e1000e: enable new 82567V-3 device
[linux-2.6-block.git] / drivers / net / e1000e / phy.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/delay.h>
30
31#include "e1000.h"
32
33static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36static s32 e1000_wait_autoneg(struct e1000_hw *hw);
97ac8cae
BA
37static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read);
a4f58f54
BA
40static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
bc7f75fa
AK
43
44/* Cable length tables */
45static const u16 e1000_m88_cable_length_table[] =
46 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
eb656d45
BA
47#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
bc7f75fa
AK
49
50static const u16 e1000_igp_2_cable_length_table[] =
51 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
58 124};
59#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
c00acf46 60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
bc7f75fa 61
a4f58f54
BA
62#define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64#define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
68
69#define HV_INTC_FC_PAGE_START 768
70#define I82578_ADDR_REG 29
71#define I82577_ADDR_REG 16
72#define I82577_CFG_REG 22
73#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75#define I82577_CTRL_REG 23
a4f58f54
BA
76
77/* 82577 specific PHY registers */
78#define I82577_PHY_CTRL_2 18
79#define I82577_PHY_STATUS_2 26
80#define I82577_PHY_DIAG_STATUS 31
81
82/* I82577 PHY Status 2 */
83#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84#define I82577_PHY_STATUS2_MDIX 0x0800
85#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
87
88/* I82577 PHY Control 2 */
89#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
91
92/* I82577 PHY Diagnostics Status */
93#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
95
96/* BM PHY Copper Specific Control 1 */
97#define BM_CS_CTRL1 16
98
a4f58f54
BA
99#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
102
bc7f75fa
AK
103/**
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
106 *
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
110 **/
111s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
112{
113 u32 manc;
114
115 manc = er32(MANC);
116
117 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
118 E1000_BLK_PHY_RESET : 0;
119}
120
121/**
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
124 *
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
127 **/
128s32 e1000e_get_phy_id(struct e1000_hw *hw)
129{
130 struct e1000_phy_info *phy = &hw->phy;
a4f58f54 131 s32 ret_val = 0;
bc7f75fa 132 u16 phy_id;
a4f58f54 133 u16 retry_count = 0;
bc7f75fa 134
94d8186a 135 if (!(phy->ops.read_reg))
a4f58f54 136 goto out;
bc7f75fa 137
a4f58f54
BA
138 while (retry_count < 2) {
139 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
140 if (ret_val)
141 goto out;
bc7f75fa 142
a4f58f54
BA
143 phy->id = (u32)(phy_id << 16);
144 udelay(20);
145 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
146 if (ret_val)
147 goto out;
bc7f75fa 148
a4f58f54
BA
149 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
150 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
151
152 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
153 goto out;
154
155 /*
156 * If the PHY ID is still unknown, we may have an 82577i
157 * without link. We will try again after setting Slow
158 * MDIC mode. No harm in trying again in this case since
159 * the PHY ID is unknown at this point anyway
160 */
94d8186a 161 ret_val = phy->ops.acquire(hw);
5ccdcecb
BA
162 if (ret_val)
163 goto out;
a4f58f54
BA
164 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
165 if (ret_val)
166 goto out;
94d8186a 167 phy->ops.release(hw);
a4f58f54
BA
168
169 retry_count++;
170 }
171out:
172 /* Revert to MDIO fast mode, if applicable */
5ccdcecb 173 if (retry_count) {
94d8186a 174 ret_val = phy->ops.acquire(hw);
5ccdcecb
BA
175 if (ret_val)
176 return ret_val;
a4f58f54 177 ret_val = e1000_set_mdio_slow_mode_hv(hw, false);
94d8186a 178 phy->ops.release(hw);
5ccdcecb 179 }
a4f58f54
BA
180
181 return ret_val;
bc7f75fa
AK
182}
183
184/**
185 * e1000e_phy_reset_dsp - Reset PHY DSP
186 * @hw: pointer to the HW structure
187 *
188 * Reset the digital signal processor.
189 **/
190s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
191{
192 s32 ret_val;
193
194 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
195 if (ret_val)
196 return ret_val;
197
198 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
199}
200
201/**
2d9498f3 202 * e1000e_read_phy_reg_mdic - Read MDI control register
bc7f75fa
AK
203 * @hw: pointer to the HW structure
204 * @offset: register offset to be read
205 * @data: pointer to the read data
206 *
489815ce 207 * Reads the MDI control register in the PHY at offset and stores the
bc7f75fa
AK
208 * information read to data.
209 **/
2d9498f3 210s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
bc7f75fa
AK
211{
212 struct e1000_phy_info *phy = &hw->phy;
213 u32 i, mdic = 0;
214
215 if (offset > MAX_PHY_REG_ADDRESS) {
3bb99fe2 216 e_dbg("PHY Address %d is out of range\n", offset);
bc7f75fa
AK
217 return -E1000_ERR_PARAM;
218 }
219
ad68076e
BA
220 /*
221 * Set up Op-code, Phy Address, and register offset in the MDI
bc7f75fa
AK
222 * Control register. The MAC will take care of interfacing with the
223 * PHY to retrieve the desired data.
224 */
225 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
226 (phy->addr << E1000_MDIC_PHY_SHIFT) |
227 (E1000_MDIC_OP_READ));
228
229 ew32(MDIC, mdic);
230
ad68076e
BA
231 /*
232 * Poll the ready bit to see if the MDI read completed
233 * Increasing the time out as testing showed failures with
234 * the lower time out
235 */
2d9498f3 236 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
bc7f75fa
AK
237 udelay(50);
238 mdic = er32(MDIC);
239 if (mdic & E1000_MDIC_READY)
240 break;
241 }
242 if (!(mdic & E1000_MDIC_READY)) {
3bb99fe2 243 e_dbg("MDI Read did not complete\n");
bc7f75fa
AK
244 return -E1000_ERR_PHY;
245 }
246 if (mdic & E1000_MDIC_ERROR) {
3bb99fe2 247 e_dbg("MDI Error\n");
bc7f75fa
AK
248 return -E1000_ERR_PHY;
249 }
250 *data = (u16) mdic;
251
252 return 0;
253}
254
255/**
2d9498f3 256 * e1000e_write_phy_reg_mdic - Write MDI control register
bc7f75fa
AK
257 * @hw: pointer to the HW structure
258 * @offset: register offset to write to
259 * @data: data to write to register at offset
260 *
261 * Writes data to MDI control register in the PHY at offset.
262 **/
2d9498f3 263s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
bc7f75fa
AK
264{
265 struct e1000_phy_info *phy = &hw->phy;
266 u32 i, mdic = 0;
267
268 if (offset > MAX_PHY_REG_ADDRESS) {
3bb99fe2 269 e_dbg("PHY Address %d is out of range\n", offset);
bc7f75fa
AK
270 return -E1000_ERR_PARAM;
271 }
272
ad68076e
BA
273 /*
274 * Set up Op-code, Phy Address, and register offset in the MDI
bc7f75fa
AK
275 * Control register. The MAC will take care of interfacing with the
276 * PHY to retrieve the desired data.
277 */
278 mdic = (((u32)data) |
279 (offset << E1000_MDIC_REG_SHIFT) |
280 (phy->addr << E1000_MDIC_PHY_SHIFT) |
281 (E1000_MDIC_OP_WRITE));
282
283 ew32(MDIC, mdic);
284
2d9498f3
DG
285 /*
286 * Poll the ready bit to see if the MDI read completed
287 * Increasing the time out as testing showed failures with
288 * the lower time out
289 */
290 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
291 udelay(50);
bc7f75fa
AK
292 mdic = er32(MDIC);
293 if (mdic & E1000_MDIC_READY)
294 break;
295 }
296 if (!(mdic & E1000_MDIC_READY)) {
3bb99fe2 297 e_dbg("MDI Write did not complete\n");
bc7f75fa
AK
298 return -E1000_ERR_PHY;
299 }
2d9498f3 300 if (mdic & E1000_MDIC_ERROR) {
3bb99fe2 301 e_dbg("MDI Error\n");
2d9498f3
DG
302 return -E1000_ERR_PHY;
303 }
bc7f75fa
AK
304
305 return 0;
306}
307
308/**
309 * e1000e_read_phy_reg_m88 - Read m88 PHY register
310 * @hw: pointer to the HW structure
311 * @offset: register offset to be read
312 * @data: pointer to the read data
313 *
314 * Acquires semaphore, if necessary, then reads the PHY register at offset
315 * and storing the retrieved information in data. Release any acquired
316 * semaphores before exiting.
317 **/
318s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
319{
320 s32 ret_val;
321
94d8186a 322 ret_val = hw->phy.ops.acquire(hw);
bc7f75fa
AK
323 if (ret_val)
324 return ret_val;
325
2d9498f3
DG
326 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
327 data);
bc7f75fa 328
94d8186a 329 hw->phy.ops.release(hw);
bc7f75fa
AK
330
331 return ret_val;
332}
333
334/**
335 * e1000e_write_phy_reg_m88 - Write m88 PHY register
336 * @hw: pointer to the HW structure
337 * @offset: register offset to write to
338 * @data: data to write at register offset
339 *
340 * Acquires semaphore, if necessary, then writes the data to PHY register
341 * at the offset. Release any acquired semaphores before exiting.
342 **/
343s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
344{
345 s32 ret_val;
346
94d8186a 347 ret_val = hw->phy.ops.acquire(hw);
bc7f75fa
AK
348 if (ret_val)
349 return ret_val;
350
2d9498f3
DG
351 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
352 data);
bc7f75fa 353
94d8186a 354 hw->phy.ops.release(hw);
bc7f75fa
AK
355
356 return ret_val;
357}
358
359/**
5ccdcecb 360 * __e1000e_read_phy_reg_igp - Read igp PHY register
bc7f75fa
AK
361 * @hw: pointer to the HW structure
362 * @offset: register offset to be read
363 * @data: pointer to the read data
5ccdcecb 364 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
365 *
366 * Acquires semaphore, if necessary, then reads the PHY register at offset
5ccdcecb 367 * and stores the retrieved information in data. Release any acquired
bc7f75fa
AK
368 * semaphores before exiting.
369 **/
5ccdcecb
BA
370static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
371 bool locked)
bc7f75fa 372{
5ccdcecb 373 s32 ret_val = 0;
bc7f75fa 374
5ccdcecb 375 if (!locked) {
94d8186a 376 if (!(hw->phy.ops.acquire))
5ccdcecb
BA
377 goto out;
378
94d8186a 379 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
380 if (ret_val)
381 goto out;
382 }
bc7f75fa
AK
383
384 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2d9498f3
DG
385 ret_val = e1000e_write_phy_reg_mdic(hw,
386 IGP01E1000_PHY_PAGE_SELECT,
387 (u16)offset);
5ccdcecb
BA
388 if (ret_val)
389 goto release;
bc7f75fa
AK
390 }
391
2d9498f3 392 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
5ccdcecb 393 data);
bc7f75fa 394
5ccdcecb
BA
395release:
396 if (!locked)
94d8186a 397 hw->phy.ops.release(hw);
5ccdcecb 398out:
bc7f75fa
AK
399 return ret_val;
400}
401
5ccdcecb
BA
402/**
403 * e1000e_read_phy_reg_igp - Read igp PHY register
404 * @hw: pointer to the HW structure
405 * @offset: register offset to be read
406 * @data: pointer to the read data
407 *
408 * Acquires semaphore then reads the PHY register at offset and stores the
409 * retrieved information in data.
410 * Release the acquired semaphore before exiting.
411 **/
412s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
413{
414 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
415}
416
417/**
418 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
419 * @hw: pointer to the HW structure
420 * @offset: register offset to be read
421 * @data: pointer to the read data
422 *
423 * Reads the PHY register at offset and stores the retrieved information
424 * in data. Assumes semaphore already acquired.
425 **/
426s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
427{
428 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
429}
430
bc7f75fa
AK
431/**
432 * e1000e_write_phy_reg_igp - Write igp PHY register
433 * @hw: pointer to the HW structure
434 * @offset: register offset to write to
435 * @data: data to write at register offset
5ccdcecb 436 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
437 *
438 * Acquires semaphore, if necessary, then writes the data to PHY register
439 * at the offset. Release any acquired semaphores before exiting.
