sweep the floors and convert some .get_drvinfo routines to strlcpy
[linux-2.6-block.git] / drivers / net / ethernet / adaptec / starfire.c
CommitLineData
1da177e4
LT
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
fdecea66 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
1da177e4
LT
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
03a8c661 25 [link no longer provides useful info -jgarzik]
1da177e4 26
1da177e4
LT
27*/
28
29#define DRV_NAME "starfire"
a6676019
FR
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
1da177e4 32
a6b7a407 33#include <linux/interrupt.h>
1da177e4
LT
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
fdecea66
JG
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
d7fe0f24 45#include <linux/mm.h>
cfc3a44c 46#include <linux/firmware.h>
1da177e4
LT
47#include <asm/processor.h> /* Processor type for cache alignment. */
48#include <asm/uaccess.h>
49#include <asm/io.h>
50
1da177e4
LT
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
67974231
IB
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
1da177e4
LT
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
1da177e4 67#define ZEROCOPY
1da177e4
LT
68
69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70#define VLAN_SUPPORT
71#endif
72
1da177e4
LT
73/* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
f71e1309 85static const int multicast_filter_limit = 512;
1da177e4 86/* Whether to do TCP/UDP checksums in hardware */
1da177e4 87static int enable_hw_cksum = 1;
1da177e4
LT
88
89#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
117/* Used to pass the media type, etc.
118 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119 The media type is usually passed in 'options[]'.
120 These variables are deprecated, use ethtool instead. -Ion
121*/
122#define MAX_UNITS 8 /* More are supported, limit only on options */
123static int options[MAX_UNITS] = {0, };
124static int full_duplex[MAX_UNITS] = {0, };
125
126/* Operational parameters that are set at compile time. */
127
128/* The "native" ring sizes are either 256 or 2048.
129 However in some modes a descriptor may be marked to wrap the ring earlier.
130*/
131#define RX_RING_SIZE 256
132#define TX_RING_SIZE 32
133/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134#define DONE_Q_SIZE 1024
135/* All queues must be aligned on a 256-byte boundary */
136#define QUEUE_ALIGN 256
137
138#if RX_RING_SIZE > 256
139#define RX_Q_ENTRIES Rx2048QEntries
140#else
141#define RX_Q_ENTRIES Rx256QEntries
142#endif
143
144/* Operational parameters that usually are not changed. */
145/* Time in jiffies before concluding the transmitter is hung. */
146#define TX_TIMEOUT (2 * HZ)
147
1591cb60 148#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1da177e4
LT
149/* 64-bit dma_addr_t */
150#define ADDR_64BITS /* This chip uses 64 bit addresses. */
88b1943b 151#define netdrv_addr_t __le64
1da177e4
LT
152#define cpu_to_dma(x) cpu_to_le64(x)
153#define dma_to_cpu(x) le64_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158#define RX_DESC_ADDR_SIZE RxDescAddr64bit
159#else /* 32-bit dma_addr_t */
88b1943b 160#define netdrv_addr_t __le32
1da177e4
LT
161#define cpu_to_dma(x) cpu_to_le32(x)
162#define dma_to_cpu(x) le32_to_cpu(x)
163#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167#define RX_DESC_ADDR_SIZE RxDescAddr32bit
168#endif
169
1da177e4
LT
170#define skb_first_frag_len(skb) skb_headlen(skb)
171#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
1da177e4 172
cfc3a44c
JSR
173/* Firmware names */
174#define FIRMWARE_RX "adaptec/starfire_rx.bin"
175#define FIRMWARE_TX "adaptec/starfire_tx.bin"
176
1da177e4 177/* These identify the driver base version and may not be removed. */
b5defaa5 178static const char version[] __devinitconst =
1da177e4 179KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
ad361c98 180" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
1da177e4
LT
181
182MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184MODULE_LICENSE("GPL");
fdecea66 185MODULE_VERSION(DRV_VERSION);
cfc3a44c
JSR
186MODULE_FIRMWARE(FIRMWARE_RX);
187MODULE_FIRMWARE(FIRMWARE_TX);
1da177e4
LT
188
189module_param(max_interrupt_work, int, 0);
190module_param(mtu, int, 0);
191module_param(debug, int, 0);
192module_param(rx_copybreak, int, 0);
193module_param(intr_latency, int, 0);
194module_param(small_frames, int, 0);
195module_param_array(options, int, NULL, 0);
196module_param_array(full_duplex, int, NULL, 0);
197module_param(enable_hw_cksum, int, 0);
198MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199MODULE_PARM_DESC(mtu, "MTU (all boards)");
200MODULE_PARM_DESC(debug, "Debug level (0-6)");
201MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
207
208/*
209 Theory of Operation
210
211I. Board Compatibility
212
213This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
214
215II. Board-specific settings
216
217III. Driver operation
218
219IIIa. Ring buffers
220
221The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
222ring sizes are set fixed by the hardware, but may optionally be wrapped
223earlier by the END bit in the descriptor.
224This driver uses that hardware queue size for the Rx ring, where a large
225number of entries has no ill effect beyond increases the potential backlog.
226The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227disables the queue layer priority ordering and we have no mechanism to
228utilize the hardware two-level priority queue. When modifying the
229RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230levels.
231
232IIIb/c. Transmit/Receive Structure
233
234See the Adaptec manual for the many possible structures, and options for
235each structure. There are far too many to document all of them here.
236
237For transmit this driver uses type 0/1 transmit descriptors (depending
238on the 32/64 bitness of the architecture), and relies on automatic
239minimum-length padding. It does not use the completion queue
240consumer index, but instead checks for non-zero status entries.
241
fdecea66 242For receive this driver uses type 2/3 receive descriptors. The driver
1da177e4
LT
243allocates full frame size skbuffs for the Rx ring buffers, so all frames
244should fit in a single descriptor. The driver does not use the completion
245queue consumer index, but instead checks for non-zero status entries.
246
247When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248is allocated and the frame is copied to the new skbuff. When the incoming
249frame is larger, the skbuff is passed directly up the protocol stack.
250Buffers consumed this way are replaced by newly allocated skbuffs in a later
251phase of receive.
252
253A notable aspect of operation is that unaligned buffers are not permitted by
254the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
255isn't longword aligned, which may cause problems on some machine
256e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257the frame into a new skbuff unconditionally. Copied frames are put into the
258skbuff at an offset of "+2", thus 16-byte aligning the IP header.
259
260IIId. Synchronization
261
262The driver runs as two independent, single-threaded flows of control. One
263is the send-packet routine, which enforces single-threaded use by the
264dev->tbusy flag. The other thread is the interrupt handler, which is single
265threaded by the hardware and interrupt handling software.
266
267The send packet thread has partial control over the Tx ring and the netif_queue
268status. If the number of free Tx slots in the ring falls below a certain number
269(currently hardcoded to 4), it signals the upper layer to stop the queue.
270
271The interrupt handler has exclusive control over the Rx ring and records stats
272from the Tx ring. After reaping the stats, it marks the Tx queue entry as
273empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274number of free Tx slow is above the threshold, it signals the upper layer to
275restart the queue.
276
277IV. Notes
278
279IVb. References
280
281The Adaptec Starfire manuals, available only from Adaptec.
282http://www.scyld.com/expert/100mbps.html
283http://www.scyld.com/expert/NWay.html
284
285IVc. Errata
286
287- StopOnPerr is broken, don't enable
288- Hardware ethernet padding exposes random data, perform software padding
289 instead (unverified -- works correctly for all the hardware I have)
290
291*/
292
fdecea66 293
1da177e4
LT
294
295enum chip_capability_flags {CanHaveMII=1, };
296
297enum chipset {
298 CH_6915 = 0,
299};
300
a3aa1884 301static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
d08336e9 302 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
1da177e4
LT
303 { 0, }
304};
305MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
306
307/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
f71e1309 308static const struct chip_info {
1da177e4
LT
309 const char *name;
310 int drv_flags;
311} netdrv_tbl[] __devinitdata = {
312 { "Adaptec Starfire 6915", CanHaveMII },
313};
314
315
316/* Offsets to the device registers.
