Merge branch 'master' into next
[linux-2.6-block.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
97ac8cae 46#include <linux/pm_qos_params.h>
bc7f75fa
AK
47
48#include "e1000.h"
49
6f92a6a7 50#define DRV_VERSION "0.3.3.3-k6"
bc7f75fa
AK
51char e1000e_driver_name[] = "e1000e";
52const char e1000e_driver_version[] = DRV_VERSION;
53
54static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
4662e82b 58 [board_82574] = &e1000_82574_info,
bc7f75fa
AK
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
f4187b56 62 [board_ich10lan] = &e1000_ich10_info,
bc7f75fa
AK
63};
64
65#ifdef DEBUG
66/**
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
69 **/
70char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
71{
589c085f 72 return hw->adapter->netdev->name;
bc7f75fa
AK
73}
74#endif
75
76/**
77 * e1000_desc_unused - calculate if we have unused descriptors
78 **/
79static int e1000_desc_unused(struct e1000_ring *ring)
80{
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
83
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
85}
86
87/**
ad68076e 88 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
93 **/
94static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
96 struct sk_buff *skb,
a39fe742 97 u8 status, __le16 vlan)
bc7f75fa
AK
98{
99 skb->protocol = eth_type_trans(skb, netdev);
100
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
38b22195 103 le16_to_cpu(vlan));
bc7f75fa
AK
104 else
105 netif_receive_skb(skb);
106
107 netdev->last_rx = jiffies;
108}
109
110/**
111 * e1000_rx_checksum - Receive Checksum Offload for 82543
112 * @adapter: board private structure
113 * @status_err: receive descriptor status and error fields
114 * @csum: receive descriptor csum field
115 * @sk_buff: socket buffer with received data
116 **/
117static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
118 u32 csum, struct sk_buff *skb)
119{
120 u16 status = (u16)status_err;
121 u8 errors = (u8)(status_err >> 24);
122 skb->ip_summed = CHECKSUM_NONE;
123
124 /* Ignore Checksum bit is set */
125 if (status & E1000_RXD_STAT_IXSM)
126 return;
127 /* TCP/UDP checksum error bit is set */
128 if (errors & E1000_RXD_ERR_TCPE) {
129 /* let the stack verify checksum errors */
130 adapter->hw_csum_err++;
131 return;
132 }
133
134 /* TCP/UDP Checksum has not been calculated */
135 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 return;
137
138 /* It must be a TCP or UDP packet with a valid checksum */
139 if (status & E1000_RXD_STAT_TCPCS) {
140 /* TCP checksum is good */
141 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 } else {
ad68076e
BA
143 /*
144 * IP fragment with UDP payload
145 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
146 * and then put the value in host order for further stack use.
147 */
a39fe742
AV
148 __sum16 sum = (__force __sum16)htons(csum);
149 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
150 skb->ip_summed = CHECKSUM_COMPLETE;
151 }
152 adapter->hw_csum_good++;
153}
154
155/**
156 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
157 * @adapter: address of board private structure
158 **/
159static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 int cleaned_count)
161{
162 struct net_device *netdev = adapter->netdev;
163 struct pci_dev *pdev = adapter->pdev;
164 struct e1000_ring *rx_ring = adapter->rx_ring;
165 struct e1000_rx_desc *rx_desc;
166 struct e1000_buffer *buffer_info;
167 struct sk_buff *skb;
168 unsigned int i;
169 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
170
171 i = rx_ring->next_to_use;
172 buffer_info = &rx_ring->buffer_info[i];
173
174 while (cleaned_count--) {
175 skb = buffer_info->skb;
176 if (skb) {
177 skb_trim(skb, 0);
178 goto map_skb;
179 }
180
181 skb = netdev_alloc_skb(netdev, bufsz);
182 if (!skb) {
183 /* Better luck next round */
184 adapter->alloc_rx_buff_failed++;
185 break;
186 }
187
ad68076e
BA
188 /*
189 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
190 * this will result in a 16 byte aligned IP header after
191 * the 14 byte MAC header is removed
192 */
193 skb_reserve(skb, NET_IP_ALIGN);
194
195 buffer_info->skb = skb;
196map_skb:
197 buffer_info->dma = pci_map_single(pdev, skb->data,
198 adapter->rx_buffer_len,
199 PCI_DMA_FROMDEVICE);
8d8bb39b 200 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
201 dev_err(&pdev->dev, "RX DMA map failed\n");
202 adapter->rx_dma_failed++;
203 break;
204 }
205
206 rx_desc = E1000_RX_DESC(*rx_ring, i);
207 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208
209 i++;
210 if (i == rx_ring->count)
211 i = 0;
212 buffer_info = &rx_ring->buffer_info[i];
213 }
214
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
217 if (i-- == 0)
218 i = (rx_ring->count - 1);
219
ad68076e
BA
220 /*
221 * Force memory writes to complete before letting h/w
bc7f75fa
AK
222 * know there are new descriptors to fetch. (Only
223 * applicable for weak-ordered memory model archs,
ad68076e
BA
224 * such as IA-64).
225 */
bc7f75fa
AK
226 wmb();
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
228 }
229}
230
231/**
232 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
233 * @adapter: address of board private structure
234 **/
235static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 int cleaned_count)
237{
238 struct net_device *netdev = adapter->netdev;
239 struct pci_dev *pdev = adapter->pdev;
240 union e1000_rx_desc_packet_split *rx_desc;
241 struct e1000_ring *rx_ring = adapter->rx_ring;
242 struct e1000_buffer *buffer_info;
243 struct e1000_ps_page *ps_page;
244 struct sk_buff *skb;
245 unsigned int i, j;
246
247 i = rx_ring->next_to_use;
248 buffer_info = &rx_ring->buffer_info[i];
249
250 while (cleaned_count--) {
251 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
252
253 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
254 ps_page = &buffer_info->ps_pages[j];
255 if (j >= adapter->rx_ps_pages) {
256 /* all unused desc entries get hw null ptr */
a39fe742 257 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
258 continue;
259 }
260 if (!ps_page->page) {
261 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 262 if (!ps_page->page) {
47f44e40
AK
263 adapter->alloc_rx_buff_failed++;
264 goto no_buffers;
265 }
266 ps_page->dma = pci_map_page(pdev,
267 ps_page->page,
268 0, PAGE_SIZE,
269 PCI_DMA_FROMDEVICE);
8d8bb39b 270 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
47f44e40
AK
271 dev_err(&adapter->pdev->dev,
272 "RX DMA page map failed\n");
273 adapter->rx_dma_failed++;
274 goto no_buffers;
bc7f75fa 275 }
bc7f75fa 276 }
47f44e40
AK
277 /*
278 * Refresh the desc even if buffer_addrs
279 * didn't change because each write-back
280 * erases this info.
281 */
282 rx_desc->read.buffer_addr[j+1] =
283 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
284 }
285
286 skb = netdev_alloc_skb(netdev,
287 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288
289 if (!skb) {
290 adapter->alloc_rx_buff_failed++;
291 break;
292 }
293
ad68076e
BA
294 /*
295 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
296 * this will result in a 16 byte aligned IP header after
297 * the 14 byte MAC header is removed
298 */
299 skb_reserve(skb, NET_IP_ALIGN);
300
301 buffer_info->skb = skb;
302 buffer_info->dma = pci_map_single(pdev, skb->data,
303 adapter->rx_ps_bsize0,
304 PCI_DMA_FROMDEVICE);
8d8bb39b 305 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
306 dev_err(&pdev->dev, "RX DMA map failed\n");
307 adapter->rx_dma_failed++;
308 /* cleanup skb */
309 dev_kfree_skb_any(skb);
310 buffer_info->skb = NULL;
311 break;
312 }
313
314 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315
316 i++;
317 if (i == rx_ring->count)
318 i = 0;
319 buffer_info = &rx_ring->buffer_info[i];
320 }
321
322no_buffers:
323 if (rx_ring->next_to_use != i) {
324 rx_ring->next_to_use = i;
325
326 if (!(i--))
327 i = (rx_ring->count - 1);
328
ad68076e
BA
329 /*
330 * Force memory writes to complete before letting h/w
bc7f75fa
AK
331 * know there are new descriptors to fetch. (Only
332 * applicable for weak-ordered memory model archs,
ad68076e
BA
333 * such as IA-64).
334 */
bc7f75fa 335 wmb();
ad68076e
BA
336 /*
337 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
338 * descriptors are 32 bytes...so we increment tail
339 * twice as much.
340 */
341 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
342 }
343}
344
97ac8cae
BA
345/**
346 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
347 * @adapter: address of board private structure
97ac8cae
BA
348 * @cleaned_count: number of buffers to allocate this pass
349 **/
350
351static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
352 int cleaned_count)
353{
354 struct net_device *netdev = adapter->netdev;
355 struct pci_dev *pdev = adapter->pdev;
356 struct e1000_rx_desc *rx_desc;
357 struct e1000_ring *rx_ring = adapter->rx_ring;
358 struct e1000_buffer *buffer_info;
359 struct sk_buff *skb;
360 unsigned int i;
361 unsigned int bufsz = 256 -
362 16 /* for skb_reserve */ -
363 NET_IP_ALIGN;
364
365 i = rx_ring->next_to_use;
366 buffer_info = &rx_ring->buffer_info[i];
367
368 while (cleaned_count--) {
369 skb = buffer_info->skb;
370 if (skb) {
371 skb_trim(skb, 0);
372 goto check_page;
373 }
374
375 skb = netdev_alloc_skb(netdev, bufsz);
376 if (unlikely(!skb)) {
377 /* Better luck next round */
378 adapter->alloc_rx_buff_failed++;
379 break;
380 }
381
382 /* Make buffer alignment 2 beyond a 16 byte boundary
383 * this will result in a 16 byte aligned IP header after
384 * the 14 byte MAC header is removed
385 */
386 skb_reserve(skb, NET_IP_ALIGN);
387
388 buffer_info->skb = skb;
389check_page:
390 /* allocate a new page if necessary */
391 if (!buffer_info->page) {
392 buffer_info->page = alloc_page(GFP_ATOMIC);
393 if (unlikely(!buffer_info->page)) {
394 adapter->alloc_rx_buff_failed++;
395 break;
396 }
397 }
398
399 if (!buffer_info->dma)
400 buffer_info->dma = pci_map_page(pdev,
401 buffer_info->page, 0,
402 PAGE_SIZE,
403 PCI_DMA_FROMDEVICE);
404
405 rx_desc = E1000_RX_DESC(*rx_ring, i);
406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407
408 if (unlikely(++i == rx_ring->count))
409 i = 0;
410 buffer_info = &rx_ring->buffer_info[i];
411 }
412
413 if (likely(rx_ring->next_to_use != i)) {
414 rx_ring->next_to_use = i;
415 if (unlikely(i-- == 0))
416 i = (rx_ring->count - 1);
417
418 /* Force memory writes to complete before letting h/w
419 * know there are new descriptors to fetch. (Only
420 * applicable for weak-ordered memory model archs,
421 * such as IA-64). */
422 wmb();
423 writel(i, adapter->hw.hw_addr + rx_ring->tail);
424 }
425}
426
bc7f75fa
AK
427/**
428 * e1000_clean_rx_irq - Send received data up the network stack; legacy
429 * @adapter: board private structure
430 *
431 * the return value indicates whether actual cleaning was done, there
432 * is no guarantee that everything was cleaned
433 **/
434static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
435 int *work_done, int work_to_do)
436{
437 struct net_device *netdev = adapter->netdev;
438 struct pci_dev *pdev = adapter->pdev;
439 struct e1000_ring *rx_ring = adapter->rx_ring;
440 struct e1000_rx_desc *rx_desc, *next_rxd;
441 struct e1000_buffer *buffer_info, *next_buffer;
442 u32 length;
443 unsigned int i;
444 int cleaned_count = 0;
445 bool cleaned = 0;
446 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447
448 i = rx_ring->next_to_clean;
449 rx_desc = E1000_RX_DESC(*rx_ring, i);
450 buffer_info = &rx_ring->buffer_info[i];
451
452 while (rx_desc->status & E1000_RXD_STAT_DD) {
453 struct sk_buff *skb;
454 u8 status;
455
456 if (*work_done >= work_to_do)
457 break;
458 (*work_done)++;
459
460 status = rx_desc->status;
461 skb = buffer_info->skb;
462 buffer_info->skb = NULL;
463
464 prefetch(skb->data - NET_IP_ALIGN);
465
466 i++;
467 if (i == rx_ring->count)
468 i = 0;
469 next_rxd = E1000_RX_DESC(*rx_ring, i);
470 prefetch(next_rxd);
471
472 next_buffer = &rx_ring->buffer_info[i];
473
474 cleaned = 1;
475 cleaned_count++;
476 pci_unmap_single(pdev,
477 buffer_info->dma,
478 adapter->rx_buffer_len,
479 PCI_DMA_FROMDEVICE);
480 buffer_info->dma = 0;
481
482 length = le16_to_cpu(rx_desc->length);
483
484 /* !EOP means multiple descriptors were used to store a single
485 * packet, also make sure the frame isn't just CRC only */
486 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
487 /* All receives must fit into a single buffer */
44defeb3
JK
488 e_dbg("%s: Receive packet consumed multiple buffers\n",
489 netdev->name);
bc7f75fa
AK
490 /* recycle */
491 buffer_info->skb = skb;
492 goto next_desc;
493 }
494
495 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496 /* recycle */
497 buffer_info->skb = skb;
498 goto next_desc;
499 }
500
eb7c3adb
JK
501 /* adjust length to remove Ethernet CRC */
502 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
503 length -= 4;
504
bc7f75fa
AK
505 total_rx_bytes += length;
506 total_rx_packets++;
507
ad68076e
BA
508 /*
509 * code added for copybreak, this should improve
bc7f75fa 510 * performance for small packets with large amounts
ad68076e
BA
511 * of reassembly being done in the stack
512 */
bc7f75fa
AK
513 if (length < copybreak) {
514 struct sk_buff *new_skb =
515 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
516 if (new_skb) {
517 skb_reserve(new_skb, NET_IP_ALIGN);
808ff676
BA
518 skb_copy_to_linear_data_offset(new_skb,
519 -NET_IP_ALIGN,
520 (skb->data -
521 NET_IP_ALIGN),
522 (length +
523 NET_IP_ALIGN));
bc7f75fa
AK
524 /* save the skb in buffer_info as good */
525 buffer_info->skb = skb;
526 skb = new_skb;
527 }
528 /* else just continue with the old one */
529 }
530 /* end copybreak code */
531 skb_put(skb, length);
532
533 /* Receive Checksum Offload */
534 e1000_rx_checksum(adapter,
535 (u32)(status) |
536 ((u32)(rx_desc->errors) << 24),
537 le16_to_cpu(rx_desc->csum), skb);
538
539 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
540
541next_desc:
542 rx_desc->status = 0;
543
544 /* return some buffers to hardware, one at a time is too slow */
545 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
546 adapter->alloc_rx_buf(adapter, cleaned_count);
547 cleaned_count = 0;
548 }
549
550 /* use prefetched values */
551 rx_desc = next_rxd;
552 buffer_info = next_buffer;
553 }
554 rx_ring->next_to_clean = i;
555
556 cleaned_count = e1000_desc_unused(rx_ring);
557 if (cleaned_count)
558 adapter->alloc_rx_buf(adapter, cleaned_count);
559
bc7f75fa 560 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 561 adapter->total_rx_packets += total_rx_packets;
41988692 562 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 563 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
564 return cleaned;
565}
566
bc7f75fa
AK
567static void e1000_put_txbuf(struct e1000_adapter *adapter,
568 struct e1000_buffer *buffer_info)
569{
570 if (buffer_info->dma) {
571 pci_unmap_page(adapter->pdev, buffer_info->dma,
572 buffer_info->length, PCI_DMA_TODEVICE);
573 buffer_info->dma = 0;
574 }
575 if (buffer_info->skb) {
576 dev_kfree_skb_any(buffer_info->skb);
577 buffer_info->skb = NULL;
578 }
579}
580
581static void e1000_print_tx_hang(struct e1000_adapter *adapter)
582{
583 struct e1000_ring *tx_ring = adapter->tx_ring;
584 unsigned int i = tx_ring->next_to_clean;
585 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
586 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
587
588 /* detected Tx unit hang */
44defeb3
JK
589 e_err("Detected Tx Unit Hang:\n"
590 " TDH <%x>\n"
591 " TDT <%x>\n"
592 " next_to_use <%x>\n"
593 " next_to_clean <%x>\n"
594 "buffer_info[next_to_clean]:\n"
595 " time_stamp <%lx>\n"
596 " next_to_watch <%x>\n"
597 " jiffies <%lx>\n"
598 " next_to_watch.status <%x>\n",
599 readl(adapter->hw.hw_addr + tx_ring->head),
600 readl(adapter->hw.hw_addr + tx_ring->tail),
601 tx_ring->next_to_use,
602 tx_ring->next_to_clean,
603 tx_ring->buffer_info[eop].time_stamp,
604 eop,
605 jiffies,
606 eop_desc->upper.fields.status);
bc7f75fa
AK
607}
608
609/**
610 * e1000_clean_tx_irq - Reclaim resources after transmit completes
611 * @adapter: board private structure
612 *
613 * the return value indicates whether actual cleaning was done, there
614 * is no guarantee that everything was cleaned
615 **/
616static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
617{
618 struct net_device *netdev = adapter->netdev;
619 struct e1000_hw *hw = &adapter->hw;
620 struct e1000_ring *tx_ring = adapter->tx_ring;
621 struct e1000_tx_desc *tx_desc, *eop_desc;
622 struct e1000_buffer *buffer_info;
623 unsigned int i, eop;
624 unsigned int count = 0;
625 bool cleaned = 0;
626 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
627
628 i = tx_ring->next_to_clean;
629 eop = tx_ring->buffer_info[i].next_to_watch;
630 eop_desc = E1000_TX_DESC(*tx_ring, eop);
631
632 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
633 for (cleaned = 0; !cleaned; ) {
634 tx_desc = E1000_TX_DESC(*tx_ring, i);
635 buffer_info = &tx_ring->buffer_info[i];
636 cleaned = (i == eop);
637
638 if (cleaned) {
639 struct sk_buff *skb = buffer_info->skb;
640 unsigned int segs, bytecount;
641 segs = skb_shinfo(skb)->gso_segs ?: 1;
642 /* multiply data chunks by size of headers */
643 bytecount = ((segs - 1) * skb_headlen(skb)) +
644 skb->len;
645 total_tx_packets += segs;
646 total_tx_bytes += bytecount;
647 }
648
649 e1000_put_txbuf(adapter, buffer_info);
650 tx_desc->upper.data = 0;
651
652 i++;
653 if (i == tx_ring->count)
654 i = 0;
655 }
656
657 eop = tx_ring->buffer_info[i].next_to_watch;
658 eop_desc = E1000_TX_DESC(*tx_ring, eop);
659#define E1000_TX_WEIGHT 64
660 /* weight of a sort for tx, to avoid endless transmit cleanup */
661 if (count++ == E1000_TX_WEIGHT)
662 break;
663 }
664
665 tx_ring->next_to_clean = i;
666
667#define TX_WAKE_THRESHOLD 32
668 if (cleaned && netif_carrier_ok(netdev) &&
669 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
670 /* Make sure that anybody stopping the queue after this
671 * sees the new next_to_clean.