440 **/
5ccdcecb
BA
441static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
442 bool locked)
bc7f75fa 443{
5ccdcecb 444 s32 ret_val = 0;
bc7f75fa 445
5ccdcecb 446 if (!locked) {
94d8186a 447 if (!(hw->phy.ops.acquire))
5ccdcecb
BA
448 goto out;
449
94d8186a 450 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
451 if (ret_val)
452 goto out;
453 }
bc7f75fa
AK
454
455 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2d9498f3
DG
456 ret_val = e1000e_write_phy_reg_mdic(hw,
457 IGP01E1000_PHY_PAGE_SELECT,
458 (u16)offset);
5ccdcecb
BA
459 if (ret_val)
460 goto release;
bc7f75fa
AK
461 }
462
2d9498f3
DG
463 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
464 data);
bc7f75fa 465
5ccdcecb
BA
466release:
467 if (!locked)
94d8186a 468 hw->phy.ops.release(hw);
bc7f75fa 469
5ccdcecb 470out:
bc7f75fa
AK
471 return ret_val;
472}
473
474/**
5ccdcecb
BA
475 * e1000e_write_phy_reg_igp - Write igp PHY register
476 * @hw: pointer to the HW structure
477 * @offset: register offset to write to
478 * @data: data to write at register offset
479 *
480 * Acquires semaphore then writes the data to PHY register
481 * at the offset. Release any acquired semaphores before exiting.
482 **/
483s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
484{
485 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
486}
487
488/**
489 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
490 * @hw: pointer to the HW structure
491 * @offset: register offset to write to
492 * @data: data to write at register offset
493 *
494 * Writes the data to PHY register at the offset.
495 * Assumes semaphore already acquired.
496 **/
497s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
498{
499 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
500}
501
502/**
503 * __e1000_read_kmrn_reg - Read kumeran register
bc7f75fa
AK
504 * @hw: pointer to the HW structure
505 * @offset: register offset to be read
506 * @data: pointer to the read data
5ccdcecb 507 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
508 *
509 * Acquires semaphore, if necessary. Then reads the PHY register at offset
510 * using the kumeran interface. The information retrieved is stored in data.
511 * Release any acquired semaphores before exiting.
512 **/
5ccdcecb
BA
513static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
514 bool locked)
bc7f75fa
AK
515{
516 u32 kmrnctrlsta;
5ccdcecb 517 s32 ret_val = 0;
bc7f75fa 518
5ccdcecb 519 if (!locked) {
94d8186a 520 if (!(hw->phy.ops.acquire))
5ccdcecb
BA
521 goto out;
522
94d8186a 523 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
524 if (ret_val)
525 goto out;
526 }
bc7f75fa
AK
527
528 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
529 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
530 ew32(KMRNCTRLSTA, kmrnctrlsta);
531
532 udelay(2);
533
534 kmrnctrlsta = er32(KMRNCTRLSTA);
535 *data = (u16)kmrnctrlsta;
536
5ccdcecb 537 if (!locked)
94d8186a 538 hw->phy.ops.release(hw);
bc7f75fa 539
5ccdcecb 540out:
bc7f75fa
AK
541 return ret_val;
542}
543
544/**
5ccdcecb
BA
545 * e1000e_read_kmrn_reg - Read kumeran register
546 * @hw: pointer to the HW structure
547 * @offset: register offset to be read
548 * @data: pointer to the read data
549 *
550 * Acquires semaphore then reads the PHY register at offset using the
551 * kumeran interface. The information retrieved is stored in data.
552 * Release the acquired semaphore before exiting.
553 **/
554s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
555{
556 return __e1000_read_kmrn_reg(hw, offset, data, false);
557}
558
559/**
1d5846b9 560 * e1000e_read_kmrn_reg_locked - Read kumeran register
5ccdcecb
BA
561 * @hw: pointer to the HW structure
562 * @offset: register offset to be read
563 * @data: pointer to the read data
564 *
565 * Reads the PHY register at offset using the kumeran interface. The
566 * information retrieved is stored in data.
567 * Assumes semaphore already acquired.
568 **/
1d5846b9 569s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
5ccdcecb
BA
570{
571 return __e1000_read_kmrn_reg(hw, offset, data, true);
572}
573
574/**
575 * __e1000_write_kmrn_reg - Write kumeran register
bc7f75fa
AK
576 * @hw: pointer to the HW structure
577 * @offset: register offset to write to
578 * @data: data to write at register offset
5ccdcecb 579 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
580 *
581 * Acquires semaphore, if necessary. Then write the data to PHY register
582 * at the offset using the kumeran interface. Release any acquired semaphores
583 * before exiting.
584 **/
5ccdcecb
BA
585static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
586 bool locked)
bc7f75fa
AK
587{
588 u32 kmrnctrlsta;
5ccdcecb 589 s32 ret_val = 0;
bc7f75fa 590
5ccdcecb 591 if (!locked) {
94d8186a 592 if (!(hw->phy.ops.acquire))
5ccdcecb
BA
593 goto out;
594
94d8186a 595 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
596 if (ret_val)
597 goto out;
598 }
bc7f75fa
AK
599
600 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
601 E1000_KMRNCTRLSTA_OFFSET) | data;
602 ew32(KMRNCTRLSTA, kmrnctrlsta);
603
604 udelay(2);
bc7f75fa 605
5ccdcecb 606 if (!locked)
94d8186a 607 hw->phy.ops.release(hw);
5ccdcecb
BA
608
609out:
bc7f75fa
AK
610 return ret_val;
611}
612
5ccdcecb
BA
613/**
614 * e1000e_write_kmrn_reg - Write kumeran register
615 * @hw: pointer to the HW structure
616 * @offset: register offset to write to
617 * @data: data to write at register offset
618 *
619 * Acquires semaphore then writes the data to the PHY register at the offset
620 * using the kumeran interface. Release the acquired semaphore before exiting.
621 **/
622s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
623{
624 return __e1000_write_kmrn_reg(hw, offset, data, false);
625}
626
627/**
1d5846b9 628 * e1000e_write_kmrn_reg_locked - Write kumeran register
5ccdcecb
BA
629 * @hw: pointer to the HW structure
630 * @offset: register offset to write to
631 * @data: data to write at register offset
632 *
633 * Write the data to PHY register at the offset using the kumeran interface.
634 * Assumes semaphore already acquired.
635 **/
1d5846b9 636s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
5ccdcecb
BA
637{
638 return __e1000_write_kmrn_reg(hw, offset, data, true);
639}
640
a4f58f54
BA
641/**
642 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
643 * @hw: pointer to the HW structure
644 *
645 * Sets up Carrier-sense on Transmit and downshift values.
646 **/
647s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
648{
649 struct e1000_phy_info *phy = &hw->phy;
650 s32 ret_val;
651 u16 phy_data;
652
653 /* Enable CRS on TX. This must be set for half-duplex operation. */
94d8186a 654 ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
a4f58f54
BA
655 if (ret_val)
656 goto out;
657
658 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
659
660 /* Enable downshift */
661 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
662
94d8186a 663 ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
a4f58f54
BA
664
665out:
666 return ret_val;
667}
668
bc7f75fa
AK
669/**
670 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
671 * @hw: pointer to the HW structure
672 *
673 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
674 * and downshift values are set also.
675 **/
676s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
677{
678 struct e1000_phy_info *phy = &hw->phy;
679 s32 ret_val;
680 u16 phy_data;
681
ad68076e 682 /* Enable CRS on Tx. This must be set for half-duplex operation. */
bc7f75fa
AK
683 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
684 if (ret_val)
685 return ret_val;
686
a4f58f54
BA
687 /* For BM PHY this bit is downshift enable */
688 if (phy->type != e1000_phy_bm)
2d9498f3 689 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
bc7f75fa 690
ad68076e
BA
691 /*
692 * Options:
bc7f75fa
AK
693 * MDI/MDI-X = 0 (default)
694 * 0 - Auto for all speeds
695 * 1 - MDI mode
696 * 2 - MDI-X mode
697 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
698 */
699 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
700
701 switch (phy->mdix) {
702 case 1:
703 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
704 break;
705 case 2:
706 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
707 break;
708 case 3:
709 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
710 break;
711 case 0:
712 default:
713 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
714 break;
715 }
716
ad68076e
BA
717 /*
718 * Options:
bc7f75fa
AK
719 * disable_polarity_correction = 0 (default)
720 * Automatic Correction for Reversed Cable Polarity
721 * 0 - Disabled
722 * 1 - Enabled
723 */
724 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
725 if (phy->disable_polarity_correction == 1)
726 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
727
97ac8cae
BA
728 /* Enable downshift on BM (disabled by default) */
729 if (phy->type == e1000_phy_bm)
730 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
731
bc7f75fa
AK
732 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
733 if (ret_val)
734 return ret_val;
735
4662e82b
BA
736 if ((phy->type == e1000_phy_m88) &&
737 (phy->revision < E1000_REVISION_4) &&
738 (phy->id != BME1000_E_PHY_ID_R2)) {
ad68076e
BA
739 /*
740 * Force TX_CLK in the Extended PHY Specific Control Register
bc7f75fa
AK
741 * to 25MHz clock.
742 */
743 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
744 if (ret_val)
745 return ret_val;
746
747 phy_data |= M88E1000_EPSCR_TX_CLK_25;
748
749 if ((phy->revision == 2) &&
750 (phy->id == M88E1111_I_PHY_ID)) {
751 /* 82573L PHY - set the downshift counter to 5x. */
752 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
753 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
754 } else {
755 /* Configure Master and Slave downshift values */
756 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
757 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
758 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
759 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
760 }
761 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
762 if (ret_val)
763 return ret_val;
764 }
765
4662e82b
BA
766 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
767 /* Set PHY page 0, register 29 to 0x0003 */
768 ret_val = e1e_wphy(hw, 29, 0x0003);
769 if (ret_val)
770 return ret_val;
771
772 /* Set PHY page 0, register 30 to 0x0000 */
773 ret_val = e1e_wphy(hw, 30, 0x0000);
774 if (ret_val)
775 return ret_val;
776 }
777
bc7f75fa
AK
778 /* Commit the changes. */
779 ret_val = e1000e_commit_phy(hw);
a4f58f54 780 if (ret_val) {
3bb99fe2 781 e_dbg("Error committing the PHY changes\n");
a4f58f54
BA
782 return ret_val;
783 }
bc7f75fa 784
a4f58f54 785 if (phy->type == e1000_phy_82578) {
94d8186a 786 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
a4f58f54
BA
787 &phy_data);
788 if (ret_val)
789 return ret_val;
790
791 /* 82578 PHY - set the downshift count to 1x. */
792 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
793 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
94d8186a 794 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
a4f58f54
BA
795 phy_data);
796 if (ret_val)
797 return ret_val;
798 }
799
800 return 0;
bc7f75fa
AK
801}
802
803/**
804 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
805 * @hw: pointer to the HW structure
806 *
807 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
808 * igp PHY's.
809 **/
810s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
811{
812 struct e1000_phy_info *phy = &hw->phy;
813 s32 ret_val;
814 u16 data;
815
816 ret_val = e1000_phy_hw_reset(hw);
817 if (ret_val) {
3bb99fe2 818 e_dbg("Error resetting the PHY.\n");
bc7f75fa
AK
819 return ret_val;
820 }
821
2d9498f3
DG
822 /*
823 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
824 * timeout issues when LFS is enabled.
825 */
826 msleep(100);
bc7f75fa
AK
827
828 /* disable lplu d0 during driver init */
564ea9bb 829 ret_val = e1000_set_d0_lplu_state(hw, false);
bc7f75fa 830 if (ret_val) {
3bb99fe2 831 e_dbg("Error Disabling LPLU D0\n");
bc7f75fa
AK
832 return ret_val;
833 }
834 /* Configure mdi-mdix settings */
835 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
836 if (ret_val)
837 return ret_val;
838
839 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
840
841 switch (phy->mdix) {
842 case 1:
843 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
844 break;
845 case 2:
846 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
847 break;
848 case 0:
849 default:
850 data |= IGP01E1000_PSCR_AUTO_MDIX;
851 break;
852 }
853 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
854 if (ret_val)
855 return ret_val;
856
857 /* set auto-master slave resolution settings */
858 if (hw->mac.autoneg) {
ad68076e
BA
859 /*
860 * when autonegotiation advertisement is only 1000Mbps then we
bc7f75fa 861 * should disable SmartSpeed and enable Auto MasterSlave
ad68076e
BA
862 * resolution as hardware default.