317 Unlike software-only systems, device drivers interact with complex hardware.
318 It's not useful to define symbolic names for every register bit in the
319 device. The name can only partially document the semantics and make
320 the driver longer and more difficult to read.
321 In general, only the important configuration values or bits changed
322 multiple times should be defined symbolically.
323*/
324enum register_offsets {
325 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
331 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 TxThreshold=0x500B0,
333 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 TxMode=0x55000, VlanType=0x55064,
339 PerfFilterTable=0x56000, HashTable=0x56100,
340 TxGfpMem=0x58000, RxGfpMem=0x5a000,
341};
342
343/*
344 * Bits in the interrupt status/mask registers.
345 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346 * enables all the interrupt sources that are or'ed into those status bits.
347 */
348enum intr_status_bits {
349 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 IntrTxGfp=0x02, IntrPCIPad=0x01,
363 /* not quite bits */
364 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
367};
368
369/* Bits in the RxFilterMode register. */
370enum rx_mode_bits {
371 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 WakeupOnGFP=0x0800,
375};
376
377/* Bits in the TxMode register */
378enum tx_mode_bits {
379 MiiSoftReset=0x8000, MIILoopback=0x4000,
380 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
382};
383
384/* Bits in the TxDescCtrl register. */
385enum tx_ctrl_bits {
386 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 TxDescSpace128=0x30, TxDescSpace256=0x40,
388 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 TxDescType3=0x03, TxDescType4=0x04,
390 TxNoDMACompletion=0x08,
391 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 TxDMABurstSizeShift=8,
394};
395
396/* Bits in the RxDescQCtrl register. */
397enum rx_ctrl_bits {
398 RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 Rx2048QEntries=0x4000, Rx256QEntries=0,
401 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 RxDescSpace4=0x000, RxDescSpace8=0x100,
404 RxDescSpace16=0x200, RxDescSpace32=0x300,
405 RxDescSpace64=0x400, RxDescSpace128=0x500,
406 RxConsumerWrEn=0x80,
407};
408
409/* Bits in the RxDMACtrl register. */
410enum rx_dmactrl_bits {
411 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 RxChecksumRejectTCPOnly=0x01000000,
416 RxCompletionQ2Enable=0x800000,
417 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 RxDMAQ2NonIP=0x400000,
420 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 RxBurstSizeShift=0,
423};
424
425/* Bits in the RxCompletionAddr register */
426enum rx_compl_bits {
427 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 RxComplProducerWrEn=0x40,
429 RxComplType0=0x00, RxComplType1=0x10,
430 RxComplType2=0x20, RxComplType3=0x30,
431 RxComplThreshShift=0,
432};
433
434/* Bits in the TxCompletionAddr register */
435enum tx_compl_bits {
436 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 TxComplProducerWrEn=0x40,
438 TxComplIntrStatus=0x20,
439 CommonQueueMode=0x10,
440 TxComplThreshShift=0,
441};
442
443/* Bits in the GenCtrl register */
444enum gen_ctrl_bits {
445 RxEnable=0x05, TxEnable=0x0a,
446 RxGFPEnable=0x10, TxGFPEnable=0x20,
447};
448
449/* Bits in the IntrTimerCtrl register */
450enum intr_ctrl_bits {
451 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 IntrLatencyMask=0x1f,
454};
455
456/* The Rx and Tx buffer descriptors. */
457struct starfire_rx_desc {
88b1943b 458 netdrv_addr_t rxaddr;
1da177e4
LT
459};
460enum rx_desc_bits {
461 RxDescValid=1, RxDescEndRing=2,
462};
463
464/* Completion queue entry. */
465struct short_rx_done_desc {
88b1943b 466 __le32 status; /* Low 16 bits is length. */
1da177e4
LT
467};
468struct basic_rx_done_desc {
88b1943b
AV
469 __le32 status; /* Low 16 bits is length. */
470 __le16 vlanid;
471 __le16 status2;
1da177e4
LT
472};
473struct csum_rx_done_desc {
88b1943b
AV
474 __le32 status; /* Low 16 bits is length. */
475 __le16 csum; /* Partial checksum */
476 __le16 status2;
1da177e4
LT
477};
478struct full_rx_done_desc {
88b1943b
AV
479 __le32 status; /* Low 16 bits is length. */
480 __le16 status3;
481 __le16 status2;
482 __le16 vlanid;
483 __le16 csum; /* partial checksum */
484 __le32 timestamp;
1da177e4
LT
485};
486/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
1da177e4
LT
487#ifdef VLAN_SUPPORT
488typedef struct full_rx_done_desc rx_done_desc;
489#define RxComplType RxComplType3
490#else /* not VLAN_SUPPORT */
491typedef struct csum_rx_done_desc rx_done_desc;
492#define RxComplType RxComplType2
493#endif /* not VLAN_SUPPORT */
1da177e4
LT
494
495enum rx_done_bits {
496 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
497};
498
499/* Type 1 Tx descriptor. */
500struct starfire_tx_desc_1 {
88b1943b
AV
501 __le32 status; /* Upper bits are status, lower 16 length. */
502 __le32 addr;
1da177e4
LT
503};
504
505/* Type 2 Tx descriptor. */
506struct starfire_tx_desc_2 {
88b1943b
AV
507 __le32 status; /* Upper bits are status, lower 16 length. */
508 __le32 reserved;
509 __le64 addr;
1da177e4
LT
510};
511
512#ifdef ADDR_64BITS
513typedef struct starfire_tx_desc_2 starfire_tx_desc;
514#define TX_DESC_TYPE TxDescType2
515#else /* not ADDR_64BITS */
516typedef struct starfire_tx_desc_1 starfire_tx_desc;
517#define TX_DESC_TYPE TxDescType1
518#endif /* not ADDR_64BITS */
519#define TX_DESC_SPACING TxDescSpaceUnlim
520
521enum tx_desc_bits {
522 TxDescID=0xB0000000,
523 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
525};
526struct tx_done_desc {
88b1943b 527 __le32 status; /* timestamp, index. */
1da177e4 528#if 0
88b1943b 529 __le32 intrstatus; /* interrupt status */
1da177e4
LT
530#endif
531};
532
533struct rx_ring_info {
534 struct sk_buff *skb;
535 dma_addr_t mapping;
536};
537struct tx_ring_info {
538 struct sk_buff *skb;
539 dma_addr_t mapping;
540 unsigned int used_slots;
541};
542
543#define PHY_CNT 2
544struct netdev_private {
545 /* Descriptor rings first for alignment. */
546 struct starfire_rx_desc *rx_ring;
547 starfire_tx_desc *tx_ring;
548 dma_addr_t rx_ring_dma;
549 dma_addr_t tx_ring_dma;
550 /* The addresses of rx/tx-in-place skbuffs. */
551 struct rx_ring_info rx_info[RX_RING_SIZE];
552 struct tx_ring_info tx_info[TX_RING_SIZE];
553 /* Pointers to completion queues (full pages). */
554 rx_done_desc *rx_done_q;
555 dma_addr_t rx_done_q_dma;
556 unsigned int rx_done;
557 struct tx_done_desc *tx_done_q;
558 dma_addr_t tx_done_q_dma;
559 unsigned int tx_done;
bea3348e
SH
560 struct napi_struct napi;
561 struct net_device *dev;
1da177e4
LT
562 struct pci_dev *pci_dev;
563#ifdef VLAN_SUPPORT
5da96be5 564 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
1da177e4
LT
565#endif
566 void *queue_mem;
567 dma_addr_t queue_mem_dma;
568 size_t queue_mem_size;
569
570 /* Frequently used values: keep some adjacent for cache effect. */
571 spinlock_t lock;
572 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
573 unsigned int cur_tx, dirty_tx, reap_tx;
574 unsigned int rx_buf_sz; /* Based on MTU+slack. */
575 /* These values keep track of the transceiver/media in use. */
576 int speed100; /* Set if speed == 100MBit. */
577 u32 tx_mode;
578 u32 intr_timer_ctrl;
579 u8 tx_threshold;
580 /* MII transceiver section. */
581 struct mii_if_info mii_if; /* MII lib hooks/info */
582 int phy_cnt; /* MII device addresses. */
583 unsigned char phys[PHY_CNT]; /* MII device addresses. */
584 void __iomem *base;
585};
586
587
588static int mdio_read(struct net_device *dev, int phy_id, int location);
589static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
590static int netdev_open(struct net_device *dev);
591static void check_duplex(struct net_device *dev);
592static void tx_timeout(struct net_device *dev);
593static void init_ring(struct net_device *dev);
61357325 594static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 595static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
596static void netdev_error(struct net_device *dev, int intr_status);
597static int __netdev_rx(struct net_device *dev, int *quota);
a6676019 598static int netdev_poll(struct napi_struct *napi, int budget);
1da177e4
LT
599static void refill_rx_ring(struct net_device *dev);
600static void netdev_error(struct net_device *dev, int intr_status);
601static void set_rx_mode(struct net_device *dev);
602static struct net_device_stats *get_stats(struct net_device *dev);
603static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604static int netdev_close(struct net_device *dev);