672 */
673 smp_mb();
674
675 if (netif_queue_stopped(netdev) &&
676 !(test_bit(__E1000_DOWN, &adapter->state))) {
677 netif_wake_queue(netdev);
678 ++adapter->restart_queue;
679 }
680 }
681
682 if (adapter->detect_tx_hung) {
ad68076e
BA
683 /*
684 * Detect a transmit hang in hardware, this serializes the
685 * check with the clearing of time_stamp and movement of i
686 */
bc7f75fa
AK
687 adapter->detect_tx_hung = 0;
688 if (tx_ring->buffer_info[eop].dma &&
689 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
690 + (adapter->tx_timeout_factor * HZ))
ad68076e 691 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
bc7f75fa
AK
692 e1000_print_tx_hang(adapter);
693 netif_stop_queue(netdev);
694 }
695 }
696 adapter->total_tx_bytes += total_tx_bytes;
697 adapter->total_tx_packets += total_tx_packets;
41988692 698 adapter->net_stats.tx_bytes += total_tx_bytes;
7c25769f 699 adapter->net_stats.tx_packets += total_tx_packets;
bc7f75fa
AK
700 return cleaned;
701}
702
bc7f75fa
AK
703/**
704 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
705 * @adapter: board private structure
706 *
707 * the return value indicates whether actual cleaning was done, there
708 * is no guarantee that everything was cleaned
709 **/
710static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
711 int *work_done, int work_to_do)
712{
713 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
714 struct net_device *netdev = adapter->netdev;
715 struct pci_dev *pdev = adapter->pdev;
716 struct e1000_ring *rx_ring = adapter->rx_ring;
717 struct e1000_buffer *buffer_info, *next_buffer;
718 struct e1000_ps_page *ps_page;
719 struct sk_buff *skb;
720 unsigned int i, j;
721 u32 length, staterr;
722 int cleaned_count = 0;
723 bool cleaned = 0;
724 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
725
726 i = rx_ring->next_to_clean;
727 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
728 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
729 buffer_info = &rx_ring->buffer_info[i];
730
731 while (staterr & E1000_RXD_STAT_DD) {
732 if (*work_done >= work_to_do)
733 break;
734 (*work_done)++;
735 skb = buffer_info->skb;
736
737 /* in the packet split case this is header only */
738 prefetch(skb->data - NET_IP_ALIGN);
739
740 i++;
741 if (i == rx_ring->count)
742 i = 0;
743 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
744 prefetch(next_rxd);
745
746 next_buffer = &rx_ring->buffer_info[i];
747
748 cleaned = 1;
749 cleaned_count++;
750 pci_unmap_single(pdev, buffer_info->dma,
751 adapter->rx_ps_bsize0,
752 PCI_DMA_FROMDEVICE);
753 buffer_info->dma = 0;
754
755 if (!(staterr & E1000_RXD_STAT_EOP)) {
44defeb3
JK
756 e_dbg("%s: Packet Split buffers didn't pick up the "
757 "full packet\n", netdev->name);
bc7f75fa
AK
758 dev_kfree_skb_irq(skb);
759 goto next_desc;
760 }
761
762 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
763 dev_kfree_skb_irq(skb);
764 goto next_desc;
765 }
766
767 length = le16_to_cpu(rx_desc->wb.middle.length0);
768
769 if (!length) {
44defeb3
JK
770 e_dbg("%s: Last part of the packet spanning multiple "
771 "descriptors\n", netdev->name);
bc7f75fa
AK
772 dev_kfree_skb_irq(skb);
773 goto next_desc;
774 }
775
776 /* Good Receive */
777 skb_put(skb, length);
778
779 {
ad68076e
BA
780 /*
781 * this looks ugly, but it seems compiler issues make it
782 * more efficient than reusing j
783 */
bc7f75fa
AK
784 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
785
ad68076e
BA
786 /*
787 * page alloc/put takes too long and effects small packet
788 * throughput, so unsplit small packets and save the alloc/put
789 * only valid in softirq (napi) context to call kmap_*
790 */
bc7f75fa
AK
791 if (l1 && (l1 <= copybreak) &&
792 ((length + l1) <= adapter->rx_ps_bsize0)) {
793 u8 *vaddr;
794
47f44e40 795 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 796
ad68076e
BA
797 /*
798 * there is no documentation about how to call
bc7f75fa 799 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
800 * very long
801 */
bc7f75fa
AK
802 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
803 PAGE_SIZE, PCI_DMA_FROMDEVICE);
804 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
805 memcpy(skb_tail_pointer(skb), vaddr, l1);
806 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
807 pci_dma_sync_single_for_device(pdev, ps_page->dma,
808 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 809
eb7c3adb
JK
810 /* remove the CRC */
811 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
812 l1 -= 4;
813
bc7f75fa
AK
814 skb_put(skb, l1);
815 goto copydone;
816 } /* if */
817 }
818
819 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
820 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
821 if (!length)
822 break;
823
47f44e40 824 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
825 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
826 PCI_DMA_FROMDEVICE);
827 ps_page->dma = 0;
828 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
829 ps_page->page = NULL;
830 skb->len += length;
831 skb->data_len += length;
832 skb->truesize += length;
833 }
834
eb7c3adb
JK
835 /* strip the ethernet crc, problem is we're using pages now so
836 * this whole operation can get a little cpu intensive
837 */
838 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
839 pskb_trim(skb, skb->len - 4);
840
bc7f75fa
AK
841copydone:
842 total_rx_bytes += skb->len;
843 total_rx_packets++;
844
845 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
846 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
847
848 if (rx_desc->wb.upper.header_status &
849 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
850 adapter->rx_hdr_split++;
851
852 e1000_receive_skb(adapter, netdev, skb,
853 staterr, rx_desc->wb.middle.vlan);
854
855next_desc:
856 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
857 buffer_info->skb = NULL;
858
859 /* return some buffers to hardware, one at a time is too slow */
860 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
861 adapter->alloc_rx_buf(adapter, cleaned_count);
862 cleaned_count = 0;
863 }
864
865 /* use prefetched values */
866 rx_desc = next_rxd;
867 buffer_info = next_buffer;
868
869 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
870 }
871 rx_ring->next_to_clean = i;
872
873 cleaned_count = e1000_desc_unused(rx_ring);
874 if (cleaned_count)
875 adapter->alloc_rx_buf(adapter, cleaned_count);
876
bc7f75fa 877 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 878 adapter->total_rx_packets += total_rx_packets;
41988692 879 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 880 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
881 return cleaned;
882}
883
97ac8cae
BA
884/**
885 * e1000_consume_page - helper function
886 **/
887static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
888 u16 length)
889{
890 bi->page = NULL;
891 skb->len += length;
892 skb->data_len += length;
893 skb->truesize += length;
894}
895
896/**
897 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
898 * @adapter: board private structure
899 *
900 * the return value indicates whether actual cleaning was done, there
901 * is no guarantee that everything was cleaned
902 **/
903
904static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
905 int *work_done, int work_to_do)
906{
907 struct net_device *netdev = adapter->netdev;
908 struct pci_dev *pdev = adapter->pdev;
909 struct e1000_ring *rx_ring = adapter->rx_ring;
910 struct e1000_rx_desc *rx_desc, *next_rxd;
911 struct e1000_buffer *buffer_info, *next_buffer;
912 u32 length;
913 unsigned int i;
914 int cleaned_count = 0;
915 bool cleaned = false;
916 unsigned int total_rx_bytes=0, total_rx_packets=0;
917
918 i = rx_ring->next_to_clean;
919 rx_desc = E1000_RX_DESC(*rx_ring, i);
920 buffer_info = &rx_ring->buffer_info[i];
921
922 while (rx_desc->status & E1000_RXD_STAT_DD) {
923 struct sk_buff *skb;
924 u8 status;
925
926 if (*work_done >= work_to_do)
927 break;
928 (*work_done)++;
929
930 status = rx_desc->status;
931 skb = buffer_info->skb;
932 buffer_info->skb = NULL;
933
934 ++i;
935 if (i == rx_ring->count)
936 i = 0;
937 next_rxd = E1000_RX_DESC(*rx_ring, i);
938 prefetch(next_rxd);
939
940 next_buffer = &rx_ring->buffer_info[i];
941
942 cleaned = true;
943 cleaned_count++;
944 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
945 PCI_DMA_FROMDEVICE);
946 buffer_info->dma = 0;
947
948 length = le16_to_cpu(rx_desc->length);
949
950 /* errors is only valid for DD + EOP descriptors */
951 if (unlikely((status & E1000_RXD_STAT_EOP) &&
952 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
953 /* recycle both page and skb */
954 buffer_info->skb = skb;
955 /* an error means any chain goes out the window
956 * too */
957 if (rx_ring->rx_skb_top)
958 dev_kfree_skb(rx_ring->rx_skb_top);
959 rx_ring->rx_skb_top = NULL;
960 goto next_desc;
961 }
962
963#define rxtop rx_ring->rx_skb_top
964 if (!(status & E1000_RXD_STAT_EOP)) {
965 /* this descriptor is only the beginning (or middle) */
966 if (!rxtop) {
967 /* this is the beginning of a chain */
968 rxtop = skb;
969 skb_fill_page_desc(rxtop, 0, buffer_info->page,
970 0, length);
971 } else {
972 /* this is the middle of a chain */
973 skb_fill_page_desc(rxtop,
974 skb_shinfo(rxtop)->nr_frags,
975 buffer_info->page, 0, length);
976 /* re-use the skb, only consumed the page */
977 buffer_info->skb = skb;
978 }
979 e1000_consume_page(buffer_info, rxtop, length);
980 goto next_desc;
981 } else {
982 if (rxtop) {
983 /* end of the chain */
984 skb_fill_page_desc(rxtop,
985 skb_shinfo(rxtop)->nr_frags,
986 buffer_info->page, 0, length);
987 /* re-use the current skb, we only consumed the
988 * page */
989 buffer_info->skb = skb;
990 skb = rxtop;
991 rxtop = NULL;
992 e1000_consume_page(buffer_info, skb, length);
993 } else {
994 /* no chain, got EOP, this buf is the packet
995 * copybreak to save the put_page/alloc_page */
996 if (length <= copybreak &&
997 skb_tailroom(skb) >= length) {
998 u8 *vaddr;
999 vaddr = kmap_atomic(buffer_info->page,
1000 KM_SKB_DATA_SOFTIRQ);
1001 memcpy(skb_tail_pointer(skb), vaddr,
1002 length);
1003 kunmap_atomic(vaddr,
1004 KM_SKB_DATA_SOFTIRQ);
1005 /* re-use the page, so don't erase
1006 * buffer_info->page */
1007 skb_put(skb, length);
1008 } else {
1009 skb_fill_page_desc(skb, 0,
1010 buffer_info->page, 0,
1011 length);
1012 e1000_consume_page(buffer_info, skb,
1013 length);
1014 }
1015 }
1016 }
1017
1018 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1019 e1000_rx_checksum(adapter,
1020 (u32)(status) |
1021 ((u32)(rx_desc->errors) << 24),
1022 le16_to_cpu(rx_desc->csum), skb);
1023
1024 /* probably a little skewed due to removing CRC */
1025 total_rx_bytes += skb->len;
1026 total_rx_packets++;
1027
1028 /* eth type trans needs skb->data to point to something */
1029 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1030 e_err("pskb_may_pull failed.\n");
97ac8cae
BA
1031 dev_kfree_skb(skb);
1032 goto next_desc;
1033 }
1034
1035 e1000_receive_skb(adapter, netdev, skb, status,
1036 rx_desc->special);
1037
1038next_desc:
1039 rx_desc->status = 0;
1040
1041 /* return some buffers to hardware, one at a time is too slow */
1042 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1043 adapter->alloc_rx_buf(adapter, cleaned_count);
1044 cleaned_count = 0;
1045 }
1046
1047 /* use prefetched values */
1048 rx_desc = next_rxd;
1049 buffer_info = next_buffer;
1050 }
1051 rx_ring->next_to_clean = i;
1052
1053 cleaned_count = e1000_desc_unused(rx_ring);
1054 if (cleaned_count)
1055 adapter->alloc_rx_buf(adapter, cleaned_count);
1056
1057 adapter->total_rx_bytes += total_rx_bytes;
1058 adapter->total_rx_packets += total_rx_packets;
1059 adapter->net_stats.rx_bytes += total_rx_bytes;
1060 adapter->net_stats.rx_packets += total_rx_packets;
1061 return cleaned;
1062}
1063
bc7f75fa
AK
1064/**
1065 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1066 * @adapter: board private structure
1067 **/
1068static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1069{
1070 struct e1000_ring *rx_ring = adapter->rx_ring;
1071 struct e1000_buffer *buffer_info;
1072 struct e1000_ps_page *ps_page;
1073 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1074 unsigned int i, j;
1075
1076 /* Free all the Rx ring sk_buffs */
1077 for (i = 0; i < rx_ring->count; i++) {
1078 buffer_info = &rx_ring->buffer_info[i];
1079 if (buffer_info->dma) {
1080 if (adapter->clean_rx == e1000_clean_rx_irq)
1081 pci_unmap_single(pdev, buffer_info->dma,
1082 adapter->rx_buffer_len,
1083 PCI_DMA_FROMDEVICE);
97ac8cae
BA
1084 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1085 pci_unmap_page(pdev, buffer_info->dma,
1086 PAGE_SIZE,
1087 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
1088 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1089 pci_unmap_single(pdev, buffer_info->dma,
1090 adapter->rx_ps_bsize0,
1091 PCI_DMA_FROMDEVICE);
1092 buffer_info->dma = 0;
1093 }
1094
97ac8cae
BA
1095 if (buffer_info->page) {
1096 put_page(buffer_info->page);
1097 buffer_info->page = NULL;
1098 }
1099
bc7f75fa
AK
1100 if (buffer_info->skb) {
1101 dev_kfree_skb(buffer_info->skb);
1102 buffer_info->skb = NULL;
1103 }
1104
1105 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1106 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1107 if (!ps_page->page)
1108 break;
1109 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1110 PCI_DMA_FROMDEVICE);
1111 ps_page->dma = 0;
1112 put_page(ps_page->page);
1113 ps_page->page = NULL;
1114 }
1115 }
1116
1117 /* there also may be some cached data from a chained receive */
1118 if (rx_ring->rx_skb_top) {
1119 dev_kfree_skb(rx_ring->rx_skb_top);
1120 rx_ring->rx_skb_top = NULL;
1121 }
1122
bc7f75fa
AK
1123 /* Zero out the descriptor ring */
1124 memset(rx_ring->desc, 0, rx_ring->size);
1125
1126 rx_ring->next_to_clean = 0;
1127 rx_ring->next_to_use = 0;
1128
1129 writel(0, adapter->hw.hw_addr + rx_ring->head);
1130 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1131}
1132
a8f88ff5
JB
1133static void e1000e_downshift_workaround(struct work_struct *work)
1134{
1135 struct e1000_adapter *adapter = container_of(work,
1136 struct e1000_adapter, downshift_task);
1137
1138 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1139}
1140
bc7f75fa
AK
1141/**
1142 * e1000_intr_msi - Interrupt Handler
1143 * @irq: interrupt number
1144 * @data: pointer to a network interface device structure
1145 **/
1146static irqreturn_t e1000_intr_msi(int irq, void *data)
1147{
1148 struct net_device *netdev = data;
1149 struct e1000_adapter *adapter = netdev_priv(netdev);
1150 struct e1000_hw *hw = &adapter->hw;
1151 u32 icr = er32(ICR);
1152
ad68076e
BA
1153 /*
1154 * read ICR disables interrupts using IAM
1155 */
bc7f75fa
AK
1156
1157 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1158 hw->mac.get_link_status = 1;
ad68076e
BA
1159 /*
1160 * ICH8 workaround-- Call gig speed drop workaround on cable
1161 * disconnect (LSC) before accessing any PHY registers
1162 */
bc7f75fa
AK
1163 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1164 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1165 schedule_work(&adapter->downshift_task);
bc7f75fa 1166
ad68076e
BA
1167 /*
1168 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1169 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1170 * adapter in watchdog
1171 */
bc7f75fa
AK
1172 if (netif_carrier_ok(netdev) &&
1173 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1174 /* disable receives */
1175 u32 rctl = er32(RCTL);
1176 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1177 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1178 }
1179 /* guard against interrupt when we're going down */
1180 if (!test_bit(__E1000_DOWN, &adapter->state))
1181 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1182 }
1183
1184 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1185 adapter->total_tx_bytes = 0;
1186 adapter->total_tx_packets = 0;
1187 adapter->total_rx_bytes = 0;
1188 adapter->total_rx_packets = 0;
1189 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
1190 }
1191
1192 return IRQ_HANDLED;
1193}
1194
1195/**
1196 * e1000_intr - Interrupt Handler
1197 * @irq: interrupt number
1198 * @data: pointer to a network interface device structure
1199 **/
1200static irqreturn_t e1000_intr(int irq, void *data)
1201{
1202 struct net_device *netdev = data;
1203 struct e1000_adapter *adapter = netdev_priv(netdev);
1204 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1205 u32 rctl, icr = er32(ICR);
4662e82b 1206
bc7f75fa
AK
1207 if (!icr)
1208 return IRQ_NONE; /* Not our interrupt */
1209
ad68076e
BA
1210 /*
1211 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1212 * not set, then the adapter didn't send an interrupt
1213 */
bc7f75fa
AK
1214 if (!(icr & E1000_ICR_INT_ASSERTED))
1215 return IRQ_NONE;
1216
ad68076e
BA
1217 /*
1218 * Interrupt Auto-Mask...upon reading ICR,
1219 * interrupts are masked. No need for the
1220 * IMC write
1221 */
bc7f75fa
AK
1222
1223 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1224 hw->mac.get_link_status = 1;
ad68076e
BA
1225 /*
1226 * ICH8 workaround-- Call gig speed drop workaround on cable
1227 * disconnect (LSC) before accessing any PHY registers
1228 */
bc7f75fa
AK
1229 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1230 (!(er32(STATUS) & E1000_STATUS_LU)))
a8f88ff5 1231 schedule_work(&adapter->downshift_task);
bc7f75fa 1232
ad68076e
BA
1233 /*
1234 * 80003ES2LAN workaround--
bc7f75fa
AK
1235 * For packet buffer work-around on link down event;
1236 * disable receives here in the ISR and
1237 * reset adapter in watchdog
1238 */
1239 if (netif_carrier_ok(netdev) &&
1240 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1241 /* disable receives */
1242 rctl = er32(RCTL);
1243 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1244 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1245 }
1246 /* guard against interrupt when we're going down */
1247 if (!test_bit(__E1000_DOWN, &adapter->state))
1248 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1249 }
1250
1251 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1252 adapter->total_tx_bytes = 0;
1253 adapter->total_tx_packets = 0;
1254 adapter->total_rx_bytes = 0;
1255 adapter->total_rx_packets = 0;
1256 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
1257 }
1258
1259 return IRQ_HANDLED;
1260}
1261
4662e82b
BA
1262static irqreturn_t e1000_msix_other(int irq, void *data)
1263{
1264 struct net_device *netdev = data;
1265 struct e1000_adapter *adapter = netdev_priv(netdev);
1266 struct e1000_hw *hw = &adapter->hw;
1267 u32 icr = er32(ICR);
1268
1269 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1270 ew32(IMS, E1000_IMS_OTHER);
1271 return IRQ_NONE;
1272 }
1273
1274 if (icr & adapter->eiac_mask)
1275 ew32(ICS, (icr & adapter->eiac_mask));
1276
1277 if (icr & E1000_ICR_OTHER) {
1278 if (!(icr & E1000_ICR_LSC))
1279 goto no_link_interrupt;
1280 hw->mac.get_link_status = 1;
1281 /* guard against interrupt when we're going down */
1282 if (!test_bit(__E1000_DOWN, &adapter->state))
1283 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1284 }
1285
1286no_link_interrupt:
1287 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1288
1289 return IRQ_HANDLED;
1290}
1291
1292
1293static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1294{
1295 struct net_device *netdev = data;
1296 struct e1000_adapter *adapter = netdev_priv(netdev);
1297 struct e1000_hw *hw = &adapter->hw;
1298 struct e1000_ring *tx_ring = adapter->tx_ring;
1299
1300
1301 adapter->total_tx_bytes = 0;
1302 adapter->total_tx_packets = 0;
1303
1304 if (!e1000_clean_tx_irq(adapter))
1305 /* Ring was not completely cleaned, so fire another interrupt */
1306 ew32(ICS, tx_ring->ims_val);
1307
1308 return IRQ_HANDLED;
1309}
1310
1311static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1312{
1313 struct net_device *netdev = data;
1314 struct e1000_adapter *adapter = netdev_priv(netdev);
1315
1316 /* Write the ITR value calculated at the end of the
1317 * previous interrupt.
1318 */
1319 if (adapter->rx_ring->set_itr) {
1320 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1321 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1322 adapter->rx_ring->set_itr = 0;
1323 }
1324
1325 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1326 adapter->total_rx_bytes = 0;
1327 adapter->total_rx_packets = 0;
1328 __netif_rx_schedule(netdev, &adapter->napi);
1329 }
1330 return IRQ_HANDLED;
1331}
1332
1333/**
1334 * e1000_configure_msix - Configure MSI-X hardware
1335 *
1336 * e1000_configure_msix sets up the hardware to properly
1337 * generate MSI-X interrupts.
1338 **/
1339static void e1000_configure_msix(struct e1000_adapter *adapter)
1340{
1341 struct e1000_hw *hw = &adapter->hw;
1342 struct e1000_ring *rx_ring = adapter->rx_ring;
1343 struct e1000_ring *tx_ring = adapter->tx_ring;
1344 int vector = 0;
1345 u32 ctrl_ext, ivar = 0;
1346
1347 adapter->eiac_mask = 0;
1348
1349 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1350 if (hw->mac.type == e1000_82574) {
1351 u32 rfctl = er32(RFCTL);
1352 rfctl |= E1000_RFCTL_ACK_DIS;
1353 ew32(RFCTL, rfctl);
1354 }
1355
1356#define E1000_IVAR_INT_ALLOC_VALID 0x8
1357 /* Configure Rx vector */
1358 rx_ring->ims_val = E1000_IMS_RXQ0;
1359 adapter->eiac_mask |= rx_ring->ims_val;
1360 if (rx_ring->itr_val)
1361 writel(1000000000 / (rx_ring->itr_val * 256),
1362 hw->hw_addr + rx_ring->itr_register);
1363 else
1364 writel(1, hw->hw_addr + rx_ring->itr_register);
1365 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1366
1367 /* Configure Tx vector */
1368 tx_ring->ims_val = E1000_IMS_TXQ0;
1369 vector++;
1370 if (tx_ring->itr_val)
1371 writel(1000000000 / (tx_ring->itr_val * 256),
1372 hw->hw_addr + tx_ring->itr_register);
1373 else
1374 writel(1, hw->hw_addr + tx_ring->itr_register);
1375 adapter->eiac_mask |= tx_ring->ims_val;
1376 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1377
1378 /* set vector for Other Causes, e.g. link changes */
1379 vector++;
1380 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1381 if (rx_ring->itr_val)
1382 writel(1000000000 / (rx_ring->itr_val * 256),
1383 hw->hw_addr + E1000_EITR_82574(vector));
1384 else
1385 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1386
1387 /* Cause Tx interrupts on every write back */
1388 ivar |= (1 << 31);
1389
1390 ew32(IVAR, ivar);
1391
1392 /* enable MSI-X PBA support */
1393 ctrl_ext = er32(CTRL_EXT);
1394 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1395
1396 /* Auto-Mask Other interrupts upon ICR read */
1397#define E1000_EIAC_MASK_82574 0x01F00000
1398 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1399 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1400 ew32(CTRL_EXT, ctrl_ext);
1401 e1e_flush();
1402}
1403
1404void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1405{
1406 if (adapter->msix_entries) {
1407 pci_disable_msix(adapter->pdev);
1408 kfree(adapter->msix_entries);
1409 adapter->msix_entries = NULL;
1410 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1411 pci_disable_msi(adapter->pdev);
1412 adapter->flags &= ~FLAG_MSI_ENABLED;
1413 }
1414
1415 return;
1416}
1417
1418/**
1419 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1420 *
1421 * Attempt to configure interrupts using the best available
1422 * capabilities of the hardware and kernel.