863 */
bc7f75fa
AK
864 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
865 /* Disable SmartSpeed */
866 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 867 &data);
bc7f75fa
AK
868 if (ret_val)
869 return ret_val;
870
871 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
872 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 873 data);
bc7f75fa
AK
874 if (ret_val)
875 return ret_val;
876
877 /* Set auto Master/Slave resolution process */
878 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
879 if (ret_val)
880 return ret_val;
881
882 data &= ~CR_1000T_MS_ENABLE;
883 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
884 if (ret_val)
885 return ret_val;
886 }
887
888 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
889 if (ret_val)
890 return ret_val;
891
892 /* load defaults for future use */
893 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
894 ((data & CR_1000T_MS_VALUE) ?
895 e1000_ms_force_master :
896 e1000_ms_force_slave) :
897 e1000_ms_auto;
898
899 switch (phy->ms_type) {
900 case e1000_ms_force_master:
901 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
902 break;
903 case e1000_ms_force_slave:
904 data |= CR_1000T_MS_ENABLE;
905 data &= ~(CR_1000T_MS_VALUE);
906 break;
907 case e1000_ms_auto:
908 data &= ~CR_1000T_MS_ENABLE;
909 default:
910 break;
911 }
912 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
913 }
914
915 return ret_val;
916}
917
918/**
919 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
920 * @hw: pointer to the HW structure
921 *
922 * Reads the MII auto-neg advertisement register and/or the 1000T control
923 * register and if the PHY is already setup for auto-negotiation, then
924 * return successful. Otherwise, setup advertisement and flow control to
925 * the appropriate values for the wanted auto-negotiation.
926 **/
927static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
928{
929 struct e1000_phy_info *phy = &hw->phy;
930 s32 ret_val;
931 u16 mii_autoneg_adv_reg;
932 u16 mii_1000t_ctrl_reg = 0;
933
934 phy->autoneg_advertised &= phy->autoneg_mask;
935
936 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
937 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
938 if (ret_val)
939 return ret_val;
940
941 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
942 /* Read the MII 1000Base-T Control Register (Address 9). */
943 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
944 if (ret_val)
945 return ret_val;
946 }
947
ad68076e
BA
948 /*
949 * Need to parse both autoneg_advertised and fc and set up
bc7f75fa
AK
950 * the appropriate PHY registers. First we will parse for
951 * autoneg_advertised software override. Since we can advertise
952 * a plethora of combinations, we need to check each bit
953 * individually.
954 */
955
ad68076e
BA
956 /*
957 * First we clear all the 10/100 mb speed bits in the Auto-Neg
bc7f75fa
AK
958 * Advertisement Register (Address 4) and the 1000 mb speed bits in
959 * the 1000Base-T Control Register (Address 9).
960 */
961 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
962 NWAY_AR_100TX_HD_CAPS |
963 NWAY_AR_10T_FD_CAPS |
964 NWAY_AR_10T_HD_CAPS);
965 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
966
3bb99fe2 967 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
bc7f75fa
AK
968
969 /* Do we want to advertise 10 Mb Half Duplex? */
970 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
3bb99fe2 971 e_dbg("Advertise 10mb Half duplex\n");
bc7f75fa
AK
972 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
973 }
974
975 /* Do we want to advertise 10 Mb Full Duplex? */
976 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
3bb99fe2 977 e_dbg("Advertise 10mb Full duplex\n");
bc7f75fa
AK
978 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
979 }
980
981 /* Do we want to advertise 100 Mb Half Duplex? */
982 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
3bb99fe2 983 e_dbg("Advertise 100mb Half duplex\n");
bc7f75fa
AK
984 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
985 }
986
987 /* Do we want to advertise 100 Mb Full Duplex? */
988 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
3bb99fe2 989 e_dbg("Advertise 100mb Full duplex\n");
bc7f75fa
AK
990 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
991 }
992
993 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
994 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
3bb99fe2 995 e_dbg("Advertise 1000mb Half duplex request denied!\n");
bc7f75fa
AK
996
997 /* Do we want to advertise 1000 Mb Full Duplex? */
998 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
3bb99fe2 999 e_dbg("Advertise 1000mb Full duplex\n");
bc7f75fa
AK
1000 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1001 }
1002
ad68076e
BA
1003 /*
1004 * Check for a software override of the flow control settings, and
bc7f75fa
AK
1005 * setup the PHY advertisement registers accordingly. If
1006 * auto-negotiation is enabled, then software will have to set the
1007 * "PAUSE" bits to the correct value in the Auto-Negotiation
1008 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1009 * negotiation.
1010 *
1011 * The possible values of the "fc" parameter are:
1012 * 0: Flow control is completely disabled
1013 * 1: Rx flow control is enabled (we can receive pause frames
1014 * but not send pause frames).
1015 * 2: Tx flow control is enabled (we can send pause frames
1016 * but we do not support receiving pause frames).
ad68076e 1017 * 3: Both Rx and Tx flow control (symmetric) are enabled.
bc7f75fa
AK
1018 * other: No software override. The flow control configuration
1019 * in the EEPROM is used.
1020 */
5c48ef3e 1021 switch (hw->fc.current_mode) {
bc7f75fa 1022 case e1000_fc_none:
ad68076e
BA
1023 /*
1024 * Flow control (Rx & Tx) is completely disabled by a
bc7f75fa
AK
1025 * software over-ride.
1026 */
1027 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1028 break;
1029 case e1000_fc_rx_pause:
ad68076e
BA
1030 /*
1031 * Rx Flow control is enabled, and Tx Flow control is
bc7f75fa 1032 * disabled, by a software over-ride.
ad68076e
BA
1033 *
1034 * Since there really isn't a way to advertise that we are
1035 * capable of Rx Pause ONLY, we will advertise that we
1036 * support both symmetric and asymmetric Rx PAUSE. Later
bc7f75fa
AK
1037 * (in e1000e_config_fc_after_link_up) we will disable the
1038 * hw's ability to send PAUSE frames.
1039 */
1040 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1041 break;
1042 case e1000_fc_tx_pause:
ad68076e
BA
1043 /*
1044 * Tx Flow control is enabled, and Rx Flow control is
bc7f75fa
AK
1045 * disabled, by a software over-ride.
1046 */
1047 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1048 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1049 break;
1050 case e1000_fc_full:
ad68076e
BA
1051 /*
1052 * Flow control (both Rx and Tx) is enabled by a software
bc7f75fa
AK
1053 * over-ride.
1054 */
1055 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1056 break;
1057 default:
3bb99fe2 1058 e_dbg("Flow control param set incorrectly\n");
bc7f75fa
AK
1059 ret_val = -E1000_ERR_CONFIG;
1060 return ret_val;
1061 }
1062
1063 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1064 if (ret_val)
1065 return ret_val;
1066
3bb99fe2 1067 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
bc7f75fa
AK
1068
1069 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1070 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1071 }
1072
1073 return ret_val;
1074}
1075
1076/**
1077 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1078 * @hw: pointer to the HW structure
1079 *
1080 * Performs initial bounds checking on autoneg advertisement parameter, then
1081 * configure to advertise the full capability. Setup the PHY to autoneg
1082 * and restart the negotiation process between the link partner. If
ad68076e 1083 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
bc7f75fa
AK
1084 **/
1085static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1086{
1087 struct e1000_phy_info *phy = &hw->phy;
1088 s32 ret_val;
1089 u16 phy_ctrl;
1090
ad68076e
BA
1091 /*
1092 * Perform some bounds checking on the autoneg advertisement
bc7f75fa
AK
1093 * parameter.
1094 */
1095 phy->autoneg_advertised &= phy->autoneg_mask;
1096
ad68076e
BA
1097 /*
1098 * If autoneg_advertised is zero, we assume it was not defaulted
bc7f75fa
AK
1099 * by the calling code so we set to advertise full capability.
1100 */
1101 if (phy->autoneg_advertised == 0)
1102 phy->autoneg_advertised = phy->autoneg_mask;
1103
3bb99fe2 1104 e_dbg("Reconfiguring auto-neg advertisement params\n");
bc7f75fa
AK
1105 ret_val = e1000_phy_setup_autoneg(hw);
1106 if (ret_val) {
3bb99fe2 1107 e_dbg("Error Setting up Auto-Negotiation\n");
bc7f75fa
AK
1108 return ret_val;
1109 }
3bb99fe2 1110 e_dbg("Restarting Auto-Neg\n");
bc7f75fa 1111
ad68076e
BA
1112 /*
1113 * Restart auto-negotiation by setting the Auto Neg Enable bit and
bc7f75fa
AK
1114 * the Auto Neg Restart bit in the PHY control register.
1115 */
1116 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1117 if (ret_val)
1118 return ret_val;
1119
1120 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1121 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1122 if (ret_val)
1123 return ret_val;
1124
ad68076e
BA
1125 /*
1126 * Does the user want to wait for Auto-Neg to complete here, or
bc7f75fa
AK
1127 * check at a later time (for example, callback routine).
1128 */
318a94d6 1129 if (phy->autoneg_wait_to_complete) {
bc7f75fa
AK
1130 ret_val = e1000_wait_autoneg(hw);
1131 if (ret_val) {
3bb99fe2 1132 e_dbg("Error while waiting for "
bc7f75fa
AK
1133 "autoneg to complete\n");
1134 return ret_val;
1135 }
1136 }
1137
1138 hw->mac.get_link_status = 1;
1139
1140 return ret_val;
1141}
1142
1143/**
1144 * e1000e_setup_copper_link - Configure copper link settings
1145 * @hw: pointer to the HW structure
1146 *
1147 * Calls the appropriate function to configure the link for auto-neg or forced
1148 * speed and duplex. Then we check for link, once link is established calls
1149 * to configure collision distance and flow control are called. If link is
1150 * not established, we return -E1000_ERR_PHY (-2).
1151 **/
1152s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1153{
1154 s32 ret_val;
1155 bool link;
1156
1157 if (hw->mac.autoneg) {
ad68076e
BA
1158 /*
1159 * Setup autoneg and flow control advertisement and perform
1160 * autonegotiation.
1161 */
bc7f75fa
AK
1162 ret_val = e1000_copper_link_autoneg(hw);
1163 if (ret_val)
1164 return ret_val;
1165 } else {
ad68076e
BA
1166 /*
1167 * PHY will be set to 10H, 10F, 100H or 100F
1168 * depending on user settings.
1169 */
3bb99fe2 1170 e_dbg("Forcing Speed and Duplex\n");
bc7f75fa
AK
1171 ret_val = e1000_phy_force_speed_duplex(hw);
1172 if (ret_val) {
3bb99fe2 1173 e_dbg("Error Forcing Speed and Duplex\n");
bc7f75fa
AK
1174 return ret_val;
1175 }
1176 }
1177
ad68076e
BA
1178 /*
1179 * Check link status. Wait up to 100 microseconds for link to become
bc7f75fa
AK
1180 * valid.
1181 */
1182 ret_val = e1000e_phy_has_link_generic(hw,
1183 COPPER_LINK_UP_LIMIT,
1184 10,
1185 &link);
1186 if (ret_val)
1187 return ret_val;
1188
1189 if (link) {
3bb99fe2 1190 e_dbg("Valid link established!!!\n");
bc7f75fa
AK
1191 e1000e_config_collision_dist(hw);
1192 ret_val = e1000e_config_fc_after_link_up(hw);
1193 } else {
3bb99fe2 1194 e_dbg("Unable to establish link!!!\n");
bc7f75fa
AK
1195 }
1196
1197 return ret_val;
1198}
1199
1200/**
1201 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1202 * @hw: pointer to the HW structure
1203 *
1204 * Calls the PHY setup function to force speed and duplex. Clears the
1205 * auto-crossover to force MDI manually. Waits for link and returns
1206 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1207 **/
1208s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1209{
1210 struct e1000_phy_info *phy = &hw->phy;
1211 s32 ret_val;
1212 u16 phy_data;
1213 bool link;
1214
1215 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1216 if (ret_val)
1217 return ret_val;
1218
1219 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1220
1221 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1222 if (ret_val)
1223 return ret_val;
1224
ad68076e
BA
1225 /*
1226 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
bc7f75fa
AK
1227 * forced whenever speed and duplex are forced.