605static void netdev_media_change(struct net_device *dev);
7282d491 606static const struct ethtool_ops ethtool_ops;
1da177e4
LT
607
608
609#ifdef VLAN_SUPPORT
1da177e4
LT
610static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
611{
612 struct netdev_private *np = netdev_priv(dev);
613
614 spin_lock(&np->lock);
615 if (debug > 1)
616 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
5da96be5 617 set_bit(vid, np->active_vlans);
1da177e4
LT
618 set_rx_mode(dev);
619 spin_unlock(&np->lock);
620}
621
622static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
623{
624 struct netdev_private *np = netdev_priv(dev);
625
626 spin_lock(&np->lock);
627 if (debug > 1)
628 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
5da96be5 629 clear_bit(vid, np->active_vlans);
1da177e4
LT
630 set_rx_mode(dev);
631 spin_unlock(&np->lock);
632}
633#endif /* VLAN_SUPPORT */
634
635
4fc8006e
SH
636static const struct net_device_ops netdev_ops = {
637 .ndo_open = netdev_open,
638 .ndo_stop = netdev_close,
639 .ndo_start_xmit = start_tx,
5da96be5
JP
640 .ndo_tx_timeout = tx_timeout,
641 .ndo_get_stats = get_stats,
afc4b13d 642 .ndo_set_rx_mode = set_rx_mode,
5da96be5 643 .ndo_do_ioctl = netdev_ioctl,
4fc8006e 644 .ndo_change_mtu = eth_change_mtu,
5da96be5 645 .ndo_set_mac_address = eth_mac_addr,
4fc8006e
SH
646 .ndo_validate_addr = eth_validate_addr,
647#ifdef VLAN_SUPPORT
4fc8006e
SH
648 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
649 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
650#endif
651};
652
1da177e4
LT
653static int __devinit starfire_init_one(struct pci_dev *pdev,
654 const struct pci_device_id *ent)
655{
656 struct netdev_private *np;
657 int i, irq, option, chip_idx = ent->driver_data;
658 struct net_device *dev;
659 static int card_idx = -1;
660 long ioaddr;
661 void __iomem *base;
662 int drv_flags, io_size;
663 int boguscnt;
664
665/* when built into the kernel, we only print version if device is found */
666#ifndef MODULE
667 static int printed_version;
668 if (!printed_version++)
669 printk(version);
670#endif
671
672 card_idx++;
673
674 if (pci_enable_device (pdev))
675 return -EIO;
676
677 ioaddr = pci_resource_start(pdev, 0);
678 io_size = pci_resource_len(pdev, 0);
679 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
680 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
681 return -ENODEV;
682 }
683
684 dev = alloc_etherdev(sizeof(*np));
685 if (!dev) {
686 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
687 return -ENOMEM;
688 }
1da177e4
LT
689 SET_NETDEV_DEV(dev, &pdev->dev);
690
691 irq = pdev->irq;
692
693 if (pci_request_regions (pdev, DRV_NAME)) {
694 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
695 goto err_out_free_netdev;
696 }
697
1da177e4
LT
698 base = ioremap(ioaddr, io_size);
699 if (!base) {
700 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
701 card_idx, io_size, ioaddr);
702 goto err_out_free_res;
703 }
704
705 pci_set_master(pdev);
706
707 /* enable MWI -- it vastly improves Rx performance on sparc64 */
694625c0 708 pci_try_set_mwi(pdev);
1da177e4 709
1da177e4
LT
710#ifdef ZEROCOPY
711 /* Starfire can do TCP/UDP checksumming */
712 if (enable_hw_cksum)
fdecea66 713 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1da177e4 714#endif /* ZEROCOPY */
4fc8006e 715
1da177e4
LT
716#ifdef VLAN_SUPPORT
717 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
1da177e4
LT
718#endif /* VLAN_RX_KILL_VID */
719#ifdef ADDR_64BITS
720 dev->features |= NETIF_F_HIGHDMA;
721#endif /* ADDR_64BITS */
722
723 /* Serial EEPROM reads are hidden by the hardware. */
724 for (i = 0; i < 6; i++)
725 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
726
727#if ! defined(final_version) /* Dump the EEPROM contents during development. */
728 if (debug > 4)
729 for (i = 0; i < 0x20; i++)
730 printk("%2.2x%s",
731 (unsigned int)readb(base + EEPROMCtrl + i),
732 i % 16 != 15 ? " " : "\n");
733#endif
734
735 /* Issue soft reset */
736 writel(MiiSoftReset, base + TxMode);
737 udelay(1000);
738 writel(0, base + TxMode);
739
740 /* Reset the chip to erase previous misconfiguration. */
741 writel(1, base + PCIDeviceConfig);
742 boguscnt = 1000;
743 while (--boguscnt > 0) {
744 udelay(10);
745 if ((readl(base + PCIDeviceConfig) & 1) == 0)
746 break;
747 }
748 if (boguscnt == 0)
749 printk("%s: chipset reset never completed!\n", dev->name);
750 /* wait a little longer */
751 udelay(1000);
752
753 dev->base_addr = (unsigned long)base;
754 dev->irq = irq;
755
756 np = netdev_priv(dev);
bea3348e 757 np->dev = dev;
1da177e4
LT
758 np->base = base;
759 spin_lock_init(&np->lock);
760 pci_set_drvdata(pdev, dev);
761
762 np->pci_dev = pdev;
763
764 np->mii_if.dev = dev;
765 np->mii_if.mdio_read = mdio_read;
766 np->mii_if.mdio_write = mdio_write;
767 np->mii_if.phy_id_mask = 0x1f;
768 np->mii_if.reg_num_mask = 0x1f;
769
770 drv_flags = netdrv_tbl[chip_idx].drv_flags;
771
772 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
773 if (dev->mem_start)
774 option = dev->mem_start;
775
776 /* The lower four bits are the media type. */
777 if (option & 0x200)
778 np->mii_if.full_duplex = 1;
779
780 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
781 np->mii_if.full_duplex = 1;
782
783 if (np->mii_if.full_duplex)
784 np->mii_if.force_media = 1;
785 else
786 np->mii_if.force_media = 0;
787 np->speed100 = 1;
788
789 /* timer resolution is 128 * 0.8us */
790 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
791 Timer10X | EnableIntrMasking;
792
793 if (small_frames > 0) {
794 np->intr_timer_ctrl |= SmallFrameBypass;
795 switch (small_frames) {
796 case 1 ... 64:
797 np->intr_timer_ctrl |= SmallFrame64;
798 break;
799 case 65 ... 128:
800 np->intr_timer_ctrl |= SmallFrame128;
801 break;
802 case 129 ... 256:
803 np->intr_timer_ctrl |= SmallFrame256;
804 break;
805 default:
806 np->intr_timer_ctrl |= SmallFrame512;
807 if (small_frames > 512)
808 printk("Adjusting small_frames down to 512\n");
809 break;
810 }
811 }
812
4fc8006e 813 dev->netdev_ops = &netdev_ops;
fdecea66 814 dev->watchdog_timeo = TX_TIMEOUT;
1da177e4
LT
815 SET_ETHTOOL_OPS(dev, &ethtool_ops);
816
4fc8006e
SH
817 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
818
1da177e4
LT
819 if (mtu)
820 dev->mtu = mtu;
821
822 if (register_netdev(dev))
823 goto err_out_cleardev;
824
e174961c 825 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 826 dev->name, netdrv_tbl[chip_idx].name, base,
e174961c 827 dev->dev_addr, irq);
1da177e4
LT
828
829 if (drv_flags & CanHaveMII) {
830 int phy, phy_idx = 0;
831 int mii_status;
832 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
833 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
834 mdelay(100);
835 boguscnt = 1000;
836 while (--boguscnt > 0)
837 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
838 break;
839 if (boguscnt == 0) {
fdecea66 840 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1da177e4
LT
841 continue;
842 }
843 mii_status = mdio_read(dev, phy, MII_BMSR);
844 if (mii_status != 0) {
845 np->phys[phy_idx++] = phy;
846 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
847 printk(KERN_INFO "%s: MII PHY found at address %d, status "
848 "%#4.4x advertising %#4.4x.\n",
849 dev->name, phy, mii_status, np->mii_if.advertising);
850 /* there can be only one PHY on-board */
851 break;
852 }
853 }
854 np->phy_cnt = phy_idx;
855 if (np->phy_cnt > 0)
856 np->mii_if.phy_id = np->phys[0];
857 else
858 memset(&np->mii_if, 0, sizeof(np->mii_if));
859 }
860
861 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
862 dev->name, enable_hw_cksum ? "enabled" : "disabled");
863 return 0;
864
865err_out_cleardev:
866 pci_set_drvdata(pdev, NULL);
867 iounmap(base);
868err_out_free_res:
869 pci_release_regions (pdev);
870err_out_free_netdev:
871 free_netdev(dev);
872 return -ENODEV;
873}
874
875
876/* Read the MII Management Data I/O (MDIO) interfaces. */
877static int mdio_read(struct net_device *dev, int phy_id, int location)
878{
879 struct netdev_private *np = netdev_priv(dev);
880 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
881 int result, boguscnt=1000;
882 /* ??? Should we add a busy-wait here? */
e4c3c13c 883 do {
1da177e4 884 result = readl(mdio_addr);
e4c3c13c 885 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1da177e4
LT
886 if (boguscnt == 0)
887 return 0;
888 if ((result & 0xffff) == 0xffff)
889 return 0;
890 return result & 0xffff;
891}
892
893
894static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
895{
896 struct netdev_private *np = netdev_priv(dev);
897 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
898 writel(value, mdio_addr);