1423 **/
1424void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1425{
1426 int err;
1427 int numvecs, i;
1428
1429
1430 switch (adapter->int_mode) {
1431 case E1000E_INT_MODE_MSIX:
1432 if (adapter->flags & FLAG_HAS_MSIX) {
1433 numvecs = 3; /* RxQ0, TxQ0 and other */
1434 adapter->msix_entries = kcalloc(numvecs,
1435 sizeof(struct msix_entry),
1436 GFP_KERNEL);
1437 if (adapter->msix_entries) {
1438 for (i = 0; i < numvecs; i++)
1439 adapter->msix_entries[i].entry = i;
1440
1441 err = pci_enable_msix(adapter->pdev,
1442 adapter->msix_entries,
1443 numvecs);
1444 if (err == 0)
1445 return;
1446 }
1447 /* MSI-X failed, so fall through and try MSI */
1448 e_err("Failed to initialize MSI-X interrupts. "
1449 "Falling back to MSI interrupts.\n");
1450 e1000e_reset_interrupt_capability(adapter);
1451 }
1452 adapter->int_mode = E1000E_INT_MODE_MSI;
1453 /* Fall through */
1454 case E1000E_INT_MODE_MSI:
1455 if (!pci_enable_msi(adapter->pdev)) {
1456 adapter->flags |= FLAG_MSI_ENABLED;
1457 } else {
1458 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1459 e_err("Failed to initialize MSI interrupts. Falling "
1460 "back to legacy interrupts.\n");
1461 }
1462 /* Fall through */
1463 case E1000E_INT_MODE_LEGACY:
1464 /* Don't do anything; this is the system default */
1465 break;
1466 }
1467
1468 return;
1469}
1470
1471/**
1472 * e1000_request_msix - Initialize MSI-X interrupts
1473 *
1474 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1475 * kernel.
1476 **/
1477static int e1000_request_msix(struct e1000_adapter *adapter)
1478{
1479 struct net_device *netdev = adapter->netdev;
1480 int err = 0, vector = 0;
1481
1482 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1483 sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name);
1484 else
1485 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1486 err = request_irq(adapter->msix_entries[vector].vector,
1487 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1488 netdev);
1489 if (err)
1490 goto out;
1491 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1492 adapter->rx_ring->itr_val = adapter->itr;
1493 vector++;
1494
1495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1496 sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name);
1497 else
1498 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1499 err = request_irq(adapter->msix_entries[vector].vector,
1500 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1501 netdev);
1502 if (err)
1503 goto out;
1504 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1505 adapter->tx_ring->itr_val = adapter->itr;
1506 vector++;
1507
1508 err = request_irq(adapter->msix_entries[vector].vector,
1509 &e1000_msix_other, 0, netdev->name, netdev);
1510 if (err)
1511 goto out;
1512
1513 e1000_configure_msix(adapter);
1514 return 0;
1515out:
1516 return err;
1517}
1518
f8d59f78
BA
1519/**
1520 * e1000_request_irq - initialize interrupts
1521 *
1522 * Attempts to configure interrupts using the best available
1523 * capabilities of the hardware and kernel.
1524 **/
bc7f75fa
AK
1525static int e1000_request_irq(struct e1000_adapter *adapter)
1526{
1527 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1528 int err;
1529
4662e82b
BA
1530 if (adapter->msix_entries) {
1531 err = e1000_request_msix(adapter);
1532 if (!err)
1533 return err;
1534 /* fall back to MSI */
1535 e1000e_reset_interrupt_capability(adapter);
1536 adapter->int_mode = E1000E_INT_MODE_MSI;
1537 e1000e_set_interrupt_capability(adapter);
bc7f75fa 1538 }
4662e82b
BA
1539 if (adapter->flags & FLAG_MSI_ENABLED) {
1540 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1541 netdev->name, netdev);
1542 if (!err)
1543 return err;
bc7f75fa 1544
4662e82b
BA
1545 /* fall back to legacy interrupt */
1546 e1000e_reset_interrupt_capability(adapter);
1547 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
1548 }
1549
4662e82b
BA
1550 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1551 netdev->name, netdev);
1552 if (err)
1553 e_err("Unable to allocate interrupt, Error: %d\n", err);
1554
bc7f75fa
AK
1555 return err;
1556}
1557
1558static void e1000_free_irq(struct e1000_adapter *adapter)
1559{
1560 struct net_device *netdev = adapter->netdev;
1561
4662e82b
BA
1562 if (adapter->msix_entries) {
1563 int vector = 0;
1564
1565 free_irq(adapter->msix_entries[vector].vector, netdev);
1566 vector++;
1567
1568 free_irq(adapter->msix_entries[vector].vector, netdev);
1569 vector++;
1570
1571 /* Other Causes interrupt vector */
1572 free_irq(adapter->msix_entries[vector].vector, netdev);
1573 return;
bc7f75fa 1574 }
4662e82b
BA
1575
1576 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
1577}
1578
1579/**
1580 * e1000_irq_disable - Mask off interrupt generation on the NIC
1581 **/
1582static void e1000_irq_disable(struct e1000_adapter *adapter)
1583{
1584 struct e1000_hw *hw = &adapter->hw;
1585
bc7f75fa 1586 ew32(IMC, ~0);
4662e82b
BA
1587 if (adapter->msix_entries)
1588 ew32(EIAC_82574, 0);
bc7f75fa
AK
1589 e1e_flush();
1590 synchronize_irq(adapter->pdev->irq);
1591}
1592
1593/**
1594 * e1000_irq_enable - Enable default interrupt generation settings
1595 **/
1596static void e1000_irq_enable(struct e1000_adapter *adapter)
1597{
1598 struct e1000_hw *hw = &adapter->hw;
1599
4662e82b
BA
1600 if (adapter->msix_entries) {
1601 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1602 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1603 } else {
1604 ew32(IMS, IMS_ENABLE_MASK);
1605 }
74ef9c39 1606 e1e_flush();
bc7f75fa
AK
1607}
1608
1609/**
1610 * e1000_get_hw_control - get control of the h/w from f/w
1611 * @adapter: address of board private structure
1612 *
489815ce 1613 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1614 * For ASF and Pass Through versions of f/w this means that
1615 * the driver is loaded. For AMT version (only with 82573)
1616 * of the f/w this means that the network i/f is open.
1617 **/
1618static void e1000_get_hw_control(struct e1000_adapter *adapter)
1619{
1620 struct e1000_hw *hw = &adapter->hw;
1621 u32 ctrl_ext;
1622 u32 swsm;
1623
1624 /* Let firmware know the driver has taken over */
1625 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1626 swsm = er32(SWSM);
1627 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1628 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1629 ctrl_ext = er32(CTRL_EXT);
ad68076e 1630 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1631 }
1632}
1633
1634/**
1635 * e1000_release_hw_control - release control of the h/w to f/w
1636 * @adapter: address of board private structure
1637 *
489815ce 1638 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1639 * For ASF and Pass Through versions of f/w this means that the
1640 * driver is no longer loaded. For AMT version (only with 82573) i
1641 * of the f/w this means that the network i/f is closed.
1642 *
1643 **/
1644static void e1000_release_hw_control(struct e1000_adapter *adapter)
1645{
1646 struct e1000_hw *hw = &adapter->hw;
1647 u32 ctrl_ext;
1648 u32 swsm;
1649
1650 /* Let firmware taken over control of h/w */
1651 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1652 swsm = er32(SWSM);
1653 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1654 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1655 ctrl_ext = er32(CTRL_EXT);
ad68076e 1656 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1657 }
1658}
1659
bc7f75fa
AK
1660/**
1661 * @e1000_alloc_ring - allocate memory for a ring structure
1662 **/
1663static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1664 struct e1000_ring *ring)
1665{
1666 struct pci_dev *pdev = adapter->pdev;
1667
1668 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1669 GFP_KERNEL);
1670 if (!ring->desc)
1671 return -ENOMEM;
1672
1673 return 0;
1674}
1675
1676/**
1677 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1678 * @adapter: board private structure
1679 *
1680 * Return 0 on success, negative on failure
1681 **/
1682int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1683{
1684 struct e1000_ring *tx_ring = adapter->tx_ring;
1685 int err = -ENOMEM, size;
1686
1687 size = sizeof(struct e1000_buffer) * tx_ring->count;
1688 tx_ring->buffer_info = vmalloc(size);
1689 if (!tx_ring->buffer_info)
1690 goto err;
1691 memset(tx_ring->buffer_info, 0, size);
1692
1693 /* round up to nearest 4K */
1694 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1695 tx_ring->size = ALIGN(tx_ring->size, 4096);
1696
1697 err = e1000_alloc_ring_dma(adapter, tx_ring);
1698 if (err)
1699 goto err;
1700
1701 tx_ring->next_to_use = 0;
1702 tx_ring->next_to_clean = 0;
1703 spin_lock_init(&adapter->tx_queue_lock);
1704
1705 return 0;
1706err:
1707 vfree(tx_ring->buffer_info);
44defeb3 1708 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1709 return err;
1710}
1711
1712/**
1713 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1714 * @adapter: board private structure
1715 *
1716 * Returns 0 on success, negative on failure
1717 **/
1718int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1719{
1720 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1721 struct e1000_buffer *buffer_info;
1722 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1723
1724 size = sizeof(struct e1000_buffer) * rx_ring->count;
1725 rx_ring->buffer_info = vmalloc(size);
1726 if (!rx_ring->buffer_info)
1727 goto err;
1728 memset(rx_ring->buffer_info, 0, size);
1729
47f44e40
AK
1730 for (i = 0; i < rx_ring->count; i++) {
1731 buffer_info = &rx_ring->buffer_info[i];
1732 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1733 sizeof(struct e1000_ps_page),
1734 GFP_KERNEL);
1735 if (!buffer_info->ps_pages)
1736 goto err_pages;
1737 }
bc7f75fa
AK
1738
1739 desc_len = sizeof(union e1000_rx_desc_packet_split);
1740
1741 /* Round up to nearest 4K */
1742 rx_ring->size = rx_ring->count * desc_len;
1743 rx_ring->size = ALIGN(rx_ring->size, 4096);
1744
1745 err = e1000_alloc_ring_dma(adapter, rx_ring);
1746 if (err)
47f44e40 1747 goto err_pages;
bc7f75fa
AK
1748
1749 rx_ring->next_to_clean = 0;
1750 rx_ring->next_to_use = 0;
1751 rx_ring->rx_skb_top = NULL;
1752
1753 return 0;
47f44e40
AK
1754
1755err_pages:
1756 for (i = 0; i < rx_ring->count; i++) {
1757 buffer_info = &rx_ring->buffer_info[i];
1758 kfree(buffer_info->ps_pages);
1759 }
bc7f75fa
AK
1760err:
1761 vfree(rx_ring->buffer_info);
44defeb3 1762 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1763 return err;
1764}
1765
1766/**
1767 * e1000_clean_tx_ring - Free Tx Buffers
1768 * @adapter: board private structure
1769 **/
1770static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1771{
1772 struct e1000_ring *tx_ring = adapter->tx_ring;
1773 struct e1000_buffer *buffer_info;
1774 unsigned long size;
1775 unsigned int i;
1776
1777 for (i = 0; i < tx_ring->count; i++) {
1778 buffer_info = &tx_ring->buffer_info[i];
1779 e1000_put_txbuf(adapter, buffer_info);
1780 }
1781
1782 size = sizeof(struct e1000_buffer) * tx_ring->count;
1783 memset(tx_ring->buffer_info, 0, size);
1784
1785 memset(tx_ring->desc, 0, tx_ring->size);
1786
1787 tx_ring->next_to_use = 0;
1788 tx_ring->next_to_clean = 0;
1789
1790 writel(0, adapter->hw.hw_addr + tx_ring->head);
1791 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1792}
1793
1794/**
1795 * e1000e_free_tx_resources - Free Tx Resources per Queue
1796 * @adapter: board private structure
1797 *
1798 * Free all transmit software resources
1799 **/
1800void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1801{
1802 struct pci_dev *pdev = adapter->pdev;
1803 struct e1000_ring *tx_ring = adapter->tx_ring;
1804
1805 e1000_clean_tx_ring(adapter);
1806
1807 vfree(tx_ring->buffer_info);
1808 tx_ring->buffer_info = NULL;
1809
1810 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1811 tx_ring->dma);
1812 tx_ring->desc = NULL;
1813}
1814
1815/**
1816 * e1000e_free_rx_resources - Free Rx Resources
1817 * @adapter: board private structure
1818 *
1819 * Free all receive software resources
1820 **/
1821
1822void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1823{
1824 struct pci_dev *pdev = adapter->pdev;
1825 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1826 int i;
bc7f75fa
AK
1827
1828 e1000_clean_rx_ring(adapter);
1829
47f44e40
AK
1830 for (i = 0; i < rx_ring->count; i++) {
1831 kfree(rx_ring->buffer_info[i].ps_pages);
1832 }
1833
bc7f75fa
AK
1834 vfree(rx_ring->buffer_info);
1835 rx_ring->buffer_info = NULL;
1836
bc7f75fa
AK
1837 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1838 rx_ring->dma);
1839 rx_ring->desc = NULL;
1840}
1841
1842/**
1843 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1844 * @adapter: pointer to adapter
1845 * @itr_setting: current adapter->itr
1846 * @packets: the number of packets during this measurement interval
1847 * @bytes: the number of bytes during this measurement interval
1848 *
bc7f75fa
AK
1849 * Stores a new ITR value based on packets and byte
1850 * counts during the last interrupt. The advantage of per interrupt
1851 * computation is faster updates and more accurate ITR for the current
1852 * traffic pattern. Constants in this function were computed
1853 * based on theoretical maximum wire speed and thresholds were set based
1854 * on testing data as well as attempting to minimize response time
4662e82b
BA
1855 * while increasing bulk throughput. This functionality is controlled
1856 * by the InterruptThrottleRate module parameter.
bc7f75fa
AK
1857 **/
1858static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1859 u16 itr_setting, int packets,
1860 int bytes)
1861{
1862 unsigned int retval = itr_setting;
1863
1864 if (packets == 0)
1865 goto update_itr_done;
1866
1867 switch (itr_setting) {
1868 case lowest_latency:
1869 /* handle TSO and jumbo frames */
1870 if (bytes/packets > 8000)
1871 retval = bulk_latency;
1872 else if ((packets < 5) && (bytes > 512)) {
1873 retval = low_latency;
1874 }
1875 break;
1876 case low_latency: /* 50 usec aka 20000 ints/s */
1877 if (bytes > 10000) {
1878 /* this if handles the TSO accounting */
1879 if (bytes/packets > 8000) {
1880 retval = bulk_latency;
1881 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1882 retval = bulk_latency;
1883 } else if ((packets > 35)) {
1884 retval = lowest_latency;
1885 }
1886 } else if (bytes/packets > 2000) {
1887 retval = bulk_latency;
1888 } else if (packets <= 2 && bytes < 512) {
1889 retval = lowest_latency;
1890 }
1891 break;
1892 case bulk_latency: /* 250 usec aka 4000 ints/s */
1893 if (bytes > 25000) {
1894 if (packets > 35) {
1895 retval = low_latency;
1896 }
1897 } else if (bytes < 6000) {
1898 retval = low_latency;
1899 }
1900 break;
1901 }
1902
1903update_itr_done:
1904 return retval;
1905}
1906
1907static void e1000_set_itr(struct e1000_adapter *adapter)
1908{
1909 struct e1000_hw *hw = &adapter->hw;
1910 u16 current_itr;
1911 u32 new_itr = adapter->itr;
1912
1913 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1914 if (adapter->link_speed != SPEED_1000) {
1915 current_itr = 0;
1916 new_itr = 4000;
1917 goto set_itr_now;
1918 }
1919
1920 adapter->tx_itr = e1000_update_itr(adapter,
1921 adapter->tx_itr,
1922 adapter->total_tx_packets,
1923 adapter->total_tx_bytes);
1924 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1925 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1926 adapter->tx_itr = low_latency;
1927
1928 adapter->rx_itr = e1000_update_itr(adapter,
1929 adapter->rx_itr,
1930 adapter->total_rx_packets,
1931 adapter->total_rx_bytes);
1932 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1933 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1934 adapter->rx_itr = low_latency;
1935
1936 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1937
1938 switch (current_itr) {
1939 /* counts and packets in update_itr are dependent on these numbers */
1940 case lowest_latency:
1941 new_itr = 70000;
1942 break;
1943 case low_latency:
1944 new_itr = 20000; /* aka hwitr = ~200 */
1945 break;
1946 case bulk_latency:
1947 new_itr = 4000;
1948 break;
1949 default:
1950 break;
1951 }
1952
1953set_itr_now:
1954 if (new_itr != adapter->itr) {
ad68076e
BA
1955 /*
1956 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1957 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1958 * increasing
1959 */
bc7f75fa
AK
1960 new_itr = new_itr > adapter->itr ?
1961 min(adapter->itr + (new_itr >> 2), new_itr) :
1962 new_itr;
1963 adapter->itr = new_itr;
4662e82b
BA
1964 adapter->rx_ring->itr_val = new_itr;
1965 if (adapter->msix_entries)
1966 adapter->rx_ring->set_itr = 1;
1967 else
1968 ew32(ITR, 1000000000 / (new_itr * 256));
bc7f75fa
AK
1969 }
1970}
1971
4662e82b
BA
1972/**
1973 * e1000_alloc_queues - Allocate memory for all rings
1974 * @adapter: board private structure to initialize
1975 **/
1976static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1977{
1978 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1979 if (!adapter->tx_ring)
1980 goto err;
1981
1982 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1983 if (!adapter->rx_ring)
1984 goto err;
1985
1986 return 0;
1987err:
1988 e_err("Unable to allocate memory for queues\n");
1989 kfree(adapter->rx_ring);
1990 kfree(adapter->tx_ring);
1991 return -ENOMEM;
1992}
1993
bc7f75fa
AK
1994/**
1995 * e1000_clean - NAPI Rx polling callback
ad68076e 1996 * @napi: struct associated with this polling callback
489815ce 1997 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
1998 **/
1999static int e1000_clean(struct napi_struct *napi, int budget)
2000{
2001 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
4662e82b 2002 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 2003 struct net_device *poll_dev = adapter->netdev;
d2c7ddd6 2004 int tx_cleaned = 0, work_done = 0;
bc7f75fa
AK
2005
2006 /* Must NOT use netdev_priv macro here. */
2007 adapter = poll_dev->priv;
2008
4662e82b
BA
2009 if (adapter->msix_entries &&
2010 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2011 goto clean_rx;
2012
ad68076e
BA
2013 /*
2014 * e1000_clean is called per-cpu. This lock protects
bc7f75fa
AK
2015 * tx_ring from being cleaned by multiple cpus
2016 * simultaneously. A failure obtaining the lock means
ad68076e
BA
2017 * tx_ring is currently being cleaned anyway.