1228 */
1229 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1230 if (ret_val)
1231 return ret_val;
1232
1233 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1234 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1235
1236 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1237 if (ret_val)
1238 return ret_val;
1239
3bb99fe2 1240 e_dbg("IGP PSCR: %X\n", phy_data);
bc7f75fa
AK
1241
1242 udelay(1);
1243
318a94d6 1244 if (phy->autoneg_wait_to_complete) {
3bb99fe2 1245 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
bc7f75fa
AK
1246
1247 ret_val = e1000e_phy_has_link_generic(hw,
1248 PHY_FORCE_LIMIT,
1249 100000,
1250 &link);
1251 if (ret_val)
1252 return ret_val;
1253
1254 if (!link)
3bb99fe2 1255 e_dbg("Link taking longer than expected.\n");
bc7f75fa
AK
1256
1257 /* Try once more */
1258 ret_val = e1000e_phy_has_link_generic(hw,
1259 PHY_FORCE_LIMIT,
1260 100000,
1261 &link);
1262 if (ret_val)
1263 return ret_val;
1264 }
1265
1266 return ret_val;
1267}
1268
1269/**
1270 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1271 * @hw: pointer to the HW structure
1272 *
1273 * Calls the PHY setup function to force speed and duplex. Clears the
1274 * auto-crossover to force MDI manually. Resets the PHY to commit the
1275 * changes. If time expires while waiting for link up, we reset the DSP.
ad68076e 1276 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
bc7f75fa
AK
1277 * successful completion, else return corresponding error code.
1278 **/
1279s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1280{
1281 struct e1000_phy_info *phy = &hw->phy;
1282 s32 ret_val;
1283 u16 phy_data;
1284 bool link;
1285
ad68076e
BA
1286 /*
1287 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
bc7f75fa
AK
1288 * forced whenever speed and duplex are forced.
1289 */
1290 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1291 if (ret_val)
1292 return ret_val;
1293
1294 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1295 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1296 if (ret_val)
1297 return ret_val;
1298
3bb99fe2 1299 e_dbg("M88E1000 PSCR: %X\n", phy_data);
bc7f75fa
AK
1300
1301 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1302 if (ret_val)
1303 return ret_val;
1304
1305 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1306
bc7f75fa
AK
1307 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1308 if (ret_val)
1309 return ret_val;
1310
5aa49c82
BA
1311 /* Reset the phy to commit changes. */
1312 ret_val = e1000e_commit_phy(hw);
1313 if (ret_val)
1314 return ret_val;
bc7f75fa 1315
318a94d6 1316 if (phy->autoneg_wait_to_complete) {
3bb99fe2 1317 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
bc7f75fa
AK
1318
1319 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1320 100000, &link);
1321 if (ret_val)
1322 return ret_val;
1323
1324 if (!link) {
ad68076e
BA
1325 /*
1326 * We didn't get link.
bc7f75fa
AK
1327 * Reset the DSP and cross our fingers.
1328 */
ad68076e
BA
1329 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1330 0x001d);
bc7f75fa
AK
1331 if (ret_val)
1332 return ret_val;
1333 ret_val = e1000e_phy_reset_dsp(hw);
1334 if (ret_val)
1335 return ret_val;
1336 }
1337
1338 /* Try once more */
1339 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1340 100000, &link);
1341 if (ret_val)
1342 return ret_val;
1343 }
1344
1345 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1346 if (ret_val)
1347 return ret_val;
1348
ad68076e
BA
1349 /*
1350 * Resetting the phy means we need to re-force TX_CLK in the
bc7f75fa
AK
1351 * Extended PHY Specific Control Register to 25MHz clock from
1352 * the reset value of 2.5MHz.
1353 */
1354 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1355 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1356 if (ret_val)
1357 return ret_val;
1358
ad68076e
BA
1359 /*
1360 * In addition, we must re-enable CRS on Tx for both half and full
bc7f75fa
AK
1361 * duplex.
1362 */
1363 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1364 if (ret_val)
1365 return ret_val;
1366
1367 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1368 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1369
1370 return ret_val;
1371}
1372
1373/**
1374 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1375 * @hw: pointer to the HW structure
1376 * @phy_ctrl: pointer to current value of PHY_CONTROL
1377 *
1378 * Forces speed and duplex on the PHY by doing the following: disable flow
1379 * control, force speed/duplex on the MAC, disable auto speed detection,
1380 * disable auto-negotiation, configure duplex, configure speed, configure
1381 * the collision distance, write configuration to CTRL register. The
1382 * caller must write to the PHY_CONTROL register for these settings to
1383 * take affect.
1384 **/
1385void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1386{
1387 struct e1000_mac_info *mac = &hw->mac;
1388 u32 ctrl;
1389
1390 /* Turn off flow control when forcing speed/duplex */
5c48ef3e 1391 hw->fc.current_mode = e1000_fc_none;
bc7f75fa
AK
1392
1393 /* Force speed/duplex on the mac */
1394 ctrl = er32(CTRL);
1395 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1396 ctrl &= ~E1000_CTRL_SPD_SEL;
1397
1398 /* Disable Auto Speed Detection */
1399 ctrl &= ~E1000_CTRL_ASDE;
1400
1401 /* Disable autoneg on the phy */
1402 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1403
1404 /* Forcing Full or Half Duplex? */
1405 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1406 ctrl &= ~E1000_CTRL_FD;
1407 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
3bb99fe2 1408 e_dbg("Half Duplex\n");
bc7f75fa
AK
1409 } else {
1410 ctrl |= E1000_CTRL_FD;
1411 *phy_ctrl |= MII_CR_FULL_DUPLEX;
3bb99fe2 1412 e_dbg("Full Duplex\n");
bc7f75fa
AK
1413 }
1414
1415 /* Forcing 10mb or 100mb? */
1416 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1417 ctrl |= E1000_CTRL_SPD_100;
1418 *phy_ctrl |= MII_CR_SPEED_100;
1419 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
3bb99fe2 1420 e_dbg("Forcing 100mb\n");
bc7f75fa
AK
1421 } else {
1422 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1423 *phy_ctrl |= MII_CR_SPEED_10;
1424 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
3bb99fe2 1425 e_dbg("Forcing 10mb\n");
bc7f75fa
AK
1426 }
1427
1428 e1000e_config_collision_dist(hw);
1429
1430 ew32(CTRL, ctrl);
1431}
1432
1433/**
1434 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1435 * @hw: pointer to the HW structure
1436 * @active: boolean used to enable/disable lplu
1437 *
1438 * Success returns 0, Failure returns 1
1439 *
1440 * The low power link up (lplu) state is set to the power management level D3
1441 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1442 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1443 * is used during Dx states where the power conservation is most important.
1444 * During driver activity, SmartSpeed should be enabled so performance is
1445 * maintained.
1446 **/
1447s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1448{
1449 struct e1000_phy_info *phy = &hw->phy;
1450 s32 ret_val;
1451 u16 data;
1452
1453 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1454 if (ret_val)
1455 return ret_val;
1456
1457 if (!active) {
1458 data &= ~IGP02E1000_PM_D3_LPLU;
2d9498f3 1459 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
bc7f75fa
AK
1460 if (ret_val)
1461 return ret_val;
ad68076e
BA
1462 /*
1463 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1464 * during Dx states where the power conservation is most
1465 * important. During driver activity we should enable
ad68076e
BA
1466 * SmartSpeed, so performance is maintained.
1467 */
bc7f75fa
AK
1468 if (phy->smart_speed == e1000_smart_speed_on) {
1469 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1470 &data);
bc7f75fa
AK
1471 if (ret_val)
1472 return ret_val;
1473
1474 data |= IGP01E1000_PSCFR_SMART_SPEED;
1475 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1476 data);
bc7f75fa
AK
1477 if (ret_val)
1478 return ret_val;
1479 } else if (phy->smart_speed == e1000_smart_speed_off) {
1480 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1481 &data);
bc7f75fa
AK
1482 if (ret_val)
1483 return ret_val;
1484
1485 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1486 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1487 data);
bc7f75fa
AK
1488 if (ret_val)
1489 return ret_val;
1490 }
1491 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1492 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1493 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1494 data |= IGP02E1000_PM_D3_LPLU;
1495 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1496 if (ret_val)
1497 return ret_val;
1498
1499 /* When LPLU is enabled, we should disable SmartSpeed */
1500 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1501 if (ret_val)
1502 return ret_val;
1503
1504 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1505 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1506 }
1507
1508 return ret_val;
1509}
1510
1511/**
489815ce 1512 * e1000e_check_downshift - Checks whether a downshift in speed occurred
bc7f75fa
AK
1513 * @hw: pointer to the HW structure
1514 *
1515 * Success returns 0, Failure returns 1
1516 *
1517 * A downshift is detected by querying the PHY link health.
1518 **/
1519s32 e1000e_check_downshift(struct e1000_hw *hw)
1520{
1521 struct e1000_phy_info *phy = &hw->phy;
1522 s32 ret_val;
1523 u16 phy_data, offset, mask;
1524
1525 switch (phy->type) {
1526 case e1000_phy_m88:
1527 case e1000_phy_gg82563:
a4f58f54
BA
1528 case e1000_phy_82578:
1529 case e1000_phy_82577:
bc7f75fa
AK
1530 offset = M88E1000_PHY_SPEC_STATUS;
1531 mask = M88E1000_PSSR_DOWNSHIFT;
1532 break;
1533 case e1000_phy_igp_2:
1534 case e1000_phy_igp_3:
1535 offset = IGP01E1000_PHY_LINK_HEALTH;
1536 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1537 break;
1538 default:
1539 /* speed downshift not supported */
564ea9bb 1540 phy->speed_downgraded = false;
bc7f75fa
AK
1541 return 0;
1542 }
1543
1544 ret_val = e1e_rphy(hw, offset, &phy_data);
1545
1546 if (!ret_val)
1547 phy->speed_downgraded = (phy_data & mask);
1548
1549 return ret_val;
1550}
1551
1552/**
1553 * e1000_check_polarity_m88 - Checks the polarity.
1554 * @hw: pointer to the HW structure
1555 *
1556 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1557 *
1558 * Polarity is determined based on the PHY specific status register.
1559 **/
1560static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1561{
1562 struct e1000_phy_info *phy = &hw->phy;
1563 s32 ret_val;
1564 u16 data;
1565
1566 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1567
1568 if (!ret_val)
1569 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1570 ? e1000_rev_polarity_reversed
1571 : e1000_rev_polarity_normal;
1572
1573 return ret_val;
1574}
1575
1576/**
1577 * e1000_check_polarity_igp - Checks the polarity.
1578 * @hw: pointer to the HW structure
1579 *
1580 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1581 *
1582 * Polarity is determined based on the PHY port status register, and the
1583 * current speed (since there is no polarity at 100Mbps).
1584 **/
1585static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1586{
1587 struct e1000_phy_info *phy = &hw->phy;
1588 s32 ret_val;
1589 u16 data, offset, mask;
1590
ad68076e
BA
1591 /*
1592 * Polarity is determined based on the speed of
1593 * our connection.
1594 */
bc7f75fa
AK
1595 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1596 if (ret_val)
1597 return ret_val;
1598
1599 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1600 IGP01E1000_PSSR_SPEED_1000MBPS) {
1601 offset = IGP01E1000_PHY_PCS_INIT_REG;
1602 mask = IGP01E1000_PHY_POLARITY_MASK;
1603 } else {
ad68076e
BA
1604 /*
1605 * This really only applies to 10Mbps since
bc7f75fa
AK
1606 * there is no polarity for 100Mbps (always 0).
1607 */
1608 offset = IGP01E1000_PHY_PORT_STATUS;
1609 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1610 }
1611
1612 ret_val = e1e_rphy(hw, offset, &data);
1613
1614 if (!ret_val)
1615 phy->cable_polarity = (data & mask)
1616 ? e1000_rev_polarity_reversed
1617 : e1000_rev_polarity_normal;
1618
1619 return ret_val;
1620}
1621
1622/**
ad68076e 1623 * e1000_wait_autoneg - Wait for auto-neg completion
bc7f75fa
AK
1624 * @hw: pointer to the HW structure
1625 *
1626 * Waits for auto-negotiation to complete or for the auto-negotiation time
1627 * limit to expire, which ever happens first.
1628 **/
1629static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1630{
1631 s32 ret_val = 0;
1632 u16 i, phy_status;
1633
1634 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1635 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1636 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1637 if (ret_val)
1638 break;
1639 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1640 if (ret_val)
1641 break;
1642 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1643 break;
1644 msleep(100);
1645 }
1646
ad68076e
BA
1647 /*
1648 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
bc7f75fa
AK
1649 * has completed.