899 /* The busy-wait will occur before a read. */
900}
901
902
903static int netdev_open(struct net_device *dev)
904{
cfc3a44c
JSR
905 const struct firmware *fw_rx, *fw_tx;
906 const __be32 *fw_rx_data, *fw_tx_data;
1da177e4
LT
907 struct netdev_private *np = netdev_priv(dev);
908 void __iomem *ioaddr = np->base;
909 int i, retval;
cfc3a44c 910 size_t tx_size, rx_size;
1da177e4
LT
911 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
912
913 /* Do we ever need to reset the chip??? */
fdecea66 914
a0607fd3 915 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
916 if (retval)
917 return retval;
918
919 /* Disable the Rx and Tx, and reset the chip. */
920 writel(0, ioaddr + GenCtrl);
921 writel(1, ioaddr + PCIDeviceConfig);
922 if (debug > 1)
923 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
924 dev->name, dev->irq);
925
926 /* Allocate the various queues. */
88b1943b 927 if (!np->queue_mem) {
1da177e4
LT
928 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
929 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
930 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
931 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
932 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
933 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
d8840ac9
AD
934 if (np->queue_mem == NULL) {
935 free_irq(dev->irq, dev);
1da177e4 936 return -ENOMEM;
d8840ac9 937 }
1da177e4
LT
938
939 np->tx_done_q = np->queue_mem;
940 np->tx_done_q_dma = np->queue_mem_dma;
941 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
942 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
943 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
944 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
945 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
946 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
947 }
948
949 /* Start with no carrier, it gets adjusted later */
950 netif_carrier_off(dev);
951 init_ring(dev);
952 /* Set the size of the Rx buffers. */
953 writel((np->rx_buf_sz << RxBufferLenShift) |
954 (0 << RxMinDescrThreshShift) |
955 RxPrefetchMode | RxVariableQ |
956 RX_Q_ENTRIES |
957 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
958 RxDescSpace4,
959 ioaddr + RxDescQCtrl);
960
961 /* Set up the Rx DMA controller. */
962 writel(RxChecksumIgnore |
963 (0 << RxEarlyIntThreshShift) |
964 (6 << RxHighPrioThreshShift) |
965 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
966 ioaddr + RxDMACtrl);
967
968 /* Set Tx descriptor */
969 writel((2 << TxHiPriFIFOThreshShift) |
970 (0 << TxPadLenShift) |
971 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
972 TX_DESC_Q_ADDR_SIZE |
973 TX_DESC_SPACING | TX_DESC_TYPE,
974 ioaddr + TxDescCtrl);
975
976 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
977 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
978 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
979 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
980 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
981
982 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
983 writel(np->rx_done_q_dma |
984 RxComplType |
985 (0 << RxComplThreshShift),
986 ioaddr + RxCompletionAddr);
987
988 if (debug > 1)
989 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
990
991 /* Fill both the Tx SA register and the Rx perfect filter. */
992 for (i = 0; i < 6; i++)
993 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
994 /* The first entry is special because it bypasses the VLAN filter.
995 Don't use it. */
996 writew(0, ioaddr + PerfFilterTable);
997 writew(0, ioaddr + PerfFilterTable + 4);
998 writew(0, ioaddr + PerfFilterTable + 8);
999 for (i = 1; i < 16; i++) {
88b1943b 1000 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1001 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
88b1943b
AV
1002 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1003 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1004 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1da177e4
LT
1005 }
1006
1007 /* Initialize other registers. */
1008 /* Configure the PCI bus bursts and FIFO thresholds. */
1009 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1010 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1011 udelay(1000);
1012 writel(np->tx_mode, ioaddr + TxMode);
1013 np->tx_threshold = 4;
1014 writel(np->tx_threshold, ioaddr + TxThreshold);
1015
1016 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1017
bea3348e 1018 napi_enable(&np->napi);
a6676019 1019
1da177e4
LT
1020 netif_start_queue(dev);
1021
1022 if (debug > 1)
1023 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1024 set_rx_mode(dev);
1025
1026 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1027 check_duplex(dev);
1028
1029 /* Enable GPIO interrupts on link change */
1030 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1031
1032 /* Set the interrupt mask */
1033 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1034 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1035 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1036 ioaddr + IntrEnable);
1037 /* Enable PCI interrupts. */
1038 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1039 ioaddr + PCIDeviceConfig);
1040
1041#ifdef VLAN_SUPPORT
1042 /* Set VLAN type to 802.1q */
1043 writel(ETH_P_8021Q, ioaddr + VlanType);
1044#endif /* VLAN_SUPPORT */
1045
cfc3a44c
JSR
1046 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1047 if (retval) {
1048 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1049 FIRMWARE_RX);
c928febf 1050 goto out_init;
cfc3a44c
JSR
1051 }
1052 if (fw_rx->size % 4) {
1053 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1054 fw_rx->size, FIRMWARE_RX);
1055 retval = -EINVAL;
1056 goto out_rx;
1057 }
1058 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1059 if (retval) {
1060 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1061 FIRMWARE_TX);
1062 goto out_rx;
1063 }
1064 if (fw_tx->size % 4) {
1065 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1066 fw_tx->size, FIRMWARE_TX);
1067 retval = -EINVAL;
1068 goto out_tx;
1069 }
1070 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1071 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1072 rx_size = fw_rx->size / 4;
1073 tx_size = fw_tx->size / 4;
1074
1da177e4 1075 /* Load Rx/Tx firmware into the frame processors */
cfc3a44c
JSR
1076 for (i = 0; i < rx_size; i++)
1077 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1078 for (i = 0; i < tx_size; i++)
1079 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1da177e4
LT
1080 if (enable_hw_cksum)
1081 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1082 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1083 else
1084 /* Enable the Rx and Tx units only. */
1085 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1086
1087 if (debug > 1)
1088 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1089 dev->name);
1090
cfc3a44c
JSR
1091out_tx:
1092 release_firmware(fw_tx);
1093out_rx:
1094 release_firmware(fw_rx);
c928febf
BH
1095out_init:
1096 if (retval)
1097 netdev_close(dev);
cfc3a44c 1098 return retval;
1da177e4
LT
1099}
1100
1101
1102static void check_duplex(struct net_device *dev)
1103{
1104 struct netdev_private *np = netdev_priv(dev);
1105 u16 reg0;
1106 int silly_count = 1000;
1107
1108 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1109 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1110 udelay(500);
1111 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1112 /* do nothing */;
1113 if (!silly_count) {
1114 printk("%s: MII reset failed!\n", dev->name);
1115 return;
1116 }
1117
1118 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1119
1120 if (!np->mii_if.force_media) {
1121 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1122 } else {
1123 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1124 if (np->speed100)
1125 reg0 |= BMCR_SPEED100;
1126 if (np->mii_if.full_duplex)
1127 reg0 |= BMCR_FULLDPLX;
1128 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1129 dev->name,
1130 np->speed100 ? "100" : "10",
1131 np->mii_if.full_duplex ? "full" : "half");
1132 }
1133 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1134}
1135
1136
1137static void tx_timeout(struct net_device *dev)
1138{
1139 struct netdev_private *np = netdev_priv(dev);
1140 void __iomem *ioaddr = np->base;
1141 int old_debug;
1142
1143 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1144 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1145
1146 /* Perhaps we should reinitialize the hardware here. */
1147
1148 /*
1149 * Stop and restart the interface.