2018 */
bc7f75fa 2019 if (spin_trylock(&adapter->tx_queue_lock)) {
d2c7ddd6 2020 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa
AK
2021 spin_unlock(&adapter->tx_queue_lock);
2022 }
2023
4662e82b 2024clean_rx:
bc7f75fa 2025 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6
DM
2026
2027 if (tx_cleaned)
2028 work_done = budget;
bc7f75fa 2029
53e52c72
DM
2030 /* If budget not fully consumed, exit the polling mode */
2031 if (work_done < budget) {
bc7f75fa
AK
2032 if (adapter->itr_setting & 3)
2033 e1000_set_itr(adapter);
2034 netif_rx_complete(poll_dev, napi);
4662e82b
BA
2035 if (adapter->msix_entries)
2036 ew32(IMS, adapter->rx_ring->ims_val);
2037 else
2038 e1000_irq_enable(adapter);
bc7f75fa
AK
2039 }
2040
2041 return work_done;
2042}
2043
2044static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2045{
2046 struct e1000_adapter *adapter = netdev_priv(netdev);
2047 struct e1000_hw *hw = &adapter->hw;
2048 u32 vfta, index;
2049
2050 /* don't update vlan cookie if already programmed */
2051 if ((adapter->hw.mng_cookie.status &
2052 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2053 (vid == adapter->mng_vlan_id))
2054 return;
2055 /* add VID to filter table */
2056 index = (vid >> 5) & 0x7F;
2057 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2058 vfta |= (1 << (vid & 0x1F));
2059 e1000e_write_vfta(hw, index, vfta);
2060}
2061
2062static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2063{
2064 struct e1000_adapter *adapter = netdev_priv(netdev);
2065 struct e1000_hw *hw = &adapter->hw;
2066 u32 vfta, index;
2067
74ef9c39
JB
2068 if (!test_bit(__E1000_DOWN, &adapter->state))
2069 e1000_irq_disable(adapter);
bc7f75fa 2070 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
2071
2072 if (!test_bit(__E1000_DOWN, &adapter->state))
2073 e1000_irq_enable(adapter);
bc7f75fa
AK
2074
2075 if ((adapter->hw.mng_cookie.status &
2076 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2077 (vid == adapter->mng_vlan_id)) {
2078 /* release control to f/w */
2079 e1000_release_hw_control(adapter);
2080 return;
2081 }
2082
2083 /* remove VID from filter table */
2084 index = (vid >> 5) & 0x7F;
2085 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2086 vfta &= ~(1 << (vid & 0x1F));
2087 e1000e_write_vfta(hw, index, vfta);
2088}
2089
2090static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2091{
2092 struct net_device *netdev = adapter->netdev;
2093 u16 vid = adapter->hw.mng_cookie.vlan_id;
2094 u16 old_vid = adapter->mng_vlan_id;
2095
2096 if (!adapter->vlgrp)
2097 return;
2098
2099 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2100 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2101 if (adapter->hw.mng_cookie.status &
2102 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2103 e1000_vlan_rx_add_vid(netdev, vid);
2104 adapter->mng_vlan_id = vid;
2105 }
2106
2107 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2108 (vid != old_vid) &&
2109 !vlan_group_get_device(adapter->vlgrp, old_vid))
2110 e1000_vlan_rx_kill_vid(netdev, old_vid);
2111 } else {
2112 adapter->mng_vlan_id = vid;
2113 }
2114}
2115
2116
2117static void e1000_vlan_rx_register(struct net_device *netdev,
2118 struct vlan_group *grp)
2119{
2120 struct e1000_adapter *adapter = netdev_priv(netdev);
2121 struct e1000_hw *hw = &adapter->hw;
2122 u32 ctrl, rctl;
2123
74ef9c39
JB
2124 if (!test_bit(__E1000_DOWN, &adapter->state))
2125 e1000_irq_disable(adapter);
bc7f75fa
AK
2126 adapter->vlgrp = grp;
2127
2128 if (grp) {
2129 /* enable VLAN tag insert/strip */
2130 ctrl = er32(CTRL);
2131 ctrl |= E1000_CTRL_VME;
2132 ew32(CTRL, ctrl);
2133
2134 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2135 /* enable VLAN receive filtering */
2136 rctl = er32(RCTL);
bc7f75fa
AK
2137 rctl &= ~E1000_RCTL_CFIEN;
2138 ew32(RCTL, rctl);
2139 e1000_update_mng_vlan(adapter);
2140 }
2141 } else {
2142 /* disable VLAN tag insert/strip */
2143 ctrl = er32(CTRL);
2144 ctrl &= ~E1000_CTRL_VME;
2145 ew32(CTRL, ctrl);
2146
2147 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
bc7f75fa
AK
2148 if (adapter->mng_vlan_id !=
2149 (u16)E1000_MNG_VLAN_NONE) {
2150 e1000_vlan_rx_kill_vid(netdev,
2151 adapter->mng_vlan_id);
2152 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2153 }
2154 }
2155 }
2156
74ef9c39
JB
2157 if (!test_bit(__E1000_DOWN, &adapter->state))
2158 e1000_irq_enable(adapter);
bc7f75fa
AK
2159}
2160
2161static void e1000_restore_vlan(struct e1000_adapter *adapter)
2162{
2163 u16 vid;
2164
2165 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2166
2167 if (!adapter->vlgrp)
2168 return;
2169
2170 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2171 if (!vlan_group_get_device(adapter->vlgrp, vid))
2172 continue;
2173 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2174 }
2175}
2176
2177static void e1000_init_manageability(struct e1000_adapter *adapter)
2178{
2179 struct e1000_hw *hw = &adapter->hw;
2180 u32 manc, manc2h;
2181
2182 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2183 return;
2184
2185 manc = er32(MANC);
2186
ad68076e
BA
2187 /*
2188 * enable receiving management packets to the host. this will probably
bc7f75fa 2189 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2190 * the packets will be handled on SMBUS
2191 */
bc7f75fa
AK
2192 manc |= E1000_MANC_EN_MNG2HOST;
2193 manc2h = er32(MANC2H);
2194#define E1000_MNG2HOST_PORT_623 (1 << 5)
2195#define E1000_MNG2HOST_PORT_664 (1 << 6)
2196 manc2h |= E1000_MNG2HOST_PORT_623;
2197 manc2h |= E1000_MNG2HOST_PORT_664;
2198 ew32(MANC2H, manc2h);
2199 ew32(MANC, manc);
2200}
2201
2202/**
2203 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2204 * @adapter: board private structure
2205 *
2206 * Configure the Tx unit of the MAC after a reset.
2207 **/
2208static void e1000_configure_tx(struct e1000_adapter *adapter)
2209{
2210 struct e1000_hw *hw = &adapter->hw;
2211 struct e1000_ring *tx_ring = adapter->tx_ring;
2212 u64 tdba;
2213 u32 tdlen, tctl, tipg, tarc;
2214 u32 ipgr1, ipgr2;
2215
2216 /* Setup the HW Tx Head and Tail descriptor pointers */
2217 tdba = tx_ring->dma;
2218 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2219 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2220 ew32(TDBAH, (tdba >> 32));
2221 ew32(TDLEN, tdlen);
2222 ew32(TDH, 0);
2223 ew32(TDT, 0);
2224 tx_ring->head = E1000_TDH;
2225 tx_ring->tail = E1000_TDT;
2226
2227 /* Set the default values for the Tx Inter Packet Gap timer */
2228 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2229 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2230 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2231
2232 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2233 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2234
2235 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2236 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2237 ew32(TIPG, tipg);
2238
2239 /* Set the Tx Interrupt Delay register */
2240 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2241 /* Tx irq moderation */
bc7f75fa
AK
2242 ew32(TADV, adapter->tx_abs_int_delay);
2243
2244 /* Program the Transmit Control Register */
2245 tctl = er32(TCTL);
2246 tctl &= ~E1000_TCTL_CT;
2247 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2248 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2249
2250 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2251 tarc = er32(TARC(0));
ad68076e
BA
2252 /*
2253 * set the speed mode bit, we'll clear it if we're not at
2254 * gigabit link later
2255 */
bc7f75fa
AK
2256#define SPEED_MODE_BIT (1 << 21)
2257 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2258 ew32(TARC(0), tarc);
bc7f75fa
AK
2259 }
2260
2261 /* errata: program both queues to unweighted RR */
2262 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2263 tarc = er32(TARC(0));
bc7f75fa 2264 tarc |= 1;
e9ec2c0f
JK
2265 ew32(TARC(0), tarc);
2266 tarc = er32(TARC(1));
bc7f75fa 2267 tarc |= 1;
e9ec2c0f 2268 ew32(TARC(1), tarc);
bc7f75fa
AK
2269 }
2270
2271 e1000e_config_collision_dist(hw);
2272
2273 /* Setup Transmit Descriptor Settings for eop descriptor */
2274 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2275
2276 /* only set IDE if we are delaying interrupts using the timers */
2277 if (adapter->tx_int_delay)
2278 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2279
2280 /* enable Report Status bit */
2281 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2282
2283 ew32(TCTL, tctl);
2284
2285 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2286}
2287
2288/**
2289 * e1000_setup_rctl - configure the receive control registers
2290 * @adapter: Board private structure
2291 **/
2292#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2293 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2294static void e1000_setup_rctl(struct e1000_adapter *adapter)
2295{
2296 struct e1000_hw *hw = &adapter->hw;
2297 u32 rctl, rfctl;
2298 u32 psrctl = 0;
2299 u32 pages = 0;
2300
2301 /* Program MC offset vector base */
2302 rctl = er32(RCTL);
2303 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2304 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2305 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2306 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2307
2308 /* Do not Store bad packets */
2309 rctl &= ~E1000_RCTL_SBP;
2310
2311 /* Enable Long Packet receive */
2312 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2313 rctl &= ~E1000_RCTL_LPE;
2314 else
2315 rctl |= E1000_RCTL_LPE;
2316
eb7c3adb
JK
2317 /* Some systems expect that the CRC is included in SMBUS traffic. The
2318 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2319 * host memory when this is enabled
2320 */
2321 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2322 rctl |= E1000_RCTL_SECRC;
5918bd88 2323
bc7f75fa
AK
2324 /* Setup buffer sizes */
2325 rctl &= ~E1000_RCTL_SZ_4096;
2326 rctl |= E1000_RCTL_BSEX;
2327 switch (adapter->rx_buffer_len) {
2328 case 256:
2329 rctl |= E1000_RCTL_SZ_256;
2330 rctl &= ~E1000_RCTL_BSEX;
2331 break;
2332 case 512:
2333 rctl |= E1000_RCTL_SZ_512;
2334 rctl &= ~E1000_RCTL_BSEX;
2335 break;
2336 case 1024:
2337 rctl |= E1000_RCTL_SZ_1024;
2338 rctl &= ~E1000_RCTL_BSEX;
2339 break;
2340 case 2048:
2341 default:
2342 rctl |= E1000_RCTL_SZ_2048;
2343 rctl &= ~E1000_RCTL_BSEX;
2344 break;
2345 case 4096:
2346 rctl |= E1000_RCTL_SZ_4096;
2347 break;
2348 case 8192:
2349 rctl |= E1000_RCTL_SZ_8192;
2350 break;
2351 case 16384:
2352 rctl |= E1000_RCTL_SZ_16384;
2353 break;
2354 }
2355
2356 /*
2357 * 82571 and greater support packet-split where the protocol
2358 * header is placed in skb->data and the packet data is
2359 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2360 * In the case of a non-split, skb->data is linearly filled,
2361 * followed by the page buffers. Therefore, skb->data is
2362 * sized to hold the largest protocol header.
2363 *
2364 * allocations using alloc_page take too long for regular MTU
2365 * so only enable packet split for jumbo frames
2366 *
2367 * Using pages when the page size is greater than 16k wastes
2368 * a lot of memory, since we allocate 3 pages at all times
2369 * per packet.
2370 */
bc7f75fa 2371 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
97ac8cae
BA
2372 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2373 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 2374 adapter->rx_ps_pages = pages;
97ac8cae
BA
2375 else
2376 adapter->rx_ps_pages = 0;
bc7f75fa
AK
2377
2378 if (adapter->rx_ps_pages) {
2379 /* Configure extra packet-split registers */
2380 rfctl = er32(RFCTL);
2381 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
2382 /*
2383 * disable packet split support for IPv6 extension headers,
2384 * because some malformed IPv6 headers can hang the Rx
2385 */
bc7f75fa
AK
2386 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2387 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2388
2389 ew32(RFCTL, rfctl);
2390
140a7480
AK
2391 /* Enable Packet split descriptors */
2392 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
2393
2394 psrctl |= adapter->rx_ps_bsize0 >>
2395 E1000_PSRCTL_BSIZE0_SHIFT;
2396
2397 switch (adapter->rx_ps_pages) {
2398 case 3:
2399 psrctl |= PAGE_SIZE <<
2400 E1000_PSRCTL_BSIZE3_SHIFT;
2401 case 2:
2402 psrctl |= PAGE_SIZE <<
2403 E1000_PSRCTL_BSIZE2_SHIFT;
2404 case 1:
2405 psrctl |= PAGE_SIZE >>
2406 E1000_PSRCTL_BSIZE1_SHIFT;
2407 break;
2408 }
2409
2410 ew32(PSRCTL, psrctl);
2411 }
2412
2413 ew32(RCTL, rctl);
318a94d6
JK
2414 /* just started the receive unit, no need to restart */
2415 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
2416}
2417
2418/**
2419 * e1000_configure_rx - Configure Receive Unit after Reset
2420 * @adapter: board private structure
2421 *
2422 * Configure the Rx unit of the MAC after a reset.
2423 **/
2424static void e1000_configure_rx(struct e1000_adapter *adapter)
2425{
2426 struct e1000_hw *hw = &adapter->hw;
2427 struct e1000_ring *rx_ring = adapter->rx_ring;
2428 u64 rdba;
2429 u32 rdlen, rctl, rxcsum, ctrl_ext;
2430
2431 if (adapter->rx_ps_pages) {
2432 /* this is a 32 byte descriptor */
2433 rdlen = rx_ring->count *
2434 sizeof(union e1000_rx_desc_packet_split);
2435 adapter->clean_rx = e1000_clean_rx_irq_ps;
2436 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae
BA
2437 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2438 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2439 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2440 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 2441 } else {
97ac8cae 2442 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
bc7f75fa
AK
2443 adapter->clean_rx = e1000_clean_rx_irq;
2444 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2445 }
2446
2447 /* disable receives while setting up the descriptors */
2448 rctl = er32(RCTL);
2449 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2450 e1e_flush();
2451 msleep(10);
2452
2453 /* set the Receive Delay Timer Register */
2454 ew32(RDTR, adapter->rx_int_delay);
2455
2456 /* irq moderation */
2457 ew32(RADV, adapter->rx_abs_int_delay);
2458 if (adapter->itr_setting != 0)
ad68076e 2459 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
2460
2461 ctrl_ext = er32(CTRL_EXT);
2462 /* Reset delay timers after every interrupt */
2463 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2464 /* Auto-Mask interrupts upon ICR access */
2465 ctrl_ext |= E1000_CTRL_EXT_IAME;
2466 ew32(IAM, 0xffffffff);
2467 ew32(CTRL_EXT, ctrl_ext);
2468 e1e_flush();
2469
ad68076e
BA
2470 /*
2471 * Setup the HW Rx Head and Tail Descriptor Pointers and
2472 * the Base and Length of the Rx Descriptor Ring
2473 */
bc7f75fa
AK
2474 rdba = rx_ring->dma;
2475 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2476 ew32(RDBAH, (rdba >> 32));
2477 ew32(RDLEN, rdlen);
2478 ew32(RDH, 0);
2479 ew32(RDT, 0);
2480 rx_ring->head = E1000_RDH;
2481 rx_ring->tail = E1000_RDT;
2482
2483 /* Enable Receive Checksum Offload for TCP and UDP */
2484 rxcsum = er32(RXCSUM);
2485 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2486 rxcsum |= E1000_RXCSUM_TUOFL;
2487
ad68076e
BA
2488 /*
2489 * IPv4 payload checksum for UDP fragments must be
2490 * used in conjunction with packet-split.
2491 */
bc7f75fa
AK
2492 if (adapter->rx_ps_pages)
2493 rxcsum |= E1000_RXCSUM_IPPCSE;
2494 } else {
2495 rxcsum &= ~E1000_RXCSUM_TUOFL;
2496 /* no need to clear IPPCSE as it defaults to 0 */
2497 }
2498 ew32(RXCSUM, rxcsum);
2499
ad68076e
BA
2500 /*
2501 * Enable early receives on supported devices, only takes effect when
bc7f75fa 2502 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
2503 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2504 */
bc7f75fa 2505 if ((adapter->flags & FLAG_HAS_ERT) &&
97ac8cae
BA
2506 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2507 u32 rxdctl = er32(RXDCTL(0));
2508 ew32(RXDCTL(0), rxdctl | 0x3);
2509 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2510 /*
2511 * With jumbo frames and early-receive enabled, excessive
2512 * C4->C2 latencies result in dropped transactions.
2513 */
2514 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2515 e1000e_driver_name, 55);
2516 } else {
2517 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2518 e1000e_driver_name,
2519 PM_QOS_DEFAULT_VALUE);
2520 }
bc7f75fa
AK
2521
2522 /* Enable Receives */
2523 ew32(RCTL, rctl);
2524}
2525
2526/**
e2de3eb6 2527 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
2528 * @hw: pointer to the HW structure
2529 * @mc_addr_list: array of multicast addresses to program
2530 * @mc_addr_count: number of multicast addresses to program
2531 * @rar_used_count: the first RAR register free to program
2532 * @rar_count: total number of supported Receive Address Registers
2533 *
2534 * Updates the Receive Address Registers and Multicast Table Array.
2535 * The caller must have a packed mc_addr_list of multicast addresses.
2536 * The parameter rar_count will usually be hw->mac.rar_entry_count
2537 * unless there are workarounds that change this. Currently no func pointer
2538 * exists and all implementations are handled in the generic version of this
2539 * function.
2540 **/
e2de3eb6
JK
2541static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2542 u32 mc_addr_count, u32 rar_used_count,
2543 u32 rar_count)
bc7f75fa 2544{
e2de3eb6 2545 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
bc7f75fa
AK
2546 rar_used_count, rar_count);
2547}
2548
2549/**
2550 * e1000_set_multi - Multicast and Promiscuous mode set
2551 * @netdev: network interface device structure
2552 *
2553 * The set_multi entry point is called whenever the multicast address
2554 * list or the network interface flags are updated. This routine is
2555 * responsible for configuring the hardware for proper multicast,
2556 * promiscuous mode, and all-multi behavior.
2557 **/
2558static void e1000_set_multi(struct net_device *netdev)
2559{
2560 struct e1000_adapter *adapter = netdev_priv(netdev);
2561 struct e1000_hw *hw = &adapter->hw;
2562 struct e1000_mac_info *mac = &hw->mac;
2563 struct dev_mc_list *mc_ptr;
2564 u8 *mta_list;
2565 u32 rctl;
2566 int i;
2567
2568 /* Check for Promiscuous and All Multicast modes */
2569
2570 rctl = er32(RCTL);
2571
2572 if (netdev->flags & IFF_PROMISC) {
2573 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2574 rctl &= ~E1000_RCTL_VFE;
bc7f75fa 2575 } else {
746b9f02
PM
2576 if (netdev->flags & IFF_ALLMULTI) {
2577 rctl |= E1000_RCTL_MPE;
2578 rctl &= ~E1000_RCTL_UPE;
2579 } else {
2580 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2581 }
78ed11a5 2582 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
746b9f02 2583 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
2584 }
2585
2586 ew32(RCTL, rctl);
2587
2588 if (netdev->mc_count) {
2589 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2590 if (!mta_list)
2591 return;
2592
2593 /* prepare a packed array of only addresses. */
2594 mc_ptr = netdev->mc_list;
2595
2596 for (i = 0; i < netdev->mc_count; i++) {
2597 if (!mc_ptr)
2598 break;
2599 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2600 ETH_ALEN);
2601 mc_ptr = mc_ptr->next;
2602 }
2603
e2de3eb6 2604 e1000_update_mc_addr_list(hw, mta_list, i, 1,
bc7f75fa
AK
2605 mac->rar_entry_count);
2606 kfree(mta_list);
2607 } else {
2608 /*
2609 * if we're called from probe, we might not have
2610 * anything to do here, so clear out the list
2611 */
e2de3eb6 2612 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
bc7f75fa
AK
2613 }
2614}
2615
2616/**
ad68076e 2617 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
2618 * @adapter: private board structure
2619 **/
2620static void e1000_configure(struct e1000_adapter *adapter)
2621{
2622 e1000_set_multi(adapter->netdev);
2623
2624 e1000_restore_vlan(adapter);
2625 e1000_init_manageability(adapter);
2626
2627 e1000_configure_tx(adapter);
2628 e1000_setup_rctl(adapter);
2629 e1000_configure_rx(adapter);
ad68076e 2630 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
2631}
2632
2633/**
2634 * e1000e_power_up_phy - restore link in case the phy was powered down
2635 * @adapter: address of board private structure
2636 *
2637 * The phy may be powered down to save power and turn off link when the
2638 * driver is unloaded and wake on lan is not enabled (among others)
2639 * *** this routine MUST be followed by a call to e1000e_reset ***
2640 **/
2641void e1000e_power_up_phy(struct e1000_adapter *adapter)
2642{
2643 u16 mii_reg = 0;
2644
2645 /* Just clear the power down bit to wake the phy back up */
318a94d6 2646 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
ad68076e
BA
2647 /*
2648 * According to the manual, the phy will retain its
2649 * settings across a power-down/up cycle
2650 */
bc7f75fa
AK
2651 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2652 mii_reg &= ~MII_CR_POWER_DOWN;
2653 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2654 }
2655
2656 adapter->hw.mac.ops.setup_link(&adapter->hw);
2657}
2658
2659/**
2660 * e1000_power_down_phy - Power down the PHY
2661 *
2662 * Power down the PHY so no link is implied when interface is down
2663 * The PHY cannot be powered down is management or WoL is active
2664 */
2665static void e1000_power_down_phy(struct e1000_adapter *adapter)
2666{
2667 struct e1000_hw *hw = &adapter->hw;
2668 u16 mii_reg;
2669
2670 /* WoL is enabled */
23b66e2b 2671 if (adapter->wol)
bc7f75fa
AK
2672 return;
2673
2674 /* non-copper PHY? */
318a94d6 2675 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
2676 return;
2677
2678 /* reset is blocked because of a SoL/IDER session */
ad68076e 2679 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
bc7f75fa
AK
2680 return;
2681
489815ce 2682 /* manageability (AMT) is enabled */
bc7f75fa
AK
2683 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2684 return;
2685
2686 /* power down the PHY */
2687 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2688 mii_reg |= MII_CR_POWER_DOWN;
2689 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2690 mdelay(1);
2691}
2692
2693/**
2694 * e1000e_reset - bring the hardware into a known good state
2695 *
2696 * This function boots the hardware and enables some settings that
2697 * require a configuration cycle of the hardware - those cannot be
2698 * set/changed during runtime. After reset the device needs to be
ad68076e 2699 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2700 */
2701void e1000e_reset(struct e1000_adapter *adapter)
2702{
2703 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2704 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2705 struct e1000_hw *hw = &adapter->hw;
2706 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2707 u32 pba = adapter->pba;
bc7f75fa
AK
2708 u16 hwm;
2709
ad68076e 2710 /* reset Packet Buffer Allocation to default */
318a94d6 2711 ew32(PBA, pba);
df762464 2712
318a94d6 2713 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2714 /*
2715 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2716 * large enough to accommodate two full transmit packets,
2717 * rounded up to the next 1KB and expressed in KB. Likewise,
2718 * the Rx FIFO should be large enough to accommodate at least
2719 * one full receive packet and is similarly rounded up and
ad68076e
BA
2720 * expressed in KB.