1650 */
1651 return ret_val;
1652}
1653
1654/**
1655 * e1000e_phy_has_link_generic - Polls PHY for link
1656 * @hw: pointer to the HW structure
1657 * @iterations: number of times to poll for link
1658 * @usec_interval: delay between polling attempts
1659 * @success: pointer to whether polling was successful or not
1660 *
1661 * Polls the PHY status register for link, 'iterations' number of times.
1662 **/
1663s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1664 u32 usec_interval, bool *success)
1665{
1666 s32 ret_val = 0;
1667 u16 i, phy_status;
1668
1669 for (i = 0; i < iterations; i++) {
ad68076e
BA
1670 /*
1671 * Some PHYs require the PHY_STATUS register to be read
bc7f75fa
AK
1672 * twice due to the link bit being sticky. No harm doing
1673 * it across the board.
1674 */
1675 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1676 if (ret_val)
906e8d97
BA
1677 /*
1678 * If the first read fails, another entity may have
1679 * ownership of the resources, wait and try again to
1680 * see if they have relinquished the resources yet.
1681 */
1682 udelay(usec_interval);
bc7f75fa
AK
1683 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1684 if (ret_val)
1685 break;
1686 if (phy_status & MII_SR_LINK_STATUS)
1687 break;
1688 if (usec_interval >= 1000)
1689 mdelay(usec_interval/1000);
1690 else
1691 udelay(usec_interval);
1692 }
1693
1694 *success = (i < iterations);
1695
1696 return ret_val;
1697}
1698
1699/**
1700 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1701 * @hw: pointer to the HW structure
1702 *
1703 * Reads the PHY specific status register to retrieve the cable length
1704 * information. The cable length is determined by averaging the minimum and
1705 * maximum values to get the "average" cable length. The m88 PHY has four
1706 * possible cable length values, which are:
1707 * Register Value Cable Length
1708 * 0 < 50 meters
1709 * 1 50 - 80 meters
1710 * 2 80 - 110 meters
1711 * 3 110 - 140 meters
1712 * 4 > 140 meters
1713 **/
1714s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1715{
1716 struct e1000_phy_info *phy = &hw->phy;
1717 s32 ret_val;
1718 u16 phy_data, index;
1719
1720 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1721 if (ret_val)
eb656d45 1722 goto out;
bc7f75fa
AK
1723
1724 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
eb656d45
BA
1725 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1726 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1727 ret_val = -E1000_ERR_PHY;
1728 goto out;
1729 }
1730
bc7f75fa 1731 phy->min_cable_length = e1000_m88_cable_length_table[index];
eb656d45 1732 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
bc7f75fa
AK
1733
1734 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1735
eb656d45 1736out:
bc7f75fa
AK
1737 return ret_val;
1738}
1739
1740/**
1741 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1742 * @hw: pointer to the HW structure
1743 *
1744 * The automatic gain control (agc) normalizes the amplitude of the
1745 * received signal, adjusting for the attenuation produced by the
489815ce
AK
1746 * cable. By reading the AGC registers, which represent the
1747 * combination of course and fine gain value, the value can be put
bc7f75fa
AK
1748 * into a lookup table to obtain the approximate cable length
1749 * for each channel.
1750 **/
1751s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1752{
1753 struct e1000_phy_info *phy = &hw->phy;
1754 s32 ret_val;
1755 u16 phy_data, i, agc_value = 0;
1756 u16 cur_agc_index, max_agc_index = 0;
1757 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1758 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1759 {IGP02E1000_PHY_AGC_A,
1760 IGP02E1000_PHY_AGC_B,
1761 IGP02E1000_PHY_AGC_C,
1762 IGP02E1000_PHY_AGC_D};
1763
1764 /* Read the AGC registers for all channels */
1765 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1766 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1767 if (ret_val)
1768 return ret_val;
1769
ad68076e
BA
1770 /*
1771 * Getting bits 15:9, which represent the combination of
bc7f75fa
AK
1772 * course and fine gain values. The result is a number
1773 * that can be put into the lookup table to obtain the
ad68076e
BA
1774 * approximate cable length.
1775 */
bc7f75fa
AK
1776 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1777 IGP02E1000_AGC_LENGTH_MASK;
1778
1779 /* Array index bound check. */
1780 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1781 (cur_agc_index == 0))
1782 return -E1000_ERR_PHY;
1783
1784 /* Remove min & max AGC values from calculation. */
1785 if (e1000_igp_2_cable_length_table[min_agc_index] >
1786 e1000_igp_2_cable_length_table[cur_agc_index])
1787 min_agc_index = cur_agc_index;
1788 if (e1000_igp_2_cable_length_table[max_agc_index] <
1789 e1000_igp_2_cable_length_table[cur_agc_index])
1790 max_agc_index = cur_agc_index;
1791
1792 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1793 }
1794
1795 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1796 e1000_igp_2_cable_length_table[max_agc_index]);
1797 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1798
1799 /* Calculate cable length with the error range of +/- 10 meters. */
1800 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1801 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1802 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1803
1804 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1805
1806 return ret_val;
1807}
1808
1809/**
1810 * e1000e_get_phy_info_m88 - Retrieve PHY information
1811 * @hw: pointer to the HW structure
1812 *
1813 * Valid for only copper links. Read the PHY status register (sticky read)
1814 * to verify that link is up. Read the PHY special control register to
1815 * determine the polarity and 10base-T extended distance. Read the PHY
1816 * special status register to determine MDI/MDIx and current speed. If
1817 * speed is 1000, then determine cable length, local and remote receiver.
1818 **/
1819s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1820{
1821 struct e1000_phy_info *phy = &hw->phy;
1822 s32 ret_val;
1823 u16 phy_data;
1824 bool link;
1825
318a94d6 1826 if (hw->phy.media_type != e1000_media_type_copper) {
3bb99fe2 1827 e_dbg("Phy info is only valid for copper media\n");
bc7f75fa
AK
1828 return -E1000_ERR_CONFIG;
1829 }
1830
1831 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1832 if (ret_val)
1833 return ret_val;
1834
1835 if (!link) {
3bb99fe2 1836 e_dbg("Phy info is only valid if link is up\n");
bc7f75fa
AK
1837 return -E1000_ERR_CONFIG;
1838 }
1839
1840 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1841 if (ret_val)
1842 return ret_val;
1843
1844 phy->polarity_correction = (phy_data &
1845 M88E1000_PSCR_POLARITY_REVERSAL);
1846
1847 ret_val = e1000_check_polarity_m88(hw);
1848 if (ret_val)
1849 return ret_val;
1850
1851 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1852 if (ret_val)
1853 return ret_val;
1854
1855 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1856
1857 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1858 ret_val = e1000_get_cable_length(hw);
1859 if (ret_val)
1860 return ret_val;
1861
1862 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1863 if (ret_val)
1864 return ret_val;
1865
1866 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1867 ? e1000_1000t_rx_status_ok
1868 : e1000_1000t_rx_status_not_ok;
1869
1870 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1871 ? e1000_1000t_rx_status_ok
1872 : e1000_1000t_rx_status_not_ok;
1873 } else {
1874 /* Set values to "undefined" */
1875 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1876 phy->local_rx = e1000_1000t_rx_status_undefined;
1877 phy->remote_rx = e1000_1000t_rx_status_undefined;
1878 }
1879
1880 return ret_val;
1881}
1882
1883/**
1884 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1885 * @hw: pointer to the HW structure
1886 *
1887 * Read PHY status to determine if link is up. If link is up, then
1888 * set/determine 10base-T extended distance and polarity correction. Read
1889 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1890 * determine on the cable length, local and remote receiver.
1891 **/
1892s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1893{
1894 struct e1000_phy_info *phy = &hw->phy;
1895 s32 ret_val;
1896 u16 data;
1897 bool link;
1898
1899 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1900 if (ret_val)
1901 return ret_val;
1902
1903 if (!link) {
3bb99fe2 1904 e_dbg("Phy info is only valid if link is up\n");
bc7f75fa
AK
1905 return -E1000_ERR_CONFIG;
1906 }
1907
564ea9bb 1908 phy->polarity_correction = true;
bc7f75fa
AK
1909
1910 ret_val = e1000_check_polarity_igp(hw);
1911 if (ret_val)
1912 return ret_val;
1913
1914 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1915 if (ret_val)
1916 return ret_val;
1917
1918 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
1919
1920 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1921 IGP01E1000_PSSR_SPEED_1000MBPS) {
1922 ret_val = e1000_get_cable_length(hw);
1923 if (ret_val)
1924 return ret_val;
1925
1926 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
1927 if (ret_val)
1928 return ret_val;
1929
1930 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1931 ? e1000_1000t_rx_status_ok
1932 : e1000_1000t_rx_status_not_ok;
1933
1934 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1935 ? e1000_1000t_rx_status_ok
1936 : e1000_1000t_rx_status_not_ok;
1937 } else {
1938 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1939 phy->local_rx = e1000_1000t_rx_status_undefined;
1940 phy->remote_rx = e1000_1000t_rx_status_undefined;
1941 }
1942
1943 return ret_val;
1944}
1945
1946/**
1947 * e1000e_phy_sw_reset - PHY software reset
1948 * @hw: pointer to the HW structure
1949 *
1950 * Does a software reset of the PHY by reading the PHY control register and
1951 * setting/write the control register reset bit to the PHY.
1952 **/
1953s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
1954{
1955 s32 ret_val;
1956 u16 phy_ctrl;
1957
1958 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1959 if (ret_val)
1960 return ret_val;
1961
1962 phy_ctrl |= MII_CR_RESET;
1963 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1964 if (ret_val)
1965 return ret_val;
1966
1967 udelay(1);
1968
1969 return ret_val;
1970}
1971
1972/**
1973 * e1000e_phy_hw_reset_generic - PHY hardware reset
1974 * @hw: pointer to the HW structure
1975 *
1976 * Verify the reset block is not blocking us from resetting. Acquire
1977 * semaphore (if necessary) and read/set/write the device control reset
1978 * bit in the PHY. Wait the appropriate delay time for the device to
489815ce 1979 * reset and release the semaphore (if necessary).
bc7f75fa
AK
1980 **/
1981s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
1982{
1983 struct e1000_phy_info *phy = &hw->phy;
1984 s32 ret_val;
1985 u32 ctrl;
1986
1987 ret_val = e1000_check_reset_block(hw);
1988 if (ret_val)
1989 return 0;
1990
94d8186a 1991 ret_val = phy->ops.acquire(hw);
bc7f75fa
AK
1992 if (ret_val)
1993 return ret_val;
1994
1995 ctrl = er32(CTRL);
1996 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
1997 e1e_flush();
1998
1999 udelay(phy->reset_delay_us);
2000
2001 ew32(CTRL, ctrl);
2002 e1e_flush();
2003
2004 udelay(150);
2005
94d8186a 2006 phy->ops.release(hw);
bc7f75fa
AK
2007
2008 return e1000_get_phy_cfg_done(hw);
2009}
2010
2011/**
2012 * e1000e_get_cfg_done - Generic configuration done
2013 * @hw: pointer to the HW structure
2014 *
2015 * Generic function to wait 10 milli-seconds for configuration to complete
2016 * and return success.