1150 * Cheat and increase the debug level temporarily.
1151 */
1152 old_debug = debug;
1153 debug = 2;
1154 netdev_close(dev);
1155 netdev_open(dev);
1156 debug = old_debug;
1157
1158 /* Trigger an immediate transmit demand. */
1159
1ae5dc34 1160 dev->trans_start = jiffies; /* prevent tx timeout */
86678a20 1161 dev->stats.tx_errors++;
1da177e4
LT
1162 netif_wake_queue(dev);
1163}
1164
1165
1166/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1167static void init_ring(struct net_device *dev)
1168{
1169 struct netdev_private *np = netdev_priv(dev);
1170 int i;
1171
1172 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1173 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1174
1175 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1176
1177 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1178 for (i = 0; i < RX_RING_SIZE; i++) {
1179 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1180 np->rx_info[i].skb = skb;
1181 if (skb == NULL)
1182 break;
689be439 1183 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1184 skb->dev = dev; /* Mark as being used by this device. */
1185 /* Grrr, we cannot offset to correctly align the IP header. */
1186 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1187 }
1188 writew(i - 1, np->base + RxDescQIdx);
1189 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1190
1191 /* Clear the remainder of the Rx buffer ring. */
1192 for ( ; i < RX_RING_SIZE; i++) {
1193 np->rx_ring[i].rxaddr = 0;
1194 np->rx_info[i].skb = NULL;
1195 np->rx_info[i].mapping = 0;
1196 }
1197 /* Mark the last entry as wrapping the ring. */
1198 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1199
1200 /* Clear the completion rings. */
1201 for (i = 0; i < DONE_Q_SIZE; i++) {
1202 np->rx_done_q[i].status = 0;
1203 np->tx_done_q[i].status = 0;
1204 }
1205
1206 for (i = 0; i < TX_RING_SIZE; i++)
1207 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1da177e4
LT
1208}
1209
1210
61357325 1211static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1212{
1213 struct netdev_private *np = netdev_priv(dev);
1214 unsigned int entry;
1215 u32 status;
1216 int i;
1217
1da177e4
LT
1218 /*
1219 * be cautious here, wrapping the queue has weird semantics
1220 * and we may not have enough slots even when it seems we do.
1221 */
1222 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1223 netif_stop_queue(dev);
5b548140 1224 return NETDEV_TX_BUSY;
1da177e4
LT
1225 }
1226
1227#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
84fa7933 1228 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5b057c6b 1229 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
67974231 1230 return NETDEV_TX_OK;
1da177e4
LT
1231 }
1232#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1233
1234 entry = np->cur_tx % TX_RING_SIZE;
1235 for (i = 0; i < skb_num_frags(skb); i++) {
1236 int wrap_ring = 0;
1237 status = TxDescID;
1238
1239 if (i == 0) {
1240 np->tx_info[entry].skb = skb;
1241 status |= TxCRCEn;
1242 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1243 status |= TxRingWrap;
1244 wrap_ring = 1;
1245 }
1246 if (np->reap_tx) {
1247 status |= TxDescIntr;
1248 np->reap_tx = 0;
1249 }
84fa7933 1250 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4 1251 status |= TxCalTCP;
86678a20 1252 dev->stats.tx_compressed++;
1da177e4
LT
1253 }
1254 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1255
1256 np->tx_info[entry].mapping =
1257 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1258 } else {
9e903e08
ED
1259 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1260 status |= skb_frag_size(this_frag);
1da177e4 1261 np->tx_info[entry].mapping =
0cd83cc0
IC
1262 pci_map_single(np->pci_dev,
1263 skb_frag_address(this_frag),
9e903e08 1264 skb_frag_size(this_frag),
0cd83cc0 1265 PCI_DMA_TODEVICE);
1da177e4
LT
1266 }
1267
1268 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1269 np->tx_ring[entry].status = cpu_to_le32(status);
1270 if (debug > 3)
1271 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1272 dev->name, np->cur_tx, np->dirty_tx,
1273 entry, status);
1274 if (wrap_ring) {
1275 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1276 np->cur_tx += np->tx_info[entry].used_slots;
1277 entry = 0;
1278 } else {
1279 np->tx_info[entry].used_slots = 1;
1280 np->cur_tx += np->tx_info[entry].used_slots;
1281 entry++;
1282 }
1283 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1284 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1285 np->reap_tx = 1;
1286 }
1287
1288 /* Non-x86: explicitly flush descriptor cache lines here. */
1289 /* Ensure all descriptors are written back before the transmit is
1290 initiated. - Jes */
1291 wmb();
1292
1293 /* Update the producer index. */
1294 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1295
1296 /* 4 is arbitrary, but should be ok */
1297 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1298 netif_stop_queue(dev);
1299
6ed10654 1300 return NETDEV_TX_OK;
1da177e4
LT
1301}
1302
1303
1304/* The interrupt handler does all of the Rx thread work and cleans up
1305 after the Tx thread. */
7d12e780 1306static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1307{
1308 struct net_device *dev = dev_instance;
1309 struct netdev_private *np = netdev_priv(dev);
1310 void __iomem *ioaddr = np->base;
1311 int boguscnt = max_interrupt_work;
1312 int consumer;
1313 int tx_status;
1314 int handled = 0;
1315
1316 do {
1317 u32 intr_status = readl(ioaddr + IntrClear);
1318
1319 if (debug > 4)
1320 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1321 dev->name, intr_status);
1322
1323 if (intr_status == 0 || intr_status == (u32) -1)
1324 break;
1325
1326 handled = 1;
1327
a6676019
FR
1328 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1329 u32 enable;
1330
288379f0
BH
1331 if (likely(napi_schedule_prep(&np->napi))) {
1332 __napi_schedule(&np->napi);
a6676019
FR
1333 enable = readl(ioaddr + IntrEnable);
1334 enable &= ~(IntrRxDone | IntrRxEmpty);
1335 writel(enable, ioaddr + IntrEnable);
1336 /* flush PCI posting buffers */
1337 readl(ioaddr + IntrEnable);
1338 } else {
1339 /* Paranoia check */
1340 enable = readl(ioaddr + IntrEnable);
1341 if (enable & (IntrRxDone | IntrRxEmpty)) {
1342 printk(KERN_INFO
1343 "%s: interrupt while in poll!\n",
1344 dev->name);
1345 enable &= ~(IntrRxDone | IntrRxEmpty);
1346 writel(enable, ioaddr + IntrEnable);
1347 }
1348 }
1349 }
1da177e4
LT
1350
1351 /* Scavenge the skbuff list based on the Tx-done queue.
