_val = 0;
1230
1231 switch (int_type) {
1232 case NICVF_INTR_CQ:
1233 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1234 break;
1235 case NICVF_INTR_SQ:
1236 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1237 break;
1238 case NICVF_INTR_RBDR:
1239 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1240 break;
1241 case NICVF_INTR_PKT_DROP:
1242 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1243 break;
1244 case NICVF_INTR_TCP_TIMER:
1245 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1246 break;
1247 case NICVF_INTR_MBOX:
1248 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1249 break;
1250 case NICVF_INTR_QS_ERR:
1251 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1252 break;
1253 default:
1254 netdev_err(nic->netdev,
1255 "Failed to disable interrupt: unknown type\n");
1256 break;
1257 }
1258
1259 nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
1260}
1261
1262/* Clear interrupt */
1263void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1264{
1265 u64 reg_val = 0;
1266
1267 switch (int_type) {
1268 case NICVF_INTR_CQ:
1269 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1270 break;
1271 case NICVF_INTR_SQ:
1272 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1273 break;
1274 case NICVF_INTR_RBDR:
1275 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1276 break;
1277 case NICVF_INTR_PKT_DROP:
1278 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1279 break;
1280 case NICVF_INTR_TCP_TIMER:
1281 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1282 break;
1283 case NICVF_INTR_MBOX:
1284 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1285 break;
1286 case NICVF_INTR_QS_ERR:
1287 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1288 break;
1289 default:
1290 netdev_err(nic->netdev,
1291 "Failed to clear interrupt: unknown type\n");
1292 break;
1293 }
1294
1295 nicvf_reg_write(nic, NIC_VF_INT, reg_val);
1296}
1297
1298/* Check if interrupt is enabled */
1299int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1300{
1301 u64 reg_val;
1302 u64 mask = 0xff;
1303
1304 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1305
1306 switch (int_type) {
1307 case NICVF_INTR_CQ:
1308 mask = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1309 break;
1310 case NICVF_INTR_SQ:
1311 mask = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1312 break;
1313 case NICVF_INTR_RBDR:
1314 mask = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1315 break;
1316 case NICVF_INTR_PKT_DROP:
1317 mask = NICVF_INTR_PKT_DROP_MASK;
1318 break;
1319 case NICVF_INTR_TCP_TIMER:
1320 mask = NICVF_INTR_TCP_TIMER_MASK;
1321 break;
1322 case NICVF_INTR_MBOX:
1323 mask = NICVF_INTR_MBOX_MASK;
1324 break;
1325 case NICVF_INTR_QS_ERR:
1326 mask = NICVF_INTR_QS_ERR_MASK;
1327 break;
1328 default:
1329 netdev_err(nic->netdev,
1330 "Failed to check interrupt enable: unknown type\n");
1331 break;
1332 }
1333
1334 return (reg_val & mask);
1335}
1336
1337void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1338{
1339 struct rcv_queue *rq;
1340
1341#define GET_RQ_STATS(reg) \
1342 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1343 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1344
1345 rq = &nic->qs->rq[rq_idx];
1346 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1347 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1348}
1349
1350void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1351{
1352 struct snd_queue *sq;
1353
1354#define GET_SQ_STATS(reg) \
1355 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1356 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1357
1358 sq = &nic->qs->sq[sq_idx];
1359 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1360 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1361}
1362
1363/* Check for errors in the receive cmp.queue entry */
1364int nicvf_check_cqe_rx_errs(struct nicvf *nic,
1365 struct cmp_queue *cq, struct cqe_rx_t *cqe_rx)
1366{
1367 struct cmp_queue_stats *stats = &cq->stats;
1368
1369 if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
1370 stats->rx.errop.good++;
1371 return 0;
1372 }
1373
1374 if (netif_msg_rx_err(nic))
1375 netdev_err(nic->netdev,
1376 "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1377 nic->netdev->name,