2017 **/
2018s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2019{
2020 mdelay(10);
2021 return 0;
2022}
2023
f4187b56
BA
2024/**
2025 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2026 * @hw: pointer to the HW structure
2027 *
2028 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2029 **/
2030s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2031{
3bb99fe2 2032 e_dbg("Running IGP 3 PHY init script\n");
f4187b56
BA
2033
2034 /* PHY init IGP 3 */
2035 /* Enable rise/fall, 10-mode work in class-A */
2036 e1e_wphy(hw, 0x2F5B, 0x9018);
2037 /* Remove all caps from Replica path filter */
2038 e1e_wphy(hw, 0x2F52, 0x0000);
2039 /* Bias trimming for ADC, AFE and Driver (Default) */
2040 e1e_wphy(hw, 0x2FB1, 0x8B24);
2041 /* Increase Hybrid poly bias */
2042 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2043 /* Add 4% to Tx amplitude in Gig mode */
2044 e1e_wphy(hw, 0x2010, 0x10B0);
2045 /* Disable trimming (TTT) */
2046 e1e_wphy(hw, 0x2011, 0x0000);
2047 /* Poly DC correction to 94.6% + 2% for all channels */
2048 e1e_wphy(hw, 0x20DD, 0x249A);
2049 /* ABS DC correction to 95.9% */
2050 e1e_wphy(hw, 0x20DE, 0x00D3);
2051 /* BG temp curve trim */
2052 e1e_wphy(hw, 0x28B4, 0x04CE);
2053 /* Increasing ADC OPAMP stage 1 currents to max */
2054 e1e_wphy(hw, 0x2F70, 0x29E4);
2055 /* Force 1000 ( required for enabling PHY regs configuration) */
2056 e1e_wphy(hw, 0x0000, 0x0140);
2057 /* Set upd_freq to 6 */
2058 e1e_wphy(hw, 0x1F30, 0x1606);
2059 /* Disable NPDFE */
2060 e1e_wphy(hw, 0x1F31, 0xB814);
2061 /* Disable adaptive fixed FFE (Default) */
2062 e1e_wphy(hw, 0x1F35, 0x002A);
2063 /* Enable FFE hysteresis */
2064 e1e_wphy(hw, 0x1F3E, 0x0067);
2065 /* Fixed FFE for short cable lengths */
2066 e1e_wphy(hw, 0x1F54, 0x0065);
2067 /* Fixed FFE for medium cable lengths */
2068 e1e_wphy(hw, 0x1F55, 0x002A);
2069 /* Fixed FFE for long cable lengths */
2070 e1e_wphy(hw, 0x1F56, 0x002A);
2071 /* Enable Adaptive Clip Threshold */
2072 e1e_wphy(hw, 0x1F72, 0x3FB0);
2073 /* AHT reset limit to 1 */
2074 e1e_wphy(hw, 0x1F76, 0xC0FF);
2075 /* Set AHT master delay to 127 msec */
2076 e1e_wphy(hw, 0x1F77, 0x1DEC);
2077 /* Set scan bits for AHT */
2078 e1e_wphy(hw, 0x1F78, 0xF9EF);
2079 /* Set AHT Preset bits */
2080 e1e_wphy(hw, 0x1F79, 0x0210);
2081 /* Change integ_factor of channel A to 3 */
2082 e1e_wphy(hw, 0x1895, 0x0003);
2083 /* Change prop_factor of channels BCD to 8 */
2084 e1e_wphy(hw, 0x1796, 0x0008);
2085 /* Change cg_icount + enable integbp for channels BCD */
2086 e1e_wphy(hw, 0x1798, 0xD008);
2087 /*
2088 * Change cg_icount + enable integbp + change prop_factor_master
2089 * to 8 for channel A
2090 */
2091 e1e_wphy(hw, 0x1898, 0xD918);
2092 /* Disable AHT in Slave mode on channel A */
2093 e1e_wphy(hw, 0x187A, 0x0800);
2094 /*
2095 * Enable LPLU and disable AN to 1000 in non-D0a states,
2096 * Enable SPD+B2B
2097 */
2098 e1e_wphy(hw, 0x0019, 0x008D);
2099 /* Enable restart AN on an1000_dis change */
2100 e1e_wphy(hw, 0x001B, 0x2080);
2101 /* Enable wh_fifo read clock in 10/100 modes */
2102 e1e_wphy(hw, 0x0014, 0x0045);
2103 /* Restart AN, Speed selection is 1000 */
2104 e1e_wphy(hw, 0x0000, 0x1340);
2105
2106 return 0;
2107}
2108
bc7f75fa
AK
2109/* Internal function pointers */
2110
2111/**
2112 * e1000_get_phy_cfg_done - Generic PHY configuration done
2113 * @hw: pointer to the HW structure
2114 *
2115 * Return success if silicon family did not implement a family specific
2116 * get_cfg_done function.
2117 **/
2118static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2119{
2120 if (hw->phy.ops.get_cfg_done)
2121 return hw->phy.ops.get_cfg_done(hw);
2122
2123 return 0;
2124}
2125
2126/**
2127 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2128 * @hw: pointer to the HW structure
2129 *
2130 * When the silicon family has not implemented a forced speed/duplex
2131 * function for the PHY, simply return 0.
2132 **/
2133static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2134{
2135 if (hw->phy.ops.force_speed_duplex)
2136 return hw->phy.ops.force_speed_duplex(hw);
2137
2138 return 0;
2139}
2140
2141/**
2142 * e1000e_get_phy_type_from_id - Get PHY type from id
2143 * @phy_id: phy_id read from the phy
2144 *
2145 * Returns the phy type from the id.
2146 **/
2147enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2148{
2149 enum e1000_phy_type phy_type = e1000_phy_unknown;
2150
2151 switch (phy_id) {
2152 case M88E1000_I_PHY_ID:
2153 case M88E1000_E_PHY_ID:
2154 case M88E1111_I_PHY_ID:
2155 case M88E1011_I_PHY_ID:
2156 phy_type = e1000_phy_m88;
2157 break;
2158 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2159 phy_type = e1000_phy_igp_2;
2160 break;
2161 case GG82563_E_PHY_ID:
2162 phy_type = e1000_phy_gg82563;
2163 break;
2164 case IGP03E1000_E_PHY_ID:
2165 phy_type = e1000_phy_igp_3;
2166 break;
2167 case IFE_E_PHY_ID:
2168 case IFE_PLUS_E_PHY_ID:
2169 case IFE_C_E_PHY_ID:
2170 phy_type = e1000_phy_ife;
2171 break;
97ac8cae
BA
2172 case BME1000_E_PHY_ID:
2173 case BME1000_E_PHY_ID_R2:
2174 phy_type = e1000_phy_bm;
2175 break;
a4f58f54
BA
2176 case I82578_E_PHY_ID:
2177 phy_type = e1000_phy_82578;
2178 break;
2179 case I82577_E_PHY_ID:
2180 phy_type = e1000_phy_82577;
2181 break;
bc7f75fa
AK
2182 default:
2183 phy_type = e1000_phy_unknown;
2184 break;
2185 }
2186 return phy_type;
2187}
2188
97ac8cae
BA
2189/**
2190 * e1000e_determine_phy_address - Determines PHY address.
2191 * @hw: pointer to the HW structure
2192 *
2193 * This uses a trial and error method to loop through possible PHY
2194 * addresses. It tests each by reading the PHY ID registers and
2195 * checking for a match.
2196 **/
2197s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2198{
2199 s32 ret_val = -E1000_ERR_PHY_TYPE;
2200 u32 phy_addr= 0;
2201 u32 i = 0;
2202 enum e1000_phy_type phy_type = e1000_phy_unknown;
2203
2204 do {
2205 for (phy_addr = 0; phy_addr < 4; phy_addr++) {
2206 hw->phy.addr = phy_addr;
2207 e1000e_get_phy_id(hw);
2208 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2209
2210 /*
2211 * If phy_type is valid, break - we found our
2212 * PHY address
2213 */
2214 if (phy_type != e1000_phy_unknown) {
2215 ret_val = 0;
2216 break;
2217 }
2218 }
2219 i++;
2220 } while ((ret_val != 0) && (i < 100));
2221
2222 return ret_val;
2223}
2224
2225/**
2226 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2227 * @page: page to access
2228 *
2229 * Returns the phy address for the page requested.
2230 **/
2231static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2232{
2233 u32 phy_addr = 2;
2234
2235 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2236 phy_addr = 1;
2237
2238 return phy_addr;
2239}
2240
2241/**
2242 * e1000e_write_phy_reg_bm - Write BM PHY register
2243 * @hw: pointer to the HW structure
2244 * @offset: register offset to write to
2245 * @data: data to write at register offset
2246 *
2247 * Acquires semaphore, if necessary, then writes the data to PHY register
2248 * at the offset. Release any acquired semaphores before exiting.
2249 **/
2250s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2251{
2252 s32 ret_val;
2253 u32 page_select = 0;
2254 u32 page = offset >> IGP_PAGE_SHIFT;
2255 u32 page_shift = 0;
2256
94d8186a 2257 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2258 if (ret_val)
2259 return ret_val;
2260
97ac8cae
BA
2261 /* Page 800 works differently than the rest so it has its own func */
2262 if (page == BM_WUC_PAGE) {
2263 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2264 false);
2265 goto out;
2266 }
2267
97ac8cae
BA
2268 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2269
2270 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2271 /*
2272 * Page select is register 31 for phy address 1 and 22 for
2273 * phy address 2 and 3. Page select is shifted only for
2274 * phy address 1.
2275 */
2276 if (hw->phy.addr == 1) {
2277 page_shift = IGP_PAGE_SHIFT;
2278 page_select = IGP01E1000_PHY_PAGE_SELECT;
2279 } else {
2280 page_shift = 0;
2281 page_select = BM_PHY_PAGE_SELECT;
2282 }
2283
2284 /* Page is shifted left, PHY expects (page x 32) */
2285 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2286 (page << page_shift));
5ccdcecb 2287 if (ret_val)
97ac8cae 2288 goto out;
97ac8cae
BA
2289 }
2290
2291 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2292 data);
2293
97ac8cae 2294out:
94d8186a 2295 hw->phy.ops.release(hw);
97ac8cae
BA
2296 return ret_val;
2297}
2298
2299/**
2300 * e1000e_read_phy_reg_bm - Read BM PHY register
2301 * @hw: pointer to the HW structure
2302 * @offset: register offset to be read
2303 * @data: pointer to the read data
2304 *
2305 * Acquires semaphore, if necessary, then reads the PHY register at offset
2306 * and storing the retrieved information in data. Release any acquired
2307 * semaphores before exiting.
2308 **/
2309s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2310{
2311 s32 ret_val;
2312 u32 page_select = 0;
2313 u32 page = offset >> IGP_PAGE_SHIFT;
2314 u32 page_shift = 0;
2315
94d8186a 2316 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2317 if (ret_val)
2318 return ret_val;
2319
97ac8cae
BA
2320 /* Page 800 works differently than the rest so it has its own func */
2321 if (page == BM_WUC_PAGE) {
2322 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2323 true);
2324 goto out;
2325 }
2326
97ac8cae
BA
2327 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2328
2329 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2330 /*
2331 * Page select is register 31 for phy address 1 and 22 for
2332 * phy address 2 and 3. Page select is shifted only for
2333 * phy address 1.
2334 */
2335 if (hw->phy.addr == 1) {
2336 page_shift = IGP_PAGE_SHIFT;
2337 page_select = IGP01E1000_PHY_PAGE_SELECT;
2338 } else {
2339 page_shift = 0;
2340 page_select = BM_PHY_PAGE_SELECT;
2341 }
2342
2343 /* Page is shifted left, PHY expects (page x 32) */
2344 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2345 (page << page_shift));
5ccdcecb 2346 if (ret_val)
97ac8cae 2347 goto out;
97ac8cae
BA
2348 }
2349
2350 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2351 data);
97ac8cae 2352out:
94d8186a 2353 hw->phy.ops.release(hw);
97ac8cae
BA
2354 return ret_val;
2355}
2356
4662e82b
BA
2357/**
2358 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2359 * @hw: pointer to the HW structure
2360 * @offset: register offset to be read
2361 * @data: pointer to the read data
2362 *
2363 * Acquires semaphore, if necessary, then reads the PHY register at offset
2364 * and storing the retrieved information in data. Release any acquired
2365 * semaphores before exiting.
2366 **/
2367s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2368{
2369 s32 ret_val;
2370 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2371
94d8186a 2372 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2373 if (ret_val)
2374 return ret_val;
2375
4662e82b
BA
2376 /* Page 800 works differently than the rest so it has its own func */
2377 if (page == BM_WUC_PAGE) {
2378 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2379 true);
5ccdcecb 2380 goto out;
4662e82b
BA
2381 }
2382
4662e82b
BA
2383 hw->phy.addr = 1;
2384
2385 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2386
2387 /* Page is shifted left, PHY expects (page x 32) */
2388 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2389 page);
2390
5ccdcecb
BA
2391 if (ret_val)
2392 goto out;
4662e82b
BA
2393 }
2394
2395 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2396 data);
5ccdcecb 2397out:
94d8186a 2398 hw->phy.ops.release(hw);
4662e82b
BA
2399 return ret_val;
2400}
2401
2402/**
2403 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2404 * @hw: pointer to the HW structure
2405 * @offset: register offset to write to
2406 * @data: data to write at register offset
2407 *
2408 * Acquires semaphore, if necessary, then writes the data to PHY register
2409 * at the offset. Release any acquired semaphores before exiting.