1352 There are redundant checks here that may be cleaned up
1353 after the driver has proven to be reliable. */
1354 consumer = readl(ioaddr + TxConsumerIdx);
1355 if (debug > 3)
1356 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1357 dev->name, consumer);
1358
1359 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1360 if (debug > 3)
1361 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1362 dev->name, np->dirty_tx, np->tx_done, tx_status);
1363 if ((tx_status & 0xe0000000) == 0xa0000000) {
86678a20 1364 dev->stats.tx_packets++;
1da177e4
LT
1365 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1366 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1367 struct sk_buff *skb = np->tx_info[entry].skb;
1368 np->tx_info[entry].skb = NULL;
1369 pci_unmap_single(np->pci_dev,
1370 np->tx_info[entry].mapping,
1371 skb_first_frag_len(skb),
1372 PCI_DMA_TODEVICE);
1373 np->tx_info[entry].mapping = 0;
1374 np->dirty_tx += np->tx_info[entry].used_slots;
1375 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1da177e4
LT
1376 {
1377 int i;
1378 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1379 pci_unmap_single(np->pci_dev,
1380 np->tx_info[entry].mapping,
9e903e08 1381 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1da177e4
LT
1382 PCI_DMA_TODEVICE);
1383 np->dirty_tx++;
1384 entry++;
1385 }
1386 }
fdecea66 1387
1da177e4
LT
1388 dev_kfree_skb_irq(skb);
1389 }
1390 np->tx_done_q[np->tx_done].status = 0;
1391 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1392 }
1393 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1394
1395 if (netif_queue_stopped(dev) &&
1396 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1397 /* The ring is no longer full, wake the queue. */
1398 netif_wake_queue(dev);
1399 }
1400
1401 /* Stats overflow */
1402 if (intr_status & IntrStatsMax)
1403 get_stats(dev);
1404
1405 /* Media change interrupt. */
1406 if (intr_status & IntrLinkChange)
1407 netdev_media_change(dev);
1408
1409 /* Abnormal error summary/uncommon events handlers. */
1410 if (intr_status & IntrAbnormalSummary)
1411 netdev_error(dev, intr_status);
1412
1413 if (--boguscnt < 0) {
1414 if (debug > 1)
1415 printk(KERN_WARNING "%s: Too much work at interrupt, "
1416 "status=%#8.8x.\n",
1417 dev->name, intr_status);
1418 break;
1419 }
1420 } while (1);
1421
1422 if (debug > 4)
1423 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1424 dev->name, (int) readl(ioaddr + IntrStatus));
1425 return IRQ_RETVAL(handled);
1426}
1427
1428
a6676019
FR
1429/*
1430 * This routine is logically part of the interrupt/poll handler, but separated
1431 * for clarity and better register allocation.
1432 */
1da177e4
LT
1433static int __netdev_rx(struct net_device *dev, int *quota)
1434{
1435 struct netdev_private *np = netdev_priv(dev);
1436 u32 desc_status;
1437 int retcode = 0;
1438
1439 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1440 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1441 struct sk_buff *skb;
1442 u16 pkt_len;
1443 int entry;
1444 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1445
1446 if (debug > 4)
1447 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1448 if (!(desc_status & RxOK)) {
fdecea66 1449 /* There was an error. */
1da177e4
LT
1450 if (debug > 2)
1451 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
86678a20 1452 dev->stats.rx_errors++;
1da177e4 1453 if (desc_status & RxFIFOErr)
86678a20 1454 dev->stats.rx_fifo_errors++;
1da177e4
LT
1455 goto next_rx;
1456 }
1457
1458 if (*quota <= 0) { /* out of rx quota */
1459 retcode = 1;
1460 goto out;
1461 }
1462 (*quota)--;
1463
1464 pkt_len = desc_status; /* Implicitly Truncate */
1465 entry = (desc_status >> 16) & 0x7ff;
1466
1467 if (debug > 4)
1468 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1469 /* Check if the packet is long enough to accept without copying
1470 to a minimally-sized skbuff. */
8e95a202
JP
1471 if (pkt_len < rx_copybreak &&
1472 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1da177e4
LT
1473 skb_reserve(skb, 2); /* 16 byte align the IP header */
1474 pci_dma_sync_single_for_cpu(np->pci_dev,
1475 np->rx_info[entry].mapping,
1476 pkt_len, PCI_DMA_FROMDEVICE);
8c7b7faa 1477 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1da177e4
LT
1478 pci_dma_sync_single_for_device(np->pci_dev,
1479 np->rx_info[entry].mapping,
1480 pkt_len, PCI_DMA_FROMDEVICE);
1481 skb_put(skb, pkt_len);
1482 } else {
1483 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1484 skb = np->rx_info[entry].skb;
1485 skb_put(skb, pkt_len);
1486 np->rx_info[entry].skb = NULL;
1487 np->rx_info[entry].mapping = 0;
1488 }
1489#ifndef final_version /* Remove after testing. */
1490 /* You will want this info for the initial debug. */
0795af57 1491 if (debug > 5) {
e174961c
JB
1492 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1493 skb->data, skb->data + 6,
0795af57
JP
1494 skb->data[12], skb->data[13]);
1495 }
1da177e4
LT
1496#endif
1497
1498 skb->protocol = eth_type_trans(skb, dev);
fdecea66 1499#ifdef VLAN_SUPPORT
1da177e4
LT
1500 if (debug > 4)
1501 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1502#endif
1da177e4
LT
1503 if (le16_to_cpu(desc->status2) & 0x0100) {
1504 skb->ip_summed = CHECKSUM_UNNECESSARY;
86678a20 1505 dev->stats.rx_compressed++;
1da177e4
LT
1506 }
1507 /*
1508 * This feature doesn't seem to be working, at least
1509 * with the two firmware versions I have. If the GFP sees
1510 * an IP fragment, it either ignores it completely, or reports
1511 * "bad checksum" on it.
1512 *
1513 * Maybe I missed something -- corrections are welcome.