1378 cqe_rx->err_level, cqe_rx->err_opcode);
1379
1380 switch (cqe_rx->err_level) {
1381 case CQ_ERRLVL_MAC:
1382 stats->rx.errlvl.mac_errs++;
1383 break;
1384 case CQ_ERRLVL_L2:
1385 stats->rx.errlvl.l2_errs++;
1386 break;
1387 case CQ_ERRLVL_L3:
1388 stats->rx.errlvl.l3_errs++;
1389 break;
1390 case CQ_ERRLVL_L4:
1391 stats->rx.errlvl.l4_errs++;
1392 break;
1393 }
1394
1395 switch (cqe_rx->err_opcode) {
1396 case CQ_RX_ERROP_RE_PARTIAL:
1397 stats->rx.errop.partial_pkts++;
1398 break;
1399 case CQ_RX_ERROP_RE_JABBER:
1400 stats->rx.errop.jabber_errs++;
1401 break;
1402 case CQ_RX_ERROP_RE_FCS:
1403 stats->rx.errop.fcs_errs++;
1404 break;
1405 case CQ_RX_ERROP_RE_TERMINATE:
1406 stats->rx.errop.terminate_errs++;
1407 break;
1408 case CQ_RX_ERROP_RE_RX_CTL:
1409 stats->rx.errop.bgx_rx_errs++;
1410 break;
1411 case CQ_RX_ERROP_PREL2_ERR:
1412 stats->rx.errop.prel2_errs++;
1413 break;
1414 case CQ_RX_ERROP_L2_FRAGMENT:
1415 stats->rx.errop.l2_frags++;
1416 break;
1417 case CQ_RX_ERROP_L2_OVERRUN:
1418 stats->rx.errop.l2_overruns++;
1419 break;
1420 case CQ_RX_ERROP_L2_PFCS:
1421 stats->rx.errop.l2_pfcs++;
1422 break;
1423 case CQ_RX_ERROP_L2_PUNY:
1424 stats->rx.errop.l2_puny++;
1425 break;
1426 case CQ_RX_ERROP_L2_MAL:
1427 stats->rx.errop.l2_hdr_malformed++;
1428 break;
1429 case CQ_RX_ERROP_L2_OVERSIZE:
1430 stats->rx.errop.l2_oversize++;
1431 break;
1432 case CQ_RX_ERROP_L2_UNDERSIZE:
1433 stats->rx.errop.l2_undersize++;
1434 break;
1435 case CQ_RX_ERROP_L2_LENMISM:
1436 stats->rx.errop.l2_len_mismatch++;
1437 break;
1438 case CQ_RX_ERROP_L2_PCLP:
1439 stats->rx.errop.l2_pclp++;
1440 break;
1441 case CQ_RX_ERROP_IP_NOT:
1442 stats->rx.errop.non_ip++;
1443 break;
1444 case CQ_RX_ERROP_IP_CSUM_ERR:
1445 stats->rx.errop.ip_csum_err++;
1446 break;
1447 case CQ_RX_ERROP_IP_MAL:
1448 stats->rx.errop.ip_hdr_malformed++;
1449 break;
1450 case CQ_RX_ERROP_IP_MALD:
1451 stats->rx.errop.ip_payload_malformed++;
1452 break;
1453 case CQ_RX_ERROP_IP_HOP:
1454 stats->rx.errop.ip_hop_errs++;
1455 break;
1456 case CQ_RX_ERROP_L3_ICRC:
1457 stats->rx.errop.l3_icrc_errs++;
1458 break;
1459 case CQ_RX_ERROP_L3_PCLP:
1460 stats->rx.errop.l3_pclp++;
1461 break;
1462 case CQ_RX_ERROP_L4_MAL:
1463 stats->rx.errop.l4_malformed++;
1464 break;
1465 case CQ_RX_ERROP_L4_CHK:
1466 stats->rx.errop.l4_csum_errs++;
1467 break;
1468 case CQ_RX_ERROP_UDP_LEN:
1469 stats->rx.errop.udp_len_err++;
1470 break;
1471 case CQ_RX_ERROP_L4_PORT:
1472 stats->rx.errop.bad_l4_port++;
1473 break;
1474 case CQ_RX_ERROP_TCP_FLAG:
1475 stats->rx.errop.bad_tcp_flag++;
1476 break;
1477 case CQ_RX_ERROP_TCP_OFFSET:
1478 stats->rx.errop.tcp_offset_errs++;
1479 break;
1480 case CQ_RX_ERROP_L4_PCLP:
1481 stats->rx.errop.l4_pclp++;
1482 break;
1483 case CQ_RX_ERROP_RBDR_TRUNC:
1484 stats->rx.errop.pkt_truncated++;
1485 break;
1486 }
1487
1488 return 1;
1489}
1490
1491/* Check for errors in the send cmp.queue entry */
1492int nicvf_check_cqe_tx_errs(struct nicvf *nic,
1493 struct cmp_queue *cq, struct cqe_send_t *cqe_tx)
1494{
1495 struct cmp_queue_stats *stats = &cq->stats;
1496
1497 switch (cqe_tx->send_status) {
1498 case CQ_TX_ERROP_GOOD:
1499 stats->tx.good++;
1500 return 0;
1501 case CQ_TX_ERROP_DESC_FAULT:
1502 stats->tx.desc_fault++;
1503 break;
1504 case CQ_TX_ERROP_HDR_CONS_ERR:
1505 stats->tx.hdr_cons_err++;
1506 break;
1507 case CQ_TX_ERROP_SUBDC_ERR:
1508 stats->tx.subdesc_err++;
1509 break;
1510 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1511 stats->tx.imm_size_oflow++;
1512 break;
1513 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1514 stats->tx.data_seq_err++;
1515 break;
1516 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1517 stats->tx.mem_seq_err++;
1518 break;
1519 case CQ_TX_ERROP_LOCK_VIOL:
1520 stats->tx.lock_viol++;
1521 break;
1522 case CQ_TX_ERROP_DATA_FAULT:
1523 stats->tx.data_fault++;
1524 break;
1525 case CQ_TX_ERROP_TSTMP_CONFLICT:
1526 stats->tx.tstmp_conflict++;
1527 break;
1528 case CQ_TX_ERROP_TSTMP_TIMEOUT:
1529 stats->tx.tstmp_timeout++;
1530 break;
1531 case CQ_TX_ERROP_MEM_FAULT:
1532 stats->tx.mem_fault++;
1533 break;
1534 case CQ_TX_ERROP_CK_OVERLAP:
1535 stats->tx.csum_overlap++;
1536 break;
1537 case CQ_TX_ERROP_CK_OFLOW:
1538 stats->tx.csum_overflow++;
1539 break;
1540 }
1541
1542 return 1;
1543}