2410 **/
2411s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2412{
2413 s32 ret_val;
2414 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2415
94d8186a 2416 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2417 if (ret_val)
2418 return ret_val;
2419
4662e82b
BA
2420 /* Page 800 works differently than the rest so it has its own func */
2421 if (page == BM_WUC_PAGE) {
2422 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2423 false);
5ccdcecb 2424 goto out;
4662e82b
BA
2425 }
2426
4662e82b
BA
2427 hw->phy.addr = 1;
2428
2429 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2430 /* Page is shifted left, PHY expects (page x 32) */
2431 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2432 page);
2433
5ccdcecb
BA
2434 if (ret_val)
2435 goto out;
4662e82b
BA
2436 }
2437
2438 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2439 data);
2440
5ccdcecb 2441out:
94d8186a 2442 hw->phy.ops.release(hw);
4662e82b
BA
2443 return ret_val;
2444}
2445
97ac8cae
BA
2446/**
2447 * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
2448 * @hw: pointer to the HW structure
2449 * @offset: register offset to be read or written
2450 * @data: pointer to the data to read or write
2451 * @read: determines if operation is read or write
2452 *
2453 * Acquires semaphore, if necessary, then reads the PHY register at offset
2454 * and storing the retrieved information in data. Release any acquired
2455 * semaphores before exiting. Note that procedure to read the wakeup
2456 * registers are different. It works as such:
2457 * 1) Set page 769, register 17, bit 2 = 1
2458 * 2) Set page to 800 for host (801 if we were manageability)
2459 * 3) Write the address using the address opcode (0x11)
2460 * 4) Read or write the data using the data opcode (0x12)
2461 * 5) Restore 769_17.2 to its original value
5ccdcecb
BA
2462 *
2463 * Assumes semaphore already acquired.
97ac8cae
BA
2464 **/
2465static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2466 u16 *data, bool read)
2467{
2468 s32 ret_val;
a4f58f54 2469 u16 reg = BM_PHY_REG_NUM(offset);
97ac8cae 2470 u16 phy_reg = 0;
97ac8cae 2471
a4f58f54
BA
2472 /* Gig must be disabled for MDIO accesses to page 800 */
2473 if ((hw->mac.type == e1000_pchlan) &&
2474 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
3bb99fe2 2475 e_dbg("Attempting to access page 800 while gig enabled\n");
a4f58f54 2476
97ac8cae
BA
2477 /* All operations in this function are phy address 1 */
2478 hw->phy.addr = 1;
2479
2480 /* Set page 769 */
2481 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2482 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2483
2484 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
2485 if (ret_val)
2486 goto out;
2487
2488 /* First clear bit 4 to avoid a power state change */
2489 phy_reg &= ~(BM_WUC_HOST_WU_BIT);
2490 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2491 if (ret_val)
2492 goto out;
2493
2494 /* Write bit 2 = 1, and clear bit 4 to 769_17 */
2495 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
2496 phy_reg | BM_WUC_ENABLE_BIT);
2497 if (ret_val)
2498 goto out;
2499
2500 /* Select page 800 */
2501 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2502 (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2503
2504 /* Write the page 800 offset value using opcode 0x11 */
2505 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2506 if (ret_val)
2507 goto out;
2508
2509 if (read) {
2510 /* Read the page 800 value using opcode 0x12 */
2511 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2512 data);
2513 } else {
2514 /* Read the page 800 value using opcode 0x12 */
2515 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2516 *data);
2517 }
2518
2519 if (ret_val)
2520 goto out;
2521
2522 /*
2523 * Restore 769_17.2 to its original value
2524 * Set page 769
2525 */
2526 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2527 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2528
2529 /* Clear 769_17.2 */
2530 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2531
2532out:
97ac8cae
BA
2533 return ret_val;
2534}
2535
17f208de
BA
2536/**
2537 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2538 * @hw: pointer to the HW structure
2539 *
2540 * In the case of a PHY power down to save power, or to turn off link during a
2541 * driver unload, or wake on lan is not enabled, restore the link to previous
2542 * settings.
2543 **/
2544void e1000_power_up_phy_copper(struct e1000_hw *hw)
2545{
2546 u16 mii_reg = 0;
2547
2548 /* The PHY will retain its settings across a power down/up cycle */
2549 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2550 mii_reg &= ~MII_CR_POWER_DOWN;
2551 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2552}
2553
2554/**
2555 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2556 * @hw: pointer to the HW structure
2557 *
2558 * In the case of a PHY power down to save power, or to turn off link during a
2559 * driver unload, or wake on lan is not enabled, restore the link to previous
2560 * settings.
2561 **/
2562void e1000_power_down_phy_copper(struct e1000_hw *hw)
2563{
2564 u16 mii_reg = 0;
2565
2566 /* The PHY will retain its settings across a power down/up cycle */
2567 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2568 mii_reg |= MII_CR_POWER_DOWN;
2569 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2570 msleep(1);
2571}
2572
bc7f75fa
AK
2573/**
2574 * e1000e_commit_phy - Soft PHY reset
2575 * @hw: pointer to the HW structure
2576 *
2577 * Performs a soft PHY reset on those that apply. This is a function pointer
2578 * entry point called by drivers.
2579 **/
2580s32 e1000e_commit_phy(struct e1000_hw *hw)
2581{
94d8186a
BA
2582 if (hw->phy.ops.commit)
2583 return hw->phy.ops.commit(hw);
bc7f75fa
AK
2584
2585 return 0;
2586}
2587
2588/**
2589 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2590 * @hw: pointer to the HW structure
2591 * @active: boolean used to enable/disable lplu
2592 *
2593 * Success returns 0, Failure returns 1
2594 *
2595 * The low power link up (lplu) state is set to the power management level D0
2596 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2597 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2598 * is used during Dx states where the power conservation is most important.
2599 * During driver activity, SmartSpeed should be enabled so performance is
2600 * maintained. This is a function pointer entry point called by drivers.
2601 **/
2602static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2603{
2604 if (hw->phy.ops.set_d0_lplu_state)
2605 return hw->phy.ops.set_d0_lplu_state(hw, active);
2606
2607 return 0;
2608}
a4f58f54 2609
5ccdcecb
BA
2610/**
2611 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2612 * @hw: pointer to the HW structure
2613 * @slow: true for slow mode, false for normal mode
2614 *
2615 * Assumes semaphore already acquired.
2616 **/
a4f58f54
BA
2617s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw, bool slow)
2618{
2619 s32 ret_val = 0;
2620 u16 data = 0;
2621
a4f58f54
BA
2622 /* Set MDIO mode - page 769, register 16: 0x2580==slow, 0x2180==fast */
2623 hw->phy.addr = 1;
2624 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2625 (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
5ccdcecb
BA
2626 if (ret_val)
2627 goto out;
2628
a4f58f54
BA
2629 ret_val = e1000e_write_phy_reg_mdic(hw, BM_CS_CTRL1,
2630 (0x2180 | (slow << 10)));
5ccdcecb
BA
2631 if (ret_val)
2632 goto out;
a4f58f54
BA
2633
2634 /* dummy read when reverting to fast mode - throw away result */
2635 if (!slow)
5ccdcecb 2636 ret_val = e1000e_read_phy_reg_mdic(hw, BM_CS_CTRL1, &data);
a4f58f54 2637
5ccdcecb 2638out:
a4f58f54
BA
2639 return ret_val;
2640}
2641
2642/**
5ccdcecb 2643 * __e1000_read_phy_reg_hv - Read HV PHY register
a4f58f54
BA
2644 * @hw: pointer to the HW structure
2645 * @offset: register offset to be read
2646 * @data: pointer to the read data
5ccdcecb 2647 * @locked: semaphore has already been acquired or not
a4f58f54
BA
2648 *
2649 * Acquires semaphore, if necessary, then reads the PHY register at offset
5ccdcecb 2650 * and stores the retrieved information in data. Release any acquired
a4f58f54
BA
2651 * semaphore before exiting.
2652 **/
5ccdcecb
BA
2653static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2654 bool locked)
a4f58f54
BA
2655{
2656 s32 ret_val;
2657 u16 page = BM_PHY_REG_PAGE(offset);
2658 u16 reg = BM_PHY_REG_NUM(offset);
2659 bool in_slow_mode = false;
2660
5ccdcecb 2661 if (!locked) {
94d8186a 2662 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2663 if (ret_val)
2664 return ret_val;
2665 }
2666
a4f58f54
BA
2667 /* Workaround failure in MDIO access while cable is disconnected */
2668 if ((hw->phy.type == e1000_phy_82577) &&
2669 !(er32(STATUS) & E1000_STATUS_LU)) {
2670 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
2671 if (ret_val)
2672 goto out;
2673
2674 in_slow_mode = true;
2675 }
2676
2677 /* Page 800 works differently than the rest so it has its own func */
2678 if (page == BM_WUC_PAGE) {
2679 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2680 data, true);
2681 goto out;
2682 }
2683
2684 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2685 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2686 data, true);
2687 goto out;
2688 }
2689
a4f58f54
BA
2690 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2691
2692 if (page == HV_INTC_FC_PAGE_START)
2693 page = 0;
2694
2695 if (reg > MAX_PHY_MULTI_PAGE_REG) {
842ec8b6 2696 u32 phy_addr = hw->phy.addr;
a4f58f54 2697
842ec8b6 2698 hw->phy.addr = 1;
a4f58f54 2699
842ec8b6
BA
2700 /* Page is shifted left, PHY expects (page x 32) */
2701 ret_val = e1000e_write_phy_reg_mdic(hw,
2702 IGP01E1000_PHY_PAGE_SELECT,
2703 (page << IGP_PAGE_SHIFT));
2704 hw->phy.addr = phy_addr;
2705
2706 if (ret_val)
2707 goto out;
a4f58f54
BA
2708 }
2709
2710 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2711 data);
a4f58f54
BA
2712out:
2713 /* Revert to MDIO fast mode, if applicable */
2714 if ((hw->phy.type == e1000_phy_82577) && in_slow_mode)
842ec8b6 2715 ret_val |= e1000_set_mdio_slow_mode_hv(hw, false);
a4f58f54 2716
5ccdcecb 2717 if (!locked)
94d8186a 2718 hw->phy.ops.release(hw);
5ccdcecb 2719
a4f58f54
BA
2720 return ret_val;
2721}
2722
2723/**
5ccdcecb
BA
2724 * e1000_read_phy_reg_hv - Read HV PHY register
2725 * @hw: pointer to the HW structure
2726 * @offset: register offset to be read
2727 * @data: pointer to the read data
2728 *
2729 * Acquires semaphore then reads the PHY register at offset and stores
2730 * the retrieved information in data. Release the acquired semaphore
2731 * before exiting.
2732 **/
2733s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2734{
2735 return __e1000_read_phy_reg_hv(hw, offset, data, false);
2736}
2737
2738/**
2739 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2740 * @hw: pointer to the HW structure
2741 * @offset: register offset to be read
2742 * @data: pointer to the read data
2743 *
2744 * Reads the PHY register at offset and stores the retrieved information
2745 * in data. Assumes semaphore already acquired.
2746 **/
2747s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2748{
2749 return __e1000_read_phy_reg_hv(hw, offset, data, true);
2750}
2751
2752/**
2753 * __e1000_write_phy_reg_hv - Write HV PHY register
a4f58f54
BA
2754 * @hw: pointer to the HW structure
2755 * @offset: register offset to write to
2756 * @data: data to write at register offset
5ccdcecb 2757 * @locked: semaphore has already been acquired or not
a4f58f54
BA
2758 *
2759 * Acquires semaphore, if necessary, then writes the data to PHY register
2760 * at the offset. Release any acquired semaphores before exiting.