1514 * Until then, the printk stays. :-) -Ion
1515 */
1516 else if (le16_to_cpu(desc->status2) & 0x0040) {
84fa7933 1517 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
1518 skb->csum = le16_to_cpu(desc->csum);
1519 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1520 }
1da177e4 1521#ifdef VLAN_SUPPORT
5da96be5 1522 if (le16_to_cpu(desc->status2) & 0x0200) {
a6676019
FR
1523 u16 vlid = le16_to_cpu(desc->vlanid);
1524
1525 if (debug > 4) {
1526 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1527 vlid);
1528 }
5da96be5
JP
1529 __vlan_hwaccel_put_tag(skb, vlid);
1530 }
1da177e4 1531#endif /* VLAN_SUPPORT */
5da96be5 1532 netif_receive_skb(skb);
86678a20 1533 dev->stats.rx_packets++;
1da177e4
LT
1534
1535 next_rx:
1536 np->cur_rx++;
1537 desc->status = 0;
1538 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1539 }
9a3de255
JP
1540
1541 if (*quota == 0) { /* out of rx quota */
1542 retcode = 1;
1543 goto out;
1544 }
1da177e4
LT
1545 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1546
1547 out:
1548 refill_rx_ring(dev);
1549 if (debug > 5)
1550 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1551 retcode, np->rx_done, desc_status);
1552 return retcode;
1553}
1554
bea3348e 1555static int netdev_poll(struct napi_struct *napi, int budget)
1da177e4 1556{
bea3348e
SH
1557 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1558 struct net_device *dev = np->dev;
1da177e4 1559 u32 intr_status;
1da177e4 1560 void __iomem *ioaddr = np->base;
bea3348e 1561 int quota = budget;
1da177e4
LT
1562
1563 do {
1564 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1565
bea3348e 1566 if (__netdev_rx(dev, &quota))
1da177e4
LT
1567 goto out;
1568
1569 intr_status = readl(ioaddr + IntrStatus);
1570 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1571
288379f0 1572 napi_complete(napi);
1da177e4
LT
1573 intr_status = readl(ioaddr + IntrEnable);
1574 intr_status |= IntrRxDone | IntrRxEmpty;
1575 writel(intr_status, ioaddr + IntrEnable);
1576
1577 out:
1578 if (debug > 5)
bea3348e
SH
1579 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1580 budget - quota);
1da177e4
LT
1581
1582 /* Restart Rx engine if stopped. */
bea3348e 1583 return budget - quota;
1da177e4 1584}
1da177e4
LT
1585
1586static void refill_rx_ring(struct net_device *dev)
1587{
1588 struct netdev_private *np = netdev_priv(dev);
1589 struct sk_buff *skb;
1590 int entry = -1;
1591
1592 /* Refill the Rx ring buffers. */
1593 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1594 entry = np->dirty_rx % RX_RING_SIZE;
1595 if (np->rx_info[entry].skb == NULL) {
1596 skb = dev_alloc_skb(np->rx_buf_sz);
1597 np->rx_info[entry].skb = skb;
1598 if (skb == NULL)
1599 break; /* Better luck next round. */
1600 np->rx_info[entry].mapping =
689be439 1601 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1602 skb->dev = dev; /* Mark as being used by this device. */
1603 np->rx_ring[entry].rxaddr =
1604 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1605 }
1606 if (entry == RX_RING_SIZE - 1)
1607 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1608 }
1609 if (entry >= 0)
1610 writew(entry, np->base + RxDescQIdx);
1611}
1612
1613
1614static void netdev_media_change(struct net_device *dev)
1615{
1616 struct netdev_private *np = netdev_priv(dev);
1617 void __iomem *ioaddr = np->base;
1618 u16 reg0, reg1, reg4, reg5;
1619 u32 new_tx_mode;
1620 u32 new_intr_timer_ctrl;
1621
1622 /* reset status first */
1623 mdio_read(dev, np->phys[0], MII_BMCR);
1624 mdio_read(dev, np->phys[0], MII_BMSR);
1625
1626 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1627 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1628
1629 if (reg1 & BMSR_LSTATUS) {
1630 /* link is up */
1631 if (reg0 & BMCR_ANENABLE) {
1632 /* autonegotiation is enabled */
1633 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1634 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1635 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1636 np->speed100 = 1;
1637 np->mii_if.full_duplex = 1;
1638 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1639 np->speed100 = 1;
1640 np->mii_if.full_duplex = 0;
1641 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1642 np->speed100 = 0;
1643 np->mii_if.full_duplex = 1;
1644 } else {
1645 np->speed100 = 0;
1646 np->mii_if.full_duplex = 0;
1647 }
1648 } else {
1649 /* autonegotiation is disabled */
1650 if (reg0 & BMCR_SPEED100)
1651 np->speed100 = 1;
1652 else
1653 np->speed100 = 0;
1654 if (reg0 & BMCR_FULLDPLX)
1655 np->mii_if.full_duplex = 1;
1656 else
1657 np->mii_if.full_duplex = 0;
1658 }
1659 netif_carrier_on(dev);
1660 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1661 dev->name,
1662 np->speed100 ? "100" : "10",
1663 np->mii_if.full_duplex ? "full" : "half");
1664
1665 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1666 if (np->mii_if.full_duplex)
1667 new_tx_mode |= FullDuplex;
1668 if (np->tx_mode != new_tx_mode) {
1669 np->tx_mode = new_tx_mode;
1670 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1671 udelay(1000);
1672 writel(np->tx_mode, ioaddr + TxMode);
1673 }
1674
1675 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1676 if (np->speed100)
1677 new_intr_timer_ctrl |= Timer10X;
1678 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1679 np->intr_timer_ctrl = new_intr_timer_ctrl;
1680 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1681 }
1682 } else {
1683 netif_carrier_off(dev);
1684 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1685 }
1686}
1687
1688
1689static void netdev_error(struct net_device *dev, int intr_status)
1690{
1691 struct netdev_private *np = netdev_priv(dev);
1692
1693 /* Came close to underrunning the Tx FIFO, increase threshold. */
1694 if (intr_status & IntrTxDataLow) {
1695 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1696 writel(++np->tx_threshold, np->base + TxThreshold);
1697 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1698 dev->name, np->tx_threshold * 16);
1699 } else
1700 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1701 }
1702 if (intr_status & IntrRxGFPDead) {
86678a20
KV
1703 dev->stats.rx_fifo_errors++;
1704 dev->stats.rx_errors++;
1da177e4
LT
1705 }
1706 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
86678a20
KV
1707 dev->stats.tx_fifo_errors++;
1708 dev->stats.tx_errors++;
1da177e4
LT
1709 }
1710 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1711 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1712 dev->name, intr_status);
1713}
1714
1715
1716static struct net_device_stats *get_stats(struct net_device *dev)
1717{
1718 struct netdev_private *np = netdev_priv(dev);
1719 void __iomem *ioaddr = np->base;
1720
1721 /* This adapter architecture needs no SMP locks. */
86678a20
KV
1722 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1723 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1724 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1725 dev->stats.tx_aborted_errors =
1da177e4 1726 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
86678a20
KV
1727 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1728 dev->stats.collisions =
1da177e4
LT
1729 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1730
1731 /* The chip only need report frame silently dropped. */
86678a20 1732 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1da177e4 1733 writew(0, ioaddr + RxDMAStatus);
86678a20
KV
1734 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1735 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1736 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1737 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1da177e4 1738
86678a20 1739 return &dev->stats;
1da177e4
LT
1740}
1741
5da96be5
JP
1742#ifdef VLAN_SUPPORT
1743static u32 set_vlan_mode(struct netdev_private *np)
1744{
1745 u32 ret = VlanMode;
1746 u16 vid;
1747 void __iomem *filter_addr = np->base + HashTable + 8;
1748 int vlan_count = 0;
1749
1750 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1751 if (vlan_count == 32)
1752 break;
1753 writew(vid, filter_addr);
1754 filter_addr += 16;
1755 vlan_count++;
1756 }
1757 if (vlan_count == 32) {
1758 ret |= PerfectFilterVlan;
1759 while (vlan_count < 32) {
1760 writew(0, filter_addr);
1761 filter_addr += 16;
1762 vlan_count++;
1763 }
1764 }
1765 return ret;
1766}
1767#endif /* VLAN_SUPPORT */
1da177e4 1768
1da177e4
LT
1769static void set_rx_mode(struct net_device *dev)
1770{
1771 struct netdev_private *np = netdev_priv(dev);
1772 void __iomem *ioaddr = np->base;
1773 u32 rx_mode = MinVLANPrio;
22bedad3 1774 struct netdev_hw_addr *ha;
1da177e4 1775 int i;
1da177e4 1776
5da96be5
JP
1777#ifdef VLAN_SUPPORT
1778 rx_mode |= set_vlan_mode(np);
1da177e4
LT
1779#endif /* VLAN_SUPPORT */
1780
1781 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1782 rx_mode |= AcceptAll;
4cd24eaf 1783 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1784 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1785 /* Too many to match, or accept all multicasts. */
1786 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
4cd24eaf 1787 } else if (netdev_mc_count(dev) <= 14) {