2721 */
df762464 2722 pba = er32(PBA);
bc7f75fa 2723 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2724 tx_space = pba >> 16;
bc7f75fa 2725 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2726 pba &= 0xffff;
ad68076e
BA
2727 /*
2728 * the Tx fifo also stores 16 bytes of information about the tx
2729 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2730 */
2731 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2732 sizeof(struct e1000_tx_desc) -
2733 ETH_FCS_LEN) * 2;
2734 min_tx_space = ALIGN(min_tx_space, 1024);
2735 min_tx_space >>= 10;
2736 /* software strips receive CRC, so leave room for it */
318a94d6 2737 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2738 min_rx_space = ALIGN(min_rx_space, 1024);
2739 min_rx_space >>= 10;
2740
ad68076e
BA
2741 /*
2742 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2743 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2744 * allocation, take space away from current Rx allocation
2745 */
df762464
AK
2746 if ((tx_space < min_tx_space) &&
2747 ((min_tx_space - tx_space) < pba)) {
2748 pba -= min_tx_space - tx_space;
bc7f75fa 2749
ad68076e
BA
2750 /*
2751 * if short on Rx space, Rx wins and must trump tx
2752 * adjustment or use Early Receive if available
2753 */
df762464 2754 if ((pba < min_rx_space) &&
bc7f75fa
AK
2755 (!(adapter->flags & FLAG_HAS_ERT)))
2756 /* ERT enabled in e1000_configure_rx */
df762464 2757 pba = min_rx_space;
bc7f75fa 2758 }
df762464
AK
2759
2760 ew32(PBA, pba);
bc7f75fa
AK
2761 }
2762
bc7f75fa 2763
ad68076e
BA
2764 /*
2765 * flow control settings
2766 *
2767 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
2768 * (or the size used for early receive) above it in the Rx FIFO.
2769 * Set it to the lower of:
2770 * - 90% of the Rx FIFO size, and
2771 * - the full Rx FIFO size minus the early receive size (for parts
2772 * with ERT support assuming ERT set to E1000_ERT_2048), or
ad68076e
BA
2773 * - the full Rx FIFO size minus one full frame
2774 */
bc7f75fa 2775 if (adapter->flags & FLAG_HAS_ERT)
318a94d6
JK
2776 hwm = min(((pba << 10) * 9 / 10),
2777 ((pba << 10) - (E1000_ERT_2048 << 3)));
bc7f75fa 2778 else
318a94d6
JK
2779 hwm = min(((pba << 10) * 9 / 10),
2780 ((pba << 10) - adapter->max_frame_size));
bc7f75fa 2781
318a94d6
JK
2782 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2783 fc->low_water = fc->high_water - 8;
bc7f75fa
AK
2784
2785 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2786 fc->pause_time = 0xFFFF;
bc7f75fa 2787 else
318a94d6
JK
2788 fc->pause_time = E1000_FC_PAUSE_TIME;
2789 fc->send_xon = 1;
2790 fc->type = fc->original_type;
bc7f75fa
AK
2791
2792 /* Allow time for pending master requests to run */
2793 mac->ops.reset_hw(hw);
97ac8cae
BA
2794
2795 /*
2796 * For parts with AMT enabled, let the firmware know
2797 * that the network interface is in control
2798 */
c43bc57e 2799 if (adapter->flags & FLAG_HAS_AMT)
97ac8cae
BA
2800 e1000_get_hw_control(adapter);
2801
bc7f75fa
AK
2802 ew32(WUC, 0);
2803
2804 if (mac->ops.init_hw(hw))
44defeb3 2805 e_err("Hardware Error\n");
bc7f75fa
AK
2806
2807 e1000_update_mng_vlan(adapter);
2808
2809 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2810 ew32(VET, ETH_P_8021Q);
2811
2812 e1000e_reset_adaptive(hw);
2813 e1000_get_phy_info(hw);
2814
2815 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2816 u16 phy_data = 0;
ad68076e
BA
2817 /*
2818 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2819 * the return value of this function because there is nothing
ad68076e
BA
2820 * different we would do if it failed
2821 */
bc7f75fa
AK
2822 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2823 phy_data &= ~IGP02E1000_PM_SPD;
2824 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2825 }
bc7f75fa
AK
2826}
2827
2828int e1000e_up(struct e1000_adapter *adapter)
2829{
2830 struct e1000_hw *hw = &adapter->hw;
2831
2832 /* hardware has been reset, we need to reload some things */
2833 e1000_configure(adapter);
2834
2835 clear_bit(__E1000_DOWN, &adapter->state);
2836
2837 napi_enable(&adapter->napi);
4662e82b
BA
2838 if (adapter->msix_entries)
2839 e1000_configure_msix(adapter);
bc7f75fa
AK
2840 e1000_irq_enable(adapter);
2841
2842 /* fire a link change interrupt to start the watchdog */
2843 ew32(ICS, E1000_ICS_LSC);
2844 return 0;
2845}
2846
2847void e1000e_down(struct e1000_adapter *adapter)
2848{
2849 struct net_device *netdev = adapter->netdev;
2850 struct e1000_hw *hw = &adapter->hw;
2851 u32 tctl, rctl;
2852
ad68076e
BA
2853 /*
2854 * signal that we're down so the interrupt handler does not
2855 * reschedule our watchdog timer
2856 */
bc7f75fa
AK
2857 set_bit(__E1000_DOWN, &adapter->state);
2858
2859 /* disable receives in the hardware */
2860 rctl = er32(RCTL);
2861 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2862 /* flush and sleep below */
2863
d55b53ff 2864 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
2865
2866 /* disable transmits in the hardware */
2867 tctl = er32(TCTL);
2868 tctl &= ~E1000_TCTL_EN;
2869 ew32(TCTL, tctl);
2870 /* flush both disables and wait for them to finish */
2871 e1e_flush();
2872 msleep(10);
2873
2874 napi_disable(&adapter->napi);
2875 e1000_irq_disable(adapter);
2876
2877 del_timer_sync(&adapter->watchdog_timer);
2878 del_timer_sync(&adapter->phy_info_timer);
2879
2880 netdev->tx_queue_len = adapter->tx_queue_len;
2881 netif_carrier_off(netdev);
2882 adapter->link_speed = 0;
2883 adapter->link_duplex = 0;
2884
52cc3086
JK
2885 if (!pci_channel_offline(adapter->pdev))
2886 e1000e_reset(adapter);
bc7f75fa
AK
2887 e1000_clean_tx_ring(adapter);
2888 e1000_clean_rx_ring(adapter);
2889
2890 /*
2891 * TODO: for power management, we could drop the link and
2892 * pci_disable_device here.
2893 */
2894}
2895
2896void e1000e_reinit_locked(struct e1000_adapter *adapter)
2897{
2898 might_sleep();
2899 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2900 msleep(1);
2901 e1000e_down(adapter);
2902 e1000e_up(adapter);
2903 clear_bit(__E1000_RESETTING, &adapter->state);
2904}
2905
2906/**
2907 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2908 * @adapter: board private structure to initialize
2909 *
2910 * e1000_sw_init initializes the Adapter private data structure.
2911 * Fields are initialized based on PCI device information and
2912 * OS network device settings (MTU size).
2913 **/
2914static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2915{
bc7f75fa
AK
2916 struct net_device *netdev = adapter->netdev;
2917
2918 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2919 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2920 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2921 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa 2922
4662e82b 2923 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2924
4662e82b
BA
2925 if (e1000_alloc_queues(adapter))
2926 return -ENOMEM;
bc7f75fa
AK
2927
2928 spin_lock_init(&adapter->tx_queue_lock);
2929
2930 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2931 e1000_irq_disable(adapter);
2932
bc7f75fa
AK
2933 set_bit(__E1000_DOWN, &adapter->state);
2934 return 0;
bc7f75fa
AK
2935}
2936
f8d59f78
BA
2937/**
2938 * e1000_intr_msi_test - Interrupt Handler
2939 * @irq: interrupt number
2940 * @data: pointer to a network interface device structure
2941 **/
2942static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2943{
2944 struct net_device *netdev = data;
2945 struct e1000_adapter *adapter = netdev_priv(netdev);
2946 struct e1000_hw *hw = &adapter->hw;
2947 u32 icr = er32(ICR);
2948
2949 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2950 if (icr & E1000_ICR_RXSEQ) {
2951 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2952 wmb();
2953 }
2954
2955 return IRQ_HANDLED;
2956}
2957
2958/**
2959 * e1000_test_msi_interrupt - Returns 0 for successful test
2960 * @adapter: board private struct
2961 *
2962 * code flow taken from tg3.c
2963 **/
2964static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2965{
2966 struct net_device *netdev = adapter->netdev;
2967 struct e1000_hw *hw = &adapter->hw;
2968 int err;
2969
2970 /* poll_enable hasn't been called yet, so don't need disable */
2971 /* clear any pending events */
2972 er32(ICR);
2973
2974 /* free the real vector and request a test handler */
2975 e1000_free_irq(adapter);
4662e82b 2976 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
2977
2978 /* Assume that the test fails, if it succeeds then the test
2979 * MSI irq handler will unset this flag */
2980 adapter->flags |= FLAG_MSI_TEST_FAILED;
2981
2982 err = pci_enable_msi(adapter->pdev);
2983 if (err)
2984 goto msi_test_failed;
2985
2986 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2987 netdev->name, netdev);
2988 if (err) {
2989 pci_disable_msi(adapter->pdev);
2990 goto msi_test_failed;
2991 }
2992
2993 wmb();
2994
2995 e1000_irq_enable(adapter);
2996
2997 /* fire an unusual interrupt on the test handler */
2998 ew32(ICS, E1000_ICS_RXSEQ);
2999 e1e_flush();
3000 msleep(50);
3001
3002 e1000_irq_disable(adapter);
3003
3004 rmb();
3005
3006 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 3007 adapter->int_mode = E1000E_INT_MODE_LEGACY;
f8d59f78
BA
3008 err = -EIO;
3009 e_info("MSI interrupt test failed!\n");
3010 }
3011
3012 free_irq(adapter->pdev->irq, netdev);
3013 pci_disable_msi(adapter->pdev);
3014
3015 if (err == -EIO)
3016 goto msi_test_failed;
3017
3018 /* okay so the test worked, restore settings */
3019 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3020msi_test_failed:
4662e82b 3021 e1000e_set_interrupt_capability(adapter);
f8d59f78
BA
3022 e1000_request_irq(adapter);
3023 return err;
3024}
3025
3026/**
3027 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3028 * @adapter: board private struct
3029 *
3030 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3031 **/
3032static int e1000_test_msi(struct e1000_adapter *adapter)
3033{
3034 int err;
3035 u16 pci_cmd;
3036
3037 if (!(adapter->flags & FLAG_MSI_ENABLED))
3038 return 0;
3039
3040 /* disable SERR in case the MSI write causes a master abort */
3041 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3042 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3043 pci_cmd & ~PCI_COMMAND_SERR);
3044
3045 err = e1000_test_msi_interrupt(adapter);
3046
3047 /* restore previous setting of command word */
3048 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3049
3050 /* success ! */
3051 if (!err)
3052 return 0;
3053
3054 /* EIO means MSI test failed */
3055 if (err != -EIO)
3056 return err;
3057
3058 /* back to INTx mode */
3059 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3060
3061 e1000_free_irq(adapter);
3062
3063 err = e1000_request_irq(adapter);
3064
3065 return err;
3066}
3067
bc7f75fa
AK
3068/**
3069 * e1000_open - Called when a network interface is made active
3070 * @netdev: network interface device structure
3071 *
3072 * Returns 0 on success, negative value on failure
3073 *
3074 * The open entry point is called when a network interface is made
3075 * active by the system (IFF_UP). At this point all resources needed
3076 * for transmit and receive operations are allocated, the interrupt
3077 * handler is registered with the OS, the watchdog timer is started,
3078 * and the stack is notified that the interface is ready.
3079 **/
3080static int e1000_open(struct net_device *netdev)
3081{
3082 struct e1000_adapter *adapter = netdev_priv(netdev);
3083 struct e1000_hw *hw = &adapter->hw;
3084 int err;
3085
3086 /* disallow open during test */
3087 if (test_bit(__E1000_TESTING, &adapter->state))
3088 return -EBUSY;
3089
3090 /* allocate transmit descriptors */
3091 err = e1000e_setup_tx_resources(adapter);
3092 if (err)
3093 goto err_setup_tx;
3094
3095 /* allocate receive descriptors */
3096 err = e1000e_setup_rx_resources(adapter);
3097 if (err)
3098 goto err_setup_rx;
3099
3100 e1000e_power_up_phy(adapter);
3101
3102 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3103 if ((adapter->hw.mng_cookie.status &
3104 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3105 e1000_update_mng_vlan(adapter);
3106
ad68076e
BA
3107 /*
3108 * If AMT is enabled, let the firmware know that the network
3109 * interface is now open
3110 */
c43bc57e 3111 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3112 e1000_get_hw_control(adapter);
3113
ad68076e
BA
3114 /*
3115 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
3116 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3117 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
3118 * clean_rx handler before we do so.
3119 */
bc7f75fa
AK
3120 e1000_configure(adapter);
3121
3122 err = e1000_request_irq(adapter);
3123 if (err)
3124 goto err_req_irq;
3125
f8d59f78
BA
3126 /*
3127 * Work around PCIe errata with MSI interrupts causing some chipsets to
3128 * ignore e1000e MSI messages, which means we need to test our MSI
3129 * interrupt now
3130 */
4662e82b 3131 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
3132 err = e1000_test_msi(adapter);
3133 if (err) {
3134 e_err("Interrupt allocation failed\n");
3135 goto err_req_irq;
3136 }
3137 }
3138
bc7f75fa
AK
3139 /* From here on the code is the same as e1000e_up() */
3140 clear_bit(__E1000_DOWN, &adapter->state);
3141
3142 napi_enable(&adapter->napi);
3143
3144 e1000_irq_enable(adapter);
3145
d55b53ff
JK
3146 netif_tx_start_all_queues(netdev);
3147
bc7f75fa
AK
3148 /* fire a link status change interrupt to start the watchdog */
3149 ew32(ICS, E1000_ICS_LSC);
3150
3151 return 0;
3152
3153err_req_irq:
3154 e1000_release_hw_control(adapter);
3155 e1000_power_down_phy(adapter);
3156 e1000e_free_rx_resources(adapter);
3157err_setup_rx:
3158 e1000e_free_tx_resources(adapter);
3159err_setup_tx:
3160 e1000e_reset(adapter);
3161
3162 return err;
3163}
3164
3165/**
3166 * e1000_close - Disables a network interface
3167 * @netdev: network interface device structure
3168 *
3169 * Returns 0, this is not allowed to fail
3170 *
3171 * The close entry point is called when an interface is de-activated
3172 * by the OS. The hardware is still under the drivers control, but
3173 * needs to be disabled. A global MAC reset is issued to stop the
3174 * hardware, and all transmit and receive resources are freed.
3175 **/
3176static int e1000_close(struct net_device *netdev)
3177{
3178 struct e1000_adapter *adapter = netdev_priv(netdev);
3179
3180 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3181 e1000e_down(adapter);
3182 e1000_power_down_phy(adapter);
3183 e1000_free_irq(adapter);
3184
3185 e1000e_free_tx_resources(adapter);
3186 e1000e_free_rx_resources(adapter);
3187
ad68076e
BA
3188 /*
3189 * kill manageability vlan ID if supported, but not if a vlan with
3190 * the same ID is registered on the host OS (let 8021q kill it)
3191 */
bc7f75fa
AK
3192 if ((adapter->hw.mng_cookie.status &
3193 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3194 !(adapter->vlgrp &&
3195 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3196 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3197
ad68076e
BA
3198 /*
3199 * If AMT is enabled, let the firmware know that the network
3200 * interface is now closed
3201 */
c43bc57e 3202 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3203 e1000_release_hw_control(adapter);
3204
3205 return 0;
3206}
3207/**
3208 * e1000_set_mac - Change the Ethernet Address of the NIC
3209 * @netdev: network interface device structure
3210 * @p: pointer to an address structure
3211 *
3212 * Returns 0 on success, negative on failure
3213 **/
3214static int e1000_set_mac(struct net_device *netdev, void *p)
3215{
3216 struct e1000_adapter *adapter = netdev_priv(netdev);
3217 struct sockaddr *addr = p;
3218
3219 if (!is_valid_ether_addr(addr->sa_data))
3220 return -EADDRNOTAVAIL;
3221
3222 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3223 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3224
3225 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3226
3227 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3228 /* activate the work around */
3229 e1000e_set_laa_state_82571(&adapter->hw, 1);
3230
ad68076e
BA
3231 /*
3232 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
3233 * between the time RAR[0] gets clobbered and the time it
3234 * gets fixed (in e1000_watchdog), the actual LAA is in one
3235 * of the RARs and no incoming packets directed to this port
3236 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
3237 * RAR[14]
3238 */
bc7f75fa
AK
3239 e1000e_rar_set(&adapter->hw,
3240 adapter->hw.mac.addr,
3241 adapter->hw.mac.rar_entry_count - 1);
3242 }
3243
3244 return 0;
3245}
3246
a8f88ff5
JB
3247/**
3248 * e1000e_update_phy_task - work thread to update phy
3249 * @work: pointer to our work struct
3250 *
3251 * this worker thread exists because we must acquire a
3252 * semaphore to read the phy, which we could msleep while
3253 * waiting for it, and we can't msleep in a timer.
3254 **/
3255static void e1000e_update_phy_task(struct work_struct *work)
3256{
3257 struct e1000_adapter *adapter = container_of(work,
3258 struct e1000_adapter, update_phy_task);
3259 e1000_get_phy_info(&adapter->hw);
3260}
3261
ad68076e
BA
3262/*
3263 * Need to wait a few seconds after link up to get diagnostic information from
3264 * the phy
3265 */
bc7f75fa
AK
3266static void e1000_update_phy_info(unsigned long data)
3267{
3268 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
a8f88ff5 3269 schedule_work(&adapter->update_phy_task);
bc7f75fa
AK
3270}
3271
3272/**
3273 * e1000e_update_stats - Update the board statistics counters
3274 * @adapter: board private structure
3275 **/
3276void e1000e_update_stats(struct e1000_adapter *adapter)
3277{
3278 struct e1000_hw *hw = &adapter->hw;
3279 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
3280
3281 /*
3282 * Prevent stats update while adapter is being reset, or if the pci
3283 * connection is down.