2761 **/
5ccdcecb
BA
2762static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2763 bool locked)
a4f58f54
BA
2764{
2765 s32 ret_val;
2766 u16 page = BM_PHY_REG_PAGE(offset);
2767 u16 reg = BM_PHY_REG_NUM(offset);
2768 bool in_slow_mode = false;
2769
5ccdcecb 2770 if (!locked) {
94d8186a 2771 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2772 if (ret_val)
2773 return ret_val;
2774 }
2775
a4f58f54
BA
2776 /* Workaround failure in MDIO access while cable is disconnected */
2777 if ((hw->phy.type == e1000_phy_82577) &&
2778 !(er32(STATUS) & E1000_STATUS_LU)) {
2779 ret_val = e1000_set_mdio_slow_mode_hv(hw, true);
2780 if (ret_val)
2781 goto out;
2782
2783 in_slow_mode = true;
2784 }
2785
2786 /* Page 800 works differently than the rest so it has its own func */
2787 if (page == BM_WUC_PAGE) {
2788 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2789 &data, false);
2790 goto out;
2791 }
2792
2793 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2794 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2795 &data, false);
2796 goto out;
2797 }
2798
a4f58f54
BA
2799 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2800
2801 if (page == HV_INTC_FC_PAGE_START)
2802 page = 0;
2803
2804 /*
2805 * Workaround MDIO accesses being disabled after entering IEEE Power
2806 * Down (whenever bit 11 of the PHY Control register is set)
2807 */
2808 if ((hw->phy.type == e1000_phy_82578) &&
2809 (hw->phy.revision >= 1) &&
2810 (hw->phy.addr == 2) &&
2811 ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
2812 (data & (1 << 11))) {
2813 u16 data2 = 0x7EFF;
a4f58f54
BA
2814 ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
2815 &data2, false);
2816 if (ret_val)
2817 goto out;
a4f58f54
BA
2818 }
2819
2820 if (reg > MAX_PHY_MULTI_PAGE_REG) {
842ec8b6 2821 u32 phy_addr = hw->phy.addr;
a4f58f54 2822
842ec8b6 2823 hw->phy.addr = 1;
a4f58f54 2824
842ec8b6
BA
2825 /* Page is shifted left, PHY expects (page x 32) */
2826 ret_val = e1000e_write_phy_reg_mdic(hw,
2827 IGP01E1000_PHY_PAGE_SELECT,
2828 (page << IGP_PAGE_SHIFT));
2829 hw->phy.addr = phy_addr;
2830
2831 if (ret_val)
2832 goto out;
a4f58f54
BA
2833 }
2834
2835 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2836 data);
a4f58f54
BA
2837
2838out:
2839 /* Revert to MDIO fast mode, if applicable */
2840 if ((hw->phy.type == e1000_phy_82577) && in_slow_mode)
842ec8b6 2841 ret_val |= e1000_set_mdio_slow_mode_hv(hw, false);
a4f58f54 2842
5ccdcecb 2843 if (!locked)
94d8186a 2844 hw->phy.ops.release(hw);
5ccdcecb 2845
a4f58f54
BA
2846 return ret_val;
2847}
2848
5ccdcecb
BA
2849/**
2850 * e1000_write_phy_reg_hv - Write HV PHY register
2851 * @hw: pointer to the HW structure
2852 * @offset: register offset to write to
2853 * @data: data to write at register offset
2854 *
2855 * Acquires semaphore then writes the data to PHY register at the offset.
2856 * Release the acquired semaphores before exiting.
2857 **/
2858s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2859{
2860 return __e1000_write_phy_reg_hv(hw, offset, data, false);
2861}
2862
2863/**
2864 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2865 * @hw: pointer to the HW structure
2866 * @offset: register offset to write to
2867 * @data: data to write at register offset
2868 *
2869 * Writes the data to PHY register at the offset. Assumes semaphore
2870 * already acquired.
2871 **/
2872s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2873{
2874 return __e1000_write_phy_reg_hv(hw, offset, data, true);
2875}
2876
a4f58f54
BA
2877/**
2878 * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
2879 * @page: page to be accessed
2880 **/
2881static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2882{
2883 u32 phy_addr = 2;
2884
2885 if (page >= HV_INTC_FC_PAGE_START)
2886 phy_addr = 1;
2887
2888 return phy_addr;
2889}
2890
2891/**
2892 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2893 * @hw: pointer to the HW structure
2894 * @offset: register offset to be read or written
2895 * @data: pointer to the data to be read or written
2896 * @read: determines if operation is read or written
2897 *
5ccdcecb
BA
2898 * Reads the PHY register at offset and stores the retreived information
2899 * in data. Assumes semaphore already acquired. Note that the procedure
2900 * to read these regs uses the address port and data port to read/write.
a4f58f54
BA
2901 **/
2902static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2903 u16 *data, bool read)
2904{
2905 s32 ret_val;
2906 u32 addr_reg = 0;
2907 u32 data_reg = 0;
a4f58f54
BA
2908
2909 /* This takes care of the difference with desktop vs mobile phy */
2910 addr_reg = (hw->phy.type == e1000_phy_82578) ?
2911 I82578_ADDR_REG : I82577_ADDR_REG;
2912 data_reg = addr_reg + 1;
2913
a4f58f54
BA
2914 /* All operations in this function are phy address 2 */
2915 hw->phy.addr = 2;
2916
2917 /* masking with 0x3F to remove the page from offset */
2918 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
2919 if (ret_val) {
3bb99fe2 2920 e_dbg("Could not write PHY the HV address register\n");
a4f58f54
BA
2921 goto out;
2922 }
2923
2924 /* Read or write the data value next */
2925 if (read)
2926 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
2927 else
2928 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
2929
2930 if (ret_val) {
3bb99fe2 2931 e_dbg("Could not read data value from HV data register\n");
a4f58f54
BA
2932 goto out;
2933 }
2934
2935out:
a4f58f54
BA
2936 return ret_val;
2937}
2938
2939/**
2940 * e1000_link_stall_workaround_hv - Si workaround
2941 * @hw: pointer to the HW structure
2942 *
2943 * This function works around a Si bug where the link partner can get
2944 * a link up indication before the PHY does. If small packets are sent
2945 * by the link partner they can be placed in the packet buffer without
2946 * being properly accounted for by the PHY and will stall preventing
2947 * further packets from being received. The workaround is to clear the
2948 * packet buffer after the PHY detects link up.
2949 **/
2950s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
2951{
2952 s32 ret_val = 0;
2953 u16 data;
2954
2955 if (hw->phy.type != e1000_phy_82578)
2956 goto out;
2957
e65fa87c 2958 /* Do not apply workaround if in PHY loopback bit 14 set */
94d8186a 2959 hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
e65fa87c
BA
2960 if (data & PHY_CONTROL_LB)
2961 goto out;
2962
a4f58f54 2963 /* check if link is up and at 1Gbps */
94d8186a 2964 ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
a4f58f54
BA
2965 if (ret_val)
2966 goto out;
2967
2968 data &= BM_CS_STATUS_LINK_UP |
2969 BM_CS_STATUS_RESOLVED |
2970 BM_CS_STATUS_SPEED_MASK;
2971
2972 if (data != (BM_CS_STATUS_LINK_UP |
2973 BM_CS_STATUS_RESOLVED |
2974 BM_CS_STATUS_SPEED_1000))
2975 goto out;
2976
2977 mdelay(200);
2978
2979 /* flush the packets in the fifo buffer */
94d8186a 2980 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
a4f58f54
BA
2981 HV_MUX_DATA_CTRL_GEN_TO_MAC |
2982 HV_MUX_DATA_CTRL_FORCE_SPEED);
2983 if (ret_val)
2984 goto out;
2985
94d8186a 2986 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
a4f58f54
BA
2987 HV_MUX_DATA_CTRL_GEN_TO_MAC);
2988
2989out:
2990 return ret_val;
2991}
2992
2993/**
2994 * e1000_check_polarity_82577 - Checks the polarity.
2995 * @hw: pointer to the HW structure
2996 *
2997 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2998 *
2999 * Polarity is determined based on the PHY specific status register.
3000 **/
3001s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3002{
3003 struct e1000_phy_info *phy = &hw->phy;
3004 s32 ret_val;
3005 u16 data;
3006
94d8186a 3007 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
a4f58f54
BA
3008
3009 if (!ret_val)
3010 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3011 ? e1000_rev_polarity_reversed
3012 : e1000_rev_polarity_normal;
3013
3014 return ret_val;
3015}
3016
3017/**
3018 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3019 * @hw: pointer to the HW structure
3020 *
3021 * Calls the PHY setup function to force speed and duplex. Clears the
3022 * auto-crossover to force MDI manually. Waits for link and returns
3023 * successful if link up is successful, else -E1000_ERR_PHY (-2).
3024 **/
3025s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3026{
3027 struct e1000_phy_info *phy = &hw->phy;
3028 s32 ret_val;
3029 u16 phy_data;
3030 bool link;
3031
94d8186a 3032 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
a4f58f54
BA
3033 if (ret_val)
3034 goto out;
3035
3036 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3037
94d8186a 3038 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
a4f58f54
BA
3039 if (ret_val)
3040 goto out;
3041
3042 /*
3043 * Clear Auto-Crossover to force MDI manually. 82577 requires MDI
3044 * forced whenever speed and duplex are forced.
3045 */
94d8186a 3046 ret_val = phy->ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
a4f58f54
BA
3047 if (ret_val)
3048 goto out;
3049
3050 phy_data &= ~I82577_PHY_CTRL2_AUTO_MDIX;
3051 phy_data &= ~I82577_PHY_CTRL2_FORCE_MDI_MDIX;
3052
94d8186a 3053 ret_val = phy->ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
a4f58f54
BA
3054 if (ret_val)
3055 goto out;
3056
3bb99fe2 3057 e_dbg("I82577_PHY_CTRL_2: %X\n", phy_data);
a4f58f54
BA
3058
3059 udelay(1);
3060
3061 if (phy->autoneg_wait_to_complete) {
3bb99fe2 3062 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
a4f58f54
BA
3063
3064 ret_val = e1000e_phy_has_link_generic(hw,
3065 PHY_FORCE_LIMIT,
3066 100000,
3067 &link);
3068 if (ret_val)
3069 goto out;
3070
3071 if (!link)
3bb99fe2 3072 e_dbg("Link taking longer than expected.\n");
a4f58f54
BA
3073
3074 /* Try once more */
3075 ret_val = e1000e_phy_has_link_generic(hw,
3076 PHY_FORCE_LIMIT,
3077 100000,
3078 &link);
3079 if (ret_val)
3080 goto out;
3081 }
3082
3083out:
3084 return ret_val;
3085}
3086
3087/**
3088 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3089 * @hw: pointer to the HW structure
3090 *
3091 * Read PHY status to determine if link is up. If link is up, then
3092 * set/determine 10base-T extended distance and polarity correction. Read
3093 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3094 * determine on the cable length, local and remote receiver.
3095 **/
3096s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3097{
3098 struct e1000_phy_info *phy = &hw->phy;
3099 s32 ret_val;
3100 u16 data;
3101 bool link;
3102
3103 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3104 if (ret_val)
3105 goto out;
3106
3107 if (!link) {
3bb99fe2 3108 e_dbg("Phy info is only valid if link is up\n");
a4f58f54
BA
3109 ret_val = -E1000_ERR_CONFIG;
3110 goto out;
3111 }
3112
3113 phy->polarity_correction = true;
3114
3115 ret_val = e1000_check_polarity_82577(hw);
3116 if (ret_val)
3117 goto out;
3118
94d8186a 3119 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
a4f58f54
BA
3120 if (ret_val)
3121 goto out;
3122
3123 phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3124
3125 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3126 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3127 ret_val = hw->phy.ops.get_cable_length(hw);
3128 if (ret_val)
3129 goto out;
3130
94d8186a 3131 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
a4f58f54
BA
3132 if (ret_val)
3133 goto out;
3134
3135 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3136 ? e1000_1000t_rx_status_ok
3137 : e1000_1000t_rx_status_not_ok;
3138
3139 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3140 ? e1000_1000t_rx_status_ok
3141 : e1000_1000t_rx_status_not_ok;
3142 } else {
3143 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3144 phy->local_rx = e1000_1000t_rx_status_undefined;
3145 phy->remote_rx = e1000_1000t_rx_status_undefined;
3146 }
3147
3148out:
3149 return ret_val;
3150}
3151
3152/**
3153 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3154 * @hw: pointer to the HW structure
3155 *
3156 * Reads the diagnostic status register and verifies result is valid before
3157 * placing it in the phy_cable_length field.
3158 **/
3159s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3160{
3161 struct e1000_phy_info *phy = &hw->phy;
3162 s32 ret_val;
3163 u16 phy_data, length;
3164
94d8186a 3165 ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
a4f58f54
BA
3166 if (ret_val)
3167 goto out;
3168
3169 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3170 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3171
3172 if (length == E1000_CABLE_LENGTH_UNDEFINED)
98086a95 3173 ret_val = -E1000_ERR_PHY;
a4f58f54
BA
3174
3175 phy->cable_length = length;
3176
3177out:
3178 return ret_val;
3179}