1da177e4
LT
1788 /* Use the 16 element perfect filter, skip first two entries. */
1789 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1790 __be16 *eaddrs;
22bedad3
JP
1791 netdev_for_each_mc_addr(ha, dev) {
1792 eaddrs = (__be16 *) ha->addr;
88b1943b
AV
1793 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1794 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1da177e4 1796 }
88b1943b 1797 eaddrs = (__be16 *)dev->dev_addr;
5508590c 1798 i = netdev_mc_count(dev) + 2;
1da177e4 1799 while (i++ < 16) {
88b1943b
AV
1800 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1801 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1802 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1803 }
1804 rx_mode |= AcceptBroadcast|PerfectFilter;
1805 } else {
1806 /* Must use a multicast hash table. */
1807 void __iomem *filter_addr;
88b1943b
AV
1808 __be16 *eaddrs;
1809 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1da177e4
LT
1810
1811 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3 1812 netdev_for_each_mc_addr(ha, dev) {
fdecea66
JG
1813 /* The chip uses the upper 9 CRC bits
1814 as index into the hash table */
22bedad3 1815 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
88b1943b 1816 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1da177e4
LT
1817
1818 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1819 }
1820 /* Clear the perfect filter list, skip first two entries. */
1821 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1822 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1823 for (i = 2; i < 16; i++) {
88b1943b
AV
1824 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1825 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1826 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1827 }
1828 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1829 writew(mc_filter[i], filter_addr);
1830 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1831 }
1832 writel(rx_mode, ioaddr + RxFilterMode);
1833}
1834
1835static int check_if_running(struct net_device *dev)
1836{
1837 if (!netif_running(dev))
1838 return -EINVAL;
1839 return 0;
1840}
1841
1842static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1843{
1844 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
1845 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1846 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1847 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
1848}
1849
1850static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1851{
1852 struct netdev_private *np = netdev_priv(dev);
1853 spin_lock_irq(&np->lock);
1854 mii_ethtool_gset(&np->mii_if, ecmd);
1855 spin_unlock_irq(&np->lock);
1856 return 0;
1857}
1858
1859static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1860{
1861 struct netdev_private *np = netdev_priv(dev);
1862 int res;
1863 spin_lock_irq(&np->lock);
1864 res = mii_ethtool_sset(&np->mii_if, ecmd);
1865 spin_unlock_irq(&np->lock);
1866 check_duplex(dev);
1867 return res;
1868}
1869
1870static int nway_reset(struct net_device *dev)
1871{
1872 struct netdev_private *np = netdev_priv(dev);
1873 return mii_nway_restart(&np->mii_if);
1874}
1875
1876static u32 get_link(struct net_device *dev)
1877{
1878 struct netdev_private *np = netdev_priv(dev);
1879 return mii_link_ok(&np->mii_if);
1880}
1881
1882static u32 get_msglevel(struct net_device *dev)
1883{
1884 return debug;
1885}
1886
1887static void set_msglevel(struct net_device *dev, u32 val)
1888{
1889 debug = val;
1890}
1891
7282d491 1892static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1893 .begin = check_if_running,
1894 .get_drvinfo = get_drvinfo,
1895 .get_settings = get_settings,
1896 .set_settings = set_settings,
1897 .nway_reset = nway_reset,
1898 .get_link = get_link,
1899 .get_msglevel = get_msglevel,
1900 .set_msglevel = set_msglevel,
1901};
1902
1903static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1904{
1905 struct netdev_private *np = netdev_priv(dev);
1906 struct mii_ioctl_data *data = if_mii(rq);
1907 int rc;
1908
1909 if (!netif_running(dev))
1910 return -EINVAL;
1911
1912 spin_lock_irq(&np->lock);
1913 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1914 spin_unlock_irq(&np->lock);
1915
1916 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1917 check_duplex(dev);
1918
1919 return rc;
1920}
1921
1922static int netdev_close(struct net_device *dev)
1923{
1924 struct netdev_private *np = netdev_priv(dev);
1925 void __iomem *ioaddr = np->base;
1926 int i;
1927
1928 netif_stop_queue(dev);
a6676019 1929
bea3348e 1930 napi_disable(&np->napi);
1da177e4
LT
1931
1932 if (debug > 1) {
1933 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1934 dev->name, (int) readl(ioaddr + IntrStatus));
1935 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1936 dev->name, np->cur_tx, np->dirty_tx,
1937 np->cur_rx, np->dirty_rx);
1938 }
1939
1940 /* Disable interrupts by clearing the interrupt mask. */
1941 writel(0, ioaddr + IntrEnable);
1942
1943 /* Stop the chip's Tx and Rx processes. */
1944 writel(0, ioaddr + GenCtrl);
1945 readl(ioaddr + GenCtrl);
1946
1947 if (debug > 5) {
1948 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1949 (long long) np->tx_ring_dma);
1950 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1951 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1952 i, le32_to_cpu(np->tx_ring[i].status),
1953 (long long) dma_to_cpu(np->tx_ring[i].addr),
1954 le32_to_cpu(np->tx_done_q[i].status));
1955 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1956 (long long) np->rx_ring_dma, np->rx_done_q);
1957 if (np->rx_done_q)
1958 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1959 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1960 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1961 }
1962 }
1963
1964 free_irq(dev->irq, dev);
1965
1966 /* Free all the skbuffs in the Rx queue. */
1967 for (i = 0; i < RX_RING_SIZE; i++) {
1968 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1969 if (np->rx_info[i].skb != NULL) {
1970 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1971 dev_kfree_skb(np->rx_info[i].skb);
1972 }
1973 np->rx_info[i].skb = NULL;
1974 np->rx_info[i].mapping = 0;
1975 }
1976 for (i = 0; i < TX_RING_SIZE; i++) {
1977 struct sk_buff *skb = np->tx_info[i].skb;
1978 if (skb == NULL)
1979 continue;
1980 pci_unmap_single(np->pci_dev,
1981 np->tx_info[i].mapping,
1982 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1983 np->tx_info[i].mapping = 0;
1984 dev_kfree_skb(skb);
1985 np->tx_info[i].skb = NULL;
1986 }
1987
1988 return 0;
1989}
1990
d4fbeabb
SR
1991#ifdef CONFIG_PM
1992static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1993{
1994 struct net_device *dev = pci_get_drvdata(pdev);
1995
1996 if (netif_running(dev)) {
1997 netif_device_detach(dev);
1998 netdev_close(dev);
1999 }
2000
2001 pci_save_state(pdev);
2002 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2003
2004 return 0;
2005}
2006
2007static int starfire_resume(struct pci_dev *pdev)
2008{
2009 struct net_device *dev = pci_get_drvdata(pdev);
6aa20a22 2010
d4fbeabb
SR
2011 pci_set_power_state(pdev, PCI_D0);
2012 pci_restore_state(pdev);
2013
2014 if (netif_running(dev)) {
2015 netdev_open(dev);
2016 netif_device_attach(dev);
2017 }
2018
2019 return 0;
2020}
2021#endif /* CONFIG_PM */
2022
1da177e4
LT
2023
2024static void __devexit starfire_remove_one (struct pci_dev *pdev)
2025{
2026 struct net_device *dev = pci_get_drvdata(pdev);
2027 struct netdev_private *np = netdev_priv(dev);
2028
5d9428de 2029 BUG_ON(!dev);
1da177e4
LT
2030
2031 unregister_netdev(dev);
2032
2033 if (np->queue_mem)
2034 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2035
2036
2037 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2038 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2039 pci_disable_device(pdev);
2040
2041 iounmap(np->base);
2042 pci_release_regions(pdev);
2043
2044 pci_set_drvdata(pdev, NULL);
2045 free_netdev(dev); /* Will also free np!! */
2046}
2047
2048
2049static struct pci_driver starfire_driver = {
2050 .name = DRV_NAME,
2051 .probe = starfire_init_one,
2052 .remove = __devexit_p(starfire_remove_one),
d4fbeabb
SR
2053#ifdef CONFIG_PM
2054 .suspend = starfire_suspend,
2055 .resume = starfire_resume,
2056#endif /* CONFIG_PM */
1da177e4
LT
2057 .id_table = starfire_pci_tbl,
2058};
2059
2060
2061static int __init starfire_init (void)
2062{
2063/* when a module, this is printed whether or not devices are found in probe */
2064#ifdef MODULE
2065 printk(version);
a6676019 2066
fdecea66 2067 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
fdecea66
JG
2068#endif
2069
56543af9 2070 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
67974231 2071
29917620 2072 return pci_register_driver(&starfire_driver);
1da177e4
LT
2073}
2074
2075
2076static void __exit starfire_cleanup (void)
2077{
2078 pci_unregister_driver (&starfire_driver);
2079}
2080
2081
2082module_init(starfire_init);
2083module_exit(starfire_cleanup);
2084
2085
2086/*
2087 * Local variables:
2088 * c-basic-offset: 8
2089 * tab-width: 8
2090 * End:
2091 */