3284 */
3285 if (adapter->link_speed == 0)
3286 return;
3287 if (pci_channel_offline(pdev))
3288 return;
3289
bc7f75fa
AK
3290 adapter->stats.crcerrs += er32(CRCERRS);
3291 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
3292 adapter->stats.gorc += er32(GORCL);
3293 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
3294 adapter->stats.bprc += er32(BPRC);
3295 adapter->stats.mprc += er32(MPRC);
3296 adapter->stats.roc += er32(ROC);
3297
bc7f75fa
AK
3298 adapter->stats.mpc += er32(MPC);
3299 adapter->stats.scc += er32(SCC);
3300 adapter->stats.ecol += er32(ECOL);
3301 adapter->stats.mcc += er32(MCC);
3302 adapter->stats.latecol += er32(LATECOL);
3303 adapter->stats.dc += er32(DC);
bc7f75fa
AK
3304 adapter->stats.xonrxc += er32(XONRXC);
3305 adapter->stats.xontxc += er32(XONTXC);
3306 adapter->stats.xoffrxc += er32(XOFFRXC);
3307 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 3308 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
3309 adapter->stats.gotc += er32(GOTCL);
3310 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
3311 adapter->stats.rnbc += er32(RNBC);
3312 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
3313
3314 adapter->stats.mptc += er32(MPTC);
3315 adapter->stats.bptc += er32(BPTC);
3316
3317 /* used for adaptive IFS */
3318
3319 hw->mac.tx_packet_delta = er32(TPT);
3320 adapter->stats.tpt += hw->mac.tx_packet_delta;
3321 hw->mac.collision_delta = er32(COLC);
3322 adapter->stats.colc += hw->mac.collision_delta;
3323
3324 adapter->stats.algnerrc += er32(ALGNERRC);
3325 adapter->stats.rxerrc += er32(RXERRC);
4662e82b
BA
3326 if (hw->mac.type != e1000_82574)
3327 adapter->stats.tncrs += er32(TNCRS);
bc7f75fa
AK
3328 adapter->stats.cexterr += er32(CEXTERR);
3329 adapter->stats.tsctc += er32(TSCTC);
3330 adapter->stats.tsctfc += er32(TSCTFC);
3331
bc7f75fa 3332 /* Fill out the OS statistics structure */
bc7f75fa
AK
3333 adapter->net_stats.multicast = adapter->stats.mprc;
3334 adapter->net_stats.collisions = adapter->stats.colc;
3335
3336 /* Rx Errors */
3337
ad68076e
BA
3338 /*
3339 * RLEC on some newer hardware can be incorrect so build
3340 * our own version based on RUC and ROC
3341 */
bc7f75fa
AK
3342 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3343 adapter->stats.crcerrs + adapter->stats.algnerrc +
3344 adapter->stats.ruc + adapter->stats.roc +
3345 adapter->stats.cexterr;
3346 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3347 adapter->stats.roc;
3348 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3349 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3350 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3351
3352 /* Tx Errors */
3353 adapter->net_stats.tx_errors = adapter->stats.ecol +
3354 adapter->stats.latecol;
3355 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3356 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3357 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3358
3359 /* Tx Dropped needs to be maintained elsewhere */
3360
bc7f75fa
AK
3361 /* Management Stats */
3362 adapter->stats.mgptc += er32(MGTPTC);
3363 adapter->stats.mgprc += er32(MGTPRC);
3364 adapter->stats.mgpdc += er32(MGTPDC);
bc7f75fa
AK
3365}
3366
7c25769f
BA
3367/**
3368 * e1000_phy_read_status - Update the PHY register status snapshot
3369 * @adapter: board private structure
3370 **/
3371static void e1000_phy_read_status(struct e1000_adapter *adapter)
3372{
3373 struct e1000_hw *hw = &adapter->hw;
3374 struct e1000_phy_regs *phy = &adapter->phy_regs;
3375 int ret_val;
7c25769f
BA
3376
3377 if ((er32(STATUS) & E1000_STATUS_LU) &&
3378 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3379 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3380 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3381 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3382 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3383 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3384 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3385 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3386 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3387 if (ret_val)
44defeb3 3388 e_warn("Error reading PHY register\n");
7c25769f
BA
3389 } else {
3390 /*
3391 * Do not read PHY registers if link is not up
3392 * Set values to typical power-on defaults
3393 */
3394 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3395 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3396 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3397 BMSR_ERCAP);
3398 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3399 ADVERTISE_ALL | ADVERTISE_CSMA);
3400 phy->lpa = 0;
3401 phy->expansion = EXPANSION_ENABLENPAGE;
3402 phy->ctrl1000 = ADVERTISE_1000FULL;
3403 phy->stat1000 = 0;
3404 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3405 }
7c25769f
BA
3406}
3407
bc7f75fa
AK
3408static void e1000_print_link_info(struct e1000_adapter *adapter)
3409{
bc7f75fa
AK
3410 struct e1000_hw *hw = &adapter->hw;
3411 u32 ctrl = er32(CTRL);
3412
44defeb3
JK
3413 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3414 adapter->link_speed,
3415 (adapter->link_duplex == FULL_DUPLEX) ?
3416 "Full Duplex" : "Half Duplex",
3417 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3418 "RX/TX" :
3419 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3420 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
bc7f75fa
AK
3421}
3422
318a94d6
JK
3423static bool e1000_has_link(struct e1000_adapter *adapter)
3424{
3425 struct e1000_hw *hw = &adapter->hw;
3426 bool link_active = 0;
3427 s32 ret_val = 0;
3428
3429 /*
3430 * get_link_status is set on LSC (link status) interrupt or
3431 * Rx sequence error interrupt. get_link_status will stay
3432 * false until the check_for_link establishes link
3433 * for copper adapters ONLY
3434 */
3435 switch (hw->phy.media_type) {
3436 case e1000_media_type_copper:
3437 if (hw->mac.get_link_status) {
3438 ret_val = hw->mac.ops.check_for_link(hw);
3439 link_active = !hw->mac.get_link_status;
3440 } else {
3441 link_active = 1;
3442 }
3443 break;
3444 case e1000_media_type_fiber:
3445 ret_val = hw->mac.ops.check_for_link(hw);
3446 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3447 break;
3448 case e1000_media_type_internal_serdes:
3449 ret_val = hw->mac.ops.check_for_link(hw);
3450 link_active = adapter->hw.mac.serdes_has_link;
3451 break;
3452 default:
3453 case e1000_media_type_unknown:
3454 break;
3455 }
3456
3457 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3458 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3459 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 3460 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
3461 }
3462
3463 return link_active;
3464}
3465
3466static void e1000e_enable_receives(struct e1000_adapter *adapter)
3467{
3468 /* make sure the receive unit is started */
3469 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3470 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3471 struct e1000_hw *hw = &adapter->hw;
3472 u32 rctl = er32(RCTL);
3473 ew32(RCTL, rctl | E1000_RCTL_EN);
3474 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3475 }
3476}
3477
bc7f75fa
AK
3478/**
3479 * e1000_watchdog - Timer Call-back
3480 * @data: pointer to adapter cast into an unsigned long
3481 **/
3482static void e1000_watchdog(unsigned long data)
3483{
3484 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3485
3486 /* Do the rest outside of interrupt context */
3487 schedule_work(&adapter->watchdog_task);
3488
3489 /* TODO: make this use queue_delayed_work() */
3490}
3491
3492static void e1000_watchdog_task(struct work_struct *work)
3493{
3494 struct e1000_adapter *adapter = container_of(work,
3495 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
3496 struct net_device *netdev = adapter->netdev;
3497 struct e1000_mac_info *mac = &adapter->hw.mac;
3498 struct e1000_ring *tx_ring = adapter->tx_ring;
3499 struct e1000_hw *hw = &adapter->hw;
3500 u32 link, tctl;
bc7f75fa
AK
3501 int tx_pending = 0;
3502
318a94d6
JK
3503 link = e1000_has_link(adapter);
3504 if ((netif_carrier_ok(netdev)) && link) {
3505 e1000e_enable_receives(adapter);
bc7f75fa 3506 goto link_up;
bc7f75fa
AK
3507 }
3508
3509 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3510 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3511 e1000_update_mng_vlan(adapter);
3512
bc7f75fa
AK
3513 if (link) {
3514 if (!netif_carrier_ok(netdev)) {
3515 bool txb2b = 1;
318a94d6 3516 /* update snapshot of PHY registers on LSC */
7c25769f 3517 e1000_phy_read_status(adapter);
bc7f75fa
AK
3518 mac->ops.get_link_up_info(&adapter->hw,
3519 &adapter->link_speed,
3520 &adapter->link_duplex);
3521 e1000_print_link_info(adapter);
f4187b56
BA
3522 /*
3523 * On supported PHYs, check for duplex mismatch only
3524 * if link has autonegotiated at 10/100 half
3525 */
3526 if ((hw->phy.type == e1000_phy_igp_3 ||
3527 hw->phy.type == e1000_phy_bm) &&
3528 (hw->mac.autoneg == true) &&
3529 (adapter->link_speed == SPEED_10 ||
3530 adapter->link_speed == SPEED_100) &&
3531 (adapter->link_duplex == HALF_DUPLEX)) {
3532 u16 autoneg_exp;
3533
3534 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3535
3536 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3537 e_info("Autonegotiated half duplex but"
3538 " link partner cannot autoneg. "
3539 " Try forcing full duplex if "
3540 "link gets many collisions.\n");
3541 }
3542
ad68076e
BA
3543 /*
3544 * tweak tx_queue_len according to speed/duplex
3545 * and adjust the timeout factor
3546 */
bc7f75fa
AK
3547 netdev->tx_queue_len = adapter->tx_queue_len;
3548 adapter->tx_timeout_factor = 1;
3549 switch (adapter->link_speed) {
3550 case SPEED_10:
3551 txb2b = 0;
3552 netdev->tx_queue_len = 10;
10f1b492 3553 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
3554 break;
3555 case SPEED_100:
3556 txb2b = 0;
3557 netdev->tx_queue_len = 100;
3558 /* maybe add some timeout factor ? */
3559 break;
3560 }
3561
ad68076e
BA
3562 /*
3563 * workaround: re-program speed mode bit after
3564 * link-up event
3565 */
bc7f75fa
AK
3566 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3567 !txb2b) {
3568 u32 tarc0;
e9ec2c0f 3569 tarc0 = er32(TARC(0));
bc7f75fa 3570 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 3571 ew32(TARC(0), tarc0);
bc7f75fa
AK
3572 }
3573
ad68076e
BA
3574 /*
3575 * disable TSO for pcie and 10/100 speeds, to avoid
3576 * some hardware issues
3577 */
bc7f75fa
AK
3578 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3579 switch (adapter->link_speed) {
3580 case SPEED_10:
3581 case SPEED_100:
44defeb3 3582 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
3583 netdev->features &= ~NETIF_F_TSO;
3584 netdev->features &= ~NETIF_F_TSO6;
3585 break;
3586 case SPEED_1000:
3587 netdev->features |= NETIF_F_TSO;
3588 netdev->features |= NETIF_F_TSO6;
3589 break;
3590 default:
3591 /* oops */
3592 break;
3593 }
3594 }
3595
ad68076e
BA
3596 /*
3597 * enable transmits in the hardware, need to do this
3598 * after setting TARC(0)
3599 */
bc7f75fa
AK
3600 tctl = er32(TCTL);
3601 tctl |= E1000_TCTL_EN;
3602 ew32(TCTL, tctl);
3603
3604 netif_carrier_on(netdev);
d55b53ff 3605 netif_tx_wake_all_queues(netdev);
bc7f75fa
AK
3606
3607 if (!test_bit(__E1000_DOWN, &adapter->state))
3608 mod_timer(&adapter->phy_info_timer,
3609 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
3610 }
3611 } else {
3612 if (netif_carrier_ok(netdev)) {
3613 adapter->link_speed = 0;
3614 adapter->link_duplex = 0;
44defeb3 3615 e_info("Link is Down\n");
bc7f75fa 3616 netif_carrier_off(netdev);
d55b53ff 3617 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
3618 if (!test_bit(__E1000_DOWN, &adapter->state))
3619 mod_timer(&adapter->phy_info_timer,
3620 round_jiffies(jiffies + 2 * HZ));
3621
3622 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3623 schedule_work(&adapter->reset_task);
3624 }
3625 }
3626
3627link_up:
3628 e1000e_update_stats(adapter);
3629
3630 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3631 adapter->tpt_old = adapter->stats.tpt;
3632 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3633 adapter->colc_old = adapter->stats.colc;
3634
7c25769f
BA
3635 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3636 adapter->gorc_old = adapter->stats.gorc;
3637 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3638 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
3639
3640 e1000e_update_adaptive(&adapter->hw);
3641
3642 if (!netif_carrier_ok(netdev)) {
3643 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3644 tx_ring->count);
3645 if (tx_pending) {
ad68076e
BA
3646 /*
3647 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
3648 * but we've got queued Tx work that's never going
3649 * to get done, so reset controller to flush Tx.
ad68076e
BA
3650 * (Do the reset outside of interrupt context).
3651 */
bc7f75fa
AK
3652 adapter->tx_timeout_count++;
3653 schedule_work(&adapter->reset_task);
3654 }
3655 }
3656
ad68076e 3657 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
3658 if (adapter->msix_entries)
3659 ew32(ICS, adapter->rx_ring->ims_val);
3660 else
3661 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa
AK
3662
3663 /* Force detection of hung controller every watchdog period */
3664 adapter->detect_tx_hung = 1;
3665
ad68076e
BA
3666 /*
3667 * With 82571 controllers, LAA may be overwritten due to controller
3668 * reset from the other port. Set the appropriate LAA in RAR[0]
3669 */
bc7f75fa
AK
3670 if (e1000e_get_laa_state_82571(hw))
3671 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3672
3673 /* Reset the timer */
3674 if (!test_bit(__E1000_DOWN, &adapter->state))
3675 mod_timer(&adapter->watchdog_timer,
3676 round_jiffies(jiffies + 2 * HZ));
3677}
3678
3679#define E1000_TX_FLAGS_CSUM 0x00000001
3680#define E1000_TX_FLAGS_VLAN 0x00000002
3681#define E1000_TX_FLAGS_TSO 0x00000004
3682#define E1000_TX_FLAGS_IPV4 0x00000008
3683#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3684#define E1000_TX_FLAGS_VLAN_SHIFT 16
3685
3686static int e1000_tso(struct e1000_adapter *adapter,
3687 struct sk_buff *skb)
3688{
3689 struct e1000_ring *tx_ring = adapter->tx_ring;
3690 struct e1000_context_desc *context_desc;
3691 struct e1000_buffer *buffer_info;
3692 unsigned int i;
3693 u32 cmd_length = 0;
3694 u16 ipcse = 0, tucse, mss;
3695 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3696 int err;
3697
3698 if (skb_is_gso(skb)) {
3699 if (skb_header_cloned(skb)) {
3700 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3701 if (err)
3702 return err;
3703 }
3704
3705 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3706 mss = skb_shinfo(skb)->gso_size;
3707 if (skb->protocol == htons(ETH_P_IP)) {
3708 struct iphdr *iph = ip_hdr(skb);
3709 iph->tot_len = 0;
3710 iph->check = 0;
3711 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3712 iph->daddr, 0,
3713 IPPROTO_TCP,
3714 0);
3715 cmd_length = E1000_TXD_CMD_IP;
3716 ipcse = skb_transport_offset(skb) - 1;
3717 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3718 ipv6_hdr(skb)->payload_len = 0;
3719 tcp_hdr(skb)->check =
3720 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3721 &ipv6_hdr(skb)->daddr,
3722 0, IPPROTO_TCP, 0);
3723 ipcse = 0;
3724 }
3725 ipcss = skb_network_offset(skb);
3726 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3727 tucss = skb_transport_offset(skb);
3728 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3729 tucse = 0;
3730
3731 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3732 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3733
3734 i = tx_ring->next_to_use;
3735 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3736 buffer_info = &tx_ring->buffer_info[i];
3737
3738 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3739 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3740 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3741 context_desc->upper_setup.tcp_fields.tucss = tucss;
3742 context_desc->upper_setup.tcp_fields.tucso = tucso;
3743 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3744 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3745 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3746 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3747
3748 buffer_info->time_stamp = jiffies;
3749 buffer_info->next_to_watch = i;
3750
3751 i++;
3752 if (i == tx_ring->count)
3753 i = 0;
3754 tx_ring->next_to_use = i;
3755
3756 return 1;
3757 }
3758
3759 return 0;
3760}
3761
3762static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3763{
3764 struct e1000_ring *tx_ring = adapter->tx_ring;
3765 struct e1000_context_desc *context_desc;
3766 struct e1000_buffer *buffer_info;
3767 unsigned int i;
3768 u8 css;
af807c82 3769 u32 cmd_len = E1000_TXD_CMD_DEXT;
bc7f75fa 3770
af807c82
DG
3771 if (skb->ip_summed != CHECKSUM_PARTIAL)
3772 return 0;
bc7f75fa 3773
af807c82
DG
3774 switch (skb->protocol) {
3775 case __constant_htons(ETH_P_IP):
3776 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3777 cmd_len |= E1000_TXD_CMD_TCP;
3778 break;
3779 case __constant_htons(ETH_P_IPV6):
3780 /* XXX not handling all IPV6 headers */
3781 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3782 cmd_len |= E1000_TXD_CMD_TCP;
3783 break;
3784 default:
3785 if (unlikely(net_ratelimit()))
3786 e_warn("checksum_partial proto=%x!\n", skb->protocol);
3787 break;
bc7f75fa
AK
3788 }
3789
af807c82
DG
3790 css = skb_transport_offset(skb);
3791
3792 i = tx_ring->next_to_use;
3793 buffer_info = &tx_ring->buffer_info[i];
3794 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3795
3796 context_desc->lower_setup.ip_config = 0;
3797 context_desc->upper_setup.tcp_fields.tucss = css;
3798 context_desc->upper_setup.tcp_fields.tucso =
3799 css + skb->csum_offset;
3800 context_desc->upper_setup.tcp_fields.tucse = 0;
3801 context_desc->tcp_seg_setup.data = 0;
3802 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3803
3804 buffer_info->time_stamp = jiffies;
3805 buffer_info->next_to_watch = i;
3806
3807 i++;
3808 if (i == tx_ring->count)
3809 i = 0;
3810 tx_ring->next_to_use = i;
3811
3812 return 1;
bc7f75fa
AK
3813}
3814
3815#define E1000_MAX_PER_TXD 8192
3816#define E1000_MAX_TXD_PWR 12
3817
3818static int e1000_tx_map(struct e1000_adapter *adapter,
3819 struct sk_buff *skb, unsigned int first,
3820 unsigned int max_per_txd, unsigned int nr_frags,
3821 unsigned int mss)
3822{
3823 struct e1000_ring *tx_ring = adapter->tx_ring;
3824 struct e1000_buffer *buffer_info;
3825 unsigned int len = skb->len - skb->data_len;
3826 unsigned int offset = 0, size, count = 0, i;
3827 unsigned int f;
3828
3829 i = tx_ring->next_to_use;
3830
3831 while (len) {
3832 buffer_info = &tx_ring->buffer_info[i];
3833 size = min(len, max_per_txd);
3834
3835 /* Workaround for premature desc write-backs
3836 * in TSO mode. Append 4-byte sentinel desc */
3837 if (mss && !nr_frags && size == len && size > 8)
3838 size -= 4;
3839
3840 buffer_info->length = size;
3841 /* set time_stamp *before* dma to help avoid a possible race */
3842 buffer_info->time_stamp = jiffies;
3843 buffer_info->dma =
3844 pci_map_single(adapter->pdev,
3845 skb->data + offset,
3846 size,
3847 PCI_DMA_TODEVICE);
8d8bb39b 3848 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
bc7f75fa
AK
3849 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3850 adapter->tx_dma_failed++;
3851 return -1;
3852 }
3853 buffer_info->next_to_watch = i;
3854
3855 len -= size;
3856 offset += size;
3857 count++;
3858 i++;
3859 if (i == tx_ring->count)
3860 i = 0;
3861 }
3862
3863 for (f = 0; f < nr_frags; f++) {
3864 struct skb_frag_struct *frag;
3865
3866 frag = &skb_shinfo(skb)->frags[f];
3867 len = frag->size;
3868 offset = frag->page_offset;
3869
3870 while (len) {
3871 buffer_info = &tx_ring->buffer_info[i];
3872 size = min(len, max_per_txd);
3873 /* Workaround for premature desc write-backs
3874 * in TSO mode. Append 4-byte sentinel desc */
3875 if (mss && f == (nr_frags-1) && size == len && size > 8)
3876 size -= 4;
3877
3878 buffer_info->length = size;
3879 buffer_info->time_stamp = jiffies;
3880 buffer_info->dma =
3881 pci_map_page(adapter->pdev,
3882 frag->page,
3883 offset,
3884 size,
3885 PCI_DMA_TODEVICE);
8d8bb39b
FT
3886 if (pci_dma_mapping_error(adapter->pdev,
3887 buffer_info->dma)) {
bc7f75fa
AK
3888 dev_err(&adapter->pdev->dev,
3889 "TX DMA page map failed\n");
3890 adapter->tx_dma_failed++;
3891 return -1;
3892 }
3893
3894 buffer_info->next_to_watch = i;
3895
3896 len -= size;
3897 offset += size;
3898 count++;
3899
3900 i++;
3901 if (i == tx_ring->count)
3902 i = 0;
3903 }
3904 }
3905
3906 if (i == 0)
3907 i = tx_ring->count - 1;
3908 else
3909 i--;
3910
3911 tx_ring->buffer_info[i].skb = skb;
3912 tx_ring->buffer_info[first].next_to_watch = i;
3913
3914 return count;
3915}
3916
3917static void e1000_tx_queue(struct e1000_adapter *adapter,
3918 int tx_flags, int count)
3919{
3920 struct e1000_ring *tx_ring = adapter->tx_ring;
3921 struct e1000_tx_desc *tx_desc = NULL;
3922 struct e1000_buffer *buffer_info;
3923 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3924 unsigned int i;
3925
3926 if (tx_flags & E1000_TX_FLAGS_TSO) {
3927 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3928 E1000_TXD_CMD_TSE;
3929 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3930
3931 if (tx_flags & E1000_TX_FLAGS_IPV4)
3932 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3933 }
3934
3935 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3936 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3937 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3938 }
3939
3940 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3941 txd_lower |= E1000_TXD_CMD_VLE;
3942 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3943 }
3944
3945 i = tx_ring->next_to_use;
3946
3947 while (count--) {
3948 buffer_info = &tx_ring->buffer_info[i];
3949 tx_desc = E1000_TX_DESC(*tx_ring, i);
3950 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3951 tx_desc->lower.data =
3952 cpu_to_le32(txd_lower | buffer_info->length);
3953 tx_desc->upper.data = cpu_to_le32(txd_upper);
3954
3955 i++;
3956 if (i == tx_ring->count)
3957 i = 0;
3958 }
3959
3960 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3961
ad68076e
BA
3962 /*
3963 * Force memory writes to complete before letting h/w
bc7f75fa
AK
3964 * know there are new descriptors to fetch. (Only
3965 * applicable for weak-ordered memory model archs,
ad68076e
BA
3966 * such as IA-64).
3967 */
bc7f75fa
AK
3968 wmb();
3969
3970 tx_ring->next_to_use = i;
3971 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
3972 /*
3973 * we need this if more than one processor can write to our tail
3974 * at a time, it synchronizes IO on IA64/Altix systems
3975 */
bc7f75fa
AK
3976 mmiowb();
3977}
3978
3979#define MINIMUM_DHCP_PACKET_SIZE 282
3980static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3981 struct sk_buff *skb)
3982{
3983 struct e1000_hw *hw = &adapter->hw;
3984 u16 length, offset;
3985
3986 if (vlan_tx_tag_present(skb)) {
3987 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3988 && (adapter->hw.mng_cookie.status &
3989 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3990 return 0;
3991 }
3992
3993 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3994 return 0;
3995
3996 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3997 return 0;
3998
3999 {
4000 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4001 struct udphdr *udp;
4002
4003 if (ip->protocol != IPPROTO_UDP)
4004 return 0;
4005
4006 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4007 if (ntohs(udp->dest) != 67)
4008 return 0;
4009
4010 offset = (u8 *)udp + 8 - skb->data;
4011 length = skb->len - offset;
4012 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4013 }
4014
4015 return 0;
4016}
4017
4018static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4019{
4020 struct e1000_adapter *adapter = netdev_priv(netdev);
4021
4022 netif_stop_queue(netdev);
ad68076e
BA
4023 /*
4024 * Herbert's original patch had:
bc7f75fa 4025 * smp_mb__after_netif_stop_queue();
ad68076e
BA
4026 * but since that doesn't exist yet, just open code it.
4027 */
bc7f75fa
AK
4028 smp_mb();
4029
ad68076e
BA
4030 /*
4031 * We need to check again in a case another CPU has just
4032 * made room available.
4033 */
bc7f75fa
AK
4034 if (e1000_desc_unused(adapter->tx_ring) < size)
4035 return -EBUSY;
4036
4037 /* A reprieve! */
4038 netif_start_queue(netdev);
4039 ++adapter->restart_queue;
4040 return 0;
4041}
4042
4043static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4044{
4045 struct e1000_adapter *adapter = netdev_priv(netdev);
4046
4047 if (e1000_desc_unused(adapter->tx_ring) >= size)
4048 return 0;
4049 return __e1000_maybe_stop_tx(netdev, size);
4050}
4051
4052#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4053static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4054{
4055 struct e1000_adapter *adapter = netdev_priv(netdev);
4056 struct e1000_ring *tx_ring = adapter->tx_ring;
4057 unsigned int first;
4058 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4059 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4060 unsigned int tx_flags = 0;
4e6c709c 4061 unsigned int len = skb->len - skb->data_len;
bc7f75fa 4062 unsigned long irq_flags;
4e6c709c
AK
4063 unsigned int nr_frags;
4064 unsigned int mss;
bc7f75fa
AK
4065 int count = 0;
4066 int tso;
4067 unsigned int f;
bc7f75fa
AK
4068
4069 if (test_bit(__E1000_DOWN, &adapter->state)) {
4070 dev_kfree_skb_any(skb);
4071 return NETDEV_TX_OK;
4072 }
4073
4074 if (skb->len <= 0) {
4075 dev_kfree_skb_any(skb);
4076 return NETDEV_TX_OK;
4077 }
4078
4079 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
4080 /*
4081 * The controller does a simple calculation to
bc7f75fa
AK
4082 * make sure there is enough room in the FIFO before
4083 * initiating the DMA for each buffer. The calc is:
4084 * 4 = ceil(buffer len/mss). To make sure we don't
4085 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
4086 * drops.
4087 */
bc7f75fa
AK
4088 if (mss) {
4089 u8 hdr_len;
4090 max_per_txd = min(mss << 2, max_per_txd);
4091 max_txd_pwr = fls(max_per_txd) - 1;
4092
ad68076e
BA
4093 /*
4094 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4095 * points to just header, pull a few bytes of payload from
4096 * frags into skb->data
4097 */
bc7f75fa 4098 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
4099 /*
4100 * we do this workaround for ES2LAN, but it is un-necessary,
4101 * avoiding it could save a lot of cycles
4102 */
4e6c709c 4103 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
4104 unsigned int pull_size;
4105
4106 pull_size = min((unsigned int)4, skb->data_len);
4107 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 4108 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
4109 dev_kfree_skb_any(skb);
4110 return NETDEV_TX_OK;
4111 }
4112 len = skb->len - skb->data_len;
4113 }
4114 }
4115
4116 /* reserve a descriptor for the offload context */
4117 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4118 count++;
4119 count++;
4120
4121 count += TXD_USE_COUNT(len, max_txd_pwr);
4122
4123 nr_frags = skb_shinfo(skb)->nr_frags;
4124 for (f = 0; f < nr_frags; f++)
4125 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4126 max_txd_pwr);
4127
4128 if (adapter->hw.mac.tx_pkt_filtering)
4129 e1000_transfer_dhcp_info(adapter, skb);
4130
4131 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4132 /* Collision - tell upper layer to requeue */
4133 return NETDEV_TX_LOCKED;
4134
ad68076e
BA
4135 /*
4136 * need: count + 2 desc gap to keep tail from touching
4137 * head, otherwise try next time
4138 */
bc7f75fa
AK
4139 if (e1000_maybe_stop_tx(netdev, count + 2)) {
4140 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4141 return NETDEV_TX_BUSY;
4142 }
4143
4144 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4145 tx_flags |= E1000_TX_FLAGS_VLAN;
4146 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4147 }
4148
4149 first = tx_ring->next_to_use;
4150
4151 tso = e1000_tso(adapter, skb);
4152 if (tso < 0) {
4153 dev_kfree_skb_any(skb);
4154 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4155 return NETDEV_TX_OK;
4156 }
4157
4158 if (tso)
4159 tx_flags |= E1000_TX_FLAGS_TSO;
4160 else if (e1000_tx_csum(adapter, skb))
4161 tx_flags |= E1000_TX_FLAGS_CSUM;
4162
ad68076e
BA
4163 /*
4164 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 4165 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
4166 * no longer assume, we must.
4167 */
bc7f75fa
AK
4168 if (skb->protocol == htons(ETH_P_IP))
4169 tx_flags |= E1000_TX_FLAGS_IPV4;
4170
4171 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4172 if (count < 0) {
4173 /* handle pci_map_single() error in e1000_tx_map */
4174 dev_kfree_skb_any(skb);
4175 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
7b5dfe1a 4176 return NETDEV_TX_OK;
bc7f75fa
AK
4177 }
4178
4179 e1000_tx_queue(adapter, tx_flags, count);
4180
4181 netdev->trans_start = jiffies;
4182
4183 /* Make sure there is space in the ring for the next send. */
4184 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4185
4186 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4187 return NETDEV_TX_OK;
4188}
4189
4190/**
4191 * e1000_tx_timeout - Respond to a Tx Hang
4192 * @netdev: network interface device structure
4193 **/
4194static void e1000_tx_timeout(struct net_device *netdev)
4195{
4196 struct e1000_adapter *adapter = netdev_priv(netdev);
4197
4198 /* Do the reset outside of interrupt context */
4199 adapter->tx_timeout_count++;
4200 schedule_work(&adapter->reset_task);
4201}
4202
4203static void e1000_reset_task(struct work_struct *work)
4204{
4205 struct e1000_adapter *adapter;
4206 adapter = container_of(work, struct e1000_adapter, reset_task);
4207
4208 e1000e_reinit_locked(adapter);
4209}
4210
4211/**
4212 * e1000_get_stats - Get System Network Statistics
4213 * @netdev: network interface device structure
4214 *
4215 * Returns the address of the device statistics structure.
4216 * The statistics are actually updated from the timer callback.
4217 **/
4218static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4219{
4220 struct e1000_adapter *adapter = netdev_priv(netdev);
4221
4222 /* only return the current stats */
4223 return &adapter->net_stats;
4224}
4225
4226/**
4227 * e1000_change_mtu - Change the Maximum Transfer Unit
4228 * @netdev: network interface device structure
4229 * @new_mtu: new value for maximum frame size
4230 *
4231 * Returns 0 on success, negative on failure
4232 **/
4233static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4234{
4235 struct e1000_adapter *adapter = netdev_priv(netdev);
4236 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4237
d53f706d 4238 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
bc7f75fa 4239 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
44defeb3 4240 e_err("Invalid MTU setting\n");
bc7f75fa
AK
4241 return -EINVAL;
4242 }
4243
4244 /* Jumbo frame size limits */
4245 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4246 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
44defeb3 4247 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4248 return -EINVAL;
4249 }
4250 if (adapter->hw.phy.type == e1000_phy_ife) {
44defeb3 4251 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4252 return -EINVAL;
4253 }
4254 }
4255
4256#define MAX_STD_JUMBO_FRAME_SIZE 9234
4257 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
44defeb3 4258 e_err("MTU > 9216 not supported.\n");
bc7f75fa
AK
4259 return -EINVAL;
4260 }
4261
4262 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4263 msleep(1);
4264 /* e1000e_down has a dependency on max_frame_size */
318a94d6 4265 adapter->max_frame_size = max_frame;
bc7f75fa
AK
4266 if (netif_running(netdev))
4267 e1000e_down(adapter);
4268
ad68076e
BA
4269 /*
4270 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
4271 * means we reserve 2 more, this pushes us to allocate from the next
4272 * larger slab size.
ad68076e 4273 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
4274 * However with the new *_jumbo_rx* routines, jumbo receives will use
4275 * fragmented skbs
ad68076e 4276 */
bc7f75fa
AK
4277
4278 if (max_frame <= 256)
4279 adapter->rx_buffer_len = 256;
4280 else if (max_frame <= 512)
4281 adapter->rx_buffer_len = 512;
4282 else if (max_frame <= 1024)
4283 adapter->rx_buffer_len = 1024;
4284 else if (max_frame <= 2048)
4285 adapter->rx_buffer_len = 2048;
4286 else
4287 adapter->rx_buffer_len = 4096;
4288
4289 /* adjust allocation if LPE protects us, and we aren't using SBP */
4290 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4291 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4292 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 4293 + ETH_FCS_LEN;
bc7f75fa 4294
44defeb3 4295 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
bc7f75fa
AK
4296 netdev->mtu = new_mtu;
4297
4298 if (netif_running(netdev))
4299 e1000e_up(adapter);
4300 else
4301 e1000e_reset(adapter);
4302
4303 clear_bit(__E1000_RESETTING, &adapter->state);
4304
4305 return 0;
4306}
4307
4308static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4309 int cmd)
4310{
4311 struct e1000_adapter *adapter = netdev_priv(netdev);
4312 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 4313
318a94d6 4314 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
4315 return -EOPNOTSUPP;
4316
4317 switch (cmd) {
4318 case SIOCGMIIPHY:
4319 data->phy_id = adapter->hw.phy.addr;
4320 break;
4321 case SIOCGMIIREG:
4322 if (!capable(CAP_NET_ADMIN))
4323 return -EPERM;
7c25769f
BA
4324 switch (data->reg_num & 0x1F) {
4325 case MII_BMCR:
4326 data->val_out = adapter->phy_regs.bmcr;
4327 break;
4328 case MII_BMSR:
4329 data->val_out = adapter->phy_regs.bmsr;
4330 break;
4331 case MII_PHYSID1:
4332 data->val_out = (adapter->hw.phy.id >> 16);
4333 break;
4334 case MII_PHYSID2:
4335 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4336 break;
4337 case MII_ADVERTISE:
4338 data->val_out = adapter->phy_regs.advertise;
4339 break;
4340 case MII_LPA:
4341 data->val_out = adapter->phy_regs.lpa;
4342 break;
4343 case MII_EXPANSION:
4344 data->val_out = adapter->phy_regs.expansion;
4345 break;
4346 case MII_CTRL1000:
4347 data->val_out = adapter->phy_regs.ctrl1000;
4348 break;
4349 case MII_STAT1000:
4350 data->val_out = adapter->phy_regs.stat1000;
4351 break;
4352 case MII_ESTATUS:
4353 data->val_out = adapter->phy_regs.estatus;
4354 break;
4355 default:
bc7f75fa
AK
4356 return -EIO;
4357 }
bc7f75fa
AK
4358 break;
4359 case SIOCSMIIREG:
4360 default:
4361 return -EOPNOTSUPP;
4362 }
4363 return 0;
4364}
4365
4366static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4367{
4368 switch (cmd) {
4369 case SIOCGMIIPHY:
4370 case SIOCGMIIREG:
4371 case SIOCSMIIREG:
4372 return e1000_mii_ioctl(netdev, ifr, cmd);
4373 default:
4374 return -EOPNOTSUPP;
4375 }
4376}
4377
4378static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4379{
4380 struct net_device *netdev = pci_get_drvdata(pdev);
4381 struct e1000_adapter *adapter = netdev_priv(netdev);
4382 struct e1000_hw *hw = &adapter->hw;
4383 u32 ctrl, ctrl_ext, rctl, status;
4384 u32 wufc = adapter->wol;
4385 int retval = 0;
4386
4387 netif_device_detach(netdev);
4388
4389 if (netif_running(netdev)) {
4390 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4391 e1000e_down(adapter);
4392 e1000_free_irq(adapter);
4393 }
4662e82b 4394 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
4395
4396 retval = pci_save_state(pdev);
4397 if (retval)
4398 return retval;
4399
4400 status = er32(STATUS);
4401 if (status & E1000_STATUS_LU)
4402 wufc &= ~E1000_WUFC_LNKC;
4403
4404 if (wufc) {
4405 e1000_setup_rctl(adapter);
4406 e1000_set_multi(netdev);
4407
4408 /* turn on all-multi mode if wake on multicast is enabled */
4409 if (wufc & E1000_WUFC_MC) {
4410 rctl = er32(RCTL);
4411 rctl |= E1000_RCTL_MPE;
4412 ew32(RCTL, rctl);
4413 }
4414
4415 ctrl = er32(CTRL);
4416 /* advertise wake from D3Cold */
4417 #define E1000_CTRL_ADVD3WUC 0x00100000
4418 /* phy power management enable */
4419 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4420 ctrl |= E1000_CTRL_ADVD3WUC |
4421 E1000_CTRL_EN_PHY_PWR_MGMT;
4422 ew32(CTRL, ctrl);
4423
318a94d6
JK
4424 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4425 adapter->hw.phy.media_type ==
4426 e1000_media_type_internal_serdes) {
bc7f75fa
AK
4427 /* keep the laser running in D3 */
4428 ctrl_ext = er32(CTRL_EXT);
4429 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4430 ew32(CTRL_EXT, ctrl_ext);
4431 }
4432
97ac8cae
BA
4433 if (adapter->flags & FLAG_IS_ICH)
4434 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4435
bc7f75fa
AK
4436 /* Allow time for pending master requests to run */
4437 e1000e_disable_pcie_master(&adapter->hw);
4438
4439 ew32(WUC, E1000_WUC_PME_EN);
4440 ew32(WUFC, wufc);
4441 pci_enable_wake(pdev, PCI_D3hot, 1);
4442 pci_enable_wake(pdev, PCI_D3cold, 1);
4443 } else {
4444 ew32(WUC, 0);
4445 ew32(WUFC, 0);
4446 pci_enable_wake(pdev, PCI_D3hot, 0);
4447 pci_enable_wake(pdev, PCI_D3cold, 0);
4448 }
4449
bc7f75fa
AK
4450 /* make sure adapter isn't asleep if manageability is enabled */
4451 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4452 pci_enable_wake(pdev, PCI_D3hot, 1);
4453 pci_enable_wake(pdev, PCI_D3cold, 1);
4454 }
4455
4456 if (adapter->hw.phy.type == e1000_phy_igp_3)
4457 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4458
ad68076e
BA
4459 /*
4460 * Release control of h/w to f/w. If f/w is AMT enabled, this
4461 * would have already happened in close and is redundant.
4462 */
bc7f75fa
AK
4463 e1000_release_hw_control(adapter);
4464
4465 pci_disable_device(pdev);
4466
4467 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4468
4469 return 0;
4470}
4471
1eae4eb2
AK
4472static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4473{
4474 int pos;
1eae4eb2
AK
4475 u16 val;
4476
4477 /*
4478 * 82573 workaround - disable L1 ASPM on mobile chipsets
4479 *
4480 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4481 * resulting in lost data or garbage information on the pci-e link
4482 * level. This could result in (false) bad EEPROM checksum errors,
4483 * long ping times (up to 2s) or even a system freeze/hang.
4484 *
4485 * Unfortunately this feature saves about 1W power consumption when
4486 * active.
4487 */
4488 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
4489 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4490 if (val & 0x2) {
4491 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4492 val &= ~0x2;
4493 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4494 }
4495}
4496
bc7f75fa
AK
4497#ifdef CONFIG_PM
4498static int e1000_resume(struct pci_dev *pdev)
4499{
4500 struct net_device *netdev = pci_get_drvdata(pdev);
4501 struct e1000_adapter *adapter = netdev_priv(netdev);
4502 struct e1000_hw *hw = &adapter->hw;
4503 u32 err;
4504
4505 pci_set_power_state(pdev, PCI_D0);
4506 pci_restore_state(pdev);
1eae4eb2 4507 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4508
f0f422e5 4509 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4510 if (err) {
4511 dev_err(&pdev->dev,
4512 "Cannot enable PCI device from suspend\n");
4513 return err;
4514 }
4515
4516 pci_set_master(pdev);
4517
4518 pci_enable_wake(pdev, PCI_D3hot, 0);
4519 pci_enable_wake(pdev, PCI_D3cold, 0);
4520
4662e82b 4521 e1000e_set_interrupt_capability(adapter);
bc7f75fa
AK
4522 if (netif_running(netdev)) {
4523 err = e1000_request_irq(adapter);
4524 if (err)
4525 return err;
4526 }
4527
4528 e1000e_power_up_phy(adapter);
4529 e1000e_reset(adapter);
4530 ew32(WUS, ~0);
4531
4532 e1000_init_manageability(adapter);
4533
4534 if (netif_running(netdev))
4535 e1000e_up(adapter);
4536
4537 netif_device_attach(netdev);
4538
ad68076e
BA
4539 /*
4540 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4541 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4542 * under the control of the driver.
4543 */
c43bc57e 4544 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4545 e1000_get_hw_control(adapter);
4546
4547 return 0;
4548}
4549#endif
4550
4551static void e1000_shutdown(struct pci_dev *pdev)
4552{
4553 e1000_suspend(pdev, PMSG_SUSPEND);
4554}
4555
4556#ifdef CONFIG_NET_POLL_CONTROLLER
4557/*
4558 * Polling 'interrupt' - used by things like netconsole to send skbs
4559 * without having to re-enable interrupts. It's not called while
4560 * the interrupt routine is executing.
4561 */
4562static void e1000_netpoll(struct net_device *netdev)
4563{
4564 struct e1000_adapter *adapter = netdev_priv(netdev);
4565
4566 disable_irq(adapter->pdev->irq);
4567 e1000_intr(adapter->pdev->irq, netdev);
4568
bc7f75fa
AK
4569 enable_irq(adapter->pdev->irq);
4570}
4571#endif
4572
4573/**
4574 * e1000_io_error_detected - called when PCI error is detected
4575 * @pdev: Pointer to PCI device
4576 * @state: The current pci connection state
4577 *
4578 * This function is called after a PCI bus error affecting
4579 * this device has been detected.
4580 */
4581static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4582 pci_channel_state_t state)
4583{
4584 struct net_device *netdev = pci_get_drvdata(pdev);
4585 struct e1000_adapter *adapter = netdev_priv(netdev);
4586
4587 netif_device_detach(netdev);
4588
4589 if (netif_running(netdev))
4590 e1000e_down(adapter);
4591 pci_disable_device(pdev);
4592
4593 /* Request a slot slot reset. */
4594 return PCI_ERS_RESULT_NEED_RESET;
4595}
4596
4597/**
4598 * e1000_io_slot_reset - called after the pci bus has been reset.
4599 * @pdev: Pointer to PCI device
4600 *
4601 * Restart the card from scratch, as if from a cold-boot. Implementation
4602 * resembles the first-half of the e1000_resume routine.
4603 */
4604static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4605{
4606 struct net_device *netdev = pci_get_drvdata(pdev);
4607 struct e1000_adapter *adapter = netdev_priv(netdev);
4608 struct e1000_hw *hw = &adapter->hw;
6e4f6f6b 4609 int err;
bc7f75fa 4610
1eae4eb2 4611 e1000e_disable_l1aspm(pdev);
f0f422e5 4612 err = pci_enable_device_mem(pdev);
6e4f6f6b 4613 if (err) {
bc7f75fa
AK
4614 dev_err(&pdev->dev,
4615 "Cannot re-enable PCI device after reset.\n");
4616 return PCI_ERS_RESULT_DISCONNECT;
4617 }
4618 pci_set_master(pdev);
aad32739 4619 pci_restore_state(pdev);
bc7f75fa
AK
4620
4621 pci_enable_wake(pdev, PCI_D3hot, 0);
4622 pci_enable_wake(pdev, PCI_D3cold, 0);
4623
4624 e1000e_reset(adapter);
4625 ew32(WUS, ~0);
4626
4627 return PCI_ERS_RESULT_RECOVERED;
4628}
4629
4630/**
4631 * e1000_io_resume - called when traffic can start flowing again.
4632 * @pdev: Pointer to PCI device
4633 *
4634 * This callback is called when the error recovery driver tells us that
4635 * its OK to resume normal operation. Implementation resembles the
4636 * second-half of the e1000_resume routine.
4637 */
4638static void e1000_io_resume(struct pci_dev *pdev)
4639{
4640 struct net_device *netdev = pci_get_drvdata(pdev);
4641 struct e1000_adapter *adapter = netdev_priv(netdev);
4642
4643 e1000_init_manageability(adapter);
4644
4645 if (netif_running(netdev)) {
4646 if (e1000e_up(adapter)) {
4647 dev_err(&pdev->dev,
4648 "can't bring device back up after reset\n");
4649 return;
4650 }
4651 }
4652
4653 netif_device_attach(netdev);
4654
ad68076e
BA
4655 /*
4656 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4657 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4658 * under the control of the driver.
4659 */
c43bc57e 4660 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4661 e1000_get_hw_control(adapter);
4662
4663}
4664
4665static void e1000_print_device_info(struct e1000_adapter *adapter)
4666{
4667 struct e1000_hw *hw = &adapter->hw;
4668 struct net_device *netdev = adapter->netdev;
69e3fd8c 4669 u32 pba_num;
bc7f75fa
AK
4670
4671 /* print bus type/speed/width info */
44defeb3
JK
4672 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4673 /* bus width */
4674 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4675 "Width x1"),
4676 /* MAC address */
4677 netdev->dev_addr[0], netdev->dev_addr[1],
4678 netdev->dev_addr[2], netdev->dev_addr[3],
4679 netdev->dev_addr[4], netdev->dev_addr[5]);
4680 e_info("Intel(R) PRO/%s Network Connection\n",
4681 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
69e3fd8c 4682 e1000e_read_pba_num(hw, &pba_num);
44defeb3
JK
4683 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4684 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
4685}
4686
10aa4c04
AK
4687static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4688{
4689 struct e1000_hw *hw = &adapter->hw;
4690 int ret_val;
4691 u16 buf = 0;
4692
4693 if (hw->mac.type != e1000_82573)
4694 return;
4695
4696 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4697 if (!(le16_to_cpu(buf) & (1 << 0))) {
4698 /* Deep Smart Power Down (DSPD) */
6c2a9efa
FP
4699 dev_warn(&adapter->pdev->dev,
4700 "Warning: detected DSPD enabled in EEPROM\n");
10aa4c04
AK
4701 }
4702
4703 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4704 if (le16_to_cpu(buf) & (3 << 2)) {
4705 /* ASPM enable */
6c2a9efa
FP
4706 dev_warn(&adapter->pdev->dev,
4707 "Warning: detected ASPM enabled in EEPROM\n");
10aa4c04
AK
4708 }
4709}
4710
bc7f75fa
AK
4711/**
4712 * e1000_probe - Device Initialization Routine
4713 * @pdev: PCI device information struct
4714 * @ent: entry in e1000_pci_tbl
4715 *
4716 * Returns 0 on success, negative on failure
4717 *
4718 * e1000_probe initializes an adapter identified by a pci_dev structure.
4719 * The OS initialization, configuring of the adapter private structure,
4720 * and a hardware reset occur.
4721 **/
4722static int __devinit e1000_probe(struct pci_dev *pdev,
4723 const struct pci_device_id *ent)
4724{
4725 struct net_device *netdev;
4726 struct e1000_adapter *adapter;
4727 struct e1000_hw *hw;
4728 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
4729 resource_size_t mmio_start, mmio_len;
4730 resource_size_t flash_start, flash_len;
bc7f75fa
AK
4731
4732 static int cards_found;
4733 int i, err, pci_using_dac;
4734 u16 eeprom_data = 0;
4735 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4736
1eae4eb2 4737 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4738
f0f422e5 4739 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4740 if (err)
4741 return err;
4742
4743 pci_using_dac = 0;
4744 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4745 if (!err) {
4746 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4747 if (!err)
4748 pci_using_dac = 1;
4749 } else {
4750 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4751 if (err) {
4752 err = pci_set_consistent_dma_mask(pdev,
4753 DMA_32BIT_MASK);
4754 if (err) {
4755 dev_err(&pdev->dev, "No usable DMA "
4756 "configuration, aborting\n");
4757 goto err_dma;
4758 }
4759 }
4760 }
4761
f0f422e5
BA
4762 err = pci_request_selected_regions(pdev,
4763 pci_select_bars(pdev, IORESOURCE_MEM),
4764 e1000e_driver_name);
bc7f75fa
AK
4765 if (err)
4766 goto err_pci_reg;
4767
4768 pci_set_master(pdev);
aad32739 4769 pci_save_state(pdev);
bc7f75fa
AK
4770
4771 err = -ENOMEM;
4772 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4773 if (!netdev)
4774 goto err_alloc_etherdev;
4775
bc7f75fa
AK
4776 SET_NETDEV_DEV(netdev, &pdev->dev);
4777
4778 pci_set_drvdata(pdev, netdev);
4779 adapter = netdev_priv(netdev);
4780 hw = &adapter->hw;
4781 adapter->netdev = netdev;
4782 adapter->pdev = pdev;
4783 adapter->ei = ei;
4784 adapter->pba = ei->pba;
4785 adapter->flags = ei->flags;
eb7c3adb 4786 adapter->flags2 = ei->flags2;
bc7f75fa
AK
4787 adapter->hw.adapter = adapter;
4788 adapter->hw.mac.type = ei->mac;
4789 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4790
4791 mmio_start = pci_resource_start(pdev, 0);
4792 mmio_len = pci_resource_len(pdev, 0);
4793
4794 err = -EIO;
4795 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4796 if (!adapter->hw.hw_addr)
4797 goto err_ioremap;
4798
4799 if ((adapter->flags & FLAG_HAS_FLASH) &&
4800 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4801 flash_start = pci_resource_start(pdev, 1);
4802 flash_len = pci_resource_len(pdev, 1);
4803 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4804 if (!adapter->hw.flash_address)
4805 goto err_flashmap;
4806 }
4807
4808 /* construct the net_device struct */
4809 netdev->open = &e1000_open;
4810 netdev->stop = &e1000_close;
4811 netdev->hard_start_xmit = &e1000_xmit_frame;
4812 netdev->get_stats = &e1000_get_stats;
4813 netdev->set_multicast_list = &e1000_set_multi;
4814 netdev->set_mac_address = &e1000_set_mac;
4815 netdev->change_mtu = &e1000_change_mtu;
4816 netdev->do_ioctl = &e1000_ioctl;
4817 e1000e_set_ethtool_ops(netdev);
4818 netdev->tx_timeout = &e1000_tx_timeout;
4819 netdev->watchdog_timeo = 5 * HZ;
4820 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4821 netdev->vlan_rx_register = e1000_vlan_rx_register;
4822 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4823 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4824#ifdef CONFIG_NET_POLL_CONTROLLER
4825 netdev->poll_controller = e1000_netpoll;
4826#endif
4827 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4828
4829 netdev->mem_start = mmio_start;
4830 netdev->mem_end = mmio_start + mmio_len;
4831
4832 adapter->bd_number = cards_found++;
4833
4662e82b
BA
4834 e1000e_check_options(adapter);
4835
bc7f75fa
AK
4836 /* setup adapter struct */
4837 err = e1000_sw_init(adapter);
4838 if (err)
4839 goto err_sw_init;
4840
4841 err = -EIO;
4842
4843 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4844 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4845 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4846
69e3fd8c 4847 err = ei->get_variants(adapter);
bc7f75fa
AK
4848 if (err)
4849 goto err_hw_init;
4850
4a770358
BA
4851 if ((adapter->flags & FLAG_IS_ICH) &&
4852 (adapter->flags & FLAG_READ_ONLY_NVM))
4853 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4854
bc7f75fa
AK
4855 hw->mac.ops.get_bus_info(&adapter->hw);
4856
318a94d6 4857 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
4858
4859 /* Copper options */
318a94d6 4860 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
4861 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4862 adapter->hw.phy.disable_polarity_correction = 0;
4863 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4864 }
4865
4866 if (e1000_check_reset_block(&adapter->hw))
44defeb3 4867 e_info("PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa
AK
4868
4869 netdev->features = NETIF_F_SG |
4870 NETIF_F_HW_CSUM |
4871 NETIF_F_HW_VLAN_TX |
4872 NETIF_F_HW_VLAN_RX;
4873
4874 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4875 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4876
4877 netdev->features |= NETIF_F_TSO;
4878 netdev->features |= NETIF_F_TSO6;
4879
a5136e23
JK
4880 netdev->vlan_features |= NETIF_F_TSO;
4881 netdev->vlan_features |= NETIF_F_TSO6;
4882 netdev->vlan_features |= NETIF_F_HW_CSUM;
4883 netdev->vlan_features |= NETIF_F_SG;
4884
bc7f75fa
AK
4885 if (pci_using_dac)
4886 netdev->features |= NETIF_F_HIGHDMA;
4887
ad68076e
BA
4888 /*
4889 * We should not be using LLTX anymore, but we are still Tx faster with
4890 * it.
4891 */
bc7f75fa
AK
4892 netdev->features |= NETIF_F_LLTX;
4893
4894 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4895 adapter->flags |= FLAG_MNG_PT_ENABLED;
4896
ad68076e
BA
4897 /*
4898 * before reading the NVM, reset the controller to
4899 * put the device in a known good starting state
4900 */
bc7f75fa
AK
4901 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4902
4903 /*
4904 * systems with ASPM and others may see the checksum fail on the first
4905 * attempt. Let's give it a few tries
4906 */
4907 for (i = 0;; i++) {
4908 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4909 break;
4910 if (i == 2) {
44defeb3 4911 e_err("The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
4912 err = -EIO;
4913 goto err_eeprom;
4914 }
4915 }
4916
10aa4c04
AK
4917 e1000_eeprom_checks(adapter);
4918
bc7f75fa
AK
4919 /* copy the MAC address out of the NVM */
4920 if (e1000e_read_mac_addr(&adapter->hw))
44defeb3 4921 e_err("NVM Read Error while reading MAC address\n");
bc7f75fa
AK
4922
4923 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4924 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4925
4926 if (!is_valid_ether_addr(netdev->perm_addr)) {
44defeb3
JK
4927 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4928 netdev->perm_addr[0], netdev->perm_addr[1],
4929 netdev->perm_addr[2], netdev->perm_addr[3],
4930 netdev->perm_addr[4], netdev->perm_addr[5]);
bc7f75fa
AK
4931 err = -EIO;
4932 goto err_eeprom;
4933 }
4934
4935 init_timer(&adapter->watchdog_timer);
4936 adapter->watchdog_timer.function = &e1000_watchdog;
4937 adapter->watchdog_timer.data = (unsigned long) adapter;
4938
4939 init_timer(&adapter->phy_info_timer);
4940 adapter->phy_info_timer.function = &e1000_update_phy_info;
4941 adapter->phy_info_timer.data = (unsigned long) adapter;
4942
4943 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4944 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
a8f88ff5
JB
4945 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4946 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
bc7f75fa 4947
bc7f75fa
AK
4948 /* Initialize link parameters. User can change them with ethtool */
4949 adapter->hw.mac.autoneg = 1;
309af40b 4950 adapter->fc_autoneg = 1;
318a94d6
JK
4951 adapter->hw.fc.original_type = e1000_fc_default;
4952 adapter->hw.fc.type = e1000_fc_default;
bc7f75fa
AK
4953 adapter->hw.phy.autoneg_advertised = 0x2f;
4954
4955 /* ring size defaults */
4956 adapter->rx_ring->count = 256;
4957 adapter->tx_ring->count = 256;
4958
4959 /*
4960 * Initial Wake on LAN setting - If APM wake is enabled in
4961 * the EEPROM, enable the ACPI Magic Packet filter
4962 */
4963 if (adapter->flags & FLAG_APME_IN_WUC) {
4964 /* APME bit in EEPROM is mapped to WUC.APME */
4965 eeprom_data = er32(WUC);
4966 eeprom_apme_mask = E1000_WUC_APME;
4967 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4968 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4969 (adapter->hw.bus.func == 1))
4970 e1000_read_nvm(&adapter->hw,
4971 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4972 else
4973 e1000_read_nvm(&adapter->hw,
4974 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4975 }
4976
4977 /* fetch WoL from EEPROM */
4978 if (eeprom_data & eeprom_apme_mask)
4979 adapter->eeprom_wol |= E1000_WUFC_MAG;
4980
4981 /*
4982 * now that we have the eeprom settings, apply the special cases
4983 * where the eeprom may be wrong or the board simply won't support
4984 * wake on lan on a particular port
4985 */
4986 if (!(adapter->flags & FLAG_HAS_WOL))
4987 adapter->eeprom_wol = 0;
4988
4989 /* initialize the wol settings based on the eeprom settings */
4990 adapter->wol = adapter->eeprom_wol;
6ff68026 4991 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
bc7f75fa
AK
4992
4993 /* reset the hardware with the new settings */
4994 e1000e_reset(adapter);
4995
ad68076e
BA
4996 /*
4997 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4998 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4999 * under the control of the driver.
5000 */
c43bc57e 5001 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
5002 e1000_get_hw_control(adapter);
5003
5004 /* tell the stack to leave us alone until e1000_open() is called */
5005 netif_carrier_off(netdev);
d55b53ff 5006 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
5007
5008 strcpy(netdev->name, "eth%d");
5009 err = register_netdev(netdev);
5010 if (err)
5011 goto err_register;
5012
5013 e1000_print_device_info(adapter);
5014
5015 return 0;
5016
5017err_register:
c43bc57e
JB
5018 if (!(adapter->flags & FLAG_HAS_AMT))
5019 e1000_release_hw_control(adapter);
bc7f75fa
AK
5020err_eeprom:
5021 if (!e1000_check_reset_block(&adapter->hw))
5022 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 5023err_hw_init:
bc7f75fa 5024
bc7f75fa
AK
5025 kfree(adapter->tx_ring);
5026 kfree(adapter->rx_ring);
5027err_sw_init:
c43bc57e
JB
5028 if (adapter->hw.flash_address)
5029 iounmap(adapter->hw.flash_address);
e82f54ba 5030 e1000e_reset_interrupt_capability(adapter);
c43bc57e 5031err_flashmap:
bc7f75fa
AK
5032 iounmap(adapter->hw.hw_addr);
5033err_ioremap:
5034 free_netdev(netdev);
5035err_alloc_etherdev:
f0f422e5
BA
5036 pci_release_selected_regions(pdev,
5037 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5038err_pci_reg:
5039err_dma:
5040 pci_disable_device(pdev);
5041 return err;
5042}
5043
5044/**
5045 * e1000_remove - Device Removal Routine
5046 * @pdev: PCI device information struct
5047 *
5048 * e1000_remove is called by the PCI subsystem to alert the driver
5049 * that it should release a PCI device. The could be caused by a
5050 * Hot-Plug event, or because the driver is going to be removed from
5051 * memory.
5052 **/
5053static void __devexit e1000_remove(struct pci_dev *pdev)
5054{
5055 struct net_device *netdev = pci_get_drvdata(pdev);
5056 struct e1000_adapter *adapter = netdev_priv(netdev);
5057
ad68076e
BA
5058 /*
5059 * flush_scheduled work may reschedule our watchdog task, so
5060 * explicitly disable watchdog tasks from being rescheduled
5061 */
bc7f75fa
AK
5062 set_bit(__E1000_DOWN, &adapter->state);
5063 del_timer_sync(&adapter->watchdog_timer);
5064 del_timer_sync(&adapter->phy_info_timer);
5065
5066 flush_scheduled_work();
5067
ad68076e
BA
5068 /*
5069 * Release control of h/w to f/w. If f/w is AMT enabled, this
5070 * would have already happened in close and is redundant.
5071 */
bc7f75fa
AK
5072 e1000_release_hw_control(adapter);
5073
5074 unregister_netdev(netdev);
5075
5076 if (!e1000_check_reset_block(&adapter->hw))
5077 e1000_phy_hw_reset(&adapter->hw);
5078
4662e82b 5079 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
5080 kfree(adapter->tx_ring);
5081 kfree(adapter->rx_ring);
5082
5083 iounmap(adapter->hw.hw_addr);
5084 if (adapter->hw.flash_address)
5085 iounmap(adapter->hw.flash_address);
f0f422e5
BA
5086 pci_release_selected_regions(pdev,
5087 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5088
5089 free_netdev(netdev);
5090
5091 pci_disable_device(pdev);
5092}
5093
5094/* PCI Error Recovery (ERS) */
5095static struct pci_error_handlers e1000_err_handler = {
5096 .error_detected = e1000_io_error_detected,
5097 .slot_reset = e1000_io_slot_reset,
5098 .resume = e1000_io_resume,
5099};
5100
5101static struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
5102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
5108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 5111
bc7f75fa
AK
5112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 5116
bc7f75fa
AK
5117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 5120
4662e82b
BA
5121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5122
bc7f75fa
AK
5123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5124 board_80003es2lan },
5125 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5126 board_80003es2lan },
5127 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5128 board_80003es2lan },
5129 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5130 board_80003es2lan },
ad68076e 5131
bc7f75fa
AK
5132 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5133 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5134 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5135 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5136 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5137 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5138 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
ad68076e 5139
bc7f75fa
AK
5140 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5141 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5143 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 5145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
5146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5148 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5149
5150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 5153
f4187b56
BA
5154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5156
bc7f75fa
AK
5157 { } /* terminate list */
5158};
5159MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5160
5161/* PCI Device API Driver */
5162static struct pci_driver e1000_driver = {
5163 .name = e1000e_driver_name,
5164 .id_table = e1000_pci_tbl,
5165 .probe = e1000_probe,
5166 .remove = __devexit_p(e1000_remove),
5167#ifdef CONFIG_PM
ad68076e 5168 /* Power Management Hooks */
bc7f75fa
AK
5169 .suspend = e1000_suspend,
5170 .resume = e1000_resume,
5171#endif
5172 .shutdown = e1000_shutdown,
5173 .err_handler = &e1000_err_handler
5174};
5175
5176/**
5177 * e1000_init_module - Driver Registration Routine
5178 *
5179 * e1000_init_module is the first routine called when the driver is
5180 * loaded. All it does is register with the PCI subsystem.
5181 **/
5182static int __init e1000_init_module(void)
5183{
5184 int ret;
5185 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5186 e1000e_driver_name, e1000e_driver_version);
ad68076e 5187 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
bc7f75fa
AK
5188 e1000e_driver_name);
5189 ret = pci_register_driver(&e1000_driver);
97ac8cae
BA
5190 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5191 PM_QOS_DEFAULT_VALUE);
5192
bc7f75fa
AK
5193 return ret;
5194}
5195module_init(e1000_init_module);
5196
5197/**
5198 * e1000_exit_module - Driver Exit Cleanup Routine
5199 *
5200 * e1000_exit_module is called just before the driver is removed
5201 * from memory.
5202 **/
5203static void __exit e1000_exit_module(void)
5204{
5205 pci_unregister_driver(&e1000_driver);
97ac8cae 5206 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
bc7f75fa
AK
5207}
5208module_exit(e1000_exit_module);
5209
5210
5211MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5212MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5213MODULE_LICENSE("GPL");
5214MODULE_VERSION(DRV_VERSION);
5215
5216/* e1000_main.c */